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ABSTRACT

Representations of the Hecke Group G(2) from Fermionic Modular Categories

Kevin M. Matthews Jr.
Department of Applied Mathematics in Computer Science

Texas A&M University

Research Advisor: Dr. Eric C. Rowell
Department of Mathematics

Texas A&M University

This project explores a conjecture which states that groups from the Fermionic Mod-

ular Category are finite; specifically representations of the Hecke group G(2) will be ex-

plored which are important in number theory. These representations are used for a math-

ematical model of Topological Quantum Computation (TQC) based on topological sym-

metries rather than geometric symmetries. The use of topological symmetries reduces the

effects of outside interference on computations due to the nature of topological symme-

tries relying on the general shape instead of particular distances or angles. TQC would aid

in the development of quantum computing by helping to solve the problem of interference

in quantum particles. Magma algebraic software was used in order to generate these group

representations and provide information on their resulting structure to aid in identification.
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NOMENCLATURE

FMC Fermionic Modular Category

MMC Metaplectic Modular Category

TQC Topological Quantum Computation
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1. INTRODUCTION

1.1 Background

Quantum computing offers benefits over traditional bit-arithmetic computing due to

the use of Qubits, which provide more computational power by "using the two charac-

teristic attributes of quantum mechanics – superposition and entanglement"[1] However,

quantum particles are affected by the act of being observed, so Qubits suffer from large

amounts of environmental interference. Topological Quantum Computing is a method of

quantum computation which focuses on encoding information in topological invariants.

By using topological symmetries, interference can be mitigated since the general struc-

ture, not distance and angle degree, decides equivalence in topological structures as in

figure 1.1.

initialize create 

particles

apply gates particle 

exchange

output measure

Computation Physics

vacuum

Figure 1.1: Computation model utilizing braid structures1
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1.2 Project Description

For analysis of FMCs, smaller examples were generated in order to generalize the

structure. Generation was accomplished by using cyclic groups with order k = 8n where

n ∈ N (Zk). An S and T matrix, representing the spin and twist respectively, were con-

structed with size dependent on the order of the cyclic group where T is diagonal. From

Z8 and Z16 the method was able to be generalized such that generating S and T matrices

for further Zk could be automated. Magma algebraic software was then used to check

the order of the group generated by the two matrices, as well as gather further informa-

tion about the structure. The quotient group modulo the center was also analyzed until no

longer possible and similar information was gathered for each subgroup.

Another example of FMCs were Metaplectic Modular Categories which were also

studied in this project. The structure is based off of odd positive integers and covered

in further detail in the methods section. Analysis was also carried out as with FMCs, using

magma software to gather information on the resulting groups and the quotient groups.

The data collected has been included and is discussed in the results section, and further

conclusions are discussed in the summary. The magma code for FMCs and MMCs has

also been included in the appendix.

1http://www.math.tamu.edu/ rowell/RowellTyler09nopause.pdf
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2. METHODS

The matrix representation of the two categories of interest, FMCs and MMCs, are

generated by the use of an S and T matrix which take on a unique form for each category.

A thorough treatment along with further examples can be found in [2], which supplies the

Ising matrix containing the desired Fermion

Ising :=
1

2


1

√
2 1

√
2 0 −

√
2

1 −
√
2 1


For the FMC and MMC cases, specific forms which contain a non-trivial boson to use with

the Ising matrix generate the S and T matrices as detailed in [3]. Using a script in magma,

the S and T matrices can be generated at various sizes, and the resulting group analyzed

using standard functions included in the software. The structural differences between

the two categories required the creation of two separate scripts. This section will cover

structural details of each category and motivations behind magma script development.

2.1 Fermionic Modular Categories

The FMC structure is based on the use ofZN cyclic groups, an example provided in [2].

The needed matrices are derived from the Kronecker product of the 3x3 Ising matrix with

the objects of the FMC. The full matrix for a ZN ⊗ Ising system consisted of 9N2 entries,

many of which were not needed, so a reduced form based on entries which commuted in

(2.1) was found, which reduced to the even entries sharing positive sign, and odd entries

sharing negative sign.

S(x,y) = σ(x,y) (2.1)
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It was found that ZK where K = 8n for n ∈ Z+, always contains a non-trivial Boson

at index SK
2
,K
2

. Due to interest in non-trivial Bosons, the ZN examples were restricted to

ZK . Thus, for a ZK group the accompanying S matrix was generated using the description

found in [2], resulting in a 3
4
K square matrix of the form:

1√
K

 A
√
2B

√
2BT C

 (2.2)

where:

Aa,b = ei
4π
2K

(2a∗2b) 0 ≤ a, b <
1

2
K (2.3)

Bc,d = ei
4π
2K

(2c(2d+1)) 1

2
K ≤ c, d <

3

4
K (2.4)

and C a square zero matrix of dimension 1
4
K

The T matrix is a diagonal square matrix of dimension 3
4
K with entries:

e
πi
8 (θ0, θ2, . . . , θ2a, θ1, θ3, . . . , θ2j+1) (2.5)

Where θa = e
iπa2

K for 0 ≤ a ≤ K − 1 and θ2j+1 = e
iπ(2j+1)2

n for 0 ≤ j ≤ K
2

Once the two matrices were generated, T was squared and the resulting group gener-

ated by T2 and S was analyzed for structural detail. Magma’s standard function for matrix

groups revealed data about the group by giving data such as the order and whether the

given group was extra-special, simple, or nilpotent for example. Magma also has the abil-

ity to find the center of a group, thus the quotient group modulo the center was analyzed

using the same functions. From this, the most basic structure of the group could be found

and linked back to the starting characteristics of the FMC. This entire process was cap-

tured into a script using algorithm 1 taking an input of a positive integer N to generate S,

4



T, the resulting matrix group, and perform the desired analysis.

Algorithm 1 Fermionic Modular Category Group
1: procedure GENERATE FMC MATRIX GROUP

2: Input: N a positive integer
3: K = 8 ∗N
4: ZField← Cyclotomic Field with Kth root of unity
5: Set root to ZField’s root element
6: A Matrix:
7: A is Zero square matrix of dimension 3

4
K

8: for i in [0,K
2

) do
9: for j in [0,K

2
) do

10: A[i,j] = root2i∗2j

11: B Matrix:
12: B is Zero square matrix of dimension 3

4
K

13: for i in [0,K
2

) do
14: for j in [K

2
, 3
4
K) do

15: B[i,j] =
√
2 root2i∗(2j+1)

16: S Matrix:
17: S is Zero square matrix of dimension 3

4
K

18: S = A + B + Transpose of B
19: Scale S by 1√

K
20: T Matrix:
21: T is Zero square matrix of dimension 3

4
K

22: for i in [0,K
2

) do
23: T[i,i] = root2∗i2

24: for j in [K
2
, 3
4
K) do

25: T[j,j] = root(2j+1)2+8

26: Generate Group:
27: A←Matrix Group generated from S and T 2

2.2 Metaplectic Modular Categories

MMC structure is based on the SO(m)2 categories as described in [4]. mwas restricted

to the odd numbers as defined for Type B categories in [5]. The process was similar to

5



FMCs in using the Ising matrix although the entries for S and T differed. For SO(m)2

where m = 2r + 1 for r ∈ Z+, the S matrix is a square matrix of size r + 4 of form:

1√
2m



1 1 γ1 γ2 . . . γr
√
m

√
m

1 1 γ1 γ2 . . . γr −
√
m −

√
m

γ1 γ1 4 cos(a1b1π
m

) 4 cos(a1b2π
m

) . . . cos(a1brπ
m

) 0 0

γ2 γ2 4 cos(a2b1π
m

) 4 cos(a2b2π
m

) . . . cos(a2brπ
m

) 0 0

...
...

...
... . . . ...

...

γr γr 4 cos(arb1π
m

) 4 cos(arb2π
m

) . . . 4 cos(arbrπ
m

) 0 0

√
m −

√
m 0 0 . . . 0

√
m −

√
m

√
m −

√
m 0 0 . . . 0 −

√
m

√
m


where γ1 = · · · = γr = 2 and ai = i, bj = j

The T matrix is diagonal with entries described by:

(1, 1, θγ1 , θγ2 , . . . , θγr , e
2πi
8 , e

2πi
8 ) (2.6)

Where θγj = e−j
2 2πi
m

A matrix group was generated using T2 and S. Magma functions were utilized in the

same fashion as with FMCs, taking the quotient group modulo the center. Because of

the restriction of m to odd positive integers ≥ 3, quadratic gaussian sums were used to

express
√
m in terms of the root element for any integers which were not perfect squares

as required by the magma system. The full method is given in algorithm 2

6



Algorithm 2 Metaplectic Modular Category
1: procedure GENERATE MMC MATRIX GROUP

2: Input: r a positive integer
3: Set m to 2r + 1
4: KField← Cyclotomic Field with 8mth root of unity
5: Set root to KField’s root element
6: S Matrix:
7: Set S to a Zero square matrix of dimension r + 4
8: Set first two columns in first and second row of S to 1
9: for i in [1,r] do

10: Set 2+ith column in first two rows to 2
11: Set 2+ith rows in first two columns to 2
12: Set last two columns in first row of S to

√
m

13: Set last two rows in first column of S to
√
m

14: Set last two columns in second row of S to −
√
m

15: Set last two rows in second column of S to −
√
m

16: for i in [1,r] do
17: for j in [1,r] do
18: S[2+i,2+j] = 4 ∗ cos(2πij

m
)

19: Set bottom right 4x4 elements of S to
√
m on diagonal and −

√
m off diagonal

20: T Matrix:
21: Set T to a Zero square diagonal matrix of dimension r + 4
22: Set first two elements of T to 1
23: for i in [1,r] do
24: T[i,i] = root−8i2

25: Set last two elements of T to 8th roots of unity
26: Generate Group:
27: A←Matrix Group generated from S and T 2

7



3. RESULTS

The data included are that which were output from magma. The quotient chain column

lists the orders of the subgroups that resulted from taking the quotient group modulo the

center until it no longer resulted in a proper subgroup. Due to computational limits some

data were not able to be collected but have been included as projected data. The projected

data have been appropriately noted. Finding the center for groups of orders larger than

2 · 105 seemed to be the computational limit, and any results for characteristics such as

solvability were most likely implemented to use other methods such as Burnside’s theo-

rem. This is consistent between both sets of data where the quotient chain could not be

generated for groups with order greater than 2 · 105.

3.1 Fermionic Modular Categories

The order of the T matrix was also investigated and the resulting data included in table

3.2. A trend was spotted and was utilized to complete the data. This is further discussed

in the next section.

3.2 Metaplectic Modular Categories

The MMC matrix group was generated using a cyclotomic field with a Z = 8n root of

unity as shown in the table. This was done in order to generate an 8th root as needed for

the T matrix and ensure compatibility with the magma system. Whether the resulting final

quotient group was simple was also recorded and included in table 3.3.

8



Table 3.1: FMC Matrix Group Data

N Z Quotient Chain Order(Factored) Order
1 8 32, 8, 4, 1 25 32
2 16 256, 16, 8, 4, 1 28 256
3 24 18432, 1152, 576, 288 211 · 32 18432
4 32 2048, 64, 16, 8, 4, 1 211 2048
5 40 921600 212 · 32 · 52 921600
6 48 147456, 2304, 1152, 576, 288 214 · 32 147456
7 56 7225344* 214 · 32 · 72 7225344
8 64 65536* 216 65536
9 72 13436928* 211 · 38 13436928
10 80 7372800* 215 · 32 · 52 7372800
11 88 111513600* 212 · 32 · 52 · 112 111513600
12 96 1179648* 217 · 32 1179648
13 104 305270784* 212 · 32 · 72 · 132 305270784
14 112 57802752* 217 · 32 · 72 57802752
15 120 1592524800* 218 · 35 · 52 1592524800

*computational limits prevented data acquisition

Table 3.2: FMC Matrix Group Data (cont.)

N Z Solvable Nilpotent Order of T
1 8 True True 4
2 16 True True 16
3 24 True False 12
4 32 True True 32
5 40 —-* False 20
6 48 True False 48
7 56 —-* —-* 28
8 64 True True 64
9 72 True False 36
10 80 —-* —-* 80
11 88 —-* —-* 44b

12 96 True False 96
13 104 —-* —-* 52b

14 112 —-* —-* 112b

15 120 —-* —-* 60b

*computational limits prevented data acquisition
b projected value

9



Table 3.3: MMC Matrix Group Data

r SO(n) Z Quotient Chain Order(Factored) Order Final Simple Solvable
1 3 24 768, 96, 48, 12 28 · 31 768 True False
2 5 40 1920, 480, 240, 60 27 · 31 · 51 1920 True False
3 7 56 10752, 1344, 672, 168 29 · 31 · 71 10752 True False
4 9 72 10368, 2592, 1296, 324 27 · 34 10368 False True
5 11 88 42240, 5280, 2640, 660 28 · 31 · 51 · 111 42240 True False
6 13 104 34944, 8736, 4368, 1092 211 · 32 · 51 34944 True False
7 15 120 92160, 5760, 2880, 720 211 · 32 · 51 92160 False False
8 17 136 78336, 19584, 9792, 2448 29 · 32 · 171 78336 True False
9 19 152 218880* 28 · 32 · 51 · 191 218880 —-* False
10 21 168 129024* 211 · 32 · 71 129024 —-* —-*

*computational limits prevented data acquisition

10



4. SUMMARY AND CONCLUSIONS

In cases where FMCs were based off of Z2n groups, taking the quotient group modulo

the center resulted in the standard cyclic group with extra elements. Of the p-groups, only

Z8 was a special group, while the remaining groups were solvable. The T matrix was also

found to have an order dependent on n for Z8n; an order of 8n for even n, and an order of

4n for odd n.

From taking the quotient group, the MMC groups for SO(m)2 were found to have a

relation to the special linear group SL(2,m). Ending up with an order of 1
2

the order of the

corresponding SL(2,m) group.

4.1 Further Study

It should be noted that during this project the conjecture under investigation has been

proven. This should encourage further exploration as to the structure of the resulting

groups since it is now known for certain that these supermodular categories result in finite

groups. The scope of this project only explored two examples in Zn and SO(m)2. Further

work could be done in analyzing the other examples given in [2]. The Ising theory also has

other possible candidates which could be analyzed to see the resulting groups.

The code itself could also be improved upon to become more efficient by making use

of the generalized nature of the S and T matrices studied, as well as in-built features of the

magma system. By doing this, in areas where computational limits prevented acquisition

of data, further data could be collected.
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APPENDIX

The magma code used has been included for both MMCs and FMCs.

Fermionic Modular Categories

The alpha term to scale S must be explicitly expressed for some N values, specifically

for N < 3. if
√
k can be expressed in terms of

√
2 or
√
3 it would be desirable to use that

instead since it uses less memory and processing power than the gaussian sum. However,

this must be done manually. Specifically forN = 4 the gaussian sum gives an order which

is twice as large as using 1
4
√
2
.

N := 5;

k := 8*N;

dim:= Floor((3/4)*k);

K<w>:= CyclotomicField(k);

sq:= w^N + w^(-N);

if (IsSquare(k)) then

tempsqr:= Floor(Sqrt(k));

else

//Gaussian sum

tempsqr:= 0;

for j:= 0 to k-1 do

tempExponent:= (j)^2;

tempsqr:= tempsqr + w^tempExponent;

end for;

end if;

alpha:= (tempsqr)^-1;

13



S:=ZeroMatrix(K,dim,dim);

for i:=1 to (Floor(k/2)) do

for j:=1 to (Floor(k/2)) do

xp := ((2*(i-1))*(2*(j-1)));

S[i,j]:= w^xp;

end for;

end for;

for i:=1 to (Floor(k/2)) do

for j:=1 to (Floor(k/4)) do

xp:= ((2*(i-1))*(2*(j-1)+1));

S[i,j+Floor(k/2)]:= w^xp * sq;

end for;

end for;

for i:=1 to (Floor(k/4)) do

for j:=1 to (Floor(k/2)) do

xp:= ((2*(j-1))*(2*(i-1)+1));

S[i+Floor(k/2),j]:= w^xp * sq;

end for;

end for;

S:= S * alpha;

T:=ZeroMatrix(K,dim,dim);

14



for j:=1 to Floor(k/2)+1 do

xp:= 2*(j-1)^2;

T[j,j]:=w^xp;

end for;

for j:= 1 to Floor(k/4) do

xp:= ((((2*(j-1))+1)^2) mod (2*k)) + N;

T[j+Floor(k/2),j+Floor(k/2)]:= w^xp;

end for;

T2:= T^2;

A:=MatrixGroup<dim,K|S,T2>;

#A

Metaplectic Modular Categories

The code has been defaulted to r = 1 which can be changed to generate different

examples. The loops at the end can be modified to print out the desired information on the

quotient groups.

r:= 1;

N:=(2*r)+1;

K<w>:= CyclotomicField(8*N);

dim:=r+4;

GL:=GeneralLinearGroup(dim,K);

sq:= w^N + w^(-N);

15



if (IsSquare(N)) then

sqr:= Floor(Sqrt(N));

else

tempsqr:= 0;

for j:= 0 to (N-1) do

tempExponent:= (j)^2;

tempsqr:= tempsqr + w^(8*tempExponent);

end for;

sqr:=tempsqr;

end if;

alpha:= (2*sqr)^-1;

S:= ZeroMatrix(K,dim,dim);

//constructing S

S[1,1]:= alpha*1; S[1,2]:=alpha*1; S[2,1]:=alpha*1; S[2,2]:= alpha*1;

for i:=1 to r do

S[1,2+i]:= alpha*2; S[2+i,1]:= alpha*2;

S[2,2+i]:= alpha*2; S[2+i,2]:= alpha*2;

end for;

S[1,dim-1]:= alpha*sqr; S[1,dim]:= alpha*sqr;

S[dim-1,1]:= alpha*sqr; S[dim,1]:= alpha*sqr;

S[2,dim-1]:= -alpha*sqr; S[2,dim]:= -alpha*sqr;

S[dim-1,2]:= -alpha*sqr; S[dim,2]:= -alpha*sqr;

//B

16



for i:=1 to r do

for j:=1 to r do

S[2+i,2+j]:= 2*alpha*(w^(8*i*j) + w^(-8*i*j));

end for;

end for;

//C

S[dim-1,dim-1]:= alpha*sqr;

S[dim,dim]:= S[dim-1,dim-1];

S[dim-1,dim]:= -alpha*sqr;

S[dim,dim-1]:= S[dim-1,dim];

//Constructing T

T:= ZeroMatrix(K,dim,dim);

T[1,1]:= 1;

T[2,2]:= 1;

for i:=1 to r+1 do

T[2+i,2+i]:= w^(-8*i*i);

end for;

T[dim-1,dim-1]:= w^N;

T[dim,dim]:= w^N;

T2:=T^2;

As:=MatrixGroup<dim,K|S,T2>;
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#As;

FactoredOrder(As);

IsSolvable(As);

IsNilpotent(As);

IsSimple(As);

if (IsSolvable(As)) then

print("Solvable Loop");

while(Order(As) ne Order((As/Center(As)))) do

As:= As/Center(As);

#As;

FactoredOrder(As);

IsSolvable(As);

IsNilpotent(As);

IsSimple(As);

end while;

else

print("Simple Loop");

while((not IsSimple(As)) and (Order(As) ne Order((As/Center(As))))) do

As:= As/Center(As);

#As;

FactoredOrder(As);

IsSolvable(As);

IsNilpotent(As);
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IsSimple(As);

end while;

end if;
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