a2 United States Patent

Jiang et al.

US009916197B2

US 9,916,197 B2
Mar. 13,2018

(10) Patent No.:
45) Date of Patent:

(54) RANK-MODULATION REWRITING CODES (58) Field of Classification Search
FOR FLASH MEMORIES CPC . G11C 16/0441; G11C 16/0483; G11C 16/10;
G11C 16/34349; G11C 2211/5649;
(71) Applicants:California Institute of Technology, (Continued)
Pasadena, CA (US); Texas A&M .
University System, College Station, TX (56) References Cited
US) U.S. PATENT DOCUMENTS
(72) Inventors: Anxiao Jiang, College Station, TX 4,107,550 A 8/1978 Jacquart et al.
(US); Eyal En Gad, Pasadena, CA 4,686,554 A 8/1987 Ohmi et al.
(US); Jehoshua Bruck, Pasadena, CA (Continued)
(US); Eitan Yaakobi, Pasadena, CA
(US) FOREIGN PATENT DOCUMENTS
(73) Assignee: CALIFORNIA INSTITUTE OF wo 2011156750 A2 12/2011
TECHNOLOGY, Pasadena, CA (US)
OTHER PUBLICATIONS
(*) Notice: Subject.to any disclaimer,. the term of this “Open NAND Flash Interface,” Discover the advantages of an
patent is extended or adjusted under 35 ONFi world, accessed at https://web.archive.org/web/
US.C. 154(b) by 204 days. 20120213161109/http:/fonfi.org/, accessed on Feb. 26, 2016, pp. 2.
(21) Appl. No.: 14/728,749 (Continued)
. Primary Examiner — Albert Decady
22) Filed: Jun. 2, 2015
(22) File u- S Assistant Examiner — Christian Dorman
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Turk IP Law, LLC
US 2015/0324253 A1~ Nov. 12, 2015 (57) ABSTRACT
Rank modulation has been recently proposed as a scheme
L. for storing information in flash memories. Three improved
Related U.S. Application Data aspects are disclosed. In one aspect the minimum push-up
(63) Continuation of application No. 13/791,823, filed on scheme, for storing data in flash memories is provided. It
Mar. 8, 2013, now Pat. No. 9,086,955. aims at minimizing the cost of changing the state of the
(Continued) memory. In another aspect, multi-cells, used for storing data
in flash memories is provided. Each transistor is replaced
(51) Int. Cl with a multi-cell of mm transistors connected in parallel. In
G0;$F 1 202 (2006.01) yet another aspect, multi-permutations, are provided. The
HO3M 13/13 (2006.01) paradigm of representing information with permutations is
Continued ’ generalized to the case where the number of cells in each
(Continued) level is a constant greater than one. In yet another aspect,
(52) US. L rank-modulation rewriting schemes which take advantage of
CPC GO6F 11/1072 (2013.01); GO6F 11/1016 polar codes, are provided for use with flash memory.

(2013.01); GO6F 12/0246 (2013.01);
(Continued)

20 Claims, 18 Drawing Sheets

US 9,916,197 B2
Page 2

Related U.S. Application Data

(60) Provisional application No. 61/608,245, filed on Mar.
8, 2012, provisional application No. 61/608,465, filed
on Mar. 8, 2012, provisional application No.
61/725,347, filed on Nov. 12, 2012.

(51) Int. CL

GOGF 11/10 (2006.01)
G1IC 16/34 (2006.01)
G1IC 29/52 (2006.01)
G1IC 16/10 (2006.01)
G1IC 7/10 (2006.01)
G1IC 11/56 (2006.01)
(52) US.CL
CPC ... G1IC 7/1006 (2013.01); GIIC 11/5628

(2013.01); GI1IC 16/10 (2013.01); G1IC
16/349 (2013.01); G1IC 29/52 (2013.01);
HO3M 13/13 (2013.01); G11C 2211/5649
(2013.01)
(58) Field of Classification Search

CPCcccee. G11C 7/1006; G11C 11/5621; G11C
11/5628; G11C 11/5635; G11C 29/52;
G11C 16/34; G11C 16/349; GO6F 11/10;
GO6F 11/1016; GO6F 11/1072; GOGF
12/0246; HO3M 13/13

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,701,884 A 10/1987 Aoki et al.
5,739,568 A 4/1998 Kojima
5,789,777 A 8/1998 Kojima
7,656,706 B2 2/2010 Jiang et al.
8,225,180 B2 7/2012 Jiang et al.
8,245,094 B2 8/2012 Jiang et al.

2004/0004218 Al
2007/0014153 Al
2007/0025150 A9
2009/0132758 Al*

1/2004 Jinno

1/2007 Gorobets et al.

2/2007 Lee

5/2009 Jiang ... GO6F 11/1072
711/103

2009/0132895 Al

2012/0170626 Al

2013/0013870 Al

2013/0121084 Al

2013/0254466 Al

2013/0268723 Al

5/2009 Jiang et al.
7/2012 Adachi
1/2013 Cronie et al.
5/2013 Jeon et al.
9/2013 Jiang et al.
10/2013 Jiang et al.

OTHER PUBLICATIONS

Gad, E. E., et al., “Rank-Modulation Rewriting Codes for Flash
Memories,” IEEE International Symposium on Information Theory
Proceedings (ISIT), pp. 704-708 (Jul. 7-12, 2013).

International Search Report and Written Opinion for PCT/US15/
44640, filed Aug. 11, 2015, dated Nov. 5, 2015.

Jiang, A. and Wang, Y., “Rank modulation with multiplicity,” IEEE
GLOBECOM Workshops (GC Wkshps), pp. 1928-1932 (Dec. 6-10,
2010).

Kim, M., et al., “Rank Modulation Hardware for Flash Memories,”
IEEE S55th International Midwest Symposium on Circuits and
Systems (MWSCAS), pp. 294-297 (Aug. 5-8, 2012).

Mazumdar, A. et al., “Constructions of Rank Modulation Codes,”
IEEE International Symposium on Information Theory Proceed-
ings, pp. 869-873 (Jul. 31-Aug. 5, 2011).

Rabaey, J. M., et al., “Timing issues in digital circuits,” in Digital
Integrated Circuits, 2nd Ed., Chap. 10, Prentice Hall, pp. 42-99
(2003).

Suh, G. E. and Devadas, S., “Physical Unclonable Functions for
Device Authentication and Secret Key Generation,” DAC *07. 44th

ACM/IEEE Design Automation Conference, pp. 9-14 (Jun. 4-8,
2007).

Wang, Y., et al., “Flash memory for ubiquitous hardware security
functions: True random number generation and device fingerprints,”
IEEE Symposium on Security and Privacy, pp. 33-47 (2012).
Yaakobi, E., et al., “Multiple error-correcting WOM-codes,” IEEE
Transactions on Information Theory, vol. 58, No. 4, pp. 2220-2230
(Apr. 2012).

Yan, N. et al., “RFID Tag Chip Design,” RFID Systems: Research
Trends and Challenges, Bolic, M., et al., Chapter 4, John Wiley &
Sons Ltd., pp. 99-128 (2010).

“NVM Technology Overview,” accessed at https://web.archive.org/
web/2009021712483 1/http://www.saifun.com/content.asp?id=113,
accessed on Mar. 31, 2015, pp. 2

“Web-Feet Research,” accessed at https://web.archive.org/web/
20121029091745/http://www.web-feetresearch.com/default.aspx,
accessed on Mar. 31, 2015, pp. 2.

Arikan, E., “Channel polarization: A method for constructing capac-
ity achieving codes for symmetric binary-input memoryless chan-
nels,” IEEE Transactions on Information Theory, vol. 55, No. 7, pp.
3051-3073, Jul. 2009.

Arikan, E., and Telatar, L.E., “On the rate of channel polarization,”
IEEE International Symposium on Information Theory (ISIT 2009),
pp. 1493-1495 (Jun. 28-Jul. 3, 2009).

Aritome, S., et al,, “Reliability Issues of Flash Memory Cells,”
Proceedings of the IEEE, vol. 81, Issue 5, pp. 776-788 (May 1993).
Barg, A., and Mazumdar, A., “Codes in permutations and error
correction for rank modulation,” IEEE Transactions on Information
Theory, vol. 56, Issue.7, pp. 3158-3165, Jul. 2010.

Barr, C. S., “PQI unveils 256GB solid state drive,” Slash Gear,
accessed at https://web.archive.org/web/200810100837 13/http://
www.slashgear.com/pqi-unveils-256gb-ssd-drive-315520/, posted
on May 31, 2007, pp. 6.

Burshtein, D. and Strugatski, A., “Polar write once memory codes,”
IEEE Transactions on Information Theory, vol. 59, Issue 8, pp.
5088-5101, (Aug. 2013).

Calif, M., “SanDisk Launches 64 Gigabyte Solid State Drives for
Notebook PCs, Meeting Needs for Higher Capacity,” accessed at
https://web.archive.org/web/20121012002609/http://www.sandisk.
com/about-sandisk/press-room/press-releases/2007/2007-06-04-
sandisk-launches-64-gigabyte-solid-state-drives-for-notebook-pcs,-
meeting-needs-for-higher-capacity, posted on Jun. 4, 2007, pp. 2.
Farnoud, F., et al.,, “Rank Modulation for Translocation Error
Correction,” IEEE International Symposium on Information Theory
Proceedings (ISIT), pp. 2988-2992 (Jul. 1-6, 2012)

Fiat, A. and Shamir, A., “Generalized “write-once” memories,”
IEEE Transactions on Information Theory, vol. 30, Issue 3, pp.
470-480 (May 1984).

Fu, F-W,, and Vinck, AJ. H., “On the capacity of generalized
write-once memory with state transitions described by an arbitrary
directed acyclic graph,” IEEE Transactions on Information Theory,
vol. 45, No. 1, pp. 308-313 (Jan. 1999).

Gad, E. E., et al., “On a construction for constant-weight Gray codes
for local rank modulation,” IEEE 26th Convention of Electrical and
Electronics Engineers in Israel, p. 996 (Nov. 17-20, 2010).

Gal et al., “Algorithms and Data Structures for Flash Memories,”
ACM Computing Surveys (CSUR), vol. 37, Issue 2, pp. 138-163
(Jun. 2005).

Heegard, C., “On the capacity of permanent memory,” IEEE Trans-
actions on Information Theory, vol. 31, No. 1, pp. 34-42 (Jan. 1985).
International Search Report and Written Opinion for International
Patent Application No. PCT/US2013/030043 dated Jun. 27, 2013.
Jiang, A., et al., “Correcting charge-constrained errors in the rank-
modulation scheme,” IEEE Transactions on Information Theory,
vol. 56, Issue S, pp. 2112-2120 (May 2010).

Jiang, A., and Bruck, J., “Information Representations and Coding
for Flash Memories.” IEEE Pacific Rim Conference on Communi-
cations, Computers and Signal Processing, pp. 920-925 (Aug.
23-26, 2009).

Jiang, A., et al,, “Rank modulation for flash memories,” IEEE
Transactions on Information Theory, vol. 55, Issue 6, pp. 2659-2673
(Jun. 2009).

US 9,916,197 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Jiang, A., et al., “Rewriting Codes for Joint Information Storage in
Flash Memories,” IEEE Transactions on Information Thoery, vol.
56, Issue 10, pp. 5300-5313 (Oct. 2010).

Jiang, A., et al., “Universal rewriting in constrained memories,”
IEEE International Symposium on Information Theory, pp. 1219-
1223 (Jun. 28-Jul. 3, 2009).

Kleve, T., “Spheres of permutations under the infinity norm—
permutations with limited displacement,” University of Bergen,
Bergen, Norway, Technical Report No. 376, p. 38 (Nov. 2008).
Knuth, D.E., “Efficient balanced codes,” IEEE Transactions on
Information Theory, vol. 32, No. 1, pp. 51-53 (Jan. 1986).
Korada, S.B., and Urbanke, R.L., “Polar codes are optimal for lossy
source coding,” IEEE Transactions on Information Theory, vol. 56,
No. 4, pp. 1751-1768 (Apr. 2010).

Mazumdar, A., et al., “Constructions of Rank Modulation Codes,”
IEEE Transactions on Information Theory, vol. 59, Issue 2, pp.
1018-1029, (Oct. 12, 2011).

Pavan, P, et al., “Flash Memory Cells—An Overview,” Proceedings
of the IEEE, vol. 85, Issue 8, pp. 1248-1271 (Aug. 1997).

Rivest, R.L., and Shamir, A., “How to reuse a “write-once”
memory,” Information and Control, vol. 55, No. 1-3, pp. 1-19,
(Oct.-Dec. 1982).

Schwartz, M., “Constant-weight Gray codes for local rank modu-
lation,” IEEE International Symposium on Information Theory
Proceedings (ISIT), pp. 869-873 (Jun. 13-18, 2010).

Tamo, 1., and Schwartz, M., “Correcting limited-magnitude errors in
the rank-modulation scheme,” IEEE Transactions on Information
Theory, vol. 56, No. 6, pp. 2551-2560 (Jul. 30, 2009).

Wang, Z., and Bruck, J., “Partial Rank Modulation for Flash
Memories,” IEEE International Symposium on Information Theory
Proceedings (ISIT), pp. 864-868 (Jun. 13-18, 2010).

Wang, Z., et al., “On the capacity of bounded rank modulation for
flash memories,” IEEE International Symposium on Information
Theory, pp. 1234-1238 (Jun. 28-Jul. 3, 2009).

Wu, Y., and Jiang, A., “Position Modulation Code for Rewriting
Write-Once Memories,” IEEE Transactions on Information Theory,
vol. 57, No. 6, pp. 3692-3697 (Jun. 2011).

Zhang, F., et al., “LDPC Codes for Rank Modulation in Flash
Memories,” IEEE International Symposium on Information Theory
Proceedings (ISIT), pp. 859-863 (Jun. 13-18, 2010).

En Gad, E. et al., “Compressed encoding for rank modulation,”
IEEE International Symposium on Information Theory D Proceed-
ings, pp. 884-888, Jul. 31-Aug. 5, 2011.

Burshtein, D. Information Theory Proceedings (ISIT), 2012 IEEE
International Symposium, pp. 1972-1976, Jul. 1-6, 2012.

* cited by examiner

U.S. Patent Mar. 13, 2018 Sheet 1 of 18 US 9,916,197 B2

%
- E Gk e WA AT A e
-
N e S e Sva A A AN A W B U Y
o~ T O N

N A e A e e A TR A A A s e Av A W A WA o N e e ¥

L e ReHE A NS e S AN S e e ST, A

SN el A W N Ne e

X
2
&
PRSP =
AN AN A N I L L R CRR VR gy 3 3 N T AR G A S e NS SRS At AR,
& 3
- A N A N 00 N R S AN
. o
o . . & T ot NPT - R
¥ E S F
e

U.S. Patent

Mar. 13,2018

Sheet 2 of 18

piesy
T
RN y
o c’is"e-\
- 3 X
. B
L b
T
a3
NS
e
Y JA

s
¢

FiG, 3

.
S
S
el
.

FIG. 4

US 9,916,197 B2

frar
¢ ,’:; //

U.S. Patent Mar. 13, 2018 Sheet 3 of 18 US 9,916,197 B2

FiG. §

U.S. Patent

Q0 4 ¢
kY

Mar. 13,2018

Sheet 4 of 18

- 505

f-.a*"

JR—

e

~,

s - N
START /}

US 9,916,197 B2

810
3 &
Receive data valuas v {u e, 91 € 8
To be storsd in {éam storage :;wtam ing current values
0 [y M L U, TE S
AR
eSS
¥ d *
j‘ et v be an slament of S.
N
% f
Lat & be g set of symbaols in a rank moduiation coding schems, 1
» ot ﬁz&
¥ i

fnoations in dala storage,

Lot i be g number of ranks in vio be stored in

Pk

%3

sgroupofay

differentiation amount,

The ﬂ'@gs&*m"i% value of 3 rank looation »’a g increassed unid it is
greater than the value of a rank location ¥ by & minimum ol

830
¥ . &
Program the Qmug of 1 rank locations aceor ding to the rgnk modulgtion
couling soheme and he valug vsuch that for { seowe — Low — 3,1

.,\

«

{{f ONTE

B35
Fo A

NL%EM‘

FiG. 6

U.S. Patent Mar. 13, 2018

%?it Bit Line -
Line

Select -

Wid —

wis —|

w2 —
wit -l

WLO

Gmmﬁw
Selact

Traditional NAND flash
structure

FIG. 7TA

Bt
Ling

Sheet 5 of 18

US 9,916,197 B2

BitLine §
Salact

"

3]
]] .
Wid
WLR ol fﬁ n
W2 el T
WL - -
WO b . -

AR o

1 5 |
Ground |
Select "‘%E I ér

Multi-cell NAND flash
structurs

FiG. 7B

U.S. Patent Mar. 13, 2018 Sheet 6 of 18 US 9,916,197 B2

808
N .“..msmw
800~ T START)
asasssansasgtatsa st g PP

I ffmgz@
Uispose g pharslity of ransistors on a device each of which is eapable of
stonng charge, wherain sach of the plurality of ransistors comprises &
qate, 8 soures aod a dsly

r 815
Form connactions between the sources of each of the plurally of
transistors,

Mv""‘ g‘g W

¥ &
Fanr cennections betwaen the drains of sach of the pigality of
{rarmisions,

825
¥ . '

Storing data in the plurality of ransgistors, the dala coresponding o &
sum of charges at&rm it each of the pluralty of ransistors.

_~B830
3?....,;

* :‘QNYNEI)
\

HG. 8A

o gfag
- ;,.-""' .,
850~ { START)
s S &%
880
3 o
Gerneraling a code word having a p piyral fry of symbols seipctad o 8
gt of symibols.
: S 885
52 ra

Storing sach of the plurahly of symbols i g data storage location c? the
data device, wharein sach data storage oation comprises & plurality of
pargiiel connscipd devices.

-~ 8TQ

I S
[CONTINUE \s
AN 7

FiG. 8B

U.S. Patent Mar. 13, 2018 Sheet 7 of 18 US 9,916,197 B2

FG. 9 FIG. 10

US 9,916,197 B2

Sheet 8 of 18

Mar. 13,2018

U.S. Patent

€L "Old

{stiuayd UoNBINPOA YuEy D03
e e e e e - L B L R e P —— I
DOIOAGIB paasp PIONEPAT ASIDU PIOMBPOD) passadun) pIOMBN0T) | IBUCHUBALILD
WM WHO 003

ASIou

2L Sld Ll "Oid
1!.../ ERB!@ iiiiiiiiiiiiiiiiii oo e

§§§§§§§§§§§§§ .V }
Vi
N e)
aaaaaaaaaaaaaaaa e f7oy .
,,,,,,,,,,,,,,,,,) I

o B ARSI)

U.S. Patent

Mar. 13, 2018 Sheet 9 of 18

US 9,916,197 B2

1410

Uefine a predetermined ronk configurstion 1, 82 1.
the numnber of colls In the Hih rank;

n), wharsdn dif g

¥

Recalve & new mullb-permutation defined by vy e, ol 8
the predetermined rank configuration.

,;_

Initiate a process 1o add chargs fo each cell in a plurality of remaory
focations such that the plurality of oolls repressnt the new multh
parmutation.

~1435
¥ x’f =

e Fon

CONTINUE)

S

FIG. 144

¢
5,

U.S. Patent Mar. 13, 2018 Sheet 10 of 18 US 9,916,197 B2

‘% ‘%% 3 N .e““f $
B e Y
N e o -)‘\‘

1480
¥ Vil

Delermine a sequential ordey of an indliat anglog level of 8 stored value
in each cofl of 2 plurality of cefis It a dada device whersin the ssguential
order s defined a8 a value x comprising

Y
B3
{3}

. 4
fo ~ $i. - R R I
{}\‘Z 1;.—\-_,”“5 ‘{““\1 é,’:.}\. Jﬁi,.l&:ﬁy v "'k"‘é\":“\‘f: F }:"szgfv

P S

4 >

Y
L0
-4
e
5
o
i

FIG. 148

U.S. Patent Mar. 13, 2018 Sheet 11 of 18 US 9,916,197 B2

1500 1508

OOSTART)
N

SEROVY
! o 1807

:‘;}afé*"sa a pradetermined rank configuration &, 42, | . dn}, whersin diis
the number of oells in the [th rank;

1808
3 £
Recelve 8 now muli-permudation defined by v lgo, 0l 85 that fils
the pradetermined rank configuration,

151
A &
Relaln the anzlog levels of calls ofarank niny
f,w’é 513
4

Frogramthe cells of rantilnvfwi=n~{. n-2. ., Tsuch thatthe
anaiog levels of calls in & rank / are all higher than the analug levels of
the oells of ranl i+1 in v by 8t least & minimum rank differentiation,

- s‘t‘i
{G{}N Ny

U.S. Patent

Mar. 13, 2018 Sheet 12 of 18

US 9,916,197 B2

Bl SRR
e s...;:} \"o& w»»m»»w»m“g’ P ivg“._;’}
{ &TARYT
l"‘\,\ STy ““A“““A‘,ﬂj
AT
¥ £
Reneive & new data sef for & rank of a plucalit B O \f raﬂ%:aa: 0 store in the
mernory davice whereln the memaory devics comprises a plurality of
oelis
‘ L1588
¥ d

Read 8 curean sisle of

candidate coils within the plurality of oslis

wharain Sandidale colls are usead o slore the now data sell
~1531
& j’f’
Creats a binary representation of the plursiity of calls used o slore the
new data set
A e
sf«\"“ !i‘}\%\%
Create g bingry representation of the plurality of cells used to store the
new data set.
~1535
& s * >

data sel o oraate & binary WOM veoton

Use & WOM code o combing the binary representation with the

nEW

~AEIT
£

Muodify the binary WOM vector to egual guant
the candidate cells cregting & naw data vaotor,

ities of Vs and Os within

X

Writs the new data vector o the candidate cells,

1541

m..-..%

’)?‘é"? i\é\}E

\~. SRR

FiG. 188

U.S. Patent

Mar. 13,2018

$u
I

facy

LS M

%

?;3}%3

Sheet 13 of 18

1087
.

H

A

A\x\«\\\\\‘“«*"’.

A

US 9,916,197 B2

1549

Receive g new dats satm for & rank of a plurality of ranks o sfore z he
MEMOTY devics wharein the memory daviceg Sompisss 3 ;;:«%;sza?,‘:«: m
oells,
1551

¥ e"f
Read & current state of vandidale cells within the pluraiily of calls
wherein candidate cells ars used {0 store the new dala set.

i /w’i 853
Detarming 8 new mullh-permutation to be written © the candidate calls
rapresenting the veonived data set m,

ARER
! - 1555

Wrile th

predeterminad cost

& new mud-permutation © memory with a pre
wherein the new muli-permutation is determined in acowdance with the

detenrinaed oost

0BT
v)
{ CONTINUE)

A A A AR A RAAAAT

FIG.

18C

U.S. Patent

1580 \

Mar. 13,2018

Sheet 14 of 18

US 9,916,197 B2

FiG. 18D

rank of the plurally of ranks?

£
{CONTINUE}

15084
4 rl
Rogslve a new é@%ﬁ m W G mp* iak g plurality of dala sels wharein
w.gz:h dastmsel s g fyg i epre tm; a rank in a plurality of
rarms,
?f»*“‘z gi‘}
Raceiving 3 new dala sef for g rank of the plursiity of ranks fo sfore in
4 the memary device whereln the memory devios c-\'}mgfsne& a plurality of
calig.
1858
. i
Reud a current state of candidate celis within the plurality of calls
whaveln candidaie cells ave used o store the new data set,
ST
&
Create 8 binary represeniation of the plurefity of ceils usad o slore the
naw dats sed,
VBT
3 e
Craste o binary reprezantation of the shrality of oolls used v store the
raw data et
PEEEYE
3 &
Use a8 WOM code 1o pombing the bingry representation with the naw
data set t¢ orealn a hinary WOM vector,
ART
lf.ea"
Modify the binary WOM vaotor 1o sgusl guaniities of s and {’é’“ & wi ‘b
the candidale cells creating a new data vestor,
g .s"‘ff.‘g 5 ’{ éﬁ
Writes the new dals vactor io the candidate cells
e ﬁ“‘1
T Has 8 hew dala vector beer weitten for each

U.S. Patent Mar. 13, 2018 Sheet 15 of 18 US 9,916,197 B2

1884 4 ~1ERG

p———_

{ START !
‘v\\mmwx'f

_ o ‘g :5} 8 8
y &

Read a plurality of calis and delermine a multh-germutation stored in the
plurally of oslls,

: 4
dentify a group of celis in the pluralily of cells, containad within sach
rank of a plurality of ranks.

4 o
Raad 5 new data veoior from the rank.

k4

3 e
Madity the new data vector 1o recreate a binary WOM vector

~ 1586

o

¥
Use a WOM oode on the binary WOM vector 1o separate a binary
raproseniation fom a datle set

(CONTINUE)
'\ J‘./

P -

FiG. 18k

US 9,916,197 B2

Sheet 16 of 18

Mar. 13,2018

U.S. Patent

gl 9ld
8091
P0GE
IBoaU0T AoWSKy
gLel
IBHOLICOOIONN
Zi8l ¥LOL
awwwwﬁ 0Bl 2191 BOELIFUY
Aousapy a03 180K
a9t
Ryng Bieg

a0ol
BAS(] ISOH

U.S. Patent

Mar. 13,2018

Sheet 17 of 18

US 9,916,197 B2

COMPUTER SYSTEM

1700

1720

MEMQORY SUBSYRTEM

FILE

BTORAGE

ROM RAM SURBSYSTEM
1748 1750 1738

Y

¥

iy
INTERFACE
QUTRUT
DEVIOES
1738

B

k-

e
18

E-3

¥

E-

k:

PROCESSOR(S)

1705

COMMUNICATION
SUBBYSTEM
1740

A&

USER
INTERFAQE
INPUT
DEVICESR

1735

¥

COMMUNICATION NETWORKS AND

QTHER SYSTEMS
1758

FIG. 17

U.S. Patent Mar. 13, 2018 Sheet 18 of 18 US 9,916,197 B2

Data Values

EnondarilDacodsr
1808

Codewards

DM Controller information values
1804 1806

Memary Device
1808

FiG, 18

US 9,916,197 B2

1
RANK-MODULATION REWRITING CODES
FOR FLASH MEMORIES

CROSS-REFERENCES TO RELATED
APPLICATIONS

This Application is a continuation application under 35
U.S.C. § 120 of U.S. patent application Ser. No. 13/791,823
filed on Mar. 8, 2013, now U.S. Pat. No. 9,086,955,which in
turn claims the benefit under 35 U.S.C. § 119(e) of U.S.
Provisional Application Ser. No. 61/608,245 entitled “Com-
pressed Encoding for Rank Modulation” by Anxiao Jiang,
Eyal En Gad and Jehoshua Bruck filed on Mar. 8, 2012 and
claims the benefit under 35 U.S.C. § 119(e) of U.S. Provi-
sional Application Ser. No. 61/608,465 entitled “Multi-Cell
Memories and Compressed Rank Modulation” by Anxiao
Jiang, Eyal En Gad, and Jehoshua Bruck filed on Mar. 8,
2012 and claims the benefit under 35 U.S.C. § 119(e) of U.S.
Provisional Application Ser. No. 61/725,347 entitled “Rank-
Modulation Rewriting Codes for Flash Memories” by
Anxiao Jiang, Eyal En Gad, Fitan Yaakobie and Jehoshua
Bruck filed on Nov. 12, 2012. Priority of the filing dates is
hereby claimed, and the disclosures of the prior applications
are hereby incorporated by reference for all purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
Grant No. ECCS0802107 and under Grant No.
CCF0747415 awarded by the National Science Foundation.
The government has certain rights in the invention.

BACKGROUND

The present disclosure generally relates to data storage
devices, systems and methods. In various examples, data
modulation techniques in data storage devices such as flash
memory devices are described.

Flash memories are one type of electronic non-volatile
memories (NVMs), accounting for nearly 90% of the present
NVM market. See, for example, the Web site of Saifun
Semiconductors [td. (available at www.saifun.com) and
Web-Feet Research, Inc. (available at www.web-fee-
tresearch.com). Today, billions of flash memories are used in
mobile, embedded, and mass-storage systems, mainly
because of their high performance and physical durability.
See, for example, P. Cappelletti et al., Chapter 5, “Memory
Architecture and Related Issues™ in Flash memories, Kluwer
Academic Publishers, 1st Edition, 1999), and E. Gal and S.
Toledo, ACM Computing Surveys, 37(2):138-163 (2005).
Example applications of flash memories include cell phones,
digital cameras, USB flash drives, computers, sensors, and
many more. Flash memories are now sometimes used to
replace magnetic disks as hard disks, such as the 64 GB hard
disk by SanDisk (see “SanDisk launches 64 gigabyte solid
state drives for notebook PCs, meeting needs for higher
capacity,” available at the Web site URL of http://biz.ya-
hoo.com/cnw/070604/sandisk.html?.v=1). See also the Web
article on the 256 GB hard disk by PQI (“PQI unveils 256
GB solid state drive,” available at the URL of
www.guru3dd.com/newsitem.php?id=5392). Based on the
popular floating-gate technology, the dominance of flash
memories is likely to continue.

Some problems exist that may limit the improvement of
flash memories with respect to their speed, reliability, lon-
gevity, and storage capacity. Flash memories may have a

25

30

35

40

45

2

limited lifetime due to the quality degradation caused by
block erasures; a flash memory can endure only about
10°~10° block erasures before it becomes no longer usable
(see S. Aritome et al., Proceedings of the IEEE, 81(5):776-
788 (1993), and P. Cappelletti et al., ibid. Removing charge
from any single cell for data modification may require the
block to be erased and all the 10° or so cells in it to be
reprogrammed (or programmed to another block). The writ-
ing speed may be constrained by a conservative cell-pro-
gramming process that is about ten times slower than
reading. One purpose of such conservative programming is
to avoid over-programming, a serious error that may only be
correctable by block erasure and reprogramming. Data reli-
ability may be limited by errors caused by charge leakage,
disturbs, and the like. See S. Aritome et al., ibid; P. Cap-
pelletti et al., ibid; and P. Pavan et al., Proceedings of The
IEEE, 85(8): 1248-1271 (August 1997). The errors become
more common when multi-level cells are used to increase
the storage capacity.

SUMMARY

In some examples, a minimum push-up scheme to store
data in flash memories is described. In some embodiments,
the minimum push-up scheme starts with data values v=[v,,
Vs, ..., V,|ES, that are received to be stored in data storage
containing current values u=[u,, u,, . . . , 0,]ES,,. Next, v is
defined as an element of S where S is defined as a set of
symbols in a rank modulation coding scheme. Further, n is
defined as a number of ranks in v to be stored in a group of
n rank locations in data storage of the data device. The group
of n rank locations are programmed according to the rank
modulation coding scheme and the value v such that for
i=n-1,n-2, ..., 1 the programmed value of a rank location
v, is increased until it is greater than the value of a rank
location v,,; by a minimum cell differentiation amount.

In some embodiments each of the n rank locations may
comprise a cell of the device data storage. In further embodi-
ments, each rank location may comprise a plurality of cells
of the device data storage. In other embodiments, each rank
location may comprise an equal number of cells of the
device data storage. In still further embodiments, program-
ming may comprise increasing the value of all cells in the
rank location vt until the value in each of the cells vt is
greater than the value in each of the cells in the rank location
V,,;. In other embodiments, the current values of u=[u,,
U,, ..., u,]ES, are read from the device data storage before
the programming of the group of n rank locations with v.

In another aspect, a new scheme, multi-cells, used for
storing data in flash memories is provided. NAND flash
memory is the most widely used type for general storage
purpose. In NAND flash, several floating gate transistors are
connected in series where we can read or write only one of
them at a time. Each transistor is replaced with a multi-cell
of' m transistors connected in parallel. The control gates, the
sources and the drains of the transistors are connected
together. That way, their current sums together in read
operations, and the read precision increases by m times,
allowing the storages of mq levels in a single multi-cell. In
write operations, the same value is written to all the tran-
sistors, such that the sum of their charge levels provides the
desired total level.

In some embodiments processes for manufacturing and
operating a data device are provided. A plurality of transis-
tors, each of which is capable of storing charge, are disposed
on a device. Each of the plurality of transistors comprises a
gate, a source, and a drain. Connections are formed between

US 9,916,197 B2

3

the sources, gates and drains of each of the plurality of
transistors. Each connection is capable of carrying electrical
current. Next, data is stored in the plurality of transistors.
The data corresponds to a sum of charges stored in each of
the plurality of transistors. In further embodiments connec-
tions may be formed between the gates of each of the
plurality of transistors.

In yet further embodiments, a process for operating a data
device is provided. First, a code word is generated that has
a plurality of symbols selected from a set of symbols. Each
of'the plurality of symbols is stored in a data storage location
of the data device. Each data storage location comprises a
plurality of parallel connected devices. In some embodi-
ments the plurality of parallel connected devices may com-
prise transistors.

In yet another aspect, multi-permutations, used for storing
data in flash memories is provided. The paradigm of repre-
senting information with permutations is generalized to the
case where the number of cells in each level is a constant
greater than 1, multi-permutations.

Namely, the states that the cells can take are no longer

permutations of a set, but permutations of a multiset. For
example, if the number of cells at each level is 22, the two
cells in each level do not need to be identical in their analog
values, they just need to be distinguishable with other levels
(but do not need to be mutually distinguishable). Hence, the
encoding and decoding use relative levels, and the scheme
has good resistance to drift; namely, the advantages of the
permutation based relative scheme that we described above
still apply.
The case where the multiplicities of all the elements in the
multiset are equal, is denoted by z. This generalization
becomes interesting especially when z is large, and n is still
much larger than z. In that case (if q is still much larger than
n), it can be proven that the upper bound on the total capacity
is 2q bits per cell, and that there exists a construction that
approaches this bound. The instantaneous capacity of the
construction is approaching 2 bits per cell.

In some embodiments, a computer method of operating a
data device where a predetermined rank configuration (d,,
d, .. .d,) is defined. Further, d, is the number of cells in the
i rank. A new multi-permutation is received and defined by
v=[v,, V5, . . ., v,|ES, that fits the predetermined rank
configuration. A process is then initiated in response to
receiving the new multi-permutation, adding charge to each
cell in a plurality of memory locations such that the plurality
of cells represent the new multi-permutation. The process
may be continued.

In other embodiments, the sequential order of an initial
analog level of a stored value in each cell of a plurality of
cells in a data device is determined. The sequential order is
defined as a value x comprising

(1, %25 o s Xy b AXdy 40 %oy 320 o0 s Koy} e s

{x1+2f‘;11d; RIS L xZ?zld;}]

In further embodiments, a predetermined rank configura-
tion (d, d, . . . d,) is defined, wherein d, is the number of
cells in the i rank. A new multi-permutation is received and
defined by v=[v,, v,, ..., v,]ES,, that fits the predetermined
rank configuration. The analog levels of cells of a rank n in
v are retained. Finally, the cells of rank i in v for I=n-1,
n-2 ..., 1 such that the analog levels of cells in a rank i are
programmed to all be higher than the analog levels of the

15

20

30

55

4

cells of rank i+1 in v by at least a minimum rank differen-
tiation. The process may be continued.

In yet another aspect, a new data representation and
rewrite model, used for storing data in flash memories is
provided. A construction is illustrated which shows how to
construct rank modulation codes achieving rate approaching
two on each write. This construction takes advantage of the
recently discovered polar codes, which were recently used in
the construction of WOM codes.

In some embodiments, a computer method of operating a
data device where a data value is received comprising a
plurality of data sets wherein each data set is a set of values
representing a rank in a plurality of ranks. A new data set for
a rank of a plurality of ranks is received to store in the
memory device wherein the memory device comprises a
plurality of cells. A current state of candidate cells is read
within the plurality of cells wherein candidate cells are used
to store the new data set. A binary representation of the
plurality of cells is created and used to store the new data set.
A WOM code is used to combine the binary representation
with the new data set to create a binary WOM vector. The
binary WOM vector is modified to equal quantities of 1’s
and 0’s within the candidate cells creating a new data vector.
The new data vector is written to the candidate cells. If a new
data vector has been written for each rank of the plurality of
ranks the process may continue. If all of the data vectors
have not been written, then prior steps starting with receiv-
ing a new data set may be repeated until all the new data
vectors have been written to the memory.

The foregoing summary is illustrative only and is not
intended to be in any way limiting. In addition to the
illustrative aspects, embodiments, and features described
above, further aspects, embodiments, and features will
become apparent by reference to the drawings and the
following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a representation of a memory cell arrangement
using “push to the top” operations in accordance with the
description herein.

FIG. 2 is a representation of a memory cell arrangement
using “minimal push up” operations in accordance with the
description herein.

FIG. 3 is a representation of a memory cell arrangement
using typical “minimal push up” operations in accordance
with the description herein.

FIG. 4 is a representation of a memory cell arrangement
depicting a rare case of “minimal push up” operations in
accordance with the description herein.

FIG. 5 is a state diagram for the states of three cells in
accordance with the description herein.

FIG. 6 is a process that depicts a programming approach
that minimizes the increase of cell levels in accordance with
the description herein.

FIG. 7A is a schematic diagram of a traditional arrange-
ment of a NAND flash memory structure accordance with
the description herein.

FIG. 7B is a schematic diagram of a multi-cell arrange-
ment of a NAND flash memory structure accordance with
the description herein.

FIG. 8A is a process for manufacturing and operating a
data storage device in accordance with the description
herein.

FIG. 8B is a process for operating a data storage device
in accordance with the description herein.

US 9,916,197 B2

5

FIG. 9 is a representation of a memory cell arrangement
in accordance with the description herein.

FIG. 10 is a representation of a memory cell arrangement
in accordance with the description herein.

FIG. 11 is a representation of a memory cell arrangement
in accordance with the description herein.

FIG. 12 is a representation of a memory cell arrangement
in accordance with the description herein.

FIG. 13 is a representation of system model for com-
pressed rank modulation in accordance with the description
herein.

FIG. 14A is a process for operating a data device in
accordance with the description herein.

FIG. 14B is a process for reading a data device in
accordance with the description herein.

FIG. 15A is a process for writing to a data device in
accordance with the description herein.

FIG. 15B is a process for operating a data device in
accordance with the description herein.

FIG. 15C is a process for operating a data device in
accordance with the description herein.

FIG. 15D is a process for operating a data device in

accordance with the description herein.

FIG. 15E is a process for operating a data device in
accordance with the description herein.

FIG. 16 is an illustration of a memory device constructed
in accordance with the present invention.

FIG. 17 is a block diagram of a computer apparatus to
perform the operations of FIGS. 6, 8A, 8B, 14 and 15 for
communicating with a memory device such as depicted in
FIG. 16.

FIG. 18 is a block diagram that shows data flow in a
memory device that operates according to the rank modu-
lation scheme described herein.

DETAILED DESCRIPTION

The contents of this Detailed Description are organized
under the following headings:
1. Introduction to Rank Modulation
II. Permutation “Minimum Push Up”
A. Rewrite Model and the Transition Graph
B. Worst-case Decoding Scheme for Rewrite
1II. Multi-Cells
A. Multi-Cell Flash Memory
B. Notations and Model Properties
C. Upper Bounds
D. Construction for the Average Case
E. Existence for the Worst Case
IV. Multi-Permutations
A. Compressed Rank Modulation
1. Initial Write
2. Subsequent Rewrites
3. Programming Symmetric Cells
4. Rebalancing Permutations
5. Record Weights
V. Rank-Modulation Rewriting Codes
A. Definitions of the Rewrite Model
B. Description of the Construction
C. Polar WOM Codes
V1. Example Embodiments
VII. Conclusion
Subheadings in the description are not listed above but may
be present in the description below.

1. INTRODUCTION TO RANK MODULATION

The amount of charge stored in a flash memory cell can
be quantized into q=2 discrete values in order to represent up

10

15

20

25

30

35

40

45

50

55

60

65

6

to log,q bits. (The cell is called a single-level cell (SLC) if
q=2, and called a multi-level cell (MLC) if g>2). The q states
of a cell are referred to as its levels: level 0, level 1, . . ., level
gq-1. The charge is quantized into discrete levels by an
appropriate set of threshold levels. The level of a cell can be
increased by injecting charge into the cell, and decreased by
removing charge from the cell. Flash memories have a
property that although it is relatively easy to increase a cell’s
level, it is very costly to decrease it. This results from the
structure of flash memory cells, which are organized in
blocks of about 10°~10° cells. In order to decrease any cell’s
level, its entire containing block is erased first (which
involves removal of the charge from all the cells of the
block) and after then it can be reprogrammed. Block era-
sures are not only slow and energy consuming, but also
significantly reduce the longevity of flash memories,
because every block can endure only about 10*~10° erasures
with guaranteed quality. See, for example, P. Cappelletti, C.
Golla, P. Olivo, and E. Zanoni, Flash Memories. Kluwer
Academic Publishers, 1999. Therefore, reducing the number
of block erasures improves the longevity of flash memories.

In MLC flash memory, the process of programming a cell
to a specific level is designed carefully. The target level is
approached from below in order to avoid overshooting of the
cell, which may result in an undesirable block erasure.
Consequently, these attempts use multiple programming
cycles, and they work only up to a moderate number of
levels per cell, e.g. 8 or 16 levels. In order to avoid the
problem of exact programming of a cell level, a framework
of the rank modulation coding was introduced. See, for
example, A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck,
Rank modulation for flash memories, IEEE Trans. on
Inform. Theory, vol. 55, no. 6, pp. 2659-2673, June 2009,
hereinafter Rank Modulation for flash memories. The main
idea of this coding scheme is to represent the information by
the relative values of the cell levels rather than by their
absolute values. Given a set of N cells, their levels induce a
permutation which is used to encode the data. One of the
features of the rank modulation scheme is that in program-
ming, a cell is charged to a higher level than that of the
previous cell in the permutation, and therefore there is
reduced risk of overshooting. Another feature of represent-
ing data by the ranking of the cells, is that the threshold
levels are no longer needed. This mitigates the effects of
retention in the cells (slow charge leakage).

Rank Modulation for flash memories described rewriting
codes for the rank modulation scheme, in order to reuse the
memory between block erasures. In general, a motivation
behind rewriting codes for flash memories is to increase the
number of times data can be rewritten between two erasure
operations while preserving the constraint that cells only
increase their level.

In rank modulation, a feature is to minimize the increase
in the highest charge level among the cells after a rewriting
operation. An observation is that rewriting of different
permutations may increase the highest charge level of the
cells by different magnitudes. For example, assume the
current permutation be (3,1,2), such that the first cell has the
highest level, e.g. its rank is 3, then the third cell (rank 2) and
finally the second cell (rank 1). Now assume the cells are
rewritten and are to represent the permutation (2,3,1). This
can be done by adding sufficient charge to cell 2 such that
its level is greater than the first cell’s level. Now consider a
different case, where the cells need to represent the permu-
tation (1,2,3). In this case, the level of both cell 2 and cell
3 are raised to be higher than the level of cell 1, as shown
in FIG. 1. Since some gap may be needed between them, and

US 9,916,197 B2

7

also some gap between cell 2 and cell 1, it is possible that
the increase in the level of the highest cell in the second
example, may be twice as much as the increase in the first
example.

A consequence from the previous operation(s) is, that if
every permutation represents different information, then the
number of rewrites before incurring a block erasure can vary
between different input data sequences. In order to obtain a
large number of rewrites, rewriting codes let multiple per-
mutations represent the same information (that is, introduc-
ing redundancy). Thus, when a certain data is to be written,
there would be at least one permutation corresponding to
that data that could be written without increasing the charge
of'the highest cell by a large amount. In Rank Modulation for
flash memories, rewriting codes were studied under a strong
constraint of push-to-the-top operations. In every push-to-
the-top operation, a single cell is set to be the top-charged
cell. This scheme provides easy implementation and fast
programming, but it suffers a relatively low rate.

The work on rank modulation coding for flash memories
paved the way for additional results in this area. First,
error-correcting codes in the rank modulation setup attracted
a lot of attention. See, for example, A. Barg and A. Mazum-
dar, “Codes in permutations and error correction for rank
modulation,” IEEE Trans. on Inform. Theory, vol. 56, no. 7,
pp- 3158-3165, July 2010; F. Farnoud, V. Skachek, and O.
Milenkovic, “Rank modulation for translocation correc-
tion,” in Proceedings of the IEEE International Symposiom
on Information Theory Workshop (ISIT), June 2012, pp.
2088-2992; A. Jiang, M. Schwartz, and J. Bruck, “Correct-
ing charge-constrained errors in the rank-modulation
scheme,” IEEE Trans. on Inform. Theory, vol. 56, no. 5, pp.
2112-2120, May 2010; 1. Tamo and M. Schwartz, “Correct-
ing limited-magnitude errors in the rank-modulation
scheme,” IEEE Trans. on Inform. Theory, vol. 56, no. 6, pp.
2551-2560, June 2010. Other variations of rank modulation
were studied as well. A new concept of bounded/local rank
modulation was introduced and its capacity was calculated.
See, for example, Z. Wang, A. Jiang, and J. Bruck, “On the
capacity of bounded rank modulation for flash memories,”
in Proc. 2009 IEEE Int. Symp. Information Theory, June
2009, pp. 1234-1238. Here, the data is not represented by a
single permutation, but rather, a sequence of permutations of
a given size, which may overlap, are used to represent the
data. Yet another variation, called partial rank modulation,
was introduced. See, for example, Z. Wang and J. Bruck,
“Partial rank modulation for flash memories,” in Proceed-
ings of the 2010 IEEFE International Symposium on Infor-
mation Theory (ISIT2010), Austin, Tex., U.S.A., June 2010,
pp. 864-868. Now the data is represented by a single
permutation, but only the highest k cell levels, for some
fixed k, may be considered for the information representa-
tion.

II. PERMUTATION “MINIMUM PUSH UP”

The cost of changing the state in the scheme—namely, the
cost of the rewriting step—is measured by the number of
“push-to-top” operations that are used, because it represents
by how much the maximum cell level among the n cells has
increased. See, for example, A. Jiang, R. Mateescu, M.
Schwartz, and J. Bruck, “Rank modulation for flash memo-
ries,” IEEE Trans. on Inform. Theory, vol. 55, no. 6, pp.
2659-2673, June 2009. Reducing this cell-level increment
may be performed in one embodiment because the cells have
a physical limit that upper bounds the cell levels. The less
the cell levels are increased, the more rewrites can be

5

10

15

20

25

30

35

40

45

50

55

60

65

8

performed before a block erasure operation is used, and the
longer the lifetime of the memory will be.

An example is shown in FIG. 1, where the state of n=4
cells is to be changed from u=[2,1,3,4] to v=[2,1,4,3]. (Here
the cells are indexed by 1, 2, . . ., n. And their state is
denoted by the permutation [u,, u,, . . . , u,]ES,,, where cell
u, has the highest charge level and u,, has the lowest charge
level. Fori=1, ..., n, cell y, has rank i.) Three “push-to-top”
operations are used, where cell 4, cell 1 and cell 2 are pushed
sequentially. They are represented by the three edges in FIG.
1. The cost of this rewriting is 3.

It can be seen from the above example, however, that the
“push-to-top” operation is a conservative approach. To
change the state from u=[2,1,3,4] to v=[2,1,4,3], when cell
4 is pushed, the level of cell 4 is pushed to be greater than
cell 3. There is no need to make the level of cell 4 to be
greater than the levels of all the other n-1=3 cells (i.e., cells
1, 2 and 3). Similarly, when cell 1 is pushed, its level is
pushed to be greater than cell 3 and cell 4, instead of cells
2, 3 and 4. So a more moderate programming approach as
shown in FIG. 2 can be taken, and the increment of the cell
levels (in particular, the increment of the maximum cell
level) can be substantially reduced. So, the cost of rewriting
can be reduced, which improves the overall rewriting per-
formance and the longevity of the memories.

Described in this disclosure is a programming approach
that minimizes or otherwise reduces the increase of cell
levels as illustrated in FIG. 6. To change the cell state from
u=u,, u,, . .., W]ES, to v=[v,, v,, ..., Vv,]ES,, the cells
are programmed based on their order in v, so that every cell’s
level increases as little as possible:

For i=n-1, n-2, . . ., 1 perform:

{Increase the level of cell v,, to make it greater than the
level of the cell v,,,}.

Note that in the above programming process, when cell v,
is programmed, cell v,, | already has the highest level among
the cells v,,;, V.5, - - ., V,,. The programming operation here
is referred to as the “minimal-push-up” operation. (In com-
parison, if cell v, is programmed to make its level greater
than the maximum level among the cells v,, . . . , v, |,
Vii1s - - - 5 V,,, then it becomes the original “push-to-top”
operation.) The “minimal-push-up” approach is robust, as it
has reduced risk of overshooting. And it reduces increment
of the maximum level of the n cells (e.g., the rewrite cost).
A. Rewrite Model and the Transition Graph

For coding schemes, a good robust discrete model is used
for the rewriting. A discrete model is described herein for
measuring the rewriting cost, which is suitable for both the
“push-to-top” approach and the “minimal-push-up”
approach. To rigorously describe the cost of a rewrite
operation (i.e., a state transition), the concept of virtual
levels is used. Let u=[u,, u,, . . ., u,]JES,, denote the current
cell state, and let v=[v, v,, . . ., v, JES,, denote the new state
that the cells change into via increasing cell levels. Let
d(u—v) denote the number of push-up operations that are
applied to the cells in order to change the state from u into
v.Fori=1,2,...,du—v), letp, [n]2{1,2, ..., n} denote
the integer and let B, = [n]\{p,} denote the subset, such that
the i-th push-up operation is to increase the p,-th cell’s level
to make it greater than the levels of all the cells in B,. (For
example, for the rewriting in FIG. 1, we have d(u—v)=3,
pi=4,B,={1,2,3}, p,=1, B,={2,3,4}, ps=2,B,={1,3,4}. And
for the rewriting in FIG. 2, we have d(u—v)=3, p,;=4,
B,={3}, p.=1, B,={3,4}, ps=2, B;={1,3,4}.) Such push-up
operations have reduced risk of overshooting.

For the current state u, we assign the virtual levels n,
n-1, ... 2,1 to the cells u;, u,, . . ., u,_,, u,, respectively.

US 9,916,197 B2

9

The greater a cell’s level is, the greater its virtual level is. It
is noted that when the virtual level increases by one, the
increase in the actual cell level is not a constant because it
depends on the actual programming process, which is noisy.
However, when a cell a is programmed to make its level
higher than a cell b, the difference between the two cell
levels will concentrate around an expected value. (For
example, a one-shot programming using hot-electron injec-
tion can achieve stable programming performance at high
writing speed.) Based on this, a discrete model for rewriting
is provided, which may be a usable tool for designing coding
schemes.

Consider the ith push-up operation (for i=1, . . ., d(u—v)),
where the level of cell p, is increased to make it greater than
the levels of the cells in B,. For any j=[n], let 1, denote cell
j’s virtual level before this push-up operation. Then after the
push-up operation, the virtual level of cell p, may be

1+ max/j;
JeB;

namely, it is greater than the maximum virtual level of the
cells in B, by one. This increase represents the increment of
the level of cell p,. After the d(u—v) push-up operations that
change the state from uto v, for i=1, . . ., n, let1,' denote the
virtual level of cell i. The cost of the rewriting process is
described as the increase in the maximum virtual level of the
n cells, which is

maxli -n=1I, —n
ie[n] 1

Example 1

For the rewriting process shown in FIG. 1, the virtual
levels of cells 1, 2, 3, 4 change as (3,4,2,1)—(3,4,2,5)—(6,
4,2,5)—(6,7,2,5). Its cost is 3.

For the rewriting process shown in FIG. 2, the virtual
levels of cells 1, 2, 3, 4 change as (3,4,2,1)—(3,4,2,3)—(4,
4,2.3)—(4,5,2,3). Its cost is 1.

The model captures the typical behavior of cell program-
ming. Yet when the minimal-push-up operations are used,
the number of cells to push may not always be a constant
when the old and new states u, v are given. An example is
shown in FIGS. 3 and 4, where the state changes from
u=[1,2,3,4] to v=[2,1,4,3]. An example programming pro-
cess is shown in FIG. 3, where two cells—<cell 4 and then
cell 2—are pushed up sequentially. (Note that based on the
discrete model, the rewriting cost is 1. This is consistent with
the increase of the maximum cell level here.) But as shown
in FIG. 4, in the rare case where cell 4’s level is significantly
over-raised to the extent that it exceeds the level of cell 1,
cell 1 will also be programmed, leading to three minimal-
push-up operations in total. However, we would like to show
that above discrete model is still a robust model for the
following reasons. First, in this paper we focus on the typical
(i.e., most probable) behavior of cell programming, where
the rewriting cost matches the actual increase of the maxi-
mum cell level well. In the rare case where cell levels are
increased by too much, additional load balancing techniques
over multiple cell groups can be used to handle it. Second,
the rare case—that a cell’s level is overly increased—can
happen not only with the minimal-push-up operation but

10

15

20

25

30

35

40

45

50

55

60

65

10

also with the push-to-top operation; and its effect on the
increment of the maximal cell level is similar for the two
approaches. So the discrete model still provides a fair and
robust way to evaluate the rewriting cost of different state
transitions.

This disclosure describes codes based on state transitions
using the minimal-push-up operations. Given two states
u=[u(l), u(2), ..., w)]ES, v=[v(l), v(2), . . ., v(n)]ES,,
let C(u—v) denote the cost of changing the state from u to
v. (Note that u(*), v(-) are both functions. Let u™, v=! be their
inverse functions.) The value of C(u—v) can be computed as
follows. Corresponding to the old state u, assign virtual
levels n, n-1, . . ., 1 to the cells u(l), u(2), . . ., u(n),
respectively. Fori=1, 2, . . ., n, let |, denote the virtual level
of cell i corresponding to the new state v. Then based on the
programming process described previously, 1, ..., 1, can be
computed as follows:

1. For i=1, 2, . . . , n perform:

{lgysn+1-i.}

2. For i=n-1, n-2, . . ., 1 do:

{Ly=max{l g 1+ 10} }

Then:

Clu—=v)=l,y-n.

It can be seen that 0=C(u—v)n-1. An example of the
rewriting cost is shown in FIG. 5.

The following theorem provides an equivalent definition
of'the cost. According to the theorem, the cost is equal to the
maximal increase in rank among the cells.

Theorem 1.

Clu—v) = r_nfl}]g(v*(i) —u ().

Proof:
Assume by induction on k that
bap=n+l—k+ max](i— W)
In the base case, k=n, and 1,,,=n+l-
n+max,e, n](i—u"l(v(i))):l+n—u"1(V(n)). This is the

result of the programming process. Now assume that the
expression is true for k. For k-1, by the programming
process,

bty = maxtlygy + Lo+ L —u vk - 1)) =

n+l—u ik - 1))}
by the induction assumption

=n+1l-(k-D+

US 9,916,197 B2

11

-continued

and the induction is proven.
Now [, is assigned in the definition of the cost:

Clu—v)=

Lay—-n=n+1-1+ max (i—u ‘(@) -n=max() -ul@)
ie[l,... ie[n]

Codes for rewriting data based on the “push-to-top”
operation have been studied. See, for example, A. Jiang, R.
Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for
flash memories,” [EEE Trans. on Inform. Theory, vol. 55,
no. 6, pp. 2659-2673, June 2009. Since the “minimal-push-
up” approach has lower rewriting cost than the “push-to-
top” operation, rewrite codes can be constructed with higher
rates.

In order to discuss rewriting, a decoding scheme is
defined. It is often the case that the alphabet size used by the
user to input data and read stored information differs from
the alphabet size used as internal representation. In one
embodiment, data is stored internally in one of n! different
permutations. Assume the user alphabet is Q={1, 2, ... q}.
A decoding scheme is a function D:S,—Q mapping internal
states to symbols from the user alphabet. Suppose the
current internal state is u€S,, and the user inputs a new
symbol aEQ. A rewriting operation given o is now defined
as moving from state uES,, to state v&S,, such that D(v)=c..
The cost of the rewriting operation is C(u—>v).

Next, the transition graph G,=(V,,A,) is defined as a
directed graph with V, =S, i.e., with n! vertices representing
the permutations in S,,. There is a directed edge u—v if and
only if C(u—v)=1. Note that G,, is a regular digraph. Given
a vertex uEV, and an integer r&{0, 1, . . ., n—1}, the ball
B, (w) is defined as B, (u)={vEV,IC(u—v)=r}.

1B, ()=t (r+1)""

Proof:

Induction is used on n. When n=2 the statement is trivial.
(So is it when n=r+1, where 1B, , (w)l=(r+1)!.) Now the
statement is assumed to be true for n=n,, and consider
n=ny+1 and n>r+1. Let u=[u(l), u(2), . . . , u(n)]ES,,, and
without loss of generality (w.l.o.g.) let u(1)=n. Let v=[v(1),
v(2), ..., v()]EB, (u). Let i=[u(2), u(3), . . ., un)|s,,_,,
and let v S, ;, be obtained from v by removing the
element u(l)=n. By Theorem 1, the first element in u,
namely u(1)=n, can take one of the first r+1 positions in v.
Given that position, there is a one-to-one mapping between
pushing-up the remaining n—1 elements from u to v&S,, and
pushing-up those n-1 elements from 0 to &S and
C(a—v)=
C(u—v)r. So the following results: 1B, (u)l=(r+1)IB
@I=. .. =+ 1)y~ D=r 1)

Note that given u, {ve€S, |v='(1)-u~'(i)I=r for 1=i=n}l is
the size of the ball under infinity norm. When r=1, that size
is known to be a Fibonacci number. See, for example, T.
Kleve, “Spheres of permutations under the infinity norm—
permutations with limited displacement,” University of Ber-
gen, Bergen, Norway, Tech. Rep. 376, November 2008.

In addition, we note that IBn,l(u)IZZ”"l. Therefore, the
out-degree of each vertex in G, is 2""'-1. In comparison,
when we allow only the *“push-to-the-top™ operation, IB,, ,
(u)l=n. Hence we get an exponential increase in the degree,

Theorem 2.

n—1°

n—1,r

10

15

20

25

30

35

40

45

50

55

60

12

which might lead to an exponential increase in the rate of
rewrite codes. In the next section we study rewrite codes
under a worst-case cost constraint.

B. Worst-Case Decoding Scheme for Rewrite

Described herein are codes where the cost of the rewrite
operation is limited by r.

1. The Case of n=4

The case of r=1 is evaluated first. The first non-trivial case
for r=1 is n=3. However, for this case the additional “mini-
mal-push-up” transitions do not allow for a better rewrite
code. An optimal construction for a graph with only the
“push-to-top” transitions has been discussed. See, for
example, A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck,
“Rank modulation for flash memories,” IEEE Trans. on
Inform. Theory, vol. 55, no. 6, pp. 2659-2673, June 2009.
That construction assigns a symbol to each state according
to the first element in the permutation, for a total of 3
symbols. This construction may also be optimal for a graph
with the “minimal-push-up” transitions.

For greater values of n, in order to simplify the construc-
tion, we limit ourselves to codes that assign a symbol to each
of the n! states. We call such codes full assignment codes.
Note that better codes for which not all the states are
assigned to symbols might exist. When all of the states are
assigned to symbols, each state must have an edge in A, to
at least one state labeled by each other symbol. We define a
set of vertices D in G,, as a dominating set if any vertex not
in D is the initial vertex of an edge that ends in a vertex in
D. Every denominating set is assigned to one symbol. Our
goal is to partition the set of n! vertices into the maximum
number of dominating sets. We start by presenting a con-
struction for n=4.

Construction 1.

Divide the 24 states of S, into 6 sets of 4 states each,
where each set is a coset of {(1,2,3,4)}), the cyclic group
generated by (1,2,3,4). Here (1,2,3,4) is the permutation in
the cycle notation, and {(1,2,3,4))={[1,2,3,4], [2,3,4,1],
[3,4,1,2], [4,1,2,3]}. Map each set to a different symbol.
Theorem 3. Each set in Construction 1 is a dominating set.

Proof:

Let I, be the identity permutation, g=(1,2,3,4) and
G=(g). For each hE€S,, hG is a coset of G. For each v=
[v(1), ..., v(n)]€hG and each u=[u(l), . . ., w(n)|ES, such
that u(1)=v(1), u has an edge to either v or v¥*g. For example,
in the coset 1,G=G, for v=I, and uES,, such that u(l)=
v(1)=1, if u(2) is 2 or 3, u has an edge to 1,-[1,2,3,4], and
ifu(2)=4,u has an edge to I *g=[4,1,2,3]. Since G is a cyclic
group of order 4, for every uES,, there exists v&hG such that
u(1)=v(1), and therefore hG is a dominating set.

For k [n] and B<S,,, define:

Prefy({[1,2,3.4,5],[1,2,3,54],[1,3,2,4,5]})=
{121,131}
where t, u are segments of the permutation s. For example,
Prefy({[1,2,3.4,5],[1,2,3,54],[1,3,2,4,5]})=
{121,131}

A lower bound is provided to a dominating set’s size.

Theorem 4. If D is a dominating set of G,,, then

Proof:
Each p;EPref;(S,,) is a prefix of 3 different prefixes in
Pref,(S,,). For example, for n=5, [1,2] is a prefix of {[1,2,3],

US 9,916,197 B2

13

[1,2,4], [1,2,5]}. Each v D dominates 2”2 prefixes in Pref,
(S,). For example, for n=4, every permutation that start with
[1,2], [1,3], [2,1] or [2,3] has an edge to [1,2,3,4]. This set
of prefixes can be partitioned into sets of two members, each
sharing the same prefix in Prefi(S,). For one such set
B,={p, .0}, and p, denotes the only member of Pref,
(B,). Since D is a dominating set, all of the members of
Pref,(S,,) are dominated. Therefore, the third prefix p, ,#B,
such that {p;}=Pref;({B,.p,s}) is dominated by some u€D,
u=v. Moreover, u dominates also one of the prefixes in B,.
Therefore, at least half of the prefixes in Pref,(S,,) that v
dominates are also dominated by at least one other member
of D. X,, denotes the set of prefixes in Pref,(S,,) that are
dominated by v and not by any u=v such that u€D, and Y,
denotes the prefixes in Pref,(S,) that are also dominated by
at least one such u=v. Also defined is X=2 _,IX,| and
Y=2,,Y,|. It has been shown that IX |s2"7%; so
X=2"7IDI. In addition, IX I+IY |=2""% and so X+
Y=2""2IDI. By the definition of Y,

|

|UveD Yv| =

because every element in the above union of sets appears in
at least two of the sets. So:

! Y
% = 1Pref (5.0l = |UveD XV| * |UveD YV| =X+ 27

X +273D| - 12‘ = 12‘ +273D = (7 + 273D = 3- 274D,
Therefore

n!
e
3.on-3

Using the above bound, the rate of any full assignment
code C

R(C 111 i
< |- —
C) =< n0g23

bits per cell. For the case of n=4, IDIz4. Therefore Con-
struction 1 is an optimal full assignment code.

2. The case of n=5

In the case of n=5, a dominating set comprises of at least

5!

3.25-3 =10

members. An optimal full assignment code construction is
presented with dominating sets of 10 members.

Construction 2.

Divide the 120 states of S5 into 12 sets of 10 states each,
where each set is composed of five cosets of {(4,5)), and
two permutations with the same parity are in the same set if
and only if they belong to the same coset of ((1,2,4,3,5)).
Map each set to a different symbol.

Let g,=(4,5) and g,=(1,2,4,3,5). An example of a domi-
nating set where each row is a coset of g; and each column
is a coset of g, is:

w

20

25

30

35

40

45

50

55

60

65

14

111,2,3,4,5], [1,2,3,5,4]

[2,4,5,3,1], [2,4,5,1,3]

[4,3,1,5,2], [4,3,1,2,5]

[3,5,2,1,4], [3,5,2,4,1]

[5,1,4,2,3], [5,1,4,3,2]}

Theorem 5. Each set D in Construction 2 is a dominating set.

Proof:

Each coset of {g,) dominates 4 prefixes in Pref,(S,). For
example, the coset {g,}={1,7[1,2,3,4,5], g,=[1,2,3,5,4]}0
dominates the prefixes {[1,2], [1,3], [2,1], [2,3]}. Each coset
representative is treated as a representative of the domina-
tion over the 4 prefixes in Pref;(S5) that are dominated by
the coset. According to the construction, a set of represen-
tatives in D that share the same parity is a coset of {g,) . Let
one of the cosets of {g,) in D be called C. For each v C, the
subset {v, g,*v} represents a domination over a single
disjoint prefix in Pref,(S;). For example, for v=I ,, the subset
11701,2,3,4,5], 2,*1,7[2,4,5,3,1]} represent a domination
over the prefix [2]. Since 1{g,} |=5, C represents a complete
domination over Pref,(S;), and therefore D is a dominating
set.

The rate of the code may be

1
R= glogzlz =0.717 bits per cell

Recall that optimal codes with “push-to-top” operations
use only n symbols for n cells. Therefore, a rate improve-
ment of

1 1
(glogZIZ)/(glogZS) - 1=54.4%

may be achieved.

3. The Case of r<2

When the cost constraint is greater than 1, the construc-
tions studied above can be generalized. For a construction
for the case r=n—4, the construction begins by dividing the
n! states S, into

n!
120

sets, where two states are in the same set if and only it their
first n-5 elements are the same. The sets are all dominating
sets, because we can get to any set by at most n-5 “push-
to-top” operations. Each of these sets to 12 sets of 10
members is further divided, in the same way as in Construc-
tion 2, according to the last 5 elements of the permutations.
By the properties of construction 2, each of the smaller sets
is still a dominating set. The rate of the code is

R 11 n!
8T

bits per cell.

An example method 600 of operating a data device is
illustrated in FIG. 6. Method 600 may include one or more
operations, actions, or functions as illustrated by one or
more of blocks 605, 610, 615, 620, 625, 630 and 635.

US 9,916,197 B2

15

Although illustrated as discrete blocks, various blocks may
be divided into additional blocks, combined into fewer
blocks, or eliminated, depending on the particular imple-
mentation.

At block 605 the process can be started. Block 605 can be
followed by block 610, where data values v=[v,, v,, . . .,
v,]ES,, can be received and are to be stored in data storage
containing current values u=[u,, u,, . . . u,]ES,,. Block 610
can be followed by block 615, where v can be defined as an
element of S. Block 615 can be followed by block 620,
where S can be defined as a set of symbols in a rank
modulation coding scheme. Block 620 can be followed by
625, where n can be defined as a number of ranks in v to be
stored in a group of n rank locations in data storage of the
data device. Block 625 can be followed by block 630, where
the group of n rank locations can be programmed according
to the rank modulation coding scheme and the value v such
that for i=n-1, n-2, . . ., 1 the programmed value of a rank
location v, is increased until it is greater than the value of a
rank location v,,, by a minimum cell differentiation amount.
Block 630 can be followed by block 635, where the process
may be continued.

In some embodiments each of the n rank locations may
comprise a cell of the device data storage. In further embodi-
ments, each rank location may comprise a plurality of cells
of the device data storage. In other embodiments, each rank
location may comprise an equal number of cells of the
device data storage. In still further embodiments, program-
ming may comprise increasing the value of all cells in the
rank location v, until the value in each of the cells v, is
greater than the value in each of the cells in the rank location
V,,;. In other embodiments, the current values of u=[u,,
U,, ..., u,]ES, are read from the device data storage before
the programming of the group of n rank locations with v.

1II. MULTI-CELLS

We can store log,q bits on a flash cell with q levels. That
way, each time we want to update the data on the memory,
we would have to erase the whole block. We call this
representation method “the trivial scheme”. We could also
use a bit more sophisticated update schemes. For example,
we could store only 1 bit in each cell, according to the parity
of the level of the cell. If the cell is in level 3, for example,
it stores the value 1. Using this scheme, we can update the
data q-1 times before a block erasure will be required. We
call this scheme “the parity scheme”. Update schemes like
the parity scheme can be especially useful for enterprise
applications of flash memory, where the endurance of the
memory becomes a major design concern. Update schemes
are also known as write once memory (WOM) codes. See,
for example, A. Fiat and A. Shamir, “Generalized “write-
once” memories,” IEEE Trans. on Inform. Theory, vol.
1T-30, no. 3, pp. 470-480, May 1984; F.-W. Fuand A. J. Han
Vinck, “On the capacity of generalized write-once memory
with state transitions described by an arbitrary directed
acyclic graph,” IEEE Trans. on Inform. Theory, vol. 45, no.
1, pp. 308-313, January 1999; R. L. Rivest and A. Shamir,
“How to reuse a “write-once” memory,” Inform. and Con-
trol, vol. 55, pp. 1-19, 1982.

While the values of the cells in the relative scheme don’t
need to be quantized, discrete levels can be used for analysis
to simplify the calculations. This is to allow a more easy and
useful analysis, and because there should still be a certain
charge difference between the cells in order to avoid errors.
When the cells have q levels, the data can be stored on a set
of q cells according to their relative levels. In other words,

10

15

20

25

30

35

40

45

50

55

60

65

16

log,(q!) bits can be stored on q cells, or each cell can be used
to store (1/q)log,(q!) bits. If q is large, the capacity of the
trivial scheme described above. However, various update
schemes described herein can be employed that may use
relative levels, such as n cells of q levels, where n>q. As
described further below, a high total capacity can be
achieved with update schemes that use relative cell’s levels.
More specifically, some described examples may achieve an
instantaneous capacity of n bits and a total capacity of
(9-1)n bits using relative cell’s levels.

Update schemes with high total capacity can become
useful when q has a high value. However, in practical flash
memory devices, q may have a moderately small number.
Various example methods described herein may achieve
high values of q with the existing cell technology. The main
idea is to combine several floating gate transistors into a
virtual cell, which we call a multi-cell.

A. Multi-Cell Flash Memory

NAND flash memory is a widely used type of memory for
general storage purposes. In NAND flash, several floating
gate transistors are typically coupled in series (see FIG. 7A),
where read or write operations occur one at a time. The
present disclosure proposes to replace various transistors
with a multi-cell of m transistors that are coupled together in
parallel, with commonly controlled gates, as shown in FIG.
7B. In read operations, the currents of the transistors sum
together, and the read precision may increase by m times,
allowing to store mq levels in a single multi-cell. In write
operations, the same value can be written into all of the
transistors coupled together with a common gate, such that
the sum of their charge levels gives the desired total level.
The resulting error rates of read and write operations of the
configuration in FIG. 7B are substantially the same as those
error rates found in a traditional flash cell.

If data is stored by n transistors that form n/m multi-cells
of mq levels each, and if the trivial scheme is used, an
instantaneous and total capacity of (n/m)log,(mq) bits
results that is less than the n log,q bits would result using
traditional cells. However, if an update scheme such as the
relative schemes presented in the present disclosure, then a
total capacity may approach n(q-1) bits both with multi-
cells and with traditional cells. In order to use a permutation
of cell’s levels, the number of levels in each should be at
least the number of cells. To approach a total capacity of
n(q-1) bits with permutations, the number of updates the
scheme can take should be greater than the number of cells
we use. By using multi-cells, the number of updates may
increase at the expense of the instantaneous capacity, and the
total capacity is approached faster.

B. Notations and Model Properties

In order to allow easy and fair analysis, discrete levels for
the cell’s charge values can be utilized. In practice there is
generally no need for threshold levels, and analog values can
be used for the cell’s charge values. For example, let c=(c,,
Coy ... C,), withc,£{0, 1, ..., q-1} as the state of an array
of n flash cells, each cell having q discrete levels, where ¢;=c;
for all i#]. The n variables may induce a permutation such as
o=[o(1), o(2), . . ., o(n)]ES,, where S, denotes the set of
all permutations over [n]={1, 2, . . ., n}. The permutation o
may be uniquely defined by the constraints ¢, >c; for all
>, i.e., when c is sorted in ascending order as c;<c, <. ..
<c, , then o(i)=, for all 1=i=n.

To change the permutation from o to o', the cells can be
programmed based on their order in o', so that each cell’s
level may increase as little as possible. For example, let
c¢'=(c', ¢'5, . . . c',) denote the new cell’s levels to be set.

US 9,916,197 B2

17

Initially ¢'Gy=Co1y, and then, for =23, . . . , n,
C'ony™MAaxX{C iy, € gyt 1} Given two cell states ¢ and ¢,
let cost (c—=c') denote the cost of changing the cell state from
c to ¢'. The cost can be defined as the difference between the
levels of the highest cell, before and after the update
operation. Namely, cost (¢—¢')=C'g;y=Coyy)- As illustrated
by this example, the cost may be a function of o~! and o',
where o' is the inverse of the permutation o. See, for
example, E. En Gad, A. Jiang, and J. Bruck, “Compressed
encoding for rank modulation,” in Proceedings of the 2011
IEEE Int. Symp. on Inform. Theory, ISIT2011, St. Peters-
burg, Russia, August 2011, pp. 884-888. The cost can be
written as:

cost(o > o) = r_n[a)]((o"l) —o"L@).

In other words, the cost is the L., quasimetric.
Example 1

Let ¢=(0,1,2,3). So 0=[1,2,3,4]. Now let 0'=[3,1,4,2]. The
levels of the cells to represent o' can be increased as follows:
set ¢';=c;=2; ¢';=max{c,,c's+1}=max{0,3}=3; and ¢',=4
and ¢',=5. The cost of the update can be determined as
c¢',—c,=5-3=2. The cost can also be calculated directly from
the permutations: o~'=[1,2,3,4], and o"'=[2,4,1,3]. Since
o t-o'=[-1, -2,2,1], and the maximum is 2, so this is the
cost.

The set of all the values that the data can take can be
denoted as D. An update scheme, or update code, C may
include a decoding function f and an update function g. The
decoding function f:S,—D may identify the permutation
OES,, as a representation of the data f(0)ED. The update
function (which may represent an update operation), g:S, x
D—=S,,, may identify the current permutation o€S,, and the
update can change the data to dED, and the update code can
change the permutation to g(o, d), where f(g((o, d)) may be
equal to d. Note that if f(o)=d, then g(o, d)=o, which
corresponds to the case where w the stored data does not
need to change.

Let C,(C) be the instantaneous capacity of an update code
C . The instantaneous capacity can be defined as C,(C)=(1/
n)log|DI, where the binary logarithm can be used. Lett, (C)
be the maximal number of updates that € can support for all
update sequences. The worst-case total capacity per level
can be defined as C (C)=t (C)C,C) (q-1). Similarly,
t,(C) can be defined as the average number of times the
memory can be modified before a block erasure is required,
where we assume that in each update, the data value can be
uniformly distributed, C_(C »=t,(C)C,(C)/(q-1) can be the
average total capacity per level of the update code, and see
that lim,_,, ,,_...C.(C)/E(cost), where E(cost) is the expec-
tation of the cost.

Finally, for a fixed o€S,, set

B, (0)={0’ES, Icost(c—0")=r}.1,,=|B, (0.

We note that k, , is independent of o. It was shown in [2] that
k,,, =+ 1) e+ 1)

C. Upper Bounds

In this section, a bound is derived for C (C)and C_(C),
when q and n are large numbers, and q is much greater than
n. In addition, a bound for C,(C) is derived in the cases
where C,(C) and C,(C) are asymptotically optimal.

10

15

20

25

30

35

40

45

50

55

60

18
1. Worst Case

To derive a bound, k,, ., the size of the ball of radius r can
be used. To guarantee that the cost of each update operation
is no more than r,IDI<k,, . Otherwise, to write the data state
d, there is no guarantee that there is a permutation in B, (o)
that represents d. The resulting instantaneous capacity can
be determined as
(Unlog(k,). Let K =lim, , (1/n)log(k,). By setting
C,(C)<K,, we cannot guarantee to write more than (q—n)/r
times, so C,(C)=t,(C)C,(€C)/(q-1) is less than K /r. In the
following K, /r is decreasing in r, which means that K, is an
upper bound to the worst case total capacity.

Lemma 1.

K,/r is strictly decreasing in r when r=z1.

Proof:

(1 /nnlogk, = (1/nrlog((r+ 1" Vir+ D =
(1/nr)(nloglr+)= (r+ 1)
=(1/Mloglr+)= (r+ 1)/ (nr) >

(1/rloglr+ 1), n - co

So K,/r=(1/r)log(r+1). On the other hand,

log((r + 22 (r + 2)1)

(17 (nlr + D)logkry = WD)

< (1/(r+ 1)log(r+2)

So

K, /(r+D)=(U(r+1)log(r+2)<(1/rlog(r+1)=K,/¥

So K, /r is strictly decreasing.

It also follows that when C (C) is asymptotically opti-
mal, C,(C) is bounded by K, as well. And when C,(C) is
asymptotically optimal, t,(C) is optimal, since r=1. As
noted, both upper bounds are determined as K,. We can
calculate K, quickly: K, =lim, ,_.(1/n)log 2"~'=1. In section
6 we show that there exists a code that approaches both of
the bounds.

2. Average Case

We now find a bound for the average case. Since t,,
(€)=t (C), the average total capacity is at least that of the
worst case. In the following theorem we show that, asymp-
totically, the average total capacity is also bounded by K;.

Theorem 1.

Let C be a permutation based update code. Then
lim C.(C)H=K,.

ain—oo
Proof:

Let r be the largest integer such that lim,_ . C,(C)>K,.
Therefore, lim,_,..C,(C)<K,. Let dED be a data state that
needs to be stored, and o€S,, the current permutation of the
cells. Since f(0) is the decoding function, let £='(d) be the
set of permutations that are decoded to d. We start by
bounding E(cost), the expected cost of an update:

US 9,916,197 B2

19

n-1
E(cost) = Z iPricost = i} = (r + 1)Pr{cost = r + 1}
=0
= (r+ DPAS) N Burlo) = O = (r + D)1 = Pridky, /)
=(r+ 1)1 —k,, /D) = (r+ 1)1 - 27K GOy

C.(0) =1,0G(O)/(g- 1) =
(@ —m)Ci(0)/ (g — DE(cost)) = C;(C)/ ((r + 1)(1 — 2"Kr €€y,

Since lim,e Ci(C)Kp41,

lim

glnn—oo

GO = /lim Ket /(DL =25 SO = K fr+ D K
ainn—co

where the last step is due to Lemma 1.

Once lim,,, , ...C(C) is optimized, we also want to
optimize C,(C). We now derive an upper bound for that
case.

Theorem 2.

Let C be a permutation based update code. If C (€)—K,
when g/n, n—oo, then lim,_, . .C,(C)=K,.
Proof:

Set r as before. Therefore, lim,_,,.C,(C)=<K,,;. If r=1,
lim,,, ,, ...Co(C)=K, /(r+1)<K,, since K/r is strictly
decreasing, and we have a contradiction, since C(C)
doesn’t approach K;. So r=0, and therefore lim, _,
C(C)<K,.

We see that once C,(C) is asymptotically optimal, t,(C)
is asymptotically optimal as well.

D. Construction for the Average Case

We now present a code that achieves both bounds with
efficient decoding and update procedures. For convenience,
we assume that both log n and n/log n are integers.

Let each data state be a factorial number (also known as
a reflected inversion vector) with n/log n digits,
d=dgs - - -5 d,5g »_1)- The i-th digit from the right in a
factorial number has base i, which means that the digit is less
than i. Therefore, the base of digit d, is n/log n-i.

We can see that the instantaneous capacity of the code is
asymptotically optimal. That is because:

Ci(C) = (1 /m)loglD| = (1 /m)log((n /logn)!) =
n
nlogn
=1 —log(2logn)/logn —» 1,n - oo

(logn — log(2logn))

Construction 1.

Permutation Based Update Code.
Decoding:
The decoding function, f(o), can be used to decode a
permutation o to a data state d. The permutation o can be
written as a sequence of log n permutations, 0={0,,
Oy, + -5 Opg noy)» €ach taken over n/log n cells. For the
purpose of decoding, we first represent the permutations as
factorial numbers. Namely, for each permutation o), its
factorial is VA(V,(0), V(1), . . ., V(w/log n-1)), with
V,()={klk>i and o,(k)>0,(i)}. In other words, each element
is the number of elements following the element in the
permutation that are greater than it.

The decoding function may be composed of a sequence of
digit functions fo, fi, . . ., Fu0g 1> €ach decoding a
different digit. Each digit function

10

15

20

30

35

40

45

50

55

can be used to decode the digit d, according to the vector
VEO=Vo(), Vi), - - - Vigg ,_1(D)}. Together, £(0)=F(V)=
Fo(VOD, £, (VD). - - - . Tyt nr(V/log n-1)). Bach
function f,(V(i)) can take the value of the sum of the digits
with index 1 in the log n factorial numbers. The sum can be
taken as a modulo of the base of the digit, (n/log n-i):

logn—1

L) = Z V(i) mod (n/logn—1)

=0

Update:

The update function, g(o, d), updates the permutation o into
a permutation o', such that f(o")=d. The function takes place
sequentially from d, to d, ;. ,_,- The update function is
described by the following algorithm:

1: Set 0'=0, V', the factorial number of o'}, and start with
digit d,, i.e. i=0.

2: Identify a sequence s=(Sg, Sy, - - - ; S;54 ,,_1) Of log n bits,
such that if, for each j, we perform the transposition (i,
i+s) on o', then f,(V'(i))=d,. If such a sequence is
found, perform the transpositions according to s and
repeat phase 2 for the next digit, d,, ;.

3: If there is no binary sequence s such that f,(V'())=d,,
identify a ternary sequence s of length log n, i.e.,
5,£{0,1,2}, such that f,(V'(i))=d,. If such a sequence is
identified, the transpositions can be performed accord-
ing to s and repeat phase 2 for the next digit.

4: If there is still no appropriate binary sequence s, an
arbitrary index j is selected, and update o, to an appro-
priate o', such that f(V")=d.

Example 2

Let n=16. Let 071,2,3,4] for j=0,1,2,3. For each j,
V(0)=3, since there are 3 elements following the element 1
in o; that are greater that 1. Now we decode the data from
the permutations. f,(V(0))=3+3+3+3 mod (4-0)=0, so d,=0.
Similarly, d,=2x4 mod (4-1)=2, d,=4 mod 2=0 and d,=0.
Note that d,,/;,, ,,_,=0-

We now assume that we want to update the data state to
d=(2,2,0,0). We start with encoding d,=2. We look for a
binary sequence s such that £,(V'(0))=2. We notice that for
each j, is 570, then V'(0)=3, and if s =1, then V'(0)=2. So
we can choose, for example, the sequence s=(1,1,0,0), and
get Fo(V'(0))=2+2+3+3 mod 4=2. In the same way we can
encode each digit in the data state.

We remember that the cost of update is the quasimetric:
cost (0%0'):maxi6[n](0"l(i)—o'"l(i)). Therefore, if all the
digits are updated by phase 2, the cost of the update
operation is 1. The number of binary sequences of length log
n is n, and therefore the algorithm can check all of them in
polynomial time. In order to avoid the calculation of the sum
for each sequence, the algorithm can use a binary reflected
Gray code, and calculate only the difference of one trans-
position in each step.

If at least one digit is updated by phase 3, the cost of the
update is 2. The running time of the algorithm remains
polynomial in that case. If the algorithm reaches phase 4, the
cost can be determined as n/log n-1, but the running time
remains polynomial, since we can choose the elements of V',

US 9,916,197 B2

21

quickly. Since all the steps in the update algorithm take
polynomial time, the worst-case complexity is polynomial in
n.

We now analyze the expected cost of update. We assume
that a and d are drawn according to uniform distributions,
and start with calculating the probability that the cost is
greater than 1. For every binary sequence s, Pr(ft(V'(i))=d,)
is at least log(n)/n, since the base of d, is at most n/log n. So
the probability that s is not good is at most 1-(log n/n). s can
take one of n values, and for each different value that
probability is independent. Therefore, the probability that
there is no good sequence s is at most (1-(log n/n))”. That
probability is independent for different digits of d. There-
fore, by the union bound, the probability that at least one
digit is updated according to phase 3 is at most (n/log
n)(1-(log n/n))”. This is the probability that the update cost
will be greater than 1. Similarly, the probability that the
update cost is greater than 2 is at most (n/log n)(1-(log
0/n))®” ", since phase 3 uses ternary sequences. We now
show that the expected cost of the update algorithm is
approaching 1:

njlogn—1
E(cost) = Z iPr{cost = i) =
=0
1Pr(cost = 1) + 2Pr(cost = 2) + (n/logn)Pr(cost >2) <

1 +2(n/logn)(1 — (logn /m)* + (n? /log?n)(1 — (logﬂ/n))Slogn =<

1+ (2n/logn)exp(—logn) + (nz/logzn)exp(—nbﬁ’llogz) ->1l,n—>co

So C(C)=t,C(C)(q-1)—1 when g/nn—=o0, and the
code approaches the bounds for the instantaneous and the
average total capacity.

E. Existence for the Worst Case

In this section we show that there exists a code such that
C,(C), C,(C) both approach K; when g/n, n—co.

Theorem 3.

There exists a permutation based update code C, such
that C,(C), C, (C)—K; for g/n,n—>00.
Proof:

Let IDI:kn,l/n“E, where € is a positive constant. In the
following we show that there exists a {D,n} code with worst
case update cost of 1. We first calculate the instantaneous
capacity of the code:

Ci(C) = (1/mlogD| = (1/mlogk,; — (1/m)(1 +e)logn — K|, n — co

So the instantaneous capacity of such a code is asymptoti-
cally optimal. If we show that the worst-case cost is 1, it
follows that the worst-case total capacity is also asymptoti-
cally optimal.

Suppose {f~*(d)},.,"?' is a partition of S,,, i.e., F~(d)N
F71(d)=0, d=d'; and U, """ £71(d)=S,. We now show that
there exists a partition of S, such that for any o€S, and any
dED, there exists a vector o'€f!(d), such that cost
(0—0")=1. We use a random coding method. With every
0€S,,, we connect a random index r, which is uniformly
distributed over the data set D, and all these random indices
are independent. Then {f~'(d)},_,'””" forms a random par-
tition of S,,. Fix dED and oS, then

10

15

20

25

30

35

40

45

50

55

60

65

22

PAf) N Builo) = Q) =
PrY 0B, (o), 1 # d} = [1 = 1 /| D[] Lexp{~ky1 /|D|} = exp{—n'"*}

Therefore,

PriddeD and o €S, st fUDNB,(0)=0) <

ID||S,lexp{—n'*¢} < 2"ntexp{—n'"} < expin(l + 11 — 1)} > 0, 1 - oo

This implies that when n is sufficiently large, there exists a
partition of S,, such that the cost of each update is 1.

FIG. 8A depicts a process 800 for manufacturing and
operating a data device. Process 800 may include one or
more operations, actions, or functions as illustrated by one
or more of blocks 805, 810, 815, 820, 825 and 830. Although
illustrated as discrete blocks, various blocks may be divided
into additional blocks, combined into fewer blocks, or
eliminated, depending on the particular implementation. The
process starts with block 805. In block 810 a plurality of
transistors each of which is capable of storing charge are
disposed on a device. Each of the plurality of transistors
comprises a gate, a source, and a drain. In block 815
connections are formed between the sources of each of the
plurality of transistors. Each connection is capable of car-
rying electrical current. In block 820 connections are formed
between the drains of each of the plurality of transistors.
Each connection is capable of carrying electrical current. In
block 825 data is stored in the plurality of transistors. The
data corresponds to a sum of charges stored in each of the
plurality of transistors. In block 830 the process may con-
tinue. In some embodiments connections may be formed
between the gates of each of the plurality of transistors.

FIG. 8B depicts a process 850 for operating a data device.
Process 850 may include one or more operations, actions, or
functions as illustrated by one or more of blocks 855, 860,
865 and 870. Although illustrated as discrete blocks, various
blocks may be divided into additional blocks, combined into
fewer blocks, or eliminated, depending on the particular
implementation. The process starts with block 855. In block
860 a code word is generated that has a plurality of symbols
selected from a set of symbols. In block 865 each of the
plurality of symbols is stored in a data storage location of the
data device. Each data storage location comprises a plurality
of parallel connected devices. In block 870 the process may
be continued. In some embodiments the plurality of parallel
connected devices may comprise transistors.

IV. MULTI-PERMUTATIONS

We further generalize the paradigm of representing infor-
mation with permutations to the case where the number of
cells in each level is a constant greater than 1, multi-
permutations. Namely, the states that the cells can take are
no longer permutations of a set, but permutations of a
multiset. For example, if the number of cells at each level is
2, the two cells in each level do not need to be identical in
their analog values, they just need to be distinguishable with
other levels (but do not need to be mutually distinguishable).
Hence, the encoding and decoding may use relative levels,
and the scheme has good resistance to drift; namely, the
advantages of the permutation based relative scheme that we
described above still apply. Another example is the case

US 9,916,197 B2

23

where the number of levels is 2, and there are many cells in
each level. In this case, the multi-permutations are balance
binary sequences.

We consider the case where the multiplicities of all the
elements in the multiset are equal, and denote it by z. This
generalization becomes interesting especially when z is
large, and n is still much larger than z. In that case (if q is
still much larger than n), we can prove that the upper bound
on the total capacity is 2q bits per cell, and that there exists
a construction that approaches this bound. The instantaneous
capacity of the construction is approaching 2 bits per cell.
These results can be proved using similar techniques to
those we used in the theorems described in this paper. Since
the cost of each update is at least 1, the number of updates
is at most q—1. We note that when the number of updates is
at most q-1, it follows that the total capacity of an update
scheme, even without relative levels, is no higher than 2q
bits per cell, and that there exists a code that achieves this
bound. See, for example, F.-W. Fuand A. J. Han Vinck, “On
the capacity of generalized write-once memory with state
transitions described by an arbitrary directed acyclic graph,”
IEEE Trans. on Inform. Theory, vol. 45, no. 1, pp. 308-313,
January 1999. However, our generalization makes a stronger
claim—that there exists a code that uses multisets (relative
levels) and achieves the total capacity of 2q bits per cell. It
is still an open problem to find a construction that achieves
2q bits per cell.

A. Compressed Rank Modulation

We will focus on the new multi-permutations scheme
introduced above, which we call Compressed Rank Modu-
lation. Before we do that, let us first review the terms in the
original rank modulation scheme. There are n cells, whose
, ¢,. (For flash
memories, the analog level of a cell may correspond to its

analog levels can be denoted by ¢, c,, . . .

charge level or threshold-voltage level. For phase-change
memories and memristors, the analog level of a cell may
correspond to its resistance level.) They induce a permuta-

tion [X, X,, - . ., X,] of the set {1, 2, . . ., n}, such that
0 <Cey< . .. <c,.
For i=1, 2, . . ., n, the x,-th cell is said to have rank i. An

example is shown in FIG. 9, where n=4 cells induce the
permutation [4,2,1,3].

Rank modulation may have two advantages:

Cell programming is efficient and robust. We can program
cells from the lowest level to the highest level, without
the risk of overshooting, and there may be no need to
accurately control the level of any cell.

The state of the cells can be read in a simple way. For the
n cells, their ranks can be determined by sorting. That
is, we just need to measure the order of the cell levels.
There may be no need to measure the exact value of the
cell levels.

We now introduce the new scheme called, Compressed
Rank Modulation. Let n and d,, d,, . . . , d,, be parameters
that are positive integers. There are d +d,+ . . . +d,, cells,
whose analog levels are denoted by ¢, ¢, . . . ,
Cayudp . . . +a, Lhey are assigned n different ranks based on
their analog levels, where the d, cells of the lowest analog
levels are assigned rank 1, the next d, cells are assigned rank

10

15

20

30

35

40

45

50

55

65

24

2, and the top d, cells are assigned rank n. An example is
shown in FIG. 10, where n=3, d,=d,=d;=2, and the induced
permutation is

[{4.6},{2,37.{1,5}]

(namely, cell 4 and cell 6 have rank 1 (the lowest rank), cell
2 and cell 3 have rank 2 (the middle rank), and cell 1 and cell
5 have rank 3 (the highest rank)).

Another example is as follows:

Example 3

Let n=3, d,=2, d,=3, d;=4. We assign 2,_,” d,=9 cells to
n=3 ranks, such that d, cells are assigned to rank 1, d, cells
are assigned to rank 2, and d; cells are assigned to rank 3.
For example, the following permutation is valid:

[{1,5},{2,3,8}.,{4,6,7,9}].

The main advantage of Compressed Rank Modulation,
compared to rank modulation, is that cells of the same rank
can be programmed to very close analog levels. In the
original rank modulation, in order to tolerate noise, we want
there to be a sufficiently large gap between every two analog
cell levels. In the compressed rank modulation, however, for
cells of the same rank, their analog levels can be arbitrarily
close. (And when we program cells, we would like to make
cells of the same rank to have very close analog levels, so
that the gap between the analog cell levels of different ranks
can be large.) This way, we can pack more cells into the
group of cells that use rank modulation. And the storage
capacity can be increased.

Example 4

This example illustrates that the compressed rank modu-
lation can improve the storage capacity. In this example,
cells of the same rank can be programmed to arbitrarily close
analog levels (just for the sake of explanation). For cells of
adjacent ranks, in this example, the gap between their analog
levels can be assumed to be A.

Consider the compressed rank modulation with n=3 and
d,=d,=d;=2. The rank modulation can represent

symbols.

For fair comparison, for the original rank modulation
scheme, consider 6 cells that we partition equally into 2
groups, where every group employs the rank modulation
scheme. Since each group can represent 3!=6 symbols, the
two groups can together represent 6x6=36<90 symbols. So
the compressed rank modulation achieves higher storage
capacity.

The compressed rank modulation scheme may have the
advantages of the original rank modulation scheme:

Cell programming is efficient and robust. When program-
ming cells, we program them from the lowest rank to
the highest rank, without the risk of overshooting. Note
that for cells of the same rank, the order of their analog
levels does not matter. There is no need to accurately
control the analog level of any cell.

The state of the cells can be read in a simple way. All we
need is still just sorting. The d; cells of the lowest
analog levels have rank 1, the next d, cells have rank
2, ..., and the top d, cells have rank n.

US 9,916,197 B2

25

We emphasize again that for cells of the same rank, their
analog levels can have arbitrary orders. That makes pro-
gramming simple. For example, the examples in FIGS. 11
and 12 may induce the same permutation as the example in
FIG. 10. Of course, given the permutation [{4,6}, {2,3},
{1,5}], we prefer to program it as FIG. 10 or FIG. 12 instead
of FIG. 11, in order to have larger gaps between the analog
cell levels of different ranks.

1. Initial Write

In this section, we discuss how to write data in the
compressed rank modulation scheme.

For flash memories (or PCMs, etc.), when data are written
to cells for the first time, typically, all the cells are in the
same initial state. (Typically, they all have the lowest analog
levels.) So given a permutation [{X,, X,, . . ., Xz, }» {Xaz,415
X2 o Xd1+d2}s RS {X1+2i:1"’1d1-s Xows, lap s Xzi:{’di}]s
we can program the cells from the lowest rank to the highest
rank, in the following way:

1. Let A>0 be a parameter we choose. Let cells of rank
I-namely, the x;th cell, the x,th cell, . . ., the x,th
cell—retain their analog levels.

2. Fori=2,3, ..., n, do:

Program the cells of rank i such that their analog levels are

all higher than the analog levels of the cells of rank i-1
by at least A.

It is easy to see that the above programming method has
little to no risk of overshooting, and enables cells to be
programmed efficiently without the need to accurately con-
trol analog cell levels. It is especially useful for flash
memories, where cell levels can only be increased before the
very costly block erasure operation is taken.

2. Subsequent Rewrites

After data are written into cells, there are at two scenarios
where it may be necessary to program the cells again. In the
first scenario, the value of the data needs to be changed. In
the second scenario, the analog cell levels of the cells are
disturbed by noise, and cells need to be reprogrammed to
ensure data reliability. If various cells need to be repro-
grammed by increasing cell levels (which is performed for
flash memories and sometimes also for PCMs), the cells can
be programmed with the following method.

Let (€1, Co - - -, €4 pue .. . +q,) denote the initial analog
levels of the cells. Let [{x;, X5 Xz} {Xgu15
Xd1+2s] Xd1+d2}s cees {X1+2i:1"’1d1-s X2+21-:1"’1d1-s] XZH"di]

denote the new permutation we need to program into the
cells, and let (c,', ¢5', . . ., €404 .. 4z') denote the new
analog cell levels to be set. We can program the cells from
the lowest rank to the highest rank as follows:

1. Let A>0 be a parameter we choose. For cells of rank
1—namely, the x,th cell, the x,th cell, . . ., the x;th
cell—they can either retain their analog levels, or be pro-
grammed slightly such that their analog levels become close
to each other.

2. Fori=2,3,...,, do:

Program the cells of rank i such that their analog levels are
higher than the analog levels of the cells of rank i-1 by
at least A. In addition, if desirable, we can also make
their analog levels be close to each other.

It can be seen that the programming method is essentially
the same as the one for the initial write. It also avoids
overshooting programming errors, and is robust and effi-
cient.

3. Programming Symmetric Cells

For some memories (such as phase-change memories and
memristors), their cell levels can be both increased and
decreased without block erasures. In such a symmetric case,
it becomes even easier to program cells for the compressed

10

15

20

25

30

35

40

45

50

55

60

65

26

rank modulation scheme. Those skilled in the art will
understand how to program cells for this case.

4. Rebalancing Permutations

A compressed rank modulation code has

+dn] (dn,1+dn]
.. 4

permutations. We can directly use them to encode data,
either with a one-to-one mapping or with an error-correcting
code. In the following, we describe two additional methods
for encoding data, which can be especially useful if the

(d1+d2+...

+dn](d2+d3+...
d

dy

number of cells d,+d,+ . . . +d,, is large.
Suppose the input data is a vector (vy, Vv, . . . ,
Vaware . +a)E{01, ... n=1}ET -+ where each

integer v, can independently be any integer in the alphabet
{0,1, ..., n-1}. (Note that coding schemes for such vectors
have been extensively studied in the past.) We would like to
change it into a “similar” permutation so that we can store
it using the compressed rank modulation scheme, and use a
small amount of metadata to remember how the change
happened.

The key is to rebalance the vector in an efficient way so
that it becomes a permutation with the required weight
distribution (d,, d,, . . ., d,). The approach is illustrated with
the following example.

Example 5

Let n=4 and d,=d,=d;=d,=5. Suppose we have a code-
word of (d,+d,+d;+d,)log,n=40 bits:

1001 00 11 01 10 11 01 11 11 10 01 01 10 11 11
00 00 01 10

Such a codeword can be easily converted to a vector (v,
Vo - oy Vae)E{0,1,2,3}2° with the simple mapping: 00—0,
01—1, 10—2, 113, and get

21031231332112330012

(Certainly, we may also choose to use a Gray code for the
mapping. But that is not related to our discussion here.)

To get a permutation where each of the n=4 ranks has 5
cells, we can do it in three steps. First, we transform it to a
codeword where the number of Os or 1s equals the number
of 2s or 3s. By inverting the first i=1 cell (where we change
0 to 3, change 1 to 2, change 2 to 1, and change 3 to 0), we
get

11031231332112330012

which has 10 Os or 1s, and 10 2s or 3s.
The subsequence that contains Os or 1s in the above
codeword is

1101111001

To make it balanced, we invert the first i=2 cells (where we
change O to 1, and change 1 to 0), and get

0001111001

The subsequence that contains 2s or 3s in the above
codeword is

3233322332

To make it balanced, we invert the first i=1 cell (where we
change 2 to 3, and change 3 to 2), and get

2233322332

US 9,916,197 B2

27

We merge the above two subsequences based on their
original positions, and get
00021231332112330012

We can now store it as a compressed rank modulation code,
where each of the n=4 ranks has 5 cells.

The additional information about the inverting—namely,
i=1, i=2 and i=1—can be stored as meta-data in additional
cells (possibly using compressed rank modulation as well).
(Note that in the above example, the mapping used in
inverting cell levels is not unique. For example, we can
change 0 to 2 instead of 3, or change 1 to 3 instead of 2, etc.
(The key is to switch {0,1} with {2,3} when inverting
cells.))

So we can see that it is feasible to represent existing
codes—e.g., BCH codes, Reed-Solomon codes, LDPC
codes, and other codes—with compressed rank modulation.
The system model is shown in FIG. 13.

5. Record Weights

We now discuss an alternative approach. Suppose the

5

—

5

input data is a vector (vi, Va . . ., Vgia. .. 4a
€{0,1, ..., n-1}4+®r - +h where each integer v, can
independently be any integer in the alphabet {0,1, .. ., n-1}.

Fori=0,1, ..., n-1, let d,,, denote the number of entries in
the vector that are equal to i; that is, d,,,=I{jl1=j=d,+
dy+ . .. +d,, v=i}l. We record the weight distribution (d,,
d,, ..., d,) as metadata. And then, we can store the vector
directly as a compressed rank modulation permutation. (If
any of the d,’s happens to be 0, the compressed rank
modulation scheme can be extended easily to cover this

case.)

30

EXAMPLES

FIG. 14A depicts a process 1400 for operating a data
device. The process 1400 may include one or more opera-
tions, actions, or functions as illustrated by one or more of
blocks 1405, 1410, 1415, 1420, and 1425. Although illus-
trated as discrete blocks, various blocks may be divided into
additional blocks, combined into fewer blocks, or elimi-
nated, depending on the particular implementation. The
process starts with block 1405. In block 1410 a predeter-
mined rank configuration (d,, d, . . . d,) is defined, wherein
d, is the number of cells in the i rank. In block 1415, a new
multi-permutation is received and defined by v=[v,,
Vs, . . ., V,|ES,, that fits the predetermined rank configura-
tion. In block 1420 a process is initiated in response to
receiving the new multi-permutation, adding charge to each
cell in a plurality of memory locations such that the plurality
of cells represent the new multi-permutation. In block 1425
the process may be continued.

FIG. 14B depicts a process 1450 for reading a data device.
The process 1450 starts with block 1455. In block 1460 the
sequential order of an initial analog level of a stored value
in each cell of a plurality of cells in a data device is
determined. The sequential order is defined as a value x
comprising

35

[#210 X2, oo X b Xy 1 Xy e2e o Xy} oo 60

{x1+2f‘:’11d‘-’ TS PR xZ?zld;}]'

In block 1465 the process may be continued.

FIG. 15A depicts a process 1500 for writing to a data
device. The process 1500 may include one or more opera-
tions, actions, or functions as illustrated by one or more of

65

28
blocks 1505, 1507, 1509, 1511, 1513, and 1515. Although
illustrated as discrete blocks, various blocks may be divided
into additional blocks, combined into fewer blocks, or
eliminated, depending on the particular implementation. The
process starts with block 1505. In block 1507 a predeter-
mined rank configuration (d,, d, . . . d,) is defined, wherein
d, is the number of cells in the i rank. In block 1509, a new
multi-permutation is received and defined by v=[v,,
Vs, . . ., V, |ES,, that fits the predetermined rank configura-
tion. In block 1511 the analog levels of cells of a rank n in
v are retained. In block 1513 the cells of rank i in v for
I=n-1, n-2 . . ., 1 such that the analog levels of cells in a
rank i are programmed to all be higher than the analog levels
of the cells of rank i+l in v by at least a minimum rank
differentiation. In block 1515 the process may be continued.

VI. RANK-MODULATION REWRITING CODES

Various embodiments disclosed herein construct rank
modulation codes that achieve a rate approaching two on
each write. One embodiment takes advantage of the recently
discovered polar codes which were recently used in the
construction of WOM codes. See, for example, D. Burshtein
and A. Strugatski, “Polar write once memory codes,” in
Proceedings of the 2012 IEEE International Symposium on
Information Theory, ISIT2012, Cambridge, Mass., USA,
July 2012, pp. 1982-1986.

A. Definitions of the Rewrite Model

The features of the rank-modulation scheme come from
the fact that it avoids the discretization of the cell levels.
However, in order to design coding schemes, a discrete
model for the rewriting is very helpful. In addition, as
demonstrated in the example in Section I, there is a need for
a certain gap between the levels of cells in different rankings.
Furthermore, remember that the cells can only store a
limited amount of charge. Therefore, a limited number of
ranks can be represented within a set of cells. We denote the
number of “virtual levels” that every cell can represent by q.
The levels are virtual in the sense that they do not corre-
spond to a discretization of the cell level, but to the reso-
Iution of the charge detection and the power of the noise that
might affect the relative levels of the cells. The q virtual
levels allow the analysis and comparison of different rewrit-
ing methods. If the memory has N cells then we denote
c=(cy, €y . . ., Cy), Where ¢; {0,1, . . ., g-1}, to be the
cell-state vector.

In recent work, the data was encoded by permutations,
that is, only a single cell in each rank. See, for example, A.
Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank
modulation for flash memories,” IEEE Trans. on Inform.
Theory, vol. 55, no. 6, pp. 2659-2673, June 2009. Here we
allow more than one cell in each rank, where the number of
cells in each rank is predetermined, and we call it the
multiplicity of the rank. The generalized ranking now
becomes a permutation of a multiset of the ranks, which we
define to be a multi-permutation. Assume there are m ranks,
the multiplicity of the i-th rank is denoted by z,, and in case
that all multiplicities are equal, we denote this number by z.
Remember that when considering the discrete model, we
allow to place two cells with the same rank in the same
discrete level, since we don’t need a gap in order to
distinguish their rank or to prevent errors.

Since there are m ranks in our multi-permutations and the
multiplicity of the i-th rank, l=i=m, is z, we have that

N=2,_," 7, We let P,, be the set of all N cells multi-
permutations o=(o(1), o(2), . . ., o(N)) with m ranks. That
is, for 1=j=N, o(G)E{1, ..., m}. For 1sism, o7'(i) is the set

US 9,916,197 B2

29

of all cells with rank i, i.e., o7 ((()={jlo()=i}. We call the
vector z={z,, ,, . . ., z, } a multiplicity vector. The set of
all multi-permutations of m ranks with multiplicity vector z
is denoted by P,, .. Hence, 0=(o(1), 0(2), . . ., o(t(N))EP,, .
if and only if for l<1<m |0_1(l)| =z,. In case that z=z, for all
I=i=m, we denote the set P, 51mply by P, ., and we will
follow the same analogy in the other definitions in the paper
which include the multiplicity vector z.

Given a cell-state vector c=(c;, ¢,, . . . , €y) and a
multiplicity vector z={z,, 2, . . . , Z,,}, the multi-permuta-
tion S =(o(1), 0(2) ., 0(N)) is derived as follows. First,

let i, . . ., iy be an order of the cells such that
C,=C;=...=c,. Then, thecells iy, . .., 1, get the rank 1, the
cells

Lovrs e s oy, get the rank 2 and so on. More ngorously, for
l<izm, the cells i,,, i, +1, . . ., 1;, get the rank i, where
mi:1+21:1i"1 z, and Ml = oz, ie., ofi,,)=

o(i,,+1)=. . .=0(,,)=i. Note that a given cell-state vector
can :generate different multi-permutations in case that there
is equality between the levels of cells in adjacent ranks. In
this case, we will define the multi-permutation to be illegal
and denote o__=F. Given a multiplicity vector z={z,,
Zoy . . ., 2}, we let Q_ be the set of all cell-state vectors
which result with a valid multi-permutation, that is,
Q={ccf0.1, ..., g-1}"o, =F}.

The other attribute of the model studied previously is its
process of programming. See, for example, A. Jiang, R.
Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for
flash memories,” [EEE Trans. on Inform. Theory, vol. 55,
no. 6, pp. 2659-2673, June 2009. On every rewrite step, a
single cell could be programmed to be only the highest level.
Therefore, if the length of the permutation is N, N different
permutations could be written without increasing the top
level by more than one level (including the original permu-
tation). In this work, however, we introduce a more oppor-
tunistic approach for rewriting with the powerful property
that the number of permutations (or multi-permutations) that
can be written without increasing the top level by more than
one level becomes exponential in N.

The programming method we suggest is designed to
minimize the increase in the cell charge levels. Let ¢ be the
current cell-state, and o, , the multi-permutation we wish to
write. For 1=2,3, , m, we increase the level of the cells
in o, "1(1) to be higher than the highest cellin o, ~1G-1).
In the discrete model, the cells in o, 7'(i) take the level
max{c,lo,., ()=~ l}+l We can see that writing in this
method does not bear a risk of overshooting, since there is
no upper threshold for the cell programming. In addition, it
is straightforward to observe that the method in fact mini-
mizes the increase in the levels of the cells, and specifically
the level of the highest cell.

The initial state of all the cells is the all-zero vector, 0. The
goal is to reuse the memory for T successive rewrites
without incurring an erasure operation. We consider only the
case where the encoder knows and the decoder does not
know the previous state of the memory. The encoder and
decoder can use the same code for every cycle, and there are
no decoding errors (zero-error case). For the cell states ¢ and
¢', we denote c=c' if and only if ¢;=c';, for all i=1, 2, ..., N.
We are now ready to define the rewriting codes.

Definition 1.

An (N, q, T, D, z=(z,(2,, . . . , Z,,)) rank-modulation
rewriting code is a coding scheme C (f, g) comprising of N
g-level cells and a pair of encoding function f and decoding
functions g. Let I={1, . .., D} be the set of input information
symbols. The encoding function f: IxQ,—Q,, and the
decoding function g:Q_—1 satisty the following constraints:

w

10

15

20

25

30

35

40

45

50

55

60

65

30

1) For any d€Il and c€Q,, c<f(d,c).

2) For any d&l and c€Q,, g(f(d,c))=d.

3) For any ¢, ¢,€Q,, if 0, =0, . then g(c,)=g(c,).

4) The code € C(Jc g) supports any sequence of T writes

d,...,dp1~%
The instantaneous rate of the code is R ,,,,=(1/N)log,D and
the sum-rate is R, =TR, .

One goal in the design of rank-modulation rewriting
codes is to maximize the sum-rate. For that, we first try to
maximize the number of writes and then maximize the
instantaneous rate on each write. This is achieved carefully
in a way that the maximum level on each write increases
with high probability by one level. Another goal we will
draw our attention to in the design of such codes is low
complexity of the encoding and decoding functions. The
design of codes with high rate and low complexities will be
the topic of the next chapter, where we explain the construc-
tion of our rank-modulation rewriting codes.

B. Description of the Construction

Our point of departure in constructing rank-modulation
rewriting codes is to design such codes while the increase on
each write of the maximum level is no greater than one. That
is, given a rank-modulation rewriting code € (f,g), for every
de€l and c€Q,, if ¢'=f(d,c), then max,{c";}-max,{c;}=<1. An
important observation to notice here is that if there exists i
such that o, _(i)-o._(1)>1, then the value max{c'}-
max,{c,} might be greater than 1. Consider, for example, the
case where m=4, z=1 and ¢=(1,2,3,4). Here, if o__(3)-0,.,
(3)=2, then cell 3 must be the lowest cell in ¢!, and max,{c,} -
max,{c',}=2.

To avoid such scenarios we choose to constraint the value
of o, (i) to be at least o__(i)-1. That is, in case the rank of
a cell decreases, it cannot decrease by more than one rank.
Hence, the cells in the first rank in ¢' can only be the ones
from the first or second rank of ¢, i.e. g, 7'(1) is a subset
ofo, ;_1(1)UGC ,Z"l (2). Similarly, the cells in the second rank
of'c' can only be the ones from the first, second, or third rank
of ¢, which are not already assigned to the first rank of c'.
Mathematically speaking, we note that

0..'(2)

c€{o.. " WV, (9o, B No. 7N D),

and in general, for i=1,

Gc’;_l(l)i Gc’;_l(z)i coe ot
satisfies
0 () U™ o MU o T)

Motivated by this observation, the value of ¢'=f(d,c) is
encoded by a sequence of functions, each making a subset
choice according to a different part of the input data d.
Assume the input data d is partitioned into m-1 parts and let
(d,, dy, ..., d,_,) be the data parts associated with each
rank, where rank m doesn’t represent any information. The
first function determines the cells from o, 7' (1)Uo, 7'(2)
which are assigned to be the set o, (1) as a function of the
input data d,. Thus we can write, o, (1)=f,(d,, Gc;_l
(HVo, .~ (2)) for some function f,. Similarly, for i=2,
3, ..., m-1, there exists a function f, such that

O (A A Upm ™ 0 T DU T oL D).
The decoder will operate in a similar way which will be
explained in the sequel as part of the construction details.
Assume that the multiplicities of all the ranks are the
same, so 7Z,= . . . =7,=7. Then, for each i=1, . . . , m-1
Gc;l(/')}\{u':1i710c';71(/')}‘:22-

Hence, in the encoding function £ if we consider the cells
in the set {U,_,"™" o '(H)IMU,.,"" ~'(j)} as binary

, m-1, given the selection of
—1/ =1
o, (i-1), the set o. .~ (i)

\{U _:1i+1

US 9,916,197 B2

31

cells of value zero and all other cells of value one, then we
can only program the zero cells to be one. Therefore, the key
point in designing these encoding functions is to observe the
similarity to the binary write-once memory (WOM) prob-
lem.

A write-once memory comprises of a number of “write
once” cells, where each cell is initially in state “0” and can
be irreversibly programmed to state “1”. Rivest and Shamir
demonstrated that it is possible to rewrite such a write-once
memory multiple times, using coding techniques, called
WOM codes. See, for example, R. L. Rivest and A. Shamir,
“How to reuse a “write-once” memory,” Inform. and Con-
trol, vol. 55, pp. 1-19, 1982. Back to the problem of
encoding a single rank, we can think of
{Uo. T OMU,L, " o, (3)} as cells mat were not writ-
ten on the first write of a two-write WOM code, while all
other cells were already written as value one on the first
write.

However, there is an important difference between the
problem of encoding a second write in a two-write WOM
code and our problem of encoding a single rank. While in a
two-write WOM code there is no significance to the number
of cells that are written on the second write, in our codes we
seek to write such that exactly z, of the cells will remain in
level zero. If we have a WOM code that writes a constant
number of cells in the second write, we could use that code
to write more than twice, since we know the number of cells
which were not programmed after the second write, and we
could keep using the same code (with different parameters)
for the subsequent writes. So in fact, a WOM code that might
be suitable for our problem should be a code which allows
more than two writes to the memory. Since we are interested
in WOM codes with high rates, it is natural to consider the
recently proposed polar WOM codes. Polar WOM codes
were introduced by Burshtein and Strugatski, and they are
the first WOM codes that allow to write more than twice
with sum-rate which asymptotically approaches the sum-
capacity, log(t+1). See, for example, D. Burshtein and A.
Strugatski, “Polar write once memory codes,” in Proceed-
ings of the 2012 IEEFE International Symposium on Infor-
mation Theory, ISIT2012, Cambridge, Mass., USA, July
2012, pp. 1982-1986. The special property that allows high
number of writes in polar WOM codes, is that on each write,
the distribution of the number of written cells is close to
binomial. Thus, for large N, the number of programmed cells
on each write is concentrated and can be bounded with some
specified value with high probability.

We use this property of polar WOM codes for our
construction in a slightly different manner. Instead of look-
ing at the concentration property as bounding the maximal
number of programmed cells, we use it to bound the
deviation of the number of non-programmed cells from the
constant number we wish to write, z,, Now, we know that
with high probability, the number of non-programmed cells
will be close to z,. Once we have this property, we know that
in most cases, after using the polar WOM codes, flipping a
small number of cells will result in a binary word with
exactly z, zeros.

So our technique is to flip a small number of cells in order
to get a word with the desired weight, and store the indices
of the flipped cells in some additional redundancy cells. We
will later show that we can choose the number of redun-
dancy cells such that with high probability they will be
sufficient to accommodate the storage of all flipped cells,
while the asymptotic rate of the code will not be affected.

While the number of redundancy cells can be made small,
we still keep them as part of the cells in the multi-permu-

10

15

20

25

30

35

40

45

50

55

60

65

32

tation. That is, we still want to have a predefined number of
cells in each rank. We do this in the following manner. In
rank i, for each index of a flipped cell we want to store, we
assign n' redundancy cells, where half of them are in rank i,
and the other half in rank i+1.

Let us now describe the construction formally. To sim-
plity the notation and representation of the construction we
dropped all floors and ceilings, so some of the values are not
necessarily integers as required. This may encounter a small
lost in the rate of the code, however this lost will be minor
and thus can be neglected.

First we state a useful assumption in our construction for
the existence of WOM codes with the properties we
described above.

Assumption 1. For any 0<p<1 and 0<€<p/2, there exists
a binary WOM code C , - with encodlng function f, - and
decoding function g, o such that glven a cell-state Vector c
of N cells and weight w(c)=(1-p)N, it is possible to write a
binary vector d of (p—d)N bits, for § arbitrarily small, such

that the updated cell-state vector ¢'=f, <(c,d) satisfies:
(1-p2—E)N=w(c)=(1-p/2+E)N. 1)
gpelc)=d. 2)
c=c’, 3)

The encoder f, (c,d) can have a small probability that
the conditions doesn’t meet, in which case we say that the
encoding fails.

In Section VI. C, we describe how to construct WOM
codes, based on polar codes, that satisfy the conditions of
C , < in Assumption 1. See, for example, D. Burshtein and
A. Strugatski, “Polar write once memory codes,” in Pro-
ceedings of the 2012 IEEE International Symposium on
Information Theory, ISIT2012, Cambridge, Mass., USA,
July 2012, pp. 1982-1986. However, while these polar
WOM codes are good for our construction, they suffer a
small probability of encoding failure, i.e., they don’t work in
the worst case for any sequence of writes. In this section, for
the simplicity of the presentation, we do not consider the
case of this encoding failure but will sketch the necessary
modifications to adjust these codes to our construction in V1.
D, We are now ready to present our construction.

Construction 1.

Let m, z, N be positive integers such that N=mz. Let
p=2z/N, 0<&<p/2, and C , ¢ is the code from Assumption 1
with encoding function f, - and decoding function g, . Let
N'=N+m&ENn' (the Value of n' will be explained later) The
first N cells are called the information cells and are denoted
by ¢c=(c,, . . ., cy). The last =m&ENn' cells are called the
redundancy cells and are partitioned into mEN vectors p, ;
for 1=k=m-1,1=<j<€N, each of n' bits. We assume that there
is a function h: {1, 2, . .., N}—={0,1}"" which receives an
integer between zero and N and returns a balanced vector of
length n'. h can be implemented, where in both cases log
N<n'<2 log N. See, for example, The Art of Computer
Programming Volume 4, Fascicle 3. Addison Wesley, 2005
and D. E. Knuth, “Efficient balanced codes,” IEEE Trans. on
Inform. Theory, vol. 32, no. 1, pp. 51-53, 1986. We also
assume that this function has an inverse function h™':
Im(h)—{1, 2, ..., N}

An (N', q, T, D, Z) rank-modulation rewriting code C is
defined according to the following encoding function f and
decoding function g. The number of messages on each write
is D=2 and each message will be given as m—-1
binary vectors, each of length 2z—0N bits. The number of
rewrites satisfies T=q-m+1, and Z=N'/m=z+ENn'".

US 9,916,197 B2

33

On the encoding and decoding functions, on each write
we have the following assumptions:

1) The information cells vector ¢ and the redundancy cells
vector r are multi-permutations with m consecutive
levels such that the number of cells in each level is the
same. We let 1, be the minimum cell level and 1, be
the maximum level (note that1, -1 . =min-1).

2) We let o, be the multi-permutation derived from the
1nf0rmat10n cells vector. For 1<i=m, let S,=o, Z_l(l)
(note that IS,l=z).

3) There are EN(m—l) auxiliary variables, called index
variables and are denoted by I ; for 1<k=m-1,1<j<€N.
These index variables will be stored in the redundancy
cells and they will indicate the information cells that
their levels was intentionally changed during the
encoding process.

Encoding Function f(c,p,d)=(c",p'):

Let ¢ be the current information cells vector, p=(p, j, - - .
Pmen) be the current redundancy cells vector, and
d=d,,...,d,,, ;) be the information vector, where each d,
is a vector of (p—0)N=2z-0N bits. The new updated infor-
mation cells vector ¢'=(c, . . ., ¢,-) is determined as follows.
Let S, be the set S, =S,.

Encoding of the k-th rank, 1<k=m-1:

1) Let vi=(vz1s - - - » Ve)E{0,1} be the vector defined

as follows: v, =0 if and only if €S, US, ;.

2) let u;=f, (v;, di). (Note that u, satisfies
a) (1-p/2-€)N=w(u,)=(1-p/2+E)N,

b) g,c(u)-d,
C) V;=Su,)

3) Let w,=w(u)-(1-p/2)N (Iw,I<€N), and leti;, . .., 1,
be the first Iw,| indices in 8", US,,; whose value in u,
is equal to (sign(w,)+1)/2. The vector u',, is defined to
be ukl l—ukl for 1=j<lw,| and for all other indices 1,
u klmkl (note that w(u',)=(1-p/2)N). Set the indices
L~ for I=j=lw,l and for Iw,|+1=j<€N, I, =0.

4)Let S*k:{ilu'k,iZO} and S',, ~(S', US,,)\S*,. For every
iES*,, set ¢' =1, +k.

Finally, for every 1ES ', set (c')= lmmC

The new redundancy cells vector p' (p IRIRERT) Jpes &
determined as follows to store the (m-1)En indices. For
1=k=m-1, 1<j<€N, let

Doy tk) LR (I).

Finally, for 1=j=&n, p',, =p,,+1.

Decoding Function g(c,p)=d" let c=(c, . . ., cy) be the
information cells vector and p=(p, ;, . . . , p,,en) be the
redundancy cells vectors. The information vector
d=d',, ..., d,_,) is decoded as follows.

First the indices I, ; for 1<k=sm-1, 1<j<€N, are decoded
to be

—h’l(p,w-—(lmiﬁk—l)-l).

Decoding of the k-th rank, 1<k=m-1.

1) Let 0, =(ug,,, - - - » U x)E{0,1}" be the vector defined

to be @', =0 if and only if iES,.

2) The vector uk is defined as follows For all 15j=€N, if

lk ;20 then G, " =1-10', 5y and for all other indices i,
uk 14]‘l ki

3) (dy)-g, ()

It is possible to use the proposed rewrite codes with a
different trade-off between the rate and the number of writes.
In every write, the rewrite codes increase the value of the
highest level among the cells by a single level, and allow a
rate of 2 bits/cell. Instead, the codes can be used such that
the value of the highest cell increases by c levels in each
write, with a rate of (c+1)log 2(c+1)-c log 2(c) bits/cell. To

10

20

25

30

40

45

55

60

34

do that, we need to replace the set S_{k+1} in steps 1,3 and
4 of the encoding of the k-th rank, with the union of the sets
S_{k+1}, S_{k+2}, . . ., S_{k+c}.

We prove the correctness of Construction 1 in the next
lemmas. We note that on the first write all the cells are in
level zero and thus any multi-permutation of m consecutive
levels between 0 and m-1 such that the number of cells in
each level is z will be written in the information cells. We
also assume that the redundancy cells will be written in a
similar way to keep the multi-permutation property of these
cells. This will be addressed in the next lemma.

Lemma 1.

For t=1, ..., T, after the t-th write, the redundancy cells
vector is a multi-permutation of m&ENn' cells with ENn' cells
in each of the m consecutive levels: 1,,, ~t-1, . . .
1,4 ~t+m=2. Furthermore, for 1 km, 1 jEN, half of the cells
in Pr, are in level 1. +k-1 and the other half in level
Ly Ak mod m).

Proof.

On the first write, there is no restriction on the index
variables and thus we can simply write the redundancy cells
in a way that they will satisfy this property. For all subse-
quent writes, this property is easily verified for all redun-
dancy cells vectors since the output of the function h(I,) is
a balanced binary vector. Note that one purpose of the
redundancy cells vectors are p,,, 1, . . . , Pn.en 18 10 keep all
the redundancy cells as a multi-permutation with the same
number of cells in each level. On the first write each of these
€n vectors is written as a vector where n'/2 cells have the
value zeros and the other n'/2 cells have the value m-1. On
each following write, each of these cells is incremented by
one level which preserves the balanced multi-permutation
property of all the redundancy cells.

It is verifiable that the decoded value of every index
variable is the same as the one stored during the encoding
function. we note here that the index variables could be
stored more efficiently, however this will not be significant
in the rate analysis of the code. Hence, we tried to keep the
redundancy part of the code as simple as possible.

Next, we prove similar properties for the information
cells.

Next, we prove similar properties for the information
cells.

Lemma 2.

Assume the information cells vector ¢ is a multi-permu-
tation with m consecutive levels, between 1, and
1,,.:=L.,+m—1 such that the number of cells in each level is
z. Then, for any information vector d=(d,, . . ., d,,_,), the
resulting updated information cells ¢' from (¢', p")=f(c.p,d)
satisfies this property as well between the levels 1,,,,+1 and
Laxtl.

Proof.

For every 1=k=m-1, w(v,)=(1-p)N and w(u',)=(1-p/2)N.
Hence, IS*,|=Np/2=z and so exactly z cells are programmed
to level 1,,,,+k. Furthermore, IS', |=z and thus exactly z cells
are programmed to level 1, +1. This proves that the infor-
mation cells vector forms a multi-permutation of m levels
between 1,41 and 1, +1 and the number of cells in each
level is z.

Lemma 3.

On each write the following holds g(f(c,p,d))=d.

Proof:

For k=1, . . ., m-1, in the encoding function, the cells
which were programmed to have the k-th rank are the ones
having value zero according to the vector u',. Similarly, the
vector U, was defined to have the value zero if and only if
the corresponding cell is in level k. Therefore, we have that

min,t

US 9,916,197 B2

35

0',=u';. Since the index variables are correctly decoded by
the redundancy cells, we also have that {,=u,. Finally, we
get that

d ,k:gp,e(ﬁk):gp,g(uk):dk’

and together we conclude that g(f(c,p,d))=d.
Theorem 1.

The code € from Construction 1 is an rank-modulation
rewriting code, where N=N+m&Nn', D=2@-0-1) T—q_
m+1, and Z=N"m.

Proof:

It is verifiable that for all (c,p,d), (c,p)=f(c,p,d), and for all
(1:p1)s (€2:p2)EQ, such that o,y =0,). We have that
g(c,.p;)=g(c,.p,). According to Lemma 3, we have that d.
On the first write the maximum level is m-1 and according
to Lemma 1 and Lemma 2, on each subsequent write the
maximum level increases by one level. Hence, the code
supports any sequence of T=q-m+1 writes.

In order to complete our construction of rank-modulation
rewriting codes, we are left with presenting WOM codes
which satisfy the conditions of Assumption 1. This will be
the topic of the next section.

C. Polar WOM Codes

In this section we describe the recently proposed polar
WOM codes and show how they are used for the imple-
mentation of the codes in Assumption 1. Polar WOM codes
were proposed in order to write multiple times over a WOM.
See, for example, D. Burshtein and A. Strugatski, “Polar
write once memory codes,” in Proceedings of the 2012 IEEE
International Symposium on Information Theory, ISIT2012,
Cambridge, Mass., USA, July 2012, pp. 1982-1986. In the
following, we briefly describe the construction of polar
WOM codes in order to show the modifications we intro-
duce in these codes to satisfy the conditions of Assumption
1 and to achieve high sum-rate.

We first start with a short overview on polar codes and
their usage to lossy source coding as they serve the basis to
the construction of polar WOM codes. For more details, see
D. Burshtein and A. Strugatski, “Polar write once memory
codes,” in Proceedings of the 2012 IEEE International
Symposium on Information Theory, ISIT2012, Cambridge,
Mass., USA, July 2012, pp. 1982-1986. Polar codes were
first introduced by Arikan and were proved to achieve the
symmetric capacity of an arbitrary binary-input channel.
See, for example, E. Arikan, “Channel polarization: A
method for constructing capacity achieving codes for sym-
metric binary-input memoryless channels,” IEEE Trans. on
Inform. Theory, vol. 55, no. 7, pp. 3051-3073, July 2009. Let

G(IO]
2=)

G2® ™ be is its n-th Kronecker product, and N=2". Assume
the data is transmitted over a memoryless binary-input
channel with transition probability W(ylx). The information
message u€{0,1}"is first encoded to be the vector x=us "
Then x is transmitted over the channel and the channel
output word is y. The main idea of polar codes is to define
N sub-channels

10

15

20

25

30

35

40

45

50

55

60

65

36

))) s
WOy L) = Py, s 1) = 7 > Wiy [w).

Hitl

where u/, for O=i<j=N-1, denotes the subvector (u,, . .., u,).

Let I(W) denote the symmetric capacity of the channel W
and Z(W,) be the Bhattacharyya parameter of the sub-
channels W, @, defined by

2y 0= Lye YWD GO RO,

It was shown that for N large enough, approximately I(W)
of the sub-channels satisfy that Z(WN(i))<2"NB for any
0<p<V%. See, for example, E. Arikan and E. Telatar, “On the
rate of channel polarization,” in Proceedings of the IEEE
International Symposiom on Information Theory Workshop
(ISIT), June 2009, pp. 1493-1495 and E. Arikan, “Channel
polarization: A method for constructing capacity achieving
codes for symmetric binary-input memoryless channels,”
IEEE Trans. on Inform. Theory, vol. 55, no. 7, pp. 3051-
3073, July 2009. Accordingly, for a code rate R, a set F is
defined, comprising of the N(1-R) sub-channels with the
highest Z(W,), and denoted as the frozen set. Then, the
information is transmitted on the remaining NR sub-chan-
nels, while the input on the sub-channels in F is fixed to be
some frozen vector u (the elements of the vector u in the set

F). The encoder transmits the word waz® " and the infor-
mation u is decoded using the successive cancellation (SC)
scheme and by the information of the frozen vector ug.
Finally, it was shown that asymptotically, if R<I(W), then it
is possible to communicate reliably with encoding and
decoding complexities O(N log N).

It was shown how to use polar codes for lossy source
coding. In this case, the frozen set F is defined by

F={i{0, .. . N-1}:Z(W,)=1-28 2}, 1)

where
o212,

See, for example, S. B. Korada and R. Urbanke, “Polar
codes are optimal for lossy source coding,” IEEE Trans. on
Inform. Theory, vol. 56, no. 4, pp. 1751-1768, April 2010.
The encoder compresses the source vector y by the follow-
ing SC scheme. For i=0,1, . . . , N-1, let G,=u, if i€F.
Otherwise, let

. 0 w.pL® ¥ +1)
o= . s

1 wpl/Y+1)
where

Wy, u5 ! | = 0)

LY = L i) = = ———.
W (. s = 1)

The decoder, in turn, let x(y)quz@) " be the approximating
source codeword. It has been shown that for any compres-
sion rate in the rate distortion region (where the distortion is
denoted by D), x(y) satisfies Ed(x(y), y)/NsD+O(2"NB) for
any 0<f<V2 and N sufficiently large. See, for example, S. B.
Korada and R. Urbanke, “Polar codes are optimal for lossy
source coding,” IEEFE Trans. on Inform. Theory, vol. 56, no.
4, pp. 1751-1768, April 2010. The result on the average case
was further improved to show that Id(x(y), y)/N-DI can be
made arbitrary small with probability approaching 1 for N
large enough.

US 9,916,197 B2

37

These results allowed the construction of multiple writes
WOM codes. See, for example, D. Burshtein and A. Stru-
gatski, “Polar write once memory codes,” in Proceedings of
the 2012 IEEE International Symposium on Information
Theory, ISIT2012, Cambridge, Mass., USA, July 2012, pp.
1982-1986. Let T be number of writes to the WOM. For each
write cycle, O=t<T, let 0=€ <% be an estimate of the fraction
of unprogrammed cells that will be written on this write,
where €,=0 and €,=%. In addition, let

0Ltéﬂ:jzot(l_et)-
Note that the values of &, €,, . . . , €, come from the
expression of the capacity region of WOM, given by
,.'R b2l R (<H(E)),
> R e H(Er),

Cz:{(:R 1
R <a-epHE,). . ..
RT<QT—1>

where Os€,, .. ., €, =}

and H denotes the binary entropy function}. See, for
example, F.-W. Fu and A. J. Han Vinck, “On the capacity of
generalized write-once memory with state transitions
described by an arbitrary directed acyclic graph,” IEEE
Trans. on Inform. Theory, vol. 45, no. 1, pp. 308-313,
January 1999 and C. D. Heegard, “On the capacity of
permanent memory,” IEEE Trans. on Inform. Theory, vol.
1T-31, no. 1, pp. 34-42, January 1985.

For the t-th write, 1=t<T, a test channel is considered with
binary input X and an output (S,V), where S and V are
binary variables as well. The probability transition function
of the t-th channel is defined by,

PS8, V)= (s, M| X =x) = f(s, xDV),

where

a(1-g) if s=0,b=0,

@18 ifts=0,b=1
fls, by = . .
(1-a,y) ifs=1,b=0,

0 ifs=1,b=1

For the t-th test channel, a polar code is designed with
block length N with a frozen set as in (1). The polar code is
used for lossy source coding, with rate

R=a, H(E)-b, @

where 9, is arbitrarily small for N sufficiently large.

The t-th encoder uses a common randomness source, also
called dither, denoted by g,, sampled from an N dimensional
uniformly distributed random binary vector, and known both
to the encoder and to the decoder. Let s, represents the
cell-state vector before encoding on the t-th write, and let
v=s+g, Finally, let y =(s, ,v,) and y=(y,, ¥as - - - 5 Y-

The encoder compresses the vector y, using the t-th polar
code with u. =a,, where a, is the information message on the
t-th write. The encoder decompresses the resulting vector u,

into xtwt92® ™ and sets §=x+g, to be the new cell-state
vector.

The decoder first calculates x,=§,+g,, and then estimates

a= (x("'®n) I)Ft, where (z); denotes the elements of the
vector z in the set F,. A few slight modifications for the
construction have been described, for the sake of the proof.
See, for example, D. Burshtein and A. Strugatski, “Polar
write once memory codes,” in Proceedings of the 2012 IEEE
International Symposium on Information Theory, ISIT2012,

10

15

20

25

30

35

40

45

50

55

60

65

38
Cambridge, Mass., USA, July 2012, pp. 1982-1986. The
following theorem summarizes the results of the polar
WOM codes.

Theorem 2.

Consider an arbitrary information sequence a,, . . . a, with
rates R, . .., R, that are inside the capacity region C,ofthe
binary WOM. For any 0<f<'% and N sufficiently large, the
polar WOM code described above can be used to erte thls
sequence reliably over the WOM w.p. at least 1 o
encoding and decoding complexities O(N log N).

The Theorem is based on the fact that in every write, the
WOM property is held, and in addition, the number of
written cells in bounded. We bring this result in the follow-
ing Lemma, that we then use in order to prove Assumption
1. See, for example, D. Burshtein and A. Strugatski, “Polar
write once memory codes,” in Proceedings of the 2012 IEEE
International Symposium on Information Theory, ISIT2012,
Cambridge, Mass., USA, July 2012, pp. 1982-1986.

Lemma 4.

Consider a polar code designed for the t-th test channel.
The code has rate R, defined in (2), a frozen set of sub-
channels F,, and some frozen vector uy which is uniformly
distributed over all IF,| dimensional blnary vectors. The code
is used to encode a random vector (s,v) drawn by i.i.d.
sampling from the distribution P(s,v)=P(s, vIx=0)/2+P(s,
vix=1)/2 using the SC encoder. Denote by x the encoded
codeword. Then for any 8>0, 0<f<l2 and N sufficiently
large, the following holds w.p. 1-2~

1. Hk:s,=0 and x,Dv,=1}I<(E, +d)N,

2. {k:s,=1 and x,v,=1}=

Based on this Lemma, we propose the following con-
struction for the code C , - of Assumption 1. Assume that a
polar WOM code is applied with T=2 and &,=1-p, that is,
o,=p and €,=V%. Furthermore, assume that (1-p)N cells are
being written in the first write. Connecting the notations of
Assumption 1 to those of the polar WOM code, note that c=s
and ¢'=x@v®s. Now, C , ~{Ff, =2, } is set to be the
encoding and decoding function of the second write of the
polar WOM code. In the following Lemma we prove that
this code has the properties of Assumption 1.

Lemma 5.

The code € , - described above satisfies the three prop-
erties of Assumptlon 1 w.p. at least 1-2~

Proof:

First, by Lemma 4, the rate of the code is p-9, as stated
in Assumption 1. Next, note that the second property (the
correctness of the decoded value) follows directly from the
construction of the WOM code. The third property, c=c',
follows from the second property of Lemma 4.

For the first property of Assumption 1, we write the first
property of Lemma 4 in the language of Assumption 1, and
get that for any >0, w.p. 1-27™

w(c")-w(c)<(p/2+E)N.

In addition, by the proof of Lemma 4 we can also verify that,

w(c)-w(e)>(p2-E)N,

and the property is met, completing the proof.

5 Analysis of the Construction

After we showed how to use polar WOM codes in our
construction, we are now left with analyzing the sum-rate of
Construction 1.

By Theorem 1 and remembering that N=mz and n'=log
N=log(mZ), we get that the instantaneous rate of the code is
given by

US 9,916,197 B2

Rinst = (1/N)log, D 3
_(2z2=-N)(m-1)
T N+msNw
-2 m-1 z—-6yn/2 1 m-—1
- m z 1 4+ emn’ m
(1=0m/2)-

1 + emlog(mz)

Note that by Assumption 1, 9 is a constant, which does not
depend on the value of N. However, p is also a constant in
this assumption, and since Construction 1 uses p=2/m, d can
be a function of m as well. Therefore, we can choose for
example =2/m” in order to let the expression dm/2 vanish
when m is large enough. Similarly, € can be also taken to be
a function of m. However, it cannot be a function of z, and
therefore (3) shows that when z is large, unfortunately we
get that R, , approaches zero. In order to solve this diffi-
culty, we extend the result in [4, Lemma 1] for the case that
€ is a function of N.

Lemma 6.

For any

Bl
e>NTT,

0<p<¥% and N sufficiently largﬁe, the properties of Assump-
tion 1 hold w.p. at least 1-27".

Proof:

The case of constant € is proven in section VI. C. The
proof of this case is based on on the typical distortion of
polar lossy source codes. See, for example, D. Burshtein and
A. Strugatski, “Polar write once memory codes,” in Pro-
ceedings of the 2012 IEEE International Symposium on
Information Theory, ISIT2012, Cambridge, Mass., USA,
July 2012, pp. 1982-1986. The proof of this Lemma is based
on an extension of this result, and therefore, in the following,
we presents the definitions used for describing the typical
distortion result.

Similar to the notation employed in other works, define
E-strong typical sequences x,y&x"x Y~ with respect to the
distribution p(x,y) on x Y, and denote it by A*.™ (X,Y),
as follows. See, for example, T. Cover and J. Thomas,
Elements of Information Theory, 2" ed. New York: Wiley,
2006, pp. 325-326. Let C(a, blx, y) denote the number of
occurrences of the symbols a, b in X, y. Then x, yEA* @
(X,Y) if the following two conditions hold. First, for all a,
b yxY with p(a,b)>0, IC(a, blx, y)/N-p(a,b)I<€. Second,
for all a, b xxY with p(a,b)=0, C(a, bix, y)=0.

In our case, x(u)w92® ™ and since §2® " has a full rank,
each vector u corresponds to exactly one vector x(u). We say
that u, yEA* ™ (U,Y) if x(u), yEA* ™ (X,Y) with respect
to the probability distribution p(x,y)=W(ylx)/2. let
Q(A*.™) be the probability that x(u), yEA*.“? (X,Y). In
[4, Lemma 1], it is shown that Assumption 1 holds if x(u),y
A*_ ™ (X,Y). Therefore, in order to complete the proof of
this Lemma, we need to show that for any

B-1
e>2N 7,

QA* M)>1-27,

10

25

30

45

55

65

40

Define a value p' such that 0<f'<(. By the proof of [4,
Theorem 1], it follows that

QA *O0y1 pF_pe2EN,

Taking

-1
£>2N"T,

we get:
OA*)12 g

and therefore, for N sufficiently large, the assumption holds
w.p. at least

1=

Notice that taking large € decreases R ,,,,. Therefore, we
choose the smallest € that meets the conditions of Lemma
6 for any 0<f<'2, meaning

1/2-1
e=N"Z =1/N

In some embodiments, € may be even smaller, depending on
an acceptable trade-off between R ,, _, and the probability of
encoding failure. The properties of Construction 1 are now
described.

Theorem 3.

We note that the decoding can be done with complexity
O(N log N), by performing the decoding of the k ranks in
parallel. For T=q-m+1, consider an arbitrary information
sequence a,, . . ., aywithrates R, _<2. For any 0<f<% and
g, m and z sufficiently large, the rank modulation rewriting
code in Construction 1 can be used to write this information
sequence w.p. at least 1-T2™", in encoding and decoding
complexities O(mN log N).

Proof:

Setting €=1/N"* and 8=2/m>, and remembering that n'<2
log N, we get that

1
1 + 2emlog(zm) =

1
1+ 277114 m3 og(zm) =

Rinst >2+(1 = 1/m)? -

2-(1-1/m)?-
Z1/4

2-(1-1/m) T+ 2t loggm)

Therefore, R ,,,, can take any value below 2 for large
enough m and z, if z/m® is large enough as well. The
probability of writing failure is achieved by the union bound.
Each time f, . is applied, the probability of encoding failure
is at most 27 f, - is applied m-1 times in each operation
of the rank-modulation encoding, and therefore, for large
enough N, the rank-modulation encoding is successful w.p.
at least 1-27". Since the rank-modulation encoding is
applied T times, the probability of successful write of the
whole information sequence is at least 1-T27".

We prove the encoding and decoding complexities. By
Theorem 2, the complexities of f, - and g, - are both O(N
log N). In each rank, we also apply h or h™", which can be
performed in logarithmic time in N. See, for example, Tke
Art of computer Programming volume 4, Fascicle 3. Addison
Wesley, 2005 pp. 5-6 and D. E. Knuth, “Efficient balanced

US 9,916,197 B2

41

codes,” IEEFE Trans. On Inform. Theory, vol. 32, no 1, pp.
51-53, 1986. The functions h and h™" are applied at most EN
times on each rank, and therefore they don’t affect the
complexity. Finally, since f, < and g, - are applied for each
rank, the encoding and decoding complexities are O(mN log
N).

In the rare event of an encoding error, the encoder can take
one of two strategies. One option is to use a different dither
value. See, for example, D. Burshtein and A. Strugatski,
“Polar write once memory codes,” in Proceedings of the
2012 [EEE International Symposium on Information Theory,
ISIT2012, Cambridge, Mass., USA, July 2012, pp. 1982-
1986. In this case the decoder can realize the correct dither
value, either by direct communication (by using extra stor-
age), or by switching to the next dither value upon detection
(e.g., using CRC) a decoding failure.

If the methods for taking a different dither value are too
expensive in practice, the encoder can take a different
strategy. We bring here the idea of this strategy, without a
formal description and analysis. In case of encoding error,
the encoder can recalculate the vector v, in Step 1 of the
encoding function of Construction 1. In the new vector v,,
v~0 if and only if i€S', US, .. This also involves setting
¢'=l,,,.k+1 in Step 4 of the decoding for all ranks 1<k=m-1,
and thus reduce the value of T by 1 (in fact, we do not have
to increase the level of the cells with ranks below the one
that failed, and perhaps take advantage of this gap in the
following writes, but for the simplicity of the construction
we seek to keep all the ranks to be in m consecutive levels).
However, since the event of encoding error is rare, the
expected value of T will not be affected by much if q is large
enough compared to N. In the case of repeated errors, a
different subset os size 2z of 8', US, ,, US,, , could be taken
each time until exhaustion. If that wouldn’t be enough, S, , 5
could be added with the cost of an extra write, and so on
until a successful encoding occurs.

FIG. 15B depicts a process 1520 for operating a data
device. The process 1520 may include one or more opera-
tions, actions, or functions as illustrated by one or more of
blocks 1525, 1527, 1529, 1531, 1533, 1535, 1537, 1539, and
1541. Although illustrated as discrete blocks, various blocks
may be divided into additional blocks, combined into fewer
blocks, or eliminated, depending on the particular imple-
mentation. The process starts with block 1525. In block 1527
a new data set for a rank of a plurality of ranks is received
to store in the memory device wherein the memory device
comprises a plurality of cells. In block 1529 a current state
of candidate cells is read within the plurality of cells wherein
candidate cells are used to store the new data set. In block
1531 a binary representation of the plurality of cells is
created and used to store the new data set. In block 1533 a
binary representation of the plurality of cells is used to store
the new data set. In block 1535 a WOM code is used to
combine the binary representation with the new data set to
create a binary WOM vector. In block 1537 the binary WOM
vector is modified to equal quantities of 1’s and 0’s within
the candidate cells creating a new data vector. In block 1539
the new data vector is written to the candidate cells. In block
1541 the process may be continued. In some embodiments
the WOM is a Polar WOM. In further embodiments the cost
of writing is defined as a maximum level of the plurality of
cells after writing the new data vector minus a maximum
level of the candidate cells before writing the new data
vector. In some embodiments, the cost is one. In further
embodiments the method further comprises reading the new
data vector from the candidate cells, modifying the new data
vector to recreate the binary WOM vector and using a WOM

10

15

20

25

30

35

40

45

50

55

60

65

42

code on the binary WOM vector to separate the binary
representation from the data set.

FIG. 15C depicts a process 1545 for operating a data
device. The process 1545 may include one or more opera-
tions, actions, or functions as illustrated by one or more of
blocks 1547, 1549, 1551, 1553, 1555, and 1557. Although
illustrated as discrete blocks, various blocks may be divided
into additional blocks, combined into fewer blocks, or
eliminated, depending on the particular implementation. The
process starts with block 1547. In block 1549 a new data set
m is received for a rank of a plurality of ranks to store in the
memory device wherein the memory device comprises a
plurality of cells. In block 1551 a current state of candidate
cells is read within the plurality of cells wherein candidate
cells are used to store the new data set. In block 1553 a new
multi-permutation is determined and is to be written to the
candidate cells representing the received data set m. In block
1555 the new multi-permutation is written to memory with
a predetermined cost wherein the new multi-permutation is
determined in accordance with the predetermined cost. In
block 1557 the process may be continued.

FIG. 15D depicts a process 1560 for operating a data
device. The process 1560 may include one or more opera-
tions, actions, or functions as illustrated by one or more of
blocks 1562, 1564, 1566, 1568, 1570, 1572, 1574, 1576,
1578, and 1580. Although illustrated as discrete blocks,
various blocks may be divided into additional blocks, com-
bined into fewer blocks, or eliminated, depending on the
particular implementation. The process starts with block
1562. In block 1564 a data value is received comprising a
plurality of data sets wherein each data set is a set of values
representing a rank in a plurality of ranks. In block 1566 a
new data set for a rank of a plurality of ranks is received to
store in the memory device wherein the memory device
comprises a plurality of cells. In block 1568 a current state
of candidate cells is read within the plurality of cells wherein
candidate cells are used to store the new data set. In block
1570 a binary representation of the plurality of cells is
created and used to store the new data set. In block 1572 a
binary representation of the plurality of cells is created an
used to store the new data set. In block 1574 a WOM code
is used to combine the binary representation with the new
data set to create a binary WOM vector. In block 1576 the
binary WOM vector is modified to equal quantities of 1’s
and 0’s within the candidate cells creating a new data vector.
In block 1578 the new data vector is written to the candidate
cells. In block 1580, if a new data vector has been written for
each rank of the plurality of ranks the process may continue
with block 1582. If all of the data vectors have not been
written, then blocks 1566-1578 may be repeated until all the
new data vectors have been written.

FIG. 15E depicts a process 1584 for operating a data
device. The process 1560 may include one or more opera-
tions, actions, or functions as illustrated by one or more of
blocks 1586-1599. Although illustrated as discrete blocks,
various blocks may be divided into additional blocks, com-
bined into fewer blocks, or eliminated, depending on the
particular implementation. The process 1560 may include
one or more operations, actions, or functions as illustrated
by one or more of the blocks. The process starts with block
1586. In block 1588 a plurality of cells are read and a
multi-permutation stored in the plurality of cells is deter-
mined. In block 1590 a group of cells are identified in the
plurality of cells, contained within each rank of a plurality
of ranks. In block 1592 a new data vector is read from the
rank. In block 1594 the new data vector is modified to
recreate a binary WOM vector. In block 1596 a WOM code

US 9,916,197 B2

43

is used on the binary WOM vector to separate a binary
representation from a data set. In block 1598 if a WOM code
has been used on each rank the process may continue to
block 1599. If a WOM code has not been used on each rank
the blocks of 1592 through 1596 may be repeated until a
WOM code has been used on each rank.

V1. EXAMPLE EMBODIMENTS

FIG. 16 is an illustration of one embodiment of a data
device constructed in accordance with the present disclo-
sure. FIG. 16 shows a memory 1602 that is accessed by a
memory controller 1604 that communicates with a host
device 1606, which may all be operatively or communica-
tively coupled to each other. The memory 1602 is used for
storing data that is represented in accordance with a mini-
mum push up, multi-cell or multi-permutation scheme. The
memory may be implemented, for example, as a Flash
memory having multilevel cells. The memory 1602 and
memory controller 1604 together comprise a data storage
device 1608 that may be external to the host device or may
be integrated with the host device into a single component
or system. For example, the data storage device 1608 may
comprise a Flash memory device (sometimes referred to as
a “thumb drive”) that communicates with a host computer
1606 via a USB connection, or the data storage device may
comprise a solid state drive (SSD) that stores data for a host
computer system. Alternatively or additionally, the data
storage device may be integrated with a suitable host device
to comprise a single system or component with memory
employing a minimum push up, a multi-cell or a multi-
permutation scheme, such as a smart phone, network router,
MP3 player, or the like.

The memory controller 1604 operates under control of a
microcontroller 1610, which manages communications with
the memory 1602 via a memory interface 1612 and manages
communications with the host device via a host interface
1614. Thus, the memory controller supervises data transfers
from the host 1606 to the memory 1602 and from the
memory 1602 to the host 1606. The memory controller 1604
also includes a data buffer 1616 in which data values may be
temporarily stored for transmission over the data channel
controller 1617 between the memory 1602 and the host
1606. The memory controller also includes an Error Cor-
recting code (ECC) block 1618 in which data for the ECC
is maintained. For example, the ECC block 1618 may
comprise data and program code to perform error correction
operations for a minimum push up, a multi-cell or a multi-
permutation scheme. Such error correction operations are
described, for example, in the U.S. Pat. No. 8,225,180
entitled “Error Correcting Codes for Rank Modulation” by
Anxiao Jiang et al. issued Jul. 17, 2012. The ECC block
1618 may contain parameters for the error correction code to
be used for the memory 1602, such as programmed opera-
tions for translating between received symbols and error-
corrected symbols, or the ECC block may contain lookup
tables for codewords or other data, or the like. The memory
controller 1604 performs the operations described above for
decoding data and for encoding data.

The operations described above for operating a data
storage device, for reading data from a device, for program-
ming a data storage device, and encoding and decoding, can
be carried out by the operations depicted in FIGS. 6, 8A, 8B,
14 and 15 which can be performed by the microcontroller
1610 and associated components of the data storage device
1608. For example, in an implementation of the rank modu-
lation coding scheme in a USB thumb drive, all the com-

10

20

25

30

40

45

50

55

60

65

44

ponents of the data storage device 1608 depicted in FIG. 16
are contained within the USB thumb drive.

The processing components such as the controller 1604
and microcontroller 1610 may be implemented in the form
of control logic in software or hardware or a combination of
both, and may comprise processors that execute software
program instructions from program memory, or as firmware,
or the like. The host device 1606 may comprise a computer
apparatus. A computer apparatus also may carry out the
operations of FIGS. 6, 8A, 8B, 14 and 15. FIG. 17 is a block
diagram of a computer apparatus 1700 sufficient to perform
as a host device and sufficient to perform the operations of
FIGS. 6, 8A, 8B, 14 and 15.

FIG. 17 is a block diagram of a computer system 1700 that
may incorporate embodiments of the present disclosure and
perform the operations described herein. The computer
system 1700 may include one or more processors 1705, a
system bus 1710, storage subsystem 1715 that includes a
memory subsystem 1720 and a file storage subsystem 1725,
user interface output devices 1730, user interface input
devices 1735, a communications subsystem 1740, and the
like.

In various embodiments, the computer system 1700 may
include computer components such as the one or more
processors 1705. The file storage subsystem 1725 can
include a variety of memory storage devices, such as a read
only memory (ROM) 1745 and random access memory
(RAM) 1750 in the memory subsystem 1720, and direct
access storage devices such as disk drives. As noted, the
direct access storage device may comprise a rank modula-
tion data storage device that operates as described herein.

The user interface output devices 1730 can comprise a
variety of devices including flat panel displays, touch-
screens, indicator lights, audio devices, force feedback
devices, and the like. The user interface input devices 1735
can comprise a variety of devices including a computer
mouse, trackball, trackpad, joystick, wireless remote, draw-
ing tablet, voice command system, eye tracking system, and
the like. The user interface input devices 1735 may allow a
user to select objects, icons, text and the like that appear on
the user interface output devices 1730 via a command such
as a click of a button or the like.

Embodiments of the communication subsystem 1740
typically include an Ethernet card, a modem (telephone,
satellite, cable, ISDN), (asynchronous) digital subscriber
line (DSL) unit, FireWire (IEEE 1394) interface, USB
interface, and the like. For example, the communications
subsystem 1740 may be coupled to communications net-
works and other external systems 1755 (e.g., a network such
as a LAN or the Internet), to a FireWire bus, or the like. In
other embodiments, the communications subsystem 1740
may be physically integrated on the motherboard of the
computer system 1700, may be a software program, such as
soft DSL, or the like.

The RAM 1750 and the file storage subsystem 1725 are
examples of tangible non-transitory media configured to
store data such as error correction code parameters, code-
words, and program instructions to perform the operations
described herein when executed by the one or more proces-
sors, including executable computer code, human readable
code, or the like. Other types of tangible non-transitory
media include program product media such as floppy disks,
removable hard disks, optical storage media such as CDs,
DVDs, and bar code media, semiconductor memories such
as flash memories, read-only-memories (ROMs), battery-
backed volatile memories, networked storage devices, and
the like. The file storage subsystem 1725 includes reader

US 9,916,197 B2

45

subsystems that can transfer data from the program product
media to the storage subsystem 1715 for operation and
execution by the processors 1705.

The computer system 1700 may also include software that
enables communications over a network (e.g., the commu-
nications network 1755) such as the DNS, TCP/IP, UDP/IP,
and HTTP/HTTPS protocols, and the like. In other embodi-
ments, other communications software and transfer proto-
cols may also be used, for example IPX, or the like.

Many other hardware and software configurations are
suitable for use with the disclosed embodiments. For
example, the computer system 1700 may be a desktop,
portable, rack-mounted, or tablet configuration. Addition-
ally, the computer system 1700 may be a series of networked
computers. Further, a variety of microprocessors are con-
templated and are suitable for the one or more processors
1705, such as PENTIUM™ microprocessors from Intel
Corporation of Santa Clara, Calif., USA; OPTERON™ or
ATHLON XP™ microprocessors from Advanced Micro
Devices, Inc. of Sunnyvale, Calif.,, USA; and the like.
Further, a variety of operating systems are contemplated and
are suitable, such as WINDOWS®, WINDOWS XP®,
WINDOWS VISTA®, or the like from Microsoft Corpora-
tion of Redmond, Wash., USA, SOLARIS® from Sun
Microsystems, Inc. of Santa Clara, Calif., USA, various
Linux and UNIX distributions, and the like. In still other
embodiments, the techniques described above may be
implemented upon a chip or an auxiliary processing board
(e.g., a programmable logic device or graphics processor
unit).

The embodiments described herein can be implemented in
the form of control logic in software or hardware or a
combination of both. The control logic may be stored in an
information storage medium as a plurality of instructions
adapted to direct an information-processing device to per-
form the methods or portions thereof disclosed in described
herein. Other ways and/or methods to implement the
embodiments are possible.

The minimum push up, multi-cell and multi-permutation
schemes described herein can be implemented in a variety of
systems for encoding and decoding data for transmission
and storage. That is, codewords are received from a source
over an information channel according to a minimum push
up, a multi-cell or a multi-permutation scheme and are
decoded into their corresponding data values and provided
to a destination, such as a memory or a processor, and data
values for storage or transmission are received from a source
over an information channel and are encoded into a mini-
mum push up, multi-cell or multi-permutation scheme.

The operations of encoding and decoding data according
to a minimum push up, multi-cell or multi-permutation
scheme can be illustrated as in FIG. 18, which shows data
flow in a data device 1802 that operates according to the
minimum push up, multi-cell or multi-permutation schemes
described herein. In FIG. 18, the device includes a Data
Modulation (DM) controller 1804 that stores and retrieves
information values 1806 using one of a minimum push up,
multi-cell or a multi-permutation scheme. The DM control-
ler 1804 includes an encoder and decoder 1808 for encoding
data values into codewords and decoding codewords into
data values. The DM controller encodes data values and
provides codewords to the source/destination block 1810,
and decodes codewords from the source/destination and
provides corresponding data values. The two-way nature of
the data flow is indicated by the double-ended arrows
labeled “data values” and “codewords”. The DM controller

10

20

25

40

45

55

46

includes interfaces through which the DM controller
receives and provides the data values and the information
values (codewords).

The information values 1806 comprise the means for
physically representing data comprising the data values and
codewords. For example, the information values 1806 may
represent charge levels of memory cells, such that multiple
cells are configured to operate as a virtual cell in which
charge levels of the cells determine a permutation of the
minimum push up, multi-cell or multi-permutation schemes.
Data values are received and encoded to permutations of a
minimum push up, multi-cell or multi-permutation scheme
and charge levels of cells are adjusted accordingly, and
codewords are determined according to cell charge levels,
from which a corresponding data value is determined. Alter-
natively, the information values 1806 may represent features
of a transmitted signal, such as signal frequency, magnitude,
or duration, such that the cells or bins are defined by the
signal features and determine a permutation of the minimum
push up, multi-cell or multi-permutation schemes. For
example, rank ordering of detected cell frequency changes
over time can determine a permutation, wherein the highest
signal frequency denotes the highest cell level. Other
schemes for physical representation of the cells may be used.

For information values 1806 in the case of cell charge
levels, the source/destination 1810 comprises memory cells
in which n memory cells provide n cell values whose charge
levels define a minimum push up, multi-cell or multi-
permutation scheme. For storing a codeword, the memory
cells receive an encoded codeword and comprise a destina-
tion, and for reading a codeword, the memory cells provide
a codeword for decoding and comprise a source. In the case
of data transmission, the source/destination 1810 may com-
prise a transmitter/receiver that processes a signal with
signal features such as frequency, magnitude, or duration
that define cells or bins such that the signal features deter-
mine a permutation. That is, signal components comprising
signal frequency, magnitude, or duration may be controlled
and modulated by the transmitter such that a highest signal
frequency component or greatest magnitude component or
greatest time component corresponds to a highest cell level,
followed by signal component values that correspond to
other cell values and thereby define a permutation of the
minimum push up, multi-cell or multi-permutation schemes.
When the source/destination 1810 receives a codeword from
the controller 1804, the source/destination comprises a
transmitter of the device 1802 for sending an encoded signal.
When the source/destination provides a codeword to the
controller 1804 from a received signal, the source/destina-
tion comprises a receiver of the device for receiving an
encoded signal. Signal components of the transmitted signal
may be suitably modulated or otherwise transformed to
define minimum push up, multi-cell or multi-permutation
schemes, in view of the description herein.

VII. CONCLUSION

The present disclosure describes various examples that
may be embodied as an apparatus, systems, methods, or a
combinations thereof.

In some examples, a programming method is described
that may substantially reduce rewriting cost for rank modu-
lation, and studied rewrite codes for a worst-case constraint
on the cost. Some presented codes may be optimal full-
assignment codes, although additional code constructions
are contemplated of general code length, non-full assign-
ment codes and average-case cost constraint.

US 9,916,197 B2

47

Some examples describe a flash cell structure (multi-cell)
that may enable a high number of updates between block
erasures. Various update codes that are based on permuta-
tions of relative levels are also described.

The present disclosure is not to be limited in terms of the
particular embodiments described in this application, which
are intended as illustrations of various aspects. Many modi-
fications and variations can be made without departing from
its spirit and scope. Functionally equivalent methods and
apparatuses within the scope of the disclosure, in addition to
those enumerated herein are possible in view of the forego-
ing descriptions. Such modifications and variations are
intended to fall within the scope of the appended claims. The
present disclosure is to be limited only by the terms of the
appended claims, along with the full scope of equivalents to
which such claims are entitled. It is to be understood that this
disclosure is not limited to particular methods, apparatus,
articles of manufacture, and/or systems, which can, of
course, vary. It is also to be understood that the terminology
used herein is for the purpose of describing particular
embodiments only, and is not intended to be limiting.

With respect to the use of substantially any plural and/or
singular terms herein, such terms can be translated from the
plural to the singular and/or from the singular to the plural
as is appropriate to the context and/or application. The
various singular/plural permutations may be expressly set
forth herein for sake of clarity.

In general, terms used herein, and especially in the
appended claims (e.g., bodies of the appended claims) are
generally intended as “open” terms (e.g., the term “includ-
ing” should be interpreted as “including but not limited to,”
the term “having” should be interpreted as “having at least,”
the term “includes” should be interpreted as “includes but is
not limited to,” etc.). If a specific number of an introduced
claim recitation is intended, such an intent will be explicitly
recited in the claim, and in the absence of such recitation no
such intent is present. For example, as an aid to understand-
ing, the following appended claims may contain usage of the
introductory phrases “at least one” and “one or more” to
introduce claim recitations. However, the use of such
phrases should not be construed to imply that the introduc-
tion of a claim recitation by the indefinite articles “a” or “an”
limits any particular claim containing such introduced claim
recitation to embodiments containing only one such recita-
tion, even when the same claim includes the introductory
phrases “one or more” or “at least one” and indefinite
articles such as “a” or “an” (e.g., “a” and/or “an” should be
interpreted to mean “at least one” or “one or more”); the
same holds true for the use of definite articles used to
introduce claim recitations. In addition, even if a specific
number of an introduced claim recitation is explicitly
recited, such recitation should be interpreted to mean at least
the recited number (e.g., the bare recitation of “two recita-
tions,” without other modifiers, means at least two recita-
tions, or two or more recitations). Furthermore, in those
instances where a convention analogous to “at least one of
A, B, and C, etc.” is used, in general such a construction is
intended in the sense as would be understood for the
convention (e.g., “a system having at least one of A, B, and
C” would include but not be limited to systems that have A
alone, B alone, C alone, A and B together, A and C together,
B and C together, and/or A, B, and C together, etc.). In those
instances where a convention analogous to “at least one of
A, B, or C, etc.” is used, in general such a construction is
intended in the sense as would be understood for the
convention (e.g., “a system having at least one of A, B, or
C” would include but not be limited to systems that have A

25

30

35

40

45

55

48

alone, B alone, C alone, A and B together, A and C together,
B and C together, and/or A, B, and C together, etc.). Virtually
any disjunctive word and/or phrase presenting two or more
alternative terms, whether in the description, claims, or
drawings, should be understood to contemplate the possi-
bilities of including one of the terms, either of the terms, or
both terms. For example, the phrase “A or B” will be
understood to include the possibilities of “A” or “B” or “A
and B.”

In addition, where features or aspects of the disclosure are
described in terms of Markush groups, the disclosure is also
thereby described in terms of any individual member or
subgroup of members of the Markush group.

For any and all purposes, such as in terms of providing a
written description, all ranges disclosed herein also encom-
pass any and all possible subranges and combinations of
subranges thereof. Any listed range can be easily recognized
as sufficiently describing and enabling the same range being
broken down into at least equal halves, thirds, quarters,
fifths, tenths, etc. As a non-limiting example, each range
discussed herein can be readily broken down into a lower
third, middle third and upper third, etc. All language such as
“up to,” “at least,” “‘greater than,” “less than,” and the like
include the number recited and refer to ranges which can be
subsequently broken down into subranges as discussed
above. A range includes each individual member. Thus, for
example, a group having 1-3 cells refers to groups having 1,
2, or 3 cells. Similarly, a group having 1-5 cells refers to
groups having 1, 2, 3, 4, or 5 cells, and so forth.

While various aspects and embodiments have been dis-
closed herein, other aspects and embodiments are possible.
The various aspects and embodiments disclosed herein are
for purposes of illustration and are not intended to be
limiting, with the true scope and spirit being indicated by the
following claims.

We claim:

1. A method to be executed by a memory controller to
operate a memory device, the method comprising:

defining a particular rank configuration for a plurality of

memory cells;

receiving a multi-permutation to be written to the plurality

of memory cells, wherein the received multi-permuta-
tion fits the particular rank configuration;

retaining analog levels of the plurality of memory cells in

the received multi-permutation; and
adding, based on the analog levels of the plurality of
memory cells, a charge to each memory cell of the
plurality of memory cells such that the plurality of
memory cells represent the received multi-permutation,

wherein adding the charge to each memory cell of the
plurality of memory cells comprises programming a
group of rank locations in the memory device such that
a programmed value of a rank location is increased
until the programmed value is greater than a pro-
grammed value of a subsequent rank location by a
minimum cell differentiation amount, and

wherein programming the group of rank locations facili-

tates reduction in risk of overshooting of the charge, to
enable reuse of the memory device for successive
writes.

2. The method of claim 1, further comprising:

reading the memory device by:

determining a sequential order of an initial analog level
of a stored value in each memory cell of the plurality
of memory cells, wherein the sequential order is
determined based on the particular rank configura-
tion.

US 9,916,197 B2

49

3. The method of claim 1, wherein programmed values of
rank locations correspond to received data values to be
stored in the memory device, and wherein the received data
values are elements of a set of symbols in the particular rank
configuration.
4. The method of claim 3, wherein programming the
group of rank locations in the memory device comprises:
creating a binary representation of the plurality of
memory cells to store the received data values;
using a write once memory (WOM) code to combine the
binary representation with the received data values to
create a binary WOM vector;
modifying the binary WOM vector to equal quantities of
1’s and 0’s within the plurality of memory cells to
create a new data vector; and
writing the new data vector to the plurality of memory
cells.
5. The method of claim 1, further comprising:
receiving a new data set to be stored in the plurality of
memory cells;
determining a new multi-permutation to be written to the
plurality of memory cells according to a particular cost,
wherein the new multi-permutation represents the new
data set; and
writing the new multi-permutation to the plurality of
memory cells with the particular cost.
6. A data device, comprising:
a memory device configured to store data values, wherein
the memory device comprises a plurality of memory
cells; and
a memory controller coupled to the memory device,
wherein the memory controller is configured to store
the data values in the memory device by performance
of operations that include:
receive a set of new data values to be stored in memory
cells of the plurality of memory cells, that contain a
set of current data values, wherein the received set of
new data values includes a set of symbols according
to a rank modulation coding scheme;

retain analog levels of the plurality of memory cells
that contain the received set of new data values; and

add, based on the analog levels of the plurality of
memory cells, a charge to each memory cell of the
plurality of memory cells,

wherein to add the charge to each memory cell of the
plurality of memory cells, the memory controller is
configured to program a group of rank locations in
the memory device such that a pro rammed value of
a rank location is increased until the programmed
value is greater than a programmed value of a
subsequent rank location by a minimum cell differ-
entiation amount, and

wherein the programmed group of rank locations facili-
tate reduction in risk of overshoot of the charge, to
enable reuse of the memory device for successive
writes.

7. The data device of claim 6, wherein each value in the
received set of new data values represents a rank in a
plurality of ranks.

8. The data device of claim 6, wherein to program the
group of rank locations in the memory device, the memory
controller is configured to:

read a current state of candidate cells within the plurality
of memory cells, wherein the candidate cells are used
to store the received set of new data values;

create a binary representation of the candidate cells to
store the received set of new data values;

5

10

15

20

25

35

40

45

50

55

60

65

50

combine the binary representation with the received set of
new data values to create a binary write once memory
(WOM) vector through a WOM code, wherein the
WOM code includes a polar WOM code;

modify the binary WOM vector to equal quantities of 1°s
and 0’s within the candidate cells to create a new data
vector; and

write the new data vector to the candidate cells.

9. The data device of claim 6, wherein the plurality of
memory cells comprises a plurality of parallel coupled
devices.

10. The data device of claim 9, wherein the plurality of
parallel coupled devices comprise a plurality of transistors.

11. The data device of claim 10, wherein the received set
of new data values are stored in the plurality of transistors
such that data stored in each transistor corresponds to a sum
of charges stored in each transistor.

12. The data device of claim 6, wherein the memory
controller comprises one or more of a host interface, a data
buffer, a microcontroller, a memory interface, and an error
correction code (ECC) block.

13. A memory controller to store data values in a memory
that includes a plurality of memory cells, the memory
controller comprising:

a host interface configured to receive a new data set for a

rank of a plurality of ranks to be stored in the memory;

a memory interface configured to read a current state of

the plurality of memory cells to store the received new
data set; and

a microcontroller configured to:

add a charge to each memory cell of the plurality of
memory cells, wherein the addition of the charge to
each memory cell of the plurality of memory cells
comprises a program of a group of rank locations in
the memory, wherein to program the group of rank
locations, the microcontroller is configured to:
use an update scheme that enables rewrite of the
memory multiple times to create another new data
set; and
write the another new data set to the plurality of
memory cells,
wherein the program of the group of rank locations by
use of the update scheme facilitates reduction in risk
of overshoot of the charge, to enable reuse of the
memory for successive writes.

14. The memory controller of claim 13, wherein the
memory controller is part of a microprocessor contained
within a portable memory device.

15. The memory controller of claim 13, wherein the
memory controller is part of a memory system of one of: a
desktop computer system, a portable computer system, a
rack-mounted computer system, and a tablet configuration
computer system.

16. The memory controller of claim 13, wherein to
program the group of rank locations by use of the update
scheme, the microcontroller is configured to:

create a binary representation of candidate cells, wherein

the candidate cells are a subset of the plurality of
memory cells;

combine the binary representation with the received new

data set to create a binary write once memory (WOM)
vector using a WOM code;

modify the binary WOM vector to equal quantities of 1°s

and 0’s within the candidate cells to create a new data
vector; and

US 9,916,197 B2

51

write the new data vector to the candidate cells through
the memory interface until the new data vector is
written for each rank of the plurality of ranks.
17. The memory controller of claim 16, wherein the
microcontroller is further configured to:
in response to a determination that the new data vector is
written for each rank of the plurality of ranks, read the
plurality of memory cells to determine a rank configu-
ration stored in the plurality of memory cells; and
identify a subset of the plurality of memory cells, wherein
the subset of the plurality of memory cells are con-
tained within each rank of the plurality of ranks.
18. The memory controller of claim 17, wherein the
microcontroller is further configured to:
read the new data vector from the rank;
modify the new data vector to recreate the binary WOM
vector; and

5

10

52
separate the binary representation from a corresponding
data set by use of the WOM
code on the binary WOM vector until the WOM code is
used on each rank.
19. The memory controller of claim 18, wherein the
microcontroller is further configured to:
in response to a determination that the WOM code is not
yet used on each rank, continue to:
read the new data vector from the rank;
modify the new data vector to recreate the binary WOM
vector; and
separate the binary representation from a correspond-
ing data set by use of the WOM code on the binary
WOM vector.
20. The memory controller of claim 17, wherein the rank
configuration includes one of: a multi-permutation, a mini-
mum push-up configuration, and a multi-cell configuration.

#* #* #* #* #*

