a2 United States Patent

Jiang et al.

US009086955B2

US 9,086,955 B2
Jul. 21, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

RANK-MODULATION REWRITING CODES
FOR FLASH MEMORIES

Applicants: California Institute of Technology,
Pasadena, CA (US); Texas A&M
University System, College Station, TX
(US)

Inventors: Anxiao Jiang, College Station, TX (US);

Eyal En Gad, Pasadena, CA (US);

Jehoshua Bruck, Pasadena, CA (US);

Eitan Yaakobi, Pasadena, CA (US)

Assignees: California Institute of Technology,
Pasadena, CA (US); Texas A&M
University System, College Station, TX
(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 149 days.

Appl. No.: 13/791,823

Filed: Mar. 8, 2013
Prior Publication Data
US 2013/0254466 Al Sep. 26, 2013

Related U.S. Application Data

Provisional application No. 61/608,245, filed on Mar.
8, 2012, provisional application No. 61/608,465, filed
on Mar. 8, 2012, provisional application No.
61/725,347, filed on Nov. 12, 2012.

Int. Cl.
GO6F 12/02 (2006.01)
HO3M 13/13 (2006.01)
(Continued)
U.S. CL
CPC .......... GO6F 12/0246 (2013.01); G11C 7/1006

(2013.01); G11C 11/5628 (2013.01); G11C
16/10 (2013.01); HO3M 13/13 (2013.01); G1IC
2211/5649 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,656,706 B2* 2/2010 Jiangetal. ............. 365/185.03
8,225,180 B2 7/2012 Jiang et al.
(Continued)

FOREIGN PATENT DOCUMENTS

WO 2011156750 A2 12/2011

OTHER PUBLICATIONS
Jiang, A., Mateescu, R., Schwartz, M. and J. Bruck. (2009) “Rank
Modulation for Flash Memories.” IEEE Transactions on Information

Theory, vol. 55, No. 6.*
(Continued)

Primary Examiner — Christian P Chace
Assistant Examiner — Tracy A Warren
(74) Attorney, Agent, or Firm — Turk IP Law, LLC

57 ABSTRACT

Rank modulation has been recently proposed as a scheme for
storing information in flash memories. Three improved
aspects are disclosed. In one aspect the minimum push-up
scheme, for storing data in flash memories is provided. It aims
atminimizing the cost of changing the state of the memory. In
another aspect, multi-cells, used for storing data in flash
memories is provided. Each transistor is replaced with a
multi-cell of mm transistors connected in parallel. In yet
another aspect, multi-permutations, are provided. The para-
digm of representing information with permutations is gen-
eralized to the case where the number of cells in each level is
a constant greater than one. In yet another aspect, rank-modu-
lation rewriting schemes which take advantage of polar
codes, are provided for use with flash memory.

33 Claims, 18 Drawing Sheets




US 9,086,955 B2
Page 2

(51) Int.CL

G1IC 16/10 (2006.01)
G1IC 7/10 (2006.01)
G1IC 11/56 (2006.01)
(56) References Cited

U.S. PATENT DOCUMENTS

8,245,094 B2 8/2012 Jiang et al.
2009/0132758 Al* 5/2009 Jiangetal. ... 711/103
2009/0132895 Al* 5/2009 Jiangetal. ... 714/781
OTHER PUBLICATIONS

Jiang, A., Bohossian, V. and J. Bruck. (2010) “Rewriting Codes for
Joint Information Storage in Flash Memories.” IEEE Transactions on
Information Theory, vol. 56, No. 10.*

Jiang, A. and J. Bruck. (2009) “Information Representations and
Coding for Flash Memories.” IEEE Pacific Rim Conference on Com-
munications, Computers and Signal Processing, pp. 920-925.*
Jiang et al. (Jiang, A., Mateescu, R., Schwartz, M. and J. Bruck.
(2009) “Rank Modulation for Flash Memories.” IEEE Transactions
on Information Theory, vol. 55, No. 6.).*

Jaing et al. (Jiang, A., Bohossian, V. and J. Bruck. (2010) “Rewriting
Codes for Joint Information Storage in Flash Memories.” IEEE
Transactions on Information Theory, vol. 56, No. 10.).*

Jaing et al. (Jiang, A. and J. Bruck. (2009) “Information Representa-
tions and Coding for Flash Memories.” IEEE Pacific Rim Conference
on Communications, Computers and Signal Processing, pp. 920-
925.).*

Mazumdar et al., “Constructions of Rank Modulation Codes”, IEEE
International Symposium on Information Theory Proceedings, vol.
59, Issue 2, pp. 869-873, Oct. 2012.

Zhang et al., “LDPC Codes for Rank Modulation in Flash Memo-
ries”, pp. 859-863, ISIT, Austin, Texas, U.S.A, Jun. 13-18, 2010.
Knuth, “Efficient Balanced Codes”, IEEE Transactions on Informa-
tion Theory, vol. 32, No. 1, pp. 51-53, Jan. 1986.

Heegard, “On the Capacity of Permanent Memory”, IEEE Transac-
tion on Information Theory, vol. 31, No. 1, pp. 34-42, Jan. 1985.
Farnoud et al., “Rank Modulation for Translocation Error Correc-
tion”, IEEE Information Theory Proceedings (ISIT), pp. 2988-2992,
Jul. 2012.

Burshtein et al., “Polar write once memory codes”, IEEE Interna-
tional Symposium on Information Theory Proceedings, pp. 1972-
1976, Jul. 2012.

Fiat et al., “Generalized “Write-Once” Memories”, IEEE Transac-
tion on Information Theory, vol. 30, No. 3, pp. 470-480, May 1984.
“NVM Technology Overview,” available at https://web.archive.org/
web/200902 1712483 1/http://www.saifun.com/content.asp?id=113,
copyright 2003-2009, accessed on Feb. 20, 2015.

En Gad, E. et al., “On a construction for constant-weight Gray codes
for local rank modulation,” IEEE 26th Convention of Electrical and
Electronics Engineers in Israel, p. 996, Nov. 17-20, 2010.

Jiang, A. et al., “Rank modulation for flash memories,” IEEE Trans-
actions on Information Theory, pp. 2659-2673, Jun. 2009.

Jiang, A. et al., “Correcting charge-constrained errors in the rank-
modulation scheme,” IEEE Transactions on Information Theory, vol.
56, Issue 5, pp. 2112-2120, May 2010.

Klove, T., “Spheres of permutations under the infinity norm—per-
mutations with limited displacement,” University of Bergen, Bergen,
Norway, Technical Report No. 376, p. 38, Nov. 2008.

Schwartz, M., “Constant-weight Gray codes for local rank modula-
tion,” IEEE International Symposium on Information Theory Pro-
ceedings (ISIT), pp. 869-873, Jun. 13-18, 2010.

Tamo, I. and Schwartz, M., “Correcting limited-magnitude errors in
the rank-modulation scheme,” IEEE Transactions on Information
Theory, vol. 56, No. 6, pp. 2551-2560, Jun. 2010.

Wang, Z. et al., “On the capacity of bounded rank modulation for
flash memories,” IEEE International Symposium on Information
Theory, pp. 1234-1238, Jun. 28-Jul. 3, 2009.

En Gad, E. et al., “Compressed encoding for rank modulation,” IEEE
International Symposium on Information Theory Proceedings, pp.
884-888, Jul. 31-Aug. 5,2011.

Fiat, A. and Shamir, A, “Generalized “write-once” memories,” IEEE
Transactions on Information Theory, vol. 30, Issue 3, pp. 470-480,
May 1984.

Fu, FW. and Vinck, A.J. H., “On the capacity of generalized write-
once memory with state transitions described by an arbitrary directed
acyclic graph,” IEEE Transactions on Information Theory, vol. 45,
No. 1, pp. 308-313, Jan. 1999.

Rivest, R.L. and Shamir, A., “How lo reuse a “write-once” memory,”
Information and Control, vol. 55, No. 1-3, pp. 1-19, 1982.

Arikan, E. and Telatar, L.E., “On the rate of channel polarization,”
IEEE International Symposium on Information Theory, pp. 1493-
1495, Jun. 28-Jul. 3, 2009.

Arikan, E., “Channel polarization: A method for constructing capac-
ity achieving codes for symmetric binary-input memoryless chan-
nels,” IEEE Transactions on Information Theory, vol. 55, No. 7, pp.
3051-3073, Jul. 2009.

Barg, A. and Mazumdar, A., “Codes in permutations and error cor-
rection for rank modulation,” IEEE Transactions on Information
Theory, vol. 56, No. 7, pp. 3158-3165, Jul. 2010.

Burshtein, D. and Strugatski, A., “Polar write once memory codes,”
IEEE Transactions on Information Theory, vol. 59, Issue 8, pp. 5088-
5101, Aug. 2013.

Farnoud, F. et al., “Rank modulation for translocation correction,”
IEEE International Symposium on Information Theory Proceedings,
pp. 2988-2992, Jul. 1-6, 2012.

Heegard, C., “On the capacity of permanent memory,” IEEE Trans-
actions on Information Theory, vol. 31, No. 1, pp. 34-42, Jan. 1985.
Knuth, D.E., “Efficient balanced codes,” IEEE Transactions on Infor-
mation Theory, vol. 32, No. 1, pp. 51-53, Jan. 1986.

Korada, S.B. and Urbanke, R.L., “Polar codes are optimal for lossy
source coding,” IEEE Transactions on Information Theory, vol. 56,
No. 4, pp. 1751-1768, Apr. 2010.

International Search Report and Written Opinion for International
Patent Application No. PCT/US2013/030043 mailed Jun. 27, 2013.
Zhang, F. et al. “LDPC Codes for Rank Modulation in Flash Memo-
ries,” IEEE International Symposium on Information Thoery Pro-
ceedings, pp. 859-863, Jun. 13-18, 2010.

Mazumdar, A. et al., “Constructions of Rank Modulation Codes,”
IEEE International Symposium on Information Theory Proceedings,
pp. 869-873, Jul. 31-Aug. 5,2011.

Wu, Y. et al., “Position Modulation Code for Rewriting Write-Once
Memories,” IEEE Transactions on Information Theory, vol. 57, No.
6, pp. 3692-3697, Jun. 2011.

Jiang, A. et al.,. “Universal rewriting in constrained memories,” [IEEE
International Symposium on Information Theory, pp. 1219-1223,
Jun. 28-Jul. 3, 2009.

Web site of Web-Feet Research, Inc, www.web-feetresearch.com,
retrieved on Feb. 18, 2015.

“SanDisk launches 64 gigabyte solid state drives for notebook PCs,
meeting needs for higher capacity”, New Products on Display at
Computex 2007, Taiwan’s International Information Technology
Show, Jun. 4, 2007. http://www.sandisk.com/about-sandisk/press-
room/press-releases/2007/2007-06-04-sandisk-launches-64-
gigabyte-solid-state-drives-for-notebook-pcs,-meeting-needs-for-
higher-capacity/.

Barr, “PQI unveils 256GB solid state drive”, SlashGear, May 31,
2007 http://www.slashgear.com/pqi-unveils-256gb-ssd-drive-
315520/

Aritome et al., “Reliability Issues of Flash Memory Cells”, Proceed-
ings of the IEEE, vol. 81, Issue 5, pp. 776-788, May 1993.

Pavan et al., “Flash Memory Cells—An Overview”, Proceedings of
the IEEE, vol. 85, Issue 8, pp. 1248-1271, Aug. 1997.

Gal et al., “Algorithms and Data Structures for Flash Memories”,
ACM Computing Surveys (CSUR), vol. 37, Issue 2, Jun. 2005.
Wang et al., “Partial Rank Modulation for Flash Memories”, IEEE
International Symposium on Information Theory Proceedings
(ISIT), pp. 864-868, Jun. 13-18, 2010.

* cited by examiner



U.S. Patent Jul. 21, 2015 Sheet 1 of 18 US 9,086,955 B2

3 41]“
- OO S VOO e .
et P
T
. ety e e e HE ) T
PR et o
,,,,,, 1) IR S o s . s et
iy
——}5.‘!"1'- mmmmmmmmmmmmm B I I N . . ™
;
L i I i I jv‘.‘ mmmmmmmmm r""m&v.o—ml
“%w- - LT m\‘\gi}
-
wwwwwwwwwwwwwww iﬁ-‘t"m.‘ 5w e 8 G e
FIG. 1
Ay
3 km’mntnziﬁ}- uuuuuuuuu
- " Py
m(...‘w.._éhfh wwwwwwwww * w..ﬁ(!&;m mmmmmmmmmmmmm

~

.wihwb.(ﬁ‘ieﬁam\&&.w»;.&k%i&é%m N R R N

FIG. 2



U.S. Patent Jul. 21, 2015 Sheet 2 of 18 US 9,086,955 B2

T
2 aaaaaaaaaa -
v e -
) a 3

3.
,,,,,,,, e ’Eﬁ
’} »v.,w-'
) N

FIG. 4



U.S. Patent Jul. 21, 2015 Sheet 3 of 18 US 9,086,955 B2

FIG. 5



U.S. Patent Jul. 21, 2015 Sheet 4 of 18 US 9,086,955 B2

605
600\ ( START )

/610

Receive data values v = [v,,v,,---,v,] € 5
To be stored in data storage containing current values

u = [u, Uz u,|ES
l /615

l l/ 620

[Let S be a set of symbols in a rank modulation coding scheme.

L }/ 625

Let n be a number of ranks in v to be stored in a group of n rank
locations in data storage.
l P 630

Program the group of n rank locations according to the rank modulation
coding scheme and the value vsuch thatfori =n — 1,n —2,,1
The programmed value of a rank location ¥; is increased until it is
greater than the value of a rank location ¥i+1 by a minimum cell
differentiation amount.

]Let v be an element of S.

635

A 4

CONTINUE

FIG. 6



U.S. Patent Jul. 21, 2015 Sheet 5 of 18 US 9,086,955 B2

Bit BitLine | Bit Bit Line
Line Select | Line Select _<
| ] |
B | |
wia | WLd —— —
WL3 —ﬂ_ WL3 : [ :
| - Il—
w2 [ we2 —f——f————f|
| — = |
wit [ WL =1 |
- | | T
o o —
il i
Ground ([— Ground‘{
Select ;_|J_A|: Select
Traditional NAND flash Multi-cell NAND flash
structure structure

FIG. 7A FIG. 7B



U.S. Patent Jul. 21, 2015 Sheet 6 of 18 US 9,086,955 B2

805

/

Dispose a plurality of transistors on a device each of which is capable of
storing charge, wherein each of the plurality of transistors comprises a
gate, a source and a drain.

l ///815

Form connections between the sources of each of the plurality of

transistors.
l ///820

Form connections between the drains of each of the plurality of

transistors. 5
l P 825

Storing data in the plurality of transistors, the data corresponding to a
sum of charges stored in each of the plurality of transistors.

830
QCONTINUE;

FIG. 8A

865

o0~

Generating a code word having a plurality of symbols selected from a

set of symbols. 86
7 - 5

Storing each of the plurality of symbols in a data storage location of the
data device, wherein each data storage location comprises a plurality of

parallel connected devices.
870
( CONTINUE )

FIG. 8B

P 860




U.S. Patent Jul. 21, 2015 Sheet 7 of 18 US 9,086,955 B2




U.S. Patent Jul. 21, 2015 Sheet 8 of 18 US 9,086,955 B2

noisy
EEC CRM CRM
codeword codeword codeword

Conventional Compressed noisy

data—> " EEC T Rank Modulation || channe | decoder

recovered
data



U.S. Patent Jul. 21, 2015 Sheet 9 of 18 US 9,086,955 B2

1405
1400 f
\‘ START

v /1410

Define a predetermined rank configuration (d1, d2 . . . dn), wherein di is
the number of cells in the i th rank;

141
v 14

Receive a new multi-permutation defined by v={»,v, %] €5 thatfits
the predetermined rank configuration.

l 1420

Initiate a process to add charge to each cell in a plurality of memory
locations such that the plurality of cells represent the new muiti-
permutation.

1425

A 4

CONTINUE

FIG. 14A



U.S. Patent Jul. 21, 2015 Sheet 10 of 18 US 9,086,955 B2

1455
1450 \ f
START

! /1 460

Determine a sequential order of an initial analog level of a stored value
in each cell of a plurality of cells in a data device wherein the sequential

order is defined as a value x comprising
1

[{xl’xZJ '“’xd(_}'{xﬁ'.j-l'xd,_%z" ”.’xd=+d3}-’ ., {xl'i'Z?:—';d['xzd}z?;_idi"” ’XZ-?:,_ d{}j

1465
v i
CONTINUE

FIG. 14B




U.S. Patent Jul. 21, 2015 Sheet 11 of 18 US 9,086,955 B2

1500\\\ 1505
( START )
/,/1507

Define a predetermined rank configuration (d1, d2 . . . dn), wherein di is
the number of cells in the i th rank;

I ///1509

Receive a new multi-permutation defined by v=[v,v,,~,vn] €S that fits
the predetermined rank configuration.

Retain the analog levels of cells of arank nin v. l

Program the cells of rankiinvfori=n—-1,n-2..., 1such that the
analog levels of cells in a rank i are all higher than the analog levels of
the cells of rank i+1 in v by at least a minimum rank differentiation.

I 1515
{ CONTINUE l

FIG. 15A




U.S. Patent Jul. 21, 2015 Sheet 12 of 18 US 9,086,955 B2

1520 ~ 1525
START )

i /1 527

Receive a new data set for a rank of a plurality of ranks to store in the
memory device wherein the memory device comprises a plurality of

cells.
1529
, -
Read a current state of candidate cells within the plurality of cells

wherein candidate cells are used to store the new data set.

] /1 531

Create a binary representation of the plurality of cells used to store the
new data set.

1533
/
Create a binary representation of the plurality of cells used to store the
new data set.

! /1 535
Use a WOM code to combine the binary representation with the new
data set to create a binary WOM vector.

Modify the binary WOM vector to equal quantities of 1's and Q's within
the candidate cells creating a new data vector.

IWrite the new data vector to the candidate cells. l

/1 541

(CONTINUE)

FIG. 15B




U.S. Patent Jul. 21, 2015

1545\

Sheet 13 of 18 US 9,086,955 B2

1547
{ START )

! /1 549

cells.

Receive a new data set m for a rank of a plurality of ranks to store in the
memory device wherein the memory device comprises a plurality of

1551
' 190

Read a current state of candidate cells within the plurality of cells
wherein candidate cells are used to store the new data set.

/1 553

Determine a new multi-permutation to be written to the candidate cells
representing the received data set m.

/1 555

predetermined cost.

Write the new multi-permutation to memory with a predetermined cost
wherein the new multi-permutation is determined in accordance with the

1567
A
CONTINUE )

FIG. 15C



U.S. Patent Jul. 21, 2015 Sheet 14 of 18 US 9,086,955 B2

/1 564

Receive a new data value comprising a plurality of data sets wherein
each data set is a set of values representing a rank in a plurality of
ranks.

/1 566

Receiving a new data set for a rank of the plurality of ranks to store in
the memory device wherein the memory device comprises a plurality

of

cells.

1568
s

Read a current state of candidate cells within the plurality of cells
wherein candidate cells are used to store the new data set.

/1 570

Create a binary representation of the plurality of cells used to store th
new data set.

e

/’l 572

new data set.

Create a binary representation of the plurality of cells used to store the

Y

/1 574

Use a WOM code to combine the binary representation with the new
data set to create a binary WOM vector.

/1 576

the candidate cells creating a new data vector.

Modify the binary WOM vector to equal quantities of 1's and 0's within

Write the new data vector to the candidate cells.

l

Has a new data vector been written for each

rank of the plurality

YES 1682

FIG. 15D



U.S. Patent Jul. 21, 2015 Sheet 15 of 18 US 9,086,955 B2

1584 ~ 1586
{ START }

I /1 588

Read a plurality of cells and determine a multi-permutation stored in the
plurality of cells.

159
! /50

Identify a group of cells in the plurality of cells, contained within each
rank of a plurality of ranks.

' /1 592

Read a new data vector from the rank.

Modify the new data vector to recreate a binary WOM vector ’

! /1 596

Use a WOM code on the binary WOM vector to separate a binary
representation from a data set.

Has a WOM code been
used on each rank?

YES 1599

CONTINUE

FIG. 15E



US 9,086,955 B2

Sheet 16 of 18

Jul. 21, 2015

U.S. Patent

91 Old
8091
09l
Jjjonuon Aioway
oial
J18]|0JUCO0IDIN
ciol ¥iol
awww_\,_ 80BLaU| 2191 soepia)u|
foway 993 }SOH
9i9l
iayng eleq

909l
801A8(] JSOH




U.S. Patent Jul. 21, 2015 Sheet 17 of 18 US 9,086,955 B2

COMPUTER SYSTEM
1700
STORAGE SUBSYSTEM
1715
MEMORY SUBSYSTEM
1720 FILE USER
STORAGE INTERFACE
ROM RAM SUBSYSTEM OUTPUT
1745 1750 1725 DEVICES
1730
A
A i A A
S 4 L 4 h 4
1710 c USER
OMMUNICATION
INTERFACE
PROCESSOR(S) SUBSYSTEM
1705 INPUT
1740 DEVICES
- 1735

A 4

COMMUNICATION NETWORKS AND
OTHER SYSTEMS
1755

FIG. 17



U.S. Patent

Jul. 21, 2015 Sheet 18 of 18 US 9,086,955 B2
Data Values
Source/
Encod;aggsecoder Destination
1810

DM Controller
1804

Codewords

Information values
1806

Memory Device
1802

FIG. 18



US 9,086,955 B2

1
RANK-MODULATION REWRITING CODES
FOR FLASH MEMORIES

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application claims the benefit under 35 U.S.C. §119
(e) of U.S. Provisional Application Ser. No. 61/608245
entitled “Compressed Encoding for Rank Modulation” by
Anxiao Jiang, Eyal En Gad and Jehoshua Bruck filed on Mar.
8, 2012, U.S. Provisional Application Ser. No. 61/608465
entitled “Multi-Cell memories and compressed Rank Modu-
lation” by Anxiao Jiang, Eyal En Gad, and Jehoshua Bruck
filed on Mar. 8, 2012, and U.S. Provisional Application Ser.
No. 61/725347 entitled “Rank-Modulation Rewriting Codes
for Flash Memories” by Anxiao Jiang, Eyal En Gad, Eitan
Yaakobie and Jehoshua Bruck filed on Nov. 12, 2012. Priority
of'the filing dates is hereby claimed, and the disclosures of the
prior applications are hereby incorporated by reference for all
purposes.

FEDERAL FUNDING STATEMENT

This invention was made with government support under
ECCS0802107 and CCF0747415 awarded by the National
Science Foundation. The government has certain rights in the
invention.

BACKGROUND

The present disclosure generally relates to data storage
devices, systems and methods. In various examples, data
modulation techniques in data storage devices such as flash
memory devices are described.

Flash memories are one type of electronic non-volatile
memories (NVMs), accounting for nearly 90% of the present
NVM market. See, for example, the Web site of Saifun Semi-
conductors [td. (available at www.saifun.com) and Web-Feet
Research, Inc. (available at www.web-feetresearch.com).
Today, billions of flash memories are used in mobile, embed-
ded, and mass-storage systems, mainly because of their high
performance and physical durability. See, for example, P.
Cappelletti et al., Chapter 5, “Memory Architecture and
Related Issues™ in Flash memories, Kluwer Academic Pub-
lishers, 1st Edition, 1999), and E. Gal and S. Toledo, ACM
Computing Surveys, 37(2):138-163 (2005). Example appli-
cations of flash memories include cell phones, digital cam-
eras, USB flash drives, computers, sensors, and many more.
Flash memories are now sometimes used to replace magnetic
disks as hard disks, such as the 64 GB hard disk by SanDisk
(see “SanDisk launches 64 gigabyte solid state drives for
notebook PCs, meeting needs for higher capacity,” available
at the Web site URL of http://biz.yahoo.com/cnw/070604/
sandisk.html?.v=1). See also the Web article on the 256 GB
hard disk by PQI (“PQI unveils 256 GB solid state drive,”
available at the URL of vvww.guru3d.com/newsitem.ph-
p?id=5392). Based on the popular floating-gate technology,
the dominance of flash memories is likely to continue.

Some problems exist that may limit the improvement of
flash memories with respect to their speed, reliability, longev-
ity, and storage capacity. Flash memories may have a limited
lifetime due to the quality degradation caused by block era-
sures; a flash memory can endure only about 10°~10° block
erasures before itbecomes no longer usable (see S. Aritome et
al., Proceedings of the IEEE, 81(5):776-788 (1993), and P.
Cappelletti et al., ibid. Removing charge from any single cell
for data modification may require the block to be erased and
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2

all the 10° or so cells in it to be reprogrammed (or pro-
grammed to another block). The writing speed may be con-
strained by a conservative cell-programming process that is
about ten times slower than reading. One purpose of such
conservative programming is to avoid over-programming, a
serious error that may only be correctable by block erasure
and reprogramming. Data reliability may be limited by errors
caused by charge leakage, disturbs, and the like. See S. Ari-
tome et al., ibid; P. Cappelletti et al., ibid; and P. Pavan et al.,
Proceedings of The IEEE, 85(8):1248-1271 (August 1997).
The errors become more common when multi-level cells are
used to increase the storage capacity.

SUMMARY

In some examples, a minimum push-up scheme to store
data in flash memories is described. In some embodiments,
the minimum push-up scheme starts with data values v=[v,,
Vs, . .., V,]€S, that are received to be stored in data storage
containing current values u=[u,, u,, . . ., u, J€S,,. Next, v is
defined as an element of S where S is defined as a set of
symbols in a rank modulation coding scheme. Further, n is
defined as a number of ranks in v to be stored in a group of n
rank locations in data storage of the data device. The group of
nrank locations are programmed according to the rank modu-
lation coding scheme and the value v such that for i=n-1,
n-2, . .. 1 the programmed value of a rank location v, is
increased until it is greater than the value of a rank location
v,,; by a minimum cell differentiation amount.

In some embodiments each of the n rank locations may
comprise a cell of the device data storage. In further embodi-
ments, each rank location may comprise a plurality of cells of
the device data storage. In other embodiments, each rank
location may comprise an equal number of cells of the device
data storage. In still further embodiments, programming may
comprise increasing the value of all cells in the rank location
v, until the value in each of the cells v, is greater than the value
in each of the cells in the rank location v, ;. In other embodi-
ments, the current values of u=[u,, u,, . .., u,]eS,, are read
from the device data storage before the programming of the
group of n rank locations with v.

In another aspect, a new scheme, multi-cells, used for
storing data in flash memories is provided. NAND flash
memory is the most widely used type for general storage
purpose. In NAND flash, several floating gate transistors are
connected in series where we can read or write only one of
them at a time. Each transistor is replaced with a multi-cell of
rn transistors connected in parallel. The control gates, the
sources and the drains of the transistors are connected
together. That way, their current sums together in read opera-
tions, and the read precision increases by m times, allowing
the storages of mg levels in a single multi-cell. In write
operations, the same value is written to all the transistors,
such that the sum of their charge levels provides the desired
total level.

In some embodiments processes for manufacturing and
operating a data device are provided. A plurality of transis-
tors, each of which is capable of storing charge, are disposed
on a device. Each of the plurality of transistors comprises a
gate, a source, and a drain. Connections are formed between
the sources, gates and drains of each of the plurality of tran-
sistors. Each connection is capable of carrying electrical cur-
rent. Next, data is stored in the plurality of transistors. The
data corresponds to a sum of charges stored in each of the
plurality of transistors. In further embodiments connections
may be formed between the gates of each of the plurality of
transistors.
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In yet further embodiments, a process for operating a data
device is provided. First, a code word is generated that has a
plurality of symbols selected from a set of symbols. Each of
the plurality of symbols is stored in a data storage location of
the data device. Each data storage location comprises a plu-
rality of parallel connected devices. In some embodiments the
plurality of parallel connected devices may comprise transis-
tors.

In yet another aspect, multi-permutations, used for storing
data in flash memories is provided. The paradigm of repre-
senting information with permutations is generalized to the
case where the number of cells in each level is a constant
greater than 1, multi-permutations.

Namely, the states that the cells can take are no longer
permutations of a set, but permutations of a multiset. For
example, if the number of cells at each level is 22, the two
cells in each level do not need to be identical in their analog
values, they just need to be distinguishable with other levels
(but do not need to be mutually distinguishable). Hence, the
encoding and decoding use relative levels, and the scheme has
good resistance to drift; namely, the advantages of the per-
mutation based relative scheme that we described above still
apply. The case where the multiplicities of all the elements in
the multiset are equal, is denoted by z. This generalization
becomes interesting especially when z is large, and n is still
much larger than z. In that case (if q is still much larger than
r), it can be proven that the upper bound on the total capacity
is 2q bits per cell, and that there exists a construction that
approaches this bound. The instantaneous capacity of the
construction is approaching 2 bits per cell.

In some embodiments, a computer method of operating a
data device where a predetermined rank configuration
(d;,d, ...d,)is defined. Further, d, is the number of cells in
the i” rank. A new multi-permutation is received and defined
by v=[v,, v,, . . ., v,]eS that fits the predetermined rank
configuration. A process is then initiated in response to
receiving the new multi-permutation, adding charge to each
cell in a plurality of memory locations such that the plurality
of cells represent the new multi-permutation. The process
may be continued.

In other embodiments, the sequential order of an initial
analog level of a stored value in each cell of a plurality of cells
in a data device is determined. The sequential order is defined
as a value x comprising [{X;, X . . . , Xz}, {Xs.15
Xdl+2s T Xd1+d2}s A {X1+2i:1"’ldis X2+21-:1"’1d15 ] XZZ-:{’dZ-}]'

In further embodiments, a predetermined rank configura-
tion(d,,d,...d,)is defined, wherein d, is the number of cells
in the i” rank. A new multi-permutation is received and
defined by v=[v,, v,, . . ., v, J€S that fits the predetermined
rank configuration. The analog levels of cells of a rank nin v
are retained. Finally, the cells of rank i in v for I=n-1,
n-2 ... 1 such that the analog levels of cells in a rank i are
programmed to all be higher than the analog levels of the cells
of rank i+1 in v by at least a minimum rank differentiation.
The process may be continued.

Inyet another aspect, a new data representation and rewrite
model, used for storing data in flash memories is provided. A
construction is illustrated which shows how to construct rank
modulation codes achieving rate approaching two on each
write. This construction takes advantage of the recently dis-
covered polar codes which were recently used in the construc-
tion of WOM codes.

In some embodiments, a computer method of operating a
data device where a data value is received comprising a plu-
rality of data sets wherein each data set is a set of values
representing a rank in a plurality of ranks. A new data set for
arank ofa plurality of ranks is received to store in the memory
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device wherein the memory device comprises a plurality of
cells. A current state of candidate cells is read within the
plurality of cells wherein candidate cells are used to store the
new data set. A binary representation of the plurality of cells
is created and used to store the new data set. A WOM code is
used to combine the binary representation with the new data
set to create a binary WOM vector. The binary WOM vector
is modified to equal quantities of 1’s and 0’s within the
candidate cells creating a new data vector. The new data
vector is written to the candidate cells. If anew data vector has
been written for each rank of the plurality of ranks the process
may continue. If all of the data vectors have not been written,
then prior steps starting with receiving a new data set may be
repeated until all the new data vectors have been written to the
memory.

The foregoing summary is illustrative only and is not
intended to be in any way limiting. In addition to the illustra-
tive aspects, embodiments, and features described above, fur-
ther aspects, embodiments, and features will become appar-
ent by reference to the drawings and the following detailed
description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a representation of a memory cell arrangement
using “push to the top” operations in accordance with the
description herein.

FIG. 2 is a representation of a memory cell arrangement
using “minimal push up” operations in accordance with the
description herein.

FIG. 3 is a representation of a memory cell arrangement
using typical “minimal push up” operations in accordance
with the description herein.

FIG. 4 is a representation of a memory cell arrangement
depicting a rare case of “minimal push up” operations in
accordance with the description herein.

FIG. 5 is a state diagram for the states of three cells in
accordance with the description herein.

FIG. 6 is a process that depicts a programming approach
that minimizes the increase of cell levels in accordance with
the description herein.

FIG. 7A is a schematic diagram of a traditional arrange-
ment of a NAND flash memory structure accordance with the
description herein.

FIG. 7B is a schematic diagram of a multi-cell arrangement
of a NAND flash memory structure accordance with the
description herein.

FIG. 8A is a process for manufacturing and operating a
data storage device in accordance with the description herein.

FIG. 8B is a process for operating a data storage device in
accordance with the description herein.

FIG. 9 is a representation of a memory cell arrangement in
accordance with the description herein.

FIG. 10 is a representation of amemory cell arrangement in
accordance with the description herein.

FIG. 11 is arepresentation of a memory cell arrangement in
accordance with the description herein.

FIG. 12 is arepresentation of amemory cell arrangement in
accordance with the description herein.

FIG. 13 is a representation of system model for compressed
rank modulation in accordance with the description herein.

FIG. 14A is a process for operating a data device in accor-
dance with the description herein.

FIG. 14B is a process for reading a data device in accor-
dance with the description herein.

FIG. 15A is a process for writing to a data device in accor-
dance with the description herein.
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FIG. 15B is a process for operating a data device in accor-
dance with the description herein.

FIG. 15C is a process for operating a data device in accor-
dance with the description herein.

FIG. 15D is a process for operating a data device in accor-
dance with the description herein.

FIG. 15E is a process for operating a data device in accor-
dance with the description herein.

FIG. 16 is an illustration of a memory device constructed in
accordance with the present invention.

FIG. 17 is a block diagram of a computer apparatus to
perform the operations of FIGS. 6, 8A, 8B, 14 and 15 for
communicating with a memory device such as depicted in
FIG. 16.

FIG. 18 is a block diagram that shows data flow in a
memory device that operates according to the rank modula-
tion scheme described herein.

DETAILED DESCRIPTION

The contents of this Detailed Description are organized
under the following headings:
1. Introduction to Rank Modulation
II. Permutation “Minimum Push Up”
A. Rewrite Model and the Transition Graph
B. Worst-case Decoding Scheme for Rewrite
1II. Multi-Cells
A. Multi-Cell Flash Memory
B. Notations and Model Properties
C. Upper Bounds
D. Construction for the Average Case
E. Existence for the Worst Case
IV. Multi-Permutations
A. Compressed Rank Modulation
1. Initial Write
2. Subsequent Rewrites
3. Programming Symmetric Cells
4. Rebalancing Permutations
5. Record Weights
V. Rank-Modulation Rewriting Codes
A. Definitions of the Rewrite Model
B. Description of the Construction
C. Polar WOM Codes
V1. Example Embodiments
VII. Conclusion
Subheadings in the description are not listed above but may be
present in the description below.
1. Introduction To Rank Modulation
The amount of charge stored in a flash memory cell can be
quantized into q=2 discrete values in order to represent up to
log, q bits. (The cell is called a single-level cell (SLC) if q=2,
and called a multi-level cell (MLC) if g>2). The q states of a
cell are referred to as its levels: level 0, level 1, . . ., level q-1.
The charge is quantized into discrete levels by an appropriate
set of threshold levels. The level of a cell can be increased by
injecting charge into the cell, and decreased by removing
charge from the cell. Flash memories have a property that
although it is relatively easy to increase a cell’s level, itis very
costly to decrease it. This results from the structure of flash
memory cells, which are organized in blocks of about
10°~10° cells. In order to decrease any cell’s level, its entire
containing block is erased first (which involves removal of the
charge from all the cells of the block) and after then it can be
reprogrammed. Block erasures are not only slow and energy
consuming, but also significantly reduce the longevity of
flash memories, because every block can endure only about
10*~10° erasures with guaranteed quality. See, for example,
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P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, Flash Memo-
ries. Kluwer Academic Publishers, 1999. Therefore, reducing
the number of block erasures improves the longevity of flash
memories.

In MLC flash memory, the process of programming a cell
to a specific level is designed carefully. The target level is
approached from below in order to avoid overshooting of the
cell, which may result in an undesirable block erasure. Con-
sequently, these attempts use multiple programming cycles,
and they work only up to amoderate number of levels per cell,
e.g. 8 or 16 levels. In order to avoid the problem of exact
programming of a cell level, a framework of the rank modu-
lation coding was introduced. See, for example, A. Jiang, R.
Mateescu, M. Schwartz, and J. Bruck, Rank modulation for
fash memories, IEEE Trans. on Inform. Theory,vol.55,n0. 6,
pp- 2659-2673, June 2009, hereinafter Rank Modulation for
flash memories. The main idea of this coding scheme is to
represent the information by the relative values of the cell
levels rather than by their absolute values. Given a set of N
cells, their levels induce a permutation which is used to
encode the data. One of the features of the rank modulation
scheme is that in programming, a cell is charged to a higher
level than that of the previous cell in the permutation, and
therefore there is reduced risk of overshooting. Another fea-
ture of representing data by the ranking of the cells, is that the
threshold levels are no longer needed. This mitigates the
effects of retention in the cells (slow charge leakage).

Rank Modulation for flash memories described rewriting
codes for the rank modulation scheme, in order to reuse the
memory between block erasures. In general, a motivation
behind rewriting codes for flash memories is to increase the
number of times data can be rewritten between two erasure
operations while preserving the constraint that cells only
increase their level. In rank modulation, a feature is to mini-
mize the increase in the highest charge level among the cells
after a rewriting operation. An observation is that rewriting of
different permutations may increase the highest charge level
of'the cells by different magnitudes. For example, assume the
current permutation be (3,1,2), such that the first cell has the
highest level, e.g. its rank is 3, then the third cell (rank 2) and
finally the second cell (rank 1). Now assume the cells are
rewritten and are to represent the permutation (2,3,1). This
can be done by adding sufficient charge to cell 2 such that its
level is greater than the first cell’s level. Now consider a
different case, where the cells need to represent the permuta-
tion ((1,2,3)). In this case, the level of both cell 2 and cell 3 are
raised to be higher than the level of cell 1, as shown in FIG. 1.
Since some gap may be needed between them, and also some
gap between cell 2 and cell 1, it is possible that the increase in
the level of the highest cell in the second example, may be
twice as much as the increase in the first example.

A consequence from the previous operation(s) is, that if
every permutation represents different information, then the
number of rewrites before incurring a block erasure can vary
between different input data sequences. In order to obtain a
large number of rewrites, rewriting codes let multiple permu-
tations represent the same information (that is, introducing
redundancy). Thus, when a certain data is to be written, there
would be at least one permutation corresponding to that data
that could be written without increasing the charge of the
highest cell by a large amount. In Rank Modulation for flash
memories, rewriting codes were studied under a strong con-
straint of push-to-the-top operations. In every push-to-the-top
operation, a single cell is set to be the top-charged cell. This
scheme provides easy implementation and fast programming,
but it suffers a relatively low rate.
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The work on rank modulation coding for flash memories
paved the way for additional results in this area. First, error-
correcting codes in the rank modulation setup attracted a lot
of attention. See, for example, A. Barg and A. Mazumdar,
“Codes in permutations and error correction for rank modu-
lation,” IEEE Trans. on Inform. Theory, vol. 56, no. 7, pp.
3158-3165, July 2010; F. Farnoud, V. Skachek, and O. Milen-
kovic, “Rank modulation for translocation correction,” in
Proceedings of the IEEE International Symposium on Infor-
mation Theory Workshop (ISIT), June 2012, pp. 2988-2992;
A. Jiang, M. Schwartz, and J. Bruck, “Correcting charge-
constrained errors in the rank-modulation scheme,” IEEE
Trans. on Inform. Theory, vol. 56, no. 5, pp. 2112-2120, May
2010; 1. Tamo and M. Schwartz, “Correcting limited-magni-
tude errors in the rank-modulation scheme,” IEEE Trans. on
Inform. Theory, vol. 56, no. 6, pp. 2551-2560, June 2010.
Other variations of rank modulation were studied as well. A
new concept of bounded/local rank modulation was intro-
duced and its capacity was calculated. See, for example, 7.
Wang, A. Jiang, and J. Bruck, “On the capacity of bounded
rank modulation for flash memories,” in Proc. 2009 IEEFE Int.
Symp. Information Theory, June 2009, pp. 1234-1238. Here,
the data is not represented by a single permutation, but rather,
a sequence of permutations of a given size, which may over-
lap, are used to represent the data. Yet another variation,
called partial rank modulation, was introduced. See, for
example, Z. Wang and J. Bruck, “Partial rank modulation for
flash memories,” in Proceedings of the 2010 IEEE Interna-
tional Symposium on Information Theory (ISIT2010), Austin,
Tex. U.S.A., June 2010, pp. 864-868. Now the data is repre-
sented by a single permutation, but only the highest k cell
levels, for some fixed k, may be considered for the informa-
tion representation.

II. Permutation “Minimum Push Up”

The cost of changing the state in the scheme namely, the
cost of the rewriting step is measured by the number of
“push-to-top” operations that are used, because it represents
by how much the maximum cell level among the n cells has
increased. See, for example, A. Jiang, R. Mateescu, M.
Schwartz, and J. Bruck, “Rank modulation for flash memo-
ries,” IEEE Trans. on Inform. Theory, vol. 55, no. 6, pp.
2659-2673, June 2009. Reducing this cell-level increment
may be performed in one embodiment because the cells have
aphysical limit that upper bounds the cell levels. The less the
cell levels are increased, the more rewrites can be performed
before a block erasure operation is used, and the longer the
lifetime of the memory will be.

An example is shown in FIG. 1, where the state of n=4 cells
is to be changed from u=[2,1,3,4] to v=[2,1,4,3]. (Here the
cells are indexed by 1, 2, .. ., n. And their state is denoted by
the permutation [u,, U,, . . ., u,]€S,, where cell u; has the
highest charge level and u,, has the lowest charge level. For
i=1,...,n,cell y, has rank i). Three “push-to-top” operations
are used, where cell 4, cell 1 and cell 2 are pushed sequen-
tially. They are represented by the three edges in FIG. 1. The
cost of this rewriting is 3.

It can be seen from the above example, however, that the
“push-to-top” operation is a conservative approach. To
change the state from v=[2,1,3.,4] to v=[2,1,4,3], when cell 4
is pushed, the level of cell 4 is pushed to be greater than cell
3. There is no need to make the level of cell 4 to be greater than
the levels of all the other n—1=3 cells (i.e., cells 1, 2 and 3).
Similarly, when cell 1 is pushed, its level is pushed to be
greater than cell 3 and cell 4, instead of cells 2, 3 and 4. So a
more moderate programming approach as shown in FIG. 2
can be taken, and the increment of the cell levels (in particular,
the increment of the maximum cell level) can be substantially
reduced. So, the cost of rewriting can be reduced, which
improves the overall rewriting performance and the longevity
of the memories.

10

15

20

25

30

35

45

50

55

60

65

8

Described in this disclosure is a programming approach
that minimizes or otherwise reduces the increase of cell levels
as illustrated in FIG. 6. To change the cell state from u=
[u;, 0y, . .., u,l€S, to v=[vy, vy, . .. V,]€S,, the cells are
programmed based on their order in v, so that every cell’s
level increases as little as possible:

Fori=n-1,n-2, ..., 1 perform:

{Increase the level of cell v,, to make it greater than the
level of the cell v, }.

Note that in the above programming process, when cell v,
is programmed, cell v, , already has the highest level among
the cells v,,;, V.5, - - ., V,,. The programming operation here
is referred to as the “minimal-push-up” operation. (In com-
parison, if cell v, is programmed to make its level greater than
the maximum level amongthecells v, ..., v, |, V,ips -5V,
then it becomes the original “push-to-top” operation.) The
“minimal-push-up” approach is robust, as it has reduced risk
of overshooting. And it reduces increment of the maximum
level of the n cells (e.g., the rewrite cost).

A. Rewrite Model and the Transition Graph

For coding schemes, a good robust discrete model is used
for the rewriting. A discrete model is described herein for
measuring the rewriting cost, which is suitable for both the
“push-to-top” approach and the “minimal-push-up”
approach. To rigorously describe the cost of a rewrite opera-
tion (i.e., a state transition), the concept of virtual levels is
used. Letu=[u;, u,, . . ., u, €S, the current cell state, and let
v=[v,, V5, . . ., v,]eS, denote the new state that the cells
change into via increasing cell levels. Let d (u—v) denote the
number of push-up operations that are applied to the cells in
order to change the state from uinto v. Fori=1, 2, ..., d(u—v),
letp,[n]# {1,2,...,n} denote theinteger and let B, < [n]\{p,}
denote the subset, such that the i-th push-up operation is to
increase the p, th cell’s level to make it greater than the levels
ofall the cells in B,. (For example, for the rewriting in FIG. 1,
we have d(u—v)=3, p,=4, B,={1,2,3}, p,=1, B,={2,3,4},
ps=2, B;={1,3,4}. And for the rewriting in FIG. 2, we have
d(u%v):3, p1:4s B1:{3}s p2:l, B2:{3s4}s p3:2s B3:{1,3,
4}.) Such push-up operations have reduced risk of overshoot-
ing.

For the current state u, we assign the virtual levels n,
n-1,...,2,1tothecellsu,,u,,...,u,_;,u,, respectively. The
greater a cell’s level is, the greater its virtual level is. It is
noted that when the virtual level increases by one, the increase
in the actual cell level is not a constant because it depends on
the actual programming process, which is noisy. However,
when a cell a is programmed to make its level higher than a
cell b, the difference between the two cell levels will concen-
trate around an expected value. (For example, a one-shot
programming using hot-electron injection can achieve stable
programming performance at high writing speed.) Based on
this, a discrete model for rewriting is provided, which may be
a usable tool for designing coding schemes.

Consider the ith push-up operation (fori=1, . . ., d(u—v)),
where the level of cell p, is increased to make it greater than
the levels of the cells in B,. For any je[n], let |, denote cell j’s
virtual level before this push-up operation. Then after the
push-up operation, the virtual level of cell p, may be

1+ max/;
JeB;

namely, it is greater than the maximum virtual level of the
cells in B, by one. This increase represents the increment of
the level of cell p,. After the d(u—v) push-up operations that
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change the state from uto v, for i=1, . . ., n let 1! denote the
virtual level of cell t. The cost of the rewriting process is
described as the increase in the maximum virtual level of the
n cells, which is

maxli —n=1I, —n.
ieln) 1

EXAMPLE 1

For the rewriting process shown in FIG. 1, the virtual levels
ofcells 1,2, 3, 4 change as (3,4,2,1)—(3,4,2,5)—(6,4,2,5)—
(6,7,2,5). Its cost is 3.

For the rewriting process shown in FIG. 2, the virtual levels
ofcells 1,2, 3, 4 change as (3,4,2,1)—+(3,4,2,3)—(4,4,2,3)—
(4,5,2,3). Its cost is 1.

The model captures the typical behavior of cell program-
ming. Yet when the minimal-push-up operations are used, the
number of cells to push may not always be a constant when
the old and new states u, v are given. An example is shown in
FIGS. 3 and 4, where the state changes from u=[1,2,3,4] to
v=[2,1,4,3]. An example programming process is shown in
FIG. 3, where two cells—cell 4 and then cell 2—are pushed
up sequentially. (Note that based on the discrete model, the
rewriting cost is 1. This is consistent with the increase of the
maximum cell level here.) But as shown in FIG. 4, in the rare
case where cell 4’s level is significantly over-raised to the
extent that it exceeds the level of cell 1, cell 1 will also be
programmed, leading to three minimal-push-up operations in
total. However, we would like to show that above discrete
model is still a robust model for the following reasons. First,
in this paper we focus on the typical (i.e., most probable)
behavior of cell programming, where the rewriting cost
matches the actual increase of the maximum cell level well. In
the rare case where cell levels are increased by too much,
additional load balancing techniques over multiple cell
groups can be used to handle it. Second, the rare case—that a
cell’s level is overly increased—can happen not only with the
minimal-push-up operation but also with the push-to-top
operation; and its effect on the increment of the maximal cell
level is similar for the two approaches. So the discrete model
still provides a fair and robust way to evaluate the rewriting
cost of different state transitions.

This disclosure describes codes based on state transitions
using the minimal-push-up operations. Given two states u=[u
(D, u(2),...,um)]eS,, and v=[v(1), v(2), . . ., v(n)]eS,,, let
C(u—v) denote the cost of changing the state from u to v.
(Note that u(-), v(-) are both functions. Let u™, v=! be their
inverse functions.) The value of C(u—v) can be computed as
follows. Corresponding to the old state u, assign virtual levels
n,n-1,...,1tothecellsu(l),u(2),...,u(n), respectively. For
i=1, 2, . .., n, let ], denote the virtual level of cell i corre-
sponding to the new state v. Then based on the programming
process described previously, 1, . . ., 1, can be computed as
follows:

1. Fori=l, 2, ..., nperform:

{luyeni1-1}
2. Fori=n-1,n-2,...,1do:
{Zv(z’)(—max{zv(i+l)+1x Zv(i)}'}
Then:
Clu—=v)=l,y-n.

It can be seen that 0=<C(u—v)n-1. An example of the rewrit-
ing cost is shown in FIG. 5.
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The following theorem provides an equivalent definition of
the cost. According to the theorem, the cost is equal to the
maximal increase in rank among the cells.

Theorem 1.

Clu—v) = r_nfl}]g(v*(i) —u ().
Proof: Assume by induction on k that
b =n+1—k+ max ](i— utv(D)).

In the base case, k=n, and 1 (n)=n+1-n+max,, G-
u~!(v(i)))=1+n-u"*(v(n)). This is the result of the program-
ming process. Now assume that the expression is true for k.
For k-1, by the programming process,

bty = maxtlygy + L, + L —u vk — 1)}

= max{n +l-k+ max (i—-u '@+l n+l-u'(k- 1))}
ielk, ... n]
by the induction assumption

=n+l-(k-1) +max{_ max ](i— W), k=1 —u vk - 1))} =

I
n+l-(h-D+ max (i-u" (D)

and the induction is proven.
Now 1,,, is assigned in the definition of the cost:

Cu-v)=ha—-n
=n+l-1+ max (i-u'(@D)-n
iell, ... n]

= r_n?)]((wl(,-) -ty

Codes for rewriting data based on the “push-to-top” opera-
tion have been studied. See, for example, A. Jiang, R. Matee-
scu, M. Schwartz, and J. Bruck, “Rank modulation for flash
memories,” IEEE Trans. on Inform. Theory,vol. 55, no. 6, pp.
2659-2673, June 2009. Since the “minimal-push-up”
approach has lower rewriting cost than the “push-to-top”
operation, rewrite codes can be constructed with higher rates.

In order to discuss rewriting, a decoding scheme is defined.
It is often the case that the alphabet size used by the user to
input data and read stored information differs from the alpha-
bet size used as internal representation. In one embodiment,
data is stored internally in one of n! different permutations.
Assume the user alphabet is Q={1, 2, . . ., q}. A decoding
scheme is a function D:S,—Q mapping internal states to
symbols from the user alphabet. Suppose the current internal
state is ueS,, and the user inputs a new symbol ceQ. A rewrit-
ing operation given o is now defined as moving from state
ueS,, to state veS,, such that D(v)=a.. The cost of the rewriting
operation is C(u—v).

Next, the transition graph G,=(V,, A,) is defined as a
directed graph with V, =S, i.e., with n! vertices representing
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the permutations in S,,. There is a directed edge u—v if and
only if C(u—v)=1. Note that G,, is a regular digraph. Given a
vertex ueV, and an integer re{0, 1, .. ., n-1}, the ball B, ,(u)
is defined as B,, (u)={veV, IC(u—>v)=r}.

Theorem 2.

1B, (u)=r1(r+1)""

Proof: Induction is used on n. When n=2 the statement is
trivial. (So is it when n=r+1, where IB,,, (0)|=(r+1)!.) Now
the statement is assumed to be true for n=n,, and consider
n=ny+1 and n>r+1. Let u=[u(l), u(2), . . . , u(n)]eS,,, and
without loss of generality (w.l.o.g.) let u(1)=n. Let v=[v(1),
v(2),...,v(n)]eB, (u). Leti=[u(2),u(3),...,u(n)leS,_,,and
let¥S,,_, be obtained from v by removing the element u(1)=n.
By Theorem 1, the first element in u, namely u(1)=n, can take
one of the first r+1 positions in v. Given that position, there is
aone-to-one mapping between pushing-up the remaining n—1
elements from u to veS,, and pushing-up those n-1 elements
from 1 to VeS,_,, and C(0—V)=C(u—v)r. So the following
results: B, (wI=@+1)IB,_, (T)=. .. =(r+1)" (e D=1
(r+1)y"".

Note that givenu, I{veS, |[v~'(i)-u~" (i)l =r for 1=i=n}|is the
size of the ball under infinity norm. When r=1, that size is
known to be a Fibonacci number. See, for example, T. Klove,
“Spheres of permutations under the infinity norm permuta-
tions with limited displacement,” University of Bergen, Ber-
gen, Norway, Tech. Rep. 376, November 2008.

In addition, we note that IB, ,(u)l=2"~ ! Therefore, the
out-degree of each vertex in G is 2”7-1. In comparison,
when we allow only the “push-to-the-top” operation,
IB,,;(W)l=n. Hence we get an exponential increase in the
degree, which might lead to an exponential increase in the rate
of rewrite codes. In the next section we study rewrite codes
under a worst-case cost constraint.

B. Worst-Case Decoding Scheme for Rewrite

Described herein are codes where the cost of the rewrite
operation is limited by r.

1. The case of n=4

The case of r=1 is evaluated first. The first non-trivial case
for r=1 is n=3.

However, for this case the additional “minimal-push-up”
transitions do not allow for a better rewrite code. An optimal
construction for a graph with only the “push-to-top™ transi-
tions has been discussed. See, for example, A. Jiang, R.
Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for
flash memories,” IEEE Trans. on Inform. Theory, vol. 55, no.
6, pp. 2659-2673, June 2009. That construction assigns a
symbol to each state according to the first element in the
permutation, for a total of 3 symbols. This construction may
also be optimal for a graph with the “minimal-push-up” tran-
sitions.

For greater values of n, in order to simplify the construc-
tion, we limit ourselves to codes that assign a symbol to each
of the n! states. We call such codes full assignment codes.
Note that better codes for which not all the states are assigned
to symbols might exist. When all of the states are assigned to
symbols, each state must have an edge in A, to at least one
state labeled by each other symbol. We define a set of vertices
D in G,, as a dominating set if any vertex not in D is the initial
vertex of an edge that ends in a vertex in D. Every denomi-
nating set is assigned to one symbol. Our goal is to partition
the set of n! vertices into the maximum number of dominating
sets. We start by presenting a construction for n=4.

Construction 1. Divide the 24 states of S, into 6 sets of 4

states each, where each setis a coset of { (1,2,3,4)) , the cyclic
group generated by (1,2,3,4). Here (1,2,3,4) is the permuta-
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tion in the cycle notation, and ((1,2,3,4))=([1,2,3,4],[2,3.4,1],
[3,4,1,2],[4,1,2,3]_~. Map each set to a different symbol.
Theorem 3. Each Set in Construction 1 is a Dominating Set.
Proof: Let I, be the identity permutation, g=(1,2,3,4) and

G=(g). For each heS,, hG is a coset of G. For each
v=[v(l), ..., v(n)]ehG and each u=[u(1), . .., u(n)]eS, such
that u(1)=v(1), u has an edge to either v or v¥g. For example,
in the coset [, G=G, for v=I; and ueS,, such thatu(1)=v(1)=1,
ifu(2)is2or3, uhas anedgeto]; [l 2,3,4], and ifu(2)=4,u
has an edge to i,%g=[4,1,2,3]. Slnce G is a cyclic group of
order 4, for every ueS , there exists vehG such that u(1)=v(1),
and therefore hG is a dominating set.
Fork [n] and BE S, define:
Prefy(B)={tls=tu for lul=k and seB}

where t, u are segments of the permutation s. For example,
Prefy({[1.2.3.4.5], [1,2.3,5.4], [1.3.2.4,51)~{[1.21.[13]}.

A lower bound is provided to a dominating set’s size.
Theorem 4. If D is a dominating set of G,,, then

n!

3
2 on-1
4

Proof: Each p,ePref;(S,) is a prefix of 3 different prefixes
in Pref,(S,,). For example, for n=5, [1,2] isa prefix of {[1,2,3],
[1,2,4], [1,2,5]}. Each v D dominates 2"~ prefixes in Pref,
(S,). For example, for n=4, every permutation that start Wlth
[1,2],11,3], [2,1] or[2,3] has an edge to [1,2,3.4]. This set of
prefixes can be partitioned into sets of two members, each
sharing the same prefix in Pref,(S,). For one such set B,=
{P2,1:P25}, and p; denotes the only member of Pref. (Bz)
Since I¥is a dominating set, all of the members of Pref 5(S,)
are dominated. Therefore, the third prefix p, B, such that
{ps}=Pref,({B,.p,s}) is dominated by some ueD, u=v.
Moreover, u dominates also one of the prefixes in B,. There-
fore, at least half of the prefixes in Pref,(S,,) that v domlnates
are also dominated by at least one other member of D. X,
denotes the set of prefixes in Pref,(S,,) that are dominated by
v and not by any u=v such that ueD, and Y, denotes the
prefixes in Pref,(S,) that are also dominated by at least one
suchu=v. Also defined is X=X, | and Y=X . ,IY,|. It has
been shown that X, |<2"; so X=2"~*|DI. In addition, IX, |+
IY,|=2""2, and so X+Y=2""2DI. By the definition of

e

Yoo lUvephl < 5,

because every element in the above union of sets appears in at
least two of the sets. So:

= |Pref,(S,)l
Y
= [Uvep Xyl +|UsepYsl < X + 5

X
=X+273D|- =
1Dl - =

+2773| D) < (27 + 273D
=3.2"D|

Therefore

1Dl =

3.ons’
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Using the above bound, the rate of any full assignment code
Cis

1 8
RE) < 1—10g2§ bits per cell.
n

For the case of n=4, |DI=4. Therefore Construction 1 is an
optimal full assignment code.

2. The case of n=5

In the case of n=5, a dominating set comprises of at least

5!
TS 10 members.

An optimal full assignment code construction is presented
with dominating sets of 10 members.

Construction 2. Divide the 120 states of S5 into 12 sets of 10
states each, where each set is composed of five cosets of
{(4,5)), and two permutations with the same parity are in the
same set if and only if they belong to the same coset of
{(1,2,4,3,5)) . Map each set to a different symbol.

Letg,=(4,5) and g,=(1,2,4,3,5). An example of a dominat-
ing set where each row is a coset of g, and each column is a
cosetof g, is:

[1,2,3,4,5],[1,2,3,4,5]
[2,4,5,3,1],[2,4,5, 1, 3]
4,3,1,5,2],[4,3, 1,2, 5]
[3,5,2,1,4],[3,5,2,4, 1]
[5,1,4,2,3],[5,1,4,3,2]

Theorem 5. Each set D in Construction 2 is a dominating
set.

Proof: Bach coset of {(g,) dominates 4 prefixes in Pref,
(S5). For example, the coset { g, ) ={1,7[1,2,3,4,5].g,=[1,2,3,
5,4]} dominates the prefixes {[1,2], [1,3],[2,1], [2,3]}. Each
coset representative is treated as a representative of the domi-
nation over the 4 prefixes in Pref;(ss) that are dominated by
the coset. According to the construction, a set of representa-

tives in D that share the same parity is a coset of { ,) ,* Let one

ofthe cosets of { g,) in Dbe called C. Foreach v C, the subset
{v,g,*v} represents a domination over a single disjoint prefix
in Pref,(Ss). For example, for v=I,, the subset {1,7[1,2,3 4,
5],8,*1,7[2,4,5,3,1]} represent a domination over the prefix
[2].Since I{ g,) I=5, C represents a complete domination over
Pref,(S5), and therefore D is a dominating set.

The rate of the code may be

1
R= glogzlz =0.717 bits per cell

Recall that optimal codes with “push-to-top” operations
use only n symbols for n cells. Therefore, a rate improvement
of

1
(glogzlz]

T =54.4%
(glogZS] -1

may be achieved.
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3. The case of r<2
When the cost constraint is greater than 1, the constructions
studied above can be generalized. For a construction for the
case r—=n—4, the construction begins by dividing the n! states
S, into

n!
120

sets, where two states are in the same set if and only if their
first n-5 elements are the same. The sets are all dominating
sets, because we can get to any set by at most n-5 “push-to-
top” operations. Each of these sets to 12 sets of 10 members
is further divided, in the same way as in Construction 2,
according to the last 5 elements of the permutations. By the
properties of construction 2, each of the smaller sets is still a
dominating set. The rate of the code is

R=tiog,™ it 1
= —logy 75 bits per cell

An example method 600 of operating a data device is
illustrated in FIG. 6. Method 600 may include one or more
operations, actions, or functions as illustrated by one or more
of blocks 605, 610, 615, 620, 625, 630 and 635. Although
illustrated as discrete blocks, various blocks may be divided
into additional blocks, combined into fewer blocks, or elimi-
nated, depending on the particular implementation.

At block 605 the process can be started. Block 605 can be
followed by block 610, where data values V [v,,v,,...,v,]€S
can be received and are to be stored in data storage containing
current values u=[u,, u,, . . . , u,]eS. Block 610 can be
followed by block 615, where v can be defined as an element
of'S. Block 615 can be followed by block 620, where S can be
defined as a set of symbols in a rank modulation coding
scheme. Block 620 can be followed by 625, where n can be
defined as a number of ranks in v to be stored in a group of n
rank locations in data storage of the data device. Block 625
can be followed by block 630, where the group of n rank
locations can be programmed according to the rank modula-
tion coding scheme and the value v such that for i=n-1,
n-2, ..., 1 the programmed value of a rank location v, is
increased until it is greater than the value of a rank location
v,,, by aminimum cell differentiation amount. Block 630 can
be followed by block 635, where the process may be contin-
ued.

In some embodiments each of the n rank locations may
comprise a cell of the device data storage. In further embodi-
ments, each rank location may comprise a plurality of cells of
the device data storage. In other embodiments, each rank
location may comprise an equal number of cells of the device
data storage. In still further embodiments, programming may
comprise increasing the value of all cells in the rank location
v, until the value in each of the cells v, is greater than the value
in each of the cells in the rank location v,, , . In other embodi-
ments, the current values ofu=[u,,u,, ..., u,]eS areread from
the device data storage before the programming of the group
of n rank locations with v.

1I1. Multi-Cells

We can store log,q bits on a flash cell with q levels. That
way, each time we want to update the data on the memory, we
would have to erase the whole block. We call this represen-
tation method “the trivial scheme”. We could also use a bit
more sophisticated update schemes. For example, we could
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store only 1 bit in each cell, according to the parity of the level
of the cell. If the cell is in level 3, for example, it stores the
value 1. Using this scheme, we can update the data q—1 times
before a block erasure will be required. We call this scheme
“the parity scheme”. Update schemes like the parity scheme
can be especially useful for enterprise applications of flash
memory, where the endurance of the memory becomes a
major design concern. Update schemes are also known as
write once memory (WOM) codes. See, for example, A. Fiat
and A. Shamir, “Generalized “write-once” memories,” IEEE
Trans. on Inform. Theory, vol. IT-30, no. 3, pp. 470-480, May
1984; F.-W. Fu and A. J. Han Vinck, “On the capacity of
generalized write-once memory with state transitions
described by an arbitrary directed acyclic graph,” /EEE
Trans. on Inform. Theory, vol. 45, no. 1, pp. 308-313, January
1999; R. L. Rivest and A. Shamir, “How to reuse a “write-
once” memory,” Inform. and Control, vol. 55, pp. 1-19, 1982.

While the values of the cells in the relative scheme don’t
need to be quantized, discrete levels can be used for analysis
to simplify the calculations. This is to allow a more easy and
useful analysis, and because there should still be a certain
charge difference between the cells in order to avoid errors.
When the cells have q levels, the data can be stored on a set of
q cells according to their relative levels. In other words,
log,(q!) bits can be stored on q cells, or each cell can be used
to store (1/q)log,(q!) bits. If q is large, the capacity of the
trivial scheme described above. However, various update
schemes described herein can be employed that may use
relative levels, such as n cells of q levels, where n<q. As
described further below, a high total capacity can be achieved
with update schemes that use relative cell’s levels. More
specifically, some described examples may achieve an instan-
taneous capacity of n bits and a total capacity of (q—1)n bits
using relative cell’s levels.

Update schemes with high total capacity can become use-
ful when q has a high value.

However, in practical flash memory devices, q may have a
moderately small number. Various example methods
described herein may achieve high values of q with the exist-
ing cell technology. The main idea is to combine several
floating gate transistors into a virtual cell, which we call a
multi-cell.

A. Multi-Cell Flash Memory

NAND flash memory is a widely used type of memory for
general storage purposes. In NAND flash, several floating
gate transistors are typically coupled in series (see FIG. 7A),
where read or write operations occur one at a time. The
present disclosure proposes to replace various transistors
with a multi-cell of m transistors that are coupled together in
parallel, with commonly controlled gates, as shown in FIG.
7B. In read operations, the currents of the transistors sum
together, and the read precision may increase by in times,
allowing to store mq levels in a single multi-cell. In write
operations, the same value can be written into all of the
transistors coupled together with a common gate, such that
the sum of'their charge levels gives the desired total level. The
resulting error rates of read and write operations of the con-
figuration in FIG. 7B are substantially the same as those error
rates found in a traditional flash cell.

If data is stored by n transistors that form n/m multi-cells of
mgq levels each, and if the trivial scheme is used, an instanta-
neous and total capacity of (n/m)log,(mq) bits results that is
less than the nlog,q bits would result using traditional cells.
However, if an update scheme such as the relative schemes
presented in the present disclosure, then a total capacity may
approach n(q-1) bits both with multi-cells and with tradi-
tional cells. In order to use a permutation of cell’s levels, the
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number of levels in each should be at least the number of cells.
To approach a total capacity of n(q-1) bits with permutations,
the number of updates the scheme can take should be greater
than the number of cells we use. By using multi-cells, the
number of updates may increase at the expense of the instan-
taneous capacity, and the total capacity is approached faster.

B. Notations and Model Properties

In order to allow easy and fair analysis, discrete levels for
the cell’s charge values can be utilized. In practice there is
generally no need for threshold levels, and analog values can
be used for the cell’s charge values. For example, let c=
(C15C05---,C,), withc,ed0, 1,...,q-1} as the state of an array
of n flash cells, each cell having q discrete levels, where c;=c;
for all i=]. The n variables may induce a permutation such as
o=[o(1), o(2), . . ., o(n)]eS,,, where s, denotes the set of all
permutations over [n]={1, 2, . . ., n}. The permutation o may
be uniquely defined by the constraints ¢ ,,>Cy; for all i>j,
i.e., when c is sorted in ascending order as ¢;<c, <. .. <c,,
then o(i)=j, for all 1=i=n.

To change the permutation from o to o, the cells can be
programmed based on their order in o', so that each cell’s
level may increase as little as possible. For example, let ¢'=
(c'},¢'5, ..., ¢',)denote the new cell’s levels to be set. Initially
C'oy™Oo1ay and then, fori=2,3, ... n, oo o
a-n+1}, Given two cell states ¢ and ¢', let cost (c—c') denote
the cost of changing the cell state from ¢ to ¢'. The cost can be
defined as the difference between the levels of the highest
cell, before and after the update operation. Namely, cost
(e =" 5,y =C oy As illustrated by this example, the cost
may be a function of ™' and 0"~!, where o™ is the inverse of
the permutation o. See, for example, E. En Gad, A. Jiang, and
J. Bruck, “Compressed encoding for rank modulation,” in
Proceedings of the 2011 IEEE Int. Symp. on Inform. Theory,
1S772011, St. Petersburg, Russia, August 2011, pp. 884-888.
The cost can be written as:

cost(c —» o’) = r_nfi)]((o"l H-oct@).

In other words, the cost is the L, quasimetric.
EXAMPLE 1

Let ¢=(0,1,2,3). So 0=[1,2,3,4]. Now let 0'=[3,1,4,2]. The
levels of'the cells to represent o' can be increased as follows:
set ¢';=c;=2; ¢';=max{c,, ¢';+1}=max {0,3}=3; and ¢',~4
and ¢',=5. The cost of the update can be determined as c',—
¢,=5-3=2. The cost can also be calculated directly from the
permutations: o~'=[1,2,3,4], and o'~'=[2,4,1,3]. Since o'~
0" '=[-2,2,1] and the maximum is 2, so this is the cost.

The set of all the values that the data can take can be
denoted as D. An update scheme, or update code, ¢ may
include a decoding function f and an update function g. The
decoding function f:S,—D may identify the permutation
oeS,, as a representation of the data f(0)eD. The update func-
tion (which may represent anupdate operation), g:S, xD—S |
may identify the current permutation o€S,, and the update can
change the data to deD, and the update code can change the
permutation to g(o,d), where f(g(o,d)) may be equal to d.
Note that if f(0)=d, then g(o,d)=0, which corresponds to the
case where w the stored data does not need to change.

Let C,(€) be the instantaneous capacity of an update code
€ . The instantaneous capacity can be defined as C,(€ )=(1/
n)logIDI, where the binary logarithm can be used. Let t, (€ )
be the maximal number of updates that € can support for all
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update sequences. The worst-case total capacity per level can
bedefinedasc (€ )=t (€ )C,(C )/(q-1). Similarly, t (€ )can
be defined as the average number of times the memory can be
modified before a block erasure is required, where we assume
that in each update, the data value can be uniformly distrib-
uted, C,(C )=t (€ )CAC )/(q-1) can be the average total
capacity per level of the update code, and see that
lim,, ,,_...Co(€ )=C,€ (c)/E(cost), where E(cost) is the
expectation of the cost.
Finally, for a fixed oeS,,, set

B, (0)={0%S; cost(0—0")=r}, k, ,=IB, (0)l.

We note that k, , is independent of o. It was shown in [2] that
k,,, =+ 1) e+ 1)

C. Upper Bounds

In this section, a bound is derived for C,,€ and C(C ),
when q and n are large numbers, and q is much greater than n.
In addition, a bound for C,(€ ) is derived in the cases where
C,(€)and C (€ ) are asymptotically optimal.

1. Worst Case

To derive abound, k,, ,, the size of the ball of radius r can be
used. To guarantee that the cost of each update operation is no
more than r, IDI=k, . Otherwise, to write the data state d,
there is no guarantee that there is a permutation in B, (o) that
represents d. The resulting instantaneous capacity can be
determined as (1/n)log(k, ). Let K =lim,_, (1/mlog(k, ).
By setting C,(€ )<K,, we cannot guarantee to write more than
(gq-n)/r times, so C, (€ )=, (€ )C,€ )/(q-1) is less than K /r.
In the following K, /r is decreasing in r, which means that K
is an upper bound to the worst case total capacity.

Lemma 1. K /r is strictly decreasing in r when r=1.

Proof:

(1/nnlogk, = (1 /nrlog((r + 1" "D+ 1Y
= (1 /nr)(nlog(r+ 1) —(r+ 1))
=(1/Mloglr+ 1) —(r+ 1)/ (nr)

- (1/nlogr+1),n—> co

So K, /r=(1/r)log(r+1). On the other hand,

log((r + 20D (r + 2)1)

(L/(nr + D)logkey = D

< (1/(r+ 1)log(r+2)

So
K1 /r+ D)= (1/(r+ Dlog(r+2) <(1/rloglr+ ) <K, /r

So K, /r is strictly decreasing.

It also follows that when C, (€ ) is asymptotically optimal,
C,(€) is bounded by K, as well. And when C,(€ ) is asymp-
totically optimal, t, (€ ) is optimal, since r=1. As noted, both
upper bounds are determined as K,. We can calculate K,
quickly: K,=lim,__(1/n)log 2""'=1. In section 6 we show
that there exists a code that approaches both of the bounds.

2. Average Case

We now find a bound for the average case. Sincet, (€ )<t (
¢), the average total capacity is at least that of the worst case.
In the following theorem we show that, asymptotically, the
average total capacity is also bounded by K.

Theorem 1. Let € be a permutation based update code.
Thenlim,,, ,,_...C,(€ )<K,. Proof: Letr be the largest integer
such that lim,_.C,(€ )>K,. Therefore, lim,_,C,(€)=<K,,,.
Let deD be a data state that needs to be stored, and ceS,, the
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current permutation of the cells. Since f(0) is the decoding
function, let f~*(d) be the set of permutations that are decoded
to d. We start by bounding E(cost), the expected cost of an
update:

n-1
E(cost) = Z iPr{cost = i} = (r + 1)Pr[cost = r + 1}
i=0
= (r+ DPrif (@) N By, (o) = B}
= (r+ (1 - Pridk, .}
=(r+ DU -k, /D)

= (r+ D1 = 2&il€))

C.l8) = L EICE) /(g 1) =
(g=mCiE)/ (g~ DE(cost) = (&) [ ir+ 11 - 26<E)
Since limy .. C(E Ky,
. T, anlKe=GE DY
q/i,l;goc Ca(C) - q/i,l;goc Krn /((r * 1)(1 ? ( ( )))) -

K /r+1) =K

where the last step is due to Lemma 1.
Oncelim,,, ,,_...C,(€)1s optimized, we also want to opti-
mize C,(€ ). We now derive an upper bound for that case.

Theorem 2. Let € be a permutation based update code. If
C.(€)—K, when g/n,n—o0, then lim,_,  C,(€ )=K,.

Proof: Set r as before. Therefore, lim,_,..C,(€C )=<K,.,,. If
rz1, lim,,, ,,_...C(€ )=K,, /(r+1)<K,, since K /r is strictly
decreasing, and we have a contradiction, since C (€ ) doesn’t
approach K. So r=0, and therefore lim,_, .C,(€ )=<K,.

We see that once C,(€ ) is asymptotically optimal, t € ) is
asymptotically optimal as well.

D. Construction for the Average Case

We now present a code that achieves both bounds with
efficient decoding and update procedures. For convenience,
we assume that both log n and n/log n are integers.

Let each data state be a factorial number (also known as a
reflected inversion vector) with n/log n digits, d=(d,, . . .,
/104 n_1)- The i-th digit from the right in a factorial number
has base 1, which means that the digit is less than i. Therefore,
the base of digit d, is n/log n—i.

We can see that the instantaneous capacity of the code is
asymptotically optimal. That is because:

G(€) = (1/mlogD|

= (1/m)log((n/logm) )

n (logn — log(2logn))
gt

=

nlo

=1-log(2logn)/logn —» 1,n - oo

Construction 1. Permutation Based Update Code.

Decoding:

The decoding function, f{0), can be used to decode a permu-
tation a to o data state d. The permutation a can be written as
a sequence of log n permutations, 6={0,, 0}, . . ., Opg i1 })s
each taken over n/log n cells. For the purpose of decoding, we
first represent the permutations as factorial numbers. Namely,
for each permutation o, its factorial is V=(V,((0),
V), ...,V olog n-1)), with V,()=I{kik>i and o,k)>
0,(i)}. Inother words, each element is the number of elements
following the element in the permutation that are greater than
it.
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The decoding function may be composed of a sequence of
digit functions f,, f, . .., f each decoding a different

s ‘n/log n—13

digit. Each digit function

can be used to decode the digit d, according to the vector
VO={Vo@), V,Q), . . ., Vipg oo (D} Together, f(o)={(V)=(f,
(VO), 1,(V(1)), - . ., £, 50g 1 (V(/log n-1)). Bach function
f,(V(i)) can take the value of the sum of the digits with index
i in the log n factorial numbers. The sum can be taken as a
modulo of the base of the digit, (n/log n-i):

SVO=24' "V (iH)mod(n/log n-i)

Update:

The update function, g(o, d), updates the permutation o into
a permutation o', such that f(o')=d. The function takes place
sequentially from d, to d, . ,_,- The update function is
described by the following algorithm:

1: Set o'=0, V', the factorial number of o;, and start with
digit d, i.e. i=0.

2: Identify a sequence s=(8q, S, - - - 5 Sz ,_1 Of log n bits,
such thatif, for each f, we perform the transposition (i, i+s,) on
o', then £,(V'(1))=d;. If such a sequence is found, perform the
transpositions according to s and repeat phase 2 for the next
digit, d,, ;.

3: If there is no binary sequence s such that f,(V'(i))=d,,
identify a ternary sequence of length log n, i.e., s,€{0,1,2},
such that f(V'(i))=d,. If such a sequence is identified, the
transpositions can be performed according to s and repeat
phase 2 for the next digit.

4: If there is still no appropriate binary sequence s, an
arbitrary index j is selected, and update o, to an appropriate o;
such that f{(V")=d.

EXAMPLE 2

Let n=16. Let 0~[1,2,3,4] for j=0,1,2,3. For each j,
V(0)=3, since there are 3 elements following the element 1 in
o, that are greater that 1. Now we decode the data from the
permutations. f,(V(0))=3+3+3+3 mod(4-0)=0, so d,=0.
Similarly, d,=2x4 mod(4-1)=2, d,=4 mod 2=0 and d,=0.
Note that d, ;¢ ,,_,=0.

We now assume that we want to update the data state to
d=(2,2,0,0). We start with encoding d,=2. We look for a
binary sequence s such that f, (V'(0))=2. We notice that for
each j, if' s, =0, then V'(0)=3, and if s,=1, then V',(0)=2. So we
can choose, for example, the sequence s=(1,1,0,0), and get
£,(V'(0))=2+2+3+3 mod 4=2. In the same way we can encode
each digit in the data state.

We remember that the cost of update is the L, quasimetric:
cost (0%0'):maxié[n](0"1(i)—0"1(i)). Therefore, if all the
digits are updated by phase 2, the cost of the update operation
is 1. The number of binary sequences of length log n is n, and
therefore the algorithm can check all of them in polynomial
time. In order to avoid the calculation of the sum for each
sequence, the algorithm can use a binary reflected Gray code,
and calculate only the difference of one transposition in each
step.

If at least one digit is updated by phase 3, the cost of the
update is 2. The running time of the algorithm remains poly-
nomial in that case. If the algorithm reaches phase 4, the cost
can be determined as n/log n-1, but the running time remains
polynomial, since we can choose the elements of V', quickly.

10

15

20

25

30

35

40

45

50

55

60

65

20

Since all the steps in the update algorithm take polynomial
time, the worst-case complexity is polynomial in n.

We now analyze the expected cost of update. We assume
that o and d are drawn according to uniform distributions, and
start with calculating the probability that the cost is greater
than 1. For every binary sequence s, Pr(f,(V'(1)=d,) is at least
log(n)/n, since the base of d, is at most n/log n. So the prob-
ability that s is not good is at most 1-(log n/n). s can take one
of n values, and for each different value that probability is
independent. Therefore, the probability that there is no good
sequence s is at most (1-(log n/n))”. That probability is inde-
pendent for different digits of d. Therefore, by the union
bound, the probability that at least one digit is updated
according to phase 3 is at most (n/log n)(1-(log n/n))”. This is
the probability that the update cost will be greater than 1.
Similarly, the probability that the update cost is greater than 2
is at most (n/log n)(1-(log n/n))> " ", since phase 3 uses ternary
sequences. We now show that the expected cost of the update
algorithm is approaching 1:

nilogn-1
E(cost) = Z iPr(cost = i) <
=0

1Pr(cost = 1) + 2Pr(cost = 2) + (n/logn)Pr(cost > 2) <
1+ 2(n/logn)(1 — (logn/m)Y* + (n® [log?n)(1 — (logn /m))**8" <

1 + (2n/logn)exp(—logn) + (n* /log? mexp(—n'°®logn) - 1, n > o

So C,(€)=t,C(€ ) (q-1)—1 when g/nn—co, and the
code approaches the bounds for the instantaneous and the
average total capacity.

E. Existence for the Worst Case

In this section we show that there exists a code such that C,(
€), C,,C) both approach K, when q/n,n—>0o.

Theorem 3. There exists a permutation based update code
€, such that C(€), C, (€ )—K, for g/n,n—=co.

Proof:

Let [DI=k, ,/n'*<, where € is a positive constant. In the fol-
lowing we show that there exists a {D,n} code with worst case
update cost of 1. We first calculate the instantaneous capacity
of the code:

G(€) = (1/mlogD|

=(1/mlogk,; —(1/m)(1 +2)logn — K, n - oo

So the instantaneous capacity of such a code is asymptotically
optimal. If we show that the worst-case cost is 1, it follows
that the worst-case total capacity is also asymptotically opti-
mal.

Suppose if {f'(d)},,'”" is a partition of S, ie.,
1 dNf1(d)=a, d=d'; and U,,_, P'T-1(d)=S,. We now show
that there exists a partition of S, such that for any ceS,, and
any deD, there exists a vector o'ef'(d), such that cost
(0—0")=1. We use a random coding method. With every
oeS,,, we connect a random index y, which is uniformly
distributed over the data set D, and all these random indices
are independent. Then if {f-'(d)} ._,'”" forms a random par-
tition of S,,. Fix deD and ceS,, then
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PrfHd) N By (o) = P} = PriY oB,,(0), 13 % d}
= [1 = 1/|D[I! exp{~ky1 /I1Dl}

— exp{_on}
Therefore,
Pridde D and o €S, st. fHd) () Bplo) = P} <
|DIIS,lexp{—n'*} < 2"nlexp{—n'*S) <

exp{n(l + lnn —n)} > 0, n > co

This implies that when n is sufficiently large, there exists a
partition of S,, such that the cost of each update is 1.

FIG. 8A depicts a process 800 for manufacturing and oper-
ating a data device. Process 800 may include one or more
operations, actions, or functions as illustrated by one or more
of blocks 805, 810, 815, 820, 825 and 830. Although illus-
trated as discrete blocks, various blocks may be divided into
additional blocks, combined into fewer blocks, or eliminated,
depending on the particular implementation. The process
starts with block 805. In block 810 a plurality of transistors
each of which is capable of storing charge are disposed on a
device. Each of the plurality of transistors comprises a gate, a
source, and a drain. In block 815 connections are formed
between the sources of each of the plurality of transistors.
Each connection is capable of carrying electrical current. In
block 820 connections are formed between the drains of each
of the plurality of transistors. Each connection is capable of
carrying electrical current. In block 825 data is stored in the
plurality of transistors. The data corresponds to a sum of
charges stored in each of the plurality of transistors. In block
830 the process may continue. In some embodiments connec-
tions may be formed between the gates of each of the plurality
of transistors.

FIG. 8B depicts a process 850 for operating a data device.
Process 850 may include one or more operations, actions, or
functions as illustrated by one or more of blocks 855, 860, 865
and 870. Although illustrated as discrete blocks, various
blocks may be divided into additional blocks, combined into
fewer blocks, or eliminated, depending on the particular
implementation. The process starts with block 855. In block
860 a code word is generated that has a plurality of symbols
selected from a set of symbols. In block 865 each of the
plurality of symbols is stored in a data storage location of the
data device. Each data storage location comprises a plurality
of parallel connected devices. In block 870 the process may
be continued. In some embodiments the plurality of parallel
connected devices may comprise transistors.

IV. Multi-Permutations

We further generalize the paradigm of representing infor-
mation with permutations to the case where the number of
cells in each level is a constant greater than 1, multi-permu-
tations.

Namely, the states that the cells can take are no longer
permutations of a set, but permutations of a multiset. For
example, if the number of cells at each level is 2, the two cells
in each level do not need to be identical in their analog values,
they just need to be distinguishable with other levels (but do
not need to be mutually distinguishable). Hence, the encoding
and decoding may use relative levels, and the scheme has
good resistance to drift; namely, the advantages of the per-
mutation based relative scheme that we described above still
apply. Another example is the case where the number of levels
is 2, and there are many cells in each level. In this case, the
multi-permutations are balance binary sequences.
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We consider the case where the multiplicities of all the
elements in the multiset are equal, and denote it by z. This
generalization becomes interesting especially when z is large,
and n is still much larger than z. In that case (if q is still much
larger than n), we can prove that the upper bound on the total
capacity is 2q bits per cell, and that there exists a construction
that approaches this bound. The instantaneous capacity of the
construction is approaching 2 bits per cell. These results can
be proved using similar techniques to those we used in the
theorems described in this paper. Since the cost of each
update is at least 1, the number of updates is at most q—1. We
note that when the number of updates is at most q-1, it
follows that the total capacity of an update scheme, even
without relative levels, is no higher than 2q bits per cell, and
that there exists a code that achieves this bound. See, for
example, F.-W. Fu and A. J. Han Vinck, “On the capacity of
generalized write-once memory with state transitions
described by an arbitrary directed acyclic graph,” /EEE
Trans. on Inform. Theory,vol.45,no. 1, pp. 308-313, January
1999. However, our generalization makes a stronger claim—
that there exists a code that uses multisets (relative levels) and
achieves the total capacity of 2q bits per cell. It is still an open
problem to find a construction that achieves 2q bits per cell.

A. Compressed Rank Modulation

We will focus on the new multi-permutations scheme intro-
duced above, which we call Compressed Rank Modulation.
Before we do that, let us first review the terms in the original
rank modulation scheme. There are n cells, whose analog
levels can be denoted by ¢, c,, . . ., ¢,,. (For flash memories,
the analog level of a cell may correspond to its charge level or
threshold-voltage level. For phase-change memories and
memristors, the analog level of a cell may correspond to its

resistance level.) They induce a permutation [X,, X,, . . ., X,,]
of the set {1,2, . . ., n}, such that

0y <C <. ey,
For i=1, 2, . . ., n, the x,-th cell is said to have rank i. An

example is shown in FIG. 9, where n=4 cells induce the
permutation [4,2,1,3].

Rank modulation may have two advantages:

Cell programming is efficient and robust. We can program
cells from the lowest level to the highest level, without
the risk of overshooting, and there may be no need to
accurately control the level of any cell.

The state of the cells can be read in a simple way. For the n
cells, their ranks can be determined by sorting. That is,
we just need to measure the order of the cell levels. There
may be no need to measure the exact value of the cell
levels.

We now introduce the new scheme called, Compressed
Rank Modulation. Letnand d,, d,, ..., d, be parameters that
are positive integers. There are d,+d,+ . . . +d,, cells, whose
analog levels are denotedbyc,,¢,, ..., ¢, 4. .4 Theyare
assigned n different ranks based on their analog levels, where
the d, cells of the lowest analog levels are assigned rank 1, the
next d, cells are assigned rank 2, . . . , and the top d,, cells are
assigned rank n. An example is shown in FIG. 10, where n=3,
d,=d,=d;=2, and the induced permutation is

[{4.5}, {2.3}, {1.5}]

(namely, cell 4 and cell 6 have rank 1 (the lowest rank), cell 2
and cell 3 have rank 2 (the middle rank), and cell 1 and cell 5
have rank 3 (the highest rank)).

Another example is as follows:

EXAMPLE 3

Let n=3, d,=2, d,=3, d;=4. We assign 2,_,” d,=9 cells to
n=3 ranks, suchthatd, cells are assigned torank 1, d, cells are
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assigned to rank 2, and d; cells are assigned to rank 3. For
example, the following permutation is valid:

[{1,5}, {2,3,8}, {4,6,7.9}].

The main advantage of Compressed Rank Modulation,
compared to rank modulation, is that cells of the same rank
can be programmed to very close analog levels. In the original
rank modulation, in order to tolerate noise, we want there to
be a sufficiently large gap between every two analog cell
levels. In the compressed rank modulation, however, for cells
of the same rank, their analog levels can be arbitrarily close.
(And when we program cells, we would like to make cells of
the same rank to have very close analog levels, so that the gap
between the analog cell levels of different ranks can be large.)
This way, we can pack more cells into the group of cells that
use rank modulation. And the storage capacity can be
increased.

EXAMPLE 4

This Example illustrates that the compressed rank modu-
lation can improve the storage capacity. In this example, cells
of the same rank can be programmed to arbitrarily close
analog levels (just for the sake of explanation). For cells of
adjacent ranks, in this example, the gap between their analog
levels can be assumed to be A.

Consider the compressed rank modulation with n=3 and
d,=d,=d;=2. The rank modulation can represent

oY 90 bol
(2](2]‘ Symbeis

For fair comparison, for the original rank modulation
scheme, consider 6 cells that we partition equally into 2
groups, where every group employs the rank modulation
scheme. Since each group can represent 3!=6 symbols, the
two groups can together represent 6x6=36<90 symbols. So
the compressed rank modulation achieves higher storage
capacity.

The compressed rank modulation scheme may have the
advantages of the original rank modulation scheme:

Cell programming is efficient and robust. When program-
ming cells, we program them from the lowest rank to the
highest rank, without the risk of overshooting. Note that
for cells of the same rank, the order of their analog levels
does not matter. There is no need to accurately control
the analog level of any cell.

The state of the cells can be read in a simple way. All we
need is still just sorting. The d, cells of the lowest analog
levels have rank 1, the next d, cells have rank 2, and the
top d,, cells have rank n.

We emphasize again that for cells of the same rank, their
analog levels can have arbitrary orders. That makes program-
ming simple. For example, the examples in FIGS. 11 and 12
may induce the same permutation as the example in FIG. 10.
Of course, given the permutation [{4,6}, {2,3}, {1,5}], we
prefer to program it as FIG. 10 or FIG. 12 instead of FIG. 11,
in order to have larger gaps between the analog cell levels of
different ranks.

1. Initial Write

In this section, we discuss how to write data in the com-
pressed rank modulation scheme.

For flash memories (or PCMs, etc.), when data are written
to cells for the first time, typically, all the cells are in the same
initial state. (Typically, they all have the lowest analog levels.)

So given a permutation [{x;, X, . . . R SANPAID AT
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Xd1+d2}s et {X1+2i:1"’ldis Xous, "Sdp - s XZizl"di}]s we can
program the cells from the lowest rank to the highest rank, in
the following way:

1. Let A>0 be a parameter we choose. Let cells of
rank 1 —namely, the x,th cell, the x,th cell, . . ., the x,, th
cell—retain their analog levels.

2. Fori=2,3,...,n,do:

Program the cells of rank 1 such that their analog levels are

all higher than the analog levels of the cells of rank i-1
by at least A.

It is easy to see that the above programming method has
little to no risk of overshooting, and enables cells to be pro-
grammed efficiently without the need to accurately control
analog cell levels. It is especially useful for flash memories,
where cell levels can only be increased before the very costly
block erasure operation is taken.

2. Subsequent Rewrites

After data are written into cells, there are at two scenarios
where it may be necessary to program the cells again. In the
first scenario, the value of the data needs to be changed. In the
second scenario, the analog cell levels of the cells are dis-
turbed by noise, and cells need to be reprogrammed to ensure
data reliability. If various cells need to be reprogrammed by
increasing cell levels (which is performed for flash memories
and sometimes also for PCMs), the cells can be programmed
with the following method.

Let(Cy,Cos -5 Cpprpps . .. +a,) denotetheinitial analog levels
of the cells. Let [{x,, X,, . . ., Xgy et Xapaar -+ o
Xd2+d2}5 cees {X1+2i:1"’idis X2+21-:1"’1d1.s ) XEH"d-}] denote the

new permutation we need to program into the cells, and let
(/€ s Copuar . .. +a) denote the new analog cell levels
to be set. We can program the cells from the lowest rank to the
highest rank as follows:

1. Let A>0 be a parameter we choose. For cells of rank 1
—namely, the x;thcell, thex,thcell, ..., thex,. thcell—they
can either retain their analog levels, or be programmed
slightly such that their analog levels become close to each
other.

2. Fori=2,3,...,n,do:

Program the cells of rank 1 such that their analog levels are
higher than the analog levels of the cells of rank i-1 by
at least A. In addition, if desirable, we can also make
their analog levels be close to each other.

It can be seen that the programming method is essentially
the same as the one for the initial write. It also avoids over-
shooting programming errors, and is robust and efficient.

3. Programming Symmetric Cells

For some memories (such as phase-change memories and
memristors), their cell levels can be both increased and
decreased without block erasures. In such a symmetric case,
it becomes even easier to program cells for the compressed
rank modulation scheme. Those skilled in the art will under-
stand how to program cells for this case.

4. Rebalancing Permutations

A compressed rank modulation code has

+dn] (dn,1+dn]
4

permutations. We can directly use them to encode data, either
with a one-to-one mapping or with an error-correcting code.
In the following, we describe two additional methods for
encoding data, which can be especially useful if the number
of'cells d,+d,+ . .. +d,, is large.

(d1+d2+...

+dn](d2+d3+...
dy

d
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Suppose the input data is a vector (vy, Vv, . . . ,
Varears . +a 610, 1, .. n=1}%% -+ swhere each integer

v, can independently be any integer in the alphabet
{0,1, ..., n-1}. (Note that coding schemes for such vectors
have been extensively studied in the past.) We would like to
change it into a “similar” permutation so that we can store it
using the compressed rank modulation scheme, and use a
small amount of metadata to remember how the change hap-
pened.

The key is to rebalance the vector in an efficient way so that
it becomes a permutation with the required weight distribu-
tion (d;, d,, . . ., d,). The approach is illustrated with the
following example.

EXAMPLE 5

Let n=4 and d,=d,=d;=d,, =5. Suppose we have a code-
word of (d,+d,+d;+d,)log,n=40 bits:

100100110110110111111001011011 11000001
10
Such a codeword can be easily converted to a vector
(Vs Vas - -5 Va0 )ed0,1,2,3}2° with the simple mapping: 00—0,
01—1, 102, 113, and get

21031231332112330012
(Certainly, we may also choose to use a Gray code for the
mapping. But that is not related to our discussion here.)

To get a permutation where each of the n=4 ranks has S
cells, we can do it in three steps. First, we transform it to a
codeword where the number of Os or 1s equals the number of
2s or 3s. By inverting the first i=1 cell (where we change 0 to
3, change 1 to 2, change 2 to 1, and change 3 to 0), we get

11031231332112330012
which has 10 Os or 1s, and 10 2s or 3s.

The subsequence that contains Os or 1s in the above code-
word is

1101111001

To make it balanced, we invert the first is i=2 cells (where
we change 0 to 1, and change 1 to 0), and get

00111001

The subsequence that contains 2s or 3s in the above code-
word is

3233322332
To make it balanced, we invert the first i=1 cell (where we
change 2 to 3, and change 3 to 2), and get

2233322332

We merge the above two subsequences based on their
original positions, and get

00021231332112330012
We can now store it as a compressed rank modulation code,
where each of the n=4 ranks has cells.

The additional information about the inverting namely,
i=1, is =2 and i=1—can be stored as meta-data in additional
cells (possibly using compressed rank modulation as well).
(Note that in the above example, the mapping used in invert-
ing cell levels is not unique. For example, we can change 0 to
2 instead of 3, or change 1 to 3 instead of 2, etc. (The key is to
switch {0,1} with {2,3} when inverting cells.))

So we can see that it is feasible to represent existing codes
e.g., BCH codes, Reed-Solomon codes, LDPC codes, and
other codes—with compressed rank modulation. The system
model is shown in FIG. 13.

5. Record Weights

We now discuss an alternative approach. Suppose the input

data is a Vector (Vis Voo o oo Vg d)e{O 1,
n-1}%%* - +4, where each integer v, can 1ndependently be
any integerlnthe alphabet {0, 1. n—l} Fori=0,1,...n-1,

let d,,, denote the number of entries in the vector that are
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equal to i; that is, d,,, =I{jl1=j=d +d,+ . . . +d,, v=i}I. We
record the weight distribution (d, d,, . . ., ) as metadata.
And then, we can store the vector directly as a compressed
rank modulation permutation. (Ifany of the d,”s happens to be
0, the compressed rank modulation scheme can be extended
easily to cover this case.)

EXAMPLES

FIG. 14A depicts a process 1400 for operating a data
device. The process 1400 may include one or more opera-
tions, actions, or functions as illustrated by one or more of
blocks 1405, 1410, 1415, 1420, and 1425. Although illus-
trated as discrete blocks, various blocks may be divided into
additional blocks, combined into fewer blocks, or eliminated,
depending on the particular implementation. The process
starts with block 1405. In block 1410 a predetermined rank
configuration (d,, d, . . . d,) is defined, wherein d, is the
number of cells in the i’ rank. In block 1415, a new multi-
permutation is received and defined by v=[v,, v,, ..., Vv,]€S
that fits the predetermined rank configuration. In block 1420
a process is initiated in response to receiving the new multi-
permutation, adding charge to each cell in a plurality of
memory locations such that the plurality of cells represent the
new multi-permutation. In block 1425 the process may be
continued.

FIG. 14B depicts a process 1450 for reading a data device.
The process 1450 starts with block 1455. In block 1460 the
sequential order of an initial analog level of a stored value in
each cell of a plurality of cells in a data device is determined.
The sequential order is defined as a value x comprising [ {x;,
Koy v v o s d” i +10 Xd1+2s ctto d +d> }s crt X1+21 "
Xoys las - - Xy, d}] In block 1463 the process may be
continued.

FIG. 15A depicts a process 1500 for writing to a data
device. The process 1500 may include one or more opera-
tions, actions, or functions as illustrated by one or more of
blocks 1505, 1507, 1509, 1511, 1513, and 1515. Although
illustrated as discrete blocks, various blocks may be divided
into additional blocks, combined into fewer blocks, or elimi-
nated, depending on the particular implementation. The pro-
cess starts with block 1505. In block 1507 a predetermined
rank configuration (d,, d, . . . d,,) is defined, wherein d, is the
number of cells in the i rank. In block 1509, a new multi-
permutation is received and defined by v=[v,,v,,...,V,] €S
that fits the predetermined rank configuration. In block 1511
the analog levels of cells of arank n in v are retained. In block
1513 the cells of rank i in v for I=n-1,n-2 . . ., 1 such that the
analog levels of cells in a rank i are programmed to all be
higher than the analog levels of the cells of rank i+1 in v by at
least a minimum rank differentiation. In block 1515 the pro-
cess may be continued.

V1. Rank-Modulation Rewriting Codes

Various embodiments disclosed herein construct rank
modulation codes that achieve a rate approaching two on each
write. One embodiment takes advantage of the recently dis-
covered polar codes which were recently used in the construc-
tion of WOM codes. See, for example, D. Burshtein and A.
Strugatski, “Polar write once memory codes,” in Proceedings
of the 2012 IEEE International Symposium on Information
Theory, ISIT2012, Cambridge, Mass., USA, July 2012, pp.
1982-1986.

A. Definitions of the Rewrite Model

The features of the rank-modulation scheme come from the
fact that it avoids the discretization of the cell levels. How-
ever, in order to design coding schemes, a discrete model for
the rewriting is very helpful. In addition, as demonstrated in
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the example in Section I, there is a need for a certain gap
between the levels of cells in different rankings. Furthermore,
remember that the cells can only store a limited amount of
charge. Therefore, a limited number of ranks can be repre-
sented within a set of cells. We denote the number of “virtual
levels” that every cell can represent by q. The levels are virtual
in the sense that they do not correspond to a discretization of
the cell level, but to the resolution of the charge detection and
the power of the noise that might affect the relative levels of
the cells. The q virtual levels allow the analysis and compari-
son of different rewriting methods. If the memory has N cells
then we denote ¢c=(c,, C,, . . ., C»), where ¢, {0, 1, ..., q-1},
to be the cell-state vector.

In recent work, the data was encoded by permutations, that
is, only a single cell in each rank. See, for example, A. Jiang,
R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation
for flash memories,” IEEFE Trans. on Inform. Theory, vol. 55,
no. 6, pp. 2659-2673, June 2009. Here we allow more than
one cell in each rank, where the number of cells in each rank
is predetermined, and we call it the multiplicity of the rank.
The generalized ranking now becomes a permutation of a
multiset of the ranks, which we define to be a multipermuta-
tion. Assume there are m ranks, the multiplicity of the i-th
rank is denoted by z,, and in case that all multiplicities are
equal, we denote this number by z. Remember that when
considering the discrete model, we allow to place two cells
with the same rank in the same discrete level, since we don’t
need a gap in order to distinguish their rank or to prevent
errors.

Since there are m ranks in our multipermutations and the
multiplicity of the i-th rank, l=i=m, is z;,, we have that
N=2,_,"z,. We let P,, be the set of all N cells multipermuta-
tions 0=0(1), o(2), . . . , o(N)) with m ranks. That is, for
1=5j=N, o()efl, ..., m}. For 1=i=m, o7'(i) is the set of all
cells with rank i, i.e., o7'(i)={jlo(j)=i}. We call the vector
7={z,,2,, .. ., 7,,+a multiplicity vector. The set of all multi-
permutations of m ranks with multiplicity vector z is denoted
by P, .. Hence, m(o(l) o(2), ..., 0(N))eP,,, ifand only if
for l<1<m lo~!(i)l=z. In case that z=z, for all 1=i=m, we
denotethesetP,, 51mply byP,, ,andwe W111 follow the same
analogy in the other definitions in the paper which include the
multiplicity vector z.

Given a cell-state vector c=(c, C,, . . . , C5) and a multi-
plicity vector Z:(Zl,Zz, .+ Z,,), the multipermutation o=
(o(1), o(2), ., Oo(N)) is derived as follows. First,
letiy, .. 1Nbe an order of the cells such thatc, =c, ... =c,.
Then, the cellsij,...i, gettherank1, thecellsi, ,,,....1, .,
get therank 2 and s0 on. More ngorously, for l<1<m the cells
i, 1m+l » 14, get the rank i, where m;= l+ZZ 7'z, and
M Zz " ZZ, ie. 0(1 J=o(,, +1)= .. 70(1M_) 1. Note that a
given cell-state vector can generate dlfferenzt multipermuta-
tions in case that there is equality between the levels of cells
in adjacent ranks. In this case, we will define the multiper-
mutation to be illegal and denote o, =F. Given a multiplicity
vector z={7,,2,, . . ., 7,,}, we let Q, be the set of all cell-state
vectors which result with a valid multipermutation, that is,
Q={cef0. 1, ..., q-1}"lo, _=F}.

The other attribute of the model studied previously is its
process of programming. See, for example, A. Jiang, R.
Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for
flash memories,” IEEE Trans. on Inform. Theory, vol. 55, no.
6, pp- 2659-2673, June 2009. On every rewrite step, a single
cell could be programmed to be only the highest level. There-
fore, if the length of the permutation is N, N different permu-
tations could be written without increasing the top level by
more than one level (including the original permutation). In
this work, however, we introduce a more opportunistic
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approach for rewriting with the powerful property that the
number of permutations (or multipermutations) that can be
written without increasing the top level by more than one
level becomes exponential in N.

The programming method we suggest is designed to mini-
mize the increase in the cell charge levels. Let ¢ be the current
cell-state, and 0., the multipermutation we wish to write. For
i=2,3,...,m, We increase the level of the cells in o, "1(1) to
be hlgher than the highest cell in o, ;‘1(1 1.In the dlscrete
model, the cells in o, "1(1) take the level max{clo,., ()=i-
1}+1. We can see that Writing in this method does not bear a
risk of overshooting, since there is no upper threshold for the
cell programming. In addition, it is straightforward to observe
that the method in fact minimizes the increase in the levels of
the cells, and specifically the level of the highest cell.

The initial state of all the cells is the all-zero vector, 0. The
goal is to reuse the memory for T successive rewrites without
incurring an erasure operation. We consider only the case
where the encoder knows and the decoder does not know the
previous state of the memory. The encoder and decoder can
use the same code for every cycle, and there are no decoding
errors (zero-error case). For the cell states ¢ and ¢', we denote
c=c'ifandonlyifc,=c', foralli=1, 2, ..., N. We are now ready
to define the rewriting codes.

Definition 1. An (N,q,T,D,z=(z,, 7, . . . , Z,,)) rank-modu-
lation rewriting code is a coding scheme € (f, g) comprising
of N g-level cells and a pair of encoding function f and
decoding functions g. Let I={1, . . . D} be the set of input
information symbols. The encoding function f:1xQ,—Q,, and
the decoding function g: Q,—1 satisfy the following con-
straints:

1) For any del and ceQ,, <f(d,c).

2) For any del and ceQ,, g(f(d,c))=d.

3) For any ¢, c,€Q,, if 0, =0, , then g(c,)=g(c,).

4) The code € (f,g) supports any sequence of T writes

@, ...,dp1%
The instantaneous rate of the code is R ,,,=(1/N)log, log,D
and the sum-rateis ® _,,,=T R,

One goal in the design of rank-modulation rewriting codes
is to maximize the sum-rate. For that, we first try to maximize
the number of writes and then maximize the instantaneous
rate on each write. This is achieved carefully in a way that the
maximum level on each write increases with high probability
by one level. Another goal we will draw our attention to in the
design of such codes is low complexity of the encoding and
decoding functions. The design of codes with high rate and
low complexities will be the topic of the next chapter, where
we explain the construction of our rank-modulation rewriting
codes.

B. Description of the Construction

Our point of departure in constructing rank-modulation
rewriting codes is to design such codes while the increase on
each write of the maximum level is no greater than one. That
is, given a rank-modulation rewriting code € (f,g), for every
del and ceQ,, if ¢'=f (d,c), then max,{c',}-max,{c,}=1. An
important observation to notice here is that if there exists i
suchthat o, _(1)-0...()>1, then the value max,{c',}-max,{c,}
might be greater than 1. Consider, for example, the case
where m=4, z=1 and ¢=(1,2,3,4). Here, if o, (3)-0,..(3)=2,
then cell 3 must be the lowest cell in ¢', and max,{c;}-
max,{c',}=2.

To avoid such scenarios we choose to constraint the value
of o, (i) to be at least o__(i)-1. That is, in case the rank of a
cell decreases, it cannot decrease by more than one rank.
Hence, the cells in the first rank in ¢' can only be the ones from
the first or second rank of ¢, i.e. 0,,,7'(1) is a subset of

"1(1)U0 ."1(2). Similarly, the cells in the second rank of
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¢' can only be the ones from the first, second, or third rank of
¢, which are not already assigned to the first rank of c'.
Mathematically speaking, we note that

o t@) {0, (W0, (2)Uo, T 3o, (D).

and in general, for i=1, . . ., m-1, given the selection of
-1 -1 _i, i K
o., (1),0..72),...,0., (i-1),theset o~ (i) satisfies

SRR QL= (U e N ) MU s M )

Motivated by this observation, the value of ¢'=f (d, C) is
encoded by a sequence of functions, each making a subset
choice according to a different part of the input data d.
Assume the input data d is partitioned into m-1 parts and let
(d;,d,,...,d,, ;) bethe data parts associated with each rank,
where rank m doesn’t represent any information. The first
function determines the cells from o, ~'(1)Uo,, ' (2) which
are assigned to be the set o, ,Z"l(l) as a function of the input
data d,. Thus we can write, Gcgz"l(l):fl(dl,oc;"l(l)UGC;"l
(2)), for some function f;. Similarly, fori=2,3, ..., m-1, there
exists a function f; such that

O DA Umi ™ o T DU on T O
The decoder will operate in a similar way which will be
explained in the sequel as part of the construction details.
Assume that the multiplicities of all the ranks are the same,
s0 z,=...=7,=7. Then, for eachi=1, ..., m-1

U™ o MU o (D} 1222
Hence, in the encoding function f;, if we consider the cells in
the set {U,_,"'o,_ "' (HIMU,_, 0.7 (§)} as binary cells of
value zero and all other cells of value one, then we can only
program the zero cells to be one. Therefore, the key point in
designing these encoding functions is to observe the similar-
ity to the binary write-once memory (WOM) problem.

A write-once memory comprises of a number of “write
once” cells, where each cell is initially in state “0” and can be
irreversibly programmed to state “1”. Rivest and Shamir
demonstrated that it is possible to rewrite such a write-once
memory multiple times, using coding techniques, called
WOM codes. See, for example, R. L. Rivest and A. Shamir,
“How to reuse a “write-once” memory,” Inform. and Control,
vol. 55, pp. 1-19,1982. Back to the problem of encoding a
single rank, we can think of {U,_,'o. _~'GIMU,_, o, !
()} as cells that were not written on the first write of a
two-write WOM code, while all other cells were already
written as value one on the first write.

However, there is an important difference between the
problem of encoding a second write in a two-write WOM
code and our problem of encoding a single rank. While in a
two-write WOM code there is no significance to the number
of cells that are written on the second write, in our codes we
seek to write such that exactly z, of the cells will remain in
level zero. If we have a WOM code that writes a constant
number of cells in the second write, we could use that code to
write more than twice, since we know the number of cells
which were not programmed after the second write, and we
could keep using the same code (with different parameters)
for the subsequent writes. So in fact, a WOM code that might
be suitable for our problem should be a code which allows
more than two writes to the memory. Since we are interested
in WOM codes with high rates, it is natural to consider the
recently proposed polar WOM codes. Polar WOM codes
were introduced by Burshtein and Strugatski, and they are the
first WOM codes that allow to write more than twice with
sum-rate which asymptotically approaches the sum-capacity,
log(t+1). See, for example, D. Burshtein and A. Strugatski,
“Polar write once memory codes,” in Proceedings of the 2012
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IEEE International Symposium on Information Theory,
187172012, Cambridge, Mass., USA, July 2012, pp. 1982-
1986. The special property that allows high number of writes
in polar WOM codes, is that on each write, the distribution of
the number of written cells is close to binomial. Thus, for
large N, the number of programmed cells on each write is
concentrated and can be bounded with some specified value
with high probability.

We use this property of polar WOM codes for our construc-
tion in a slightly different manner. Instead of looking at the
concentration property as bounding the maximal number of
programmed cells, we use it to bound the deviation of the
number of non-programmed cells from the constant number
we wish to write, z,. Now, we know that with high probability,
the number of non-programmed cells will be close to z,. Once
we have this property, we know that in most cases, after using
the polar WOM codes, flipping a small number of cells will
result in a binary word with exactly z, zeros.

So our technique is to flip a small number of cells in order
to get a word with the desired weight, and store the indices of
the flipped cells in some additional redundancy cells. We will
later show that we can choose the number of redundancy cells
such that with high probability they will be sufficient to
accommodate the storage of all flipped cells, while the
asymptotic rate of the code will not be affected.

While the number of redundancy cells can be made small,
we still keep them as part of the cells in the multipermutation.
That is, we still want to have a predefined number of cells in
each rank. We do this in the following manner. In rank i, for
each index of a flipped cell we want to store, we assign n'
redundancy cells, where half of them are in rank i, and the
other half in rank i+1.

Let us now describe the construction formally. To simplify
the notation and representation of the construction we
dropped all floors and ceilings, so some of the values are not
necessarily integers as required. This may encounter a small
lost in the rate of the code, however this lost will be minor and
thus can be neglected.

First we state a useful assumption in our construction for
the existence of WOM codes with the properties we described
above.

Assumption 1. For any 0<p<1 and O<e<p/2, there exists a
binary WOM code €, with encoding function f,, and
decoding function g, , such that given a cell-state vector ¢ of
N cells and weight w(c)=(1-p)N, it is possible to write a
binary vector d of (p-3)N bits, for § arbitrarily small, such
that the updated cell-state vector c'=f, _ (c, d) satisfies:

1) (1-p/2—e)N=w(c")=(1-p/2+€)N.

2) g,..(c)d.

3) c=c'.

The encoder f, (d) can have a small probability that the
conditions doesn’t meet, in which case we say that the encod-
ing fails.

In Section VI. C, we describe how to construct WOM
codes, based on polar codes, that satisfy the conditions of
¢, in Assumption 1. See, for example, D. Burshtein and A.
Strugatski, “Polar write once memory codes,” in Proceedings
of the 2012 IEEE International Symposium on Information
Theory, ISIT2012, Cambridge, Mass., USA, July 2012, pp.
1982-1986. However, while these polar WOM codes are good
for our construction, they suffer a small probability of encod-
ing failure, i.e., they don’t work in the worst case for any
sequence of writes. In this section, for the simplicity of the
presentation, we do not consider the case of this encoding
failure but will sketch the necessary modifications to adjust
these codes to our construction in VI. D. We are now ready to
present our construction.
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Construction 1. Let m, z, N be positive integers such that
N=mz. Let p=2z/N, 0<e<p/2, and €, is the code from
Assumption 1 with encoding function f - and decoding func-
tion g, .. Let N'=N meNn'(the value of ' will be explained
later). The first N cells are called the information cells and are
denoted by c=(c,, . . ., c,). The last =meNn' cells are called
the redundancy cells and are partitioned into meN vectors p; ;
for 1<k=m-1,1<j=eN, each of n' bits. We assume that there is
afunctionh:{1,2, ..., N}—{0,1}"which receives an integer
between zero and N and returns a balanced vector of lengthn'.
h can be implemented, where in both cases log N<n'<2 log N.
See, for example, The Art of Computer Programming Volume
4, Fascicle 3. Addison Wesley, 2005 and D. E. Knuth, “Effi-
cient balanced codes,” IEEE Trans. on Inform. Theory, vol.
32, no. 1, pp. 51-53, 1986. We also assume that this function
has an inverse function h™":Im(h)—{1, 2, ..., N}.

An (N',q,T.)D,Z) rank-modulation rewriting code € is
defined according to the following encoding function f and
decoding function g. The number of messages on each write
is D=2@¥M-1 and each message will be given as m—1
binary vectors, each of length 2z—0N bits. The number of
rewrites satisfies T=q-m+1 and Z=N'"m=z+eNn'.

On the encoding and decoding functions, on each write we
have the following assumptions:

1) The information cells vector ¢ and the redundancy cells
vector r are multipermutations with m consecutive levels such
that the number of cells in each level is the same. We let 1
be the minimum cell level and 1, .
(note that 1, . ~1,...,=m-1).

2) We let o, the multipermutation derived from the infor-
mation cells vector. For 1=i=m, let S,=0,_ ,Z"l(i) (note that
IS,|=2).

3) There are eN(m-1) auxiliary variables, called index
variables and are denoted by 1, ; for 1<k=m-1 1<J <eN. These
index variables will be stored in the redundancy cells and they
will indicate the information cells that their levels was inten-
tionally changed during the encoding process.

Encoding Function f(c, p, d")=(c',p'): Let ¢ be the current
information cells vector, p=(p, ;, - - - , P, .n) be the current
redundancy cells vector, and d=(d,, . . ., d,,_,) be the infor-
mation vector, where each d, is a vector of (p—3)N=2z-8N
bits. The new updated information cells vector ¢'=(c, ..., Cy)
is determined as follows. Let S|, be the set S, =S,.

Encoding of the k-th rank, 1<k=m-1:

DLetVi=(v, . . . ., v, 4)e{0,1}" be the vector defined as
follows: v, =0 if and only if ieS',US,, .

2) Let u,=t, (v, d). (Note that u, satisfies

a) (1-p/2—e)Nz=w(u,)=(1-p/2+€)N'

b) gp,s(uk):dks

C) V,=u,.)

3) Letw,=w(u,)-(1-p/2)N(lw,/<eN), and leti,, .. ., 1, be
the first Iw,| indices in S' ,{US,(JF1 whose value in v, is equal to
(sign(w,;)+1)/2. The vector u', is defined to be u'; ; =1 —Uy, for
1=j=Iw,| and for all other indices u', ~u, , (note that W(u =
(1-p/2)N). Set the indices 1, =for lsjs<lw;| and for Iw;|+
I=j=eN, I, ~0.

4)LetS, T ={ilu', =0} and §', ,,~(S',US,,, \S,*. For every
ieS*,, set ¢'; lmm+k
Finally, for every i€S,", set (¢',)=1,,,.+1

The new redundancy cells vector p' (p Ls e Ploen) 18
determined as follows to store the (m-1)en indices. For
1=k=m-1, 1sj=<eN, let

min

be the maximum level

14 ,k,/':(zmin-"k). 1+h (ij)'
Finally, for 1<j<en p',, ;=p,, /+1
Decoding Function g(c, p)=d" Let c=c,, . . ., c,) be the
information cells vector and p=(p, ;, . . . , Pn.n) be the
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redundancy cells vectors. The information vector d'=
d,,...,d, ;) is decoded as follows.
First the indices I ; for 1<k=sm-1, 1<j=eN, are decoded to
be

Z,w-:h’l(p,w-—(lmi,,+k—1)-1).
Decoding of the k-th rank, 1<k=m-1:
1) Let 0% =(Us 1. - - - Ua)ef0,1} be the vector defined to
be 0, =0 if and only 1f1€S
2) The vector 0, defined as follows. Forall 1 L<j j<eN, if T, =0
=1 —uk 1, and for all other indices i, 0, =,

It is p0551b1e to use the proposed rewrite codes with a
different trade-off between the rate and the number of writes.
In every write, the rewrite codes increase the value of the
highest level among the cells by asingle level, and allow arate
of 2 bits/cell. Instead, the codes can be used such that the
value of the highest cell increases by ¢ levels in each write,
with a rate of (c+1)log 2(c+1)—-c log 2(c) bits/cell. To do that,
we need to replace the set S_{k+1} in steps 1,3 and 4 of the
encoding of the k-th rank, with the union of the sets S_{k+1},
S_{k+2}, ..., S_{k+c}. We prove the correctness of Con-
struction 1 in the next lemmas. We note that on the first write
all the cells are in level zero and thus any multipermutation of
m consecutive levels between 0 and m~-1 such that the number
of cells in each level is z will be written in the information
cells. We also assume that the redundancy cells will be written
in a similar way to keep the multipermutation property of
these cells. This will be addressed in the next lemma.

Lemma 1. For t=1, . . ., T, after the t-th write, the redun-
dancy cells vector is a multipermutation of meNn' cells with
eNn' cells in each of the m consecutive levels: 1, =
t=1,. .., 1, ~t+m=2. Furthermore, for 1 km, 1jeN, half of
the cellsinp, areinlevell,,, +k-1and the other halfin level

1,5 +(k mod m).

Proof. On the first write, there is no restriction on the index
variables and thus we can simply write the redundancy cells
in a way that they will satisfy this property. For all subsequent
writes, this property is easily verified for all redundancy cells
vectors since the output of the function h(I, ) is a balanced
binary vector. Note that one purpose of the redundancy cells
vectorsarep,, 1, - - - P, e 18 to keep all the redundancy cells
as a multipermutation with the same number of cells in each
level. On the first write each of these en vectors is written as
avector where n'/2 cells have the value zeros and the other n'/2
cells have the value m-1. On each following write, each of
these cells is incremented by one level which preserves the
balanced multipermutation property of all the redundancy
cells.

It is verifiable that the decoded value of every index vari-
able is the same as the one stored during the encoding func-
tion. We note here that the index variables could be stored
more efficiently, however this will not be significant in the
rate analysis of the code. Hence, we tried to keep the redun-
dancy part of the code as simple as possible.

Next, we prove similar properties for the information cells.

Next, we prove similar properties for the information cells.

Lemma 2. Assume the information cells vector ¢ is a mul-
tipermutation with m consecutive levels, betweenand 1,,,,,, and
1,...x=Lin+m—1 such that the number of cells in each level is z.
Then, for any information vector d=(d,, . . ., d,,_;) the
resulting updated information cells ¢' from (c', p")=f (c,p,d)
satisfies this property as well between the levels 1, +1 and
Laxtl.

Proof. For every 1<k=m-1, w(v,)=(1-p)N and w(u',)=(1-
p/2)N. Hence, |1S*,/1=Np/2=z and so exactly z cells are pro-
grammed to level 1,,,+k. Furthermore, IS', |=z and thus

min,t
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exactly z cells are programmed to level 1., +1. This proves
that the information cells vector forms a multipermutation of
m levels between1,,,,+1 and 1, +1 and the number of cells in
each level is z.

Lemma 3. On each write the following holds g(f (c,p,d))=d

Proof. Fork=1, ..., m-1, inthe encoding function, the cells
which were programmed to have the k-th rank are the ones
having value zero according to the vector u',. Similarly, the
vector 0", was defined to have the value zero if and only if the
corresponding cell is in level k. Therefore, we have that
0',=u',. Since the index variables are correctly decoded by the
redundancy cells, we also have that i,=u,. Finally, we get that

d ,k:gp,s(ﬁk):gp,s(uk):dlw

and together we conclude that g(f (c,p,d))=d.

Theorem 1. The code € from Construction 1 is an (N',q,
T,D,Z) rank-modulation rewriting code, where N'=N,
D=2@3m-1 T—g_m4+1, and Z=N'/m

Proof. It is verifiable that for all (c,p,d), (c,p)=(c,g,d), and
for all (c;,p,).(c,.p,)eQ, such that o ,, =0, L have
that g(c,,p,)=g(c,.p,). According to Lemma 3, we have that
g(f (c,p,d))=d. On the first write the maximum level is m-1
and according to Lemma 1 and Lemma 2, on each subsequent
write the maximum level increases by one level. Hence, the
code supports any sequence of T=q-m+1 writes.

In order to complete our construction of rank-modulation
rewriting codes, we are left with presenting WOM codes
which satisfy the conditions of Assumption 1. This will be the
topic of the next section.

C. Polar WOM Codes

In this section we describe the recently proposed polar
WOM codes and show how they are used for the implemen-
tation of the codes in Assumption 1. Polar WOM codes were
proposed in order to write multiple times over a WOM. See,
for example, D. Burshtein and A. Strugatski, “Polar write
once memory codes,” in Proceedings of the 2012 IEEFE Inter-
national Symposium on Information Theory, ISIT2012, Cam-
bridge, Mass., USA, July 2012, pp. 1982-1986. In the follow-
ing, we briefly describe the construction of polar WOM codes
in order to show the modifications we introduce in these codes
to satisfy the conditions of Assumption 1 and to achieve high
sum-rate.

We first start with a short overview on polar codes and their
usage to lossy source coding as they serve the basis to the
construction of polar WOM codes. For more details, see D.
Burshtein and A. Strugatski, “Polar write once memory
codes,” in Proceedings of the 2012 IEEFE International Sym-
posium on Information Theory, ISIT2012, Cambridge, Mass.,
USA, July 2012, pp. 1982-1986. Polar codes were first intro-
duced by Arikan and were proved to achieve the symmetric
capacity of an arbitrary binary-input channel. See, for
example, E. Arikan, “Channel polarization: A method for
constructing capacity achieving codes for symmetric binary-
input memoryless channels,” IEEE Trans. on Inform. Theory,
vol. 55, no. 7, pp. 3051-3073, July 2009. Let

G(IO]
2=y )

G,® ” be is its n-th Kronecker product, and N'=2". Assume
the data is transmitted over a memoryless binary-input chan-
nel with transition probability W(yIx). The information mes-
sage ne{0,1}" is first encoded to be the vector x=uG,® .
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Then x is transmitted over the channel and the channel output
word is y. The main idea of polar codes is to define N sub-
channels

S g 1
W (y, st L) = Ply, st |u) = WZ%I Wiyl u).

where u/, for O=i<j=sN-1, denotes the subvector (u,, . . ., u).

Let I(W) denote the symmetric capacity of the channel W
and Z(W,) be the Bhattacharyya parameter of the sub-
channels W, ”, defined by

205, NGOG,

It was shown that for N large enough, approximately I(W) of
the sub-channels satisfy that Z(W,©)<2™" for any 0<p<lA.
See, for example, E. Arikan and E. Telatar, “On the rate of
channel polarization,” in Proceedings of the IEEE Interna-
tional Symposium on Information Theory Workshop (ISIT),
June 2009, pp. 1493-1495 and E. Arikan, “Channel polariza-
tion: A method for constructing capacity achieving codes for
symmetric binary-input memoryless channels,” IEEE Trans.
on Inform. Theory, vol. 55, no. 7, pp. 3051-3073, July 2009.
Accordingly, for a code rate R, a set F is defined, comprising
of the N(1-R) sub-channels with the highest Z(W,%), and
denoted as the frozen set. Then, the information is transmitted
on the remaining NR sub-channels, while the input on the
sub-channels in F is fixed to be some frozen vector u, (the
elements of the vector u in the set F). The encoder transmits
the word x=uG,® ” and the information u is decoded using
the successive cancellation (SC) scheme and by the informa-
tion of the frozen vector u. Finally, it was shown that asymp-
totically, if R<I(W), then it is possible to communicate reli-
ably with encoding and decoding complexities of O(N log N).

It was shown how to use polar codes for lossy source
coding. In this case, the frozen set F is defined by

F={i{o, ..., N-1}: 200 N=1-28,2}, 1)

where 6]\;2’]\’6 /(2N).

See, for example, S. B. Korada and R. Urbanke, “Polar
codes are optimal for lossy source coding,” IEEE Trans. on
Inform. Theory,vol. 56,n0.4,pp. 1751-1768, April 2010. The
encoder compresses the source vector y by the following SC
scheme. Fori=0, 1, . .., N-1, let =, if ieF. Otherwise, let

[0 wepLP /U + 1)
= X

1 owepl /LR +1),
where

W (. ! = 0)

10 = 19y, ity = SN D e )
N T WG = 1)

The decoder, inturn, letx(y)=uG,® " be the approximating
source codeword. It has been shown that for any compression
rate in the rate distortion region (where the distortion is
denoted by D), x(y) satisfies Ed(x(y),y)/N: sD+0(2"NB ) for any
0<f<¥: and N sufficiently large. See, for example, S. B.
Korada and R. Urbanke, “Polar codes are optimal for lossy
source coding,” IEEE Trans. on Inform. Theory,vol. 56,n0.4,
pp- 1751-1768, April 2010. The result on the average case was
further improved to show that |d(x(y),y)/N-DI can be made
arbitrary small with probability approaching 1 for N large

enough.
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These results allowed the construction of multiple writes
WOM codes. See, for example, D. Burshtein and A. Stru-
gatski, “Polar write once memory codes,” in Proceedings of
the 2012 IEEE International Symposium on Information
Theory, ISIT2012, Cambridge, Mass., USA, July 2012, pp.
1982-1986. Let T be number of writes to the WOM. For each
write cycle, Ost<T, let O=e,<'% be an estimate of the fraction
of unprogrammed cells that will be written on this write,
where €,=0 and €,~'%. In addition, let

szot(l _Et)'

Note that the values of €, €, . . ., € .come from the expression
of the capacity region of WOM, given by

N
a,~

Cz:{(:R Lreees 4 ol 4 1<H(ey),
:R2<(1—€1)H(€2)a LR <07 H(eT_ ),
R <ar,,
where O<e,, ..., €, =¥

and H denotes the binary entropy function}. See, for
example, F.-W. Fu and A. J. Han Vinck, “On the capacity of
generalized write-once memory with state transitions
described by an arbitrary directed acyclic graph,” IEEE Trans.
on Inform. Theory, vol. 45, no. 1, pp. 308-313, January 1999
and C. D. Heegard, “On the capacity of permanent memory,”
IEEFE Trans. on Inform. Theory, vol. IT-31, no. 1, pp. 34-42,
January 1985.

For the t-th write, 1=t<T, a test channel is considered with
binary input X and an output (S, V), where S and V are binary
variables as well. The probability transition function of the
t-th channel is defined by,

PS, V)I=(s, X =x) = fls, x®v),
where
o ((l-g) if s=0,b=0,
@18 if s=0,b=1,
fls, by = .
(1-0a;y) ifs=1,b=0,
0 if s=1,b=1.

For the t-th test channel, a polar code is designed with block
length N with a frozen set as in (1). The polar code is used for
lossy source coding, with rate

R=a,_ |H(e,)-¢€, @

where 9, is arbitrarily small for N sufficiently large.

The t-th encoder uses a common randomness source, also
called dither, denoted by g, sampled from an N dimensional
uniformly distributed random binary vector, and known both
to the encoder and to the decoder. Let s, represents the cell-
state vector before encoding on the t-th write, and let v,=s +g,.
Finally, let y,=(s, ;,v,;) and y,=(¥,, Yo, - - - s Ya)-

The encoder compresses the vector y, using the t-th polar
code with uz=c,, where a, is the information message on the
t-th write. The encoder decompresses the resulting vector u,
into x,=u,G,®” and sets §x,+g, to be the new cell-state
vector.

The decoder first calculates x,=§,+g,, and then estimates
a=x(G,® ") )F, where (z); denotes the elements of the
vector z in the set F,. A few slight modifications for the
construction have been described, for the sake of the proof.
See, for example, D. Burshtein and A. Strugatski, “Polar write
once memory codes,” in Proceedings of the 2012 IEEFE Inter-
national Symposium on Information Theory, ISIT2012, Cam-
bridge, Mass., USA, July 2012, pp. 1982-1986. The follow-
ing theorem summarizes the results of the polar WOM codes.
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Theorem 2. Consider an arbitrary information sequence
o, ..., aywithrates R, ..., R, that are inside the capacity
region C,. of the binary WOM. For any 0<f§<2 and N suffi-
ciently large, the polar WOM code described above can be
used to write this sequence reliably over the WOM w.p. at
least 1-2 in encoding and decoding complexities O(N log
N).

The Theorem is based on the fact that in every write, the
WOM property is held, and in addition, the number of written
cells in bounded. We bring this result in the following
Lemma, that we then use in order to prove Assumption 1. See,
for example, D. Burshtein and A. Strugatski, “Polar write
once memory codes,” in Proceedings of the 2012 IEEFE Inter-
national Symposium on Information Theory, ISIT2012, Cam-
bridge, Mass., USA, July 2012, pp. 1982-1986.

Lemma 4. Consider a polar code designed for the t-th test
channel. The code has rate R, defined in (2), a frozen set of
sub-channels F,, and some frozen vector up which is uni-
formly distributed over all IF,| dimensional binary vectors.
The code is used to encode a random vector (s, v) drawn by
1.i.d. sampling from the distribution P(s,v)=P (s,vIx=0)/2+P
(s,vIx=1)/2 using the SC encoder. Denote by x the encoded
codeword. Then for any >0, 0<d<%% and N sufficiently large,
the following holds w.p. 1-27™ ,

1. {k:s,=0 and x,Dv,=1}H<(e, e, ;+O)N,

2. {k:s,=1 and x,Pv,=1}=0.

Based on this Lemma, we propose the following construc-
tion for the code € , . of Assumption 1. Assume that a polar
WOM code is applied with T=2 and €,=1-p, that is, o, =p and
€,=Y%. Furthermore, assume that (1-p)N cells are being writ-
ten in the first write. Connecting the notations of Assumption
1 to those of the polar WOM code, note that c=s and
c¢=x®vs. Now, €, ={f, g, .} is set to be the encoding
and decoding function of the second write of the polar WOM
code. In the following Lemma we prove that this code has the
properties of Assumption 1.

Lemma 5. The code € ,  described above satisfies the three
properties of Assumption 1 w.p. at least 1-2~

Proof: First, by Lemma 4, the rate of the code is p-9, as
stated in Assumption 1. Next, note that the second property
(the correctness of the decoded value) follows directly from
the construction of the WOM code. The third property, c=c',
follows from the second property of Lemma 4.

For the first property of Assumption 1, we write the first
property of Lemma 4 in the language of Assumption 1, and
get that for any €>0, w.p. 1-277%,

w(c)-w(e)<(p/2+€)N,

In addition, by the proof of Lemma 4 we can also verify that,

w(c")-w(c)>(p//2—-€)N,

and the property is met, completing the proof
5 Analysis of the Construction

After we showed how to use polar WOM codes in our
construction, we are now left with analyzing the sum-rate of
Construction 1.

By Theorem 1 and remembering that N=mz and n'<log
N=log(mZ), we get that the instantaneous rate of the code is
given by

Ringe = (1/N')log, D ®

_ (2z—6N)m-1)
N +mzNn'
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-continued
m—1 z-06zm/2 1

2 semyy — L
< m ~(L=om/ ).1+£m10g(mz)

Note that by Assumption 1, 9 is a constant, which does not
depend on the value of N. However, p is also a constant in this
assumption, and since Construction 1 uses p=2/m, d can be a
function of m as well. Therefore, we can choose for example
d=2/m? in order to let the expression dm/2 vanish when m is
large enough. Similarly, € can be also taken to be a function of
m. However, it cannot be a function of z, and therefore (3)
shows that when z is large, unfortunately we get that R, ,
approaches zero. In order to solve this difficulty, we extend
the result in [4, Lemma 1] for the case that € is a function of
N.

Lemma 6. For any

1

B
e>N72 |,

0<p<!%and N sufficiently large, the properties of Assumption
1 hold w.p. at least 1-27¥,

Proof: The case of constant € is proven in section V1. C. The
proof ofthis case is based on on the typical distortion of polar
lossy source codes. See, for example, D. Burshtein and A.
Strugatski, “Polar write once memory codes,” inProceedings
of the 2012 IEEE International Symposium on Information
Theory, ISIT2012, Cambridge, Mass., USA, July 2012, pp.
1982-1986. The proof of this Lemma is based on an extension
of this result, and therefore, in the following, we present the
definitions used for describing the typical distortion result.

Similar to the notation employed in other works, define
e-strong typical sequences x, y, ex’'xy”" with respect to the
distribution p(x,y) on xxy, and denote it by A *(N)(X,Y), as
follows. See, for example, T. Cover and J. Thomas, Elements
of Information Theory, 2" ed. New York: Wiley, 2006, pp.
325-326. Let C(a,blx,y) denote the number of occurrences of
the symbols a, b in y. Then x,yeA *@ (X,Y) if the following
two conditions hold. First, for all a, b xxy with p(a, b)>0,
I(C(a,blx,y)/N-p(a,b)l<e. Second, for all a,b xxy with
p(a,b)=0, C(a,blx,y)=0.

In our case, x(u)=uG,® ”, and since G,® ” has a full rank,
each vector u corresponds to exactly one vector x(u). We say
that u, yeA *™M(U,Y) if x(u), yeA *®(X,Y) with respect to
the probability distribution p(x, y)=W(ylx)/2. Let QA *%)
be the probability that x(u), yeA *™(X,Y). In[4, Lemma 1],
it is shown that Assumption 1 holds if x(u), y A,,*@ (X, Y).
Therefore, in order to complete the proof of this Lemma, we
need to show that for any

-1
e>2NT,

QA ™)>1-2,

Define a value ' such that 0<p'<f. By the proof of [4,
Theorem 1], it follows that

O(4, #1225 2W,
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Taking

e>2N 2

we get:
O #N)>1 oM <t

and therefore, for N sufficiently large, the assumption holds

w.p. at least
1=

Notice that taking large € decreases X ,, ,. Therefore, we
choose the smallest e that meets the conditions of Lemma 6
for any 0<f<!%, meaning

In some embodiments, € may be even smaller, depending on
an acceptable trade-off between R ,,, and the probability of
encoding failure. The properties of Construction 1 are now
described.

Theorem 3. We note that the decoding can be done with
complexity O(N log N), by performing the decoding of the k
ranks in parallel. For T=q-m+1, consider an arbitrary infor-
mation sequence ., . . . , 0.y with rates &, <2. For any
0<p<¥2 and q, m and z sufficiently large, the rank modulation
rewriting code in Construction 1 can be ysed to write this
information sequence w.p. at least 1-T2™"", in encoding and
decoding complexities O(mN log N).

Proof: Setting e=1/N"* and 8=2/m?, and remembering that
n'<2 log N, we get that

1

R; 2-0-1/m? ———— =
inst > 2:( fm) 1 4+ 2gmlog(zm)

1
2-(1—1/m) T+ T mi o)
Z1/4

2-(1-1/m) T+ o logam)

Therefore, R, ., can take any value below 2 for large
enough m and z, if z/m? is large enough as well. The prob-
ability of writing failure is achieved by the union bound. Each
time {, _ is applied, the probability of encoding failure is at
most 2™ {,  is applied m~1 times in each operation of the
rank-modulation encoding, and therefore, for large enough N,
the rank-modulation encoding is successful w.p. at least
1-2". Since the rank-modulation encoding is applied T
times, the probability of successful write of the whole infor-
mation sequence is at least 1-T27"".

We prove the encoding and decoding complexities. By
Theorem 2, the complexities of f,; and g,  are both
O(NlogN). In each rank, we also apply h orh™"', which can be
performed in logarithmic time in N. See, for example, The Art
of computer Programming volume 4, Fascicle 3. Addison
Wesley, 2005 pp. 5-6 and D. E. Knuth, “Efficient balanced
codes,” IEEE Trans. On Inform. Theory, vol. 32, no 1, pp.
51-53, 1986. The functions h and h~! are applied at most eN
times on each rank, and therefore they don’t affect the com-
plexity. Finally, since ,, ., and g, _ are applied for each rank,
the encoding and decoding complexities are O(mN log N).

In the rare event of an encoding error, the encoder can take
one of two strategies. One option is to use a different dither
value. See, for example, D. Burshtein and A. Strugatski,
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“Polar write once memory codes,” in Proceedings of the 2012
IEEE International Symposium on Information Theory,
18172012, Cambridge, Mass., USA, July 2012, pp. 1982-
1986. In this case the decoder can realize the correct dither
value, either by direct communication (by using extra stor-
age), or by switching to the next dither value upon detection
(e.g., using CRC) a decoding failure.

If the methods for taking a different dither value are too
expensive in practice, the encoder can take a different strat-
egy. We bring here the idea of this strategy, without a formal
description and analysis. In case of encoding error, the
encoder can recalculate the vector v, in Step 1, of the encod-
ing function of Construction 1. In the new vector v, v, =0 if
and only ifieS', US, .. This also involves setting ¢',=1,,,,,,+k+1
in Step 4 of the decoding for all ranks 1<k=m-1, and thus
reduce the value of T by 1 (in fact, we do not have to increase
the level of the cells with ranks below the one that failed, and
perhaps take advantage of'this gap in the following writes, but
for the simplicity of the construction we seek to keep all the
ranks to be in m consecutive levels). However, since the event
of encoding error is rare, the expected value of T will not be
affected by much if q is large enough compared to N. In the
case of repeated errors, a different subset os size 2z
of S US,, ,US,., could be taken each time until exhaustion.
Ifthat wouldn’t be enough, S, ; could be added with the cost
of'an extra write, and so onuntil a successful encoding occurs.

FIG. 15B depicts a process 1520 for operating a data
device. The process 1520 may include one or more opera-
tions, actions, or functions as illustrated by one or more of
blocks 1525, 1527, 1529, 1531, 1533, 1535, 1537, 1539, and
1541. Although illustrated as discrete blocks, various blocks
may be divided into additional blocks, combined into fewer
blocks, or eliminated, depending on the particular implemen-
tation. The process starts with block 1525. In block 1527 a
new data set for a rank of a plurality of ranks is received to
store in the memory device wherein the memory device com-
prises a plurality of cells. In block 1529 a current state of
candidate cells is read within the plurality of cells wherein
candidate cells are used to store the new data set. In block
1531 a binary representation of the plurality of cells is created
and used to store the new data set. In block 1533 a binary
representation of the plurality of cells is used to store the new
data set. In block 1535 a WOM code is used to combine the
binary representation with the new data set to create a binary
WOM vector. In block 1537 the binary WOM vector is modi-
fied to equal quantities of 1’s and 0’s within the candidate
cells creating a new data vector. In block 1539 the new data
vector is written to the candidate cells. In block 1541 the
process may be continued. In some embodiments the WOM is
a Polar WOM. In further embodiments the cost of writing is
defined as a maximum level of the plurality of cells after
writing the new data vector minus a maximum level of the
candidate cells before writing the new data vector. In some
embodiments, the cost is one. In further embodiments the
method further comprises reading the new data vector from
the candidate cells, modifying the new data vector to recreate
the binary WOM vector and using a WOM code on the binary
WOM vector to separate the binary representation from the
data set.

FIG. 15C depicts a process 1545 for operating a data
device. The process 1545 may include one or more opera-
tions, actions, or functions as illustrated by one or more of
blocks 1547, 1549, 1551, 1553, 1555, and 1557. Although
illustrated as discrete blocks, various blocks may be divided
into additional blocks, combined into fewer blocks, or elimi-
nated, depending on the particular implementation. The pro-
cess starts with block 1547. In block 1549 a new data set m is
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received for a rank of a plurality of ranks to store in the
memory device wherein the memory device comprises a plu-
rality of cells. In block 1551 a current state of candidate cells
is read within the plurality of cells wherein candidate cells are
used to store the new data set. In block 1553 a new multi-
permutation is determined and is to be written to the candidate
cells representing the received data set m. In block 1555 the
new multi-permutation is written to memory with a predeter-
mined cost wherein the new multi-permutation is determined
in accordance with the predetermined cost. In block 1557 the
process may be continued.

FIG. 15D depicts a process 1560 for operating a data
device. The process 1560 may include one or more opera-
tions, actions, or functions as illustrated by one or more of
blocks 1562, 1564, 1566, 1568, 1570, 1572, 1574, 1576,
1578, and 1580. Although illustrated as discrete blocks, vari-
ous blocks may be divided into additional blocks, combined
into fewer blocks, or eliminated, depending on the particular
implementation. The process starts with block 1562. In block
1564 a data value is received comprising a plurality of data
sets wherein each data set is a set of values representing a rank
in a plurality of ranks. In block 1566 a new data set for a rank
of a plurality of ranks is received to store in the memory
device wherein the memory device comprises a plurality of
cells. In block 1568 a current state of candidate cells is read
within the plurality of cells wherein candidate cells are used
to store the new data set. In block 1570 a binary representation
of the plurality of cells is created and used to store the new
data set. In block 1572 a binary representation of the plurality
of cells is created an used to store the new data set. In block
1574 a WOM code is used to combine the binary representa-
tion with the new data set to create a binary WOM vector. In
block 1576 the binary WOM vector is modified to equal
quantities of 1’s and 0’s within the candidate cells creating a
new data vector. In block 1578 the new data vector is written
to the candidate cells. In block 1580, if a new data vector has
been written for each rank of the plurality of ranks the process
may continue with block 1582. If all of the data vectors have
not been written, then blocks 1566-1578 may be repeated
until all the new data vectors have been written.

FIG. 15E depicts a process 1584 for operating a data
device. The process 1560 may include one or more opera-
tions, actions, or functions as illustrated by one or more of
blocks 1586-1599. Although illustrated as discrete blocks,
various blocks may be divided into additional blocks, com-
bined into fewer blocks, or eliminated, depending on the
particular implementation. The process 1560 may include
one or more operations, actions, or functions as illustrated by
one or more ofthe blocks. The process starts with block 1586.
In block 1588 a plurality of cells are read and a multi-permu-
tation stored in the plurality of cells is determined. In block
1590 a group of cells are identified in the plurality of cells,
contained within each rank of a plurality of ranks. In block
1592 a new data vector is read from the rank. In block 1594
the new data vector is modified to recreate a binary WOM
vector. In block 1596 a WOM code is used on the binary
WOM vector to separate a binary representation from a data
set. In block 1598 if a WOM code has been used on each rank
the process may continue to block 1599. If a WOM code has
not been used on each rank the blocks of 1592 through 1596
may be repeated until a WOM code has been used on each
rank.

V1. Example Embodiments

FIG. 16 is an illustration of one embodiment of a data
device constructed in accordance with the present disclosure.
FIG. 16 shows a memory 1602 that is accessed by a memory
controller 1604 that communicates with a host device 1606,
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which may all be operatively or communicatively coupled to
each other. The memory 1602 is used for storing data that is
represented in accordance with a minimum push up, multi-
cell or multi-permutation scheme. The memory may be
implemented, for example, as a Flash memory having multi-
level cells. The memory 1602 and memory controller 1604
together comprise a data storage device 1608 that may be
external to the host device or may be integrated with the host
device into a single component or system. For example, the
data storage device 1608 may comprise a Flash memory
device (sometimes referred to as a “thumb drive”) that com-
municates with a host computer 1606 via a USB connection,
or the data storage device may comprise a solid state drive
(SSD) that stores data for a host computer system. Alterna-
tively or additionally, the data storage device may be inte-
grated with a suitable host device to comprise a single system
or component with memory employing a minimum push up,
a multi-cell or a multi-permutation scheme, such as a smart
phone, network router, MP3 player, or the like.

The memory controller 1604 operates under control of a
microcontroller 1610, which manages communications with
the memory 1602 via a memory interface 1612 and manages
communications with the host device via a host interface
1614. Thus, the memory controller supervises data transfers
from the host 1606 to the memory 1602 and from the memory
1602 to the host 1606. The memory controller 1604 also
includes a data buffer 1616 in which data values may be
temporarily stored for transmission over the data channel
controller 1617 between the memory 1602 and the host 1606.
The memory controller also includes an Error Correcting
code (ECC) block 1618 in which data for the ECC is main-
tained. For example, the ECC block 1618 may comprise data
and program code to perform error correction operations for
a minimum push up, a multi-cell or a multi-permutation
scheme. Such error correction operations are described, for
example, in the U.S. Pat. No. 8,225,180 entitled “Error Cor-
recting Codes for Rank Modulation” by Anxiao Jiang et al.
issued Jul. 17, 2012. The ECC block 1618 may contain
parameters for the error correction code to be used for the
memory 1602, such as programmed operations for translating
between received symbols and error-corrected symbols, or
the ECC block may contain lookup tables for codewords or
other data, or the like. The memory controller 1604 performs
the operations described above for decoding data and for
encoding data.

The operations described above for operating a data stor-
age device, for reading data from a device, for programming
a data storage device, and encoding and decoding, can be
carried out by the operations depicted in FIGS. 6, 8A, 8B, 14
and 15 which can be performed by the microcontroller 1610
and associated components of the data storage device 1608.
For example, in an implementation of the rank modulation
coding scheme in a USB thumb drive, all the components of
the data storage device 1608 depicted in FIG. 16 are contained
within the USB thumb drive.

The processing components such as the controller 1604
and microcontroller 1610 may be implemented in the form of
control logic in software or hardware or a combination of
both, and may comprise processors that execute software
program instructions from program memory, or as firmware,
or the like. The host device 1606 may comprise a computer
apparatus. A computer apparatus also may carry out the
operations of FIGS. 6, 8A, 8B, 14 and 15. FIG. 17 is a block
diagram of a computer apparatus 1700 sufficient to perform
as a host device and sufficient to perform the operations of
FIGS. 6, 8A, 8B, 14 and 15.
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FIG. 17 is a block diagram of a computer system 1700 that
may incorporate embodiments of the present disclosure and
perform the operations described herein. The computer sys-
tem 1700 may include one or more processors 1705, a system
bus 1710, storage subsystem 1715 that includes a memory
subsystem 1720 and a file storage subsystem 1725, user inter-
face output devices 1730, user interface input devices 1735, a
communications subsystem 1740, and the like.

In various embodiments, the computer system 1700 may
include computer components such as the one or more pro-
cessors 1705. The file storage subsystem 1725 can include a
variety of memory storage devices, such as a read only
memory (ROM) 1745 and random access memory (RAM)
1750 in the memory subsystem 1720, and direct access stor-
age devices such as disk drives. As noted, the direct access
storage device may comprise a rank modulation data storage
device that operates as described herein.

The user interface output devices 1730 can comprise a
variety of devices including flat panel displays, touchscreens,
indicator lights, audio devices, force feedback devices, and
the like. The user interface input devices 1735 can comprise a
variety of devices including a computer mouse, trackball,
trackpad, joystick, wireless remote, drawing tablet, voice
command system, eye tracking system, and the like. The user
interface input devices 1735 may allow a user to select
objects, icons, text and the like that appear on the user inter-
face output devices 1730 via a command such as a click of a
button or the like.

Embodiments of the communication subsystem 1740 typi-
cally include an Ethernet card, a modem (telephone, satellite,
cable, ISDN), (asynchronous) digital subscriber line (DSL)
unit, FireWire (IEEE 1394) interface, USB interface, and the
like. For example, the communications subsystem 1740 may
be coupled to communications networks and other external
systems 1755 (e.g., a network such as a LAN or the Internet),
to a FireWire bus, or the like. In other embodiments, the
communications subsystem 1740 may be physically inte-
grated on the motherboard of the computer system 1700, may
be a software program, such as soft DSL, or the like.

The RAM 1750 and the file storage subsystem 1725 are
examples of tangible non-transitory media configured to store
data such as error correction code parameters, codewords,
and program instructions to perform the operations described
herein when executed by the one or more processors, includ-
ing executable computer code, human readable code, or the
like. Other types of tangible non-transitory media include
program product media such as floppy disks, removable hard
disks, optical storage media such as CDs, DVDs, and bar code
media, semiconductor memories such as flash memories,
read-only-memories (ROMs), battery-backed volatile memo-
ries, networked storage devices, and the like. The file storage
subsystem 1725 includes reader subsystems that can transfer
data from the program product media to the storage sub-
system 1715 for operation and execution by the processors
1705.

The computer system 1700 may also include software that
enables communications over a network (e.g., the communi-
cations network 1755) such as the DNS, TCP/IP, UDP/IP, and
HTTP/HTTPS protocols, and the like. In other embodiments,
other communications software and transfer protocols may
also be used, for example IPX, or the like.

Many other hardware and software configurations are suit-
able for use with the disclosed embodiments. For example,
the computer system 1700 may be a desktop, portable, rack-
mounted, or tablet configuration. Additionally, the computer
system 1700 may be a series of networked computers. Fur-
ther, a variety of microprocessors are contemplated and are
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suitable for the one or more processors 1705, such as PEN-
TIUM™ microprocessors from Intel Corporation of Santa
Clara, Calif., USA; OPTERON™ or ATHLON XP™ micro-
processors from Advanced Micro Devices, Inc. of Sunnyvale,
Calif., USA; and the like. Further, a variety of operating
systems are contemplated and are suitable, such as WIN-
DOWS®, WINDOWS XP®, WINDOWS VISTA®, or the
like from Microsoft Corporation of Redmond, Wash., USA,
SOLARIS® from Sun Microsystems, Inc. of Santa Clara,
Calif., USA, various Linux and UNIX distributions, and the
like. In still other embodiments, the techniques described
above may be implemented upon a chip or an auxiliary pro-
cessing board (e.g., a programmable logic device or graphics
processor unit).

The embodiments described herein can be implemented in
the form of control logic in software or hardware or a com-
bination of both. The control logic may be stored in an infor-
mation storage medium as a plurality of instructions adapted
to direct an information-processing device to perform the
methods or portions thereof disclosed in described herein.
Other ways and/or methods to implement the embodiments
are possible.

The minimum push up, multi-cell and multi-permutation
schemes described herein can be implemented in a variety of
systems for encoding and decoding data for transmission and
storage. That is, codewords are received from a source over an
information channel according to a minimum push up, a
multi-cell or a multi-permutation scheme and are decoded
into their corresponding data values and provided to a desti-
nation, such as a memory or a processor, and data values for
storage or transmission are received from a source over an
information channel and are encoded into a minimum push
up, multi-cell or multi-permutation scheme.

The operations of encoding and decoding data according to
a minimum push up, multi-cell or multi-permutation scheme
can be illustrated as in FIG. 18, which shows data flow in a
data device 1802 that operates according to the minimum
push up, multi-cell or multi-permutation schemes described
herein. In FIG. 18, the device includes a Data Modulation
(DM) controller 1804 that stores and retrieves information
values 1806 using one of a minimum push up, multi-cell or a
multi-permutation scheme. The DM controller 1804 includes
an encoder and decoder 1808 for encoding data values into
codewords and decoding codewords into data values. The
DM controller encodes data values and provides codewords
to the source/destination block 1810, and decodes codewords
from the source/destination and provides corresponding data
values. The two-way nature of the data flow is indicated by the
double-ended arrows labeled “data values” and “codewords”.
The DM controller includes interfaces through which the DM
controller receives and provides the data values and the infor-
mation values (codewords).

The information values 1806 comprise the means for
physically representing data comprising the data values and
codewords. For example, the information values 1806 may
represent charge levels of memory cells, such that multiple
cells are configured to operate as a virtual cell in which charge
levels of the cells determine a permutation of the minimum
push up, multi-cell or multi-permutation schemes. Data val-
ues are received and encoded to permutations of a minimum
push up, multi-cell or multi-permutation scheme and charge
levels of cells are adjusted accordingly, and codewords are
determined according to cell charge levels, from which a
corresponding data value is determined. Alternatively, the
information values 1806 may represent features of a trans-
mitted signal, such as signal frequency, magnitude, or dura-
tion, such that the cells or bins are defined by the signal
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features and determine a permutation of the minimum push
up, multi-cell or multi-permutation schemes. For example,
rank ordering of detected cell frequency changes over time
can determine a permutation, wherein the highest signal fre-
quency denotes the highest cell level. Other schemes for
physical representation of the cells may be used.

For information values 1806 in the case of cell charge
levels, the source/destination 1810 comprises memory cells
in which n memory cells provide n cell values whose charge
levels define a a minimum push up, multi-cell or multi-per-
mutation scheme. For storing a codeword, the memory cells
receive an encoded codeword and comprise a destination, and
for reading a codeword, the memory cells provide a codeword
for decoding and comprise a source. In the case of data
transmission, the source/destination 1810 may comprise a
transmitter/receiver that processes a signal with signal fea-
tures such as frequency, magnitude, or duration that define
cells or bins such that the signal features determine a permu-
tation. That is, signal components comprising signal fre-
quency, magnitude, or duration may be controlled and modu-
lated by the transmitter such that a highest signal frequency
component or greatest magnitude component or greatest time
component corresponds to a highest cell level, followed by
signal component values that correspond to other cell values
and thereby define a permutation of the minimum push up,
multi-cell or multi-permutation schemes. When the source/
destination 1810 receives a codeword from the controller
1804, the source/destination comprises a transmitter of the
device 1802 for sending an encoded signal. When the source/
destination provides a codeword to the controller 1804 from a
received signal, the source/destination comprises a receiver
of'the device for receiving an encoded signal. Signal compo-
nents of the transmitted signal may be suitably modulated or
otherwise transformed to define minimum push up, multi-cell
or multi-permutation schemes, in view of the description
herein.

VII. Conclusion

The present disclosure describes various examples that
may be embodied as an apparatus, systems, methods, or a
combinations thereof. In some examples, a programming
method is described that may substantially reduce rewriting
cost for rank modulation, and studied rewrite codes for a
worst-case constraint on the cost. Some presented codes may
be optimal full-assignment codes, although additional code
constructions are contemplated of general code length, non-
full assignment codes and average-case cost constraint.

Some examples describe a flash cell structure (multi-cell)
that may enable a high number of updates between block
erasures. Various update codes that are based on permutations
of relative levels are also described.

The present disclosure is not to be limited in terms of the
particular embodiments described in this application, which
are intended as illustrations of various aspects. Many modi-
fications and variations can be made without departing from
its spirit and scope. Functionally equivalent methods and
apparatuses within the scope of the disclosure, in addition to
those enumerated herein are possible in view of the foregoing
descriptions. Such modifications and variations are intended
to fall within the scope of the appended claims. The present
disclosure is to be limited only by the terms of the appended
claims, along with the full scope of equivalents to which such
claims are entitled. It is to be understood that this disclosure
is not limited to particular methods, apparatus, articles of
manufacture, and/or systems, which can, of course, vary. It is
also to be understood that the terminology used herein is for
the purpose of describing particular embodiments only, and is
not intended to be limiting.



US 9,086,955 B2

45

With respect to the use of substantially any plural and/or
singular terms herein, such terms can be translated from the
plural to the singular and/or from the singular to the plural as
is appropriate to the context and/or application. The various
singular/plural permutations may be expressly set forth
herein for sake of clarity.

In general, terms used herein, and especially in the
appended claims (e.g., bodies of the appended claims) are
generally intended as “open” terms (e.g., the term “including”
should be interpreted as “including but not limited to,” the
term “having” should be interpreted as “having at least,” the
term “includes” should be interpreted as “includes but is not
limited to,” etc.). If a specific number of an introduced claim
recitation is intended, such an intent will be explicitly recited
in the claim, and in the absence of such recitation no such
intent is present. For example, as an aid to understanding, the
following appended claims may contain usage of the intro-
ductory phrases “at least one” and “one or more” to introduce
claim recitations. However, the use of such phrases should not
be construed to imply that the introduction of a claim recita-
tion by the indefinite articles “a” or “an” limits any particular
claim containing such introduced claim recitation to embodi-
ments containing only one such recitation, even when the
same claim includes the introductory phrases “one or more”
or “at least one” and indefinite articles such as “a” or “an”
(e.g., “a” and/or “an” should be interpreted to mean “at least
one” or “one or more”); the same holds true for the use of
definite articles used to introduce claim recitations. In addi-
tion, even if a specific number of an introduced claim recita-
tion is explicitly recited, such recitation should be interpreted
to mean at least the recited number (e.g., the bare recitation of
“two recitations,” without other modifiers, means at least two
recitations, or two or more recitations). Furthermore, in those
instances where a convention analogous to “at least one of A,
B, and C, etc.” is used, in general such a construction is
intended in the sense as would be understood for the conven-
tion (e.g., “a system having at least one of A, B, and C” would
include but not be limited to systems that have A alone, B
alone, C alone, A and B together, A and C together, B and C
together, and/or A, B, and C together, etc.). In those instances
where a convention analogous to “at least one of A, B, or C,
etc” is used, in general such a construction is intended in the
sense as would be understood for the convention (e.g., “a
system having at least one of A, B, or C”” would include but
not be limited to systems that have A alone, B alone, C alone,
A and B together, A and C together, B and C together, and/or
A, B, and C together, etc.). Virtually any disjunctive word
and/or phrase presenting two or more alternative terms,
whether in the description, claims, or drawings, should be
understood to contemplate the possibilities of including one
of the terms, either of the terms, or both terms. For example,
the phrase “A or B” will be understood to include the possi-
bilities of “A” or “B” or “A and B.”

In addition, where features or aspects of the disclosure are
described in terms of Markush groups, the disclosure is also
thereby described in terms of any individual member or sub-
group of members of the Markush group.

For any and all purposes, such as in terms of providing a
written description, all ranges disclosed herein also encom-
pass any and all possible subranges and combinations of
subranges thereof. Any listed range can be easily recognized
as sufficiently describing and enabling the same range being
broken down into at least equal halves, thirds, quarters, fifths,
tenths, etc. As a non-limiting example, each range discussed
herein can be readily broken down into a lower third, middle
third and upper third, etc. All language such as “up to,” “at
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number recited and refer to ranges which can be subsequently
broken down into subranges as discussed above. A range
includes each individual member. Thus, for example, a group
having 1-3 cells refers to groups having 1, 2, or 3 cells.
Similarly, a group having 1-5 cells refers to groups having 1,
2,3, 4, or 5 cells, and so forth.

While various aspects and embodiments have been dis-
closed herein, other aspects and embodiments are possible.
The various aspects and embodiments disclosed herein are for
purposes of illustration and are not intended to be limiting,
with the true scope and spirit being indicated by the following
claims.

We claim:

1. A method to operate a memory device, the method
comprising:

receiving a new data set for a rank of a plurality of ranks to

be stored in the memory device, wherein the memory
device comprises a plurality of cells;

reading a current state of candidate cells within the plural-

ity of cells, wherein the candidate cells are used to store
the new data set;

creating a binary representation of the plurality of cells

used to store the new data set;

using a write once memory (WOM) code to combine the

binary representation with the new data set to create a
binary WOM vector;

modifying the binary WOM vector to equal quantities of

1’s and 0’s within the candidate cells to create anew data
vector; and

writing the new data vector to the candidate cells.

2. The method of claim 1, wherein the WOM code includes
a polar WOM code.

3. The method of claim 1, wherein a cost to write is defined
as a maximum level of the plurality of cells after the new data
vector is written minus a maximum level of the candidate
cells before the new data vector is written.

4. The method of claim 3, wherein the costis 1.

5. The method of claim 1, wherein the method further
comprises:

reading the new data vector from the candidate cells;

modifying the new data vector to recreate the binary WOM

vector; and

using the WOM code on the binary WOM vector to sepa-

rate the binary representation from the data set.

6. The method of claim 5, wherein the WOM code includes
a polar WOM code.

7. A computer method to operate a memory device, the
method comprising:

receiving a new data set m for a rank to store in the memory

device, wherein the memory device comprises a plural-
ity of cells;

reading a current state of the plurality of cells, wherein the

plurality of cells are arranged according to a rank modu-
lation scheme and the plurality of cells are used to store
the received new data set m;
determining a new multi-permutation to be written to the
plurality of cells representing the received new data set
m determined in accordance with a particular cost; and
writing the new multi-permutation to the memory device.

8. A computer method to operate a memory device, the
method comprising:

receiving a data value comprising a plurality of data sets,

wherein each data set includes a set of values represent-
ing a rank in a plurality of ranks; and
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repeating for the plurality of data sets in the data value:

receiving a new data set for a rank of the plurality of
ranks to be stored in the memory device, wherein the
memory device comprises a plurality of cells;

reading a current state of candidate cells within the plu-
rality of cells, wherein the candidate cells are used to
store the new data set;

creating a binary representation of the plurality of cells
used to store the new data set;

using a write once memory (WOM) code to combine the
binary representation with the new data set to create a
binary WOM vector;

modifying the binary WOM vector to equal quantities of
1’s and 0’s within the candidate cells creating a new
data vector; and

writing the new data vector to the candidate cells.

9. The method of claim 8, wherein the WOM code includes
a polar WOM code.

10. A computer method of operate a memory device, the
method comprising:

reading a plurality of cells and determining a multi-permu-

tation stored in the plurality of cells;

identifying a group of cells in the plurality of cells, con-

tained within each rank of a plurality of ranks; and

for each rank:

reading a new data vector from the rank;

modifying the new data vector to recreate a binary write
once memory (WOM) vector; and

using a WOM code on the binary WOM vector to sepa-
rate a binary representation from a data set.

11. The method of claim 10, wherein the WOM code
includes a polar WOM code.

12. A memory controller, comprising:

an interface configured to receive a new data set for a rank

of a plurality of ranks to be stored in a memory compris-
ing a plurality of cells; and

a processor coupled to the interface and configured to:

read a current state of candidate cells within the plurality
of cells,

wherein the candidate cells are used to store the new data

set;

create a binary representation of the plurality of cells
used to store the new data set;

use a write once memory (WOM) code to combine the
binary representation with the new data set to create a
binary WOM vector;

modify the binary WOM vector to equal quantities of 1’s
and 0’s within the candidate cells to create a new data
vector; and

write the new data vector to the candidate cells.

13. The memory controller of claim 12, wherein the WOM
code includes a polar WOM code.

14. The memory controller of claim 12, wherein a cost to
write is defined as a maximum level of the plurality of cells
after the new data vector is written minus a maximum level of
the candidate cells before the new data vector is written.

15. The memory controller of claim 14, wherein the cost is
1.

16. The memory controller of claim 12, wherein the pro-
cessor is further configured to:

read the new data vector from the candidate cells;

modify the new data vector to recreate the binary WOM

vector; and

use the WOM code on the binary WOM vector to separate

the binary representation from the data set.

17. The memory controller as in claim 16, wherein the
WOM code includes a polar WOM code.
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18. A memory controller, comprising:
an interface configured to receive a new data set m for a
rank to be stored in a memory device, wherein the
memory device comprises a plurality of cells; and
a processor coupled to the interface and configured to:
read a current state of the plurality of cells within the
plurality of cells that are arranged according to a rank
modulation scheme and the plurality of cells are used
to store the received new data set m;
determine a new multi-permutation to be written to the
plurality of cells that represents the received new data
set m determined in accordance with a particular cost;
and
write the new multi-permutation to memory.
19. A memory controller, comprising:
an interface configured to receive a data value comprising
a plurality of data sets, wherein each data set is a set of
values that represent a rank in a plurality of ranks; and
a processor coupled to the interface and configured to
perform operations repeated for the data sets in the data
value, wherein the operations include:
receive a new data set for a rank of the plurality of ranks
to be stored in a memory device, wherein the memory
device comprises a plurality of cells;
read a current state of candidate cells within the plurality
of cells, wherein the candidate cells are used to store
the new data set;
create a binary representation of the plurality of cells
used to store the new data set;
use a write once memory (WOM) code to combine the
binary representation with the new data set to create a
binary WOM vector;
modify the binary WOM vector to equal quantities of 1°s
and 0’s within the candidate cells to create a new data
vector; and
write the new data vector to the candidate cells.
20. The memory controller of claim 19, wherein the WOM
code includes a polar WOM code.
21. A memory controller, comprising:
an interface configured to provide access to a plurality of
cells in a memory device; and
a processor coupled to the interface and configured to:
access the plurality of cells through the interface;
read the plurality of cells; and
perform operations that include:
determine a multi-permutation stored in the plurality
of cells;
identify a group of cells in the plurality of cells con-
tained within each rank of a plurality of ranks; and
for each rank:
read a new data vector from the rank;
modify the new data vector to recreate a binary
write once memory (WOM) vector; and
us a WOM code on the binary WOM vector to
separate a binary representation from a data set.
22. The memory controller of claim 21, wherein the WOM
code includes a polar WOM code.
23. A data device, comprising:
a memory configured to store data values; and
a memory controller coupled to the memory and that is
configured to store the data values in the memory by
performance of operations that include:
receive a new data set for a rank of a plurality of ranks to
be stored in the data device, wherein the data device
comprises a plurality of cells;
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read a current state of candidate cells within the plurality
of cells, wherein the candidate cells are used to store
the new data set;

create a binary representation of the plurality of cells
used to store the new data set;

use a write once memory (WOM) code to combine the
binary representation with the new data set to create a
binary WOM vector;

modify the binary WOM vector to equal quantities of 1’s
and 0’s within the candidate cells to create a new data
vector; and

write the new data vector to the candidate cells.

24. The data device of claim 23, wherein the WOM code
includes a polar WOM code.

25. The data device of claim 23, wherein a cost to write is
defined as a maximum level of the plurality of cells after the
new data vector is written minus a maximum level of the
candidate cells before the new data vector is written.

26. The data device of claim 25, wherein the cost is 1.

27. The data device of claim 23, wherein the operations
further include:

read the new data vector from the candidate cells;

modify the new data vector to recreate the binary WOM

vector; and

use a WOM code on the binary WOM vector to separate the

binary representation from the data set.

28. The data device as in claim 27, wherein the WOM code
includes a polar WOM code.

29. A data device, comprising:

a memory configured to store data values; and

a memory controller coupled to the memory and that is

configured to store the data values in the memory by

performance of operations that include:

receive a new data set m for a rank to store in the data
device, wherein the data device comprises a plurality
of cells;

read a current state of the plurality of cells, wherein the
plurality of cells are arranged according to a rank
modulation scheme and the plurality of cells are used
to store the received new data set m;

determine a new multi-permutation to be written to the
plurality of cells that represent the received new data
setm determined in accordance with a particular cost;
and

write the new multi-permutation to the data device.
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30. A data device, comprising:
a memory configured to store data values; and
a memory controller coupled to the memory and that is
configured to store the data values in the memory by
performance of operations that include:
receive a data value comprising a plurality of data sets,
wherein each data set is a set of values that represent
a rank in a plurality of ranks, and repeat for the data
sets in the data value operations include to:
receive a new data set for a rank of the plurality of
ranks to be stored in the data device, wherein the
data device comprises a plurality of cells;
read a current state of candidate cells within the plu-
rality of cells, wherein the candidate cells are used
to store the new data set;
create a binary representation of the plurality of cells
used to store the new data set;
use a write once memory (WOM) code to combine the
binary representation with the new data set to create
a binary WOM vector;
modify the binary WOM vector to equal quantities of
1’s and 0’s within the candidate cells to create a
new data vector; and
write the new data vector to the candidate cells.
31. The data device of claim 30, wherein the WOM code
includes a polar WOM code.
32. An apparatus, comprising:
a data device configured to:
read a plurality of cells and determine a multi-permuta-
tion stored in the plurality of cells;
identify a group of cells in the plurality of cells, con-
tained within each rank of a plurality of ranks; and
for each rank:
read a new data vector from the rank;
modify the new data vector to recreate a binary write
once memory (WOM) vector; and
use a WOM code on the binary WOM vector to sepa-
rate a binary representation from a data set.
33. The data device of claim 32, wherein the WOM code
includes a polar WOM code.
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insert (1 — p/2 — &)N < w(u) < (1 — p/2 + &) N’--, therefor.

In the specification
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Column 31, Line 55, delete “I; =for” and insert --I; ;= i; for--, therefor.

' ! J—
Column 31, Line 65, delete « lzj=enp mi = Pmyt 1 and insert

. t —
Llsjsenp,,;, =Pm; t 1---, therefor.

Column 31, Line 67, delete « p::(pl,ju C ey pm;N) ” and insert

_p=( 1170 pmsﬂ’) --, therefor.
Column 32, Line 42, delete pm,l L pms €N and
insert -- pm,l LA pms €N _ therefor.

Column 32, Line 61, delete “d,, ;) the” and insert --d,,., ), the--, therefor.

Column 33, Line 18, delete “ N'=N,” and insert --N' = N + meNn',--, therefor.

D:2(2’2~—6N(m-l)

Column 33, Line 19, delete « ” and insert

—_ 2z—86N W m—~1]
D= 2( SEL }--, therefor.
Column 33, Line 20, delete “(c,p,d), (c,p)<(c,g,d),” and
insert --(¢,p,d), (¢,p) < f(c,p,d),--, therefor.

N N
Column 33, Line 67, delete « ne{O,I } ” and insert -- u € {0’1} --, therefor.
]
a,=I1_,/(1-¢€,). 2 TI5. —

Column 35, Line 10, delete < ¢ /=0 { - and insert — ¥t = HJ =0 (1 2‘) -
therefor.
Column 35, Line 46, delete « Rp=a, H{e,)~€,. and insert -- R, = at*lH(Sr) - at’ -,

therefor.
Column 35, Line 57, delete “X=U,G, ® »”” and insert --X=U,G,®--, therefor.

Column 36, Line 58-59, delete “and n’<logN=log(mZ),” and insert --n’>logN=log(mZ),--, therefor.

In the specification
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(2z -=6N)m-—1) (22 -O6N)m-1)

Column 36, Lines 65-66, delete N +mzNn' > 444 insert -- N+msNn'
therefor.

Column 37, Line 41, delete “A*(N)(X,Y),” and insert --A,* (N)(X,Y),--, therefor.

Column 37, Line 45, delete “b in y.” and insert --b in x,y.--, therefor.

Column 37, Line 46-47, delete “p(a, b)>0,/(C(a,b[x,y)/N-p(a,b)|<€.” and insert
--p(a, b) > 0, /C(a,b/x, y)/N — p(a, b)/< &.--, therefor.

R >2-(1=1/m)?. =
Column 38, Lines 36-37, delete « 1+ 22}?’1 log(zm) ” and

R, > 2 {1=1/m)?" -

insert — 1+ 2smlogl(zm?

inse
--, therefor.

In the claims
Column 47, Line 19, Claim 10, delete “method of operate™ and insert --method to operate--, therefor.

Column 47, Line 42, Claim 12, delete “the plurality of cells” and insert --the candidate cells--,
therefor.

Column 47, Line 66, Claim 17, delete “controller as in claim” and insert --controller of claim--,
therefor.

Column 48, Line 56, Claim 21, delete “us a WOM” and insert --use a WOM--, therefor.

Column 49, Line 27, Claim 28, delete “device as in claim” and insert --device of claim--, therefor.



