

US008475798B2

(12) United States Patent

Patti et al.

(10) Patent No.: US 8,475,798 B2 (45) Date of Patent: Jul. 2, 2013

(54) MONOCLONAL ANTIBODIES RECOGNIZING A COAGULASE-NEGATIVE STAPHYLOCOCCAL PROTEIN

(75) Inventors: Joseph M. Patti, Alpharetta, GA (US);
Jeff T. Hutchins, Cumming, GA (US);
Andrea Hall, Acworth, GA (US); Linda
Santos, San Antonio, TX (US); Maria
Bowden, Sugar Land, TX (US); Magnus
Hook, Houston, TX (US)

(73) Assignees: Inhibitex, Inc., Alpharetta, GA (US); The Texas A&M University System,

College Station, TX (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 757 days.

(21) Appl. No.: 11/917,435

(22) PCT Filed: Jun. 16, 2006

(86) PCT No.: **PCT/US2006/023590**

§ 371 (c)(1),

(2), (4) Date: Nov. 16, 2009

(87) PCT Pub. No.: **WO2006/138627**

PCT Pub. Date: Dec. 28, 2006

(65) Prior Publication Data

US 2010/0183623 A1 Jul. 22, 2010

Related U.S. Application Data

- (60) Provisional application No. 60/690,940, filed on Jun. 16, 2005.
- (51) Int. Cl.

 A61K 39/40 (2006.01)

 A61K 39/00 (2006.01)

 A61K 39/395 (2006.01)

 G01N 33/569 (2006.01)

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

	6,008,341	A	12/1999	Foster et al.
	6,177,084	B1	1/2001	Foster et al.
	6,288,214	В1	9/2001	Hook et al.
	6,635,473	B1	10/2003	Foster
	6,680,195	B1	1/2004	Patti et al.
	6,685,943	В1	2/2004	Hook et al.
	6,692,739	B1	2/2004	Patti et al.
	6,703,025	B1	3/2004	Patti et al.
	6,797,492	B2	9/2004	Daugherty et al.
	6,841,154	B2	1/2005	Foster et al.
	6,979,446	B2	12/2005	Patti et al.
	6,994,855	В1	2/2006	Foster et al.
	7,045,131	B2	5/2006	Patti et al.
2004	4/0006209	A1*	1/2004	Patti et al 530/350
2004	4/0038327	A1	2/2004	Foster et al.

OTHER PUBLICATIONS

Kabat et al. J. Exp. Med. 164: 642-654, 1986.*

Webster's II New Riverside University Dictionary, The Riverside Publishing Company, p. 933, 1984.*

Illustrated Stedman's Medical Dictionary, 24th Ed, Williams and Wilkins, Baltimore, p. 707, 1982.*

Primary Examiner — S. Devi (74) Attorney, Agent, or Firm — B. Aaron Schulman, Esq.; Stites & Harbison, PLLC

(57) ABSTRACT

Monoclonal antibodies which can bind to the SdrF protein of *Staphylococcus epidermidis* are provided which can be useful in the treatment and protection against infection from staphylococcal bacteria such as *Staphylococcus epidermidis*. The monoclonal antibodies of the invention are advantageous in that they can also recognize binding domains and subdomains of the *S. epidermidis* SdrF protein in addition to the protein itself. Suitable compositions and passive vaccines based on the monoclonal antibodies of the invention, as well as methods for their use, are also provided.

17 Claims, 4 Drawing Sheets

^{*} cited by examiner

FIGURE 1

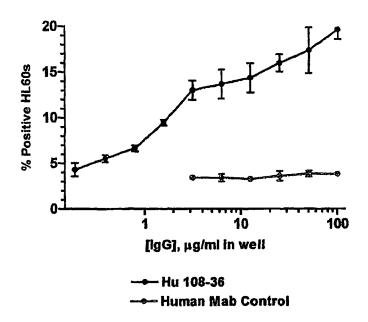


FIGURE 2

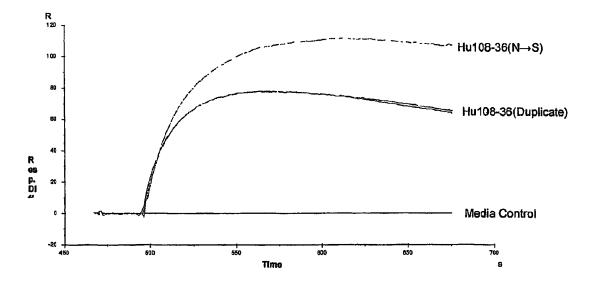
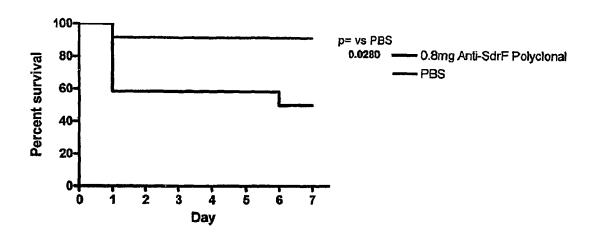



FIGURE 3

FIGURE 4

MONOCLONAL ANTIBODIES RECOGNIZING A COAGULASE-NEGATIVE STAPHYLOCOCCAL PROTEIN

CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of U.S. provisional application Ser. No. 60/690,940 filed Jun. 16, 2005, incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to the fields of microbiology, molecular biology, and immunology and more particularly 15 relates to newly identified monoclonal antibodies, the use of monoclonal antibodies, as well as the production of such monoclonal antibodies and recombinant host cells transformed with the DNA encoding monoclonal antibodies to prevent, treat, or diagnose coagulase-negative staphylococcal 20 infections in man and animals. The invention includes murine, chimeric, humanized, and human monoclonal antibodies, as well as fragments, regions and derivatives thereof. The antibodies detailed in this invention specifically recognize SdrF, an extracellular matrix binding MSCRAMM® 25 protein expressed by coagulase-negative staphylococci, particularly *S. epidermidis*.

BACKGROUND OF THE INVENTION

Coagulase-negative staphylococci, particularly Staphylococcus epidermidis is a generally avirulent commensal organism of the human skin, and is the principle etiologic agent of infections of peripheral and central venous catheters, prosthetic heart valves, artificial joints, and other prosthetic 35 devices. S. epidermidis bacteremia has an attributable mortality rate of 10-34% and results in an excess hospital stay of 8 days, and costs an estimated \$6,000.00 per case. Despite its importance as a nosocomial pathogen, relatively little is known about the pathogenesis of these infections or the viru- 40 lence determinants of this organism. Initial localized infections of indwelling medical devices can lead to more serious invasive infections such as septicemia, osteomyelitis, and endocarditis. Vascular catheters are thought to become infected when microorganisms gain access to the device, and 45 hence the blood stream, by migration from the skin surface down the transcutaneous portion of the catheter. In infections associated with medical devices, plastic and metal surfaces become coated with host plasma and matrix proteins such as fibrinogen, vitronectin and fibronectin shortly after implan- 50 tation. The ability of coagulase-negative staphylococci to adhere to these proteins is of crucial importance for initiating infection. Bacterial or microorganism adherence is thought to be the first crucial step in the pathogenesis of a prosthetic device infection. A number of factors influence an organism's 55 ability to adhere to prosthetic material. These include characteristics of the microorganism and the biomaterial, and the nature of the ambient milieu. The initial attraction between the organism and the host is influenced by nonspecific forces such as surface charge, polarity, Van der Waal forces and 60 hydrophobic interactions. The critical stage of adherence involves specific interactions between MSCRAMM® proteins and immobilized host proteins. To date, investigation concerning the adherence of coagulase negative staphylococci to biomaterials has concerned itself primarily with the 65 role of the extracellular polysaccharide or glycocalyx, also known as slime. Despite intensive study however, the pro2

posed role of slime in the pathogenesis of disease or even its composition remain debated. Drewry. D. T., L Gailbraith. B. I. Wilkinson, and S. G. Wilkinson. 1990. Staphylococcal Slime: A Cautionary Tale, I. Clin. Microbiol 28; 1292-1296. Currently, extracellular slime is thought to play a role in the later stages of adherence and persistence of infection. It may serve as an ion exchange resin to optimize a local nutritional environment, prevent penetration of antibiotics into the macro-colony and protect bacteria from phagocytic host defense cells. Peters et al have shown by electron microscopy studies that extracellular polysaccharide appears in the later stages of attachment and is not present during the initial phase of adherence. Peters, O., R. Locci. and G. Pulverer. 1982. Adherence and Growth of Coagulase-Negative Staphylococci on Surfaces in Intravenous Catheters. I. Infect Dis. 65146: 479-482. Hogt et al demonstrated that removal of the extracellular slime layer by repeated washing does not diminish the ability of S. epidermidis to adhere to biomaterials. Hogt. A. H., I. Dankert, I. A. DeVries. and I. Feijen, 1983. Adhesion of Coagulase-Negative Staphylococci to Bloinaterials. J. Gen. Microbial. 129:2959-2968.

Thus study of exopolysaccharide has tended little to prevention of initial adherence by the bacteria. Several other studies have identified other potential adhesins of *S. epidermidis* including the polysaccharide adhesion (PS/A) observed by Tojo et al. Tojo, M., N. Yamashita, D. A. Goldmann. and G. B. Pier, 1988. *Isolation and Characterization of a Capsular Polysaccharide Adhesin* 10 *from Staphylococcus epidermidis. J. Infect. Dis.* 157:713-722. The slime associated antigen at (SAA) of Christensen et al. Christensen. G. D., Barker, L. P., Manhinnes, T. P., Baddour, L. M., Simpson. W. A. *Identification of an Antigenic Marker of Slime Production for Staphylococcus epidermidis. Infect Immun.* 1990; 58:2906-2911

It has been demonstrated that PS/A is a complex mixture of monosaccharides and purified PS/A blocks adherence of PS/A producing strains of *S. epidermidis*. In an animal model of endocarditis antibodies directed against PS/A was protective. However it is not clear whether this protective effect was specific, related to anti-adhesive effects of the antibody or due to a more generalized increase in the efficiency of opsonophagocytosis of blood borne bacteria. It has been hypothesized that each functions in different stages of the adherence process with one or more of these adhesins responsible for initial attraction while other are needed for aggregation in the macro-colonies. Despite all of these studies, factors involved in the initial adherence of *S. epidermidis* to biomaterials remain largely unknown and equally unknown is a practical method for preventing the first stage of infection, adherence.

One particular area where improved treatment regimens is needed is the prevention/treatment of coagulase negative staphylococcal infections in low birth weight infants (LBW) by passive immunization with SdrF mAb(s). LBW infants are defined as those infants born between 500-1500 g. Premature infants are born before a sufficient transfer of protective maternal antibodies through the placenta takes place. The combination of insufficient antibodies, blood losses for diagnostic purposes, less efficient phagocytosis, microbial intestinal overgrowth under selection pressure from antimicrobial treatment, and repeated invasion of otherwise sterile sites by indwelling catheters, are some of the reasons for the very high nosocomial infection rates in this vulnerable population.

It has been recently shown that *S. epidermidis* contains surface proteins structurally related to *S. aureus* MSCRAMMs, and numerous surface proteins from *S. epidermidis* have previously been disclosed, e.g., in U.S. Pat. Nos. 6,703,025 and 6,635,473, said patents incorporated

herein by reference. One of these S. epidermidis proteins, called SdrF (serine-aspartate repeat protein F), has features typical of Gram-positive bacterial proteins that are anchored to the cell wall. This protein shows significant amino acid sequence homology to ClfA and ClfB from S. aureus including an 500 -amino acid-long A region, a SD dipeptide repeat region, and features required for cell wall anchoring. However, it remains a desirable object to obtain effective methods of treating and/or preventing staphylococcal infections utilizing these surface proteins, and to obtain monoclonal antibodies which recognize a large number of strains of S. epidermidis so as to be widely effective in treating and/or preventing infection. To date, monoclonal antibodies that specifically recognize SdrF, exhibit high affinity (>10⁸ K_D), and are protective in animals models of disease have not been described or suggested.

SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to provide monoclonal antibodies that can bind to the SdrF 20 protein from *S. epidermidis*, or certain subregions therein, with high affinity and which can thus be useful in methods to treat, prevent or diagnose staphylococcal infections.

It is also an object of the present invention to provide monoclonal antibodies which are able to bind SdrF and which are generated from the SdrF or the binding domain or A domain of the SdrF protein including its N1N2N3 regions, or other subdomains such as N2, N3, or N2N3, and which can be utilized in methods of treating or protecting against staphylococcal infections.

It is also an object of the present invention to provide monoclonal antibodies to the SdrF protein which can be useful in preventing adherence of Staphylococcal bacteria to host cells.

It is a further object of the present invention to provide antibodies and antisera which can recognize the binding domain of the SdrF protein and which can thus be useful in methods of treating, preventing, identifying or diagnosing staphylococcal infections.

These and other objects are provided by virtue of the present invention which comprises the generation and use of monoclonal antibodies which can recognize the *S. epidermidis* SdrF protein and/or its binding domains and subdomains, for the treatment or prevention of *Staphylococcus* infections. In accordance with the invention, suitable compositions and passive vaccines based on the monoclonal antibodies of the invention, as well as methods for their use, are also provided as set forth in the detailed description hereinbelow.

BRIEF DESCRIPTION OF THE DRAWING FIGURES

FIG. 1 is a graphic representation of fluorescent SdrF-coated Bead OP Assay with Humanized Anti-SdrF mAb.

FIG. 2 is a graphic representation of the biacore capture/binding of SdrF with Hu108-36 and Hu108-36 (N→S)

FIG. 3 is a graphic representation of the antibody mediated survival after challenge with *S. epidermidis* 771-233 in a Neonatal Rat model.

FIG. 4 is a graphic representation of anti-SdrF monoclonal antibody-mediated survival after challenge with *S. epidermi-* 60 *dis* 771-233 in a Neonatal Rat model.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In accordance with the present invention, there are provided monoclonal antibodies which can recognize and bind to

4

the extracellular matrix binding protein SdrF, a surface localized protein from *S. epidermidis*, and subregions included therein including the N1, N2 and N3 regions, which together form the ligand binding A domain of SdrF, and combinations of these regions. In the preferred method of generating these monoclonal antibodies, they are raised against an *E. coli* expressed and purified SdrF (N1N2N3) protein used to generate a panel of murine monoclonal antibodies. However, monoclonal antibodies recognizing SdrF or its subregions can be raised from other subregions or larger parts of the protein as long as they are immunogenic and will be able to generate antibodies that recognize SdrF and/or its subregions.

In the preferred method of making monoclonal antibodies in accordance with the invention, these antibodies may be obtained in conventional ways including steps of introducing the SdrF antigen into a host animal, followed by isolation of sera and formation of a suitable hybridoma. In one such suitable method, a group of Balb/C mice received a series of subcutaneous immunizations of 1-10 mg of protein in solution or mixed with adjuvant. Seven days after each boost, serum was collected and titered in ELISA assays against MSCRAMMs or on whole cells (S. epidermidis). Three days after the final boost, the spleen was removed, teased into a single cell suspension and the lymphocytes harvested. The lymphocytes were then fused to a P3X63Ag8.653 myeloma cell line (ATCC #CRL-1580). Cell fusion, subsequent plating and feeding were performed according to the Production of Monoclonal Antibodies protocol from Current Protocols in Immunology (Chapter 2, Unit 2).

In the next step, screening and selection of Anti-SdrF monoclonal antibodies in accordance with the present invention took place. In this step, hybridomas generated from the fusion were screened for specific anti-SdrF antibody production using a standard ELISA assay. Positive clones were expanded and tested further for activity in a whole bacterial cell binding assay by flow cytometry and SdrF binding by BIACORE analysis. These clones were then subject to an ELISA analysis wherein immulon 2-HB high-binding 96-well microtiter plates (DYNEX) were coated with 1 μg/well of SdrF N1N2N3, N2N3, N2 or N3 in 1×PBS, pH 7.4 and incubated for 2 hours at room temperature. All washing steps in ELISAs were performed three times with 1×PBS, 0.05% TWEEN-20 wash buffer. Plates were washed and blocked with a 1% BSA solution at room temperature for 1 hour before hybridoma supernatant samples were added to wells. Plates were incubated with samples and relevant controls such as media alone for one hour at room temperature. washed, and goat anti-mouse IgG-AP (Sigma) diluted 1:5000 in 1×PBS, 0.05% TWEEN-20, 0.1% BSA was used as a 50 secondary reagent. Plates were developed by addition of 1 mg/ml solution of 4-nitrophenyl phosphate (pNPP) (Sigma), followed by incubation at 37° C. for 30 minutes. Absorbance was read at 405 nm using a SPECTRAMAX 190 Plate Reader (Molecular Devices Corp.). Antibody supernatants that had an OD₄₀₅≥3 times above background (media alone, ~0.1 OD) were considered positive.

Throughout the BIACORE analysis, the flow rate remained constant at 10 ml/min. Prior to the SdrFN1N2N3 or SdrFN2N3 injection, test antibody was adsorbed to the chip via RAM-Fc binding. At time 0, SdrF (N1N2 or N1N2N3) at a concentration of 30 mg/ml was injected over the chip for 3 min followed by 2 minutes of dissociation. This phase of the analysis measured the relative association and disassociation kinetics of the Mab/SdrF interaction.

In addition to preparing monoclonal antibodies in accordance with the invention, polyclonal antiserum to SdrF was also generated and tested so as to be useful in comparisons of

strain recognition with regard to the monoclonal antibodies of the invention. In this regard, polyclonal antiserum was generated by Strategic BioSolutions Inc. in New Zealand White SPF Rabbits using a standard immunization schedule. A primary subcutaneous immunization of 200 µg total SdrF protein with Complete Freund's adjuvant was administered on day 0. Boost immunizations of 200 µg total protein with Incomplete Freund's Adjuvant (IFA) were administered on days 21 and 35. The first test bleed was harvested on day 44, followed by an additional boost immunization on day 49, for a total of 4 immunizations. Test bleeds were then collected on days 58 and 63 with a final serum harvest on day 71. The IgG fraction was purified via protein A affinity chromatography and quantitated by OD280 uv-spectroscopy based on an extinction coefficient of 1.33.

The preparation of monoclonal antibodies in accordance with the invention and the generation of antiserum to SdrF was then subject to testing for binding to whole bacteria in flow experiments. In these experiments, S. epidermidis strain (9491) were collected, washed and incubated with mAb or 20 PBS alone (control) at a concentration of 2 mg/ml after blocking with rabbit IgG (50 mg/ml). Following incubation with antibody (mAb and polyclonal), bacterial cells were incubated with Goat- $F_{(ab)2}$ -Anti-Mouse- $F_{(ab)2}$ -FITC which served as the detection antibody. After antibody labeling, 25 bacterial cells were aspirated through the FACScaliber flow cytometer to analyze fluorescence emission (excitation: 488, emission: 570). For each bacterial strain, 10,000 events were collected and measured. The data showed that SdrF positive hybridomas were generated from 4 separate fusions (F108- 30 F111). It was unusual to observe that all of the Biacore positive hybridomas were also positive for whole cell bacterial binding by flow cytometry; indicating that the recombinant A domain construct (SdrF N1N2N3) expressed and purified from E. coli mirrored the native antigen on the bacterial cell 35 surface. The flow analysis of cell surface bacterial cell staining demonstrated that the anti-SdrF monoclonals and polyclonal anti-sera stained with equal intensity and frequency for the greater than 20 S. epidermidis strains tested. The analysis also indicated that SdrF has immunogenic epitopes that 40 include the N2 and N3 domains linked (110-15) as well as the N2 (108-36) and N3 (108-1) domains alone. The unique globular domains of N2 and N3 as well as the tertiary conformational structure with N2N3, create epitopes for high affinity interaction with monoclonal antibodies on purified 45 recombinant protein as well as on bacterial cells.

Accordingly, the present invention provides monoclonal antibodies which recognize the SdrF protein and which can bind to *S. epidermidis* so as to be useful in methods of treating, preventing or diagnosing staphylococcal infections. In 50 addition, the invention provides monoclonals that can recognize subdomains of SdrF, namely ones that can recognize N2, ones that recognize N3, and ones that recognize the N2N3 combined domain as described herein. Accordingly, the present invention contemplates these monoclonal antibodies, 55 and other monoclonals recognizing the same epitopes of the specific monoclonals described herein.

Accordingly, the present invention relates to an isolated and/or purified monoclonal antibody which can bind to the SdrF protein and/or their binding subdomains, and which thus 60 can be useful in methods of inhibiting adherence of *S. epidermidis* to host cells and thus treat or prevent a staphylococal infection when used in amounts effective to prevent or treat such infections. In addition to the methods described above, these monoclonal antibodies may be produced using 65 any of a variety of conventional methods, e.g., the method of Kohler and Milstein, Nature 256:495-497 (1975), or other

6

suitable ways known in the field. In addition, it will be recognized that these monoclonals can be prepared in a number of forms, including chimeric, humanized, or human in addition to murine in ways that would be well known in this field. Still further, monoclonal antibodies may be prepared from a single chain, such as the light or heavy chains, and in addition may be prepared from active fragments of an antibody which retain the binding characteristics (e.g., specificity and/or affinity) of the whole antibody. By active fragments is meant an antibody fragment which has the same binding specificity as a complete antibody which binds to extracellular matrix binding proteins, and the term "antibody" as used herein is meant to include said fragments. Additionally, antisera prepared using monoclonal or polyclonal antibodies in accordance with the invention are also contemplated and may be prepared in a number of suitable ways as would be recognized by one skilled in the art.

Although production of antibodies as indicated above is preferably carried out using synthetic or recombinantly produced forms of the SdrF protein or antigenic subregions therefrom, antibodies may also be generated from natural isolated and purified SdrF proteins or subregions, or active fragments thereof. Still other conventional ways are available to generate the SdrF antibodies of the present invention using recombinant or natural purified SdrF proteins or their active regions, as would be recognized by one skilled in the art.

As would be recognized by one skilled in the art, the antibodies of the present invention may also be formed into suitable pharmaceutical compositions, for administration to a human or animal patient in order to treat or prevent an infection caused by staphylococcal bacteria. Pharmaceutical compositions containing the antibodies of the present invention, or effective fragments thereof, may be formulated in combination with any suitable pharmaceutical vehicle, excipient or carrier that would commonly be used in this art, including such conventional materials for this purpose, e.g., saline, dextrose, water, glycerol, ethanol, other therapeutic compounds, and combinations thereof. As one skilled in this art would recognize, the particular vehicle, excipient or carrier used will vary depending on the patient and the patient's condition, and a variety of modes of administration would be suitable for the compositions of the invention, as would be recognized by one of ordinary skill in this art. Suitable methods of administration of any pharmaceutical composition disclosed in this application include, but are not limited to, topical, oral, anal, vaginal, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal and intradermal administration.

If topical administration is desired, the composition may be formulated as needed in a suitable form, e.g., an ointment, cream, gel, lotion, drops (such as eye drops and ear drops), or solution (such as mouthwash). Wound or surgical dressings, sutures and aerosols may be impregnated with the composition. The composition may contain conventional additives, such as preservatives, solvents to promote penetration, and emollients. Topical formulations may also contain conventional carriers such as cream or ointment bases, ethanol, or oleyl alcohol.

Additional forms of antibody compositions, and other information concerning compositions, methods and applications with regard to the MSCRAMM® SdrF of the present invention can also be found from other patent references concerning other MSCRAMM®s which will generally be applicable to the present invention as well, and these patents include U.S. Pat. Nos. 7,045,131; 6,994,855; 6,979,446; 6,841,154; 6,703,025; 6,692,739; 6,685,943; 6,680,195;

6,635,473; 6,288,214; 6,177,084; and 6,008,341, all of said patents incorporated herein by reference.

The antibody compositions of the present invention which are generated against the N1N2N3 regions from the SdrF protein from S. epidermidis may also be administered with a 5 suitable adjuvant in an amount effective to enhance the immunogenic response against the conjugate. For example, suitable adjuvants may include alum (aluminum phosphate or aluminum hydroxide), which is used widely in humans, and other adjuvants such as saponin and its purified component Quil A, 10 Freund's complete adjuvant, RIBBI adjuvant, and other adjuvants used in research and veterinary applications. Still other chemically defined preparations such as muramyl dipeptide, monophosphoryl lipid A, phospholipid conjugates such as those described by Goodman-Snitkoff et al. J. Immunol. 147: 15 410-415 (1991) and incorporated by reference herein, encapsulation of the conjugate within a proteoliposome as described by Miller et al., J. Exp. Med. 176:1739-1744 (1992) and incorporated by reference herein, and encapsulation of the protein in lipid vesicles such as NOVASOME® lipid 20 vesicles (Micro Vescular Systems, Inc., Nashua, N.H.) may also be useful.

The antibody compositions of the present invention will thus be useful for interfering with, modulating, or inhibiting binding interactions between the SdrF protein on coagulasenegative staphylococcal bacteria and its ligand on host cells and tissues, and will thus have particular applicability in developing compositions and methods of preventing or treating staphylococcal infection, and in inhibiting binding of staphylococcal bacteria to host tissue and/or cells.

In accordance with the present invention, methods are provided for preventing or treating a staphylococcal infection which comprise administering an effective amount of the monoclonal antibody of the present invention as described above in amounts effective to treat or prevent the infection. In 35 addition, these monoclonal antibodies have been shown to have high affinity in binding of staphylococcal bacteria, and thus should be effective in treating or preventing infection from staph bacteria such as *S. epidermidis*. Further, these monoclonals will be useful in inhibiting *S. epidermidis* biding 40 to the extracellular matrix of the host, and in reducing or eliminating the adherence of *S. epidermidis* on host cells or on other surfaces, e.g., medical equipment, implants or prosthetics

Accordingly, in accordance with the invention, administration of the antibodies of the present invention in any of the conventional ways described above (e.g., topical, parenteral, intramuscular, etc.), and will thus provide an extremely useful method of treating or preventing staphylococcal infections in human or animal patients. By effective amount is meant that level of use, such as of an antibody titer, that will be sufficient to either prevent adherence of the bacteria, to inhibit binding of staph bacteria to host cells and thus be useful in the treatment or prevention of a staph infection. As would be recognized by one of ordinary skill in this art, the level of antibody titer needed to be effective in treating or preventing staphylococcal infection will vary depending on the nature and condition of the patient, and/or the severity of the pre-existing staphylococcal infection.

In addition to the use of antibodies of the present invention 60 to treat or prevent *S. epidermidis* infection as described above, the present invention contemplates the use of these antibodies in a variety of ways, including the detection of the presence of *S. epidermidis* to diagnose a staph infection, whether in a patient or on medical equipment, implants or prosthetics 65 which may also become infected. In accordance with the invention, a preferred method of detecting the presence of

R

staph infections involves the steps of obtaining a sample suspected of being infected by one or more staphylococcal bacteria species or strains, such as a sample taken from an individual, for example, from one's blood, saliva, tissues, bone, muscle, cartilage, or skin. The cells can then be lysed, and the DNA extracted, precipitated and amplified. Following isolation of the sample, diagnostic assays utilizing the antibodies of the present invention may be carried out to detect the presence of S. epidermidis, and such assay techniques for determining such presence in a sample are well known to those skilled in the art and include methods such as radioimmunoassay, Western blot analysis and ELISA assays. In general, in accordance with the invention, a method of diagnosing an S. epidermidis infection is contemplated wherein a sample suspected of being infected with S. epidermidis infection has added to it the monoclonal antibody in accordance with the present invention, and S. epidermidis is indicated by antibody binding to the SdrF proteins in the sample.

Accordingly, antibodies in accordance with the invention may be used for the specific detection or diagnosis of staphylococcal proteins, for the prevention of infection from staph bacteria, for the treatment of an ongoing infection, or for use as research tools. The term "antibodies" as used herein includes monoclonal, polyclonal, chimeric, single chain, bispecific, simianized, and humanized or primatized antibodies as well as Fab fragments, such as those fragments which maintain the binding specificity of the antibodies to the SdrF proteins, including the products of an Fab immunoglobulin expression library. Accordingly, the invention contemplates the use of single chains such as the variable heavy and light chains of the antibodies as will be set forth below. Generation of any of these types of antibodies or antibody fragments is well known to those skilled in the art. In the present case, monoclonal antibodies to SdrF proteins have been generated against its ligand binding domain A (made up of subregions N1, N2 and N3) and have been isolated and shown to have high affinity to S. epidermidis. Moreover, the monoclonals of the present invention have been shown to recognize a high number of strains, on an equivalent level to that recognize by polyclonal antibodies to SdrF, and thus can be used effectively in methods to protect against staphylococcal infection or treat same.

When so desired for medical or research purposes, any of the above described antibodies may be labeled directly with a detectable label for identification and quantification of staph bacteria. Labels for use in immunoassays are generally known to those skilled in the art and include enzymes, radioisotopes, and fluorescent, luminescent and chromogenic substances, including colored particles such as colloidal gold or latex beads. Suitable immunoassays include enzyme-linked immunosorbent assays (ELISA).

Alternatively, the antibody may be labeled indirectly by reaction with labeled substances that have an affinity for immunoglobulin. The antibody may be conjugated with a second substance and detected with a labeled third substance having an affinity for the second substance conjugated to the antibody. For example, the antibody may be conjugated to biotin and the antibody-biotin conjugate detected using labeled avidin or streptavidin. Similarly, the antibody may be conjugated to a hapten and the antibody-hapten conjugate detected using labeled anti-hapten antibody. These and other methods of labeling antibodies and assay conjugates are well known to those skilled in the art.

Antibodies to SdrF as described above may also be used in production facilities or laboratories to isolate additional quantities of the proteins, such as by affinity chromatography.

For example, the antibodies of the invention may also be utilized to isolate additional amounts of the SdrF proteins or their active fragments.

The isolated antibodies of the present invention, or active fragments thereof, may also be utilized in the development of 5 vaccines for passive immunization against staph infections. Further, when administered as pharmaceutical composition to a wound or used to coat medical devices or polymeric biomaterials in vitro and in vivo, the antibodies of the present invention, may be useful in those cases where there is a 10 previous staph infection because of the ability of this antibody to further restrict and inhibit S. epidermidis binding to fibronectin and thus limit the extent and spread of the infection. In addition, the antibody may be modified as necessary so that, in certain instances, it is less immunogenic in the 15 patient to whom it is administered. For example, if the patient is a human, the antibody may be "humanized" by transplanting the complementarity determining regions (CDR's) of the hybridoma-derived antibody into a human monoclonal antibody as described, e.g., by Jones et al., Nature 321:522-525 20 (1986) or Tempest et al. Biotechnology 9:266-273 (1991) or "veneered" by changing the surface exposed murine framework residues in the immunoglobulin variable regions to mimic a homologous human framework counterpart as described, e.g., by Padlan, Molecular Imm. 28:489-498 25 (1991) and U.S. Pat. No. 6,797,492, all of these references incorporated herein by reference. Even further, when so desired, the monoclonal antibodies of the present invention may be administered in conjunction with a suitable antibiotic to further enhance the ability of the present compositions to 30 fight bacterial infections.

As indicated above, staphylococcal infections are not only a problem with patients but also may affect medical devices, implants and prosthetics, and thus the present invention can be utilized to protect these devices from staphylococcal infec- 35 tion as well, e.g., by coating these devices with the compositions of the present invention. Medical devices or polymeric biomaterials to be coated with the antibody compositions described herein include, but are not limited to, staples, sutures, replacement heart valves, cardiac assist devices, hard 40 and soft contact lenses, intraocular lens implants (anterior chamber or posterior chamber), other implants such as corneal inlays, kerato-prostheses, vascular stents, epikeratophalia devices, glaucoma shunts, retinal staples, scleral buckles, dental prostheses, thyropolastic devices, laryngoplastic 45 devices, vascular grafts, soft and hard tissue prostheses including, but not limited to, pumps, electrical devices including stimulators and recorders, auditory prostheses, pacemakers, artificial larynx, dental implants, mammary implants, other implants, cranio/facial tendons, artificial 50 joints, tendons, ligaments, menisci, and disks, artificial bones, artificial organs including artificial pancreas, artificial hearts, artificial limbs, and heart valves; stents, wires, guide wires, intravenous and central venous catheters, laser and balloon angioplasty devices, vascular and heart devices 55 (tubes, catheters, balloons), ventricular assists, blood dialysis components, blood oxygenators, urethral/ureteral/urinary devices (Foley catheters, stents, tubes and balloons), airway catheters (endrotracheal and tracheostomy tubes and cuffs), enteral feeding tubes (including nasogastric, intragastric and 60 jejunal tubes), wound drainage tubes, tubes used to drain the body cavities such as the pleural, peritoneal, cranial, and pericardial cavities, blood bags, test tubes, blood collection tubes, vacutainers, syringes, needles, pipettes, pipette tips, and blood tubing.

It will be understood by those skilled in the art that the term "coated" or "coating", as used herein, means to apply the

10

antibody or pharmaceutical composition derived therefrom, to a surface of the device, preferably an outer surface that would be exposed to streptococcal bacterial infection. The surface of the device need not be entirely covered by the protein, antibody or active fragment.

In a preferred embodiment, the antibodies may also be used as a passive vaccine which will be useful in providing suitable antibodies to treat or prevent a staphylococcal infection. As would be recognized by one skilled in this art, a vaccine may be packaged for administration in a number of suitable ways, such as by parenteral (i.e., intramuscular, intradermal or subcutaneous) administration or nasopharyngeal (i.e., intranasal) administration. One such mode is where the vaccine is injected intramuscularly, e.g., into the deltoid muscle, however, the particular mode of administration will depend on the nature of the bacterial infection to be dealt with and the condition of the patient. The vaccine is preferably combined with a pharmaceutically acceptable carrier to facilitate administration, and the carrier is usually water or a buffered saline, with or without a preservative. The vaccine may be lyophilized for resuspension at the time of administration or in solution.

The preferred dose for administration of an antibody composition in accordance with the present invention is that amount will be effective in preventing of treating a staphylococcal infection, and one would readily recognize that this amount will vary greatly depending on the nature of the infection and the condition of a patient. As indicated above, an "effective amount" of antibody or pharmaceutical agent to be used in accordance with the invention is intended to mean a nontoxic but sufficient amount of the agent, such that the desired prophylactic or therapeutic effect is produced. As will be pointed out below, the exact amount of the antibody or a particular agent that is required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the condition being treated, the particular carrier or adjuvant being used and its mode of administration, and the like. Accordingly, the "effective amount" of any particular antibody composition will vary based on the particular circumstances, and an appropriate effective amount may be determined in each case of application by one of ordinary skill in the art using only routine experimentation. The dose should be adjusted to suit the individual to whom the composition is administered and will vary with age, weight and metabolism of the individual. The compositions may additionally contain stabilizers or pharmaceutically acceptable preservatives, such as thimerosal (ethyl (2-mercaptobenzoate-S)mercury sodium salt) (Sigma Chemical Company, St. Louis, Mo.).

When used with suitable labels or other appropriate detectable biomolecule or chemicals, the monoclonal antibodies described herein are useful for purposes such as in vivo and in vitro diagnosis of staphylococcal infections or detection of staphylococcal bacteria. Laboratory research may also be facilitated through use of such antibodies. Various types of labels and methods of conjugating the labels to the antibodies of the invention are well known to those skilled in the art, such as the ones set forth below.

For example, the antibody can be conjugated (directly or via chelation) to a radiolabel such as, but not restricted to, ³²P, ³H, ¹⁴C, ³⁵S, ¹²⁵I, or ¹³¹I. Detection of a label can be by methods such as scintillation counting, gamma ray spectrometry or autoradiography. Bioluminescent labels, such as derivatives of firefly luciferin, are also useful. The bioluminescent substance is covalently bound to the protein by conventional methods, and the labeled protein is detected when an enzyme, such as luciferase, catalyzes a reaction with ATP

causing the bioluminescent molecule to emit photons of light. Fluorogens may also be used to label proteins. Examples of fluorogens include fluorescein and derivatives, phycocrythrin, allo-phycocyanin, phycocyanin, rhodamine, and Texas Red. The fluorogens are generally detected by a fluorescence of detector.

The location of a ligand in cells can be determined by labeling an antibody as described above and detecting the label in accordance with methods well known to those skilled in the art, such as immunofluorescence microscopy using procedures such as those described by Warren et al. (*Mol. Cell. Biol.*, 7: 1326-1337, 1987).

As indicated above, the monoclonal antibodies of the present invention, or active portions or fragments thereof, are particularly useful for interfering with the initial physical interaction between a staphylococcal pathogen responsible for infection and a mammalian host, such as the adhesion of the bacteria to mammalian extracellular matrix proteins, and this interference with physical interaction may be useful both 20 in treating patients and in preventing or reducing bacteria infection on in-dwelling medical devices to make them safer for use.

In another embodiment of the present invention, a kit which may be useful in isolating and identifying staphylo- 25 coccal bacteria and infection is provided which comprises the antibodies of the present invention in a suitable form, such as lyophilized in a single vessel which then becomes active by addition of an aqueous sample suspected of containing the staphylococcal bacteria. Such a kit will typically include a suitable container for housing the antibodies in a suitable form along with a suitable immunodetection reagent which will allow identification of complexes binding to the SdrF antibodies of the invention. For example, the immunodetection reagent may comprise a suitable detectable signal or label, such as a biotin or enzyme that produces a detectable color, etc., which normally may be linked to the antibody or which can be utilized in other suitable ways so as to provide a detectable result when the antibody binds to the antigen.

In short, the antibodies of the present invention which bind to the SdrF protein or active fragments or subregions thereof are thus extremely useful in treating or preventing staphylococcal infections in human and animal patients and in medical or other in-dwelling devices. Accordingly, the present invention relates to methods of identifying and isolating antibodies which can bind to SdrF and which can be used in methods of treatment of staph infections which involve opsonophagocytic killing of the bacteria. Antibodies which are identified and/or isolated using the present method, such as the antibodies which can bind to the SdrF protein or its subregions and which can prevent or treat a staph infection, and antibodies recognizing the same epitopes as those recognized by the monoclonals described herein, are thus a part of the present invention.

EXAMPLES

The following examples are provided which exemplify aspects of the preferred embodiments of the present invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventors to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of 65 skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific

12

embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

Example 1

Expression and Purification of SdrF Proteins

To characterize the utility of this invention, domains of the SdrF protein were cloned, expressed recombinantly and purified. SdrF N1N2N3 (52-679) represents the putative A domain of the SdrF gene. SdrF N2N3 (361-679) represents the putative sub-domain required for ECM binding based on Sdr family homology. SdrF N2 (361-517) and N3 (517-679) represent sub-domains of the putative ECM binding domain.

The actual sequence of the SdrF A domain (subregions N1, N2 and N3) is as follows: SdrF N1N2N3 (52-679):

Nucleotide Sequence

(SEQ ID NO: 1) GCTGAAGACAATCAATTAGAATCAGCTTCAAAAGAAGAACAGAAAGGTAG TCGTGATAATGAAAACTCAAAACTTAATCAAGTCGATTTAGACAACGGAT CACATAGTTCTGAGAAAACAACAAATGTAAACAATGCAACTGAAGTAAAA AAAGTTGAAGCACCAACGACAAGTGACGTATCTAAGCCTAAAGCTAATGA AGCAGTAGTGACGAATGAGTCAACTAAACCAAAAACAACAGAAGCACCAA CTGTTAATGAGGAATCAATAGCTGAAACACCCCAAAACCTCAACTACACAA CAAGATTCGACTGAGAAGAATAATCCATCTTTAAAAGATAATTTAAATTC ATCCTCAACGACATCTAAAGAAAGTAAAACAGACGAACATTCTACTAAGC AAGCTCAAATGTCTACTAATAAATCAAATTTAGACACAAATGACTCTCCA ACTCAAAGTGAGAAAACTTCATCACAAGCAAATAACGACAGTACAGATAA TCAGTCAGCACCTTCTAAACAATTAGATTCAAAACCATCAGAACAAAAAG TATATAAAACAAAATTTAATGATGAACCTACTCAAGATGTTGAACACACG ACAACTAAATTAAAAACACCTTCTGTTTCAACAGATAGTTCAGTCAATGA TAAGCAAGATTACACACGAAGTGCTGTAGCTAGTTTAGGTGTTGATTCTA ATGAAACAGAAGCAATTACAAATGCAGTTAGAGACTAATTTAGATTTAAA AGCTGCATCTAGAGAACAAATCAATGAAGCAATCATTGCTGAAGCACTAA AAAAAGACTTTTCTAACCCTGATTATGGTGTCGATACGCCATTAGCTCTA GAATTTAATGAGTTTAGCTGCTGAGCCTAATAGTGGTAAAAATGTGAATG ATAAAGTTAAAATCACAAACCCTACGCTTTCACTTAATAAGAGTAATAAT CACGCTAATAACGTAATATGGCCAACAAGTAACGAACAATTTAATTTAAA ${\tt AGCAAATTATGAATTAGATGACAGCATAAAAGAGGGGAGATACTTTTACTA}$ TTAAGTATGGTCAGTATATTAGACCGGGTGGTTTAGAACTTCCTGCAATA ${\tt AAAACTCAACTACGTAGTAAGGATGGCTCTATTGTAGCTAATGGTGTATA}$ ${\tt GAAACAGCAATTAAGGATAATCAGAATTATCCTATGGAAGTGACGATTGC}$ TAACGAAGTAGTCAAAAAAGACTTCATTGTGGATTATGGTAATAAAAAGG

-continued CATAACGAAGTTGTTTATCTAAACCAAAATAACCAAAACCCTAAATATGC TAAATATTTCTCAACAGTAAAAAATGGTGAATTTATACCAGGTGAAGTGA AAGTTTACGAAGTGACGGATACCAATGCGATGGTAGATAGCTTCAATCCT GATTTAAATAGTTCTAATGTAAAAGATGTGACAAGTCAATTTGCACCTAA AGTAAGTGCAGATGGTACTAGAGTTGATATCAATTTTGCTAGAAGTATGG CAAATGGTAAAAAGTATATTGTAACTCAAGCAGTGAGACCAACGGGAACT GGAAATGTTTATACCGAATATTGGTTAACAAGAGATGGTACTACCAATAC ${\tt AAATGATTTTTACCGTGGAACGAAGTCTACAACGGTGACTTATCTCAATG}$ GTTCTTCAACAGCACAGGGGGATAATCCT

Amino Acid Sequence

(SEO ID NO: 2) AEDNOLESASKEEOKGSRDNENSKLNOVDLDNGSHSSEKTTNVNNATEVK KVEAPTTSDVSKPKANEAWTNESTKPKTTEAPTVNEESIAETPKTSTTOO DSTEKNNPSLKDNLNSSSTTSKESKTDEHSTKOAOMSTNKSNLDTNDSPT QSEKTSSQANNDSTDNQSAPSKQLDSKPSEQKVYKTKFNDEPTQDVEHTT TKLKTPSVSTDSSVNDKODYTRSAVASLGVDSNETEAITNAVRDNLDLKA ASREQINEAI IAEALKKDFSNPDYGVDTPLALNRSQSKNSPHKSASPRMN $\verb|LMSLAAEPNSGKNVNDKVKITNPTLSLNKSNNHANNVIWPTSNEQFNLKA|$ ${\tt NYELDDSIKEGDTFTIKYGQYIRPGGLELPAIKTQLRSKDGSIVANGVYD}$ KTTNTTTYTFTNYVDQYQNITGSFDLIATPKRETAIKDNQNYPMEVTIAN EVVKKDFI VDYGNKKDNTTTAAVANVDNVNNKHNEVVYLNQNNQNPKYAK YFSTVKNGEFIPGEVKVYEVTDTNAMVDSFNPDLNSSNVKDVTSQFAPKV SADGTRVDINFARSMANGKKYIVTQAVRPTGTGNVYTEYWLTRDGTTNTN DFYRGTKSTTVTYLNGSSTAQGDNP

The SdrF N1 region is from amino acids 52-361 of the SdrF protein, SdrF N2 is from amino acids 361-517, and SdrF N3 is from amino acids 517-679.

The expression sequence of the SdrF A domain and subregions N1, N2 and N3 as used in the examples of the invention 45 GAATATTGGTTAACAAGAGATGGTACCAATACAAATGATTTTTACCG are as follows:

SdrF Expression Sequences and Proteins SdrF N1N2N3 (52-679):

Nucleotide Sequence

(SEQ ID NO: 3) ATGAGAGGATCGCATCACCATCACCGTCACGGATCCGCTGAAGACAATCA ATTAGAATCAGCTTCAAAAGAAGAACAGAAAGGTAGTCGTGATAATGAAA ACTCAAAACTTAATCAAGTCGATTTAGACAACGGATCACATAGTTCTGAG AAAACAACAAATGTAAACAATGCAACTGAAGTAAAAAAAGTTGAAGCACC AACGACAAGTCACGTATCTAAGCCTAAAGCTAATGAAGCAGTAGTGACGA ATGAGTCAACTAAACCAAAAACAACAGAAGCACCAACTGTTAATGAGGAA TCAATAGCTGAAACACCCAAAACCTCAACTACACAACAAGATTCGACTGA GAAGAATAATCCATCTTTAAAAGATAATTTAAATTCATCCTCAACGACAT

-continued ACTAATAAATCAAATTTAGACACAAATGACTCTCCAACTCAAAGTGAGAA CTAAACAATTAGATTCAAAACCATCAGAACAAAAGTATATAAAACAAAA TTTAATGATGAACCTACTCAAGATGTTGAACACACGACAACTAAATTAAA $\verb|AACACCTTCTGTTTCAACAGATAGTTCAGTCAATGATAAGCAAGATTACA|$ 10 CACGAAGTGCTGTAGCTAGTTTAGGTGTTGATTCTAATGAAACAGAAGCA ATTACAAATGCAGTTAGAGACAATTTAGATTTAAAAGCTGCATCTAGAGA ACAAATCAATGAAGCAATCATTGCTGAAGCACTAAAAAAAGACTTTTCTA 15 ACCCTGATTATGGTGTCGATACGCCATTAGCTCTAAACAGATCTCAATCA AAAAATTCACCACATAAGAGTGCAAGTCCACGCATGAATTTAATGAGTTT AGCTGCTGAGCCTAATAGTGGTAAAAATGTGAATGATAAAGTTAAAATCA CAAACCCTACGCTTTCACTTAATAAGAGTAATAATCACGCTAATAACGTA ATATGGCCAACAAGTAACGAACAATTTAATTTAAAAAGCAAATTATGAATT AGATGACAGCATAAAAGAGGGAGATACTTTTACTATTAAGTATGGTCAGT ATATTAGACCGGGTGGTTTAGAACTTCCTGCAATAAAAACTCAACTACGT 25 AGTAAGGATGGCTCTATTGTAGCTAATGGTGTATATGATAAAACTACAAA TACGACGACTTATACATTTACTAACTATGTTGATCAATATCAAAATATTA ${\tt CAGGTAGTTTGATTTAATTGCGACGCCTAAGAGGGAAACAGCAATTAAG}$ GATAATCAGAATTATCCTATGGAAGTGACGATTGCTAACGAAGTAGTCAA AAAAGACTTCATTGTGGATTATGGTAATAAAAAGGACAATACAACTACAG CAGCGGTAGCAAATGTGGATAATGTAAATAATAAACATAACGAAGTTGTT TATCTAAACCAAAATAACCAAAACCCTAAATATGCTAAATATTTCTCAAC AGTAAAAAATGGTGAATTTATACCAGGTGAAGTGAAAGTTTACGAAGTGA CGGATACCAATGCGATGGTAGATAGCTTCAATCCTGATTTAAATAGTTCT TACTAGAGTTGATATCAATTTTGCTAGAAGTATGGCAAATGGTAAAAAGT ATATTGTAACTCAAGCAGTGAGACCAACGGGAACTGGAAATGTTTATACC TGGAACGAAGTCTACAACGGTGACTTATCTCAATGGTTCTTCAACAGCAC AGGGGGATAATCCTTGA

50 Amino Acid Sequence (SEO ID NO: 4) ${\tt MRGSHHHHHHGSAEDNQLESASKEEQKGSRDNENSKLNQVDLDNGSHSSE}$ KTTNVNNATEVKKVEAPTTSDVSKPKANEAVVTNESTKPKTTEAPTVNEE SIAETPKTSTTOODSTEKNNPSLKDNLNSSSTTSKESKTDEHSTKOAOMS TNKSNLDTNDSPTQSEKTSSQANNDSTDNQSAPSKQLDSKPSEQKVYKTK FNDEPTODVEHTTTKLKTPSVSTDSSVNDKQDYTRSAVASLGVDSNETEA ITNAVRDNLDLKAASREQINEAIIAEALKKDFSNPDYGVDTPLALNRSQS KNSPHKSASPRMNLMSLAAEPNSGKNVNDKVKITNPTLSLNKSNNHANNV IWPTSNEQFNLKANYELDDSIKEGDTFTIKYGQYIRPGGLELPAIKTQLR ${\tt SKDGSIVANGVYDKTTNTTTYTFTNYVDQYQNITGSFDLIATPKRETAIK}$ DNQNYPMEVTIANEWKKDFIVDYGNKKDNTTTAAVANVDNVNNKHNEWYL

-continued

NQNNQNPKYAKYFSTVKNGEFIPGEVKVYEVTDTNAMVDSFNPDLNSSNV KDVTSQFAPKVSADGTRVDINFARSMANGKKYIVTQAVRPTGTGNVYTEY

WLTRDGTTNTNDFYRGTKSTTVTYLNGSSTAQGDNP Underlined sequence represents the purification tag generated from the PQE-30 expression vector.

SdrF N2N3 (361-679):

Nucleotide Sequence

(SEO ID NO: 5) ATGAGAGGATCGCATCACCATCACCGGATCCCCTAATAGTGGTAA AAATGTGAATGATAAAGTTAAAATCACAAACCCTACGCTTTCACTTAATA AGAGTAATAATCACGCTAATAACGTAATATGGCCAACAAGTAACGAACAA TTTAATTTAAAAGCAAATTATGAATTAGATGACAGCATAAAAGAGGGAGA TACTTTTACTATTAAGTATGGTCAGTATATTAGACCGGGTGGTTTAGAAC TTCCTGCAATAAAAACTCAACTACGTAGTAAGGATGGCTCTATTGTAGCT AATGGTGTATATGATAAAACTACAAATACGACGACTTATACATTTACTAA $\tt CTATGTTGATCAATATCAAAATATTACAGGTAGTTTTGATTTAATTGCGA$ CGCCTAAGAGGGAAACAGCAATTAAGGATAATCAGAATTATCCTATGGAA GTGACGATTGCTAACGAAGTAGTCAAAAAAGACTTCATTGTGGATTATGG TAATAAAAAGGACAATACAACTACAGCAGCGGTAGCAAATGTGGATAATG TAAATAATAAACATAACGAAGTTGTTTATCTAAACCAAAATAACCAAAAC CCTAAATATGCTAAATATTTCTCAACAGTAAAAAATGGTGAATTTATACC AGGTGAAGTGAAAGTTTACGAAGTGACGGATACCAATGCGATGGTAGATA GCTTCAATCCTGATTTAAATAGTTCTAATGTAAAAGATGTGACAAGTCAA TTTGCACCTAAAGTAAGTGCAGATGGTACTAGAGTTGATATCAATTTTGC TAGAAGTATGGCAAATGGTAAAAAGTATATTGTAACTCAAGCAGTGAGAC CAACGGGAACTGGAAATGTTTATACCGAATATTGGTTAACAAGAGATGGT ACTACCAATACAAATGATTTTTACCGTGGAACGAAGTCTACAACGGTGAC TTATCTCAATGGTTCTTCAACAGCACAGGGGGATAATCCTTGA

Amino Acid Sequence

(SEQ ID NO: 6)

MRGSHHHHHHGSPNSGKNVNDKVKITNPTLSLNKSNNHANNVIWPTSNEQ

FNLKANYELDDSIKEGDTFTIKYGQYIRPGGLELPAIKTQLRSKDGSIVA

NGVYDKTTNTTTYTFTNYVDQYQNITGSFDLIATPKRETAIKDNQNYPME

VTIANEWKKDFIVDYGNKKDNTTTAAVANVDNVNNKHNEVVYLNQNNQNP

KYAKYFSTVKNGEFIPGEVKVYEVTDTNAMVDSFNPDLNSSNVKDVTSQF

APKVSADGTRVDINFARSMANGKKYIVTOAVRPTGTGNVYTEYWLTRDGT

TNTNDFYRGTKSTTVTYLNGSSTAQGDNP
Underlined sequence represents the purification
tag generated from the PQE-30 expression vector.

SdrF N1N2 (52-517):

Nucleotide Sequence

(SEQ ID NO: 7)
ATGAGAGGATCGCATCACCATCACGGATCCGCTGAAGACAATCA
ATTAGAATCAGCTTCAAAAGAAAGAAAAGGTAGTCGTGATAATGAAA

16 -continued ACTCAAAACTTAATCAAGTCGATTTAGACAACGGATCACATAGTTCTGAG AAAACAACAAATGTAAACAATGCAACTGAAGTAAAAAAAGTTGAAGCACC 5 AACGACAAGTGACGTATCTAAGCCTAAAGCTAATGAAGCAGTAGTGACGA ATGAGTCAACTAAACCAAAAACAACAGAAGCACCAACTGTTAATGAGGAA TCAATAGCTGAAACACCCAAAACCTCAACTACACAACAAGATTCGACTGA 10 GAAGAATAATCCATCTTTAAAAGATAATTTAAATTCATCCTCAACGACAT ACTAATAAATCAAATTTAGACACAAATGACTCTCCAACTCAAAGTGAGAA CTAAACAATTAGATTCAAAACCATCAGAACAAAAGTATATAAAACAAAA TTTAATGATGAACCTACTCAAGATGTTGAACACACGACAACTAAATTAAA AACACCTTCTGTTTCAACAGATAGTTCAGTCAATGATAAGCAAGATTACA CACGAAGTGCTGTAGCTAGTTTAGGTGTTGATTCTAATGAAACAGAAGCA ATTACAAATGCAGTTAGAGACAATTTAGATTTAAAAGCTGCATCTAGAGA ACCCTGATTATGGTGTCGATACGCCATTAGCTCTAAACAGATCTCAATCA AAAAATTCACCACATAAGAGTGCAAGTCCACGCATGAATTTAATGAGTTT

AGTAAGGATGGCTCTATTGTAGCTAATGGTGTATATGATAAAACTACAAA

40 TACGACGACTTATACATTTACTAACTATGTTGATCAATATCAAAATATTA

CAGGTAGTTTTGATTTAATTGCGACGCCTAAGAGGGAAACAGCAATTAAG

GATAATCAGAATTATCCTATGGAAGTGACGATTGCTAACGAAGTAGTCAA

ATATTAGACCGGGTGGTTTAGAACTTCCTGCAATAAAAACTCAACTACGT

45 AAAAGACTTCATTGTGGATTATGGTAATAAATGA

Amino Acid Sequence

(SEQ ID NO: 8) MRGSHHHHHHGSAEDNQLESASKEEQKGSRDNENSKLNQVDLDNGSHSSE

50 KTTNVNNATEVKKVEAPTTSDVSKPKANEAVVTNESTKPKTTEAPTVNEE SIAETPKTSTTQQDSTEKNNPSLKDNLNSSSTTSKESKTDEHSTKQAQMS TNKSNLDTNDSPTQSEKTSSQANNDSTDNQSAPSKQLDSKPSEQKVYKTK

55 FNDEPTQDVEHTTTKLKTPSVSTDSSVNDKQDYTRSAVASLGVDSNETEA
ITNAVRDNLDLKAASREQINEAIIAEALKKDFSNPDYGVDTPLALNRSQS
KNSPHKSASPRMNLMSLAAEPNSGKNVNDKVKITNPTLSLNKSNNHANNV

50 IWPTSNEQFNLKANYELDDSIKEGDTFTIKYGQYIRPGGLELPAIKTQLR SKDGSIVANGVYDKTTNTTTYTFTNYVDQYQNITGSFDLIATPKRETAIK

DNQNYPMEVTIANEWKKDFIVDYGNK

 $_{5}$ Underlined sequence represents the purification tag generated from the PQE-30 expression vector.

17

SdrF N1 (52-361):

Nucleotide Sequence (SEO ID No: 9)

ATGAGAGGATCGCATCACCATCACGGATCCGCTGAAGACAATCA
ATTAGAATCAGCTTCAAAAGAAAGAACAGAAAGGTAGTCGTGATAATGAAA

ACTCAAAACTTAATCAAGTCGATTTAGACAACGGATCACATAGTTCTGAG

AAAACAACAAATGTAAACAATGCAACTGAAGTAAAAAAAGTTGAAGCACC

AACGACAAGTGACGTATCTAAGCCTAAAGCTAATGAAGCAGTAGTGACGA

ATGAGTCAACTAAACCAAAAACAACAGAAGCACCAACTGTTAATGAGGAA

GAAGAATAATCCATCTTTAAAAGATAATTTAAATTCATCCTCAACGACAT

ACTAATAAATCAAATTTAGACACAAATGACTCTCCAACTCAAAGTGAGAA

CTAAACAATTAGATTCAAAACCATCAGAACAAAAAGTATATAAAACAAAA

TTTAATGATGAACCTACTCAAGATGTTGAACACACGACAACTAAATTAAA

AACACCTTCTGTTTCAACAGATAGTTCAGTCAATGATAAGCAAGATTACA

CACGAAGTGCTGTAGCTAGTTTAGGTGTTGATTCTAATGAAACAGAAGCA

ATTACAAATGCAGTTAGAGACAATTTAGATTTAAAAGCTGCATCTAGAGA

ACAAATCAATGAAGCAATCATTGCTGAAGCACTAAAAAAAGACTTTTCTA

 ${\tt ACCCTGATTATGGTGTCGATACGCCATTAGCTCTAAACAGATCTCAATCA}$

 ${\tt AAAAATTCACCACATAAGAGTGCAAGTCCACGCATGAATTTAATGAGTTT}$

AGCTGCTGAGCCTTGA

Amino Acid Sequence

(SEQ ID NO: 10)

 $\underline{\texttt{MRGSHHHHHHGS}} \underline{\texttt{AEDNQLESASKEEQKGSRDNENSKLNQVDLDNGSHSSE}}$

KTTNVNNATEVKKVEAPTTSDVSKPKANEAWTNESTKPKTTEAPTVNEES

IAETPKTSTTQQDSTEKNNPSLKDNLNSSSTTSKESKTDEHSTKQAQMST

 ${\tt NKSNLDTNDSPTQSEKTSSQANNDSTDNQSAPSKQLDSKPSEQKVYKTKF}$

 ${\tt NDEPTQDVEHTTTKLKTPSVSTDSSVNDKQDYTRSAVASLGVDSNETEAI}$

 ${\tt TNAVRDNLDLKAASREQINEAIIAEALKKDFSNPDYGVDTPLALNRSQSK}$

NSPHKSASPRMNLMSLAAEP

Underlined sequence represents the purification tag generated from the POF-30 expression vector

tag generated from the PQE-30 expression vector.

SdrF N2 (361-517):

Nucleotide Sequence

(SEQ ID NO: 11)

ATGAGAGGATCGCATCACCATCACGGATCCCCTAATAGTGGTAA

AAATGTGAATGATAAAGTTAAAATCACAAACCCTACGCTTTCACTTAATA

 ${\tt AGAGTAATAATCACGCTAATAACGTAATATGGCCAACAAGTAACGAACAA}$

 $\tt TTTAATTTAAAAGCAAATTATGAATTAGATGACAGCATAAAAGAGGGAGA$

 ${\tt TACTTTTACTATTAAGTATGGTCAGTATATTAGACCGGGTGGTTTAGAAC} \\ {\tt TTCCTGCAATAAAAACTCAACTACGTAGTAAGGATGGCTCTATTGTAGCT} \\$

Tree recommendate recommendate

 ${\tt AATGGTGTATATGATAAAACTACAAATACGACGACTTATACATTTACTAA}$

CTATGTTGATCAATATCAAAATATTACAGGTAGTTTTGATTTAATTGCGA

18

-continued

CGCCTAAGAGGGAAACAGCAATTAAGGATAATCAGAATTATCCTATGGAA

 $\tt GTGACGATTGCTAACGAAGTAGTCAAAAAAAGACTTCATTGTGGATTATGG$

5 TAATAAATGA

Amino Acid Sequence

(SEQ ID NO: 12)

 $\underline{\texttt{MRGSHHHHHHGS}} \texttt{PNSGKNVNDKVKITNPTLSLNKSNNHANNVIWPTSNEQ}$

 $_{10} \ {\tt FNLKANYELDDSIKEGDTFTIKYGQYIRPGGLELPAIKTQLRSKDGSIVA}$

NGVYDKTTNTTTYTFTNYVDQYQNITGSFDLIATPKRETAIKDNQNYPME

VTIANEWKKDFIVDYGNK

Underlined sequence represents the purification tag $_{\rm 5}$ generated from the PQE-30 expression vector.

Nucleotide Sequence

SdrF N3 (517-679):

(SEQ ID NO: 13)

ATGAGAGGATCGCATCACCATCACGGATCCAAAAAGGACAATAC

 ${\tt AACTACAGCAGCGGTAGCAAATGTGGATAATGTAAATAATAAACATAACG}$

AAGTTGTTTATCTAAACCAAAATAACCAAAACCCTAAATATGCTAAATAT

TTCTCAACAGTAAAAAATGGTGAATTTATACCAGGTGAAGTGAAAGTTTA

 $\tt CGAAGTGACGGATACCAATGCGATGGTAGATAGCTTCAATCCTGATTTAA$

OCAGATGGTACTAGAGTTGATATCAATTTTGCTAGAAGTATGGCAAATGG

TAAAAAGTATATTGTAACTCAAGCAGTGAGACCCAACGGGAACTGGAAATG
TTTATACCGGAATATTGGTTAACAAGAGATGGTACCAATACAAATGAT

35 TTTTACCGTGGAACGAAGTCTACAACGGTGACTTATCTCAATGGTTCTTC

AACAGCACAGGGGGATAATCCTTGA

Amino Acid Sequence

(SEQ ID NO: 14)

40 MRGSHHHHHHGSKKDNTTTAAVANVDNVNNKHNEWYLNQNNQNPKYAKYF

 ${\tt STVKNGEFIPGEVKVYEVTDTNAMVDSFNPDLNSSNVKDVTSQFAPKVSA}$

DGTRVDINFARSMANGKKYIVTQAVRPTGTGNVYTEYWLTRDGTTNTNDF

45 YRGTKSTTVTYLNGSSTAQGDNP

Underlined sequence represents the purification tag generated from the PQE-30 expression vector.

Protein Production and Purification

Using PCR, the A domain of SdrF (SdrFN1N2N3 representing AA 52-679) was amplified from *S. epidermidis* K28

genomic DNA (from sequences described above) and subcloned into the *E. coli* expression vector PQE-30 (Qiagen),

which allows for the expression of a recombinant fusion protein containing six histidine residues. Fragments of this A

domain, SdrF N2N3, N2 and N3 were also generated (from sequences described above). These vectors were independently transformed into the E-coli strain ATCC 55151, grown

dently transformed into the *E. coli* strain ATCC 55151, grown in a 15-liter fermentor to an optical density (OD₆₀₀) of 0.7 and induced with 0.2 mM isopropyl-1-beta-D galactoside (IPTG)

o for 4 hours. The cells were harvested using an AG Technologies hollow-fiber assembly (pore size of 0.45 μm) and the cell paste frozen at –80° C. Cells were lysed in 1×PBS (10 mL of buffer/1 g of cell paste) using 2 passes through the French

5 for 30 minutes to remove cell debris. Supernatant was passed over a 5-mL HITRAP Chelating (Pharmacia) column charged with 0.1M NiCl₂. After loading, the column was washed with

Press @ 1100 psi. Lysed cells were spun down at 17,000 rpm

5 column volumes of 10 mM Tris, pH 8.0, 100 mM NaCl (Buffer A). Protein was eluted using a 0-100% gradient of 10 mM Tris, pH 8.0, 100 mM NaCl, 200 mM imidazole (Buffer B) over 30 column volumes. SdrFN1N2N3 or SdrFN2N3 eluted at ~13% Buffer B (~26 mM imidazole). Absorbance at 280 nm was monitored. Fractions containing SdrF-N1N2N3, SdrF-N2N3 SdrF-N2 or SdrF-N3 were dialyzed in 1×PBS.

19

Each protein was put through an endotoxin removal protocol. Buffers used during this protocol were made endotoxin free by passing over a 5-mL MONO-Q SEPHAROSE (Pharmacia) column. Protein was divided evenly between 4×15 mL tubes. The volume of each tube was brought to 9 mL with Buffer A. 1 mL of 10% TRITON X-114 was added to each tube and incubated with rotation for 1 hour at 4° C. Tubes were placed in a 37° C. water bath to separate phases. Tubes were spun down at 2,000 rpm for 10 minutes and the upper aqueous phase from each tube was collected and the detergent extraction repeated. Aqueous phases from the 2nd extraction were combined and passed over a 5-mL IDA chelating (Sigma) column, charged with 0.1M NiCl₂ to remove remaining detergent. The column was washed with 9 column volumes of Buffer A before the protein was eluted with 3 column volumes of Buffer B. The eluant was passed over a 5-mL DETOXIGEL (Sigma) column and the flow-through collected and reapplied to the column. The flow-through from the second pass was collected and dialyzed in 1×PBS. The 25 purified product was analyzed for concentration, purity and endotoxin level before administration into the mice and rab-

Example 2

Immunization Strategies for Monoclonal Antibody Production

With the goal of generating and characterizing monoclonal antibodies (mAbs), strategies were formulated to generate mAbs against SdrF that were of high affinity, able to interrupt or restrict the binding of ECM proteins to SdrF and demonstrate therapeutic efficacy in vivo.

E. coli expressed and purified SdrF (N1N2N3) protein was used to generate a panel of murine monoclonal antibodies. Briefly, a group of Balb/C mice received a series of subcutaneous immunizations of 1-10 mg of protein in solution or mixed with adjuvant.

Seven days after each boost, serum was collected and titered in ELISA assays against MSCRAMMs or on whole cells (*S. epidermidis*). Three days after the final boost, the spleen was removed, teased into a single cell suspension and the lymphocytes harvested. The lymphocytes were then fused to a P3X63Ag8.653 myeloma cell line (ATCC #CRL-1580). Cell fusion, subsequent plating and feeding were performed according to the Production of Monoclonal Antibodies protocol from *Current Protocols in Immunology* (Chapter 2, Unit 2).

Example 3

Screening and Selection of Anti-SdrF Monoclonal Antibodies

Hybridomas generated from the fusion were screened for specific anti-SdrF antibody production using a standard ELISA assay. Positive clones were expanded and tested further for activity in a whole bacterial cell binding assay by flow cytometry and SdrF binding by Biacore analysis. ELISA Analysis

Immulon 2-HB high-binding 96-well microtiter plates 65 (Dynex) were coated with 1 µg/well of SdrF N1N2N3, N2N3, N2 or N3 in 1×PBS, pH 7.4 and incubated for 2 hours at room

20

temperature. All washing steps in ELISAs were performed three times with 1×PBS, 0.05% TWEEN-20 wash buffer. Plates were washed and blocked with a 1% BSA solution at room temperature for 1 hour before hybridoma supernatant samples were added to wells. Plates were incubated with samples and relevant controls such as media alone for one hour at room temperature, washed, and goat anti-mouse IgG-AP (Sigma) diluted 1:5000 in 1×PBS, 0.05% TWEEN-20, 0.1% BSA was used as a secondary reagent. Plates were developed by addition of 1 mg/ml solution of 4-nitrophenyl phosphate (pNPP) (Sigma), followed by incubation at 37° C. for 30 minutes. Absorbance was read at 405 nm using a SPECTRAMAX 190 Plate Reader (Molecular Devices Corp.). Antibody supernatants that had an $OD_{405} \ge 3$ times above background (media alone, ~0.1 OD) were considered positive.

Biacore Analysis

Throughout the analysis, the flow rate remained constant at 10 ml/min. Prior to the SdrFN1N2N3 or SdrFN2N3 injection, test antibody was adsorbed to the chip via RAM-Fc binding. At time O, SdrF (N1N2 or N1N2N3) at a concentration of 30 mg/ml was injected over the chip for 3 min followed by 2 minutes of dissociation. This phase of the analysis measured the relative association and disassociation kinetics of the Mab/SdrF interaction.

Generation of Polyclonal Antiserum Against SdrF

Polyclonal antiserum was generated by Strategic BioSolutions Inc. in New Zealand White SPF Rabbits using a standard immunization schedule. A primary subcutaneous immunization of 200 µg total SdrF protein with Complete Freund's adjuvant was administered on day 0. Boost immunizations of 200 µg total protein with Incomplete Freund's Adjuvant (IFA) were administered on days 21 and 35. The first test bleed was harvested on day 44, followed by an additional boost immunization on day 49, for a total of 4 immunizations. Test bleeds were then collected on days 58 and 63 with a final serum harvest on day 71. The IgG fraction was purified via protein A affinity chromatography and quantitated by OD280 uv-spectroscopy based on an extinction coefficient of 1.33.

Binding to Whole Bacteria in Flow

Staph. epi strain (9491) were collected, washed and incubated with mAb or PBS alone (control) at a concentration of 2 mg/ml after blocking with rabbit IgG (50 mg/ml). Following incubation with antibody (mAb and polyclonal), bacterial cells were incubated with Goat- $F_{(ab')2}$ -Anti-Mouse- $F_{(ab')2}$ -FITC which served as the detection antibody. After antibody labeling, bacterial cells were aspirated through the FACScaliber flow cytometer to analyze fluorescence emission (excitation: 488, emission: 570). For each bacterial strain, 10,000 events were collected and measured. SdrF positive hybrido-55 mas were generated from 4 separate fusions (F108-F111). It was unusual to observe that all of the Biacore positive hybridomas were also positive for whole cell bacterial binding by flow cytometry; indicating that the recombinant A domain construct (SdrF N1N2N3) expressed and purified from E. coli mirrored the native antigen on the bacterial cell surface.

For further analysis and selection, a N2 reactive candidate, a N3 reactive candidate and a N2N3 reactive candidate, all SdrF ELISA positive, SdrF BIACORE positive with flat (extremely slow) dissociation rates and flow cytometry positive on 9491 *Staph*. epi cells were selected. Table II shows this characterization

TABLE I

SdrF Domain Specific Hybridomas.										
	SdrF	Biaco	ore	Flow						
	N1N2N3	Antibody	Antibody SdrF		ELISA					
SdrF Clone	ELISA	Bound	bound	9491	SdrF N2	SdrF N3	SdrF N2N3			
108-1 108-36 110-15 Polyclonal sera	0.89 0.77 0.63 n.d.	523.40 875.50 617.60 n.d.	145.70 146.20 152.60 n.d.	++ ++ ++ ++	0.23 0.61 0.14 n.d.	0.57 0.17 0.11 n.d.	0.99 0.72 0.70 n.d.			

++ = All bacterial cells stained n.d. = not determined

The above analysis in Table I demonstrates that SdrF has immunogenic epitopes that require the N2 and N3 domains linked (110-15) as well as the N2 (108-36) and N3 (108-1) domains alone. The unique globular domains of N2 and N3 as well as the tertiary conformational structure with N2N3, create epitopes for high affinity interaction with monoclonal antibodies on purified recombinant protein as well as on bacterial cells as demonstrated in Table I. Antibodies recognizing the N1 domain were also generated (data not shown). The flow analysis of cell surface bacterial cell staining demonstrated that the anti-SdrF monoclonals and polyclonal antisera stained with equal intensity and frequency for the greater than 20 *S. epidermidis* strains tested.

Example 4

Binding Kinetics of Cloned Anti-SdrF Monoclonal Antibodies

Kinetic analysis was performed to demonstrate the diversity of the anti-SdrF mAbs chosen and characterized. As 40 shown below the mAbs differ in there on-rate and off-rate as well as the overall affinity.

Biacore Kinetics

Kinetic analysis was performed on a Biacore 3000 using the ligand capture method included in the software. A GAH-F(ab)₂ chip. The anti-SdrF mAbs were then passed over a GAM-F(ab)₂ chip, allowing binding to the Fc portion. Varying concentrations of the SdrF (N1N2N3) protein were then passed over the chip surface and data collected. Using the Biacore provided Evaluation software (Version 3.1), k_{on} and k_{off} were measured and K_A and K_D were calculated.

TABLE II

Kinetic Analysis using the Biacore											
mAb	Reactive Sub-Domain	k_a Association Rate; msec ⁻¹	k_d Disassociation Rate; \sec^{-1}	K _A Affinity Constant; M ⁻ 1	${f K}_D$ Disassociation Constant; M						
108-1 108-36 110-15	N3 N2 N2N3	8.29×10^4 2.32×10^5 2.12×10^5	1.34×10^{-4} 5.60×10^{-5} 1.64×10^{-4}	6.20×10^{8} 4.52×10^{9} 1.29×10^{9}	1.61×10^{-9} 2.21×10^{-10} 7.74×10^{-10}						

This analysis Table II suggests that the SdrF epitopes of the N2, N3 and N2N3 domains of the A domain are capable of generating high affinity monoclonal antibodies.

Example 5

Cloning, Sequence Characterization and Humanization of 108-1, 108-36 and 110-15

The variable light and heavy chains of the anti-SdrF monoclonals, 108-1, 108-36 and 100-15 were cloned and sequenced to derive a predicted amino acid sequence in the following manner: Briefly, 1.4×108 hybridoma cells cultured in DMEM-10 medium with 10% FBS were washed with PBS, pelleted by centrifugation then lysed in detergent containing Protein/RNase Degrader. PolyA+ mRNA was isolated by affinity purification on oligo-dT cellulose. Synthesis of first strand cDNA was accomplished using 5? g of mRNA and reverse transcriptase in a cDNA synthesis kit (Novagen; cat 35 #69001-3) containing 20 pmol of 3' oligonucleotide mousespecific primers (Novagen; cat#69796 and 69812) for each variable heavy and variable light chain. A portion (5 to 50 ng) of the cDNA was amplified by the polymerase chain reaction (PCR) using the PCR Reagent System (Life Technologies; cat#10198-018) and a mouse variable heavy and light chain specific primer set (Novagen; cat#70081-3, 5 pmol each) for 30 cycles (94 C hot start then cycles of 94 C for 1 min, 50 C for 1 min and 72 C for 1 min). PCR products were fractionated electrophoretically in a 1% ultra pure agarose gel in sodium acetate buffer and visualized by ethidium bromide staining. PCR fragments matching the predicted size were excised from the gel and purified using BIO 101 Geneclean spin columns (cat #1101-400) for ligation into the pCR2.1-TOPO (Invitrogen) plasmid, followed by transformation into competent TOP10 E. coli. (Invitrogen; cat#K4500). After isolating plasmid DNA using QIAprep Spin Miniprep Kit (QIAGEN; cat#27106), positive clones with inserts were identified by restriction endonuclease digestion and agarose gel electrophoresis, followed by sequencing on an ABI automated sequencer using M13 Forward and M13 Reverse prim-

108-1VL-Mouse (variable light sequence DNA) (SEO ID NO: 15) GACATTGTGATGACCCAGTCTCACAAATTCATGTCCACATCAGTAGGAGA CAGGGTCATCATCACCTGCAAGGCCAGTCAGGATGTGAATACTGCTCTAG CCTGGTATCAGCAGAAACCAGGACAATCTCCTAAACTACTGATTTACTCG GCATCCTACCGGTATACTGGAGTCCCTGATCGCTTCACTGGCAGTGGATC TGGGACGGATTTCACTTTCACCATCAGCAGTGTGCAGGCTGAAGACCTGG CAGTTTATTACTGTCAGCAACATTATAGTACCCCTCCGTACACGTTCGGA GGGGGACCAAGCTGGAGATAAAA 108-1VL-Mouse (variable light sequence) (SEQ ID NO: 16) DIVMTQSHKFMSTSVGDRVIITCKASQDVNTALAWYQQKPGQSPKLLIYS $\underline{\texttt{ASYRYT}} \texttt{GVPDRFTGSGSGTDFTFTISSVQAEDLAVYYC} \underline{\texttt{OQHYSTPPYT}} \texttt{FG}$ GGTKLEIK Amino acids representing a CDR are underlined. 108-1VH-Mouse (variable heavy sequence DNA) (SEQ ID NO: 17) GAGGTTCAGCTGCAGCAGTCTGGGGCAGAGCTTGTGAAGCCAGGGGCCTC AGTCAAGTTGTCCTGCACAGCTTCTGGCTTCAACATTAAAGACACCTATA TACACTGGGTGAAGCAGAGGCCTGAACAGGGCCTGGAGTGGATTGGAAGG ATTGATCCTGCGAATGGTAATACTCATTATGACTCACAGTTCCAGGGCAA GGCCACTATAACAGCAGACACATCCTCCAACACAGCCTACCTGCAGCTCA GCAGCCTGACATCTGACGACACTGCCGTCTATTACTGTACTAGACGTGTG GGCTATGCTATGGACTACTGGGGTCAAGGAACCTCAGTCACCGTCTCCTC Α 108-1VH-Mouse (variable heavy sequence) (SEO ID NO: 18) ${\tt EVQLQQSGAELVKPGASVKLSCTASGFNIK\underline{DTYIH}WVKQRPEQGLEWIG\underline{R}}$ $\underline{\texttt{IDPANGNTHYDSQFQGK}} \underline{\texttt{ATITADTSSNTAYLQLSSLTSDDTAVYYCTR}}\underline{\texttt{RV}}$ GYAMDYWGQGTSVTVSS Amino acids representing a CDR are underlined. 108-36VL-Mouse (variable light sequence DNA) (SEQ ID NO: 19) ${\tt CAAATTGTTCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGGGA}$ GAAGGTCACCATGACCTGCAGTGCCAGCTCAAGTGTAAGTTACATGTACT GGTACCAACAGAAACCAGGATCCTCCCCCAGAGTCCTGATTTATGACACA ${\tt TCCAACCTGGCTTCTGGAGTCCCTGTTCGCTTCAGTGGCAGTGGGTCTGG}$ GACCTCTTACTCTCACAATCAGCCGAATGGAGGCTGAAGATGCTGCCA CTTATTACTGCCAGCAGTGGAATGGTTATCCACCCACGTTCGGTGCTGGG ACCAAGCTGGAGGTGAAA 108-36VL-Mouse (variable light sequence) (SEQ ID NO: 20) $\verb"QIVLTQSPAIMSASPGEKVTMTC" \underline{SASSSVSYMY} \verb"WYQQKPGSSPRVLIYDT"$ <u>SNLAS</u>GVPVRFSGSGSGTSYSLTISRMEAEDAATYYC<u>QQWNGYPPT</u>FGAG TKLEVK Amino acids representing a CDR are underlined.

continued 108-36VH-Mouse (variable heavy sequence DNA) (SEQ ID NO: 21) ${\tt CAGGTTACTCTGAGAGAGTCTGGCCCTGGGATATTGCAGCCCTCCCAGAC}$ $\tt CCTCAGTCTGACTTGTTCTTTCTCTGGGTTTTCACTGAACACTTCTGGTA$ TGGGTGTGACCTGGATTCGTCAGCCTTCTGGAAAGGGTCTGGAGTGGCTG GCAAACATTTACTGGGATGATGACAAGCGCTATAACCCATCCCTGAAGAG $_{10} \>\>\>\> {\tt CCGGCTCACAATCTCCAAGGCTAACTCCAGAAACCAGGTATTCCTCAAGA}$ TCACCAGTGTGGACACTGCAGATACTGCCACATACTACTGTACTCGCCCC AATTACCTCGGTACTGTCTACTGGTACTTTGATGTCTGGGGCGCAGGGAC 15 CATGGTCACCGTCTCCTCA 108-36VH-Mouse (variable heavy sequence) (SEO ID NO: 22) OVTLRESGPGILOPSOTLSLTCSFSGFSLNTSGMGVTWIROPSGKGLEWL ${\tt A\underline{NIYWDDDKRYNPSLKS}RLTISKANSRNQVFLKITSVDTADTATYYCTR} \underline{P}$ NYLGTVYWYFDVWGAGTMVTVSS Amino acids representing a CDR are underlined. 110-15VL-Mouse (variable light sequence DNA) (SEQ ID NO: 23) 25 CAAATTGTTCTCACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGGGA GGAGGGCACCATGACCTGCAGTGCCAGCTCAAGTGTAAGGTACATGTACT GGTACCGGCAGAAGCCAGGATCCTCCCCCAGACTCTTGATTTATGACACA ${\tt 30}{\tt }{\tt TCCAACCTGGCTTCTGGAGTCCGTGTTCGCTTCAGTGGCAGTGGGTCTGG}$ GACCTCTTACTCTCACAATCAGCCGAATGGAGGCTGAAGATGCTGCCA $\tt CTTATTACTGCCAGCAGTGGAGTAGTTACCCACCCACGTTCGGAGGGGGG$ 35 ACCAAGCTGGAAATGAAA 110-15VL-Mouse (variable light sequence) (SEQ ID NO: 24) ${\tt QIVLTQSPAIMSASPGEEGTMTC} \underline{SASSSVRYM} {\tt YWYRQKPGSSPRLLIY} \underline{\tt DT}$ $\underline{\texttt{SNLAS}} \texttt{GVPVRFSGSGSGTSYSLTISRMEAEDAATYYCQQWSSYPPT} \texttt{FGGG}$ TKLEMK Amino acids representing a CDR are underlined. 110-15VH-Mouse (variable heavy sequence DNA) (SEQ ID NO: 25) 45 GAAGTGCAGTTGGTGGAGTCTGGGGGGAGGCTTAGTGAAGCCTGGAGGGTC CCTGAAACTCTCCTGTGCAGCCTCTGGATTCGCTTTCAGTAGCTATGACA TGTCTTGGGTTCGCCAGACTCCGGAGAAGAGGCTGGAGTGGGTCGCCTAC 50 ATTAGTAGTGGTGGTGTATCACCTACTATCCAGACACTGTGAAGGGCCG ATTCACCATCTCCAGAGACAATGCCAAGAACACCCTGTACGTGCAAATGA GCAGTCTGAAGTCTGAGGACACAGCCATTTATTATTGTACAAGACACGAT 55 AGGGACTCCTGGTTTGCTTATTGGGGCCAAGGGACTCTGGTCACTGTCTC TGCA 110-15VH-Mouse (variable heavy sequence) (SEO ID NO: 26) ${\tt EVQLVESGGGLVKPGGSLKLSCAASGFAFS\underline{SYDMS}WVRQTPEKRLEWVA\underline{Y}}$ ISSGGGITYYPDTVKGRFTISRDNAKNTLYVQMSSLKSEDTAIYYCTRHD $\underline{\mathtt{RDSWFAY}}\mathtt{WGQGTLVTVSA}$ Amino acids representing a CDR are underlined.

The process of humanization outlined in this disclosure focuses on changing only the solvent exposed residues of the mouse variable regions that are not involved in the molecule's

specificity and affinity for the ClfA target antigen. The information for these determinations utilized solvent availability determinations published by Padlan (A possible procedure for reducing the immunogenicity of antibody variable domains while preserving their ligand binding properties. Molecular Immunology, 28(4); 489-498, 1991). Importantly, molecular modeling in silico or algorithms to determine T-cell epitopes were not used to make these determinations.

The approach represents a process by which the mouse variable region residues of the light and heavy chain are changed by site directed mutagenesis to reflect the surface exposed architecture of the most homologous human variable region from the public database. Specifically, the amino acids defining the variable heavy and light chains were assigned a Kabot position number and "exposure" designation based on Padlan (see, e.g., references cited above), allowing the alignment of the amino acids from each human framework subgroup (I-III for the heavy chain and I-IV for the light chain). To support this analysis, a BLAST search was carried out on the human immunoglobulin database as well as the entire protein database where the variable region with the highest homology to the mouse sequence (both germ-line and mature) were chosen and aliened with the murine sequence of interest. Once aliened, the human subgroup with the highest homology to the mouse sequence was identified. The exposed mouse amino acid residues were mutated to mimic the most homologous human subgroup. In cases were there was more than one amino acid found in the subgroup at that position, the amino acid represented in the human germ line sequence with the highest homology to the mouse sequence was used. These changes were incorporated into de novo synthesized (Blue Heron Biotechnology: Bothell, Wash.) gene sequences representing the variable light and heavy chain coding regions then spliced in frame into plasmids that contain the appropriate light or heavy chain constant region. Isolated plasmid DNA was transfected into NS0 cells via electroporation, clones selected by limiting dilution and mAb purified from scaled-up supernatant for characterization.

108-1VL-Hu (humanized variable light sequence)
(SEQ ID NO: 27)
DIVMTQSQKFMSTSVGDRVTITCKASQDVNTALAWYQQKPGQSPKLLIYS

 $\underline{\mathtt{ASYRYT}}\mathtt{GVP} \mathbf{s} \mathtt{RF} \mathbf{s} \mathtt{GSGSGTDFTFTISSVQAEDLAVYYC} \underline{\mathtt{QQHYSTPPYT}} \mathtt{FG}$

GGTKLEIK

Amino acids representing a CDR are underlined, amino acids in bold represent humanization changes (4).

108-1VH-Hu (humanized variable heavy sequence)
(SEQ ID NO: 28)
QVQLVQSGAEVVKPGASVKLSCKASGFNIKDTYIHWVKQRPGQGLEWIGR

 $\underline{\texttt{IDPANGNTHYDSQFQG}} \texttt{KATITADTS} \underline{\textbf{TST}} \texttt{AYLQLSSL} \underline{\textbf{R}} \texttt{S} \underline{\textbf{E}} \texttt{DTAVYYCTR} \underline{\textbf{RV}}$

<u>GYAMDY</u>WGQGTTVTVSS

Amino acids representing a CDR are underlined, amino acids in bold represent humanization changes (10).

108-36VL-Hu (humanized variable light sequence)
(SEQ ID NO: 29
EIVLTQSPATMSASPGERVTMSCSASSSVSYMYWYQQKPGQSPRVLIYDT

SNLASGVPSRFSGSGSGTSYSLTISSMEPEDAATYYCQQWNGYPPTFGGG

TKLEVK

Amino acids representing a CDR are underlined, amino acids in bold represent humanization changes

-continued

108-36VH-Hu (humanized variable heavy sequence) $({\tt SEQ\ ID\ NO:\ 30})$

QVTLRESGPGIL**K**PSQTLSLTC**T**FSGFSLN<u>TSGMGVT</u>WIRQPSGKGLEWL

 ${\tt ANIYWDDDKRYNPSLKSRLTISKANSRNQVFLKITSVD\textbf{PV}DTATYYCTRP}$

$\underline{\mathtt{NYLGTVYWYFDV}}\mathtt{WG}\mathbf{Q}\mathtt{GTMVTVSS}$

Amino acids representing a CDR are underlined,
amino acids in bold represent humanization changes
(5)

110-15VL-Hu (humanized variable light sequence)
(SEO ID NO: 31)

EIVLTQSPGTMSASPGERGTMSCSASSSVRYMYWYRQKPGQSPRLLIYDT

 $\underline{\texttt{SNLAS}} \texttt{GVP} \pmb{\textbf{A}} \texttt{RFSGSGSGTSYSLTISRMEAEDAATYYC} \underline{\texttt{QQWSSYPPT}} \texttt{FGGG}$

TKLEMK

Amino acids representing a CDR are underlined, 0 amino acids in bold represent humanization changes (7).

110-15VH-Hu (humanized variable heavy sequence)
(SEO ID NO: 32)

EVQLVESGGGLVQPGGSLKLSCAASGFAFS<u>SYDMS</u>WVRQTPEKRLEWVA<u>Y</u>

<u>ISSGGGITYYPDTVKGRFT</u>ISRDNSKNTLYVQMSSLRAEDTAVYYCTR<u>HD</u>

RDSWFAYWGQGTLVTVSS

Amino acids representing a CDR are underlined,
amino acids in bold represent humanization changes

Example 6

Effect of Humanization on Affinity

To determine the effect of the humanization process on the specific binding affinity of 108-1, 108-36 and 110-15 for SdrF (N1N2N3), affinities of the mouse and humanized antibodies were compared.

Affinity Measurement by Biacore

55

Kinetic analysis was performed on a Biacore 3000 (Biacore, Piscataway, N.J.) using the ligand capture method included in the software. The anti-SdrF mAbs were passed over a Goat anti-mouse-F(ab) $_2$ chip, allowing binding and capture via the Fc portion. Varying concentrations of the SdrF (N1N2N3) protein were then passed over the chip, and data collected. Using the Biacore provided Evaluation software (Version 3.1); \mathbf{k}_{on} and \mathbf{k}_{off} were measured and \mathbf{K}_A and \mathbf{K}_D were calculated.

TABLE III

	Affinity Comparison Before and After Humanization.										
	mAb	$k_{\alpha}(M^{-1}s^{-1})$	$\mathbf{k}_{d}\left(\mathbf{s}^{-1}\right)$	$\mathrm{K}_{A}\left(\mathrm{M}^{-1}\right)$	$\mathrm{K}_{D}\left(\mathrm{M}\right)$						
0	Murine 108-1	8.3×10^4	1.3×10^{-4}	6.2×10^{8}	1.6×10^{-9}						
	Humanized 108-1	9.4×10^{4}	1.7×10^{-4}	5.6×10^{8}	1.8×10^{-9}						
	Murine 110-15	2.1×10^{5}	1.6×10^{-4}	1.3×10^{8}	7.7×10^{-10}						
	Humanized 110-15	1.7×10^{5}	1.3×10^{-4}	1.4×10^{9}	7.4×10^{-10}						
	Murine 108-36	2.3×10^{5}	5.6×10^{-5}	4.5×10^{9}	2.2×10^{-10}						
5	Humanized 108-36	1.4×10^{5}	6.3×10^{-5}	2.2×10^{9}	4.6×10^{-10}						

The humanization process outlined in Example 5 preserved the original affinity of the starting mouse immunoglobulin (Table III).

Example 7

OP Activity of SdrF Coated Beads with a Monoclonal Against SdrF

To determine the relationship between SdrF epitope speci- 10 ficity and immunoglobulin effector function, experiments were designed to characterize opsonophagocytic activity measuring HL 60 phagocytic cell uptake of SdrF antigen coated beads.

Opsonophagocytic Activity (OP Uptake) with SdrF-Coated 15 Fluorescent Beads and HL60 Effector Cells

SdrF antigen-coated fluorescent beads (1 µm diameter, Polysciences, Inc., Warrington, Pa.) were opsonized with increasing concentrations of anti-SdrF mAb or a negative control antibody (anti-ACE40). Sterile baby rabbit serum 20 (Cedarlane Labs Ltd., Hornby, Ontario, Canada) was added as a source of complement. The opsonized fluorescent microspheres were incubated with a human phagocytic cell line (HL-60).

The assay was performed by preparing stock IgG solutions 25 at $100~\mu g/ml$ followed by serial 2 fold dilutions in Gelatin Veronal Buffer with Ca²⁺ and Mg²⁺ (GVB) (Sigma-Aldrich, Inc., Cat. #G6514). $10~\mu l$ of the IgG dilutions were added to a 96 well tissue culture plate (Corning Inc., Corning N.Y.). 1:500 dilution of the SdrF coated beads was prepared result- 30 ing in approximately $2-4\times10^7$ beads/ml. 20 μ l of the diluted bead suspension was added to the wells of the plate. The resulting beads—antibodies mixture was incubated at 37° C. for 30 minutes at 250 rpm. At the end of incubation 10 µl of 1:8 baby rabbit complement dilution in GVB was added to 35 each well of the 96-well plate. The plate was incubated for 15 min at 37° C. at 250 rpm. 40 µl of HL60's cell suspension was then added to the wells of the 96-well plate. The plate was incubated for 30 minutes at 37° C. and at 250 rpm. Following well of the plate. The level of opsonic activity was measured by flow cytometry as the percentage of fluorescent phagocytic cells.

The results displayed in FIG. 1 demonstrate OP activity with a humanized anti-SdrF monoclonal when mixed in the 45 presence of SdrF coated beads and complement. The Hu108-36 mAb recognizes an epitope on the N2 portion of the SdrF molecule that facilitates bead uptake by HL60 cells as the mAb concentration is increased. Control mAb (anti-Ace40) has no effect on bead uptake.

Example 8

Mutagenesis of Hu108-36 Removes an N-Linked Carbohydrate Chain from the Variable Heavy Chain Region to Increase Binding to SdrF

By sequence and biochemical analysis, an N-linked carbohydrate chain was identified linked to the asparagine at position 30 of the variable heavy chain of Hu108-36. Substitution 60 of this amino acid to serine by de novo gene synthesis (Blue Heron Biotechnology; Bothell, Wash.) then spliced in frame into plasmids that contain the appropriate light or heavy chain constant region. Isolated plasmid DNA was transfected into NS0 cells via electroporation, supernatant harvested after 65 seven days, quantified by HPLC protein A capture and analyzed by Biacore.

28

108-36VH-Hu (humanized variable heavy DNA sequence) N→S

(SEQ ID NO: 33) $\tt CAGGTTACTCTGAGAGAGTCTGGCCCTGGGATATTGAAGCCCTCCCAGAC$

CCTCAGTCTGACTTGTACCTTCTCTGGGTTTTCACTGAGCACTTCTGGTA

TGGGTGTGACCTGGATTCGCCAGCCTTCTGGAAAGGGTCTGGAGTGGCTG

GCAAACATTTACTGGGATGATGACAAGCGCTATAACCCATCCCTGAAGAG

 $\tt CCGGCTCACAATCTCCAAGGCTAACTCCAGAAACCAGGTGTTCCTCAAGA$

TCACCAGTGTGGACCCCGTGGATACTGCCACATACTACTGTACTCGCCCC

AATTACCTGGGTACTGTGTACTGGTACTTTGATGTCTGGGGCCAGGGGAC

CATGGTGACCGTGTCCTCA

Changed codon is highlighted in bold print.

108-3BVH-Hu (humanized variable heavy protein sequence) N→S

(SEO ID NO: 34) QVTLRESGPGILKPSQTLSLTCTFSGFSLSTSGMGVTWIRQPSGKGLEWL

 $\mathtt{A} \underline{\mathtt{NIYWDDDKRYNPSLKS}} \mathtt{R} \mathbf{L} \mathtt{TISKANSRNQV} \mathbf{F} \mathtt{LKITSVDPVDTATYYCTR} \underline{\mathtt{P}}$

NYLGTVYWYFDVWGOGTMVTVSS

Amino acids representing a CDR are underlined, amino acid in bold represents the asparagine to serine change

The kinetics curve in FIG. 2 demonstrates that replacement of the asparagine with a serine (thereby removing the N-linked carbohydrate moiety from position 30 of the variable heavy chain) slowed the off-rate of SdrF capture. These results demonstrate that the overall affinity of Hu108-36 has been improved by this process.

Example 9

Protective Effects of Anti-SdrF Antibodies In Vivo

The protective value of antibodies against the SdrF target the 30 min incubation, 80 µl of cold GVB buffer added to each 40 on the bacterial cell surface was evaluated in a rodent model of S. epidermidis infection using the monoclonals described above and polyclonal antiserum to SdrF obtained as described below.

Generation of Polyclonal Antiserum Against SdrF

Polyclonal antiserum was generated by Strategic BioSolutions Inc. in New Zealand White SPF Rabbits using a standard immunization schedule. A primary subcutaneous immunization of 200 µg total SdrF protein with Complete Freund's adjuvant was administered on day 0. Boost immunizations of 200 µg total protein with Incomplete Freund's Adjuvant (IFA) were administered on days 21 and 35. The first test bleed was harvested on day 44, followed by an additional boost immunization on day 49, for a total of 4 immunizations. Test bleeds were then collected on days 58 and 63 with a final serum 55 harvest on day 71. The IgG fraction was purified via protein A affinity chromatography and quantitated by OD280 uv-spectroscopy based on an extinction coefficient of 1.33. Rodent Model of S. epidermidis Infection

The rodent model was performed in accordance with the institutional policies of Inhibitex, Inc. Pregnant Wistar-Hannover rats were purchased from Charles River Laboratories (Wilmington, Mass.). Three- to six-day-old newborn rats (7 to 11 g) were injected intraperitoneally (i.p.) with 1.6 mg or 0.8 mg of protein A purified rabbit anti-SdrF polyclonal antibody, anti-SdrF monoclonal antibody or an equal volume of buffer (n=12). To prepare bacteria for challenge, S. epidermidis strain 771-233 cultures were incubated at 37° C. with

shaking until mid-log phase (4 hours). The cultures were centrifuged, and the pellets were resuspended in ice cold 1×PBS. Twenty hours after antibody administration, the rats were challenged with an i.p. injection of approximately 1×10° CFU, and survival was monitored for 3-7 days. Statistical analyses were performed using GraphPad Prism version 4.00 for Windows (GraphPad Software, San Diego, Calif.). Survival fractions were calculated using the product limit method (Kaplan-Meier), and the resulting curves were com-

pared for significance using the Mantel-Haenszel log rank test

The results of these tests on polyclonal and monoclonal antibodies to SdrF are shown in FIGS. 3 and 4, respectively. As shown in FIG. 3 and FIG. 4, the results demonstrate that in addition to the protection afforded by polyclonal antibodies, the monoclonal antibodies against SdrF in accordance with the present invention were able to protect against a *S. epidermidis* challenge in a clinically relevant way.

1680

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 34 <210> SEQ ID NO 1 <211> LENGTH: 1878 <212> TYPE: DNA <213> ORGANISM: Staphylococcus epidermidis <400> SEQUENCE: 1 60 qctqaaqaca atcaattaqa atcaqcttca aaaqaaqaac aqaaaqqtaq tcqtqataat 120 qaaaactcaa aacttaatca aqtcqattta qacaacqqat cacataqttc tqaqaaaaca acaaatgtaa acaatgcaac tgaagtaaaa aaagttgaag caccaacgac aagtgacgta 180 tctaagccta aagctaatga agcagtagtg acgaatgagt caactaaacc aaaaacaaca 240 gaagcaccaa ctgttaatga ggaatcaata gctgaaacac ccaaaacctc aactacacaa 300 caagattega etgagaagaa taateeatet ttaaaagata atttaaatte ateeteaaeg 360 acatctaaaq aaaqtaaaac aqacqaacat tctactaaqc aaqctcaaat qtctactaat 420 aaatcaaatt tagacacaaa tgactctcca actcaaagtg agaaaacttc atcacaagca 480 aataacgaca gtacagataa tcagtcagca ccttctaaac aattagattc aaaaccatca 540 gaacaaaaag tatataaaac aaaatttaat gatgaaccta ctcaagatgt tgaacacacg 600 acaactaaat taaaaacacc ttctgtttca acagatagtt cagtcaatga taagcaagat 660 tacacacgaa gtgctgtagc tagtttaggt gttgattcta atgaaacaga agcaattaca 720 aatgcagtta gagacaattt agatttaaaa gctgcatcta gagaacaaat caatgaagca 780 atcattgctg aagcactaaa aaaagacttt tctaaccctg attatggtgt cgatacgcca 840 ttagctctaa acagatctca atcaaaaaat tcaccacata agagtgcaag tccacgcatg 900 aatttaatga gtttagctgc tgagcctaat agtggtaaaa atgtgaatga taaagttaaa 960 atcacaaacc ctacgctttc acttaataag agtaataatc acgctaataa cgtaatatgg 1020 ccaacaagta acgaacaatt taatttaaaa gcaaattatg aattagatga cagcataaaa 1080 gagggagata cttttactat taagtatggt cagtatatta gaccgggtgg tttagaactt 1140 cctgcaataa aaactcaact acgtagtaag gatggctcta ttgtagctaa tggtgtatat 1200 1260 gataaaacta caaatacgac gacttataca tttactaact atgttgatca atatcaaaat attacaggta gttttgattt aattgcgacg cctaagaggg aaacagcaat taaggataat 1320 cagaattatc ctatggaagt gacgattgct aacgaagtag tcaaaaaaaga cttcattgtg 1380 gattatggta ataaaaagga caatacaact acagcagcgg tagcaaatgt ggataatgta 1440 aataataaac ataacgaagt tgtttatcta aaccaaaata accaaaaccc taaatatgct 1500 1560 gtgacggata ccaatgcgat ggtagatagc ttcaatcctg atttaaatag ttctaatgta 1620

aaaqatqtqa caaqtcaatt tqcacctaaa qtaaqtqcaq atqqtactaq aqttqatatc

-continu	-
-continu	\neg

											-	con	tin	ued		
aatt	ttg	cta ç	gaagt	atg	gc aa	aatgo	gtaaa	a aaq	gtata	attg	taad	ctcaa	agc .	agtga	agacca	1740
acg	ggaad	ctg q	gaaat	gttt	a ta	accga	aatat	t t g	gttaa	acaa	gaga	atggt	cac ·	tacca	aataca	1800
aato	gattt	tt a	accgt	ggaa	ac ga	aagto	ctaca	a acç	gtga	actt	atct	caat	gg ·	ttctt	caaca	1860
gcad	caggg	ggg a	ataat	cct												1878
<211 <212	L> LE 2> TY	ENGTI	O NO H: 62 PRT ISM:	26	phylo	ococo	cus e	epide	ermio	lis						
< 400)> SI	EQUEI	NCE :	2												
Ala 1	Glu	Asp	Asn	Gln 5	Leu	Glu	Ser	Ala	Ser 10	Lys	Glu	Glu	Gln	Lys 15	Gly	
Ser	Arg	Asp	Asn 20	Glu	Asn	Ser	Lys	Leu 25	Asn	Gln	Val	Asp	Leu 30	Asp	Asn	
Gly	Ser	His 35	Ser	Ser	Glu	ГÀа	Thr 40	Thr	Asn	Val	Asn	Asn 45	Ala	Thr	Glu	
Val	50	ГÀа	Val	Glu	Ala	Pro 55	Thr	Thr	Ser	Asp	Val 60	Ser	ГÀа	Pro	Lys	
Ala 65	Asn	Glu	Ala	Val	Val 70	Thr	Asn	Glu	Ser	Thr 75	Lys	Pro	ГÀЗ	Thr	Thr 80	
Glu	Ala	Pro	Thr	Val 85	Asn	Glu	Glu	Ser	Ile 90	Ala	Glu	Thr	Pro	P P P	Thr	
Ser	Thr	Thr	Gln 100	Gln	Asp	Ser	Thr	Glu 105	Lys	Asn	Asn	Pro	Ser 110	Leu	ГЛа	
Asp	Asn	Leu 115	Asn	Ser	Ser	Ser	Thr 120	Thr	Ser	Lys	Glu	Ser 125	Lys	Thr	Asp	
Glu	His 130	Ser	Thr	Lys	Gln	Ala 135	Gln	Met	Ser	Thr	Asn 140	Lys	Ser	Asn	Leu	
Asp 145	Thr	Asn	Asp	Ser	Pro 150	Thr	Gln	Ser	Glu	Lys 155	Thr	Ser	Ser	Gln	Ala 160	
Asn	Asn	Asp	Ser	Thr 165	Asp	Asn	Gln	Ser	Ala 170	Pro	Ser	ГЛа	Gln	Leu 175	Asp	
Ser	Lys	Pro	Ser 180	Glu	Gln	Lys	Val	Tyr 185	Lys	Thr	Lys	Phe	Asn 190	Asp	Glu	
Pro	Thr	Gln 195	Asp	Val	Glu	His	Thr 200	Thr	Thr	Lys	Leu	Lys 205	Thr	Pro	Ser	
Val	Ser 210	Thr	Asp	Ser	Ser	Val 215	Asn	Asp	Lys	Gln	Asp 220	Tyr	Thr	Arg	Ser	
Ala 225	Val	Ala	Ser	Leu	Gly 230	Val	Asp	Ser	Asn	Glu 235	Thr	Glu	Ala	Ile	Thr 240	
Asn	Ala	Val	Arg	Asp 245	Asn	Leu	Asp	Leu	Lys 250	Ala	Ala	Ser	Arg	Glu 255	Gln	
Ile	Asn	Glu	Ala 260	Ile	Ile	Ala	Glu	Ala 265	Leu	Lys	ГЛа	Asp	Phe 270	Ser	Asn	
Pro	Asp	Tyr 275	Gly	Val	Asp	Thr	Pro 280	Leu	Ala	Leu	Asn	Arg 285	Ser	Gln	Ser	
Lys	Asn 290		Pro	His	ГЛа	Ser 295		Ser	Pro	Arg	Met 300		Leu	Met	Ser	
Leu 305		Ala	Glu	Pro	Asn 310		Gly	Lys	Asn	Val 315		Asp	Lys	Val	Lys 320	
	Thr	Asn	Pro	Thr		Ser	Leu	Asn	Lys		Asn	Asn	His	Ala 335		
				J 2 3					JJ0					223		

-continued

Asn Val Ile Trp Pro Thr Ser Asn Glu Gln Phe Asn Leu Lys Ala Asn Tyr Glu Leu Asp Asp Ser Ile Lys Glu Gly Asp Thr Phe Thr Ile Lys Tyr Gly Gln Tyr Ile Arg Pro Gly Gly Leu Glu Leu Pro Ala Ile Lys Thr Gln Leu Arg Ser Lys Asp Gly Ser Ile Val Ala Asn Gly Val Tyr Asp Lys Thr Thr Asn Thr Thr Thr Tyr Thr Phe Thr Asn Tyr Val Asp 410 Gln Tyr Gln Asn Ile Thr Gly Ser Phe Asp Leu Ile Ala Thr Pro Lys 425 Arg Glu Thr Ala Ile Lys Asp Asn Gln Asn Tyr Pro Met Glu Val Thr 440 Ile Ala Asn Glu Val Val Lys Lys Asp Phe Ile Val Asp Tyr Gly Asn 455 Lys Lys Asp Asn Thr Thr Thr Ala Ala Val Ala Asn Val Asp Asn Val 470 Asn Asn Lys His Asn Glu Val Val Tyr Leu Asn Gln Asn Asn Gln Asn Pro Lys Tyr Ala Lys Tyr Phe Ser Thr Val Lys Asn Gly Glu Phe Ile 505 Pro Gly Glu Val Lys Val Tyr Glu Val Thr Asp Thr Asn Ala Met Val 520 Asp Ser Phe Asn Pro Asp Leu Asn Ser Ser Asn Val Lys Asp Val Thr 535 Ser Gln Phe Ala Pro Lys Val Ser Ala Asp Gly Thr Arg Val Asp Ile Asn Phe Ala Arg Ser Met Ala Asn Gly Lys Lys Tyr Ile Val Thr Gln Ala Val Arg Pro Thr Gly Thr Gly Asn Val Tyr Thr Glu Tyr Trp Leu Thr Arg Asp Gly Thr Thr Asn Thr Asn Asp Phe Tyr Arg Gly Thr Lys Ser Thr Thr Val Thr Tyr Leu Asn Gly Ser Ser Thr Ala Gln Gly Asp Asn Pro 625 <210> SEO ID NO 3 <211> LENGTH: 1917 <212> TYPE: DNA <213 > ORGANISM: Staphylococcus epidermidis <400> SEOUENCE: 3 atgagaggat cgcatcacca tcaccatcac ggatccgctg aagacaatca attagaatca 60 gcttcaaaag aagaacagaa aggtagtcgt gataatgaaa actcaaaact taatcaagtc 120 gatttagaca acggatcaca tagttctgag aaaacaacaa atgtaaacaa tgcaactgaa 180 gtaaaaaaag ttgaagcacc aacgacaagt gacgtatcta agcctaaagc taatgaagca 240 gtagtgacga atgagtcaac taaaccaaaa acaacagaag caccaactgt taatgaggaa 300 tcaatagctg aaacacccaa aacctcaact acacaacaag attcgactga gaagaataat 360 ccatctttaa aagataattt aaattcatcc tcaacgacat ctaaagaaag taaaacagac 420 qaacattcta ctaaqcaaqc tcaaatqtct actaataaat caaatttaqa cacaaatqac 480 -continued

				-continued	
totocaacto a	agtgagaa	aacttcatca	. caagcaaata	acgacagtac agataato	cag 540
tcagcacctt c	caaacaatt	agattcaaaa	. ccatcagaac	aaaaagtata taaaacaa	aaa 600
tttaatgatg a	acctactca	agatgttgaa	cacacgacaa	ctaaattaaa aacacctt	cct 660
gtttcaacag a	agttcagt	caatgataag	caagattaca	cacgaagtgc tgtagcta	agt 720
ttaggtgttg a	tctaatga	aacagaagca	attacaaatg	cagttagaga caatttag	gat 780
ttaaaagctg c	atctagaga	acaaatcaat	gaagcaatca	ttgctgaagc actaaaaa	aaa 840
gacttttcta a	cctgatta	tggtgtcgat	acgccattag	ctctaaacag atctcaat	ca 900
aaaaattcac c	acataagag	tgcaagtcca	. cgcatgaatt	taatgagttt agctgctg	gag 960
cctaatagtg g	caaaaatgt	gaatgataaa	gttaaaatca	caaaccctac gctttcac	ett 1020
aataagagta a	caatcacgc	taataacgta	atatggccaa	caagtaacga acaattta	aat 1080
ttaaaagcaa a	tatgaatt	agatgacago	ataaaagagg	gagatacttt tactatta	aag 1140
tatggtcagt a	attagacc	gggtggttta	gaacttcctg	caataaaaac tcaactac	egt 1200
agtaaggatg g	ctctattgt	agctaatggt	gtatatgata	aaactacaaa tacgacga	act 1260
tatacattta c	aactatgt	tgatcaatat	caaaatatta	caggtagttt tgatttaa	att 1320
gcgacgccta a	gagggaaac	agcaattaag	gataatcaga	attatcctat ggaagtga	acg 1380
attgctaacg a	agtagtcaa	aaaagactto	attgtggatt	atggtaataa aaaggaca	aat 1440
acaactacag ca	ageggtage	aaatgtggat	aatgtaaata	ataaacataa cgaagtto	gtt 1500
tatctaaacc aa	aataacca	aaaccctaaa	tatgctaaat	atttctcaac agtaaaaa	aat 1560
ggtgaattta ta	accaggtga	agtgaaagtt	tacgaagtga	cggataccaa tgcgatgg	gta 1620
gatagettea a	cctgattt	aaatagttct	aatgtaaaag	atgtgacaag tcaatttg	gca 1680
cctaaagtaa g	gcagatgg	tactagagtt	gatatcaatt	ttgctagaag tatggcaa	aat 1740
ggtaaaaagt a	cattgtaac	tcaagcagtg	agaccaacgg	gaactggaaa tgtttata	acc 1800
gaatattggt t	aacaagaga	tggtactacc	aatacaaatg	atttttaccg tggaacga	aag 1860
tctacaacgg t	gacttatct	caatggttct	tcaacagcac	agggggataa teettga	1917
<210> SEQ ID <211> LENGTH <212> TYPE: 1 <213> ORGANI:	: 638 PRT SM: Staph	ylococcus e	pidermidis		
<400> SEQUEN					
Met Arg Gly :	Ser His H 5	is His His	His His Gly 10	Ser Ala Glu Asp Asr 15	ı
	Ser Ala S 20	er Lys Glu	Glu Gln Lys 25	Gly Ser Arg Asp Asr 30	1
Glu Asn Ser 1 35	Lys Leu A	sn Gln Val 40	Asp Leu Asp	Asn Gly Ser His Ser 45	c
Ser Glu Lys '	Thr Thr A	sn Val Asn 55	Asn Ala Thr	Glu Val Lys Lys Val 60	L
Glu Ala Pro '	Thr Thr S	_	Ser Lys Pro 75	Lys Ala Asn Glu Ala 80	a
Val Val Thr	Asn Glu S 85	er Thr Lys	Pro Lys Thr 90	Thr Glu Ala Pro Thr	î
	Glu Ser I 100	le Ala Glu	Thr Pro Lys 105	Thr Ser Thr Thr Glr	ı

Gln Asp Ser Thr Glu Lys Asn Asn Pro Ser Leu Lys Asp Asn Leu Asn 115 120 125

-continue
- cont. i nue

Ser	Ser 130	Ser	Thr	Thr	Ser	Lys 135	Glu	Ser	Lys	Thr	Asp 140	Glu	His	Ser	Thr
Lys 145	Gln	Ala	Gln	Met	Ser 150	Thr	Asn	Lys	Ser	Asn 155	Leu	Asp	Thr	Asn	Asp 160
Ser	Pro	Thr	Gln	Ser 165	Glu	Lys	Thr	Ser	Ser 170	Gln	Ala	Asn	Asn	Asp 175	Ser
Thr	Asp	Asn	Gln 180	Ser	Ala	Pro	Ser	Lys 185	Gln	Leu	Asp	Ser	Lys 190	Pro	Ser
Glu	Gln	Lys 195	Val	Tyr	ГÀа	Thr	Lys 200	Phe	Asn	Asp	Glu	Pro 205	Thr	Gln	Asp
Val	Glu 210	His	Thr	Thr	Thr	Lys 215	Leu	Lys	Thr	Pro	Ser 220	Val	Ser	Thr	Asp
Ser 225	Ser	Val	Asn	Asp	Lys 230	Gln	Asp	Tyr	Thr	Arg 235	Ser	Ala	Val	Ala	Ser 240
Leu	Gly	Val	Asp	Ser 245	Asn	Glu	Thr	Glu	Ala 250	Ile	Thr	Asn	Ala	Val 255	Arg
Asp	Asn	Leu	Asp 260	Leu	Lys	Ala	Ala	Ser 265	Arg	Glu	Gln	Ile	Asn 270	Glu	Ala
Ile	Ile	Ala 275	Glu	Ala	Leu	Lys	Lys 280	Asp	Phe	Ser	Asn	Pro 285	Asp	Tyr	Gly
Val	Asp 290	Thr	Pro	Leu	Ala	Leu 295	Asn	Arg	Ser	Gln	Ser 300	ГÀа	Asn	Ser	Pro
His 305	Lys	Ser	Ala	Ser	Pro 310	Arg	Met	Asn	Leu	Met 315	Ser	Leu	Ala	Ala	Glu 320
Pro	Asn	Ser	Gly	Lys 325	Asn	Val	Asn	Asp	330 Lys	Val	Lys	Ile	Thr	Asn 335	Pro
Thr	Leu	Ser	Leu 340	Asn	ГÀа	Ser	Asn	Asn 345	His	Ala	Asn	Asn	Val 350	Ile	Trp
Pro	Thr	Ser 355	Asn	Glu	Gln	Phe	Asn 360	Leu	Lys	Ala	Asn	Tyr 365	Glu	Leu	Asp
Asp	Ser 370	Ile	Lys	Glu	Gly	Asp 375	Thr	Phe	Thr	Ile	380 TAa	Tyr	Gly	Gln	Tyr
Ile 385	Arg	Pro	Gly	Gly	Leu 390	Glu	Leu	Pro	Ala	Ile 395	ГÀа	Thr	Gln	Leu	Arg 400
Ser	ГÀЗ	Asp	Gly	Ser 405	Ile	Val	Ala	Asn	Gly 410	Val	Tyr	Asp	Lys	Thr 415	Thr
Asn	Thr	Thr	Thr 420	Tyr	Thr	Phe	Thr	Asn 425		Val	Asp	Gln	Tyr 430	Gln	Asn
Ile	Thr	Gly 435	Ser	Phe	Asp	Leu	Ile 440	Ala	Thr	Pro	ГЛа	Arg 445	Glu	Thr	Ala
Ile	Lys 450	Asp	Asn	Gln	Asn	Tyr 455	Pro	Met	Glu	Val	Thr 460	Ile	Ala	Asn	Glu
Val 465	Val	ГÀа	ГÀа	Aap	Phe 470	Ile	Val	Aap	Tyr	Gly 475	Asn	ГÀа	ГÀа	Asp	Asn 480
Thr	Thr	Thr	Ala	Ala 485	Val	Ala	Asn	Val	Asp 490	Asn	Val	Asn	Asn	Lys 495	His
Asn	Glu	Val	Val 500	Tyr	Leu	Asn	Gln	Asn 505	Asn	Gln	Asn	Pro	Lys 510	Tyr	Ala
Làa	Tyr	Phe 515	Ser	Thr	Val	ГÀа	Asn 520	Gly	Glu	Phe	Ile	Pro 525	Gly	Glu	Val
Làa	Val 530	Tyr	Glu	Val	Thr	Asp 535	Thr	Asn	Ala	Met	Val 540	Asp	Ser	Phe	Asn
Pro 545	Asp	Leu	Asn	Ser	Ser 550	Asn	Val	Lys	Asp	Val 555	Thr	Ser	Gln	Phe	Ala 560

-continued Pro Lys Val Ser Ala Asp Gly Thr Arg Val Asp Ile Asn Phe Ala Arg 565 570 Ser Met Ala Asn Gly Lys Lys Tyr Ile Val Thr Gln Ala Val Arg Pro Thr Gly Thr Gly Asn Val Tyr Thr Glu Tyr Trp Leu Thr Arg Asp Gly Thr Thr Asn Thr Asn Asp Phe Tyr Arg Gly Thr Lys Ser Thr Thr Val 615 Thr Tyr Leu Asn Gly Ser Ser Thr Ala Gln Gly Asp Asn Pro 625 630 635 <210> SEQ ID NO 5 <211> LENGTH: 993 <212> TYPE: DNA <213> ORGANISM: Staphylococcus epidermidis <400> SEQUENCE: 5 atgagaggat cgcatcacca tcaccatcac ggatccccta atagtggtaa aaatgtgaat 60 gataaagtta aaatcacaaa ccctacgctt tcacttaata agagtaataa tcacgctaat 120 180 gacagcataa aagagggaga tacttttact attaagtatg gtcagtatat tagaccgggt 240 ggtttagaac ttcctgcaat aaaaactcaa ctacgtagta aggatggctc tattgtagct 300 aatggtgtat atgataaaac tacaaatacg acgacttata catttactaa ctatgttgat 360 caatatcaaa atattacagg tagttttgat ttaattgcga cgcctaagag ggaaacagca 420 attaaggata atcagaatta tootatggaa gtgacgattg otaacgaagt agtcaaaaaa 480 gacttcattg tggattatgg taataaaaag gacaatacaa ctacagcagc ggtagcaaat 540 gtggataatg taaataataa acataacgaa gttgtttatc taaaccaaaa taaccaaaac 600 cctaaatatg ctaaatattt ctcaacagta aaaaatggtg aatttatacc aggtgaagtg aaagtttacg aagtgacgga taccaatgcg atggtagata gcttcaatcc tgatttaaat agttctaatg taaaagatgt gacaagtcaa tttgcaccta aagtaagtgc agatggtact agagttgata tcaattttgc tagaagtatg gcaaatggta aaaagtatat tgtaactcaa 840 gcagtgagac caacgggaac tggaaatgtt tataccgaat attggttaac aagagatggt 900 actaccaata caaatgattt ttaccgtgga acgaagtcta caacggtgac ttatctcaat 960 993 ggttcttcaa cagcacaggg ggataatcct tga <210> SEO ID NO 6 <211> LENGTH: 330 <212> TYPE: PRT <213 > ORGANISM: Staphylococcus epidermidis <400> SEQUENCE: 6 Met Arg Gly Ser His His His His His Gly Ser Pro Asn Ser Gly 1.0 Lys Asn Val Asn Asp Lys Val Lys Ile Thr Asn Pro Thr Leu Ser Leu 25 Asn Lys Ser Asn Asn His Ala Asn Asn Val Ile Trp Pro Thr Ser Asn

Glu Gly Asp Thr Phe Thr Ile Lys Tyr Gly Gln Tyr Ile Arg Pro Gly

55

Glu Gln Phe Asn Leu Lys Ala Asn Tyr Glu Leu Asp Asp Ser Ile Lys

60

-continued

Gly Leu Glu Leu Pro Ala Ile Lys Thr Gln Leu Arg Ser Lys Asp Gly Ser Ile Val Ala Asn Gly Val Tyr Asp Lys Thr Thr Asn Thr Thr Thr Tyr Thr Phe Thr Asn Tyr Val Asp Gln Tyr Gln Asn Ile Thr Gly Ser Phe Asp Leu Ile Ala Thr Pro Lys Arg Glu Thr Ala Ile Lys Asp Asn Gln Asn Tyr Pro Met Glu Val Thr Ile Ala Asn Glu Val Val Lys 150 155 Asp Phe Ile Val Asp Tyr Gly Asn Lys Lys Asp Asn Thr Thr Ala Ala Val Ala Asn Val Asp Asn Val Asn Asn Lys His Asn Glu Val Val Tyr Leu Asn Gln Asn Asn Gln Asn Pro Lys Tyr Ala Lys Tyr Phe Ser 200 Thr Val Lys Asn Gly Glu Phe Ile Pro Gly Glu Val Lys Val Tyr Glu 215 Val Thr Asp Thr Asn Ala Met Val Asp Ser Phe Asn Pro Asp Leu Asn 230 Ser Ser Asn Val Lys Asp Val Thr Ser Gln Phe Ala Pro Lys Val Ser 250 Ala Asp Gly Thr Arg Val Asp Ile Asn Phe Ala Arg Ser Met Ala Asn Gly Lys Lys Tyr Ile Val Thr Gln Ala Val Arg Pro Thr Gly Thr Gly 280 Asn Val Tyr Thr Glu Tyr Trp Leu Thr Arg Asp Gly Thr Thr Asn Thr Asn Asp Phe Tyr Arg Gly Thr Lys Ser Thr Thr Val Thr Tyr Leu Asn 310 Gly Ser Ser Thr Ala Gln Gly Asp Asn Pro <210> SEQ ID NO 7 <211> LENGTH: 1434 <212> TYPE: DNA <213 > ORGANISM: Staphylococcus epidermidis <400> SEQUENCE: 7 atqaqaqqat cqcatcacca tcaccatcac qqatccqctq aaqacaatca attaqaatca 60 getteaaaag aagaacagaa aggtagtegt gataatgaaa aeteaaaact taateaagte 120 gatttagaca acggatcaca tagttctgag aaaacaacaa atgtaaacaa tgcaactgaa 180 gtaaaaaaag ttgaagcacc aacgacaagt gacgtatcta agcctaaagc taatgaagca 240 300 qtaqtqacqa atqaqtcaac taaaccaaaa acaacaqaaq caccaactqt taatqaqqaa tcaatagctg aaacacccaa aacctcaact acacaacaag attcgactga gaagaataat 360 ccatctttaa aagataattt aaattcatcc tcaacgacat ctaaagaaaag taaaacagac gaacattcta ctaagcaagc tcaaatgtct actaataaat caaatttaga cacaaatgac 480 tetecaaete aaagtgagaa aaetteatea caagcaaata aegacagtae agataateag tcaqcacctt ctaaacaatt aqattcaaaa ccatcaqaac aaaaaqtata taaaacaaaa 600

tttaatgatg aacctactca agatgttgaa cacacgacaa ctaaattaaa aacaccttct

qtttcaacaq ataqttcaqt caatqataaq caaqattaca cacqaaqtqc tqtaqctaqt

						43										
											-	con	tin	ued		
ttaç	ggtgt	tg a	attct	taat	ga aa	acaga	aagca	a att	tacaa	aatg	cagt	ttaga	aga (caatt	tagat	780
ttaa	aaago	ctg (catct	tagaç	ga a	caaat	tcaat	gaa	agcaa	atca	ttg	ctgaa	agc a	actaa	aaaaaa	840
gact	tttt	cta a	accct	tgati	ta to	ggtgt	tcgat	ace	gccat	tag	ctct	taaa	cag a	atcto	caatca	900
aaaa	aatto	cac o	cacat	taaga	ag to	gcaaq	gtcca	a cgo	catga	aatt	taat	tgagt	ttt a	agcto	gctgag	960
ccta	aataq	gtg q	gtaaa	aaat	gt ga	aatga	ataaa	a gti	taaaa	atca	caaa	accci	tac q	gcttt	cactt	1020
aata	agag	gta a	ataat	cac	gc ta	aataa	acgta	a ata	atggo	ccaa	caaç	gtaa	cga a	acaat	ttaat	1080
ttaa	aaag	caa a	attat	tgaat	ct aç	gatga	acago	c ata	aaaa	gagg	gaga	atacı	ttt 1	tacta	attaag	1140
tate	ggtca	agt a	atatt	taga	cc g	ggtg	gttta	a gaa	actto	cctg	caat	taaaa	aac 1	tcaad	ctacgt	1200
agta	aagga	atg 🤅	gctct	tatt	gt aç	gctaa	atggt	gta	atato	gata	aaa	ctaca	aaa 1	tacga	acgact	1260
tata	acatt	ta d	ctaad	ctate	gt to	gatca	aatat	caa	aaata	atta	cago	gtagi	ttt 1	tgatt	taatt	1320
gcga	acgc	cta a	agago	ggaaa	ac aç	gcaat	ttaaq	g gat	taato	caga	atta	atcci	tat 🤉	ggaag	gtgacg	1380
atto	gctaa	acg a	aagta	agtca	aa aa	aaaga	actto	c att	tgtg	gatt	atg	gtaai	taa a	atga		1434
<211 <212 <213	L> LI 2> T: 3> OI	ENGTI YPE : RGAN		77 Staj	phylo	0000	cus e	∋pid∈	ermio	dis						
Met 1	Arg	Gly	Ser	His 5	His	His	His	His	His 10	Gly	Ser	Ala	Glu	Asp 15	Asn	
Gln	Leu	Glu	Ser 20	Ala	Ser	Lys	Glu	Glu 25	Gln	Lys	Gly	Ser	Arg 30	Asp	Asn	
Glu	Asn	Ser 35	Lys	Leu	Asn	Gln	Val 40	Asp	Leu	Asp	Asn	Gly 45	Ser	His	Ser	
Ser	Glu 50	Lys	Thr	Thr	Asn	Val 55	Asn	Asn	Ala	Thr	Glu 60	Val	Lys	Lys	Val	
Glu 65	Ala	Pro	Thr	Thr	Ser 70	Asp	Val	Ser	Lys	Pro 75	ràs	Ala	Asn	Glu	Ala 80	
Val	Val	Thr	Asn	Glu 85	Ser	Thr	ГÀз	Pro	Lys 90	Thr	Thr	Glu	Ala	Pro 95	Thr	
Val	Asn	Glu	Glu 100	Ser	Ile	Ala	Glu	Thr 105	Pro	Lys	Thr	Ser	Thr 110	Thr	Gln	
Gln	Asp	Ser 115	Thr	Glu	Lys	Asn	Asn 120	Pro	Ser	Leu	ГÀа	Asp 125	Asn	Leu	Asn	
Ser	Ser 130	Ser	Thr	Thr	Ser	Lys 135	Glu	Ser	Lys	Thr	Asp 140	Glu	His	Ser	Thr	
Lys 145	Gln	Ala	Gln	Met	Ser 150	Thr	Asn	ГЛа	Ser	Asn 155	Leu	Asp	Thr	Asn	Asp 160	
Ser	Pro	Thr	Gln	Ser 165	Glu	ГÀз	Thr	Ser	Ser 170	Gln	Ala	Asn	Asn	Asp 175	Ser	
Thr	Asp	Asn	Gln 180	Ser	Ala	Pro	Ser	Lys 185	Gln	Leu	Asp	Ser	Lys 190	Pro	Ser	
Glu	Gln	Lys 195	Val	Tyr	Lys	Thr	Lys 200	Phe	Asn	Asp	Glu	Pro 205	Thr	Gln	Asp	
Val	Glu 210	His	Thr	Thr	Thr	Lys 215	Leu	Lys	Thr	Pro	Ser 220	Val	Ser	Thr	Asp	

 Ser Ser Val Asn Asp Lys Gln Asp Tyr Thr Arg Ser Ala Val Ala Ser

 225
 230

Leu Gly Val Asp Ser Asn Glu Thr Glu Ala Ile Thr Asn Ala Val Arg \$245\$ \$250\$

-continued

-continued	
Asp Asn Leu Asp Leu Lys Ala Ala Ser Arg Glu Gln Ile Asn Glu Ala 260 265 270	
Ile Ile Ala Glu Ala Leu Lys Lys Asp Phe Ser Asn Pro Asp Tyr Gly 275 280 285	
Val Asp Thr Pro Leu Ala Leu Asn Arg Ser Gln Ser Lys Asn Ser Pro 290 295 300	
His Lys Ser Ala Ser Pro Arg Met Asn Leu Met Ser Leu Ala Ala Glu 305 310 315 320	
Pro Asn Ser Gly Lys Asn Val Asn Asp Lys Val Lys Ile Thr Asn Pro 325 330 335	
Thr Leu Ser Leu Asn Lys Ser Asn Asn His Ala Asn Asn Val Ile Trp 340 345 350	
Pro Thr Ser Asn Glu Gln Phe Asn Leu Lys Ala Asn Tyr Glu Leu Asp 355 360 365	
Asp Ser Ile Lys Glu Gly Asp Thr Phe Thr Ile Lys Tyr Gly Gln Tyr 370 375 380	
Ile Arg Pro Gly Gly Leu Glu Leu Pro Ala Ile Lys Thr Gln Leu Arg 385 390 395 400	
Ser Lys Asp Gly Ser Ile Val Ala Asn Gly Val Tyr Asp Lys Thr Thr 405 410 415	
Asn Thr Thr Thr Tyr Thr Phe Thr Asn Tyr Val Asp Gln Tyr Gln Asn 420 425 430	
Ile Thr Gly Ser Phe Asp Leu Ile Ala Thr Pro Lys Arg Glu Thr Ala 435 440 445	
Ile Lys Asp Asn Gln Asn Tyr Pro Met Glu Val Thr Ile Ala Asn Glu 450 460	
Val Val Lys Lys Asp Phe Ile Val Asp Tyr Gly Asn Lys 465 470 475	
<210> SEQ ID NO 9 <211> LENGTH: 966 <212> TYPE: DNA <213> ORGANISM: Staphylococcus epidermidis	
<400> SEQUENCE: 9	
atgagaggat cgcatcacca tcaccatcac ggatccgctg aagacaatca attagaatca	60
gcttcaaaag aagaacagaa aggtagtcgt gataatgaaa actcaaaact taatcaagtc	120
gatttagaca acggatcaca tagttctgag aaaacaacaa atgtaaacaa tgcaactgaa	180
gtaaaaaaag ttgaagcacc aacgacaagt gacgtatcta agcctaaagc taatgaagca	240
gtagtgacga atgagtcaac taaaccaaaa acaacagaag caccaactgt taatgaggaa	300
tcaatagctg aaacacccaa aacctcaact acacaacaag attcgactga gaagaataat	360
ccatctttaa aagataattt aaattcatcc tcaacgacat ctaaagaaag taaaacagac	420
gaacattcta ctaagcaagc tcaaatgtct actaataaat caaatttaga cacaaatgac	480
tctccaactc aaagtgagaa aacttcatca caagcaaata acgacagtac agataatcag	540
tcagcacctt ctaaacaatt agattcaaaa ccatcagaac aaaaagtata taaaacaaaa	600
tttaatgatg aacctactca agatgttgaa cacacgacaa ctaaattaaa aacaccttct	660
gtttcaacag atagttcagt caatgataag caagattaca cacgaagtgc tgtagctagt	720
ttaggtgttg attctaatga aacagaagca attacaaatg cagttagaga caatttagat	780
ttaaaagctg catctagaga acaaatcaat gaagcaatca ttgctgaagc actaaaaaaa	840

gacttttcta accctgatta tggtgtcgat acgccattag ctctaaacag atctcaatca

47 48

-continued

aaaaattcac caca	taagag tgcaag	t taatgagttt agctgctgag									
ccttga											
<210> SEQ ID NO 10 <211> LENGTH: 321 <212> TYPE: PRT <213> ORGANISM: Staphylococcus epidermidis											
<400> SEQUENCE: 10											
Met Arg Gly Ser	His His His 5	His His His Gl	y Ser Ala Glu Asp Asn 15								
Gln Leu Glu Ser	Ala Ser Lys	Glu Glu Gln Ly	s Gly Ser Arg Asp Asn								
20		25	30								
Glu Asn Ser Lys	Leu Asn Gln	Val Asp Leu As	p Asn Gly Ser His Ser								
35		40	45								
Ser Glu Lys Thr 50	Thr Asn Val	Asn Asn Ala Th	r Glu Val Lys Lys Val 60								
Glu Ala Pro Thr	Thr Ser Asp	Val Ser Lys Pr	o Lys Ala Asn Glu Ala								
65	70	75	80								
Val Val Thr Asn	Glu Ser Thr	Lys Pro Lys Th	r Thr Glu Ala Pro Thr								
	85	90	95								
Val Asn Glu Glu		Glu Thr Pro Ly	s Thr Ser Thr Thr Gln								
100		105	110								
Gln Asp Ser Thr	Glu Lys Asn	Asn Pro Ser Le	u Lys Asp Asn Leu Asn								
115		120	125								
Ser Ser Ser Thr	Thr Ser Lys	Glu Ser Lys Th	r Asp Glu His Ser Thr								
130	135		140								
Lys Gln Ala Gln	Met Ser Thr	Asn Lys Ser As	n Leu Asp Thr Asn Asp								
145	150		5 160								
Ser Pro Thr Gln	Ser Glu Lys	Thr Ser Ser Gl	n Ala Asn Asn Asp Ser								
	165	170	175								
Thr Asp Asn Gln	Ser Ala Pro	Ser Lys Gln Le	u Asp Ser Lys Pro Ser								
180		185	190								
Glu Gln Lys Val	Tyr Lys Thr	Lys Phe Asn As	p Glu Pro Thr Gln Asp								
195		200	205								
Val Glu His Thr	Thr Thr Lys	Leu Lys Thr Pr	o Ser Val Ser Thr Asp								
210	215		220								
Ser Ser Val Asn	Asp Lys Gln	Asp Tyr Thr Ar	g Ser Ala Val Ala Ser								
225	230		5 240								
Leu Gly Val Asp	Ser Asn Glu	Thr Glu Ala Il	e Thr Asn Ala Val Arg								
	245	250	255								
Asp Asn Leu Asp	_	Ala Ser Arg Gl	u Gln Ile Asn Glu Ala								
260		265	270								
Ile Ile Ala Glu	Ala Leu Lys	Lys Asp Phe Se	r Asn Pro Asp Tyr Gly								
275		280	285								
Val Asp Thr Pro	Leu Ala Leu 295	Asn Arg Ser Gl	n Ser Lys Asn Ser Pro 300								
His Lys Ser Ala	Ser Pro Arg	Met Asn Leu Me	t Ser Leu Ala Ala Glu								
305	310		5 320								
Pro											
<210> SEQ ID NO	10										
<212> TYPE: DNA											

<212> TYPE: DNA

<213> ORGANISM: Staphylococcus epidermidis

-continued <400> SEQUENCE: 11 atgagaggat cgcatcacca tcaccatcac ggatccccta atagtggtaa aaatgtgaat 60 gataaagtta aaatcacaaa ccctacgctt tcacttaata agagtaataa tcacgctaat gacagcataa aagagggaga tacttttact attaagtatg gtcagtatat tagaccgggt 240 ggtttagaac ttcctgcaat aaaaactcaa ctacgtagta aggatggctc tattgtagct 300 aatggtgtat atgataaaac tacaaatacg acgacttata catttactaa ctatgttgat 360 caatatcaaa atattacaqq taqttttqat ttaattqcqa cqcctaaqaq qqaaacaqca 420 attaaggata atcagaatta tcctatggaa gtgacgattg ctaacgaagt agtcaaaaaa 480 gacttcattg tggattatgg taataaatga 510 <210> SEO TD NO 12 <211> LENGTH: 169 <212> TYPE: PRT <213 > ORGANISM: Staphylococcus epidermidis <400> SEQUENCE: 12 Met Arg Gly Ser His His His His His Gly Ser Pro Asn Ser Gly 10 Lys Asn Val Asn Asp Lys Val Lys Ile Thr Asn Pro Thr Leu Ser Leu 25 Asn Lys Ser Asn Asn His Ala Asn Asn Val Ile Trp Pro Thr Ser Asn 40 Glu Gln Phe Asn Leu Lys Ala Asn Tyr Glu Leu Asp Asp Ser Ile Lys Glu Gly Asp Thr Phe Thr Ile Lys Tyr Gly Gln Tyr Ile Arg Pro Gly Gly Leu Glu Leu Pro Ala Ile Lys Thr Gln Leu Arg Ser Lys Asp Gly Ser Ile Val Ala Asn Gly Val Tyr Asp Lys Thr Thr Asn Thr Thr Thr Tyr Thr Phe Thr Asn Tyr Val Asp Gln Tyr Gln Asn Ile Thr Gly Ser Phe Asp Leu Ile Ala Thr Pro Lys Arg Glu Thr Ala Ile Lys Asp Asn Gln Asn Tyr Pro Met Glu Val Thr Ile Ala Asn Glu Val Val Lys Lys 145 155 Asp Phe Ile Val Asp Tyr Gly Asn Lys <210> SEQ ID NO 13 <211> LENGTH: 525 <212> TYPE: DNA <213 > ORGANISM: Staphylococcus epidermidis <400> SEQUENCE: 13 atgagaggat cgcatcacca tcaccatcac ggatccaaaa aggacaatac aactacagca 60 gcggtagcaa atgtggataa tgtaaataat aaacataacg aagttgttta tctaaaccaa 120 aataaccaaa accctaaata tgctaaatat ttctcaacag taaaaaatgg tgaatttata 180

atgagaggat egeateacea teaceateae ggatecaaaa aggacaatae aactacagea 60 geggtageaa atgtggataa tgtaaataat aaacataaeg aagttgttta tetaaaceaa 120 aataaceaaa accetaaata tgetaaatat tteteaacag taaaaaatgg tgaatttata 180 eeaggtgaag tgaaagttta egaagtgaeg gataceaatg egatggtaga tagetteaat 240 eetgatttaa atagttetaa tgtaaaagat gtgacaagte aatttgeace taaagtaagt 300 geagatggta etagagttga tateaattt getagaagta tggcaaatgg taaaaagtat 360

-continued

attgtaactc aagcagtgag accaacggga actggaaatg tttataccga atattggtta acaagagatg gtactaccaa tacaaatgat ttttaccgtg gaacgaagtc tacaacggtg acttatctca atggttcttc aacagcacag ggggataatc cttga <210> SEQ ID NO 14 <211> LENGTH: 174 <212> TYPE: PRT <213 > ORGANISM: Staphylococcus epidermidis <400> SEQUENCE: 14 Met Arg Gly Ser His His His His His Gly Ser Lys Lys Asp Asn Thr Thr Thr Ala Ala Val Ala Asn Val Asp Asn Val Asn Asn Lys His Asn Glu Val Val Tyr Leu Asn Gln Asn Asn Gln Asn Pro Lys Tyr Ala 40 Lys Tyr Phe Ser Thr Val Lys Asn Gly Glu Phe Ile Pro Gly Glu Val 55 Lys Val Tyr Glu Val Thr Asp Thr Asn Ala Met Val Asp Ser Phe Asn 70 Pro Asp Leu Asn Ser Ser Asn Val Lys Asp Val Thr Ser Gln Phe Ala Pro Lys Val Ser Ala Asp Gly Thr Arg Val Asp Ile Asn Phe Ala Arg Ser Met Ala Asn Gly Lys Lys Tyr Ile Val Thr Gln Ala Val Arg Pro Thr Gly Thr Gly Asn Val Tyr Thr Glu Tyr Trp Leu Thr Arg Asp Gly Thr Thr Asn Thr Asn Asp Phe Tyr Arg Gly Thr Lys Ser Thr Thr Val Thr Tyr Leu Asn Gly Ser Ser Thr Ala Gln Gly Asp Asn Pro <210> SEQ ID NO 15 <211> LENGTH: 324 <212> TYPE: DNA <213 > ORGANISM: Staphylococcus epidermidis <400> SEQUENCE: 15 qacattqtqa tqacccaqtc tcacaaattc atqtccacat caqtaqqaqa caqqqtcatc 60 atcacctgca aggccagtca ggatgtgaat actgctctag cctggtatca gcagaaacca 120 qqacaatctc ctaaactact qatttactcq qcatcctacc qqtatactqq aqtccctqat 180 cqcttcactq qcaqtqqatc tqqqacqqat ttcactttca ccatcaqcaq tqtqcaqqct 240 gaagacctgg cagtttatta ctgtcagcaa cattatagta cccctccgta cacgttcgga 300 ggggggacca agctggagat aaaa 324 <210> SEQ ID NO 16 <211> LENGTH: 108 <212> TYPE: PRT <213> ORGANISM: Staphylococcus epidermidis <400> SEOUENCE: 16 Asp Ile Val Met Thr Gln Ser His Lys Phe Met Ser Thr Ser Val Gly 10 Asp Arg Val Ile Ile Thr Cys Lys Ala Ser Gln Asp Val Asn Thr Ala

20

-continued

Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Ser Ala Ser Tyr Arg Tyr Thr Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln Gln His Tyr Ser Thr Pro Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 <210> SEQ ID NO 17 <211> LENGTH: 351 <212> TYPE: DNA <213> ORGANISM: Staphylococcus epidermidis <400> SEQUENCE: 17 gaggttcagc tgcagcagtc tggggcagag cttgtgaagc caggggcctc agtcaagttg 60 tectqcacaq ettetqqett caacattaaa qacacetata tacactqqqt qaaqcaqaqq 120 cctgaacagg gcctggagtg gattggaagg attgatcctg cgaatggtaa tactcattat 180 gactcacagt tecagggeaa ggecactata acageagaca cateeteeaa cacageetae 240 ctgcagctca gcagcctgac atctgacgac actgccgtct attactgtac tagacgtgtg 300 ggctatgcta tggactactg gggtcaagga acctcagtca ccgtctcctc a 351 <210> SEQ ID NO 18 <211> LENGTH: 117 <212> TYPE: PRT <213> ORGANISM: Staphylococcus epidermidis <400> SEQUENCE: 18 Glu Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Lys Pro Gly Ala Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Thr Tyr Ile His Trp Val Lys Gln Arg Pro Glu Gln Gly Leu Glu Trp Ile Gly Arg Ile Asp Pro Ala Asn Gly Asn Thr His Tyr Asp Ser Gln Phe Gln Gly Lys Ala Thr Ile Thr Ala Asp Thr Ser Ser Asn Thr Ala Tyr Leu Gln Leu Ser Ser Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys Thr Arg Arg Val Gly Tyr Ala Met Asp Tyr Trp Gly Gln Gly Thr Ser 100 105 Val Thr Val Ser Ser 115 <210> SEQ ID NO 19 <211> LENGTH: 318 <212> TYPE: DNA <213> ORGANISM: Staphylococcus epidermidis <400> SEOUENCE: 19 caaattgttc tcacccagtc tccagcaatc atgtctgcat ctccagggga gaaggtcacc 60 atgacctgca gtgccagctc aagtgtaagt tacatgtact ggtaccaaca gaaaccagga 120 tectececa qaqteetqat ttatqacaca tecaacetqq ettetqqaqt ceetqtteqe 180

-continued ttcagtggca gtgggtctgg gacctcttac tctctcacaa tcagccgaat ggaggctgaa gatgctgcca cttattactg ccagcagtgg aatggttatc cacccacgtt cggtgctggg accaagctgg aggtgaaa 318 <210> SEQ ID NO 20 <211> LENGTH: 106 <212> TYPE: PRT <213 > ORGANISM: Staphylococcus epidermidis <400> SEQUENCE: 20 Gln Ile Val Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly 10 Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met Tyr Trp Tyr Gln Gln Lys Pro Gly Ser Ser Pro Arg Val Leu Ile Tyr 40 Asp Thr Ser Asn Leu Ala Ser Gly Val Pro Val Arg Phe Ser Gly Ser 55 Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Arg Met Glu Ala Glu 70 Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Asn Gly Tyr Pro Pro Thr Phe Gly Ala Gly Thr Lys Leu Glu Val Lys 100 <210> SEQ ID NO 21 <211> LENGTH: 369 <212> TYPE: DNA <213> ORGANISM: Staphylococcus epidermidis <400> SEQUENCE: 21 caggttactc tgagagagtc tggccctggg atattgcagc cctcccagac cctcagtctg acttgttctt tctctgggtt ttcactgaac acttctggta tgggtgtgac ctggattcgt cageettetg gaaagggtet ggagtggetg geaaacattt aetgggatga tgacaagege 180 tataacccat ccctgaagag ccggctcaca atctccaagg ctaactccag aaaccaggta 240 tteeteaaqa teaceaqtqt qqaeactqea qatactqeea catactaetq tacteqeece 300 aattacctcq qtactqtcta ctqqtacttt qatqtctqqq qcqcaqqqac catqqtcacc 360 369 qtctcctca <210> SEO ID NO 22 <211> LENGTH: 123 <212> TYPE: PRT <213> ORGANISM: Staphylococcus epidermidis <400> SEQUENCE: 22 Gln Val Thr Leu Arg Glu Ser Gly Pro Gly Ile Leu Gln Pro Ser Gln 1.0 Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu Asn Thr Ser 25

Gly Met Gly Val Thr Trp Ile Arg Gln Pro Ser Gly Lys Gly Leu Glu Trp Leu Ala Asn Ile Tyr Trp Asp Asp Asp Lys Arg Tyr Asn Pro Ser 55 60 Leu Lys Ser Arg Leu Thr Ile Ser Lys Ala Asn Ser Arg Asn Gln Val 70

-continued

Phe Leu Lys Ile Thr Ser Val Asp Thr Ala Asp Thr Ala Thr Tyr Tyr 85 Cys Thr Arg Pro Asn Tyr Leu Gly Thr Val Tyr Trp Tyr Phe Asp Val 105 Trp Gly Ala Gly Thr Met Val Thr Val Ser Ser <210> SEQ ID NO 23 <211> LENGTH: 318 <212> TYPE: DNA <213 > ORGANISM: Staphylococcus epidermidis <400> SEQUENCE: 23 caaattgttc tcacccagtc tccagcaatc atgtctgcat ctccagggga ggagggcacc 60 atgacctgca gtgccagctc aagtgtaagg tacatgtact ggtaccggca gaagccagga 120 tectececca gaetettgat ttatgacaca tecaacetgg ettetggagt ecetgttege 180 ttcagtggca gtgggtctgg gacctcttac tctctcacaa tcagccgaat ggaggctgaa 240 gatgctgcca cttattactg ccagcagtgg agtagttacc cacccacgtt cggaggggg 300 accaagctgg aaatgaaa 318 <210> SEQ ID NO 24 <211> LENGTH: 106 <212> TYPE: PRT <213 > ORGANISM: Staphylococcus epidermidis <400> SEQUENCE: 24 Gln Ile Val Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Glu Gly Thr Met Thr Cys Ser Ala Ser Ser Ser Val Arg Tyr Met 25 Tyr Trp Tyr Arg Gln Lys Pro Gly Ser Ser Pro Arg Leu Leu Ile Tyr 40 Asp Thr Ser Asn Leu Ala Ser Gly Val Pro Val Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Arg Met Glu Ala Glu 70 Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Tyr Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Met Lys 100 <210> SEQ ID NO 25 <211> LENGTH: 354 <212> TYPE: DNA <213 > ORGANISM: Staphylococcus epidermidis <400> SEQUENCE: 25 gaagtgcagt tggtggagtc tgggggaggc ttagtgaagc ctggagggtc cctgaaactc tcctgtgcag cctctggatt cgctttcagt agctatgaca tgtcttgggt tcgccagact 120 ccggagaaga ggctggagtg ggtcgcctac attagtagtg gtggtggtat cacctactat ccagacactg tgaagggccg attcaccatc tccagagaca atgccaagaa caccctgtac 240 gtgcaaatga gcagtctgaa gtctgaggac acagccattt attattgtac aagacacgat 300

agggactect ggtttgetta ttggggeeaa gggactetgg teaetgtete tgea

```
-continued
<210> SEQ ID NO 26
<211> LENGTH: 118
<212> TYPE: PRT
<213> ORGANISM: Staphylococcus epidermidis
<400> SEQUENCE: 26
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly
Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Ala Phe Ser Ser Tyr
Asp Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Glu Trp Val
Ala Tyr Ile Ser Ser Gly Gly Gly Ile Thr Tyr Tyr Pro Asp Thr Val_{50}
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr 65 70 75 80
Val Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Ile Tyr Tyr Cys
Thr Arg His Asp Arg Asp Ser Trp Phe Ala Tyr Trp Gly Gln Gly Thr
                               105
          100
Leu Val Thr Val Ser Ala
      115
<210> SEQ ID NO 27
<211> LENGTH: 108
<212> TYPE: PRT
<213> ORGANISM: Staphylococcus epidermidis
<400> SEQUENCE: 27
Asp Ile Val Met Thr Gln Ser Gln Lys Phe Met Ser Thr Ser Val Gly
Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Val Asn Thr Ala
                               25
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile
Tyr Ser Ala Ser Tyr Arg Tyr Thr Gly Val Pro Ser Arg Phe Ser Gly 50 60
Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Val Gln Ala
Glu Asp Leu Ala Val Tyr Tyr Cys Gln Gln His Tyr Ser Thr Pro Pro
Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
          100
<210> SEQ ID NO 28
<211> LENGTH: 117
<212> TYPE: PRT
<213 > ORGANISM: Staphylococcus epidermidis
<400> SEQUENCE: 28
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Val Lys Pro Gly Ala
                        10
Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Phe Asn Ile Lys Asp Thr
                                25
Tyr Ile His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
                           40
```

Gly Arg Ile Asp Pro Ala Asn Gly Asn Thr His Tyr Asp Ser Gln Phe 50 55 60

-continued

Gln Gly Lys Ala Thr Ile Thr Ala Asp Thr Ser Thr Ser Thr Ala Tyr Leu Gln Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys Thr Arg Arg Val Gly Tyr Ala Met Asp Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser 115 <210> SEQ ID NO 29 <211> LENGTH: 106 <212> TYPE: PRT <213 > ORGANISM: Staphylococcus epidermidis <400> SEOUENCE: 29 Glu Ile Val Leu Thr Gln Ser Pro Ala Thr Met Ser Ala Ser Pro Gly 10 Glu Arg Val Thr Met Ser Cys Ser Ala Ser Ser Ser Val Ser Tyr Met Tyr Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Arg Val Leu Ile Tyr Asp Thr Ser Asn Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Pro Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Asn Gly Tyr Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Val Lys 100 <210> SEQ ID NO 30 <211> LENGTH: 123 <212> TYPE: PRT <213 > ORGANISM: Staphylococcus epidermidis <400> SEQUENCE: 30 Gln Val Thr Leu Arg Glu Ser Gly Pro Gly Ile Leu Lys Pro Ser Gln Thr Leu Ser Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Asn Thr Ser Gly Met Gly Val Thr Trp Ile Arg Gln Pro Ser Gly Lys Gly Leu Glu Trp Leu Ala Asn Ile Tyr Trp Asp Asp Asp Lys Arg Tyr Asn Pro Ser Leu Lys Ser Arg Leu Thr Ile Ser Lys Ala Asn Ser Arg Asn Gln Val Phe Leu Lys Ile Thr Ser Val Asp Pro Val Asp Thr Ala Thr Tyr Tyr Cys Thr Arg Pro Asn Tyr Leu Gly Thr Val Tyr Trp Tyr Phe Asp Val 105 Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser 115 120 <210> SEQ ID NO 31 <211> LENGTH: 106 <212> TYPE: PRT

<213 > ORGANISM: Staphylococcus epidermidis

-continued

<400> SEQUENCE: 31 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Met Ser Ala Ser Pro Gly Glu Arg Gly Thr Met Ser Cys Ser Ala Ser Ser Ser Val Arg Tyr Met Tyr Trp Tyr Arg Gln Lys Pro Gly Gln Ser Pro Arg Leu Leu Ile Tyr Asp Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Arg Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Tyr Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Met Lys 100 <210> SEQ ID NO 32 <211> LENGTH: 118 <212> TYPE: PRT <213> ORGANISM: Staphylococcus epidermidis <400> SEQUENCE: 32 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Ala Phe Ser Ser Tyr 25 Asp Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Glu Trp Val Ala Tyr Ile Ser Ser Gly Gly Gly Ile Thr Tyr Tyr Pro Asp Thr Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 70 Val Gln Met Ser Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Thr Arg His Asp Arg Asp Ser Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 <210> SEQ ID NO 33 <211> LENGTH: 369 <212> TYPE: DNA <213> ORGANISM: Staphylococcus epidermidis <400> SEQUENCE: 33 caggttactc tgagagagtc tggccctggg atattgaagc cctcccagac cctcagtctg 60 acttgtacct tctctgggtt ttcactgagc acttctggta tgggtgtgac ctggattcgc cageettetg gaaagggtet ggagtggetg geaaacattt actgggatga tgacaagege 180 tataacccat ccctgaagag ccggctcaca atctccaagg ctaactccag aaaccaggtg ttcctcaaga tcaccagtgt ggaccccgtg gatactgcca catactactg tactcgcccc 300 aattacctgg gtactgtgta ctggtacttt gatgtctggg gccaggggac catggtgacc 360

qtqtcctca

What is claimed is:

- 1. An isolated monoclonal antibody which binds specifically to the SdrF protein of *Staphylococcus epidermidis* and which has a variable light chain selected from the group consisting of SEQ ID NO: 16, SEQ ID NO: 20, SEQ ID NO: 24, SEQ ID NO: 27, SEQ ID NO: 29 and SEQ ID NO: 31.
- 2. The monoclonal antibody according to claim 1 wherein the antibody is raised against the N1N2N3 subregion of the SdrF protein.
- 3. The monoclonal antibody according to claim 1 wherein the monoclonal antibody is raised against a peptide selected from the group consisting of an antigenic subregion of the SdrF protein, the SdrF ligand binding A domain, the N1 subregion, the N2 subregion, the N3 subregion, and combinations of said subregions.
- **4**. The monoclonal antibody according to claim **1**, wherein said antibody is suitable for parenteral, oral, intranasal, subcutaneous, aerosolized or intravenous administration in a human or animal.
- 5. The monoclonal antibody according to claim 1 wherein the monoclonal antibody is selected from the group consisting of murine, chimeric, humanized and human monoclonal antibodies.
- **6**. The monoclonal antibody according to claim **1** wherein the antibody is a single chain monoclonal antibody.
- 7. The monoclonal antibody according to claim 1 that is raised against a peptide having the amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, and SEQ ID NO:14.
- $8. \ \,$ The monoclonal antibody according to claim 1 wherein the monoclonal antibody recognizes a peptide selected from the group consisting of an antigenic subregion of the SdrF protein, the SdrF ligand binding A domain, the N1 subregion, the N2 subregion, the N3 subregion, and combinations of said subregions.

9. The monoclonal antibody according to claim 1 that recognizes a peptide having the amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8 and SEQ ID NO:10 and SEQ ID NO:12, and SEQ ID NO:14.

66

- 10. Isolated antisera containing the antibody according to claim 1.
- 11. A pharmaceutical composition comprising an effective amount of the antibody of claim 1 and a pharmaceutically acceptable vehicle, carrier or excipient.
- 12. The pharmaceutical composition according to claim 11 further comprising a physiologically acceptable antibiotic.
- 13. An isolated monoclonal antibody which binds specifically to the SdrF protein of *S. epidermidis*, wherein said antibody has a variable heavy chain selected from the group consisting of SEQ ID NO: 18, SEQ ID NO: 22, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32 and SEQ ID NO: 34.
- **14.** A method of detecting *S. epidermidis* in a sample from a patient infected with *S. epidermidis* comprising adding the monoclonal antibody of claim **1** to the sample and determining the specific binding of the antibody.
- 15. A method of making the monoclonal antibody of claim 1 comprising administering to a host animal an immunogenic amount of a peptide selected from the group consisting of an antigenic subregion of the SdrF protein, the SdrF ligand binding A domain, the N1 subregion, the N2 subregion, the N3 subregion, and combinations of said subregions, forming a hybridoma, and isolating the monoclonal antibody from said hybridoma.
- **16**. A kit comprising the monoclonal antibody of claim **1** and means for detecting specific binding by said antibody.
- 17. The kit of claim 16, wherein said means for detecting the binding comprises a detectable label that is linked to said antibody.

* * * * *