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receive input data from an information source
405

l

apply nested quantization to the input data from an information
source in order to generate intermediate encoded data
410

'

encode the intermediate data using an asymmetric Slepian-
Wolf encoder in order to generate compressed output data
representing the input data
420

l

perform at least one of:. storing the compressed output data,
and, transferring the compressed output data.
425

Fig. 4
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receive compressed input data representing a block of samples of a first source X
510

Y
receive a block of samples of a second source Y
512

'

apply an asymmetric Slepian-Wolf decoder to the compressed input data using the
block of samples of the second source Y, in order to generate a block of
intermediate values
514

'

perform joint decoding on each intermediate value and a corresponding sample of
the block of second source samples to obtain a corresponding decompressed
output value, where said performing joint decoding includes determining an
estimate of a centroid of a function restricted to a region of space corresponding to
the intermediate value.
516

Figure 5
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—> compute a realization z of a first random vector; 610

!

compute a realization y of a second random vector 615

!

add z and y to determine a realization x of a source vector 620

!

quantize the realization x to a point in a fine lattice 625

!

compute an index J identifying a coset of a coarse lattice in the fine
lattice based on the fine lattice point 630

!

add the realization x to a cumulative sum corresponding to the index J
and the realizationy 635

'

increment a count value corresponding to the index J and the
realization y 640

!

repeat a number of times
645

!

divide the cumulative sums by their corresponding count values to
obtain resultant values 650

!

store the resultant values in a memory medium. 655

Figure 6
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DATA ENCODING AND DECODING USING
SLEPIAN-WOLF CODED NESTED
QUANTIZATION TO ACHIEVE WYNER-ZIV
CODING

PRIORITY DATA AND CONTINUATION DATA

This application claims the benefit of U.S. Provisional
Application No. 60/657,520, filed on Mar. 1, 2005, entitled
“Multi-Source Data Encoding, Transmission and Decod-
ing”, invented by Vladimir M. Stankovic, Angelos D. Liv-
eris, Zixiang Xiong, Costas N. Georghiades, Zhixin Liu and
Samuel S. Cheng, including Appendices A-H.

This application is a continuation in part of U.S. patent
application Ser. No. 11/068,737, filed on Mar. 1, 2005,
entitled “Data Encoding and Decoding Using Slepian-Wolf
Coded Nested Quantization to Achieve Wyner-Ziv Coding”,
invented by Zhixin Liu, Samuel S. Cheng, Angelos D.
Liveris and Zixiang Xiong, including Appendices A-H.

STATEMENT OF U.S. GOVERNMENT
LICENSING RIGHTS

The U.S. Government has a paid-up license in this inven-
tion and the right in limited circumstances to require the
patent owner to license others on reasonable terms as
provided for by the terms of grant number CCR-01-04834
awarded by the National Science Foundation (NSF).

FIELD OF THE INVENTION

The present invention relates to the field of information
encoding/decoding, and more particularly to a system and
method for realizing a Wyner-Ziv code using nested quan-
tization and Slepian Wolf coding.

DESCRIPTION OF THE RELATED ART

In 1976, Wyner and Ziv [1] established a theorem regard-
ing the best possible source coding performance given
distortion under the assumption that the decoder has access
to side information. Unfortunately, codes realizing or
approaching this best possible performance have not here-
tofore been demonstrated. Thus, it would be greatly desir-
able to be able to design codes (especially practical codes)
realizing or approaching this best possible performance, and,
to deploy such codes for use in encoders and decoders.

SUMMARY

In one set of embodiments, a system and method for

generating compressed output data may involve:

(a) receiving input data from an information source;

(b) applying nested quantization to the input data in order
to generate intermediate data;

(c) encoding the intermediate data using an asymmetric
Slepian-Wolf encoder in order to generate compressed
output data representing the input data; and

(d) performing at least one of storing the compressed
output data, and, transferring the compressed output
data.

The values of the input data may be interpreted as vectors in
an n-dimensional space, where n is greater than or equal to
one.
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2

The information source may be a continuous source or a
discrete source. A discrete source generates values in a finite
set. A continuous source generates values in a continuum.

The operations (b) and (¢) may be arranged so as to realize
the encoder portion of a Wyner-Ziv code.

The compressed output data may be stored in a memory
medium for future decompression. Alternatively, the com-
pressed output data may be transferred to a decoder for more
immediate decompression.

The process of applying nested quantization to the input
data may include: quantizing values of the input data with
respect to a fine lattice to determine corresponding points of
the fine lattice; and computing indices identifying cosets of
a coarse lattice in the fine lattice corresponding to the fine
lattice points. The intermediate data include said indices.
The coarse lattice is a sublattice of the fine lattice.

In any given dimension, some choices for the fine lattice
and coarse lattice may lead to better performance than
others. However, the principles of the present invention may
be practiced with non-optimal choices for the fine lattice and
coarse lattice as well as with optimal choices.

In another set of embodiments, a system and method for
recovering information from compressed input data may
involve:

(a) receiving compressed input data, wherein the com-
pressed input data is a compressed representation of a
block of samples of a first source X;

(b) receiving a block of samples of a second source Y;

(c) applying an asymmetric Slepian-Wolf decoder to the
compressed input data using the block of samples of the
second source Y, wherein said applying generates a
block of intermediate values;

(d) performing joint decoding on each intermediate value
and a corresponding sample of the block of second
source samples to obtain a corresponding decom-
pressed output value.

The operations (¢) and (d) may be arranged so as to realize
the decoder portion of a Wyner-Ziv code.

The joint decoding may involve determining an estimate
of a centroid of a function restricted to a region of space
corresponding to the intermediate value. The function may
be the conditional probability density function of the first
source X given said corresponding sample of the second
source block. The centroid estimate may be (or may deter-
mine) the decompressed output value.

The region of space is a union of cells (e.g., Voronoi cells)
corresponding to a coset of a coarse lattice in a fine lattice,
wherein the coset is identified by the intermediate value.

In yet another set of embodiments, a system and method
for computing a table representing a nested quantization
decoder may involve:

(a) computing a realization z of a first random vector;

(b) computing a realization y of a second random vector;

(c) adding z and y to determine a realization X of a source

vector;

(d) quantizing the realization X to a point in a fine lattice;

(e) computing an index J identifying a coset of a coarse

lattice in the fine lattice based on the fine lattice point;

() adding the realization x to a cumulative sum corre-

sponding to the index J and the realization y;
(g) incrementing a count value corresponding to the index
J and the realization y;

(h) repeating operations (a) through (g) a number of

times;

(1) dividing the cumulative sums by their corresponding

count values to obtain resultant values; and
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(j) storing the resultant values in a memory.

In one set of embodiments, a system for generating
compressed output data may include a memory and a
processor. The memory is configured to store data and
program instructions. The processor is configured to read
and execute the program instructions from the memory. In
response to execution of the program instructions, the pro-
cessor is operable to: (a) receive input data from an infor-
mation source; (b) apply nested quantization to the input
data in order to generate intermediate data; (c) encode the
intermediate data using an asymmetric Slepian-Wolf
encoder in order to generate compressed output data repre-
senting the input data; and (d) perform at least one of:
storing the compressed output data; and transferring the
compressed output data.

In another set of embodiments, a system for decoding
compressed data may include a memory and processor. The
memory is configured to store data and program instruc-
tions. The processor is configured to read and execute the
program instructions from the memory. In response to
execution of the program instructions, the processor is
operable to: (a) receive compressed input data, wherein the
compressed input data is a compressed representation of a
block of samples of a first source X; (b) receive a block of
samples of a second source Y; (c) apply an asymmetric
Slepian-Wolf decoder to the compressed input data using the
block of samples of the second source Y, wherein said
applying generates a block of intermediate values; (d) per-
form joint decoding on each intermediate value and a
corresponding sample of the block of second source samples
to obtain a corresponding decompressed output value,
wherein said performing joint decoding includes determin-
ing an estimate of a centroid of a function restricted to a
region of space corresponding to the intermediate value,
wherein said estimate determines the decompressed output
value. The function is the conditional probability density
function of the first source X given said corresponding
sample of the second source block.

In yet another set of embodiments, a system for comput-
ing a table representing a nested quantization decoder may
include a memory and processor. The memory is configured
to store data and program instructions. The processor is
configured to read and execute the program instructions
from the memory. In response to execution of the program
instructions, the processor is operable to: (a) computing a
realization z of a first random vector; (b) computing a
realization y of a second random vector; (¢) adding z and y
to determine a realization x of a source vector; (d) quantizing
the realization X to a point in a fine lattice; (¢) computing an
index J identifying a coset of a coarse lattice in the fine
lattice based on the fine lattice point; (f) adding the realiza-
tion X to a cumulative sum corresponding to the index J and
the realization y; (g) incrementing a count value correspond-
ing to the index J and the realization y; (h) repeating
operations (a) through (g) a number of times; (i) dividing the
cumulative sums by their corresponding count values to
obtain resultant values; and (j) storing the resultant values in
a memory medium.

We propose a practical scheme that we refer to as Slepian-
Wolf coded nested quantization (SWC-NQ) for Wyner-Ziv
coding that deals with source coding with side information
under a fidelity criterion. The scheme utilizes nested lattice
quantization with a fine lattice for quantization and a coarse
lattice for channel coding. In addition, at low dimensions (or
block sizes), an additional Slepian-Wolf coding stage is
added to compensate for the weakness of the coarse lattice
channel code. The role of Slepian-Wolf coding in SWC-NQ
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is to exploit the correlation between the quantized source
and the side information for further compression and to
make the overall channel code stronger.

The applications of this proposed scheme are very broad;
it can be used in any application that involves lossy com-
pression (e.g., of speech data, audio data, image data, video
data, graphic data, or, any combination thereof).

We show that SWC-NQ achieves the same performance
of classic entropy-constrained lattice quantization. For
example, 1-D/2-D SWC-NQ performs 1.53/1.36 dB away
from the Wyner-Ziv rate distortion (R-D) function of the
quadratic Gaussian source at high rate assuming ideal
Slepian-Wolf coding. In other words, the scheme may be
optimal in terms of compression performance, at least in
some embodiments. We also demonstrate means of achiev-
ing efficient Slepian-Wolf compression via multi-level
LDPC codes.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained when the following detailed description of the
preferred embodiment is considered in conjunction with the
following drawings, in which:

FIG. 1A illustrates one embodiment of a computer system
that may be used for implementing various of the method
embodiments described herein;

FIG. 1B illustrates one embodiment of a communication
system including two computers coupled through a com-
puter network;

FIG. 2 is a block diagram for one embodiment of a
computer system that may be used for implementing various
of the method embodiments described herein;

FIG. 3 A illustrates one embodiment of a sensor system as
a possible application of the inventive principles described
herein;

FIG. 3B illustrates one embodiment of a video transmis-
sion as another possible application of the inventive prin-
ciples described herein;

FIG. 3C illustrates a system that compressed source
information and stored the compressed information in a
memory medium for later retrieval and decompression;

FIG. 4 illustrates one embodiment of a method for encod-
ing data;

FIG. 5 illustrates one embodiment of a method for decod-
ing data using side information;

FIG. 6 illustrates one embodiment of a method for com-
puting a table that represents an nested quantization decoder.

FIG. 7 illustrate an example of a fine lattice, coarse lattice,
coset leader vector v and region R(v) in dimension n=2;

FIG. 8 illustrate a simplified nested quantization ender
and decoder;

FIG. 9 shows d,(R) with different V,’s using nested A,
lattices (i.e., hexagonal lattices) in dimension n=2;

FIG. 10 show D, (R) as the convex hull of 8,(R) with
different V,;

FIG. 11 shows the granular and boundary components of
distortion with different V,’s;

FIG. 12 plots D (R) for n=1, 2, 4, 8 and 24 with ,2>=0.01;

FIG. 13 shows the lower bound of D(R) with different
V,’s in the 1-D case;

FIGS. 14(a) and (b) plot the optimal V*, (scaled by o)
as a function of R for the 1-D (n=1) and 2-D (n=2) cases;

FIG. 15 shows the improvement gained by using the
optimal (non-linear) estimator at low rates, for n=2 and
0,=0.01;
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FIG. 16 illustrates one embodiment of a multi-layer
Slepian Wolf coding scheme;

FIG. 17 shows results based on 1-D nested lattice quan-
tization both with and without Slepian Wolf coding (SWC);
and

FIG. 18 shows results based on 2-D nested lattice quan-
tization both with and without Slepian Wolf coding (SWC).

While the invention is susceptible to various modifica-
tions and alternative forms, specific embodiments thereof
are shown by way of example in the drawings and are herein
described in detail. It should be understood, however, that
the drawings and detailed description thereto are not
intended to limit the invention to the particular form dis-
closed, but on the contrary, the intention is to cover all
modifications, equivalents and alternatives falling within the
spirit and scope of the present invention as defined by the
appended claims.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS
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Terminology

The following is a glossary of terms used in the present
application:

Memory Medium—Any of various types of memory
devices, storage devices, or combinations thereof. The term
“memory medium” is intended to include: CD-ROM, any of
various kinds of magnetic disk (such as floppy disk or hard
disk), any of various kinds of magnetic tape, optical storage,
and bubble memory; any of various kinds of read only
memory (ROM); any of various kinds of random access
memory (RAM) such as DRAM, DDR RAM, SRAM, EDO
RAM, Rambus RAM, etc.

Carrier Medium—a memory medium as described above,
or, a communication medium on which signals are con-
veyed, e.g., signals such as electrical, electromagnetic,
acoustic, optical signals.

Programmable Hardware Element—includes various
types of programmable hardware, reconfigurable hardware,
programmable logic, or field-programmable devices (FPDs),
such as one or more FPGAs (Field Programmable Gate
Arrays), or one or more PLDs (Programmable Logic
Devices), or other types of programmable hardware. A
programmable hardware element may also be referred to as
“reconfigurable logic”.

Program—the term “program” is intended to have the full
breadth of its ordinary meaning. The term “program”
includes 1) a software program which may be stored in a
memory and is executable by a processor or 2) a hardware
configuration program useable for configuring a program-
mable hardware element.

Software Program—the term “software program” is
intended to have the full breadth of its ordinary meaning,
and includes any type of program instructions, code, script
and/or data, or combinations thereof, that may be stored in
a memory medium and executed by a processor. Exemplary
software programs include programs written in text-based
programming languages, such as C, C++, Pascal, Fortran,
Cobol, Java, assembly language, etc.; graphical programs
(programs written in graphical programming languages);
assembly language programs; programs that have been
compiled to machine language; scripts; and other types of
executable software. A software program may comprise two
or more components that interoperate.

Hardware Configuration Program—a program, e.g., a
netlist or bit file, that can be used to program or configure a
programmable hardware element.

Computer System—any of various types of computing or
processing systems, including a personal computer system
(PC), mainframe computer system, workstation, network
appliance, Internet appliance, personal digital assistant
(PDA), television system, grid computing system, or other
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device or combinations of devices. In general, the term
“computer system” can be broadly defined to encompass any
device (or combination of devices) having at least one
processor that executes instructions from a memory
medium.

FIG. 1A—Computer System

FIG. 1A illustrates a computer system 82, according to
one set of embodiments, operable to execute a set of
programs. The programs may be configured to implement
any or all of the method embodiments described herein. The
computer system 82 may include one or more processors,
memory media, and one or more interface devices. The
computer system 82 may also include input and output
devices. The memory media may include various well
known systems and devices configured for the storage of
data and computer programs. For example, the memory
media may store one or more programs which are executable
to perform the methods (or some subset of the methods)
described herein. The memory medium may also store
operating system software, as well as other software for
operation of the computer system. In various embodiments,
the computer system 82 may be a personal computer, a
notebook computer, a workstation, a server, a router, a
computer implemented on a card, etc.

FIG. 1B—Computer Network

FIG. 1B illustrates a communication system including a
first computer system 82 and a second computer system 90,
according to one set of embodiments. The first computer
system 82 couples to the second computer system 90
through a network 84 (or, more generally, any of various
known communication mechanisms). The first and second
computer systems may each be any of various types, as
desired. The network 84 can also be any of various types,
including a LAN (local area network), WAN (wide area
network), the Internet, or an Intranet.

Each of the computer systems may be configured with
programs implementing any or all of the method embodi-
ments described herein. In one embodiment, the first and
second computer systems are each configured with software
for encoding and decoding data as described variously
herein.

It is noted that computer system 82 and computer system
90 may be configured according to any of various system
architectures.

FIG. 2—Computer System Block Diagram

FIG. 2 is a block diagram representing one embodiment
of computer system 82 and/or computer system 90.

The computer system may include at least one central
processing unit CPU 160 which is coupled to a host bus 162.
The CPU 160 may be any of various types, including, but
not limited to, an x86 processor, a PowerPC processor, a
CPU from the SPARC family of RISC processors, as well as
others. A memory medium, typically comprising RAM, and
referred to as main memory 166, is coupled to the host bus
162 by means of memory controller 164. The main memory
166 may store programs operable to implement encoding
and/or decoding according to any (or all) of the various
embodiments described herein. The main memory may also
store operating system software, as well as other software
for operation of the computer system.

The host bus 162 couples to an expansion or input/output
bus 170 through a bus controller 168 or bus bridge logic. The
expansion bus 170 may be the PCI (Peripheral Component
Interconnect) expansion bus, although other bus types can
be used. The expansion bus 170 includes slots for various
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devices such as a video card 180, a hard drive 182, a
CD-ROM drive (not shown) and a network interface 122.
The network interface 122 (e.g., an Ethernet card) may be
used to communicate with other computers through the
network 84.

In one embodiment, a device 190 may also be connected
to the computer. The device 190 may include an embedded
processor and memory. The device 190 may also or instead
comprise a programmable hardware element (such as an
FPGA). The computer system may be operable to transfer a
program to the device 190 for execution of the program on
the device 190. The program may be configured to imple-
ment any or all of the encoding or decoding method embodi-
ments described herein.

In some embodiments, the computer system 82 may
include input devices such as a mouse and keyboard and
output devices such a display and speakers.

FIGS. 3A, 3B & 3C—Exemplary Systems

Various embodiments of the present invention may be
directed to sensor systems, wireless or wired transmission
systems, or, any other type of information processing or
distribution system utilizing the coding principles described
herein.

For example, as FIG. 3A shows, a sensor system may
include a first sensor (or set of sensors) and a second sensor
(or set of sensors). The first sensor may provide signals to a
transmitter 306. The sensors may be configured to sense any
desired physical quantity or set of physical quantities such as
time, temperature, energy, velocity, flow rate, displacement,
length, mass, voltage, electrical current, charge, pressure,
etc. The transmitter 306 may receive the signals, digitize the
signals, encode the signals according the inventive prin-
ciples described herein, and transmit the resulting com-
pressed data to a receiver 308 using any of various known
communication mechanism (e.g., a computer network). The
receiver 308 receives the compressed data from the trans-
mitter as well as side information from a second sensor. The
receiver 308 decodes the compressed data, according to the
inventive principles described herein, using the side infor-
mation, and thereby, generates decompressed output data.
The decompressed output data may be used as desired, e.g.,
displayed to a user, forwarded for analysis and/or storage,
etc.

As another example, a first video source may generate
video signals as shown in FIG. 3B. A transmitter 316
receives the video signal, encodes the video signals accord-
ing the inventive principles described herein, and transmits
the resulting compressed data to a receiver 318 using any of
various known communication mechanism (e.g., a computer
network). The receiver 318 receives the compressed data
from the transmitter as well as side information from a
second sensor. The receiver 318 decoders the compressed
data, according to the inventive principles described herein,
using the side information.

As yet another embodiment, a encoder 326 may receive
signals from a first source and encode the source signals
according to the inventive principles described herein, and
store the resulting compressed data onto a memory medium
327. At some later time, an encoder 328 may read the
compressed data from the memory medium 327 and decode
the compressed data according to the inventive principles
described herein.

It is noted that embodiments of the present invention can
be used for a plethora of applications and is not limited to the
above applications. In other words, applications discussed in
the present description are exemplary only, and the present

10

15

20

25

30

35

40

45

50

55

60

65

10

invention may be used in any of various types of systems.
Thus, the system and method of the present invention is
operable to be used in any of various types of applications,
including audio applications, video applications, multimedia
applications, any application where physical measurements
are gathered, etc.

FIG. 4 illustrates one embodiment of a method for decod-
ing data. In step 405, input data is received from an
information source.

In step 410, nested quantization as described herein is
applied to the input data in order to generate intermediate
data.

In step 420, the intermediate data is encoded using an
asymmetric Slepian-Wolf encoder as described herein, in
order to generate compressed output data representing the
input data.

The nested quantization and asymmetric Slepian-Wolf
encoder may be configured so that the combination of steps
410 and 420 realizes the encoder portion of a Wyner-Ziv
code.

In step 425, the compressed output data may be stored
and/or transferred. In one embodiment, the compressed
output data may be stored onto a memory medium for
decompression at some time in the future. In another
embodiment, the compressed output data may be trans-
ferred, e.g., to a decoder device.

The information source may be a continuous source or a
discrete source. A discrete source generates values in a finite
set. A continuous source generates values in a continuum.
The values of the input data may be interpreted as vectors in
an n-dimensional space, where n is greater than or equal to
one.

The process of applying nested quantization to the input
data may include: quantizing values of the input data with
respect to a fine lattice to determine corresponding points of
the fine lattice; and computing indices identifying cosets of
a coarse lattice in the fine lattice corresponding to the fine
lattice points. The intermediate data include said indices.
The coarse lattice is a sublattice of the fine lattice.

In any given dimension, some choices for the fine lattice
and coarse lattice may lead to better performance than
others. However, the principles of the present invention may
be practiced with non-optimal choices for the fine lattice and
coarse lattice as well as with optimal choices.

In various embodiments, the information source may be a
source of audio information, a source of video information,
a source of image information, a source of text information,
a source of information derived from physical measurements
(e.g., by a set of one or more physical sensors), or, any
combination thereof.

As discussed in reference [29], one way to do asymmetric
Slepian-Wolf encoding is by means of syndrome forming,
which involves a modification of classical channel encoding.
This type of Slepian-Wolf encoding is used to generate the
simulation results described in this paper. However, the
general method of Slepian-Wolf coded nested quantization
disclosed in this paper can also be performed with other
forms of Slepian-Wolf encoders.

In some embodiments, the asymmetric Slepian-Wolf
encoder may be a low density parity check syndrome former
or a turbo syndrome former.

In one embodiment, the asymmetric Slepian-Wolf
encoder may be configured as a multi-layered encoder as
described herein.

An encoder system may be configured to implement any
embodiment of the method illustrated and described above
in connection with FIG. 4. The encoder system may include
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one or more processors or programmable hardware ele-
ments, and/or, dedicated circuitry such as application spe-
cific integrated circuits. In one embodiment, the encoder
system includes a processor (e.g., a microprocessor) and
memory. The memory is configured to store program
instructions and data. The processor is configured to read
and execute the program instructions from the memory to
implement any embodiment of the method illustrated and
described above in connection with FIG. 4.

Furthermore, a computer-readable memory medium may
be configured to store program instructions which are
executable by one or more processors to implement any
embodiment of the method illustrated and described above
in connection with FIG. 4.

FIG. 5 illustrates one embodiment of a method for decod-
ing data. In step 510, compressed input data is received. The
compressed input data is a compression representation of a
block of samples of a first source X. In step 512, a block of
samples of a second source Y is received. Steps 510 and 512
need not be performed in any particular order. In one
embodiment, steps 510 and 512 may be performed in
parallel, or, at least in a time overlapping fashion. The first
source X and the second source Y may be statistically
correlated.

In step 514, an asymmetric Slepian-Wolf decoder as
described herein is applied to the compressed input data
using the block of samples of the second source Y. This
application of the asymmetric Slepian-Wolf decoder gener-
ates a block of intermediate values.

In step 516, joint decoding is performed on each inter-
mediate value and a corresponding sample of the block of
second source samples to obtain a corresponding decom-
pressed output value. The joint decoding may include deter-
mining an estimate of a centroid of a function restricted to
a region of space corresponding to the intermediate value.
The function may be the conditional probability density
function of the first source X given said corresponding
sample of the second source block. The centroid estimate
may be (or may determine) the decompressed output value.
The resulting block of decompressed output values may be
used in any of various ways as desired. For example, the
block of decompressed output values may be displayed to a
user, forwarded for analysis and/or storage, transmitted
through a network to one or more other destinations, etc.

The steps 514 and 516 may be configured so as to realize
the decoder portion of a Wyner-Ziv code.

The region of space is a union of cells (e.g., Voronoi cells)
corresponding to a coset of a coarse lattice in a fine lattice,
wherein the coset is identified by the intermediate value.

The centroid estimate may be determined by reading the
centroid estimate from a table stored in a memory medium
using said corresponding sample of the second source block
and the intermediate value as addresses. The table may be
computed in at a central code design facility, and, then
deployed to a decoder system through any of various known
means for data distribution. The table may be stored in a
memory medium of the decoder system. The decoder system
may accessing the table to determine the centroid estimate in
real time.

In one alternative embodiment, the centroid estimate may
be determined by performing a Monte Carlo iterative simu-
lation at decode time.

The intermediate values generated in step 514 may
specify cosets of a coarse lattice in a fine lattice. The coarse
lattice may be a sublattice of the fine lattice.
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The asymmetric Slepian-Wolf decoder may be a multi-
layered decoder. Furthermore, the asymmetric Slepian-Wolf
decoder may be a low density parity check decoder or a
turbo decoder.

A decoder system may be configured to implement any
embodiment of the method illustrated and described above
in connection with FIG. 5. The decoder system may include
one or more processors or programmable hardware ele-
ments, and/or, dedicated circuitry such as application spe-
cific integrated circuits. In one embodiment, the decoder
system includes a processor (e.g., a microprocessor) and
memory. The memory is configured to store program
instructions and data. The processor is configured to read
and execute the program instructions from the memory to
implement any embodiment of the method illustrated and
described above in connection with FIG. 5.

Furthermore, a computer-readable memory medium may
be configured to store program instructions which are
executable by one or more processors to implement any
embodiment of the method illustrated and described above
in connection with FIG. 5.

FIG. 6 illustrates one embodiment of a method for com-
puting a table representing a nested quantization decoder by
Monte Carlo simulation. The method may be implemented
by executing program instructions on a computer system (or
a set of interconnected computer systems). The program
instructions may be stored on any of various known com-
puter-readable memory media.

In step 610, the computer system may compute a real-
ization z of a first random vector (the auxiliary vector), e.g.,
using one or more random number generators. In step 615,
the computer system may compute a realization y of a
second random vector (the side information), e.g., using one
or more random number generators. Steps 610 and 615 need
not be performed in any particular order.

In step 620, the computer system may add the realization
y and the realization z to determine a realization x of a
source vector.

In step 625, the computer system may quantize the
realization X to a point p in a fine lattice as described herein.

In step 630, the computer system may compute an index
J identifying a coset of a coarse lattice in the fine lattice
based on the fine lattice point p. The coarse lattice is a
sublattice of the fine lattice.

The computer system may maintain a set of cumulative
sums, i.e., one cumulative sum for each possible pair in the
Cartesian product (CPR) of the set of possible indices and
the set of possible realizations of the second random vector
(the side information). The cumulative sums may be initial-
ized to zero. Furthermore, the computer system may main-
tain a set of count values, i.e., one count value for each
possible pair in the Cartesian product CPR.

In step 635, the computer system may add the realization
X to a cumulative sum corresponding to the index J and the
realization y. In step 640, the computer system may incre-
ment a count value corresponding to the index J and the
realization y. Steps 635 and 640 need not be performed in
any particular order.

The computer system may repeat steps 610 through 640
a number of times as indicated in step 645. In one embodi-
ment, the number of repetitions may be determined by input
provided by a user.

In step 650, the computer system may divide the cumu-
lative sums by their corresponding count values to obtain
resultant values. The resultant values may be interpreted as
being the centroid estimates described above in connection
with FIG. 5.
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In step 655, the computer system may store the resultant
values as a table in a memory associated with the computer
system, e.g., onto hard disk.

The table may be distributed (e.g., with decoding software
configured according to any of the various method embodi-
ments described herein) to decoder systems by any of
various means. In one embodiment, the table may be down-
loaded to decoder systems over a network such as the
Internet. In another embodiment, the table may be stored on
a computer-readable memory media (such as CD-ROM,
magnetic disk, magnetic tape, compact flash cards, etc.) and
the memory media may be provided (e.g., sold) to users of
decoder systems for loading onto their respective computer
systems.

In one embodiment, system for computing a table repre-
senting a nested quantization decoder may be configured
with a processor and memory. The memory is configured to
store program instructions and data. The processor is con-
figured to read and execute the program instructions from
the memory to implement any embodiment of the method
illustrated and described above in connection with FIG. 6.

The Wyner-Ziv coding problem deals with source coding
with side information under a fidelity criterion. The rate-
distortion function for this setup, R*(D), is given by [1]:

R*(D) = min min

(U X) = 1(U; Y)),
P("\X)f:AUXAyﬁA)A(

M

where the source X (with an alphabet A ), the side infor-
mation Y (with an alphabet A,) and the auxiliary random
variable U (with an alphabet A ) form a Markov chain as Y

XU, with the distortion constraint E[d(X,f(U,Y),Y)]
=D. The function I(*) denotes the Shannon mutual infor-
mation as defined in [3]. The function p(ulx) is the condi-
tional probability of U given X. The function f represents
the mapping from the possible auxiliary variable and side
information to a reconstructed value of X.

Although the theoretical limits for the rate-distortion
function have been known for some time [1], [2], practical
approaches to binary Wyner-Ziv coding and continuous
Wyner-Ziv coding have not appeared until recently [3], [4],
[51, [6]1, [71, [81, [9], [10], [11], [12]. A common context of
interest for continuous Wyner-Ziv coding is code design for
the quadratic Gaussian case, where the correlation between
the source X and the side information Y is modeled as an
additive white Gaussian noise (AWGN) channel as X=Y+Z,
Z~N(0, 0,?), with a mean-squared error (MSE) measure.
For this case, one can first consider lattice codes [13] or
trellis-based codes [14], [15] that have been used for both
source and channel coding in the past, and focus on finding
good nesting codes among them. Following Zamir et al’s
nested lattice coding scheme [16], Servetto [3] proposed
explicit nested lattice constructions based on similar sublat-
tices [17] with the assumption of high correlation. Research
on trellis-based nested codes as a way of realizing high-
dimensional nested lattice codes has just started recently [7].
For example, in DISCUS [7], two source codes (scalar
quantization and trellis coded quantization—TCQ) and two
channel codes (scalar coset code and trellis-based coset code
[14]) are used in source-channel coding for the Wyner-Ziv
problem, resulting in four combinations. One of them (scalar
quantization with scalar coset code) is nested scalar quan-
tization and another one (TCQ with trellis-based coset code,
also suggested in [4]) can effectively be considered as nested
TCQ.
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Zamir et al. [18], [16] first outlined some theoretical
constructions using a pair of nested linear/lattice codes for
binary/Gaussian sources, where the fine code in the nested
pair plays the role of source coding while the coarse code
does channel coding. They also proved that, for the quadratic
Gaussian case, the Wyner-Ziv rate-distortion (R-D) function
is asymptotically achievable using nested lattice codes, with
the assumption that the lattice is ideally sphere-packed as the
lattice dimension goes to infinity.

The performance of a nested lattice quantizer can
approach the Wyner-Ziv limit at high rate when high-
dimensional lattices are used, because both the granular gain
and boundary gain reach their ultimate values [19] when the
dimension n—c. Nevertheless, lattice coding and code
design with high dimensionality are difficult in practice.

For a nested lattice quantizer using low-to-moderate
dimensional lattices, a pragmatic approach to boost the
overall performance is to increase the boundary gain with a
second stage of binning, without increasing the dimension-
ality of the lattices. Suppose a second stage of binning is
applied without introducing extra overload probability P,
and the binning scheme partitions the support region of fine
lattice (actually the Voronoi region of the coarse lattice for
nested lattice quantizer) into m cosets. Thus the volume of
the support region decreases by a factor of N/m while the
overload probability stays fixed, where N is the nesting ratio.
From the definition of boundary gain [19], the boundary gain
increases without changing the dimension of the lattices.
Since various possible boundary gains are realizable using
the second-stage of binning as discussed above, there is only
maximally 1.53 dB (decibels) of granular gain left unex-
ploited by the quantizer. Thus the second stage of binning
allows us to show the theoretical performance limits at high
rates with low-to-moderate dimensional source codes.

In this paper, we introduce a new framework for the
continuous Wyner-Ziv coding of independent and identi-
cally distributed (i.i.d.) sources based a combination of
Slepian-Wolf coding (SWC) and nested quantization (NQ).
In this framework, which we refer to as SWC-NQ, the role
of Slepian-Wolf coding, as a second-stage of binning which
increases the boundary gain of source coding, is to exploit
the correlation between the quantized source and the side
information for further compression and by making the
overall channel code stronger. SWC-NQ connects network
information theory with the rich areas of (a) lattice source
code designs (e.g., [13]) and (b) channel code designs (e.g.,
LDPC codes [20], [21] and [22]), making it feasible to
devise codes that can approach the Wyner-Ziv rate-distor-
tion function. LDPC is an acronym for “low density parity
check”.

For the quadratic continuous case, we establish the high-
rate performance of SWC-NQ with low-to-moderate dimen-
sional nested quantization and ideal SWC. We show that
SWC-NQ achieves the same performance of classic entropy-
constrained lattice quantization as if the side information
were also available at the encoder. For example, 1-D/2-D
SWC-NQ performs 1.53/1.36 dB away from the Wyner-Ziv
R-D function of the quadratic continuous source at high rate
assuming ideal SWC.

A recent work, [23], starts with non-uniform quantization
with index reuse and Slepian-Wolf coding and shows the
same high-rate theoretical performance as ours when the
quantizer becomes an almost uniform one without index
reuse. This agrees with our assertion that at high rates, the
nested quantizer asymptotically becomes a non-nested regu-
lar one so that strong channel coding is guaranteed.
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We also implement 1-D and 2-D nested lattice quantizers
in the rate range of 1-7 bits per sample. Although our
analysis shows that nesting does not help at high rate,
experiments using nested lattice quantizers together with
irregular LDPC codes for SWC obtain performances close to
the corresponding limits at low rates. Our work thus shows
that SWC-NQ provides an efficient scheme for practical
Wyner-Ziv coding with low-dimensional lattice quantizers
at low rates.

Although the theoretical analyses are taken under the
assumption of high rate, the rate-distortion performance at
low rate is still consistent with the one at high rate, i.e.,
SWC-NQ achieves the same performance of classic entropy
coded quantization (ECQ) as if the side information were
also available at the encoder even at low rate, when a
non-linear estimator is applied at the decoder. This non-
linear estimator, as we present in this paper, is the optimal
one in the sense of the MSE measurement. At high rates, the
non-linear estimator reduces to the linear one analyzed in
this paper.

We note that the non-linear estimation in the decoder can
yield significant gains for low rates and for high rates it
cannot help noticeably. This is confirmed by the agreement
of the high rate analysis results in this paper, which assume
that the linear estimation is used, with the high rate simu-
lation results, for which the non-linear estimation method is
always used.

The following is a list of some of the contents of this
paper:

1. A theoretical analysis and simulation for low-to-mod-
erate dimensional nested lattice quantization at high
rates. The rate-distortion function for general continu-
ous sources with arbitrary probability density function
(PDF) and MSE measurement, and a theoretical lower
bound of rate-distortion function for the quadratic
Gaussian case, are presented.

2. An analysis of the granular and boundary gains of the
source coding component of nested lattice quantization.
This analysis explains the phenomenon of an increasing
gap of the rate-distortion function of nested lattice
quantization at low-to-moderate dimension, with
respect to the Wyner-Ziv limit, as we observe in the
simulation.

3. A new Wyner-Ziv coding framework using nested
lattice quantization and Slepian-Wolf coding, which we
refer to as SWC-NQ, is introduced. The SWC-NQ
rate-distortion function for general continuous sources
with arbitrary PDF and MSE measurement is pre-
sented, and is in agreement with the performance of
entropy-constrained lattice quantization as if the side
information were available at the encoder.

4. A non-linear estimator for the decoder corresponding to
the nested quantizer is presented, and is proved to be
optimal in sense of MSE measurement. This estimator
helps to improve the performance of SWC-NQ at low
rates, and is consistent with the analytical performance
at high rates.

5. Examples of practical code design using a 1-D (scalar)
lattice and 2-D (hexagonal) lattice, and multi-layer
irregular LDPC codes, are given in this paper.

Some Background on Wyner-Ziv Coding

In this section, we briefly review the basic concepts and
milestone theorems of Wyner-Ziv coding. Wyner and Ziv
[1], [2] present the limit of rate-distortion performance for
lossy coding with side information, for both Gaussian and
general sources.
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The problem of rate distortion with side information at the
decoder asks the question of how many bits are needed to
encode X under the constraint that E[d (X,X)]£D, assuming
the side information Y is available at the decoder but not at
the encoder. This problem generalizes the setup of [24] in
that coding of X is lossy with respect to a fidelity criterion
rather than lossless. For both discrete and continuous alpha-
bets of A ,-and general distortion metrics d(*), Wyner and Ziv
[1] gave the rate-distortion function R* (D) for this prob-
lem as R*,,(D)=inf I(X;ZIY), where the infimum is taken
over all random variables Z such that Y—=X—Z7 is a Markov
chain and there exists a function X=X(Z,Y) satisfying E[d
(X,X)]=D. According to [1],

Ryz(D) =z Ryy(D) = inf

{ReAy:Ed(x,X)]=D}

(x5 X|Y).

This means that usually there is a rate loss in the Wyner-Ziv
problem. Zamir quantified this loss in [25]. In particular,
Zamir showed a rate loss of less than 0.22 bit for a binary
source with Hamming distance, and a rate loss of less than
0.5 bit/sample for continuous sources with MSE distortion.

Note that when D=0, the Wyner-Ziv problem degenerates
to the Slepian-Wolf problem with R*,(0)=R,,(0)=H
(XIY). Another special case of the Wyner-Ziv problem is the
quadratic Gaussian case when X and Y are zero mean and
stationary Gaussian memoryless sources and the distortion
metric is MSE. Let X, denote the i component of X, and Y,
denotes the i” component of Y, i=1, 2, . . ., n. Let the
covariance matrix of (X,,Y,) be

ok
cov(X;, Y;) =
o

paxCy

pU—XU—Y}

with Ipl<1 for all n, then

ox(1-p%)
5

1
Riyz(D) = Ryy(D) = 510g+[

where log* x=max{0, log x}. This case is of special interest
in practice because many image and video sources can be
modeled as jointly Gaussian (after mean subtraction) and
Wyner-Ziv coding suffers no rate loss.

Lattices and Nested Lattices

In this section, we review the idea of lattice and nested
lattices and introduce notation that will be used in our
discussion.

For a set of n basis vectors {g,, . . . ,g,} in R, an
unbounded n-dimensional (n-D) lattice A is defined by

A={I=Gi:i€Z"} @)

and its generator matrix

G=[g gl . .. lg,]

R donates the set of real numbers. R” denotes n-dimensional
Euclidean space. Z denotes the set of integers. Z” denotes the
Cartesian product of n copies of Z, i.e., the set of n-vectors
whose components are integers.
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The nearest neighbor quantizer Q ,(x) associated with A is
given by

QA (%) = argminllr— . ®

The notation “arg min” denotes the value of the argument (in
this case 1) where the minimum is achieved. Expression (3)
is augmented with a set of “tie breaking” rules to decide the
result in cases where two or more points of the lattice A
achieve the minimum distance to vector X. Any of various
sets of tie breaking rules may be used. For example, in
dimension one (i.e., n=1) with lattice A being the integers,
points of the form k+(4) with be equidistant to k and k+1.
One possible tie-breaking rule would be to map such points
up to k+1. In one set of embodiments, the nearest neighbor
quantizer defined by (3) and a set of tie breaking rules has
the property:
OA+D)=0,(x)+], VIEA

The basic Voronoi cell of A, which specifies the shape of
the nearest-neighbor decoding region, is

K={x:0,x)=0}. Q)

Associated with the Voronoi cell K are several important
quantities: the cell volume V, the second moment o> and the
normalized second moment G(A), defined by

V=fdm ©)
K
ot = L f x> dx, ®)
nv Jg
@)

G(A) = m,

respectively. The minimum of G(A) over all lattices in R” is
denoted as G,,. By [13],

G,z1/(2re),Vn (8)
lim G, = 1/ (2xe) ©)

The notation “V” is to be read as “for all”. The constant e is
Euler’s constant.

A pair of n-D lattices (A,A,) with corresponding gen-
erator matrices G, and G, is nested, if there exists an nxn
integer matrix P such that

G,=G xP and
det{P}>1,

where det{P} denotes the determinant of the matrix P. In this
case V,/V, is called the nesting ratio, and A, and A, are
called the fine lattice and coarse lattice, respectively.

For a pair (A,,A,) of nested lattices, the points in the set
AJ/AL={A,NK,} are called the coset leaders of A, relative
to A, where K, is the basic Voronoi cell of A,. The notation
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“A=B” means that A is being defined by expression B, or
vice versa. For each vEA /A, the set of shifted lattice points

C(v)y={v+l, VIEA,}

is called a coset of A, relative to AA,. The j* point of C(v)
is denoted as c,(v). Then

C0)={c;(0),V jeZ}=A,, (10)
and

C=A, (1

veA /Ay

Since

¢ (VIEALVEZ, 12)

we further define
Ri(»)={x:04,x)=¢;()}

as the Voronoi region associated with c¢(v) in A,, and
R(v)=U__.*R,(v). Then
Ro) = K. 13
veAp /Ay
and
oo (14)

U U R = U R(») =R".

J=—eaveA] /Ay veA /Ay

FIG. 7 illustrates examples of v, C(v) and R(v). The fine
lattice points are at the centers of the small hexagons. The
coarse lattice points are at the centers of the large hexagons.
R(v) is the union of the shaded hexagons. The coset C(v) is
the set composed of the centers of the shaded hexagons. The
fine lattice and coarse lattice may be generated by

2 1
Glz[

5 1
0 V3 ﬁ'w?}

|

respectively, and related by
2 -1
P= .
5]

Nested Lattice Quantization

Throughout this paper, we use the correlation model of
X=Y+Z, where X, Y and Z are random vectors in R”. X is
the source to be coded, Y is the side information, and Z is
the noise. Y and Z are independent. In this section we discuss
the performance of nested lattice quantization for general
sources where Y and Z are arbitrarily distributed with zero
means, as well as for the quadratic Gaussian case where
Y ~N(0,0,%) and Z,~N(0,0,%), i=1, 2, . . ., n, are Gaussian.
For both cases, the mean squared error (MSE) is used as the
distortion measurement.

Zamir et al.’s nested lattice quantization scheme [18], [16]
works as follows: Let the pseudo-random vector U (also
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referred to herein as the “dither”), known to both the
quantizer encoder and the decoder, be uniformly distributed
over the basic Voronoi cell K, of the fine lattice A,. For a
given target average distortion D, denote o/1—=D/0,72 as the
estimation coefficient. Given the realizations of the source,
the side information and the dither as x, y and u, respec-
tively, then according to [18], the nested quantizer encoder
quantizes ax+u to the nearest point x5 =Q, (@x+u) in Ay,
computes X, ~Q, (X, ) which is the coset shift of x, | with
respect to A,, and t index corresponding to this coset shift.

The nested quantizer decoder receives the index, gener-
ates X,,,—Q, (X, ) from the index, forms

W:xQ/\l_Q/\z(xQ/\l)_”_ay

and reconstructs x as X=y+a(w-Q, (W)) using linear com-
bination and dithering in estimation.

It is shown in [18] that the Wyner-Ziv R-D function
D"%(R)=0,,,°272% is achievable with infinite dimensional
nested lattice quantization for quadratic Gaussian case. In
this paper, we analyze the high-rate performance of low-
dimensional nested lattice quantization, which is of more
practical interest as high-dimensional nested lattice quanti-
zation is too complex to implement, for both general and
Gaussian sources.

Our analysis is based on the high-resolution assumption,
which means 1) V, is small enough so that the PDF of

Dy = fR 7wl - P

15

25

veA( /Ay j=—co

o0
Z fxeRj(v)

vEA[/Ay j=—o0

Y S
xeRj(v)

veA /Ay j=

(@)

—ca

veA( /Ay j=—co

(b)

VEA[/Ay j=oo

(c)

;=
<GV + Z

J=—eaven] /Ay

20
This simplified nested lattice quantization scheme for high
rate is shown in FIG. 8 and was also used in [3].

A. High Rate Performance for General Sources with Arbi-
trary Distribution

Theorem 4.1: If a pair of n-D nested lattices (A,A,) with
nesting ratio N=V,/V | is used for nested lattice quantization,
the distortion per dimension in Wyner-Ziv coding of X with
side information Y at high rate is

1 15
Dy = GAOV™ + ~ Ez[IQn, (2] (1

The notation |ja|| denotes the length (or norm) of the vector
a.

Proof: Since

® (16)

R" = U U Ri(v),

J=—co veA /Ay

the average distortion for a given realization of the side
information Y=y is

an

> f Pyl 2017 dx
xeRj(v)

FD)llx = ;) +¢;0) = 2 dx

a2
e = ¢ ;I + lle; () = &l

+2 <x—=c;j(), c;(v) =%, >
Flemly) f e — ;001 dx +
xeRj(v)
f FOdlles(v) = %P dx
xeRj(v)

Fle;mynGApYTE + f FEWIQ (e ;00) -

x € Rj(v)

On, (v =500 + O, (c;0IP dx

f FENIQA = P dx
xeRj(v)

2
= RG] + f FOICN, (- VI dx,
xeR?

X,f(x), is approximately constant over each Voronoi cell of
A, and 2) dithering can be ignored. With the high-rate
assumption, o~1 and the encoder/decoder described above
simplifies as follows:
The encoder quantizes x to .XQM:Q A(X), computes
Y%(QM—Q r.(Xp,,)> and transmits an index correspond-
ing to the coset leader v.
Upon receiving v, the decoder forms w=v-y and recon-
structs X as X, =y+w-Q, (W)=v+Q, (y-v).

60

65

where (a) comes from the high rate assumption and

~ 18
f <x—c;j(v),c;(V) =X, > dx=0. (18)
xeRj(v)
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The latter is due to the fact that x—c/(v) is odd spherical
symmetric for xR (v) and both ¢,(v) and X, are fixed for
XER,(v) with given v and y. (b) is due to ¢,(v)=Q, (x) for
xER,(v), and

2,26V =Oa)(GON+0 8, =6 ()+0n,(¢(V); (19

and (c) is due to

Op @+ 0, (0))=04,(@)+04,(b), Va,bER" 0)

and the high resolution assumption.
Therefore, the average distortion per dimension over all
realizations of Y is

1 @n
Dy = —Ey[D(y)]

, = —
n

1
= GApV" + ~ f f fa Q- dxdy
Xy
1
= GApV" + ~ f i{e) f F@NQn, @I dzdy
y z

1
= GADVE" + ~Ez[lIQn, (I]

Remarks: There are several interesting facts about this

rate-distortion function.

1) For a fixed pair of the nested lattices (A,A,), D, only
depends on Z, i.e., the correlation between X and Y. D,, is
independent of the marginal distribution of X (or Y).

2) The first term, G(A,)V,**, in the expression for D, is due
to lattice quantization in source coding. It is determined
by the geometric structure and the Voronoi cell volume V,
of lattice A;. The second term, l/nEZ[”QAZ(Z)”z]s is the
loss due to nesting (or the channel coding component of
the nested lattice code). The second term depends on
Voronoi cell volume V, and the distribution of Z. From
another point of view, the first term is the granular
component MSE, with respect to the granular lattice A,
and the second term is the overload component MSE_,
with respect to the lattice A, of the nested quantizer.
MSE=G(A,)V,*" is the same as the granular MSE for

non-nested lattice quantizer [19].
Corollary 4.1: For the quadratic case, D, —D;,~0y, ;72" %
as n—>00.

Proof Since the nested lattice quantizer is a fixed-rate
quantizer with the rate

1 V. 22
R= —log(—z), then (21) can be rewritten as @
n V1

. 1
Dy = GADV" 2 + - E7llIOn, @IF]

For the quadratic Gaussian case, according to equation
(3.14) of [18],

1 1 , @3)
—log(V2) = 510g(27reo'z)
n

when n is sufficiently large, where o,*=0,,,” is the variance
of the AWGN Z. Then
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1 24
GADVF"2 2R S ﬁzmo—%z*” @

T

= Dyyz.

At the same time, according to equation (3.12) of [18],
P_=Pr{Z@K,} <e, with any >0 and sufficiently large n, hence
l/nEZ[HQAZ(Z)Hz]QO as n—oo. Consequently, the perfor-
mance becomes

1 25
D, = GADV" 2 ¢ ~Ez[ICn, @] @)

—2R
- oxy2 ™ =Duz

as n—oo, for the quadratic Gaussian case. This limit agrees
with the statement in [18], which claims that the nested
lattice quantization can achieve the Wyner-Ziv limit asymp-
totically as the dimensionality goes to infinity.

B. A Lower Bound of the Performance for Quadratic Case

The source-coding-loss in (21) has an explicit form, while
the channel-coding loss is not so directly expressed. Among
all the possible patterns of the additive channels, AWGN is
of most interest. In such case Z is a Gaussian variable with
zero mean and variance 0,°=0y,,”. From Theorem 4.1, we
obtain a lower bound of the high-rate R-D performance of
low-dimensional nested lattice quantizers for Wyner-Ziv
coding, when Z is Gaussian, stated as the following corol-
lary.

Corollary 4.2: For X=Y+Z, Y~N(0,0,?) and Z~N(0,0,?), the
R-D performance of Wyner-Ziv coding for X with side
information Y using n-D nested lattice quantizers is lower-
bounded at high rate by

D,(R) = Dy(R) = min 6,(R), (26)
Va>0
where
o 202m( 7 2/n 7N
T I [JZVZ 5 +1) ]
Su(R) = GV "2+ = B (2] =Dy —————|,
n 2rog
=
Y, 1s the n-D Hermite’s constant [13], [26], and u(t) is
defined in [26] as
P I ! £ 29
[ +ﬂ+ﬁ+ +(f_1), i 17 1S even
u() = 2
. 2 <l S -
e 1+(1/2)!+(3/2)!+...+(E_1)! if n is odd
2

Specifically, when n=1, the best possible high rate per-
formance is
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Dy(R) = mn{G1V222R+VZZ(2/+1)Q( ( %]]} >

=0

where

(B0

r ’2/sz

Proof: 1) Rate Computation: Note that the nested lattice
quantizer is a fixed rate quantizer with rate

o =

2) Distortion computation: Define

. , (3D
L= min -],
VLY €y, bl
and
P(L) = Pr(Z|| > L). (32)

For the 1-D (scalar) case, P, can be expressed in terms of
the Q function and E||Q AZ(Z)Hz] simplifies to [27]

21_ y2 N Vo, l 33
B0 @IF) = Vi), 0+ no(2(i+3))
For the n-D (with n>1) case, note that [28]
L=y (M)A, (34
and
105, ZIEP~lz-On,@IP 2 [2IP-L7, ¢35

where y(A,) is the Hermite’s constant of lattice A, [13], [26].
Then we get

3 (36)
i@ =) [ F@IQn @I dz
—1 Y (U-Dip<lidl=jLy
z F@II? - Ld
JZ::‘ ((-DLp<llzll<jLy R fodz
=) f F@NG =121 - 1dz
=1 Y (U=Dlp<lidl=jLy
= D (= D3 = LDIPAG — DL2) - P2Ly)]
J=1
=) (2= DIHPAL,)
J=1
2 2
< o) | PVET(S 1)
=Z[<2j—1>y</\z>v2"]n — |
2noz
J=1
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where

l"(t):ru”le’"du
0

is Euler’s gamma function, and P,() is defined in [26] as the
symbol error probability under maximum likelihood decod-
ing while transmitting the lattice points over an AWGN
channel. A lower bound of P_(-) was also given in [26] as
P (H)=u(t)

Then Theorem 4.1 and (36) give

. L

s 2 1§ (2 1 ] JVZF(§+1)
D, 28, =G, V{" + = — Dy ] ——=—"|.

[ - @2j=DynV3 gy
=)
Using
V2
R—_Ing(Vl),

we eliminate V, in D, and obtain a lower bound on D,,(R) as

Du(R)=D,(R) = rmn(S R), (38)
where
2 2 39
= PVET(S + 1)
8u(R) = G, VIR 4 —Z((zj'— Dy V3 ——2 |
nL 2nos

FIG. 9 shows 0,(R) with different V,’s using nested A,
lattices (i.e., hexagonal lattices) in 2-D with 0,°=0.01. The
lower bound D,(R) is the lower convex hull of all opera-
tional R-D points with different V,, as shown in FIG. 10. We
observe from FIG. 10 that the gap from D,(R) to D;,(R) in
dBs keeps increasing as the rate increases with 0,°=0.01.
This increasing gap comes from the fact that, the granular
MSE component

1 y2in-2R

MSE, = G,V{" = =y,

1 V.
12y, ( 2)

is away from the benchmark 27*%
V, increases, where

with an increasing gap as

Q|5| —_

B

is the granular gain [19] of lattice A, and
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1
R = —logN,
n

N is the nesting ratio, as shown in FIG. 11.

FIG. 12 plots D,,(R) for n=1, 2, 4, 8 and 24 with 0,,>=0.01.
We see that D, (R) gets closer and closer to the Wyner-Ziv
R-D function D, 4(R)=0,,,°27>% as n goes to infinity.

C. Discussion of the Correlation-Asymptotical Property
As to the asymptotical property of the nested-lattice

quantization for Wyner-Ziv coding, we have the following

statement. Here asymptotical means that the correlation

E[XY]

" Vg

between the source X and the side information Y goes to 1
asymptotically. If we fix o, then the asymptotical perfor-
mance is the one when o,°—0.

Corollary 4.3: The distortion of the nested lattice quantiza-
tion maintains a constant gap (in dB) to the Wyner-Ziv
bound for all 0<o,<I.

Proof. Denote s=V,>”,

P+ 1)2/"

T
2wy

5, and A = r(g + 1)2/".

From Corollary 4.1, we get

S @)
5= G2 4+ 1 ()= Dottt
=

Fix rate R and dimensionality n (without loss of generality,
assume n is even), and minimize § with respect to s,

s e I 1Sy du(r) “4D
&= =0 LI i+ Py vy

J=1

where

du L f ot “2)
F7aiaia +ﬁ+...+(f_1)v +
5 !
’[1+ ! +.o+ A ] ! A
[ — —e
1 o T
-24  (3-Y)
then
ds 43)
5 =

G2 4 2 (2]~ Lyu(t) - EZ [(2/' - Dyute™
n = n

=1

[(n/2)71 ]
o
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Set

ds
ds

and denote the optimal s as s, and denote the corresponding
tas

j A

0= 350
2r oy

we get

= 4
G224 =% (2] - Lyutio) =
n =

o

1 [(n/Z),l
;Z[a;— Dyatoe ™ ™ 1)1],

J=1 2

hence

= 43)
8" = Guso2 2R+ =" (2= Liyasoulty)
n =

I RS

- i 00
; E [(21 Dynsotoe (f - 1)']

5 !

J=1

1IN s
—;Z(/‘ )y”jzA

J=1

From (45) one can see that the optimal t, only depends on
the rate R and the dimensionality n. The optimal t, stays
unchanged with different o, thus the optimized distortion
d* is a linear function of 0., denoted as D=3*=B(R,n)a,>.
Since the Wyner-Ziv bound is D,,,=0,°272%, the gap (in
terms of dB) from the practical optimized distortion D to
Wyner-Ziv bound D, with fixed R and n is

B(R, n)

D (46)
AD = 1010g10D_WZ = 1010%102,T

which stays constant for all o,”<l.

This result verifies our simulation results which show that
the distortion of the nested lattice quantizer does NOT
approach the Wyner-Ziv bound as the correlation between
the source and the side information goes to 1 asymptotically.

Slepian-Wolf Coded Nested Lattice Quantization (SWC-
NQ)

In this section, we evaluate the boundary gain of the
source coding component of nested lattice quantization.
Motivated by this evaluation, we introduce SWC-NQ and
analyze its performance.

A. Motivation of SWC-NQ

From Theorem 4.1, the distortion per dimension of the
nested lattice quantizer is D,=MSE+MSE,, where
MSE+=G(A,)V,>" is the granular component of the distor-
tion, characterized by the granular gain
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1/12

?’g(/\l) = m,

while

MSEy = ~E[l10n, DIP)

is the overload component of the distortion, characterized by
the boundary gain y,(A,). The boundary gain y,(A,) is
defined in [19] as follows. Suppose that A, is the boundary
(coarse) lattice with its Voronoi region as the n-dimensional
support region, and it has the same overload probability as
a cubic support region of size M centered at the origin. The
boundary gain is then defined as the ratio of the normalized
volume (aM)? of the cubic support region to the normalized
volume V,?”, as

(aM)? 47)
Yo(A2) = W
Since
MSE, = GA V" 48)
1 Ny
E—— el
127g(/\1)
B 1 aM 3n
T 12y,(A) Ye(A)

If the nesting ratio N stays constant (i.e., the codebook size
N stays constant), then MSE, will be reduced by a factor of
v»(A5), without affecting MSE _, because the overload prob-
ability stays unchanged.

To increase the boundary gain y,(A,), a second-stage of
binning can be applied to the quantization indices. The
essence of binning is a channel code which partitions the
support region into several cosets. Assuming the channel
code is strong enough so that there is no extra overload
probability introduced (i.e., it is lossless coding for the
indices without decoding error), and the channel code par-
titions the support region K, into m cosets, with the set
composed of the coset leaders denoted as S, then #(S)y=m
and S is the support region for the quantization indices and
hence the support region for the nested quantization, with
Vol(S)=(m/N)V,<V,. Then the effective volume of the sup-
port region decreases by a factor of the coset size after the
second stage of binning, and therefore, the boundary gain
v»(A,) increases. The notation “#(A)” denotes the cardinality
of (i.e., the number of elements in) the set A.

We thus propose a framework for Wyner-Ziv coding of
ii.d. sources based on SWC-NQ, which involves nested
quantization (NQ) and Slepian-Wolf coding (SWC). The
SWC operates as the second binning scheme. Despite the
fact that there is almost no correlation among the nested
quantization indices that identify the coset leaders vEA /A,
of the pair of nested lattices (A, A,), there still remains
correlation between v and the side information Y. Ideal SWC
can be used to compress v to the rate of R=H(vlY). State-
of-the-art channel codes, such as LDPC codes, can be used
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to approach the Slepian-Wolf limit H(vIY) [29]. The role of
SWC in SWC-NQ is to exploit the correlation between v and
Y for further compression.

B. Uniform High Rate Performance

Let’s evaluate the high rate performance for the quadratic
Gaussian case first. For this case, a lower bound for the
high-rate performance of SWC-NQ with a pair of arbitrary
nested lattices (A,A,) is given as

Da(R) 2 G(A )2 (XA2)gd 0-2R o (49
. 2vz/"r( + 1)
Z Q= Dy Vi ———=——
2wy
where
(50)

h/(X,/\z)s—f Rnf(x)log [Z (

¢ (0)]
TX|y

F(*) is the PDF of an n-D i.i.d. Gaussian source with 0 mean
and unit variance, u(t) is defined in (28), and ¢,(0) is defined
above (in the section entitled “Lattices and Nested Lat-
tices”), as the lattice points of A,.

Proof The proof to this lower bound is provided later.

For example, the lower bounds of D(R) for the 1-D case
with different V, are plotted in FIG. 13.

FIG. 13 gives us a hint that, intuitively, the best R-D
function of SWC-NQ is the R-D function as if the side
information were also available at the encoder, and main-
tains a constant gap of 2meG,, from the Wyner-Ziv limit in
dB. Here the best means that, for a given distortion D, the
minimal achievable rate R over all possible V,, or equiva-
lently, the minimal achievable distortion D over all possible
V, for a given rate R. This claim is stated and proved as
follows. Let’s start with the following lemma and then prove
the main theorem.

Lemma 5.1: For nested lattice quantization, denote W=Q
X), and V=W-Q,,, (W). At high rate, H(V/Y)=H(WIY).

Proof: The proof is provided later.

Theorem 5.2: The optimal R-D performance of SWC-NQ
for general sources using low-dimensional nested lattices for
Wyner-Ziv coding at high rate is

D, (R) = minD(R) = G2 XN p=2R &1y
2

Proof 1) When V,—/, Q4 (Q,,(X))=0 and Q, (2)=0, then

AR = H(Y|Y) = H(Qa, (X) = Oa, (Qp, IY) 52)
= H(Qx, (X))

=h(X|Y) - log(V1)
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and D,,(R)=G,V,?”. Combine R and D, through V| and we
get the R-D function as

D, R}y, =G, 200y 2R, (53)

Since

Di(R) = rr‘}inD (R) = Dp(R)y, 0, then (54)
2

Di(R) < Gn2(2/n)h(X\Y)2—2R
M = .

2) Denote w=Q,, (x), and S,={(x,%):E[d(x,X)]=D}. The rate
of Wyner-Ziv coding with respect to a given distortion D is

(1]

nR* (D) = min I(X;V|Y), (55)
P)LPEIV,Y)(GRES]
@ min H(V|Y)
PV),PEIV,Y) (xRS
14 min H(W|Y)
pV),pEIv,y),(x2ES]

where (a) comes from H(VIX,Y)=0 and (b) comes from
Lemma 5.1.

Define S,={(x,%):E[d(x,w)|£D}. From Theorem 4.1,

1 56
Eld(x, 9] = GV + - EllQn, @) 0
1
= E[d(x, W] + - [0, ("] =
Eld(x, w)]
Then V(x.X)ES,,
DZE[d(x,£)|ZE[d(x,w)], (57
it means that (x,X)ES,.
Then S, =8, and
nR* (D) ~ min HW|Y) = min H(W|Y). (58)
pv),pElv, y)(x2)es] pv),pEIv, y)x3)esy

Since H(WIY)=h(XIY)-log(V,) and E[d(xX)IY]=G,,V,*",
R*(D) can be calculated using Lagrangian method, as

. n D (59)
nR (D) = min HWIY) = h(X|Y) - —1og(—).
POLPEY)LES) 270G,
Then
D*R)ZG,2 M2k, (60)

From (54) and (60), it is proved that, at high rate, the best
R-D function of SWC-NQ using low-dimensional lattices is

D*(R)=G,2@MhX =2k (61)
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Corollary 5.4: The optimal R-D performance of quadratic
Gaussian SWC-NQ using low-dimensional nested lattices at
high rate is

D* (R)=27eG,, 0y 72 2R, (62)
We thus conclude that at high rates, SWC-NQ performs the
same as the traditional entropy-constrained lattice quantiza-
tion with the side information available at both the encoder
and decoder. Specifically, the R-D functions with 1-D (sca-
lar) lattice and 2-D (hexagonal) lattice are 1.53 dB and 1.36
dB away from the Wyner-Ziv bound, respectively.

Remarks: We found that for finite rate R and small n (e.g.,
n=1 and 2), the optimal V,, denoted as V*,, that minimizes
the distortion D,(R) is also finite. FIGS. 14(a) and () plot
the optimal V*, (scaled by 0,) as a function of R for the 1-D
(n=1) and 2-D (n=2) case. We see that as R goes to infinity,
V*, also goes to infinity. We also observe that for fixed R
and n, D,(R) stays roughly constant for V,>V*,.

Code Design and Simulation Results

In this section, the optimal decoder for nested quantizer at
low rate is introduced, and the issue of code design is also
discussed, along with simulation results.

A. The Optimal Decoder for Nested Quantizer at Low Rate

The optimal estimator for the decoder corresponding to
the nested quantizer should minimize the distortion between
X and the reconstructed X. If mean squared error (MSE) is
used as the distortion measure, X will be E[XIX, j,y], where
j 1s the received bin index corresponding to the coset leader
V=g, ~Qa, (Xg,,) Let Y and Z be independent zero mean
Gaussian random variables with variances o,? and 0,2, then
we have Xly~N(y,0,7).

When n=1, the optimal decoder for nested quantizer can
be derived directly from E[X]j,y] as

= (63)

1 Z e (=P
xexp| — dx.
Ny

2
20%

.y = .
Jq+n

where q and Q are the uniform intervals of the two nested
lattices used by the scalar quantizer, with Q/q=N, where N
is the nesting ratio. At high rates, the rate distortion perfor-
mance using this non-linear estimation matches our analysis
in (29); at low rate, such estimation method helps to boost
the performance.

When n>1, the optimal decoder for the nested quantizer is
stated as follows.

Theorem 6.3: The optimal decoder for the nested quantizer
in the sense of MSE is

64
[ woinas 9
R(v)

i=Elxly, jl= .
&= Ely, T oas

Proof':
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-continued

% =Elxy, j] 65)

- f F oy, pdx
.

xf (x jly) dx
P(jly)

IECYEE
PO
[ ooz s
Jowf Gy

_Rn

Note that j, X, y form a Markov chain as y«——sx<——j, then
and we get

P Pl = 0 if x & R(v) (66)
(Jlx, y) = P(jlx) —{1 i xe R(V)},
67
fxf<x|y>P<j|x>a¢x 60
y=cf
Sew S @lydx
f f (x| ydx
_ R(v) )
Jow S @lydx

Estimation at the decoder plays an important role for
low-rate implementation. We thus apply an optimal non-
linear estimator at the decoder at low rates in our simula-
tions.

Corollary 6.5: The optimal estimator stated in Theorem
6.3 degenerates to the linear one X=v+Q ,,(y-v) at high rates
as we discussed above in the section entitled “Nested Lattice
Quantization” and in the section entitled “Slepian-Wolf
Coded Nested Lattice Quantization”.

Proof: At high rate,

63
[ i ©®
R(v)
Jow S @lydx

S [ st i
_ =V R

x=

3 fyf (10

o

ZC"(”f £ Gelydx
Ri(v)

(@) i=o0

3 ff (10

V+Q/\2(y_v)f f(xlydx
K(V+QA2 (-v)

®)

fK(WQAZ(y,V)Jf (x| ydx

= v+ Qn (- )
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which is the linear estimator, discussed above in the section
entitled “Nested Lattice Quantization” and in the section
entitled “Slepian-Wolf Coded Nested Lattice Quantization”,
for high rate performance. Steps (a) and (b) of (68) come
from the high rate assumption.

Since the non-linear estimation is a definite integral of a
simple function over a disconnected region which includes
many isolated Voronoi cells, we choose the Monte Carlo
method to do this integral. In one simulation, for each
scaling factor, there are totally 10*x10*=108 pairs of {x,y}
to be simulated, and for each pair of {x,y}, there are 10*
samples to calculate this definite integral.

FIG. 15 shows the improvement gained by using the
optimal (non-linear) estimator at low rates, for n=2 and
0,°=0.01.

B. Code Design of LDPC Codes

Let J (0=J=N-1) denote the index of the coset leader v. The
index J is coded using Slepian-Wolf codes with Y as the side
information. Instead of coding ] as a whole, we code J
bit-by-bit using multi-layer Slepian-Wolf coding as follows.

Assume J=(B,B,,_, ... B;B,),, where B,, is the most
significant bit (MSB) of J, and B, is the least significant bit
(LSB). A block of the indices may be collected. The first B,
(i.e., a block of the first bits from the block of indices) is
encoded at rate R,=H(B,IY) using a Slepian-Wolf code
designed under the assumption that the corresponding
decoder has only Y as side information; then the second bit
B, (i.e., a block of the second bits from the block of indices)
is encoded at rate R,=H(B,IY,B, ) using a Slepian-Wolf code
designed under the assumption that the corresponding
decoder has only Y and B, as side information; . . . ; finally,
the last bit B,, (i.e., a block of the last bits from the block of
indices) is encoded at rate R,=H(B,,IY, B;,B,, . .., B,,_)
with a Slepian-Wolf code designed under the assumption
that the corresponding decoder has side information {Y, B,
B,, ..., B,_;}. Hence the total rate of the Slepian-Wolf
code is H(JIY)=H(vIY).

Practically, strong channel codes such as LDPC or Turbo
codes are applied as Slepian-Wolf codes. The first step in
designing is to determine the rate of the channel code to be
used. Since R,, is equivalent to the amount of syndromes to
be sent per bit, the channel code rate is 1-R,,. Thus the
optimum rate at the n” layer that achieves Slepian-Wolf
bound is 1-HB,IY, B,, . . . , B,.;). This multi-layer
Slepian-Wolf coding scheme is shown in FIG. 16.

As shown in FIG. 16, one embodiment of an SWC-NQ
encoder includes a nested lattice quantization unit 1610 and
a set of Slepian-Wolf encoder SWE,, SWE,, .. ., SWE_.
The nested quantization unit 1610 operates on a value of the
input source X and generates the bits B, B,, ..., B,,_;, B,,
of the index J as described above. The nested quantization
unit does this operation repeatedly on successive values of
the input source, and thus, generates a stream of indices.
Each of the Slepian-Wolf encoders SWE,, n=1,2, ..., m,
collects a block of the B, bits from the stream of indices and
encodes this block, thereby generating an encoded block T,,.
The encoded blocks T, T,, ..., T,, are sent to an SWC-NQ
decoder.

As shown, one embodiment of the SWC-NQ decoder
includes a set of Slepian-Wolf decoders SWD,,
SWD,, ..., SWD,, and a nested quantization decoder 1620.
Each Slepian-Wolf decoder SWD,, n=1, 2, . . ., m, decodes
the compressed block T, to recover the corresponding block
of B, bits. As noted above, decoder SWD, uses side infor-
mation {Y, B;,B,, . . . ,B,.;}. The nested quantization
decoder 1620 operates on the blocks generated by the
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decoders using a block of the Y values, as described above,
to compute a block of estimated values of the source.

C. Simulation Results

We carry out 1-D nested lattice quantizer design for
different sources with 10° samples of X in each case. For
o,”=1 and 0,°=0.01, FIG. 17 shows results with nested
lattice quantization alone and SWC-NQ. The former exhib-
its 2 3.95-9.60 dB gap from D, (R) for R in the range from
1.0 to 7.0 bits/sample (b/s), which agree with the high rate
lower bound of Theorem 1. At high rate, we observe that the
gap between our results with ideal SWC (i.e., rate computed
as H(JIY) in the simulation) and D;,(R) is indeed 1.53 dB.
With practical SWC based on irregular LDPC codes of
length 10° bits, this gap is 1.66-1.80 dB for R in the range
from 0.93 to 5.00 br/s.

For 2-D nested lattice quantization, we use the A, hex-
agonal lattices again with o,”=1 and o,>=0.01. FIG. 18
shows results with nested lattice quantization alone and
SWC-NQ. At high rate, the former case exhibits a 4.06-8.48
dB gap from D, (R) for R=1.40-5.00 b/s, again in agree-
ment with the high rate lower bound of Theorem 1. We
observe that the gap between our results with ideal SWC
(measured in the simulation) and D, (R) is 1.36 dB. With
practical SWC based on irregular LDPC codes (of length
10 bits), this gap is 1.67-1.72 dB for R=0.95-2.45 b/s.

We thus see that using optimal estimation as described
herein, our simulation results with either 1-D or 2-D nested
quantization (and practical Slepian-Wolf coding) are almost
a constant gap away from the Wyner-Ziv limit for a wide
range of rates.

In this paper, the high-rate R-D performance of the nested
lattice quantization for the Wyner-Ziv coding is analyzed,
with low dimensional lattice codes. The performance is
away from the Wyner-Ziv bound with each specific lattice
code, and exhibits an increasing gap from the Wyner-Ziv
bound as the rate increases. The reason for the increase of
the gap mainly comes from the fact that the granular
component of the distortion is an increasing function of the
rate. Therefore the Slepian-Wolf coding, as a second-layer
binning scheme, is applied to the quantization indices for
further compression. This Slepian-Wolf coded nested lattice
quantization (SWC-NQ) performs at a constant gap from the
Wyner-Ziv bound at high rates, and the constant gap is the
same as the one from ECVQ (entropy coded vector quan-
tization) to the ideal R-D function of source coding without
the side information. Moreover, a non-linear estimator for
the decoder is introduced, and proved to be optimal in the
sense of the MSE measurement. This non-linear estimator
helps at low-rates, and degrades to the linear one which is
assumed in the theoretical analyses in this paper. Simulation
results for 1-D and 2-D cases are in agreement with the
theoretical analysis.

Proof of Lower Bound (49)

Proof to establish the lower bound for the performance of
quadratic Gaussian SWC-NQ.

1) Rate Computation:
The rate for SWC-NQ is:

R= lH(v| Y). 69
n
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Since at high rate,
> (70)
HUNEDY f Far(odx
3 xeRj(v)

o

= Z f Fxiy(x+c;(0)dx
xeRp(v)

=0

~ Z fxy(v+¢;(O) Vy

Jj=—c0

=gV,
where

gw= ) fay+ei0),and X1¥ ~N (O, ).

—
Then the achievable rate of SWC-NQ is

nR=H{|Y)

== >, POINlogPr|Y)]

veA /Ay

= > POINloglgm Vi

veAp /Ay

=N

VEA[/Ay j=—o0

Sxy(x +c;(0)dxlogyg (v) —log, Vi

o

::—Z Z fR Sxy(x +c;(0)]og, g (x)dx —log, Vi
xERp(v)

Jm—oveA /Ay

2. f Frr(@)logyg (1) dx —log, Vi
xeR?

where (a) comes from the periodic property of g(°), i.e.,
g(x-1)=g(x),¥1EA,. Thus the achievable rate of SWC-NQ is

nR=HWIY)=h(X,Ay)+log, Oy y'—log, V. (71)

2) Distortion Computation: From Theorem 4.1, the average
distortion of nested lattice quantization over all realiza-
tions of (X,Y) is

1 72
Dy = GOV + = E7lllQn, (IF] 2 G (A1) V™ + "

2/n
= y jzvf/"r(gu)
- 2j— Dy VEy| ———2 |
nZ(( J=DyaVa ) u pre)
=

Because SWC is lossless, the distortion of SWC-NQ is also
D,,. Combining D, and R through V,, we obtain the R-D
performance of SWC-NQ with a pair of n-D nested lattices
(ALA,) as

Dy(R) = G (Ay) 22 (XA2) g3 072k o a3

o0 . e (T 2/n
. i PV (S +1) ]
- i— WVl N T
5 E ((2j=DypVy u gy
J=1
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Proof of Lemma 5.1
This proof closely follows the remark 3) of [1] page 3,
with some slight modifications. Let

6 = mind (w, X)y > 0.
Wit

Here 9 is actually the minimum of the distance between two
lattice points of A,. Thus if (x,X)ES,,

N=Pr{We X} <Efd(W X)) <(E[dWI)1+Efd(X,
X1/ (74)

where (a) comes from the triangle inequality. From Theorem

El

D=E[d(X,X)|=MSE+MSE,,

where MSE_=E[d(W,X)] is the granular component and
MSE is the overload component, then

AZ2DA. (75)

Now since X is a function of V, Y, Fano’s inequality [30],
[31] implies that

H(W|V,Y) < -Alogh— (1 —M)log(l —A) + Alog (|W]) = & (A), (76)

so that

H(V|Y)z[(W;V|Y)= (7

2D
HWI|Y)—HW|V, Y)zH(WlY)—s(T].

Meanwhile, from data processing rule, we have H(VIY)=H
(WIY). At high rate, D—0, and

Thus at high rate, H(VIY) H(WIY).

This claim is also verified intuitively by FIG. 13, where
the slant part of each curve which corresponds to the R-D
performance with a fixed V,, or d, approximately maintains
a constant slope.

It is noted that any or all of the method embodiments
described herein may be implemented in terms of program
instructions executable by one or more processors. The
program instructions (or subsets thereof) may be stored
and/or transmitted on any of various carrier media. Further-
more, the data generated by any or all of the method
embodiments described herein may be stored and/or trans-
mitted on any of various carrier media.

Although the embodiments above have been described in
considerable detail, numerous variations and modifications
will become apparent to those skilled in the art once the
above disclosure is fully appreciated. It is intended that the
following claims be interpreted to embrace all such varia-
tions and modifications.

What is claimed is:

1. A method comprising:

(a) receiving compressed input data, wherein the com-
pressed input data is a compressed representation of a
block of samples of a first source X;
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(b) receiving a block of samples of a second source Y;

(c) applying an asymmetric Slepian-Wolf decoder to the
compressed input data using the block of samples of the
second source Y, wherein said applying generates a
block of intermediate values; and

(d) performing joint decoding on each intermediate value

and a corresponding sample of the block of second
source samples to obtain a corresponding decom-
pressed output value, wherein said performing joint
decoding includes determining an estimate of a cen-
troid of a function restricted to a region of space
corresponding to the intermediate value, wherein said
estimate determines the decompressed output value.

2. The method of claim 1, wherein the function is the
conditional probability density function of the first source X
given said corresponding sample of the second source block.

3. The method of claim 1, wherein the region of space is
a union of cells corresponding to a coset of a coarse lattice
in a fine lattice, wherein the coset is identified by the
intermediate value.

4. The method of claim 1, wherein said determining the
centroid estimate is performed by reading the centroid
estimate from a table stored in memory using said corre-
sponding sample of the second source block and the inter-
mediate value as addresses.

5. The method of claim 1, wherein said determining the
centroid estimate comprises performing a Monte Carlo
iterative simulation.

6. The method of claim 1, wherein the intermediate values
specify cosets of a coarse lattice in a fine lattice, wherein the
coarse lattice is a sublattice of the fine lattice.

7. The method of claim 1, wherein (a) and (b) are
performed in parallel.

8. The method of claim 1, wherein said asymmetric
Slepian-Wolf decoder is a multi-layered decoder.

9. The method of claim 1, wherein the asymmetric
Slepian-Wolf decoder achieves a decoding rate that
approaches close to the limit for Slepian-Wolf coding,
wherein the decompressed output value is digital data.

10. The method of claim 1, wherein said applying the
asymmetric Slepian-Wolf decoder and said performing joint
decoding are realized by any subset of:

(a) one or more processors executing program instruc-

tions;

(b) one or more programmable hardware elements; and

(c) dedicated circuitry.

11. The method of claim 1, wherein the asymmetric
Slepian-Wolf decoder is an iterative decoder based on one or
more LDPC codes.

12. The method of claim 1, wherein the asymmetric
Slepian-Wolf decoder is an iterative decoder based on one or
more turbo codes.

13. A method for computing a table representing a nested
quantization decoder, the method comprising:

(a) computing a realization z of a first random vector;

(b) computing a realization y of a second random vector;

(c) adding z and y to determine a realization X of a source

vector;

(d) quantizing the realization X to a point in a fine lattice;

(e) computing an index J identifying a coset of a coarse

lattice in the fine lattice based on the fine lattice point;

() adding the realization x to a cumulative sum corre-

sponding to the index J and the realization y;
(g) incrementing a count value corresponding to the index
J and the realization y;

(h) repeating operations (a) through (g) a number of

times;
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(1) dividing the cumulative sums by their corresponding

count values to obtain resultant values; and

(j) storing the resultant values in a memory medium.

14. A system for decoding compressed data, the system
comprising:

a memory configured to store data and program instruc-

tions; and

a processor configured to read and execute the program

instructions from the memory, wherein in response to

execution of the program instructions, the processor is
operable to:

(a) receive compressed input data, wherein the com-
pressed input data is a compressed representation of
a block of samples of a first source X;

(b) receive a block of samples of a second source Y;

(c) apply an asymmetric Slepian-Wolf decoder to the
compressed input data using the block of samples of
the second source Y, wherein said applying generates
a block of intermediate values; and

(d) perform joint decoding on each intermediate value
and a corresponding sample of the block of second
source samples to obtain a corresponding decom-
pressed output value, wherein said performing joint
decoding includes determining an estimate of a cen-
troid of a function restricted to a region of space
corresponding to the intermediate value, wherein
said estimate determines the decompressed output
value.

15. The system of claim 14, wherein the function is the
conditional probability density function of the first source X
given said corresponding sample of the second source block.

16. The system of claim 14, wherein the asymmetric
Slepian-Wolf decoder achieves a decoding rate that
approaches close to the limit for Slepian-Wolf coding,
wherein the decompressed output value is digital data.

17. The system of claim 14, wherein the asymmetric
Slepian-Wolf decoder is an iterative decoder based on one or
more LDPC codes.

18. The system of claim 14, wherein the asymmetric
Slepian-Wolf decoder is an iterative decoder based on one or
more turbo codes.

19. A system for computing a table representing a nested
quantization decoder, the system comprising:

a memory configured to store data and program instruc-

tions; and

a processor configured to read and execute the program

instructions from the memory, wherein in response to

execution of the program instructions, the processor is
operable to:

(a) computing a realization z of a first random vector;

(b) computing a realization y of a second random
vector;

(c) adding z and y to determine a realization x of a
source vector;

(d) quantizing the realization x to a point in a fine
lattice;

(e) computing an index J identifying a coset of a coarse
lattice in the fine lattice based on the fine lattice
point;

(f) adding the realization X to a cumulative sum cone-
sponding to the index J and the realization y;

(g) incrementing a count value corresponding to the
index J and the realization y;

(h) repeating operations (a) through (g) a number of
times;
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(1) dividing the cumulative sums by their conesponding
count values to obtain resultant values; and
(j) storing the resultant values in a memory medium.

20. A computer-readable memory medium configured to
store program instructions, wherein the program instructions
are executable to implement:

(a) receiving compressed input data, wherein the com-
pressed input data is a compressed representation of a
block of samples of a first source X;

(b) receiving a block of samples of a second source Y;

(c) applying an asymmetric Slepian-Woif decoder to the
compressed input data using the block of samples of the
second source Y, wherein said applying generates a
block of intermediate values; and

(d) performing joint decoding on each intermediate value
and a corresponding sample of the block of second
source samples to obtain a corresponding decom-
pressed output value, wherein said performing joint
decoding includes determining an estimate of a cen-
troid of a function restricted to a region of space
corresponding to the intermediate value, wherein said
estimate determines the decompressed output value.

21. The computer-readable memory medium of claim 20,
wherein the function is the conditional probability density
function of the first source X given said corresponding
sample of the second source block.

22. The memory medium of claim 20, wherein the asym-
metric Slepian-Wolf decoder achieves a decoding rate that
approaches close to the limit for Slepian-Wolf coding,
wherein the decompressed output value is digital data.

23. The memory medium of claim 20, wherein the asym-
metric Slepian-Wolf decoder is an iterative decoder based on
one or more LDPC codes.

24. The memory medium of claim 20, wherein the asym-
metric Slepian-Wolf decoder is an iterative decoder based on
one or more turbo codes.

25. A computer-readable memory medium configured to
store program instructions, wherein the program instructions
are executable to implement:

(a) computing a realization z of a first random vector;

(b) computing a realization y of a second random vector;

(c) adding z and y to determine a realization X of a source
vector;

(d) quantizing the realization X to a point in a fine lattice;

(e) computing an index J identifying a coset of a coarse
lattice in the fine lattice based on the fine lattice point;

() adding the realization x to a cumulative sum corre-
sponding to the index J and the realization y;

(g) incrementing a count value corresponding to the index
J and the realization y;

(h) repeating operations (a) through (g) a number of
times;

(1) dividing the cumulative sums by their corresponding
count values to obtain resultant values; and

(j) storing the resultant values in a memory medium.

26. A system comprising:

a first means for decompressing compressed input data
using side information, wherein the compressed input
data is a compressed representation of a block of
samples of a first source X, wherein the side informa-
tion is a block of samples of a second source Y, wherein
said applying generates a block of intermediate values;

a second means for performing joint decoding on each
intermediate value and a corresponding sample of the
block of second source samples to obtain a correspond-
ing decompressed output value, wherein said perform-
ing joint decoding includes determining an estimate of
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a centroid of a function restricted to a region of space
corresponding to the intermediate value, wherein said
estimate determines the decompressed output value.

27. A method comprising:

(a) receiving compressed input data, wherein the com-
pressed input data is a compressed representation of a
block of samples of a first source X;

(b) receiving a block of samples of a second source Y;

(c) applying an iterative decoder to the compressed input
data using the block of samples of the second source Y,
wherein said applying generates a block of intermediate
values, wherein the iterative decoder is based on one or
more low density parity check codes;

(d) performing joint decoding on each intermediate value
and a corresponding sample of the block of second
source samples to obtain a corresponding decom-
pressed output value, wherein said performing joint
decoding includes determining an estimate of a cen-
troid of a function restricted to a region of space
corresponding to the intermediate value, wherein said
estimate determines the decompressed output value.

28. A method comprising:

(a) receiving compressed input data, wherein the com-
pressed input data is a compressed representation of a
block of samples of a first source X;

(b) receiving a block of samples of a second source Y;

(c) applying an iterative decoder to the compressed input
data using the block of samples of the second source Y,
wherein said applying generates a block of intermediate
values, wherein the iterative decoder is based on one or
more turbo codes;

(d) performing joint decoding on each intermediate value
and a corresponding sample of the block of second
source samples to obtain a corresponding decom-
pressed output value, wherein said performing joint
decoding includes determining an estimate of a cen-
troid of a function restricted to a region of space
corresponding to the intermediate value, wherein said
estimate determines the decompressed output value.

29. A system for decoding compressed data, the system

comprising:

a memory configured to store data and program instruc-
tions; and

a processor configured to read and execute the program
instructions from the memory, wherein in response to
execution of the program instructions, the processor is
operable to:

(a) receive compressed input data, wherein the com-

pressed input data is a compressed representation of

a block of samples of a first source X;

(b) receive a block of samples of a second source Y;

(c) apply an iterative decoder to the compressed input
data using the block of samples of the second source
Y, wherein said applying generates a block of inter-
mediate values, wherein the iterative decoder is
based on one or more low density parity check
codes;

(d) perform joint decoding on each intermediate value
and a corresponding sample of the block of second
source samples to obtain a corresponding decom-
pressed output value, wherein said performing joint
decoding includes determining an estimate of a cen-
troid of a function restricted to a region of space
corresponding to the intermediate value, wherein
said estimate determines the decompressed output
value.

30. A system for decoding compressed data, the system
comprising:
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a memory configured to store data and program instruc-
tions; and

a processor configured to read and execute the program
instructions from the memory, wherein in response to
execution of the program instructions, the processor is
operable to:

(a) receive compressed input data, wherein the com-
pressed input data is a compressed representation of
a block of samples of a first source X;

(b) receive a block of samples of a second source Y;

(c) apply an iterative decoder to the compressed input
data using the block of samples of the second source
Y, wherein said applying generates a block of inter-
mediate values, wherein the iterative decoder is
based on one or more turbo codes;

(d) perform joint decoding on each intermediate value
and a corresponding sample of the block of second
source samples to obtain a corresponding decom-
pressed output value, wherein said performing joint
decoding includes determining an estimate of a cen-
troid of a function restricted to a region of space
corresponding to the intermediate value, wherein
said estimate determines the decompressed output
value.

31. A computer-readable memory medium configured to
store program instructions, wherein the program instructions

are executable to implement:

(a) receiving compressed input data, wherein the com-
pressed input data is a compressed representation of a
block of samples of a first source X;

(b) receiving a block of samples of a second source Y;

(c) applying an iterative decoder to the compressed input
data using the block of samples of the second source Y,
wherein said applying generates a block of intermediate
values, wherein the iterative decoder is based on one or
more low density parity check codes;

(d) performing joint decoding on each intermediate value
and a corresponding sample of the block of second
source samples to obtain a corresponding decom-
pressed output value, wherein said performing joint
decoding includes determining an estimate of a cen-
troid of a function restricted to a region of space
corresponding to the intermediate value, wherein said
estimate determines the decompressed output value.

32. A computer-readable memory medium configured to

store program instructions, wherein the program instructions
are executable to implement:

(a) receiving compressed input data, wherein the com-
pressed input data is a compressed representation of a
block of samples of a first source X;

(b) receiving a block of samples of a second source Y;

(c) applying an iterative decoder to the compressed input
data using the block of samples of the second source Y,
wherein said applying generates a block of intermediate
values, wherein the iterative decoder is based on one or
more turbo codes;

(d) performing joint decoding on each intermediate value
and a corresponding sample of the block of second
source samples to obtain a corresponding decom-
pressed output value, wherein said performing joint
decoding includes determining an estimate of a cen-
troid of a function restricted to a region of space
corresponding to the intermediate value, wherein said
estimate determines the decompressed output value.
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