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[57] ABSTRACT

The invention provides a pattern recognition processing
apparatus and a technique for realizing a neural network of
a complex structure within the processing apparatus. The
apparatus includes a neural network having two-
dimensional layers connected to form a feed-forward sys-
tolic array. Each two dimensional layer includes a feature
extraction layer connected with a positional error absorbing
layer. A host system provides inputs to the network. Each
layer within the network includes processing elements such
as a MOS analog circuit that receives input voltage signals
and provides output voltage signals.
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1
NEURAL NETWORK PROCESSOR
INCLUDING SYSTOLIC ARRAY OF TWO-
DIMENSIONAL LAYERS

This is a division of application Ser. No. 07/971.823,
filed as PCT/JP91/01421, Oct. 17, 1991, now U.S. Pat. No.
5,519,811.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to improvements in neural
networks, hardware for carrying out the functions of a neural
network, neural network processors, and neural network
pattern recognition apparatuses.

2. Description of the Related Art

The neural network, namely, a system of recognizing
predetermined input information and providing the results of
the recognition which is, based on a conception entirely
differing from those on which conventional methods are
based, has been developed and applied to various fields. The
neural network is a model of a human brain, which can be
realized in various ways.

The neural network has been proposed in a mathematical
algorithm having a complex structure. Accordingly, the
conventional neural network has been realized by computer
simulation. Computer simulation, however, operates at a
comparatively low processing speed, which is a problem in
some practical applications. Recently, comprehensive study
of the neural network has been made and pieces of hardware
for realizing the neural network have been proposed.
However, the proposed hardware deals with neural networks
having only one or two layers.

A Neocognitron is one model of a neural network. Only
a few studies have been made on the development of
hardware for realizing a Neocognitron, because a Neocog-
nitron is a neural network with a complex structure. Hard-
ware for realizing a Neocognitron has been reported in a
paper published by MIT. This paper was published in the
poster session of NIPS (Neural Information Processing &
Systems) ’90. The hardware is simple in structure
comprising, in combination, 143 CCD arrays and seven
MDACSs (multiplier DA converters). Most circuits employed
in the hardware are digital circuits. Basically, both input data
and coefficient data are stored in the digital circuits, and the
semianalog MDACs carry out multiplication. Since the
method of making this system was not able to fabricate
division circuits satisfactorily, only a first layer was realized.
The hardware has a small degree of integration of seven
multipliers in 29 mm?,

Thus, the realization of a neural network in hardware has
encountered many difficulties and hence methods have been
studied for the high-speed simulation of a neural network
having three or more layers. One of the methods simulates
the neural network using a program to be executed by
parallel processing computers. However, if this method is
employed, it often occurs that the computational topology of
the neural network does not coincide with the architecture of
each computer, and the efficiency of data transmission
between the processing elements is reduced. Even if paraltel
computers having many processing elements are employed
for high-speed simulation, it is difficult to improve the cost
performance.

SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to
provide techniques capable of realizing a neural network of
a complex structure, such as Neocognitron, in hardware.
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2

A neural network processor in accordance with the
present invention realizing a feed-forward neural network
having a multilayer structure comprises a plurality of pro-
cessing elements respectively corresponding to the neurons
of the neural network, wherein the processing elements are
MOS analog circuits forming a systolic array and dealing
with input and output variables represented as voltages.

In the feed-forward neural network, all the component
neurons of the neural network receive input signals from the
previous layer in the normal operating mode, except for
signal transmission in a learning mode, such as back
propagation, and signals are never transmitted from the
succeeding layer to the previous layer or between the
neurons in the same layer.

Typically, the neural network processor in accordance
with the present invention is a neural network processor
realizing a Neocognitron.

Preferably, each MOS analog circuit of the neural network
processor in accordance with the present invention for
realizing the Neocognitron comprises a plurality of Gilbert
multipliers for calculating the sums of products for a
numerator, having output terminals connected to each other,
a plurality of Gilbert multipliers for calculating the sums of
products for deprominators, having output terminals con-
nected to each other, and a divider having a first input
terminal connected to the output terminals of the Gilbert
multipliers for the numerators and second input terminal
connected to the output terminals of the Gilbert multipliers
for the denominators, and capable of providing a voltage
signal output representing the results of the Neocognition of
operation. The divider may be, for example, a combination
of a current mode divider that provides a current signal
representing the result of operation, and a current-voltage
converter.

The employment of analog circuits as processing ele-
ments enables the construction of a neural network system
far superior in cost and performance to the parallel comput-
ers employing digital circuits as processing elements. An
LSI consisting of analog circuits, in general, requires a
silicon substrate having an area smaller than that of a silicon
substrate required by an LSI consisting of digital circuits.
For example, an analog multiplying circuit can be con-
structed with about ten transistors, whereas a digital multi-
plying circuit having the corresponding resolution needs
1,000 to 10,000 transistors. Since the transistors forming an
analog circuit, in general, are larger than those forming a
digital circuits the ratio of area between that occupied by an
analog integrated circuit and that occupied by a digital
integrated circuit is not simply - dependent on the ratio
between the respective numbers of the component transis-
tors of the analog integrated circuit and the digital integrated
circuit. However, the employment of analog circuits reduces
the number of processing elements significantly.

The neural network processor in accordance with the
present invention is not a hardware system constructed by
merely substituting the digital circuits of the conventional
hardware with analog circuits. Generally, an algorithm hav-
ing a large structure, such as a neural network, realized by
hardware employing analog circuits is unable to function
propetly because infrinsic errors are accumulated in the
analog circuits. Accordingly, few trials have been made to
construct a multilayer neural network by analog circuits and
no successful result has been reported.

The inventors of the present invention hit on the idea that
a neural network is satisfactory only if the same is able to
recognize images or the like and hence the allowable error
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for the analog arithmetic circuit forming the neural network
may be greater than that for ordinary analog arithmetic
circuits. The neural network of the present invention reduces
the number of processing elements greatly by regarding the
neural network as a three-dimensional systolic array,
employing projection and scheduling which are employed in
digital circuits, and constructing the neural network by
analog circuits of a practically applicable scale.

A systolic array must be pipelined (systolized) to enhance
the throughput. Since the present invention employs MOS
analog circuits for dealing with analog inputs and output
voltage signals. and the analog voltage signals can be stored
by the parasitic capacitance of the switches and the
transistors, the systolic array can readily be pipelined. An
analog voltage signal can efficiently be applied to a plurality
of processing elements using a single line.

The systolic array comprises pipelined processing ele-
ments consisting of comparatively simple arithmetic units of
the substantially same structure.

‘When the Neocognitron is to be realized in hardware, the
processing elements of the projected systolic array are
connected locaily, which enables further effective layout of
the processing elements on a silicon substrate, because each
neuron of the Neocognitron receives an input signal only
from neighboring neurons in the previous layer and the local
signal transmission occurs in the projected systolic array.

If a mathematical expression for a U, layer among those
expressing the operation of the neuroms (processing
elements) of the Neocognitron, which will be described
later, is simplified, the expression for the U, layer becomes
identical with an expression for the operation of the neurons
of a U, layer. That is, as will be- described later, the
expressions are represented by a fractional expression hav-
ing a numerator and a denominator which are expressed by
formula for performing a sum of products.

When Gilbert multipliers which receive analog voltages
are used for calculating the sums of products for the numera-
tor and the denominator, inputs to the processing elements
can be used for multiplication directly. The output currents
of the Gilbert multipliers can be added by connecting the
output terminals of the Gilbert multipliers using a single line
to obtain the sum of products. The current signals respec-
tively representing the numerator and the denominator are
applied respectively to the two inputs of the divider for
dividing. Since the outputs of the processing elements must
be voltage signals, a divider of a current-input and voltage-
output type consisting of a current mode divider and a
carrent-to-voltage converter is used. The analog circuit for
the calculation of the sum of products and for division may
be constructed using operational amplifiers, the analog cir-
cuit consisting of a current mode divider and a current-to-

voltage converter is more compact than the analog circuit

consisting of operational amplifiers.

Thus, the neural network processor in accordance with the
present invention comprises a plurality of MOS analog
circuits that receive and provide voltage signals and act as
processing elements corresponding to neurons, and the MOS
analog circuits constitute a systolic array. Therefore, the
processing elements are very small, the number of the
processing elements are comparatively small and hence the
the cost and performance of the neural network processor is
satisfactory.

‘When the Neocognritron is a neural network to be realized
in hardware, each of the neurons of the Neocognitron
receives inputs only from the neighboring neurons in the
previous layer. Therefore, signals are transmitted locally on
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the projected systolic array, and hence the elements can
more effectively arranged on a silicon substrate.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is illustrated in the accompanying
drawings, in which:

FIG. 1 shows examples of numerals which can correctly
be recognized by the Neocognitron;

FIG. 2 is a typical view of the three-dimensional structure
of the Neocognitron;

FIG. 3 is a typical view of windows in the Neocognitron;

FIGS. 4(A) and 4(B) are a typical view and a table,
respectively, providing assistance in explaining local con-
nections in the Neocognitron;

FIGS. 5(A) and 5(B) are typical views providing assis-
tance in explaining the sizes of layers in the Neocognitron;

FIG. 6 is a typical view providing assistance in explaining
a conception for pattern recognition by the Neocognitron;

FIG. 7 is a diagram showing twelve coefiicient sets
employed by a U,, layer;

FIG. 8 is a diagram showing coefficient sets employed by
a U, layer;

FIG. 9 is a chart providing assistance in explaining the
operation of a neuron;

FIGS. 10(A) and 10(B) are diagrammatic views of assis-
tance in explaining projection and scheduling;

FIG. 11 is a block diagram providing an analog pipeline
register;

FIGS. 12(A) and 12(B) are diagrammatic views of assis-
tance in explaining another projection and another schedul-
ing;

FIG. 13 is a block diagram of a hardware system;

FIG. 14 is a view showing a typical layout of analog
neurons;

FIG. 15 is a block diagram of a pipeline stage;

FIG. 16 is a block diagram of a 9-input analog neuron;

FIG. 17 is a circuit diagram of a current mode divider;

FIG. 18 is a circuit diagram of a Gilbert multiplier;

FIG. 19 is a circuit diagram of a current-to-voltage
converter;

FIG. 20 is a diagram of input patterns employed in the
simulation and measurement of a 3x3 input processing
element;

FIG. 21 is a graph showing the variation of the measured
output voltage of processing elements with input voltage to
the same;

FIG. 22 is a graph showing the results of an analog circuit
simulation of processing elements; and

FIG. 23 is a graph comparatively showing measured
results, the results of simulation and calculated results.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Preferred embodiments of the present invention will be
described hereinafter.

Although the present invention is applied to a multilayer
feed-forward neural network it is not limited in its applica-
tion to the Neocognitron, and the present invention will be
described as applied to the Neocognitron, which is a neural
network most suitable for embodying the present invention
among multilayer feed-forward neural networks.

The algorithm of the Neocognitron is well-known and
hence the Neocognitron will be described only briefly prior
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to the description of a hardware system for realizing the
Neocognitron. The reader is referred to the following refer-
ences incorporated by reference herein for further informa-
tion about the Neocognitron.
[1] K. Fukushima, “Neural Network Model for Selective
Attention in Visual Pattern Recognition and Associa-
tive Recall”, Applied Optics, Vol. 26. No. 23,
December, 1987
[2] K. Fukushima, “A Neural Network for Visnal Pattern
Recognition”, Computer, pp. 65-75, March, 1988

{31 K. Fukushima, “Analysis of the Process of Visual
Pattern Recognition by the Neocognitron”, Neural
Networks, Vol. 2, pp. 413-420, 1989

[4] K. Fukushima, “Neocognitron: A Hierarchical Neural
Network Capable of Visnal Pattern Recognition”, Neu-
ral Networks, Vol. 1, pp. 119-130, 1988

The Neocognitron is an improvement to a Cognitron, i.e.,
a neural network model for image recognition, proposed in
[5] K. Fukushima, Cognitron: “A self-organizing Muiti-
layered Neural network”, Biol. Cyber., Vol. 20, pp. 121-136,
1975. The Neocognitron is a neural network most suitable
for image recognition having a hierarchical structure includ-
ing a positional error absorbing layer called a U, layer, and
having the advantage of being capable of recognition even
with the displacement and deformation of the input images.
The Neocognitron is capable of discriminating the numerals
shown in FIG. 1 and of correctly recognizing the deformed
numeral “4” shown in FIG. 1.

Most of the multilayer neural networks other than the
Neocognitron, such as described in [6] M. L. Minsky,
“Perceptron”, The MIT Press, 1969, [7] R. P. Lippmann,
“An Introduction to Computing with Neural Nets”, IEEE
ASSP Magazine, pp. 4-22, Apr. 1987, [8] B. Kosko, “Bidi-
rectional Associative Memories”, IEEE Trans. on Systems,
Man and Cybernetics, Vol. 18, No. 1, pp. 46-60, Jan./Feb.,
1988, [9] G. A. Carpenter, “Neural Network Models for
Pattern Recognition and Associative Memory”, Neural

Networks, Vol. 2, pp. 243-257, 1989, and [10] Moises E.,’

Robinson G., Hideki Yoneda, Edger Sanchez-Sinecio, “A
Modular VLSI Design of a CMOS Hamming Network”,
IEEE/ISCAS 91, pp. 1920-1923, Jun., 1991, are two-layer
or three-layer neural networks. The Neocognitron is com-
plex in structure as compared with those neural networks
and has, typically, four or more two-dimensional layers. For
example, the Neocognitrons described in the references [2]
and [3] have eight layers in addition to an input layer.

FIG. 2 shows a four-layer cognitron having four two-
dimensional layers each layer reducing in size in the order
of arrangement or processing; the last layer is the smallest
layer serving as an output layer having a minimum number
of neurons. Each layer has subgroups of neurons called
windows, each comprising a two-dimensional array of neu-
rons for exiracting a local pattern of an input image.
Therefore, if N different local features need to be extracted,
then at least N windows are necessary.

FIG. 3 shows an arrangement of windows in the Neocog-
nitron for recognizing hand-written numbers. The U, layer
has twelve windows for extracting, for example, horizontal
lines, vertical lines and oblique lines. The size of each of the
windows is dependent on the size of the windows of the
previous layer, for example, the U,, layer to the U,, layer,
and the size of its input region. Each window needs a set of
coefficients a,; ; ; to extract such a local pattern. The set of
coefficients a,; ;. corresponds to the intensity or number of
the connections of the neurons of a practical neural network,
such as the human brain. The subscripts i and j of the
coefficients a;;; . represent displacements respectively in
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the x-direction and the y-direction relative to the adjacent
neurons in the previous layer, the subscript k is the number
of the window of the layer, and the subscript k' is the number
assigned to the window of the previous layer. Since all the
neurons in each window-extract a local pattern, the sets of
coefficients a, , ; ;. for all the neurons of each window are the
same. The windows of each layer merges the local patterns
extracted by the previous layer to extract more complicated
local patterns greater or patterns larger in size than the input
local patterns. The area of the windows, i.e., the number of
neurons included in the window, of the succeeding layer is
smaller than that of the windows of the previous layer, and
each of the windows of the last layer has a single neuron for
providing the final output. For example, as shown in FIG. 3,
each of the ten windows of the U layer has a single neuron.
The ten neurons of the U, layer shown in FIG. 3 recognize
ten numerals to be recognized by the Neocognitron, respec-
tively. The result of recognition corresponds to the neuron
which provides the highest output. In the initial state, the sets
of coefficients a,; ; ,. must be set prior to learning to assign
local patterns to the windows.

Each of the neurons of the Neocognitron receives only
inputs from a neuron at a corresponding position in the
previous layer and neurons neighboring the same neuron in
the previous layer as shown in FIG. 4(A). The definition of
the term “neighboring” depends on the layer. Ordinarily, the
number of the neighboring neurons is 3x3, 5x5 or 7x7. As
shown in FIGS. 5(A) and 5(B), the smaller local patterns
extracted by the previous layer are merged by each succeed-
ing layer to provide larger local patterns, and the size of the
windows decreases gradually in the order of the layers. Let
us assume that there are two layers which consist of one
window, and that the window in a succeeding layer has 3x3
neighbor definition. If the size of the window in the previous
layer is 5x5, then the size of the window in the succeeding
layer is usually 3x3, because a neuron in the succeeding
layer represents a larger local feature which covers a larger
area in the input layer than that in the previous layer.

The Neocognitron does not have any feedback loop. Each
of the neurons of the succeeding layer receives only the
output signals provided by the neighboring neurons of the
previous layer. Therefore signals are transmitted always
from the previous layer to the succeeding layer and no signal
is transmitted from the neurons of the succeeding layer to
those of the previous layer or from the neurons of a layer to
the other neurons of the same layer.

As stated above, each layer has subgroups of neurons
called windows having a two-dimensional rectangular struc-
ture included in a plane defined with discrete coordinates x
and y. The neurons are disposed respectively at the inter-
sections of parallel lines extending along the x-direction at
equal intervals and parallel lines extending along the
y-direction at equal intervals. Although the number of the
neurons of the Neocognitron is very large, the number of
different sets of coefficients a,;;; is comparatively small
because the sets of coefficients for the neurons of each
window are the same. If the coefficients for a window are
changed during a learning process, the new coefficients
apply to all the neurons of the same window; that is, the
results of learning apply to all the neurons of the window.

The layers of the Neocognitron are classified into of two
types. The U, layer extracts a local pattern of an input image,
and the U, layer integrates the results of extraction provided
by the U, layer and absorbs positional errors in the input
image.

The Neocognitron has an alternate arrangement of the U,
layers and the U, layers as shown in FIG. 3, which enables
the absorption of positional errors in the input image and the
deformation of the input image.
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The concept of pattern recognition by the Neocognitron
will be described with reference to FIG. 6. Simple local
patterns, such as horizontal lines and vertical lines, are
extracted in the one layer, and the simple patterns are
merged in a succeeding layer to extract more complicated
local patterns, such as the pattern of the upper end of the
numeral “4”. The U_ layer interposed between the U, layers
gradually absorbs positional errors in the input pattern and
the deformation of the input pattern.

The U layer computes the two-dimensional convolution
of the input image data supplied thereto from the previous
layer using the coefficients a;;, to extract local patterns.
The coefficients a; ; ;. correspond to conventional templates
employed in digital image processing. FIGS. 7 and 8 show
examples of the patterns of templates for teaching the U,
layers. When these templates are used for teaching the U,
layers, the coefficients corresponding to the blank squares of
the templates remain zeros and the cocfficients correspond-
ing the the solid squares of the templates change from zero
to a predetermined positive value and, finally, sets of coef-
ficients a; ; ;. equivalent to the templates are obtained.

Simplification of the Arithmetic Model.

The models of the neurons of the Neocognitron are more
complex than those of the neurons of the conventional
neural network described in the references [6] to [10], and
the computation executed by the neurons of the U, layer is
particularly complicated. Suppose that a neuron of the U,
layer receives 3x3 inputs. Then, the computation to be
executed by the neuron of the U, layer is expressed by
(€))

Usienysyk =

> S apip X Ucimigsip +¢
o K101 je1,0,1 T TERETE

b\J z z S U pimintC
N Fi=10,1 10,1 CoHi¥

D)= {

where C,, C, and C; are constants, U(+1},,,p and U, , o
are the outputs of the layer in question and the previous
layer, respectively, x and y are the coordinates of the neurons
of each window, and k are the number of the layer in which
the window including the neuron in question is inclined or
positioned, and the number of the window including the
neuron in question, respectively, and k' is the number of the
window of the previous layer which gives input signals to
the neuron, the values of the sets of coefficients a, ;. are
specified for each window, the coefficients represent the
intensity of interconnection (synapses) of the neurons, and
by is the mean of the coefficients a; ;. which is used for
normalizing the outputs of the neurons. To facilitate under-
standing expression (1), a simple example will be described
hereinafter.
If

0, incasethatv=0

v, in other cases
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Rearranging expression (1) by substituting these conditions
into expression (1),

U,(+D) a3 k=[(3V+1)/(V+1)}-1 if 20

U(+1),5 k=0 if <0 @)

FIG. 9 shows the variation of the output U, , with the
input. FIGS. 4(A) and 4 (B) show the physical interpretation
of expression (2). The computation executed by each neuron
is the division of the results of two-dimensional convolution
by the root-mean-square (rms) of the inputs. The sets of
coefficients a;; » in expression (1) correspond to synapse
connection intensities.

Resuits of our simulations prove that, in most cases, the
root-mean-square can be substituted with the mean. When
the mean is employed instead of the root-mean-square,
expression (1) can be written as follows.

Usaetynyr =

3
z T apijp X Ucisiyg +€
B 10,1 j1,0,1 T DOk T
3

{ y

On the other hand, the computation executed by the
neurons of the U, layer is simple as compared with com-
putation executed by the neurons of the U, layers. If the
neuron receives 3x3 inputs,

z Y b XUcistiytie + 2
Fi=10,1 =101 Clomtirsi

Udrps=W( T = S aije X Usiwsiptik @
Clayk =Yk ( B i=—190,1 j=-10,1 kig R X USlprigtik )
_ O
Yi (V)= q)(.o) + Ok

where oy is a constant. This function has a shape similar to
that shown in FIG. 9. The difference between expressions (3)
and (4) is that the coefficient of the numerator is different
from that of the denominator in expression (3) whereas the
respective coefficients of the numerator and denominator are
the same in expression (4).

The U, layers and the U, layers may be of the same circuit
configuration or construction if expression (3), obtained by
simplifying expression (1) relevant to the U, layers, is used,
which simplifies the hardware.

Pipelining and Scheduling

The Neocognitron described in the reference [4] needs
34,000 neurons for processing inputs from 19x19 pixels
when recognizing a hand-written character. The number of
neutrons is reduced by projection along the direction of the
x-axis as shown in FIGS. 10(A) and 10(B) when realizing
the array of neurons in a hardware when the projection
vector P=(1, 0, 0) is used. The x-axis is one of the two axes,
ie., the x-axis and the y-axis, defining the input layer.
Projection is a method of mapping a three-dimensional array
of a larger number of processing elements (neurons) on a
two- or one-dimensional array of a smaller number of
processing elements. Projection in an appropriate direction
allows reduction of a plurality of processing elements to a
single processing element because the processing element is
reused. Suppose that the projection vector is P=(1, 0, 0).
Then, the processing elements at positions (x, y, z)=(, j, k)
in the three-dimensional array are mapped to positions (y,
z)=(j, k) in a two-dimensional array. Thus, the three-
dimensional array of neurons of the Neocognitron is mapped
to a two-dimensional array of neurons by projection in the
direction of the projection vector P=(1, 0, 0), so that the
hardware system can be constructed only by processing
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elements corresponding to the neurons included in a mapped
y-z plane for each window. The projection reduces the
34.000 neurons required by the Neocognitron described in
the reference [4] to about 2,000 neurons (processing
elements), which is about 6% of the neurons in the three-
dimensional array of neurons of the Neocognitron described
in the reference [4]. A scheduling vector S is selected after
the projection is performed. Although there are many avail-
able scheduling vectors S, only a few are suitable. The
scheduling vector S indicates the direction of advancement
of a hyperplane in which the processing elements that
operate substantially simultaneously are arranged. Once the
scheduling vector S is determined, all the processing ele-
ments at positions n =(i, j, k) in the original three-
dimensional array operate at time t=n-S (“” indicates scaler
product).

The operation of the system is completed after the hyper-
plane has passed all the processing elements (neurons). FIG.
10{A) shows an example of the scheduling vector S. If a
scheduling vector S=(1. 0, 1) indicated by an alternate long
and short dash line is selected, signals are transmitted
between the processing elements in the hyperplane in one or
the same pipeline period. Accordingly, one processing ele-
ment is not able to start computation until the prior process-
ing elements complete computation, which delays signal
transmission within the hyperplane and the pipeline period
must be increased. Suppose that scheduling vector S=(1, 0,
2) is selected. Then, the processing elements in the hyper-
plane do not transmit signals in one pipeline period and the
array is fully systolized. The term “systolization” means a
state in which all the processing elements are pipelined at
each hyperplain. All the neurons of the Neocognitron
receive inputs only from the neighboring neurons in the
previous layer. These neighboring neurons in the previous
layer are mapped on the neigboring processing elements of
the previous pipeline stages. This input voltage data pro-
vided from the previous layer is accumulated in an analog
pipeline register 2 (FIGS. 11 and 14) of each neuron,
comprising capacitors and switches. When the input region
has 3x3 neighboring neurons as shown in FIG. 10(A), the
same signal may be applied to the adjacent neurons
(processing elements) as shown in FIG. 11 and hence each
neuron may be provided with four analog pipeline registers.
The circuit surrounded by a dotted line in FIG. 11 is an
analog pipeline register 2.

One analog pipeline register 2a among the four analog
pipeline registers 2a, 2b, 2¢ and 2d is used for holding the
result of the computation carried out by the processing
element in the previous pipeline stage, and the three other
analog pipeline registers 2b, 2¢ and 24 are used for holding
the results of previous pipeline stages in the previous three
pipeline periods. The analog pipeline registers 2b, 2¢ and 2d
hold the results of computation in the previous pipeline stage
one pipeline period before the current pipeline period, that
of two pipeline periods before the current pipeline period
and that of three pipeline periods before the current pipeline
period, respectively. Ordinarily, one pipeline period is as
short as, for example, 1 psec. Therefore, the analog pipeline
register 2 may be provided with a very small capacitor,
which is enough to hold a voltage during several pipeline
periods. The very small capacitors enable the system to be
constructed on a very small portion of a silicon substrate of
a Large Scale Integrated (LSI) Circuit.

The contents of the analog pipeline registers 2 must be
shifted along the hyperplane shown in FIGS. 10(A) and
10(B) an advance by one neuron after the completion of the
computation in one pipeline period. In another method
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example, the coefficients of each neuron are shifted in the
opposite direction in the input region of the neuron instead
of shifting the contents of analog pipeline registers 2 as
shown in FIG. 11, which is equivalent to the shifting of the
contents of the analog pipeline registers 2. Accordingly, the
destination of the data held by each analog pipeline register
2 need not be changed. This method reduces errors attrib-
utable to the change of destination of the data in each analog
pipeline register 2, and the data can accurately be held for
several pipeline periods.

The direction of the projection vector P is not fixed; it is
possible that P=(0, 0, 1). For example, when the projection
vector P=(0, 0, 1), the scheduling vector S=(0, 0. 1) is
selected, the result of computation in the previous pipeline
stage can be stored and used for computation in the present
pipeline stage as described before.

Configuration of the Hardware System

Referring to FIG. 13, an analog processor 10 for carrying
out computations in pipeline stages 10a is controlled by, for
example, a host system 12 which can be a simple logic
system such as FSM (Finite State Machine). The principal
task of the host system 12 is to control switches for switch-
ing voltage signals stored in the analog pipeline registers 2
and voltage signals corresponding to the sets of coefficients
A jdee

I‘\’IQN pixel data 14 is divided into N columns each of N
pixels, and the N columns of pixels are applied sequentially
to the analog processor 10. All the sets of coefficients a,; ;
and reference voltages are stored in a digital memory 16 and
are fed through a D/A converter 18 to the analog processor
10. As mentioned above, since all the neurons in a window
use the same set of coefficients, the coefficients and the
reference voltages are distributed to a plurality of neurons.
Accordingly, the number of input voltage signals provided
by the host system 12 to the analog processor 10 is small as
compared with the number of neurons (processing elements)
formed in a VLSI chip. The analog processor 10 comprises
an array of analog neurons (analog processing elements) and
as shown in an enlarged view in FIG. 14 are disposed in a
close arrangement. In FIG. 14, blocks marked with “x” are
analog multipliers and a block marked with “+” is an analog
divider, which will be described later. Vertical lines are
conductive lines connected to the neurons of the windows of
each pipeline stage as shown in FIG. 15 to transmit analog
voltage signals representing the coefficients and reference
voltages which the anmalog multipliers need. The analog
voltage signals accumulated in the capacitors of analog
weight registers 20 are transmitted through the conductive
lines. Since the voltage signals are stored in the capacitors,
the A/D converter 18 is able to provide all the voltage signals
during a pipeline periods.

Since each neuron receives inputs only from the neigh-
boring neurons in the previous layer, the pipeline stages are
connected locally, which facilitates the design of the VLS1.
Similarly to multilayer neural networks other than the
Neocognitron, this Neocognitron is able to carry out a
learning process. The host system carries out or controls the
learning process in a time period longer than that for a
normal mode. Input patterns erroneously recognized in the
normal mode are stored in the system or in an external
memory, and the erroneously recognized input patterns are
provided to the analog processor 10 in the learning mode.
Then, the outputs of the intermediate layers are monitored,
the outputs are converted into digital signals by the A/D
converter 22, the digital signals are given to the host system
12, and the digital signals are stored in a digital memory 16.
The host system 12 calculates a propagation error for
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learning on the basis of the outputs of the intermediate
layers. Although the addition of functions for the learning
mode to the host system 12 may make the host system 12
somewhat intricate, the host system 12 having the functions
can be implemented on the chip with the analog processor.

Basic Processing Element

As stated above, the processing elements of the U, layers
execute the computation represented by expression (3)
including multiplication and division. FIG. 16 shows a
9-input 3x3 neuron. As mentioned above, the processing
element is realized or implemented as an analog circuit. The
9-input neuron comprises eighteen analog multipliers 301,
302, ..., and 318, and an analog divider 32.

Generally, an N-input neuron needs ZN multipliers and a
divider, because each of the numerator and denominator of
expression (3) includes N multiplications. The basic pro-
cessing element in this embodiment comprises an analog
current mode divider shown in FIG. 17 and described in
more detail in ([12]) K. Bult and H. Wallinga, “A Class of
Analog CMOS Circuits Based on the Square-Law Charac-
teristic of an MOS transistor in Saturation”, IEEE Journal of
Solid State Circuits, Vol. sc22, No. 3, pp. 357-365, Jun.,
1987, incorporated by reference herein, and conventional
Gilbert multipliers as shown in FIG. 18.

In FIGS. 17 and 18, the numerators and denominators of
fractions, such as 5/5 and 10/5, written beside MOS tran-
sistors indicate the channel width W and the channel length
L in pm, respectively, of the corresponding MOS transistors.

Inputs U, » ate voltages V.-V, received from the
neurons of the previous layer, coefficients a,; ; ,. are voltages
V,—V,rreceived from the analog weight register 20 (FIGS.
13 and 14). The voltages V.-V, are multiplied by the
voltages V,~V, . .by the multipliers 301, 303, . . . , and 318,
and the products converted into current signals. The current
signals provided by the nine multipliers 301, 302, . . . , and
309 for calculating the numerator are applied to a first node,
and the current signals provided by the nine multipliers 310,
311, . ..
applied to a second node, and the sum of the current signals
applied to the first node and the sum of the current signals
applied to the second node are applied to the current mode
divider 32. The output current signal of the divider 32 is
converted into a voltage signal by a conventional current-
to-voltage converter 34. An external signal to be applied
through a common line to a plurality of processing elements
must be a voltage signal.

The analog circuit employed in this embodiment, similar
to other analog circuits, is not an ideal analog circuit. For
example, the divider 32 performs a calculation expressed by
L..x L, /I,, which is not correct division. The output
signals of the divider 32 and the multipliers 301, 302, . . .,
and 318 contain respective offset currents. The output signal
of the cumrent-to-voltage converter 34 contains an offset
voltage. However, these offset currents and the offset voltage
causing ervors can easily be eliminated. For example, the
divider 32 can function as an ideal divider if only input
signals in a limited range are applied to the divider 32. The
offset currents contained in the outputs of the divider 32 and
the multipliers 301, 302, . . . and 318 affect only the
constants C,, C, and C; of expressions (3) and (4). The
offset voltage contained n the output of the current-to-
voltage converter 34 can be cancelled when a reference
voltage V, . for the multiplication in the next pipeline stage
is equal to the offset voltage. The error tolerant algorithm of
the neural network of the present invention permits com-
paratively large allowances for other causes of error in the
circuits.

, and 318 for calculating the denominator are’
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Since expression (4) to be executed in the U, layers is
similar to expression (3) to be executed in the U, layers, the
processing elements of the U, layers may be entirely the
same as those of the U_ layers. The U, layers and the U,
layers are different from each other in the connection of the
lines for transmitting the coefficients. Accordingly, the same
processing elements connected by wiring applicable to both
the U, layers and the U, layers can be applied either to the
U, layers or the U, layers.

Results of Experiments and Simulation

FIGS. 21 and 22 show the results of simulation of the
9-input neuron (processing element) and the results of
simulation of the 9-input neuron by an analog circuit
simulator, respectively. FIG. 20 shows a template, an input
A perfectly matching the template, an input B partially
matching the template, and an input C not matching the
template. The inputs'A, B and C were applied to the 9-input
neuron and the outputs of the 9-input neuron were measured.
The same inputs A, B and C were used for simulation.

In FIGS. 21 and 22, output voltage V, and input voltage
V,. correspond respectively to Uy +D)x,yk and input v of
expression (2). As is obvious from the results shown in
FIGS. 21 and 22, the 9-input neuron discriminated the inputs
A, B and C from each other. The pattern separating capa-
bility deteriorated slightly because the channel length modu-
lation coefficient A of the MOS transistors of the circuit was
greater than that expected, nevertheless, the neuron was able
to discriminate cormrectly the pattern differing from the
template.

FIG. 23 shows measured results, resuits of simulation by
an analog circuit simulator, and calculated results (numerical
model). The results of simulation agree very well with the
calculated results obtained by calculation using expression
(3), and the difference between the measured results and the
results of simulation increases with applied voltage when the
input voltage Vx is greater than 3.5 V. This problem can be
solved by employing transistors having a larger channel
length L. and hence a smaller channel length modulation
coefficient A or by providing inputs in a limited range to the
analog neuron.

A simulation program simulating a 6-layer Neocognitron
having 11x11 pixel inputs was developed to confirm the
general operation of a Neocognitron. A model neuron
employed in the simulation program is based on simplified
expressions (3) and (4). It was confirmed that characters
shown in FIG. 1 can correctly be recognized through the
execution of the simulation program.

The neuron (processing element) was fabricated with 2
pm CMOS technology and was formed in a very small area
of 450 ymx650 pm. A systolic array of only 2,000 process-
ing elements matched the neural networks comprising
34,000 neurons shown in the references [2] and [3] in
character recognition capability. Accordingly, a neural net-
work processor in accordance with the present invention
requires an area of 585 mm®=450 umx650 pmx2,000, and
hence the neural network processor can be realized by two
or three semiconductor chips of an ordinary scale having an
area on the order of 250 mm?. This hardware with 1 ps
pipeline period can recognize a character in 26 ps, and it is
about one million times faster than software simulation on a
personal computer. Thus, the neural network processor in
accordance with the present invention has excellent cost
performance.

What is claimed is:

1. A pattern recognition processing apparatus, compris-
ing:

a neural network connected to form a feed-forward sys-

tolic array, said feed-forward systolic array comprising
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two dimensional layers of neural processing elements,
each two-dimensional layer comprising:
a feature extraction layer, and
a positional error absorbing layer connected to said
feature extraction layer with said extraction and
absorbing layers performing identical computational
operations; and
a host system providing inputs to said network.
2. The apparatus of claim 1 wherein each layer includes
at least one analog processing element, comprising:
first analog multipliers connected receive voltage inputs
and constructed to form a first summed output;
second analog multipliers connected receive voltage
inputs and constructed to form a second summed
output; and
an analog divider connected to receive the first and second
summed outputs and constructed to produce a quotient
voltage output therefrom.
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3. The apparatus of claim 2 wherein said analog process-
ing elements are connected locally.

4. The apparatus of claim 2 further comprising analog
pipeline coefficient storage units connected to said first and
second analog multipliers.

5. The apparatus of claim 1 wherein said neural network
is connected in accordance with a projection vector and a
scheduling vector for maximizing processing element utili-
zation and network processing speed.

6. The apparatus of claim 1 wherein said neural network
forms a part of a Neocognitron.

7. The apparatus of claim 1 wherein each two dimensional
layer comprises neurons and said neurons of each layer are
connected only to neighboring neurons of a previous layer.

8. The apparatus of claim 7 wherein the previous layer is
a next immediate preceding layer.
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