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ABSTRACT 
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Texas A&M University 

 

 

 As machine learning is applied to ever more ambitious tasks, higher performance is 

required to be able to train and evaluate neural nets in reasonable amounts of time. To this end, 

many hardware accelerators for machine learning have been made, ranging from ASICs to CUDA 

code that runs on a conventional GPU. GPU and FPGA based accelerators have seen more 

success than ASICS due to the ease with which the design can be tweaked or revised, but still 

suffer from latency resulting from the interface between the processor and the accelerator 

(generally PCIe). The purpose of this paper is to build a hardware accelerator on Intel’s 

Heterogeneous Architecture Research Platform, which includes a Xeon processor and Arria 10 

FPGA on the same mainboard, which share access to common memory. This should significantly 

reduce latency and increase throughput. This accelerator is expected to at least match the 

performance of a typical machine learning library implementation on a GPU, and will hopefully 

significantly exceed it. 
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NOMENCLATURE 

 

CPU  Central Processing Unit 

FPGA  Field Programmable Gate Array 

GPU  Graphics Processing Unit 

HARP  Heterogeneous Architecture Research Platform 

ML  Machine Learning 

MAC  Multiply-Accumulate 

PCIe  Peripheral Component Interconnect express 

CUDA  Compute Unified Device Architecture 

ASIC  Application Specific Integrated Circuit 

CCI  Core-Cache Interface 

QPI  Intel QuickPath Interconnect 

PE  Processing Element 

PB  Processing Block 

API  Application Programming Interface 

CSR  Control-Status Register 

IP  Intellectual Property 

FIFO  First In, First Out 
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CHAPTER I 

INTRODUCTION 

 

In the modern world, machine learning is becoming a more and more important part of 

daily life. It is showing up in everything from self-driving cars recognizing objects around them, 

to companies trying to determine what to recommend to a given consumer to get the highest sales. 

As the size and complexity of machine learning applications and frameworks increases, so too 

does the amount of resources required to train and utilize these neural nets. As a result, there is 

wide interest in hardware acceleration for machine learning. Borne of this interest are a wide 

variety of products and frameworks for hardware acceleration, ranging from Google’s Tensor 

processing unit, which is a custom integrated circuit for machine learning, to PyTorch, which is a 

Python machine learning library that is capable of using the user’s GPU (Graphics Processing 

Unit) for acceleration. While the potential speedup resulting from creating an ASIC (Application 

Specific Integrated Circuit) -based accelerator is greater, the ease with which the design can be 

tweaked or restructured has caused GPU-based (and to a lesser extent FPGA-based) accelerators 

to be more popular than ASIC-based solutions [1]. GPUs also suffer from high latency from the 

interface method, and have reduced peak performance and power efficiency due to the fact that 

GPUs are designed for graphics applications and not machine learning. FPGAs (Field 

Programmable Gate Arrays), on the other hand, can be tailored to their application to a much 

greater degree, as they provide a method to place digital logic directly onto the hardware in a 

reconfigurable manner, and much work has been done in optimizing matrix multiplication on 

FPGAs [2], as well as in things like extremely fast approximate multipliers such as SiMul [3]. 

Finally, Intel has created the Heterogeneous Architecture Research Program, or HARP, which 
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combines a Xeon CPU and Altera Stratix V FPGA on the same board, which share access to 

memory resources. The purpose of this proposal is to leverage past work into matrix 

multiplication and FPGA machine learning accelerators to implement a hardware accelerator for 

the HARP platform, with the aim of combining the speed of an FPGA based solution with the low 

latency and high throughput of directly accessible shared memory. This will allow for neural nets 

to be trained and used faster than was previously possible with a single machine. 
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CHAPTER II 

METHODS 

 

 The first step was to gain access to and learn to use one of the HARP prototypes. Now that 

that has been accomplished, the core of the system, a matrix multiplication engine is designed and 

implemented. Different methods of structuring the engine based on past research [2, 3] will be 

trialed in order to determine which structure works best. Accompanying this will be a series of 

control modules and a driver for making calls to the engine. The performance of the design will 

be compared against what the Xeon processor that the HARP system contains can do without the 

assistance of a hardware accelerator. The pipeline will then be optimized as much as possible, 

leveraging past research in this as well [4], in order to maximize the speed that the accelerator can 

reach. Once this has been accomplished, final data will be collected on the system to determine its 

overall performance. This will be analyzed to determine the suitability of heterogeneous 

architecture systems for machine learning applications. 

 The hardware accelerator is accessed by user level software on the system CPU, written in 

either C or C++. The matrices are stored in column-major order, and their cacheline address is 

sent to the hardware accelerator via its CSRs (Control Status Registers). The accelerator is then 

given the signal to start, and the result is awaited in a pre-allocated shared memory buffer. 
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CHAPTER III 

STRUCTURE AND OPERATING PRINCIPLE 

  

The design of this hardware accelerator relies on the heavy parallelization of the 

individual multiplication operations involved in a matrix multiplication to achieve a speedup over 

a processor-based implementation. To accomplish this parallelization, the accelerator includes 

many small processing elements that are designed to be tiled, which are at the bottom of a 

hierarchy of progressively larger and coarser-grained levels of control. This hierarchy starts with a 

high-level controller at the top level. The controller interfaces with user programs to receive 

requests, report status information, and return results, and also is responsible for dispatching 

chunks of matrices to a processing block. A processing block is a coarse structure that is 

dispatched a chunk of the input matrices, and computes a partial output matrix. Each processing 

block contains sixteen processing elements, each of which can compute the dot-product of a 

single row/column pair. During the multiplication of a matrix, the processing block is directed to 

multiply sixteen rows of the first operand with the entirety of the second operand. The processing 

block assigns row/column pairs to its processing elements, progressively working down the 

columns of the second operand until it has completed the partial multiplication. The high-level 

controller will continue to dispatch sixteen-row matrix chunks to processing blocks as they 

become available until all the rows of the first operand have been multiplied by all the columns of 

the second operand. Each bunch of rows produces a chunk of the result matrix which is written 

out to memory wherever the final result needs to be placed. A coarse block diagram of the overall 

system is shown in Figure 1. 
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Figure 1. The overall system block diagram 

 

The bottleneck for this scheme is the speed with which it can read matrix data out of 

memory to be processed, so having a highly efficient memory access model is paramount. The 

HARP system provides a bus for interaction with the system memory called the Core-Cache 

Interface (CCI). This interface is an abstraction over the actual connections between the FPGA 

and processor, which take up two PCIe (Peripheral Component Interconnect) x8 lanes and a QPI 

(QuickPath Interconnect) bus. This interface allows for up to approximately 100 memory 

transactions to be in flight at once, and bandwidth of up to approximately 25 GB/s, when the CCI 

bus is clocked at its full speed of 400 MHz. This interface is fairly sophisticated and only presents 

one unified bus, so there is a need to abstract its interactions away from individual processing 

elements and also multiplex access to it.  
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The multiplexing is accomplished with a very basic memory multiplexer module which 

has a simple interface for the owner of a port to request access to the CCI bus for some number of 

cycles. The multiplexer services these requests in a round-robin fashion, and has a reconfigurable 

number of ports so that an arbitrary number of processing blocks can be connected to it. Each 

processing block contains three memory access modules with different behaviors: the column 

access module, the row access module, and the writeback module. The column access module 

reads down the columns of the second operand one cache line (64 bytes) at a time. The row access 

module has to read data against the ‘grain’ of the first operand as the inputs are required to be in 

column-major order, so its operation is somewhat more complicated. It fires off large bursts of 

cacheline requests and fills in data as it comes in, with each cacheline of data containing one 

index for each of the sixteen processing elements. Once sixteen contiguous read requests have 

come back, the module signals the processing elements that their data is ready. Upon this signal, 

each processing element ingests one of the sixteen row chunks and the cacheline from the current 

column, and performs a multiply-accumulate on it. While this is occurring, the row access and 

column access modules are sending any necessary requests and waiting for the next batch of data 

to come in. Each PE sends the results of its multiply-accumulate operation along with metadata to 

the writeback module, which accumulates partial results from each input cacheline until it has a 

full cacheline’s worth of result indices. The writeback module then requests access to the CCI bus 

and writes that result out. 
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CHAPTER IV 

IMPLEMENTATION 

  

 The various modules of this project were built one by one, and then tested against the 

others. As functionality was fleshed out and bugs were removed, each module was iterated on 

until it reached its final form. Every module has a well-defined interface with its neighbors, and a 

scheme for ensuring that data gets across the boundaries safely and as rapidly as possible. Each 

module also includes one or more state machines responsible for maintaining those interfaces and 

handling internal operations, and some include large memory caches. A detailed description and 

discussion of each module follows. 

The Memory Multiplexer 

 The purpose of the memory multiplexer, or memory muxer, is to allow any module in the 

design that requires access to system memory to transmit requests and receive results. To this end 

it provides a standard interface that modules may use to request access to the CCI-P bus, and to 

send memory requests and get responses. The interface consists of an eight-bit bus where the 

module places how many cycles it would like to access the CCI-P bus for, and a want-tx signal. 

These come alongside copies of the standard CCI-P bus, and a tx-ready line that runs from the 

muxer to the module. The muxer maintains a state machine that services requests for access in a 

round robin fashion. The muxer’s high level interface is shown in Figure 2, and the muxer port 

interface is shown in Figure 3. 
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 Figure 2: The high-level interface for the memory multiplexer 

 

 

 Figure 3: A close-up of the muxer port interface 

 When a module needs to transmit a memory request, it asserts want_tx, and places how 

many cycles for which it needs the interface on cycles_wanted. When the muxer reaches that 

module, it asserts tx_ready and relays the module-side copies of both of the TX channels to the 

external CCI-P interface for as many cycles the module requested before de-asserting tx_ready, 

and moving to the next module. The CCI-P bus provides the tx0_full and tx1_full signals, which 

indicates that the respective channel is nearly at capacity for the number of requests that can be in 

flight at once. These are fed straight through to the modules, and it is expected that modules will 
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heed these signals and not attempt to send requests when the bus is full. Finally, the CCI-P Rx 

bus, which contains all read responses, is relayed to all connected modules at all times without 

multiplexing. This allows for a module to only hold onto the interface for as long as it takes to 

send its requests, and then can release it while the module waits for responses. It is expected that 

modules will be able to correctly detect whether or not a response belongs to that module based 

on the attached metadata. 

The Memory Multiplexer State Machine 

The operations of the memory multiplexer are controlled by a single state machine, shown 

in Figure 4. The state machine consists of four states: Relaying, Stopping, Stopping 2, and 

Changing. The state machine starts out in the Relaying state, where it latches both TX channels 

from the zeroth module onto the external CCI-P bus for as long as that module is requesting it. 

Every cycle spent in relaying, the muxer decrements a counter. When the counter hits zero, the 

muxer transitions to the Stopping state. In this state, the muxer de-asserts the current module’s 

tx_ready signal, but still relays any requests on that cycle. The muxer transitions directly to 

Stopping 2 on the next cycle. In Stopping 2, tx_ready remains de-asserted, but the muxer still 

relays any requests that come through. This is so that heavily pipelined modules will not have 

their requests thrown away by the muxer because tx_ready did not propagate in time, or because 

the requests themselves were pipelined. From Stopping 2, the muxer transitions directly to 

Changing. In this state, the muxer changes which module it is servicing. It cycles through one 

module every cycle until it finds one that has asserted its want_tx line. When one is found, the 

muxer then asserts that module’s tx_ready line, sets its timer to the module’s cycles_wanted 

value, and transitions to the Relaying state, where the process starts again. 
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Figure 4: The Memory Multiplexer state machine 

The Column Access Module 

 The purpose of the column access module is to provide data from the second operand 

matrix to the processing blocks and elements in column-major order. To this end it makes 

requests to system memory for the second operand matrix’s data, caches the responses in the 

Pipelined Memory submodule, and maintains an interface with each data recipient that ensures 

both that the data gets across the boundary, and that the recipients all remain in lockstep. The 

operations of the column access module are triggered by the arguments_valid signal, and the 

module automatically resets itself to the beginning of the second operand matrix when all column 

data has been latched out. The overall interface for the column access module is shown below in 

Figure 5, while a close-up view of the interface that the column access module shares with 

processing blocks is shown in Figure 6. 
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 Figure 5: The column access module’s interface 

 

 

 Figure 6: A close up view of each column access port 

 The column access module can be broken up into four main components: the read-request 

logic, the read-receipt logic, the column-data cache, and finally the latch logic. The read-request 

and latch-logic both have dedicated state machines, while the receipt logic consists of some 
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simple sequential logic that controls writes to the column-data cache, which is its own module. 

Each of these components is summarized below. 

The Read-Request State Machine 

 The read-request state machine is a simple device that maintains the CCI-P interface via 

the memory multiplexer, and has only three states: Idle, Prep Request, and Send Request. The 

state machine starts out in the Idle state. When the module receives the arguments_valid signal, 

the machine latches in the base address and dimensions of the operand matrix, asserts the want_tx 

line on the module’s memory muxer port, and transitions to the Prep Request state. In this state, 

the module prepares a memory request header with the current address as well as various tags and 

flags. Namely among these, the header will be tagged with an identifier marking the request as 

coming from the column access module, and will have a flag instructing the CCI-P interconnect 

not to bother caching the data, as it will only ever be read once. On the next cycle, the state 

machine transitions directly to the Send Request state. The send request state holds onto the 

request header until it gets all the necessary ready-signals. In particular, the memory muxer must 

assert the module’s tx_ready line indicating that it is now relaying requests from the column 

access module, and the tx0_full line (which indicates whether there is room for another request on 

the CCI-P bus) must be de-asserted. Having to wait to send the request is a fairly common 

occurrence, as there are typically many other modules needing to make their own requests that the 

muxer may service first, and the system on the whole works to keep the bus as full as possible to 

maintain maximum throughput. When both signals are in their proper states, the state machine 

strobes the ready signal on the first channel of its TX bus. This causes the request to be sent along 

to the memory muxer, which in turn relays it to the main CCI-P bus. Once this happens, the state 

machine increments the current address to point to the next cacheline, and leaves the Send 
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Request state. If the sent request was for the last cacheline of the second operand matrix, the 

transition will be to the Idle state, where the state machine will remain until it needs to load a new 

matrix. If not, the transition will be to the Prep Request state, where a new header will be 

prepared with the new address, and the process will repeat. Figure 7 depicts the state machine 

implementing this functionality below. 

 

 Figure 7: The read-request state machine 

 This state machine has a few unique aspects and peculiarities to it. Most prominent among 

these is the fact that there are two different states that alternate to produce and send memory 

requests. The purpose of this design decision is two-fold. The first and most important reason is a 

limitation of the CCI-P memory interface: a request can only be sent over it only every other 

cycle. Having two states that alternate will throttle the maximum frequency of request 

transmission down to once every other cycle without any further fuss. The second reason is that 

when building the RTL for this system for FPGA, the fitter tends to have a significant amount of 

trouble getting all necessary signals to meet timing constraints in the column access module. This 

is likely due to the fact that the data busses passing through the column access module are very 

large and require many registers and on-die wires to implement. This cannot be avoided, so the 

solution is to split operations over two cycles everywhere possible, and also to pipeline all low-



18 

speed signals. Exactly which signals were pipelined and in what manner will not be discussed 

here, but can be seen in the column access module code attached in the appendix. 

The Read Receipt Logic and Memory Cache 

 When data requested by the read request state machine eventually arrives, its arrival must 

be detected, and it must be stored in such a way that it can be retrieved when needed, potentially 

multiple times. Facilitating this is the pipelined memory cache module, and the various pieces of 

logic that control and interface with it. This logic requires no state machine, but does have some 

state. The memory muxer feeds all data received by the system to every module that maintains a 

memory muxer port, so the first step is to determine whether the data received originated from 

one of the column access module’s requests. This is done by a partial Huffman coding. If the first 

bit of the metadata tag is zero, then the request came from the column access module, and if it is a 

one, then it came from one of the processing blocks’ ports, and the preceding bits will identify 

which one. If the tags match, then the logic will strobe the data_arrived line on the input to the 

memory cache, which will in turn latch in the data sitting on its input (which is registered from 

the memory muxer port’s receive-data bus). When this occurs, a counter indicating the number of 

cachelines received is incremented. The total number of cachelines in the entire operand matrix is 

precomputed, and once the number of cachelines received reaches that number, the logic asserts 

the ready_for_reading input line to the memory cache, which uses that signal to switch to reading 

mode.  

 The memory cache starts out in write mode, receiving data as it comes in, and writing it to 

its internal block RAMs. On the assertion of the ready_for_reading line, the module switches to 

reading mode, and makes the first cacheline available on its read_data output line. When the latch 

state machine is ready to get the next cacheline, it strobes the cache_ack_read signal, which 
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causes the memory cache to increment its internal address and fetch the next cacheline. When all 

data from the second operand matrix has been latched out or the module’s soft_reset line is 

asserted, the module will jump back to the first cacheline and resume latching out cachelines 

sequentially as requested. The memory cache is its own module, and so will be discussed in more 

detail in the next module subsection. 

The Column Data Latch State Machine 

 The column data latch state machine is responsible for maintaining the interface between 

the processing blocks and the column access module’s internal memory cache module. This is a 

low speed interface, as the elements of a given cacheline of column data are consumed one at a 

time by each processing element in the system. Since each cacheline contains sixteen column 

elements, the column data latch need only work at the rate of one cacheline per sixteen cycles in 

order for the processing elements to still be able to work at full throughput. In addition, due to the 

design complexity associated with having one block RAM read port for every processing block, 

the state machine also latches the same cacheline out to each processing block in parallel. This 

requires that all processing blocks be in lockstep with one another, but since all processing blocks 

trigger at once and operate at full throughput this has little to no effect on latency. As a result of 

the low required speed and required synchronicity between multiple recipients, the column data 

latch uses a handshake-style method of data exchange as opposed to the streaming-style used in 

most of the rest of the system. In this method, the column data latch essentially treats the 

processing blocks collectively as a single data recipient. As far as the column data latch is 

concerned, the processing blocks are only requesting data when all processing blocks have their 

request_ready line asserted, and the processing blocks have only acknowledged receipt of data 

when all processing blocks have their response_read line asserted. This serves to achieve the 
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desired synchronicity without introducing significant design complexity. The state machine 

implementing this functionality is shown below in Figure 8. 

 

 Figure 8: The column data latch state machine 

 The column data latch state machine has three states: Latch Idle, Send, and Await Ack. It 

starts out in the Latch Idle state. When the module’s arguments_valid line is asserted, it 

transitions to the Send state. It will wait in the Send state until the column data has been received 

and the memory cache module has asserted its data_ready output line, and also until the 

processing blocks have all asserted their request_ready lines. In the system’s final configuration, 

the memory cache module will not assert data_ready until all the data for the second operand 

matrix has been received, so once data latching begins, it need never be considered again. When 

both data_ready and the request_ready lines have been asserted, the state machine asserts its own 

data_ready output line to the processing blocks and transitions to the Await Ack state. It will wait 

in this state until every processing block has de-asserted its request_ready line, and asserted its 

response_read line. This ensures that the state machine does not move on until every processing 

block has read and acknowledged the new data. Once the Ack signals have been received, the 

state machine will de-assert its data_ready signal and leave the Await Ack state. If the last 

cacheline was just latched out, then the state machine will transition to the Latch Idle state where 
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it will await another arguments_valid signal before starting again (quite possibly on the same 

data). If not, then the state machine will transition back to the Send state where it will repeat the 

process. 

 As with the other components to the column access module, the column data latch is fairly 

heavily pipelined in spite of the relatively light combinational logic involved in its operations. 

Incoming handshake signals from the processing blocks are registered, and outgoing data and 

handshake signals are also registered, as well as some internal signals to the state machine. This is 

so when the system is being built for FPGA, the fitter will spend relatively little time on the latch 

state machine where having a single cycle of latency is just as good as having ten cycles, and 

instead focus on more involved modules. An overall summary of the column access module 

depicting both its interface with other modules and the interfaces between individual components 

is shown below in figure 9. In addition the “Memory Cache” seen in the figure is discussed in 

detail in the following subsection “The Pipelined Memory Module”. 

 

 Figure 9: A more detailed view of the components of the column access module 
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The Pipelined Memory Module 

 The purpose of the pipelined memory module is to provide a means of storing the entirety 

of the second operand matrix such that it can be stored and retrieved in a reasonably efficient 

manner. In particular, the memory must be able to write a cacheline on every cycle, and must be 

able to read cachelines at the rate of at least one cacheline per sixteen cycles. The majority of 

iterations of the column access module design held the second operand matrix data in a large 

array defined directly in the Verilog RTL. This was functional, and can work at up to 200 MHz, 

but cannot reach the target clock speed of 400 MHz As the complexity and degree of pipelining of 

the memory increased, eventually it was necessary to break it out into a separate module. In its 

final form, the pipelined memory module is heavily pipelined and dual-clocked. The block RAM 

IPs are in a divided clock domain, and clock-crossing FIFOs are used to allow reads and writes to 

get across the border without any metastability issues. A summary view of the pipelined memory 

module is shown in Figure 10. 
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 Figure 10: The pipelined memory module. The outer dotted line box shows the borders of 

the module itself, and the inner dotted box shows the borders of the divided clock domain. 

 A natural consequence of clocking the memory at half the design clock speed is that writes 

to the memory can only occur every other cycle (from the perspective of the CCI-P bus). Since 

the CCI interface allows for read responses to arrive on consecutive clock cycles, this presents a 

problem that must be rectified. Fortunately, since memory requests can only be sent every other 

cycle, responses must on average arrive no faster than every other cycle. Thus the divided clocked 

memory will never fall behind, provided the read data is sufficiently buffered. The column access 

module is configured to request sixty-four cycles of access to the main CCI-P bus from the 

memory multiplexer, so the column access module may send at most thirty-two read requests in a 

burst before getting preempted. Thus to account for the unlikely event that those thirty-two read 
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responses arrive on thirty-two consecutive clock cycles, the write-side clock-crossing FIFO is set 

to be one cacheline wide (512 bit), and sixteen cachelines deep. (Over the thirty-two cycles, the 

memory can consume sixteen responses, so only the second sixteen need be buffered). 

 A peculiar feature of the pipelined memory module is that instead of having one single 

block RAM IP, it has four, each one containing one fourth of the column data. This is a measure 

to relieve timing pressure for the fitter. Not shown in the diagram are multiple stages of pipelining 

that ensures that even though the (quite large) memory IPs may be physically far apart from each 

other on the die, each one is small enough to propagate signals in a single cycle, and input and 

output signals will still reach them. In particular, data exiting the write-side clock-crossing FIFO 

is split into the four chunks that will go into each block RAM, and then registered before entering 

the IP. Similarly, the address line exiting the memory state machine is split into four identical 

signals, and then registered individually. This divides the fanout of the address signal by four, and 

also allows the fitter to place the address register entering into each IP physically close to that IP 

on the die, instead of having a single address bus having to traverse long distances to get to some 

or all of the memory IPs. In a similar manner, read data leaving the memory IPs is registered 

immediately, and only then combined to get a full cacheline of data before it is again registered in 

the read-side clock-crossing FIFO. 

The Pipelined Memory Module State Machine 

 The pipelined memory module state machine’s purpose is to control when the module is 

reading versus writing, and also to manage ready-signals. It, like the block RAM IPs and all the 

pipelining stages, is clocked at half the design clock speed. Like many of the modules in this 

design, the state machine is relatively simple with only three states: Writing, Reading, and Read 

(note that “Read” is past-tense here). Figure 11 below depicts this state machine. The machine 
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starts out in the Writing state, with a zeroed address. On every cycle where data is available in the 

write-side FIFO, that data is fed through as described above. The data-available line is buffered 

by a single cycle before being fed into the write-enable line of the block RAM IPs to ensure that it 

arrives at the same time as the data. The unbuffered data-available line is fed into the state 

machine, which increments the address immediately. Since the address signal is pipelined in the 

same manner as the data and enable lines, this has the effect of the address signals going into the 

memory IPs incrementing immediately after the data arrives at them. This allows data to be read 

from the write-side FIFO on every clock cycle, which is necessary to guarantee that the memory 

module never falls behind due to its slower clock. 

 

 

Figure 11: The pipelined memory module state machine 

 

 When the module receives the ready_for_reading signal from outside, the state machine 

transitions from the Writing state into the Reading state. Because the column access module is 

configured to wait until it has received all data from the second operand matrix before beginning 

to latch out data, the pipelined memory module will never need to alternate between writing and 

reading. Once in the reading state, the address signal going into the block RAM IPs is reset to 

zero, and latency-enforcing logic kicks in. A separate sequential logic circuit detects changes in 
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the address signal and resets a counter. The latency between changing the address signal at the 

state machine level and the data from that address appearing at the inputs to the read-side FIFO is 

three cycles. The circuit increments the counter for every cycle that the address signal is stable. 

When the counter hits the necessary three cycles, the write-enable line going into the read-side 

FIFO is strobed, and the state machine transitions into the Read state. An empty-signal on the 

divided clock-side of the read-side FIFO will then report that the FIFO holds data. Meanwhile a 

similar signal on the output side of the FIFO will let the column access module know that data is 

available. When the column access module latches in that data and acknowledges it, the read-side 

FIFO will once again report as empty. Once the empty signal is asserted, the state machine will 

transition from the Read state back into the Reading state, incrementing the address signal by one. 

This in turn triggers a reset of the latency counter, and the process repeats. 

The Processing Block Module 

 The processing block module is the coarsest level of subdivision for the processing 

functionality of the system. It is intended to be tiled, as many as will fit on the FPGA die. They 

can be dynamically assigned data and then set to work, and work independently of each other, 

only requiring access to memory muxer ports, and to column access data ports. Each processing 

block is assigned a ‘ribbon’ of sixteen rows of the first operand matrix, and computes the dot 

product of each of the sixteen rows with each column of the second operand matrix. It writes back 

the accumulated results as it finishes them, and reports back to the top-level controller once done, 

where it may be assigned another ribbon if there are still more rows to compute. The processing 

block directly contains no calculation logic, and instead serves as a container of other 

interconnected modules, namely the Processing Block Memory Controller, the Writeback module, 

and sixteen Processing Element instances. The processing block at the top level also has no state, 
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bar some inputs that are registered for pipelining purposes. It uses two memory muxer ports, and 

a column data port as well as various parameter and signal lines as part of its interface, and has 

the longest signature of any of the modules. Figure 12 depicts a summary of this interface, as well 

as the interfaces between the various submodules of each processing block. The three types of 

module seen in the diagram are discussed in detail in the following three subsections. 

 

 Figure 12: A summary block diagram of the Processing Block Module 

The Processing Block Memory Controller 

 The purpose of the processing block memory controller is to request, receive, and store 

data from the first operand matrix, to retrieve data from the second operand matrix, and to latch 

both data to the processing elements with full throughput (i.e., one element per clock cycle, 

sustained). To implement this functionality, the PB memory controller houses three state 

machines, one submodule, and various pieces of combinational and sequential logic linking the 
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four sub-components together. The first state machine is the memory request state machine, 

which is very similar to the memory request state machine present in the column access module. 

The second is the column data latch state machine, which is responsible for maintaining the 

interface with the column access module and retrieving column data before it is needed. The sub-

module is the PB memory cache module, which is a somewhat pipelined series of block RAM IPs 

responsible for storing and retrieving row data as the memory requests sent by the first state 

machine arrive. Finally, the processing block data latch state machine is responsible for reading 

row data out of the PB memory cache, and getting column data from the column data latch, and 

sending the proper data to each of the sixteen processing elements via the processing data ports. A 

summary view of this module is shown in Figure 13 below. 

 

 Figure 13: A summary view of the processing block memory controller module 

 

The Column Data Latch State Machine 
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 The column data latch state machine is responsible for making data from the second 

operand matrix available to the processing block data latch state machine so that it can 

continuously latch out matrix elements to the processing elements. To do this, it keeps track of 

both the current cacheline of column data and the next upcoming cacheline of column data. The 

PB data latch state machine provides a latching_last_thing signal that indicates that the data latch 

is currently latching out the last element of the current cacheline. When this signal is received, 

assuming that the next cacheline is available, it will be ‘demoted’ to the current cacheline on that 

cycle, allowing the PB data latch to keep latching out data with no pauses in between cachelines. 

To implement this functionality, the column data latch state machine has seven states: Idle, Wait 

For Rows, Get Current, Await Ack-Current, Get Next, Await Ack-Next, and Wait. These are all 

shown in Figure 14 below. 

 

 Figure 14: The column data latch state machine 

 

 The state machine starts out in the Idle state. When the arguments_valid signal is received, 

it transitions to the Wait For Rows state, while in this state, the machine effectively continues 
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idling, but is waiting for the sequential logic responsible for tracking read request responses to 

signal that all row data has been collected. This ensures that data latching does not begin before 

all the necessary data is available. Once the signal has been received, the state machine transitions 

to the Get Current State. In this state it asserts the request_ready line on the modules column data 

port, and waits for the column access module to assert the data_ready line. Once this occurs, the 

state machine latches in the data on the column data port, marks the current cacheline data as 

being ready, de-asserts its request_ready line, asserts its response_read line, and transitions to the 

Await Ack-Current state. In this state the machine waits for the column access module to de-

assert the data_ready line, which indicates that it is now safe to request the next cacheline. Once 

this has happened, the machine transitions to the Get Next state where it again requests a 

cacheline just like in the Get Current state. When the next cacheline arrives, the machine 

transitions to the Await Ack-Next state, where it again awaits the acknowledgement of the 

column access module. Once this has been received, the machine transitions into the Wait state, 

where it waits for the latching_last_thing signal to go high. 

 The reason that there are separate pairs of states for requesting the current and next 

cacheline is so the process of demotion works properly. The column data latch state machine 

needs to have the next cacheline available before the data latch state machine needs it to ensure 

full throughput. To accomplish this, if the state machine is in the Wait state, then both the current 

and next cachelines are ready to go. When latching_last_thing is received, the next current 

cacheline is thrown away, the next cacheline is demoted to the current cacheline, and the state 

machine transitions to the Get Next state, so that it can get the new next cacheline. If the state 

machine is in the Await Ack-Next state when latching_last_thing is received, then as before, the 

next cacheline is demoted to be the current cacheline, but the state machine transitions to Await 
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Ack-Current, because the cacheline whose acknowledgement is being awaited is now the current 

one. This way, when the acknowledgement is received, the machine will continue on to Get Next 

as normal, and not before the column access module is ready. Likewise, if the machine is in the 

Get Next state, it will transition to the Get Current state upon receipt of the latching_last_thing 

signal. In this case however, the next cacheline is not yet available, so nothing is put into the 

current cacheline, and it is marked as unready. This is considered an error condition, as it means 

that the latching of data has to stop in the middle of a column. The final configuration of this 

design is set so that it is impossible for this particular error condition to occur, but more error 

tolerance is never a bad thing. 

The Data Latch State Machine 

The Data Latch State Machine is responsible for combining the column data received by 

the column data latch state machine with row data read from the memory controller’s row-data 

cache, and latching both sets of data out to the processing elements in sync. In order for the 

processing block to have reasonable performance, this machine must be able to send a pair of 

elements to each processing element on every clock cycle, for a rate of sixteen multiplies per 

cycle. To accomplish this, it first waits for both the row data cache and the column latch state 

machine to have data available. It then lets the row data cache know to start latching out row data, 

and tracks the index of each element as it comes through. The element index is used to identify 

which element of the current column cacheline to send along. Row data comes at the rate of one 

cacheline per clock cycle, and each cacheline is split into sixteen elements which are fed into the 

“A” busses of the sixteen processing elements. The column data comes at the rate of one element 

per clock cycle, and all processing elements get the same column data element fed into their “B” 

bus on a given clock cycle. Combinational logic generates the latching_last_thing signal that the 
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column data latch state machine discussed above uses. When the element index is close to the end 

of the current cacheline, the latching_last_thing signal will automatically strobe, letting the 

column data latch state machine know that it needs to replace the current cacheline with the next 

one. The state machine also responds to back-pressure from the processing elements. It will not 

start latching until all the processing elements have asserted their ready-signal. The state machine 

that implements all this functionality is shown below in Figure 15. 

  

 Figure 15: A diagram of the data latch state machine 

 The state machine starts out in the Idle state, and transitions to the Writing state when the 

arguments_valid signal is received. In this state the machine is listening for responses to read 

requests. When one arrives over the memory muxer port, it is fed to the address in the row data 

cache corresponding to that response’s metadata tag, and a counter is incremented. When the 

counter shows that every response has been received and the processing elements all have their 

ready-lines asserted, and the column data latch state machine has data available, the state machine 

transitions to the Latching state. In this state, it signals the row data cache to start sending out 

data, and maintains the element index as mentioned above. Data starts flowing through the 

machine at the rate of sixteen pairs of matrix elements every cycle. This continues until the 

machine has moved the entirety of the sixteen rows assigned to it, and one column of the second 

operand matrix through to the processing elements. Every sixteen cycles, the latching_last_thing 
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signal strobes, causing the column data latch state machine to replace the column data that this 

state machine is reading from with the next cacheline of column data that it in turn previously 

requested from the column access module. When the entirety of the row/column pairs have been 

processed, the machine transitions to the Waiting state, where it waits for the processing elements 

to send the write request containing the sixteen elements of the result matrix that have just been 

computed. Once all processing elements once again have their ready-line asserted, the state 

machine may do one of two things. If there are still more columns to iterate through, then the 

machine will transition back to the Latching state, starting back at the beginning of the row data, 

and now iterating over the next column of the second operand matrix. If there are no more 

columns to iterate over, then the machine will transition back to the Idle state and await a new 

assignment of rows.  

The Processing Element Module 

 The processing element module is the computational core of this design. All the other 

modules are, in the end, a means to get data to the processing elements, or a means to get results 

out of the processing elements. Each processing element instance houses a simple state machine 

and a single multiply-accumulator IP. The state machine maintains the interfaces that the 

processing element has with the processing block memory controller on the incoming-data side, 

and with the writeback module on the outgoing-data side. The multiply-accumulator will compute 

and accumulate the dot product of a single row of the first operand matrix, and a single column of 

the second operand matrix. When this is complete, the total is sent to the writeback module, and 

then the processing element prepares to compute the next row/column pair. Figure 16 depicts the 

structure of the processing element module in a simple block diagram. 
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 Figure 16: A block diagram of the processing element module 

 Zoomed-in views on the data_port and writeback_port interfaces seen in Figure 16 are 

shown below in Figures 17 and 18 respectively. Finally, Figure 19 shows the state machine 

diagram for the processing element state machine. 

 

 Figure 17: A close-up view of the data_port interface that each processing element uses to 

communicate with the processing block memory controller 
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 Figure 18: A close-up view of the writeback_port interface that each processing element 

uses to communicate with the writeback module 

 

 

 Figure 19: The processing element state machine 

 The processing element state machine starts out in Idle. When the arguments_valid signal 

is received, the machine transitions to the Prep state. In this state, the multiplier IP is enabled, and 

allowed to sit for a total of four clock cycles before the state machine transitions to the 

multiplying state. In the multiplying state, the ready_for_next line is asserted, and the processing 

element waits for data to start arriving. Once it does start to arrive (signaled by the next_ready 

line getting asserted), the processing element independently counts how many elements have 
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arrived. As the last element approaches, the processing element will de-assert its ready_for_next 

line. After the last pair of elements has passed through, the machine transitions to the Wait state. 

The multiply-accumulator IP used has a latency of four clock cycles, so data fed into its inputs 

does not reflect in the output until four cycles afterwards, so to get correct outputs, the processing 

element must wait four cycles before continuing. Once this wait period is complete, the machine 

transitions to the Writeback state, where the output of the multiply-accumulator is placed on the 

result element bus of the writeback port, and result_ready is asserted . Once result_read is 

asserted by the writeback module, the processing element transitions to the Reset state, which 

triggers a reset of the multiply-accumulator, and then it transitions back to the Multiplying state, 

where the process repeats. 
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CHAPTER V 

PERFORMANCE 

  

 Upon completion of the design, benchmarking was done to determine how it performed. 

This was done with the use of the driver C++ program (which is included in the appendix), and 

several helper scripts. In particular, the driver program builds two square matrices of a given 

dimension, and writes them into a buffer that is shared with the hardware accelerator. It then starts 

a timer, gives the hardware accelerator the signal to start multiplying by performing a write to the 

accelerator’s fifth CSR (Control Status Register), and waits for the signal that the operation is 

complete by monitoring the status of the zeroth CSR, and finally reports back results. The 

benchmarking scripts build a picture of the system’s overall performance by repeating this 

process many times on matrices of different sizes. 

 When the design was first fully debugged and working, performance was relatively poor. 

This is shown in Figure 20. This is the result of two major factors: a relatively low level of 

parallelism, and low clock speeds. The initial implementation of the design was intended to be 

able to multiply matrices of up to 1024 elements to a side. In order to accomplish this, the 

memory caches in the accelerator needed to be able to store up to as much data as a 1024 matrix 

needs. This turned out to be very difficult to achieve, especially for the column access module, 

which needed four mebibytes of on-die block rams to hold all the data it needed. Four megabytes 

of memory is over half of what the Arria 10 FPGA has in total, leaving little left over for 

processing and controller overhead, and for the processing blocks’ memory caches. In response to 

this, the maximum matrix size was reduced to 512 elements, which caused the memory 

requirements of the column access module to shrink by a factor of four, down to one mebibyte. 
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 Figure 20: The initial performance seen by the hardware accelerator. The time that the 

accelerator spends is shown in blue, while the time spent doing the operation purely on the 

processor is shown in orange. 

 After the initial shrink of maximum matrix size, some minor tweaks were made to get 

higher efficiency in internal transactions. In particular, the amount of time that the processing 

elements spend waiting for resets and multiplier outputs to stabilize was reduced to the minimum 

possible values (a difference of four clock cycles per column processed). Next, the number of 

ports that the memory multiplexer provides was reduced so that it tightly fits the number required 

by the number of processing blocks in the current build of the design. This was made based on the 

observation when analyzing the code that even when no other modules are requesting access to 

the CCI-P bus, a writeback module may need to wait tens of cycles to obtain access. This was a 

result of the fact that the multiplexer cycles through its ports at the rate of one per cycle when 

looking for one requesting access to the memory bus. Consequently, if there are thirty-two ports, 
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the writeback module may need to wait at most thirty-two cycles between requesting access to the 

bus and receiving it, just to send a single write request. By reducing the number of ports, the 

worst-case wait was improved to eight cycles, which is imperfect but still a large improvement. 

After these incremental improvements, the accelerator managed to match, but not beat what the 

server-grade processor used on the HARP system could do on its own. Figure 21 shows the 

performance seen after these changes. 

 

 Figure 21: The performance of the hardware accelerator after some incremental 

improvements. Again, the time taken by the accelerator is shown in blue, and the time taken with 

a CPU multiply is shown in orange. 
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 The next primary candidates to obtain larger performance improvements were to increase 

the design clock speed, and to increase the number of processing blocks tiled in the design. The 

clock speed was an especially attractive option, as memory bandwidth on the CCI-P bus is 

directly proportional to the clock speed, and so are the number of multiplies per second. The 

initial performance measurements for this system were obtained at a speed of 200 MHz, but the 

maximum speed on the CCI-P bus is 400 MHz. It is very challenging to get a design with any 

complexity up to this speed, but based on slack measurements when builds were attempted, it was 

deemed possible (“slack” is a measure of how close a design is to meeting timing. When a path 

between two registers on the FPGA die is too long, a slack of, for example, -0.123 indicates that a 

signal passing between the two will arrive 123 picoseconds too late). A significant amount of 

development time was devoted to reworking the implementation to be pipelined in an incredibly 

aggressive manner, so that it could reach the desired speed. This included introducing pipeline 

stages in between individual or pairs of combinational logic blocks, breaking up any indexing of 

arrays into multiple stages, and registering both incoming and outgoing signals on most of the 

modules. This can be seen especially clearly in the column access module, where there are almost 

no unregistered signals or purely combinational assignments. Exactly which signals are 

registered, and in what manner is too tedious a topic to expect any reader to follow, so refer to the 

Verilog code describing these modules in the appendix for more detailed information on the 

pipelining. 

 Eventually the system was made to work at the desired 400 MHz, and an immediate 

performance improvement was seen. Because both the memory bandwidth and the number of 

multiplies per second doubled, the speed of multiplication for matrices almost doubled. This is 

seen in Figure 22. 
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 Figure 22: The final performance of the hardware accelerator, with two processing blocks 

clocked at 400 MHz. As before, the time that the hardware accelerator takes is in blue, while the 

time that the system processor takes to do the same operation is in orange. 

 In addition to timing measurements, data is also collected on when modules start and stop 

working, and in the case of the processing elements, how many cycles are spent on each task. 

Figure 23 depicts one such measurement on a processing block when working on a single ribbon 

of rows of a 512 element product matrix. The figure shows that the processing block spends only 

a very small amount of time waiting on data from the memory, and spends the vast majority of its 

time latching the data out to processing elements. This is as expected, because even though the 

time spent waiting on row data is relatively long, on the order of thousands of cycles, that data has 

to be iterated over not once, but once for every column in the second operand matrix, which in 

this case means 512 iterations. This says little about the efficiency of the actual computations, but 
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does indicate that memory accesses by the processing block are not taking more time or resources 

than they should. 

 

 Figure 23: The number of cycles a processing block spends on retrieving data, and on 

latching it to processing elements when working on a ribbon of rows of a 512 element product 

matrix. 
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 Figure 24: How many cycles a processing element spends on various tasks when operating 

on 512 element matrices. 

 To obtain a more detailed picture on what happens at the processing element-level, Figure 

24 depicts how many cycles a processing element spends on each subtask as it is working on 512 

element matrices. The first bar is the number of cycles spent multiplying. In particular, it means 

that the cycle in question was spent multiplying a single pair of elements together and adding the 

result to the accumulator. The next bar indicates time waiting for interfacing, such as when the 

processing element is waiting for the writeback module to acknowledge its result, or for the reset 

line to be held high on the multiply-accumulator for long enough. Over the course of a 512-

element multiply, this time adds up to be approximately eleven-thousand cycles. Since the 

multiply-writeback-reset cycle happens 512 times, this corresponds to an average latency of 

twenty cycles for every 512 cycles spent multiplying. In addition to delays associated with 
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waiting for resets and writebacks, there are also delays resulting from waiting for the processing 

block memory controller to be ready to start sending data, which is shown in the third bar of 

Figure 24. The bulk of this delay is accrued as the processing block is waiting to receive row data, 

and it also amounts to approximately eleven thousand clock cycles on the maximum matrix size. 

Overall the delays that the processing element sees causes it to have an efficiency of 

approximately 92% (time spent multiplying divided by time spent waiting). This is imperfect, but 

due to Amdahl’s law even a 100% efficiency rating would only result in a modest improvement 

for a potentially large amount of work. 
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CHAPTER VI 

FUTURE WORK 

  

The approach to matrix multiplication discussed in chapters 3 and 4 is not the only way to 

multiply two matrices together. That method (which I will call the standard approach) essentially 

focuses on doing the naïve method of matrix multiplication, where each row of the first operand 

matrix is multiplied with each column of the second operand matrix to produce each element of 

the product matrix. While this method is easily parallelizable, it has one major downside: it has a 

computational complexity of O(n3), which is not the best achievable complexity. This causes 

large penalties to be imposed when operating on very large (n of several hundred) matrices. 

One method of matrix multiplication that offers a better time complexity than the standard 

method is called Strassen’s algorithm. Strassen’s algorithm operates by dividing the operand 

matrices into eight block matrices, each one being one-quarter of an operand matrix. Seven 

intermediate product matrices are then formed through the multiplication of various combinations 

of block matrices, and then the product matrix is formed from sums of different intermediate 

matrices. The standard approach, if applied to the block matrices in the same way, would require 

eight multiplies between matrices of size 
𝑛

2
, whereas Strassen’s algorithm requires only seven. 

This means a roughly fifteen percent decrease in the number of element-multiplication operations 

required, at the cost of many additional addition operations being required. However, since 

multiplication has a complexity of O(n2) while addition has linear complexity, the method still 

offers a theoretical performance boost. When applied recursively, Strassen’s algorithm achieves 

an overall computational complexity of approximately O(n2.8), which for very large matrices (n of 
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at least several hundred), means having to do significantly fewer multiplies. Overall, performance 

gains still tend to be small though, as the added time required from having to do many addition 

operations, from cache misses due to nonsequential memory access, and from controller-level 

overhead tend to reduce performance far below what the algorithm is theoretically capable of. 

Another method of matrix multiplication achieves performance gains by not reducing 

computational complexity, but by eliminating repeated reads of the same data from memory. This 

method was devised by Scott and Khatri, and will be referred to here as Scatter multiplication [2]. 

Scatter multiplication operates by reversing the data order of the operand matrices as it is read in. 

In other words, the method reads in a column of the first operand matrix, and a row of the second 

operand, and multiplies those together (as opposed to a row of the first operand and a column of 

the second). When this is done, every unique pair of elements from the two vectors produces a 

partial product of a different element of the product matrix. Once the product of every unique pair 

of elements from the two vectors has been computed, the data from both vectors has made a 

contribution to every part of the product matrix, and thus will not be needed again. Since the 

naïve approach typically requires that one of the operands be read in many times, and memory 

access is a major performance bottleneck in modern computing, Scatter multiplication can 

potentially offer large performance benefits. The main downside to scatter multiplication is that it 

requires that individual elements of the product matrix be capable of accumulating partial results 

piecemeal. This mandates a minimum amount of logic for each element of the product matrix. 

Consequently, for matrices with n greater than a few hundred elements, even if each element of 

the product matrix is assumed to require only a single logic block (an unrealistic assumption), the 

majority of FPGA fabric space will be taken up by accumulators, and only accumulators. For 

matrices below a few hundred elements however, Scatter multiplication can potentially offer a 
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large performance increase, which makes it a valuable target for future work on the HARP 

system. 

Finally, there is still work to be done on the standard approach discussed in this paper. 

While clock speed eventually reached the maximum possible on HARP, more parallelism is still 

possible. The final implementation of the design only utilizes two processing blocks, for a total of 

thirty-two multiplies per clock cycle. The processing block scheme is designed to be arbitrarily 

scalable, as processing blocks do not depend on each other, so increasing the number of 

processing blocks will increase the number of multiplies per clock cycle without incurring any 

significant delays. In addition, fusing an implementation of Strassen’s method with this setup is 

an attractive prospect for expanding its capabilities to be able to operate on arbitrarily large 

matrices with better computational efficiency than either the standard approach or scatter 

multiplication could do on their own. Increasing the processing blocks and fusing this design with 

Strassen’s method are outside the scope of what can be done by a single researcher in a year, but 

are very promising for further research into, or commercial implementation of a machine learning 

hardware accelerator. 
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CHAPTER VII 

CONCLUSION 

  

 Over the course of this project, a matrix multiplication engine was implemented on Intel’s 

HARP system. It was optimized and pipelined to a high degree, with the target of being able to 

multiply large matrices together much faster than what could be done purely on a CPU. To this 

end, the processing capabilities were divided into progressively smaller units of granularity. First 

are the processing blocks which are responsible for forming the inner-product of bunches of rows 

at once. The processing blocks are tileable so that the design can be adapted to fit any amount of 

available logic or memory. Each processing block contains sixteen processing elements, each one 

of which can do one inner product of one row and column pair at a time. The processing elements 

all work in parallel, and the processing blocks above all work in parallel as well, allowing for 

potentially very many operations to be in flight simultaneously. 

 The final form of this scheme does outperform what can be done with the on-system 

processor, but not by a large margin. The performance difference ranges from more than a 

doubling of speed for smaller matrix sizes (n less than 250), to as little as a 25% improvement (for 

n of 512). This is due to a variety of factors. Foremost among them is the fact that not all the logic 

available on the FPGA die was taken by the design. The amount of time required to expand the 

parallelization without sacrificing clock speed due to increasingly long paths required to connect 

modules, means that only two processing blocks could be tiled without dropping down the clock 

speed, which would incur unacceptable performance penalties. However, only approximately 

27% of available memory on the FPGA die is taken by the design, and approximately 11% 

percent of the logic elements are taken up. A large proportion of those figures results from 
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constant overhead such as the memory multiplexer and column access modules. Every additional 

processing block only increases the memory and logic usage by about 1%. This suggests that far 

more parallelism is feasible, if it could not be achieved by a single undergraduate researcher. In 

addition, incremental improvements in parallelism between memory accesses and operations are 

possible, which would give further performance improvements. 

 In conclusion, this system can multiply matrices faster than what can be done in a purely 

CPU-based implementation. The current implementation does not on its own outperform the 

processor to enough of a degree to be commercially viable, but its performance combined with 

the relatively light logic usage of the FPGA suggests that a more skilled implementation could far 

outperform the CPU. As a result, HARP is a prime candidate both for future research into the 

subject of machine learning hardware accelerators, and for commercial applications of hardware 

acceleration. 
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APPENDIX 

  

The Column Access Module Verilog Code 

`ifndef COL_ACCESS 

`define COL_ACCESS 

 

`include "cci_mpf_app_conf.vh" 

`include "generated/mem_muxer.sv" 

`include "generated/pipelined_mem.sv" 

 

`define NUM_COL_BLOCK_PORTS 16 

`define MAX_BLOCK_PORT_INDEX 15 

 

 

interface col_block_port; 

logic request_ready; 

logic response_read; 

 

logic [511:0] data; 

logic data_ready; 

endinterface 

 

module col_port_stub( 

    col_block_port col_port 

); 

assign col_port.request_ready = 1; 

assign col_port.response_read = 1; 

endmodule 

 

module col_access( 

    input logic clk, 

    input logic clk_div2, 

    input logic reset_in, 

    input logic soft_reset_in, 

    input logic [31:0] cycles_in, 

    mem_muxer_port port, 

    col_block_port col_ports[`NUM_COL_BLOCK_PORTS], 

    input t_cci_clAddr base_addr, 

    input logic [7:0] stride_len, 

    input logic [9:0] num_cols_in, 

    input logic [7:0] num_blocks_in, 

    input logic args_valid_in, 

    input logic [3:0] unique_id, 

    output logic [31:0] time_of_start, 

    output logic [31:0] time_of_latch, 

    output logic [31:0] time_of_end, 

    output logic error 

); 

 

logic [31:0] cycles; 

logic [9:0] num_cols; 

logic reset; 

logic reset2; 

logic reset3; 

logic soft_reset; 

logic args_valid; 

 

always @(posedge clk) begin 

    reset <= reset_in; 

    reset2 <= reset_in; 

    reset3 <= reset_in; 

    soft_reset <= soft_reset_in; 

    args_valid <= args_valid_in; 

    cycles <= cycles_in; 
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    num_cols <= num_cols_in; 

end 

 

assign port.cycles_wanted = 64; 

assign port.tx1.valid = 0; 

t_cci_mpf_c0_ReqMemHdr rd_hdr; 

t_cci_mpf_ReqMemHdrParams rd_hdr_params; 

 

always_comb 

begin 

    rd_hdr_params = cci_mpf_defaultReqHdrParams(1); 

end 

 

 

logic read_valid; 

logic [511:0] out_data; 

 

logic data_arrived; 

logic [511:0] incoming_data; 

 

always @(posedge clk) begin 

    data_arrived <= cci_c0Rx_isReadRsp(port.rx) && !port.rx.hdr.mdata[15]; 

    incoming_data <= port.rx.data; 

end 

 

logic [15:0] recieving_addr; 

logic [15:0] reading_addr; 

logic [15:0] next_reading_addr; 

logic [7:0] num_blocks; 

logic [15:0] total_blocks; 

always @(posedge clk) begin 

    next_reading_addr <= reading_addr + 1; 

    num_blocks <= num_blocks_in; 

end 

 

logic cache_ack_read; 

logic cache_read_ready; 

logic ready_for_reading; 

logic ready_for_reading_int; 

logic [511:0] read_data_in; 

logic sending; 

 

pipelined_mem column_cache( 

    clk, 

    clk_div2, 

    reset, 

    soft_reset, 

    ready_for_reading, 

    data_arrived, 

    incoming_data, 

    cache_ack_read, 

    unique_id, 

    cache_read_ready, 

    read_data_in, 

    error 

); 

 

assign cache_ack_read = sending; 

 

//logic [15:0] total_blocks_recieved; 

logic [15:0] total_blocks_sent; 

logic [15:0] total_blocks_requested; 

 

always @(posedge clk) begin 

    if(reset2) begin 

        ready_for_reading_int <= 0; 

        ready_for_reading <= 0; 

        recieving_addr <= 0; 

    end 

    else begin 

        if(data_arrived) begin 
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            recieving_addr <= recieving_addr + 1; 

        end 

        if(error) $display("ERROR column cache overflowed!"); 

 

        ready_for_reading_int <= (recieving_addr == total_blocks) && (total_blocks != 0); 

        ready_for_reading <= ready_for_reading_int; 

         

        if(ready_for_reading_int) 

            time_of_latch <= cycles; 

    end 

end 

 

always @(posedge clk) begin 

    if(cache_read_ready) begin 

        out_data <= read_data_in; 

    end 

end 

 

logic [17:0] mult_out; 

int_mult mult0( 

    num_blocks, 

    num_cols, 

    clk, 

    reset, 

    mult_out 

); 

 

always @(posedge clk) begin 

    total_blocks <= mult_out; 

end 

 

logic [`NUM_COL_BLOCK_PORTS-1:0] request_ready; 

logic [`NUM_COL_BLOCK_PORTS-1:0] response_read; 

 

logic data_ready; 

logic [9:0] cols_sent; 

logic [9:0] next_cols_sent; 

 

logic [7:0] blocks_sent; 

logic [7:0] next_blocks_sent; 

 

logic [15:0] next_total_blocks_sent; 

 

always @(posedge clk) begin 

    next_total_blocks_sent <= total_blocks_sent + 1; 

end 

 

always @(posedge clk) begin 

    %%repeat i 0 `MAX_BLOCK_PORT_INDEX 

    request_ready[%%i] <= col_ports[%%i].request_ready; 

    response_read[%%i] <= col_ports[%%i].response_read; 

    col_ports[%%i].data_ready <= data_ready; 

    col_ports[%%i].data <= out_data; 

    %%repeat 

end 

 

typedef enum logic [2:0] { 

    LATCH_IDLE, 

    SEND, 

    AWAIT_ACK 

} col_latch_state_t; 

 

col_latch_state_t latch_state; 

 

logic [15:0] counter; 

assign sending = (latch_state == SEND) && request_ready == 16'hffff && cache_read_ready; 

 

//LATCH LOGIC 

always @(posedge clk) begin 

    if(reset3 || soft_reset) begin 

        data_ready <= 0; 
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        blocks_sent <= 0; 

        cols_sent <= 0; 

        if(reset) begin 

            latch_state <= LATCH_IDLE; 

        end 

        else begin 

            latch_state <= SEND; 

        end 

        counter <= 0; 

        reading_addr <= 0; 

    end 

    else begin 

        case(latch_state) 

        LATCH_IDLE: begin 

            data_ready <= 0; 

            blocks_sent <= 0; 

            cols_sent <= 0; 

            reading_addr <= 0; 

            total_blocks_sent <= 0; 

            if(args_valid) begin 

                time_of_start <= cycles; 

                latch_state <= SEND; 

            end 

        end 

        SEND: begin 

            if(request_ready == 16'hffff && cache_read_ready) begin 

                data_ready <= 1; 

                latch_state <= AWAIT_ACK; 

            end 

        end 

        AWAIT_ACK: begin 

            if(response_read == 16'hffff) begin 

                if(next_total_blocks_sent == total_blocks) begin 

                    latch_state <= LATCH_IDLE; 

                end 

                else begin 

                    latch_state <= SEND; 

                    reading_addr <= next_reading_addr; 

                    total_blocks_sent <= next_total_blocks_sent; 

                end 

                data_ready <= 0; 

            end 

        end 

        endcase 

    end 

end 

 

%%track_state_machine(col_latch_state_t, latch_state); 

 

 

logic [7:0] blocks_requested; 

logic [11:0] cols_requested; 

logic [7:0] next_block_requested; 

assign next_block_requested = (blocks_requested + 1 == num_blocks)? 0: (blocks_requested + 1); 

logic [11:0] next_col_requested; 

assign next_col_requested = cols_requested + 1; 

t_cci_clAddr data_addr; 

 

logic [15:0] next_total_blocks_requested; 

assign next_total_blocks_requested = total_blocks_requested + 1; 

 

typedef enum logic [1:0] { 

    IDLE, 

    PREP_REQUEST, 

    SEND_REQUEST 

} col_request_state_t; 

 

col_request_state_t req_state; 

 

logic sending_now; 

assign port.tx0 = cci_mpf_genC0TxReadReq(rd_hdr, (req_state == SEND_REQUEST && sending_now)); 
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always @(posedge clk) begin 

    sending_now <= !port.tx0full && port.tx_ready; 

end 

 

logic [15:0] metadata; 

assign metadata[15] = 0; 

assign metadata[14:0] = total_blocks_requested[14:0]; 

 

//REQUEST LOGIC 

always @(posedge clk) begin 

    if(reset3) begin 

        data_addr <= 0; 

        req_state <= IDLE; 

        blocks_requested <= 0; 

        cols_requested <= 0; 

        port.want_tx <= 0; 

    end 

    else begin 

        case(req_state) 

        IDLE: begin 

            if(args_valid) begin 

                total_blocks_requested <= 0; 

                blocks_requested <= 0; 

                cols_requested <= 0; 

                data_addr <= base_addr; 

                req_state <= PREP_REQUEST; 

                port.want_tx <= 1; 

            end 

        end 

        PREP_REQUEST: begin 

            rd_hdr <= cci_mpf_c0_genReqHdr(eREQ_RDLINE_I, 

                                           data_addr, 

                                           t_cci_mdata'(unique_id), 

                                           rd_hdr_params); 

            req_state <= SEND_REQUEST; 

        end 

        SEND_REQUEST: begin 

            if(sending_now) begin 

                blocks_requested <= next_block_requested; 

                data_addr <= data_addr + 1; 

                total_blocks_requested <= next_total_blocks_requested; 

                if(next_total_blocks_requested == total_blocks) begin 

                    req_state <= IDLE; 

                    port.want_tx <= 0; 

                end 

                else begin 

                    req_state <= PREP_REQUEST; 

                end 

            end 

        end 

        endcase 

    end 

end 

 

%%track_state_machine(col_request_state_t, req_state, 0); 

 

endmodule 

 

`endif 

 

The Processing Block Module Verilog Code 

`ifndef PROCESSING_BLOCK 

`define PROCESSING_BLOCK 

 

`include "cci_mpf_if.vh" 

`include "csr_mgr.vh" 
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`include "afu_json_info.vh" 

`include "cci_mpf_app_conf.vh" 

 

`include "generated/mem_muxer.sv" 

`include "generated/pb_memory_controller.sv" 

`include "generated/processing_element.sv" 

 

module processing_block( 

    input logic clk, 

    input logic reset, 

    input logic [31:0] cycles_in, 

    mem_muxer_port writeback_ext_port, 

    mem_muxer_port mem_controller_ext_port, 

    col_block_port col_port, 

    input logic [9:0] width, 

    input logic [7:0] stride_len, 

    input t_ccip_clAddr base_addr, 

    input t_ccip_clAddr res_addr, 

    input logic args_valid_in, 

    input logic run_in_idle_in, 

    input logic [3:0] unique_id, 

    input logic spokesman, 

    output logic done, 

    output logic [31:0] pbmem_start, 

    output logic [31:0] pbmem_latch, 

    output logic [31:0] pbmem_end, 

    output logic [31:0] petotal, 

    output logic [31:0] pemult, 

    output logic [31:0] pewait 

); 

 

writeback_port write_ports[16](); 

data_port data_ports[16](); 

 

logic [31:0] cycles; 

 

logic reset_reg0; 

logic reset_reg1; 

logic reset_reg2; 

logic reset_reg3; 

logic args_valid0; 

logic args_valid1; 

logic args_valid2; 

logic run_in_idle; 

always @(posedge clk) begin 

    reset_reg0 <= reset; 

    reset_reg1 <= reset; 

    reset_reg2 <= reset; 

    reset_reg3 <= reset; 

    args_valid0 <= args_valid_in; 

    args_valid1 <= args_valid_in; 

    args_valid2 <= args_valid_in; 

    run_in_idle <= run_in_idle_in; 

     

    cycles <= cycles_in; 

end 

 

writeback write0( 

    clk, 

    reset_reg0, 

    writeback_ext_port, 

    write_ports, 

    res_addr, 

    stride_len, 

    width, 

    args_valid0, 

    spokesman, 

    done, 

    unique_id 

); 
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pb_mem_controller mem0( 

    clk, 

    reset_reg1, 

    cycles, 

    mem_controller_ext_port, 

    col_port, 

    data_ports, 

    base_addr, 

    stride_len, 

    width, 

    args_valid1, 

    spokesman, 

    run_in_idle, 

    unique_id+1, 

    pbmem_start_in, 

    pbmem_latch_in, 

    pbmem_end_in 

); 

 

logic [7:0] pe_states [15:0]; 

 

logic [31:0] petotals [15:0]; 

logic [31:0] pemults [15:0]; 

logic [31:0] pewaits [15:0]; 

 

processing_element pe[16]( 

    clk,  

    reset_reg2,  

    data_ports,  

    write_ports,  

    width,  

    args_valid2, 

    spokesman? 16'b0000000000000001: 16'b0, 

    8'b0, 

    petotals, 

    pemults, 

    pewaits 

); 

 

always @(posedge clk) begin 

    petotal <= petotals[0]; 

    pemult <= pemults[0]; 

    pewait <= pewaits[0]; 

     

    pbmem_start <= pbmem_start_in; 

    pbmem_latch <= pbmem_latch_in; 

    pbmem_end <= pbmem_end_in; 

end 

 

endmodule 

 

`endif 

 

The Top Level Module Verilog Code 

`include "cci_mpf_if.vh" 

`include "csr_mgr.vh" 

`include "afu_json_info.vh" 

`include "cci_mpf_app_conf.vh" 

 

`include "generated/mem_muxer.sv" 

`include "generated/pb_memory_controller.sv" 

`include "generated/processing_element.sv" 

`include "generated/writeback.sv" 

`include "generated/processing_block.sv" 

 

`define NUM_PBS         2 

`define MAX_PB_INDEX     1 
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//`define SLOW_CLK 

//`define _SIM 

 

module app_afu 

   ( 

    input  logic clk_in, 

    input logic clk_div2_in, 

    input logic clk_div4_in, 

 

    // Connection toward the host.  Reset comes in here. 

    cci_mpf_if.to_fiu fiu, 

 

    // CSR connections 

    app_csrs.app csrs, 

 

    // MPF tracks outstanding requests.  These will be true as long as 

    // reads or unacknowledged writes are still in flight. 

    input  logic c0NotEmpty, 

    input  logic c1NotEmpty 

); 

 

logic clk; 

logic clk_div2; 

 

`ifdef _SIM 

    assign clk = clk_in; 

     

    always @(posedge clk) begin 

        if(fiu.reset) 

            clk_div2 <= 0; 

        else begin 

            clk_div2 <= ~clk_div2; 

        end 

    end 

`else 

    `ifndef SLOW_CLK 

        assign clk = clk_in; 

        assign clk_div2 = clk_div2_in; 

    `else 

        assign clk = clk_div2_in; 

        assign clk_div2 = clk_div4_in; 

    `endif 

`endif 

 

 

logic [7:0] unique_id; 

assign unique_id = %%assign_unique_id; 

 

logic reset; 

assign reset = fiu.reset; 

 

localparam CL_BYTE_IDX_BITS = 6; 

typedef logic [$bits(t_cci_clAddr) + CL_BYTE_IDX_BITS - 1 : 0] t_byteAddr; 

 

function automatic t_cci_clAddr byteAddrToClAddr(t_byteAddr addr); 

    return addr[CL_BYTE_IDX_BITS +: $bits(t_cci_clAddr)]; 

endfunction 

 

function automatic t_byteAddr clAddrToByteAddr(t_cci_clAddr addr); 

    return {addr, CL_BYTE_IDX_BITS'(0)}; 

endfunction 

 

t_ccip_clAddr result_addr; 

 

logic start_operation; 

t_ccip_clAddr first_mat_addr; 

t_ccip_clAddr second_mat_addr; 

 

logic [9:0] mat_height; 

logic [9:0] mat_width; 
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logic error; 

logic error_out; 

 

always @(posedge clk) begin 

    if(reset) begin 

        error_out <= 0; 

    end 

    else begin 

        if(error) begin 

            error_out <= 1; 

        end 

    end 

end 

 

logic [31:0] cycles; 

 

always @(posedge clk) begin 

    if(reset) begin 

        cycles <= 0; 

    end 

    else begin 

        cycles <= cycles + 1; 

    end 

end 

 

logic [31:0] petotals[`NUM_PBS-1:0]; 

logic [31:0] pemults[`NUM_PBS-1:0]; 

logic [31:0] pewaits[`NUM_PBS-1:0]; 

logic [31:0] pbmem_starts[`NUM_PBS-1:0]; 

logic [31:0] pbmem_latchs[`NUM_PBS-1:0]; 

logic [31:0] pbmem_ends[`NUM_PBS-1:0]; 

logic [31:0] colstart; 

logic [31:0] collatch; 

logic [31:0] colend; 

 

logic done; 

     

always_comb 

begin 

    // The AFU ID is a unique ID for a given program.  Here we generated 

    // one with the "uuidgen" program and stored it in the AFU's JSON file. 

    // ASE and synthesis setup scripts automatically invoke afu_json_mgr 

    // to extract the UUID into afu_json_info.vh. 

    csrs.afu_id = `AFU_ACCEL_UUID; 

 

    // Default 

    for (int i = 7; i < NUM_APP_CSRS; i = i + 1) 

    begin 

        csrs.cpu_rd_csrs[i].data = 64'(0); 

    end 

     

    csrs.cpu_rd_csrs[0].data = 64'(done); 

     

    csrs.cpu_rd_csrs[1].data = {petotals[0], pemults[0]}; 

    csrs.cpu_rd_csrs[2].data = pewaits[0]; 

    csrs.cpu_rd_csrs[3].data = {pbmem_starts[0], pbmem_latchs[0]}; 

    csrs.cpu_rd_csrs[4].data = pbmem_ends[0]; 

    csrs.cpu_rd_csrs[5].data = {colstart, collatch}; 

    csrs.cpu_rd_csrs[6].data = {colend, 32'(error)}; 

end 

 

always_ff @(posedge clk) 

begin 

    if(reset) begin 

        result_addr <= 0; 

        first_mat_addr <= 0; 

        second_mat_addr <= 0; 

        start_operation <= 0; 

        mat_height <= 0; 

        mat_width <= 0; 
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    end 

    else begin 

        if (csrs.cpu_wr_csrs[0].en) 

        begin 

            result_addr <= byteAddrToClAddr(csrs.cpu_wr_csrs[0].data); 

            $display("result addr: %d", byteAddrToClAddr(csrs.cpu_wr_csrs[0].data)); 

        end 

         

        if (csrs.cpu_wr_csrs[1].en) 

        begin 

            first_mat_addr <= byteAddrToClAddr(csrs.cpu_wr_csrs[1].data); 

            $display("first addr: %d", byteAddrToClAddr(csrs.cpu_wr_csrs[1].data)); 

        end 

         

        if (csrs.cpu_wr_csrs[2].en) 

        begin 

            second_mat_addr <= byteAddrToClAddr(csrs.cpu_wr_csrs[2].data); 

            $display("second addr: %d", byteAddrToClAddr(csrs.cpu_wr_csrs[2].data)); 

        end 

         

        if (csrs.cpu_wr_csrs[3].en) 

        begin 

            mat_height <= csrs.cpu_wr_csrs[3].data; 

            $display("height: %d", csrs.cpu_wr_csrs[3].data); 

        end 

         

        if (csrs.cpu_wr_csrs[4].en) 

        begin 

            mat_width <= csrs.cpu_wr_csrs[4].data; 

            $display("width: %d", csrs.cpu_wr_csrs[4].data); 

        end 

         

        start_operation <= csrs.cpu_wr_csrs[5].en; 

    end 

end 

 

 

 

 

logic yup_we_good; 

assign yup_we_good = 1;/*(mat_height != 0) &&  

                     (mat_width != 0) &&  

                     (result_addr != 0) &&  

                     (first_mat_addr != 0) &&  

                     (second_mat_addr != 0);*/ 

                      

logic [3:0] pb_index; 

logic [9:0] rows_covered; 

logic [3:0] cycles_waited; 

logic [3:0] next_cycles_waited; 

logic [7:0] address_offset; 

assign next_cycles_waited = cycles_waited + 1; 

 

t_ccip_clAddr curr_input_addr; 

t_ccip_clAddr curr_res_addr; 

logic pb_start; 

 

//these will be in an array eventually 

t_ccip_clAddr input_addr[`NUM_PBS-1:0]; 

t_ccip_clAddr input_res_addr[`NUM_PBS-1:0]; 

logic [`NUM_PBS-1:0] pb_enable; 

logic [`NUM_PBS-1:0] pb_done; 

 

logic all_rows_covered; 

logic addressed_all_pbs; 

//assign all_rows_covered = rows_covered[9:3] == mat_width[9:3]; 

 

always @(posedge clk) begin 

    all_rows_covered <= rows_covered[9:3] == mat_width[9:3]; 

    addressed_all_pbs <= pb_index == `NUM_PBS; 

end 
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typedef enum logic [2:0] { 

    IDLE, 

    DISPATCH, 

    DISPATCH_SET, 

    START, 

    WAIT, 

    RESET_PB, 

    RESET_COL 

} controller_state_t;  

 

controller_state_t state; 

 

always @(posedge clk) begin 

    if(reset) begin 

        state <= IDLE; 

        rows_covered <= 0; 

        cycles_waited <= 0; 

        //curr_input_addr <= 0; 

        //curr_res_addr <= 0; 

        pb_index <= 0; 

        done <= 0; 

        address_offset <= 0; 

        %%repeat i 0 `MAX_PB_INDEX 

        input_addr[%%i] <= 0; 

        input_res_addr[%%i] <= 0; 

        pb_enable[%%i] <= 0; 

        %%repeat 

    end 

    else begin 

        case(state) 

        IDLE: begin 

            if(start_operation && yup_we_good) begin 

                state <= DISPATCH; 

                //curr_input_addr <= first_mat_addr; 

                //curr_res_addr <= result_addr; 

                address_offset <= 0; 

                pb_index <= 0; 

                rows_covered <= 0; 

            end 

            if(start_operation)  

                done <= 0; 

        end 

        DISPATCH: begin 

            if(addressed_all_pbs) begin 

                state <= START; 

            end 

            else begin 

                if(!all_rows_covered) begin 

                    input_addr[pb_index] <= first_mat_addr + address_offset; 

                    input_res_addr[pb_index] <= result_addr + address_offset; 

                    pb_enable[pb_index] <= 1; 

                    rows_covered <= rows_covered + 16; 

                    address_offset <= address_offset + 1; 

                end 

                else begin 

                    pb_enable[pb_index] <= 0; 

                end 

                state <= DISPATCH_SET; 

            end 

            pb_index <= pb_index + 1; 

        end 

        DISPATCH_SET: begin 

            state <= DISPATCH; 

        end 

        START: begin 

            state <= WAIT; 

        end 

        WAIT: begin 

            if(pb_done|~pb_enable == {`NUM_PBS{1'b1}}) begin 

                state <= RESET_PB; 
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                cycles_waited <= 0; 

            end 

            //if(pb_done != 0) begin 

            //    $display("ERROR: PB IS REPORTING AS DONE WTF"); 

            //end 

        end 

        RESET_PB: begin 

            cycles_waited <= cycles_waited + 1; 

            if(cycles_waited == 8) begin 

                if(all_rows_covered) begin 

                    done <= 1; 

                    state <= RESET_COL; 

                    cycles_waited <= 0; 

                end 

                else begin 

                    pb_index <= 0; 

                    state <= DISPATCH; 

                end 

            end 

        end 

        RESET_COL: begin 

            cycles_waited <= next_cycles_waited; 

            if(cycles_waited == 8) begin 

                state <= IDLE; 

            end 

        end 

        endcase 

    end 

end 

 

%%track_state_machine(controller_state_t, state); 

 

mem_muxer_port mem_muxer_ports[`NUM_MEM_MUXER_PORTS](); 

col_block_port col_ports[16](); 

 

logic [3:0] unique_ids[`NUM_PBS-1:0]; 

assign unique_ids = %%assign_unique_ids(`NUM_PBS, 2); 

 

mem_muxer mux0( 

    clk,  

    reset,  

    cycles, 

    fiu,  

    mem_muxer_ports, 

    0 

); 

 

col_access col0( 

    clk, 

    clk_div2, 

    reset || (state == RESET_COL), 

    (state == RESET_PB),    //soft reset 

    cycles, 

    mem_muxer_ports[2*`NUM_PBS], 

    col_ports, 

    second_mat_addr, 

    mat_height >> 4, 

    mat_width, 

    mat_height >> 4, 

    start_operation && yup_we_good, 

    0, 

    colstart, 

    collatch, 

    colend, 

    error 

); 

 

genvar i; 

for(i=0; i<`NUM_PBS; i+=1) begin : make_pbs 

    processing_block pb0( 

        clk, 
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        reset || (state == RESET_PB), 

        cycles, 

        mem_muxer_ports[2*i], 

        mem_muxer_ports[2*i + 1], 

        col_ports[i], 

        mat_width, 

        mat_height >> 4, 

        input_addr[i], 

        input_res_addr[i], 

        pb_enable[i] && (state == START), 

        !pb_enable[i] && ((state == WAIT) || (state == START)), 

        unique_ids[i], 

        (i == 0), //spokesman 

        pb_done[i], 

        pbmem_starts[i], 

        pbmem_latchs[i], 

        pbmem_ends[i], 

        petotals[i], 

        pemults[i], 

        pewaits[i] 

    ); 

end 

 

assign top_level_states = 32'(0); 

 

for(i=`NUM_PBS; i<16; i+=1) begin 

    assign col_ports[i].request_ready = 1; 

    assign col_ports[i].response_read = 1; 

end 

 

for(i=2*`NUM_PBS+1; i<`NUM_MEM_MUXER_PORTS; i+=1) begin 

    assign mem_muxer_ports[i].want_tx = 0; 

end 

 

endmodule 

 

The Memory Multiplexer Module Code 

`ifndef MEM_MUXER 

`define MEM_MUXER 

 

`include "cci_mpf_if.vh" 

`include "csr_mgr.vh" 

`include "afu_json_info.vh" 

`include "cci_mpf_app_conf.vh" 

 

`define NUM_MEM_MUXER_PORTS    5 

`define MUXER_PORTS_MAX_INDEX  4 

`define MEM_MUXER_PORT_BITS    4 

 

interface mem_muxer_port; 

    t_if_cci_c0_Rx rx; 

    logic tx_ready; 

    logic tx0full; 

    logic tx1full; 

     

    logic want_tx; 

    logic [7:0] cycles_wanted; 

    t_if_cci_mpf_c0_Tx tx0; 

    t_if_cci_mpf_c1_Tx tx1; 

endinterface 

 

module mem_muxer_port_stub( 

    mem_muxer_port port 

); 

assign want_tx = 0; 

endmodule 
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module mem_muxer( 

    input logic clk, 

    input logic reset, 

    input logic [31:0] cycles_in, 

    cci_mpf_if.to_fiu fiu, 

     

    mem_muxer_port ports[`NUM_MEM_MUXER_PORTS], 

    input logic [7:0] unique_id 

); 

 

logic [31:0] cycles; 

 

always @(posedge clk) begin 

    cycles <= cycles_in; 

end 

 

logic [`MEM_MUXER_PORT_BITS - 1:0] port; 

logic [`MEM_MUXER_PORT_BITS - 1:0] next_port; 

//assign next_port = (port + 1)%`NUM_MEM_MUXER_PORTS; 

assign next_port = (port == `MUXER_PORTS_MAX_INDEX)? 0: (port+1); 

logic [7:0] cycles_left; 

 

assign fiu.c2Tx.mmioRdValid = 1'b0; 

 

//t_if_cci_mpf_c0_Tx selected_tx0; 

//t_if_cci_mpf_c1_Tx selected_tx1; 

 

always @(posedge clk) begin 

    case(port) 

    %%repeat i 0 `MUXER_PORTS_MAX_INDEX 

    %%i: begin 

        fiu.c0Tx <= ports[%%i].tx0; 

        fiu.c1Tx <= ports[%%i].tx1; 

    end 

    %%repeat 

    endcase 

     

    //if(fiu.c0TxAlmFull) $display("TX ALM FULL"); 

    //if(fiu.c0Tx.valid) $display("VALID"); 

end 

 

genvar i; 

for(i=0; i<`NUM_MEM_MUXER_PORTS; i+=1) begin 

    assign ports[i].tx0full = fiu.c0TxAlmFull; 

    assign ports[i].tx1full = fiu.c1TxAlmFull; 

    //assign ports[i].rx = fiu.c0Rx; 

end 

 

always @(posedge clk) begin 

    %%repeat i 0 `MUXER_PORTS_MAX_INDEX 

    ports[%%i].rx <= fiu.c0Rx; 

    %%repeat 

end 

 

typedef enum logic [2:0] { 

    RELAYING, 

    STOPPING, 

    STOPPING2, 

    CHANGING 

} mem_muxer_states; 

 

mem_muxer_states state; 

 

logic [7:0] counter; 

 

always @(posedge clk) begin 

    if(reset) begin 

        counter <= 0; 

     

        state <= CHANGING; 

        port <= 0; 
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        %%repeat i 0 `MUXER_PORTS_MAX_INDEX 

        ports[%%i].tx_ready <= 0; 

        %%repeat 

        //fiu.c0Tx.valid <= 0; 

        //fiu.c1Tx.valid <= 0; 

    end 

    else begin 

        counter <= counter + 1; 

        case(state) 

        RELAYING: begin 

            case(port) 

            %%repeat i 0 `MUXER_PORTS_MAX_INDEX 

            %%i: begin 

                ports[%%i].tx_ready <= 1; 

            end 

            %%repeat 

            endcase 

            cycles_left <= cycles_left - 1; 

            if(cycles_left == 0) begin 

                state <= STOPPING; 

            end 

        end 

        STOPPING: begin 

            case(port) 

            %%repeat i 0 `MUXER_PORTS_MAX_INDEX 

            %%i: begin 

                ports[%%i].tx_ready <= 0; 

            end 

            %%repeat 

            endcase 

            state <= STOPPING2; 

        end 

        STOPPING2: begin 

            state <= CHANGING; 

        end 

        CHANGING: begin 

            //fiu.c0Tx.valid <= 0; 

            //fiu.c1Tx.valid <= 0; 

            case(next_port) 

            %%repeat i 0 `MUXER_PORTS_MAX_INDEX 

            %%i: begin 

                if(ports[%%i].want_tx) begin 

                    cycles_left <= ports[%%i].cycles_wanted; 

                    ports[%%i].tx_ready <= 1; 

                    state <= RELAYING; 

                end 

            end 

            %%repeat 

            endcase 

            port <= next_port; 

        end 

        endcase 

    end 

end 

 

 

%%track_state_machine(mem_muxer_states, state, 0); 

 

 

endmodule 

 

`endif 

 

The Processing Block Memory Controller Code 

`ifndef PB_MEMORY_CACHE 

`define PB_MEMORY_CACHE 
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`include "cci_mpf_if.vh" 

`include "csr_mgr.vh" 

`include "afu_json_info.vh" 

`include "cci_mpf_app_conf.vh" 

 

module pb_memory_cache( 

    input logic clk, 

    input logic reset, 

    input logic [511:0] write_data_in, 

    input logic write_ready_in, 

    input logic [8:0] write_addr_in, 

    input logic ready_for_latch, 

    output logic [511:0] read_data_out, 

    output logic read_valid_out, 

    output logic [9:0] addr, 

    input logic [7:0] unique_id 

); 

 

logic [9:0] next_addr; 

logic [9:0] written; 

logic last_addr; 

logic read_valid_in; 

logic read_valid; 

logic [511:0] write_data; 

//logic [511:0] read_data; 

 

%%repeat i 0 7 

logic [9:0] addr%%i; 

logic write_ready%%i; 

%%repeat 

 

assign next_addr = addr0 + 1; 

 

always @(posedge clk) begin 

    write_data <= write_data_in; 

    //read_data_out <= read_data; 

    read_valid_out <= read_valid; 

    read_valid <= read_valid_in; 

    %%repeat i 0 7 

    write_ready%%i <= write_ready_in; 

    %%repeat 

end 

 

%%repeat i 0 7 

logic [63:0] read_data%%i; 

logic [63:0] read_data_out%%i; 

 

always @(posedge clk) begin 

    read_data_out%%i <= read_data%%i; 

end 

%%repeat 

 

assign read_data_out = { 

    read_data_out7,  

    read_data_out6,  

    read_data_out5,  

    read_data_out4,  

    read_data_out3,  

    read_data_out2,  

    read_data_out1,  

    read_data_out0 

}; 

 

%%repeat i 0 7 

pb_block_ramtry2 pb_ram%%i( 

    write_data[64*(%%i+1)-1:64*%%i], 

    addr%%i[8:0], 

    write_ready%%i, 

    clk, 

    read_data%%i 
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); 

%%repeat 

 

typedef enum logic [3:0] { 

    WRITING, 

    READING, 

    WAITING 

} pb_mem_cache_state_t; 

 

pb_mem_cache_state_t pb_mem_state; 

 

always @(posedge clk) begin 

    if(reset) begin 

        written <= 0; 

        pb_mem_state <= WRITING; 

        read_valid_in <= 0; 

        %%repeat i 0 7 

        addr%%i <= 0; 

        %%repeat 

    end 

    else begin 

        case(pb_mem_state) 

        WRITING: begin 

            addr <= written; 

            if(write_ready_in) begin 

                written <= written + 1; 

                %%repeat i 0 7 

                addr%%i <= write_addr_in; 

                %%repeat 

                $display("PB memory cache latching in %h", write_data); 

            end 

            else if(ready_for_latch) begin 

                if(written[3:0] != 0)  

                    $display("ERROR: pb mem cache did not read a multiple of 16 rows in! (%d)", 

written); 

                pb_mem_state <= READING; 

                %%repeat i 0 7 

                addr%%i <= 0; 

                %%repeat 

                read_valid_in <= 1; 

                //$display("ROW CACHE HAS %d ROWS WRITTEN", written); 

            end 

        end 

        READING: begin 

            %%repeat i 0 7 

            addr%%i <= next_addr; 

            %%repeat 

            addr <= addr0; 

            //$display("Data: %h", read_data_out); 

            if(next_addr != written) begin 

                read_valid_in <= 1; 

            end 

            else begin 

                read_valid_in <= 0; 

                pb_mem_state <= WAITING; 

                //$display("ROW CACHE DONE"); 

            end 

        end 

        WAITING: begin 

            %%repeat i 0 7 

            addr%%i <= 0; 

            %%repeat 

            if(ready_for_latch) begin 

                pb_mem_state <= READING; 

                read_valid_in <= 1; 

            end 

        end 

        endcase 

    end 

end 
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%%track_state_machine(pb_mem_cache_state_t, pb_mem_state, 1); 

 

endmodule 

 

`endif 

 

The Pipelined Memory Code 

 
`ifndef PIPELINED_MEM 

`define PIPELINED_MEM 

 

`include "cci_mpf_if.vh" 

`include "csr_mgr.vh" 

`include "afu_json_info.vh" 

`include "cci_mpf_app_conf.vh" 

 

module pipelined_mem( 

    input logic clk, 

    input logic clk_div2, 

    input logic reset, 

    input logic soft_reset_in, 

    input logic ready_for_reading_in, 

    input logic write_ready_in, 

    input logic [511:0] write_data_in, 

    input logic ack_read, 

    input logic [7:0] unique_id, 

    output logic read_ready, 

    output logic [511:0] read_data_out, 

    output logic error_overflow 

); 

 

logic reset_div2; 

logic reset_div2_0; 

logic reset_div2_1; 

logic reset_div2_2; 

logic reset_div2_3; 

logic soft_reset; 

always @(posedge clk_div2) reset_div2 <= reset; 

always @(posedge clk_div2) reset_div2_0 <= reset; 

always @(posedge clk_div2) reset_div2_1 <= reset; 

always @(posedge clk_div2) reset_div2_2 <= reset; 

always @(posedge clk_div2) reset_div2_3 <= reset; 

always @(posedge clk_div2) soft_reset <= soft_reset_in; 

 

logic no_write_data;    //on clk_div2 

logic wrfull; 

assign error_overflow = wrfull && write_ready_in; 

logic write_ready; 

assign write_ready = !no_write_data; 

logic [511:0] write_data_int; 

logic [511:0] read_data; 

 

logic ready_for_reading_buf; 

logic ready_for_reading_buf2; 

logic ready_for_reading_buf3; 

logic ready_for_reading; 

 

always @(posedge clk) begin 

    ready_for_reading_buf <= ready_for_reading_in; 

end 

 

always @(posedge clk_div2) begin 

    ready_for_reading_buf2 <= ready_for_reading_buf; 

    ready_for_reading_buf3 <= ready_for_reading_buf2; 

    ready_for_reading <= ready_for_reading_buf3; 

end 
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bigfifo writefifo( 

    write_data_in, 

    write_ready_in, 

    write_ready, 

    clk, 

    clk_div2, 

    reset, 

    write_data_int, 

    no_write_data, 

    wrfull 

); 

 

logic write_out_ready; 

logic rdempty; 

logic out_fifo_empty; 

 

logic rdempty_dummy0; 

logic rdempty_dummy1; 

logic rdempty_dummy2; 

logic out_fifo_empty_dummy0; 

logic out_fifo_empty_dummy1; 

logic out_fifo_empty_dummy2; 

 

logic rdempty_int; 

logic [127:0] read_data_out_int0; 

logic [127:0] read_data_out_int1; 

logic [127:0] read_data_out_int2; 

logic [127:0] read_data_out_int3; 

logic [127:0] read_data_out0; 

logic [127:0] read_data_out1; 

logic [127:0] read_data_out2; 

logic [127:0] read_data_out3; 

 

 

readfifotry3 outfifo0( 

    read_data[127:0], 

    write_out_ready, 

    ack_read, 

    clk_div2, 

    clk, 

    reset_div2_0, 

    read_data_out_int0, 

    rdempty_dummy0, 

    out_fifo_empty_dummy0 

); 

 

readfifotry3 outfifo1( 

    read_data[255:128], 

    write_out_ready, 

    ack_read, 

    clk_div2, 

    clk, 

    reset_div2_1, 

    read_data_out_int1, 

    rdempty_dummy1, 

    out_fifo_empty_dummy1 

); 

 

readfifotry3 outfifo2( 

    read_data[383:256], 

    write_out_ready, 

    ack_read, 

    clk_div2, 

    clk, 

    reset_div2_2, 

    read_data_out_int2, 

    rdempty_dummy2, 

    out_fifo_empty_dummy2 

); 

 



70 

readfifotry3 outfifo3( 

    read_data[511:384], 

    write_out_ready, 

    ack_read, 

    clk_div2, 

    clk, 

    reset_div2_3, 

    read_data_out_int3, 

    rdempty_int, 

    out_fifo_empty 

); 

 

always @(posedge clk) begin 

    rdempty <= rdempty_int; 

    read_data_out0 <= read_data_out_int0; 

    read_data_out1 <= read_data_out_int1; 

    read_data_out2 <= read_data_out_int2; 

    read_data_out3 <= read_data_out_int3; 

end 

 

assign read_data_out = { 

    read_data_out3,  

    read_data_out2,  

    read_data_out1,  

    read_data_out0 

}; 

 

assign read_ready = !rdempty; 

 

typedef enum logic [2:0] { 

    WRITING, 

    READING, 

    READ 

} pipelined_mem_states_t; 

 

pipelined_mem_states_t memstate; 

logic [13:0] address; 

logic [13:0] naive_next_address; 

logic [13:0] next_address; 

logic [13:0] written; 

assign naive_next_address = address + 1; 

assign next_address = (naive_next_address == written)? 0: naive_next_address; 

 

always @(posedge clk_div2) begin 

    if(reset_div2) begin 

        memstate <= WRITING; 

        address <= 0; 

        written <= 0; 

        //$display("RESET DIV2"); 

    end 

    else if(soft_reset) begin 

        address <= 0; 

        memstate <= READING; 

    end 

    else begin 

        case(memstate) 

        WRITING: begin 

            if(write_ready) begin 

                address <= naive_next_address; 

            end 

            else if(ready_for_reading) begin 

                memstate <= READING; 

                written <= address; 

                if(address[3:0] != 0) begin 

                    $display("ERROR: col cache did not read a multiple of 16 cl's in!"); 

                end 

                address <= 0; 

            end 

        end 

        READING: begin 

            //$display("READING"); 
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            if(write_out_ready) begin 

                memstate <= READ; 

            end 

        end 

        READ: begin 

            //$display("READ"); 

            if(out_fifo_empty) begin 

                address <= next_address; 

                //$display("READING FROM ADDR %d COMPLETE", address); 

                memstate <= READING; 

            end 

        end 

        endcase 

    end 

end 

 

%%track_state_machine(pipelined_mem_states_t, memstate) 

 

logic [15:0] wr_enable0; 

logic [15:0] wr_enable1; 

logic [15:0] wr_enable2; 

logic [15:0] wr_enable3; 

 

logic [512:0] read_out [15:0]; 

//assign read_data = read_out[address[13:10]]; 

 

logic [9:0] addr [15:0]; 

 

logic [511:0] write_data; 

always @(posedge clk_div2) begin 

    write_data <= write_data_int; 

    %%repeat i 0 15 

    addr[%%i] <= address[9:0]; 

    %%repeat 

    wr_enable0 <= write_ready << address[13:10]; 

    wr_enable1 <= write_ready << address[13:10]; 

    wr_enable2 <= write_ready << address[13:10]; 

    wr_enable3 <= write_ready << address[13:10]; 

     

    read_data <= read_out[address[13:10]]; 

end 

 

genvar i; 

//addr, data, wren, and data output are all registered 

for(i=0; i<16; i+=1) begin : gen_blocks0 

    blockramtry5div16 blocks0( 

        write_data[127:0], 

        addr[i][9:0], 

        wr_enable0[i], 

        clk_div2, 

        read_out[i][127:0] 

    ); 

end 

 

for(i=0; i<16; i+=1) begin : gen_blocks1 

    blockramtry5div16 blocks1( 

        write_data[255:128], 

        addr[i][9:0], 

        wr_enable1[i], 

        clk_div2, 

        read_out[i][255:128] 

    ); 

end 

 

for(i=0; i<16; i+=1) begin : gen_blocks2 

    blockramtry5div16 blocks2( 

        write_data[383:256], 

        addr[i][9:0], 

        wr_enable2[i], 

        clk_div2, 

        read_out[i][383:256] 
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    ); 

end 

 

for(i=0; i<16; i+=1) begin : gen_blocks3 

    blockramtry5div16 blocks3( 

        write_data[511:384], 

        addr[i][9:0], 

        wr_enable3[i], 

        clk_div2, 

        read_out[i][511:384] 

    ); 

end 

 

logic [3:0] input_change_counter; 

logic [13:0] old_addr; 

 

`define READ_LATENCY 3 

 

always @(posedge clk) begin 

    write_out_ready <= (memstate == READING) && (input_change_counter == `READ_LATENCY); 

     

    //if(write_out_ready) begin 

    //    $display("WRITE OUT READY"); 

    //end 

end 

 

always @(posedge clk_div2) begin 

    if(reset_div2) begin 

        old_addr <= 0; 

        input_change_counter <= 0; 

    end 

    else if(soft_reset) begin 

        input_change_counter <= 0; 

    end 

    else begin 

        if(memstate == READING && address != old_addr) begin 

            input_change_counter <= 0; 

        end 

        else begin 

            if(input_change_counter <= `READ_LATENCY) begin 

                input_change_counter <= input_change_counter + 1; 

            end 

        end 

        old_addr <= address; 

    end 

end 

 

endmodule 

 

`endif 

 

The Processing Element Code 

 

`ifndef PROCESSING_ELEMENT 

`define PROCESSING_ELEMENT 

 

`include "cci_mpf_if.vh" 

`include "csr_mgr.vh" 

`include "afu_json_info.vh" 

`include "cci_mpf_app_conf.vh" 

 

`include "generated/pb_memory_controller.sv" 

`include "generated/writeback.sv" 

 

module processing_element( 

    input logic clk, 

    input logic reset, 
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    data_port port, 

    writeback_port writebackport, 

    input logic [9:0] num_cols_in, 

    input logic args_valid, 

    input logic spokesman, 

    input logic [7:0] unique_id, 

    output logic [31:0] total_cycles, 

    output logic [31:0] cycles_latching, 

    output logic [31:0] cycles_waiting 

); 

 

logic am_ready; 

assign port.ready_for_next = am_ready; 

 

logic latching; 

logic am_ready_delayed; 

assign latching = am_ready_delayed && port.next_ready; 

 

logic [9:0] num_cols; 

always @(posedge clk) begin 

    num_cols <= num_cols_in; 

    am_ready_delayed <= am_ready; 

end 

 

logic mult_enabled; 

logic reset_mult; 

 

logic [31:0] mult_output; 

logic [31:0] result; 

assign writebackport.data = result; 

 

logic mult_latch; 

 

logic [31:0] a; 

logic [31:0] b; 

logic [31:0] a_reg; 

logic [31:0] b_reg; 

 

//assign a = mult_latch? a_reg: 0; 

//assign b = mult_latch? b_reg: 0; 

 

logic mult_enabled_reg; 

logic reset_mult_reg; 

 

always @(posedge clk) begin 

    //a_reg <= port.a; 

    //b_reg <= port.b; 

    mult_enabled_reg <= mult_enabled; 

    reset_mult_reg <= reset_mult; 

    mult_latch <= latching; 

     

    a <= mult_latch? port.a: 0; 

    b <= mult_latch? port.b: 0; 

end 

 

multiply_acc mult0( 

    a, 

    mult_enabled_reg, 

    reset_mult_reg, 

    b, 

    clk, 

    mult_output 

); 

 

typedef enum logic [2:0] { 

    IDLE, 

    PREP, 

    DUMMYWAIT, 

    MULTIPLYING, 

    WAIT, 

    WRITEBACK, 
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    RESET 

} t_state; 

 

t_state state; 

 

logic [9:0] indices_added; 

logic [9:0] next_indices_added; 

assign next_indices_added = indices_added + 1; 

logic [9:0] next_next_indices_added; 

assign next_next_indices_added = indices_added + 2; 

logic [3:0] cycles_waited; 

logic [3:0] next_cycles_waited; 

assign next_cycles_waited = cycles_waited + 1; 

 

assign reset_mult = (reset ||  (state == RESET) || (state == IDLE)); 

 

always @(posedge clk) begin 

    am_ready <= ((state == MULTIPLYING) && (next_next_indices_added < num_cols)); 

end 

//assign am_ready = ((state == MULTIPLYING) && (next_indices_added < num_cols)); 

 

 

always @(posedge clk) begin 

    if(reset) begin 

        state <= IDLE; 

        indices_added <= 0; 

        writebackport.result_valid <= 0; 

        result <= 0; 

        mult_enabled <= 0; 

    end 

    else begin 

    case(state) 

        IDLE: begin 

            if(args_valid) begin 

                state <= PREP; 

                indices_added <= 0; 

                cycles_waited <= 0; 

                mult_enabled <= 1; 

            end 

            else begin 

                mult_enabled <= 0; 

            end 

            writebackport.result_valid <= 0; 

        end 

        PREP: begin 

            cycles_waited <= next_cycles_waited; 

            if(cycles_waited == 4) begin 

                state <= MULTIPLYING; 

                cycles_waited <= 0; 

            end 

        end 

        MULTIPLYING: begin 

            if(mult_latch) 

                if(spokesman) $display("%d   %f * %f = RES: %f %h",  

                                        indices_added,  

                                        $bitstoshortreal(a),  

                                        $bitstoshortreal(b),  

                                        $bitstoshortreal(mult_output),  

                                        mult_output 

                                       ); 

            if(latching) begin 

                indices_added <= next_indices_added; 

                if(next_indices_added == num_cols) begin 

                    state <= WAIT; 

                    cycles_waited <= 0; 

                end 

            end 

        end 

        WAIT: begin 

            cycles_waited <= next_cycles_waited; 

            if(cycles_waited == 5) begin 
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                writebackport.result_valid <= 1; 

                if(spokesman) $display("Set for writeback! %h", mult_output); 

                state <= WRITEBACK; 

                result <= mult_output; 

            end 

        end 

        WRITEBACK: begin 

            if(writebackport.result_read) begin 

                writebackport.result_valid <= 0; 

                state <= RESET; 

                mult_enabled <= 0; 

            end 

        end 

        RESET: begin 

            state <= MULTIPLYING; 

            indices_added <= 0; 

            mult_enabled <= 1; 

        end 

    endcase 

    end 

end 

 

 

%%track_state_machine(t_state, state, spokesman); 

 

 

endmodule 

 

`endif 

 

The Writeback Module Code 

 

`ifndef WRITEBACK 

`define WRITEBACK 

 

`include "cci_mpf_if.vh" 

`include "csr_mgr.vh" 

`include "afu_json_info.vh" 

`include "cci_mpf_app_conf.vh" 

 

`include "generated/mem_muxer.sv" 

 

interface writeback_port; 

logic result_valid; 

logic [31:0] data; 

logic result_read; 

endinterface 

 

module writeback( 

    input logic clk, 

    input logic reset, 

    mem_muxer_port port, 

    writeback_port pe_ports[16], 

    input t_cci_clAddr base_addr, 

    input logic [7:0] stride_len, 

    input logic [9:0] row_width, 

    input logic args_valid, 

    input logic spokesman, 

    output logic done, 

    input logic [3:0] unique_id 

); 

 

typedef enum logic [1:0] { 

    IDLE, 

    WAIT, 

    PREP_REQUEST, 
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    SEND_REQUEST 

} writeback_state_t; 

 

t_cci_mpf_c1_ReqMemHdr wr_hdr; 

 

writeback_state_t state; 

t_cci_clAddr curr_addr; 

logic [15:0] results_ready; 

logic result_read; 

logic [511:0] data; 

logic [9:0] cols_written; 

logic [9:0] next_col; 

logic all_results_ready; 

 

assign port.cycles_wanted = 8; 

assign port.tx0.valid = 0; 

assign next_col = cols_written + 1; 

assign port.tx1.valid = ((state == SEND_REQUEST) && port.tx_ready && !port.tx1full); 

assign port.tx1.hdr = wr_hdr; 

 

genvar i; 

for(i=0; i<16; i+=1) begin 

    //assign results_ready[i] = pe_ports[i].result_valid; 

    assign pe_ports[i].result_read = result_read; 

end 

 

always @(posedge clk) begin 

    %%repeat i 0 15 

    results_ready[%%i] <= pe_ports[%%i].result_valid; 

    data[32*(%%i+1)-1:32*%%i] <= pe_ports[%%i].data; 

    %%repeat 

     

    all_results_ready <= results_ready == 16'hffff; 

end 

 

always @(posedge clk) begin 

    if(reset) begin 

        state <= IDLE; 

        curr_addr <= 0; 

        port.want_tx <= 0; 

        result_read <= 0; 

        cols_written <= 0; 

        done <= 0; 

    end 

    else begin 

        case(state) 

        IDLE: begin 

            result_read <= 0; 

            port.want_tx <= 0; 

            if(args_valid) begin 

                state <= WAIT; 

                curr_addr <= base_addr; 

                cols_written <= 0; 

                done <= 0; 

            end 

        end 

        WAIT: begin 

            result_read <= 0; 

            if(all_results_ready) begin 

                state <= PREP_REQUEST; 

                port.want_tx <= 1; 

            end 

        end 

        PREP_REQUEST: begin 

            $display("Writeback module #%d is writing back column %d",  

                        unique_id, cols_written); 

            $display("\tData: %h", data); 

            wr_hdr <= cci_mpf_c1_genReqHdr(eREQ_WRLINE_I, 

                                            t_cci_clAddr'(curr_addr), 

                                            t_cci_mdata'({12'hfff, unique_id}), 

                                            cci_mpf_defaultReqHdrParams(1)); 
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            port.tx1.data <= t_ccip_clData'(data); 

            result_read <= 1; 

            state <= SEND_REQUEST; 

        end 

        SEND_REQUEST: begin 

            if(port.tx_ready && !port.tx1full) begin 

                cols_written <= next_col; 

                curr_addr <= curr_addr + stride_len; 

                port.want_tx <= 0; 

                if(next_col == row_width) begin 

                    state <= IDLE; 

                    done <= 1; 

                end 

                else begin 

                    state <= WAIT; 

                end 

            end 

        end 

        endcase 

    end 

end 

 

 

%%track_state_machine(writeback_state_t, state, spokesman); 

 

assign states = 0; 

 

endmodule 

 

`endif 

 

The Synthesis Script Built 

#!/bin/bash 

 

./generate 

if [[ $? -ne "0" ]]; then 

    echo generation failed! 

    exit 1 

fi 

 

if [ -z "$1" ]; then 

    BUILD_DIR=build_fpga 

else 

    BUILD_DIR="$1" 

fi 

 

if [ ! -d "../$BUILD_DIR" ]; then 

    cd .. 

    afu_synth_setup -s rtl/sources.txt $BUILD_DIR 

    if [[ $? -ne "0" ]]; then 

        echo Creation of $BUILD_DIR directory failed! 

        exit 

    fi 

    cd rtl 

fi 

 

set -o pipefail 

 

cd ../$BUILD_DIR 

 

qsub-synth 

 

sleep 2 

 

tail -f build.log | python ../colorize.py 

 



78 

cd ../rtl 

 

The Script Used For Colorizing Simulation and Build Logs 

import re 

import sys 

 

if len(sys.argv) == 2: 

    outfile = open(sys.argv[1], 'w') 

else: 

    outfile = None 

     

useless_file = open("../useless_messages.txt", 'r') 

 

useless_lines = useless_file.readlines() 

useless_lines = [line.strip() for line in useless_lines] 

 

def get_code(codes): 

    if type(codes) == int: 

        codes = [codes] 

    code_str = ";".join(map(str, codes)) 

    return "\033[{}m".format(code_str) 

 

def insert(s, to_insert, index): 

    return s[:index] + to_insert + s[index:] 

     

def convert(text, mapping): 

    for key, codes in mapping.items(): 

        for match in list(re.finditer(key, text, re.IGNORECASE))[::-1]: 

            code = get_code(codes) 

            reset = get_code(RETURN) 

            text = insert(text, reset, match.start()+len(key)) 

            text = insert(text, code, match.start()) 

    lines = [line+"\n" for line in text.split("\n")] 

    for useless_line in useless_lines: 

        lines = [line for line in lines if useless_line not in line] 

    text = "".join(lines) 

    return text 

             

     

BOLD = 1 

FAINT = 2 

ITALIC = 3 

RED_BG = 41 

RED_FG = 31 

WHITE_BG = 47 

WHITE_FG = 37 

YELLOW_BG = 43 

YELLOW_FG = 33 

BLACK_BG = 40 

BLACK_FG = 30 

RETURN = 0 

 

mapping = { 

    "error": [RED_BG, BOLD], 

    "warning": [YELLOW_BG, BLACK_FG] 

} 

 

try: 

    while True: 

        text = raw_input() 

        converted = convert(text, mapping) 

        if converted.strip(): 

            if outfile: 

                outfile.write(converted) 

                outfile.flush() 

            print converted, 
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except EOFError: 

    exit() 

except: 

    try: 

        while True: 

            text = raw_input() 

            if outfile: 

                outfile.write(text) 

                outfile.flush() 

            print(text) 

    except: 

        exit() 

 

The Script Used for Expansion of Repetitive Templates 

import sys 

import os 

import re 

 

files = [file for file in os.listdir('.') if file.endswith('.sv')] 

 

file_header = """ 

//-------------------------------------------------------------------------------------- 

//                                  {} 

//-------------------------------------------------------------------------------------- 

 

 

""" 

 

state_tracking_header = """ 

//This state machine tracker was generated by {1} 

`define DEBUG_LEVEL_NEEDED 1 

{0} old_{0}; 

always @(posedge clk) begin 

    if(`DEBUG_LEVEL >= `DEBUG_LEVEL_NEEDED) begin 

        old_{0} <= {2}; 

        if({2} != old_{0}) begin 

            case({2})""" 

 

state_tracking_case = """ 

            {0}: 

                $display("{1: <10}  #%d  {2} is now state {0}", unique_id);""" 

 

alt_state_tracking_case = """ 

            {0}: 

                if({3}) $display("{4}{1: <20}{5}  #%d  {2} is now state {0}", unique_id);""" 

                 

state_tracking_footer = """ 

            endcase 

        end 

    end 

end 

`undef DEBUG_LEVEL_NEEDED 

 

 

 

""" 

 

file_color_map = { 

    "col_access.sv": 'red', 

    "mat_mult_afu_template.sv": 'yellow', 

    "pb_memory_controller.sv": 'green', 

    "processing_element.sv": 'blue', 

    "writeback.sv": 'magenta', 

    "pb_memory_cache": 'cyan' 

} 

 

color_code_map = { 
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    'red': "\033[97;41m", 

    'yellow': "\033[97;43m", 

    'green': "\033[97;42m", 

    'blue': "\033[97;44m", 

    'magenta': "\033[97;45m", 

    'cyan': "\033[97;46m", 

    'reset': "\033[37;40m" 

} 

 

header_file = open("states_header.h", 'w') 

header_file.write("//This header was generated by {}\n\n".format(sys.argv[0])) 

header_file.write("#ifndef STATES_HEADER\n") 

header_file.write("#define STATES_HEADER\n\n") 

 

header_array_start = "const char* {}[] = {{\n" 

header_array_index = '\t"{}",\n' 

header_array_end = "\n};\n\n\n" 

 

 

enum_pattern = re.compile(r"typedef enum logic \[[^:]:[^:]\]\s*{\s*\r?\n?") 

 

unique_id = 0 

 

for infilename in files: 

    if "-v" in sys.argv or "--verbose" in sys.argv: 

        print("expanding {}".format(infilename)) 

     

    if infilename in file_color_map: 

        file_color = file_color_map[infilename] 

    else: 

        file_color = 'reset' 

    file_color = color_code_map[file_color] 

    reset = color_code_map['reset'] 

     

    if infilename.endswith("_template.sv"): 

        filename = infilename[:-12] 

    else: 

        filename = infilename[:-3] 

    outfilename = "generated/.tmp/{}.sv".format(filename) 

    with open(infilename, 'r') as infile: 

        lines = infile.readlines() 

         

    module_name = filename.replace("_", " ") 

 

    reading_a_repeat = False 

    repeat_was_found = True 

 

    defines = dict() 

 

    for index, line in enumerate(lines): 

        if line.strip().startswith("`define"): 

            parts = [part.strip() for part in line.split(' ') if part.strip()] 

            if len(parts) == 3: 

                defines.update({'`' + parts[1]: parts[2]}) 

        if "%%assign_unique_ids" in line: 

            numstr = line.split('(')[1].split(')')[0] 

            nums = [] 

            for num in numstr.split(","): 

                if num in defines: 

                    num = defines[num] 

                nums.append(int(num)) 

            num_to_generate = nums[0] 

            increment = 1 

            if len(nums) > 1: 

                for num in nums[1:]: 

                    increment *= num 

            to_replace = "%%assign_unique_ids(" + numstr + ")" 

            generated = '{' 

            for i in range(num_to_generate): 

                generated += "4'd{}, \n".format(unique_id) 

                unique_id += increment 
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            generated = generated[:-3] + "\n}" 

            lines[index] = line.replace(to_replace, generated) 

             

        elif "%%assign_unique_id" in line: 

            lines[index] = line.replace("%%assign_unique_id", "4'd{}" 

                                        .format(unique_id)) 

            unique_id += 1 

     

    if unique_id > 15: 

        print("ERROR: tried to assign too many unique ids: {}".format(unique_id)) 

        exit(1) 

 

    while repeat_was_found:     

        for index, line in enumerate(lines): 

            if line.strip().startswith("`define"): 

                parts = [part.strip() for part in line.split(' ') if part.strip()] 

                if len(parts) == 3: 

                    defines.update({'`' + parts[1]: parts[2]}) 

            if line.strip().startswith("%%repeat"): 

                if not reading_a_repeat: 

                    comm, var, start, end = line.strip().split(' ') 

                    beginning_index = index 

                    reading_a_repeat = True 

                    if end in defines: 

                        end = defines[end] 

                else: 

                    ending_index = index 

                    reading_a_repeat = False 

                    template = lines[beginning_index + 1:ending_index] 

                    reps = [] 

                    i = int(start) 

                    while i <= int(end): 

                        new_rep = [s for s in template] 

                        for index, l in enumerate(new_rep): 

                            new_rep[index] = l.replace("%%{}".format(var), str(i)) 

                        reps += new_rep 

                        i += 1 

                    lines = lines[0:beginning_index] + reps + lines[ending_index+1:] 

                    repeat_was_found = True 

                    break 

        else: 

            repeat_was_found = False 

     

    enums = dict() 

    starting_lines = [] 

 

    reading_an_enum = False 

    curr_enum = None 

    for i, line in enumerate(lines): 

        if reading_an_enum: 

            curr_enum.append(line) 

             

            if ';' in line: 

                reading_an_enum = False 

                 

                states = [] 

                 

                for line in curr_enum: 

                    line = line.strip() 

                    if line.endswith(';'): 

                        type_name = line[1:-1].strip() 

                        break 

                    else: 

                        if line[-1] == ',': 

                            line = line[:-1] 

                        states.append(line) 

                else: 

                    print("File {}, line {}: Didn't find a type name for an enum!" 

                            .format(infilename, starting_lines[i])) 

                    exit(1) 
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                enums.update({type_name: states}) 

                 

        if enum_pattern.match(line): 

            curr_enum = [] 

            starting_lines.append(i) 

            reading_an_enum = True 

             

    tracked_state_machine = True 

    while tracked_state_machine: 

        for i, line in enumerate(lines): 

            line = line.strip() 

            if "%%track_state_machine" in line: 

                args = line.split("(")[1].split(")")[0] 

                args = [arg.strip() for arg in args.split(',')] 

                if len(args) == 2: 

                    args += ['1'] 

                type_name, state_name, spokesman = args 

                tracker = [] 

                tracker.append(state_tracking_header.format( 

                                    type_name,  

                                    sys.argv[0],  

                                    state_name 

                                )) 

                for state in enums[type_name]: 

                    tracker.append(alt_state_tracking_case.format( 

                                        state,  

                                        module_name,  

                                        state_name,  

                                        spokesman,  

                                        file_color,  

                                        reset 

                                        ) 

                                    ) 

                tracker.append(state_tracking_footer) 

                 

                header = header_array_start.format(type_name) 

                for state in enums[type_name]: 

                    header += header_array_index.format(state) 

                header = header[:-2] 

                header += header_array_end 

                header_file.write(header) 

                 

                lines = lines[:i] + tracker + lines[i+1:] 

                break 

        else: 

            tracked_state_machine = False 

 

    with open(outfilename, 'w') as outfile: 

        outfile.write("//This file was modified by {}\n".format(sys.argv[0])) 

        for line in lines: 

            outfile.write(line) 

 

header_file.write("#endif\n") 

header_file.close() 

 


