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ABSTRACT: Building design optimization process is associated with uncertainties due to 
climate change, unpredictable occupant behavior, and physical degradation of building 
material over time. The inherent uncertainties in the design process reduce the reliability and 
robustness of the optimal design solution(s) and affect design decision-making results. This 
research studies the capabilities of parametric design tools in adopting probabilistic methods 
to handle uncertainties in building performance optimization. Variance-based methods, e.g., 
Monte Carlo sensitivity analyses are implemented to identify the most critical parameters in 
design optimization problems and improve the efficiency of design optimization. The optimal 
solutions achieved with variance-based methods are satisfying the design objectives more 
efficiently, also remain robust to changes and uncertainties. 
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INTRODUCTION 
The building design process includes making important decisions about different issues such 
as building orientation, form, layout, Window-to-Wall Ratio (WWR), and material properties 
(Lim et al., 2015). Building design decision-making is essentially solving multi-criteria 
optimization problems (Rahmani Asl et al., 2015). Building performance simulation tools can 
be useful in the design optimization process to evaluate design options. Refs. (Attia, 2011; 
Attia et al., 2012) compare several building performance simulation tools and introduce the 
potentials and challenges of each one in solving design problems.  
 
Parametric modeling and simulation platforms, e.g., Grasshopper facilitate the optimization 
process in architectural design (Touloupaki & Theodosiou, 2017). Multiple optimization 
methods using heuristic algorithms such as Genetic Algorithm (GA) and Simulated Annealing 
(SA), along with model-based optimization algorithms such as Gutmann and MSRSM 
(Wortmann, 2017), are developed in Grasshopper to solve architectural design problems. On 
the other hand, a typical building design optimization process using these tools is time-
intensive, ignores the uncertainties, and lacks a systematic framework to incorporate expert 
knowledge. The absence of efficiency and the lack of a systematic approach for considering 
uncertainties and integrating expert knowledge necessitates the development of a new 
approach to building design optimization.  
 
This paper aims to investigate the integration of probabilistic strategies with simulation-based 
optimization process to handle the uncertainties and improve the reliability and efficiency of 
architectural design decision-making. This paper examines the capabilities of visual 
programming interfaces, available in parametric tools, e.g., Grasshopper to handle 
uncertainties in building performance analysis and apply variance-based techniques to 
enhance the efficiency of building design optimization process. The Genetic Algorithm (GA) 
that is the most popular optimization algorithm in architectural optimization and variance-based 
methods such as Monte Carlo sensitivity analysis with random sampling are deployed to 
develop a probability-based optimization framework for parametric design decision-making. A 
test case of building thermal energy consumption analysis is presented to demonstrate the 
application of the proposed framework. 
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1.0 BACKGROUND 
 
1.1. Uncertainties in building design optimization  
The optimization process under uncertainty is one of the main challenges in performance-
based building design (Evins, 2013; Kheiri, 2018; Nguyen et al., 2014; Shi et al., 2016). Solving 
this type of optimization problems with deterministic approaches leads to overestimation of 
design requirements and thus, inefficient design optimal solutions (Grille et al., 2017). Non-
deterministic methods including variance-based methods are capable of improving the 
efficiency of building design decision-making (Hopfe et al., 2013).   
 
Two main types of uncertainty sources in building performance optimization are known as 
epistemic and aleatoric uncertainties (Hopfe, 2009). The epistemic uncertainties, e.g., the 
thermal properties of building material exist due to measurement errors or model 
simplifications. Aleatoric uncertainties are unknown parameters that depend on other factors 
such as weather conditions and occupant behavior, and thus are irreducible (Grille et al., 
2017). 
 
Variance-based methods are the most commonly used approaches to handle uncertainties in 
building performance analysis (Tian et al., 2018). The variance-based methods such as Monte 
Carlo use random variables and input probability density functions to address the stochastic 
status of the problem. The applications of these methods in building performance analysis 
have been broadly studied (Bordbari et al., 2018; Ding et al., 2015; Hopfe, 2009; Hopfe et al., 
2012; Lee et al., 2013; MacDonald, 2002; Rezaee et al., 2018; Shahsavari et al., 2018; Struck, 
2012; Tian et al., 2018).  
 
Various tools including MATLAB, Simlab, and jEPlus have been widely used in uncertainty and 
sensitivity analysis for building performance analysis (Tian et al., 2018). The integration of 
these probabilistic methods with parametric tools such as Grasshopper has not been fully 
covered, yet. This research intends to apply variance-based methods such as Monte Carlo 
sensitivity analysis in the design optimization process. The integration of variance-based 
methods with simulation-based optimization process enables designers to eliminate those 
input variables with a small effect from the optimization setting, and thus leads to a more 
efficient optimization process (Evins et al., 2012).  
 
1.2. Sensitivity analysis in building design optimization  
As (Saltelli et al., 2010) state, variance-based methods, e.g., Monte Carlo approaches, have 
shown more effectiveness and reliability when working with stochastic variables. Thus, this 
paper performs a sensitivity analysis based on the Monte Carlo approach. The following is a 
brief mathematical description of the Monte Carlo method for dealing with input uncertainties 
and sensitivity analysis. 
 
Let a mathematical modeling Y = f (X) define correlations between a vector of one-dimensional 
(1D) input variables X = {X1, X2,…, Xk} and an output (Y), where (f ) is a deterministic integrable 
function which translates from a k-D space into a 1-D one, i.e., RK -> R. The model produces 
a single scalar output Y when all input variables are deterministic scalars. However, if some 
inputs are uncertain or undecided, the output (Y) will also associate with some uncertainties. 
An input variable Xi is defined by a mean value µi, a variance σi, and a probability distribution, 
such as normal, uniform, etc. In the Monte Carlo methods, N sets of samples from possible 
values of each input variable are generated. These input values are fed into the simulation 
model to generate the probability distribution of the output (Y). Processing the output range (Y 
) delivers a mean value and a frequency distribution for the output. A sensitivity analysis further 
investigates into the contribution of each input variable on the total variations of the model 
output. 
 
This paper details predictions for sensitivity index 𝑆𝑆𝑇𝑇𝑇𝑇  , the total effect coefficient. The 
calculation of the sensitivity index 𝑆𝑆𝑇𝑇𝑇𝑇 requires sampling sequences and estimators to act upon 
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a single set of simulations and compute the sensitivity indices for all input variables (Saltelli et 
al., 2010). In this research, the Monte Carlo uncertainty analysis, random sampling technique, 
and the Jansen indices have proved applicable. Equation (1) indicates 𝑆𝑆𝑇𝑇𝑇𝑇  calculation (Saltelli 
et al., 2010): 
 

𝑆𝑆𝑇𝑇𝑇𝑇 = 
1
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Note that A and B are two independent matrices of N samples (and thus N values) of k input 
variables, that are generated with normal distribution using the mean and standard deviation 
of each input variable. 𝑓𝑓(𝐴𝐴)𝑗𝑗 denotes an output based on input values from the jth row of matrix 
A. 𝑓𝑓 �𝐴𝐴𝐵𝐵

(𝑖𝑖)�
𝑗𝑗
 denotes an output based on input values from the jth row of the matrix 𝐴𝐴𝐵𝐵

(𝑖𝑖) , which 

represents a matrix with all columns from matrix A except column i, which comes from matrix 
B. 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) is the output variance, having all input variables form matrix A.  
 
2.0. A PROBABILISTIC FRAMEWORK FOR PARAMETRIC DESIGN 
OPTIMIZATION 
 
2.1. Variance-based methods in parametric building design 
Building design decision-making includes multi-objective optimization problems, dealing with 
financial, physical, functional, aesthetical, and performance-related concerns. This process 
requires a systematic workflow to meet the design requirements efficiently. This research 
focuses on performance-based building design including building energy consumption 
analysis.  Figure 1 illustrates a general workflow of building design decision-making followed 
in this research.  
 

 
Figure 13. A general architectural design decision-making process 
 
This research builds upon the optimization framework introduced in (Nguyen et al., 2014) to 
investigate the application of variance-based techniques in parametric building design 
decision-making. Nguyen et al., (2014) subdivide a generic simulation-based optimization 
process into three phases: 1- preprocessing, 2- optimization, and 3- post-processing. Modeling 
the building to be optimized, defining the optimization problem, selecting the input variables, 
objective functions and constraints, are the major tasks in the preprocessing phase.  
Integrating the variance-based methods with design optimization is an optional task in the 
preprocessing phase. In this research, the variance-based methods are deployed for 
sensitivity analysis to identify the key input parameters. The next phase is the optimization, 
and the important role of a designer in this phase is fixing the potential errors and keeping the 
optimization process running. The post-processing phase includes analyzing the optimization 
results and presenting the data by charts and graphs, e.g., scatter plots. 
 
The Genetic Algorithm (GA) is applied for optimization in this research. The GA process 
imitates the natural genetic evolution and requires preparation, consisting of input 
chromosome generations, setting the objective function, and defining the constraints (Lim et 
al., 2018). The optimization begins with the first generation of design inputs, and the 
performance of different combinations of design inputs is compared. The fittest combinations 
remain in the next generation, and the weakest combinations are removed. The remaining 
chromosomes create new combinations through the cross over and mutation. The GA selects 
the fittest combinations, and this process goes on until there is no better solution found 
(Nguyen et al., 2014). 



  ENVIRONMENTAL STEWARDSHIP 
 

 
 ARCC 2019 | THE FUTURE OF PRAXIS 501 
 

Sensitivity analysis with the variance-based techniques guides the search for the optimal 
solution and improves the efficiency of the optimization process in two ways. First, designers 
can use the sensitivity analysis results to find input parameters with the highest impact on the 
output and adjust the optimization input parameters, accordingly. Second, the probability 
distribution of the values of input parameters, that are generated based on the expert 
knowledge or previous research, can be used as a source of input selection in the mutation 
and cross-over processes of the GA optimization. These two applications of sensitivity analysis 
in design optimization will lead to more reliable optimization results since the optimization is 
based on expert knowledge and probabilities. 
 
This research deploys Rhino and Grasshopper to illustrate the benefits of sensitivity analysis 
in building design optimization. Ladybug and Honeybee, the two plugins available in 
Grasshopper are used to upload the weather data, prepare building model, and run the energy 
analysis with EnergyPlus (Toutou et al. , 2018). The model preparation with these energy 
modeling plugins in Grasshopper includes creating thermal zones from masses and surfaces, 
followed by solving space adjacencies, setting the WWR for each façade, material selection, 
and adjusting occupants, lighting, and equipment schedules (Figure 2).  
 

 
Figure 14: Model preparation with Ladybug/Honeybee for energy modeling in Grasshopper 
 
After preparing the building model, energy analysis simulation is executed using the Honeybee 
energy analysis component in Grasshopper. The user defines the timeframe for energy 
analysis, and the weather data is imported from the EnergyPlus website.  
 
CPython component in Grasshopper is used to import statistical tools such as Numpy and 
Scipy into Grasshopper. The CPython also enables the designers to present statistical results 
in Grasshopper by charts and graphs (Abdel Rahman, 2018). To conduct optimization, 
Galapagos is applied for a single-objective design problem such as thermal energy 
consumption analysis. Figure 3 illustrates the proposed optimization framework with 
probabilistic techniques, that includes the addition of sensitivity analysis to guide designers in 
input selection for optimization. 
 
The proposed optimization process with parametric tools, e.g., Rhino and Grasshopper begins 
with creating the building model. The initial input variables are selected based on the needs 
and requirements of the design project. The input parameters along with design constraints 
and design objective functions define the optimization setting. A normal distribution of all input 
variables is generated with N number of values (defined by the user), using the mean and 



ENVIRONMENTAL STEWARDSHIP 
 

 
502 A case study for sensitivity-based building energy optimization 
 

standard deviation (MacDonald, 2002). The lists of input variables are connected to the 
simulation engine, e.g., Energy Plus and the outputs of each simulation run are recorded for 
later comparisons.  
 

 
Figure 15: Sensitivity-based building design optimization  
 
The simulation model is executed repeatedly using the samples of input parameters. To 
automate the random value selection for each input and run EnergyPlus for N times, a number 
slider, that is remotely controlled (“Grasshopper3D”, 2017), is connected to the list of input 
variables and selects a random index of each list automatically and feeds the associated input 
value to the simulation. The simulation runs through all the input values, and the results are 
used in further calculations to identify the sensitivity index of each input parameter. In this 
proposed method, the sensitivity indices associated with each input parameter is calculated 
through sensitivity analysis techniques, and the input variables with higher impact on the output 
will remain in the optimization process. Figure 4 shows the implementation of variance-based 
methods for sensitivity analysis in Grasshopper, using list management and CPython 
programming.  
 
2.2. Test case results 
A hypothetical five-zone building is modeled in Rhino/Grasshopper to demonstrate the 
application of the proposed probabilistic optimization framework. The Typical Meteorological 
year for College Station, Texas is imported from the EnergyPlus website (“EnergyPlus”, 2018). 
The weather data and HVAC specifications are kept constant, while building material thermal 
properties including wall thermal conductivity, density, and specific heat capacity, along with 
WWR, and occupant behavior in the opening and closing windows, are varying. Figure 5 shows 
the 3-D model of this test case in Rhino/Grasshopper.  
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Figure 16: Get the probability distribution of the output and sensitivity indices of input variables 
 

 
Figure 17: A hypothetical five-zone building model in Rhino/Grasshopper 
 
Two random lists of values (list A with 100 samples and list B with 100 samples) for each input 
variable are generated. The mean and standard deviation values for the thermal properties of 
exterior walls are listed in Table 1.  
 
The mean values of WWR for north, south, east, and west facades are 0.45, 0.45, 0.3, and 
0.3, respectively. The WWR values are varied by 10% of their mean values. The occupant 
behavior in the opening and closing windows is defined based on the Outdoor Air Temperature 
(OAT) and is connected to the infiltration schedule. This variable is studied through the 
possibility of opening windows when the outdoor air temperature (OAT) reaches a certain 
point. For example, if OAT is larger than 20◦C (with 0.2◦C variation), the user will probably open 
the windows. This probability status is recorded through the year as zeros and ones (for 
opening and closing windows). This list of zeros and ones is saved as an Excel file, and the 
Excel file is linked to the infiltration schedule, which is used in the EnergyPlus analysis. 
All the input variables are fed into the simulation to get the output, which is building annual 
heating/ cooling energy consumption. Sensitivity indices for input variables are calculated and 
presented to guide the user in selecting the most important input parameters to participate in 
design optimization. Figure 6 compares the sensitivity indices of the input variables in this 
study.  
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Table 3: The mean and standard deviation values for the thermal properties of exterior walls (MacDonald, 
2002) 

 
 
 

 
Figure 18: The sensitivity plot showing the most significant design parameters in the test case 
 
The input variables with higher sensitivity indexes have a higher impact on the output. In this 
test case, the output is building annual heating/cooling energy consumption. The sensitivity 
analysis result shows that occupant behavior in the opening and closing windows is the most 
important parameter, compared to exterior wall thermal properties and WWR. Exterior wall 
thermal conductivity, density, and heat capacity are the next most impactful variables in this 
model. The WWR (sum of the sensitivity indices of WWR for four facades in this model) shows 
a small contribution to the output. The reason for this small sensitivity index of WWR is that 
the sensitivity index of a specific variable in a certain model is highly dependent on the 
sensitivity indices of other variables. It means that if a variable shows a significantly high index 
compared to the other variables, it will affect the values of sensitivity indices of the other 
variables (Saltelli et al., 2010). In this example, the occupant behavior shows much more 
significance than WWR, and it affects the sensitivity indices of WWR.  
 
Considering the sensitivity analysis results, the list of input parameters for the optimization 
process is limited to the thermal properties of exterior walls. The effects of WWR on building 
energy consumption in this case study is negligible (Figure 6) and can be ignored in the 
optimization process. Also, the occupant behavior is excluded from this list, since it is an 
aleatoric uncertain variable which is dependent on many other factors. Figure 7 illustrates the 
input setting for this design optimization, also the optimization output.  
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Figure 19: Optimization in Grasshopper – the thermal properties of wall material (highlighted in pink color) 
are varying to minimize building thermal energy consumption 
 
DISCUSSION AND CONCLUSION 
This research investigates the integration of sensitivity analysis into design optimization to 
improve the efficiency of parametric building design optimization. Since the sensitivity study 
helps to reduce the number of input variables, the optimization search space is reduced, which 
leads to less computing time than a conventional optimization process.  
 
The occupant behavior is one of the most important uncertain design variables and 
understanding different patterns of occupant behavior and reflecting the effects of this 
parameter in building performance simulation requires further research. Also, further 
development of the proposed optimization framework may focus on using probability 
distributions of important input variables to search for the optimal solution. Choosing the input 
values for an optimization process out of a normal distribution allows searching for the optimal 
solutions considering their probability of occurrence. This method may improve the reliability 
of optimization results since the probability of occurrence of each design option is considered. 
 
The conditional probability and Bayesian network are also promising fields of research related 
to probabilistic optimization. The Bayesian inference updates the prior belief, which is a starting 
point for the optimization, to a posterior outcome based on additional data and information. 
This method allows the integration of expert knowledge with design optimization and may 
improve the simulation-based optimization in architectural design decision-making. 
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