47TH TURBOMACHINERY & 34TH PUMP SYMPOSIA HOUSTON, TEXAS | SEPTEMBER 17-20, 2018 GEORGE R. BROWN CONVENTION CENTER

Investigation and Resolution of Governing Valve Linkage Failure for Compressor Drive Steam Turbine

Kenichi Nishiyama – MCO Mayank Jain – MCO Elumalai Subramani – ExxonMobil

MITSUBISHI HEAVY INDUSTRIES COMPRESSOR CORPORATION

TURBOMACHINERY LABORATORY TEXAS A&M ENGINEERING EXPERIMENT STATION

Authors

Kenichi Nishiyama

kenichi_nishiyama@compressor.mhi.co.jp

Engineer, Turbine Engineering & Design Section, Mitsubishi Heavy Industries Compressor Corporation, Hiroshima, Japan. He has 7 years of experience as a turbine engineer. Mr. Nishiyama graduated from Tokuyama College of Technology (Mechanical & Electrical Engineering).

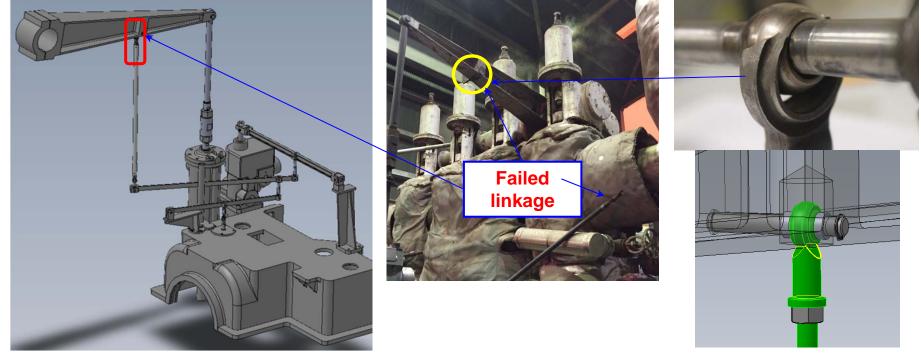
Mayank Jain

mayank_jain@compressor.mhi.co.jp

Engineer, Turbine Engineering & Design Section, Mitsubishi Heavy Industries Compressor Corporation, Hiroshima, Japan. He has 1 year experience as a turbine engineer. Mr. Jain has B.Tech degree in Mechanical Engineering from Indian Institute of Technology (IIT), Kanpur, India.

Elumalai Subramani

elumalai.subramani@exxonmobil.com


Machinery engineer, ExxonMobil Research Engineering, Houston, Texas, USA. He has 20 years of experience in Refinery & Petrochemical plant Machinery Maintenance, Diagnosis, Commissioning and Reliability Improvement projects. He graduated from Coimbatore Institute of Technology, Tamil Nadu, India.

Contents

- Governing Linkage outline
- Rod-end bearing design
 - Static Loads
- > Fracture analysis
- Possible cause
- Motion analysis and FEM analysis result
- Conclusions
- Recommendations
- Lesson Learned

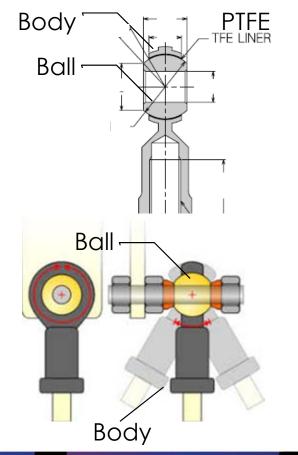
Governing Linkage Outline

The rod end bearing failure occurred in 2017 after the Turbine had been in operation for 9 years.

Governing Linkage Outline

Similar trouble had happened around 2006 in other plants. Countermeasure \rightarrow Bearing size up from M8 to

Size	Static Limit Load		Radial Static Ultimate	Notes
0120	Radial	Axial	Load	
	(kN)		(kN)	
M16	8.33	N/A	33.34	3.5 times larger area than M8.
M8	2.69	N/A	11.76	

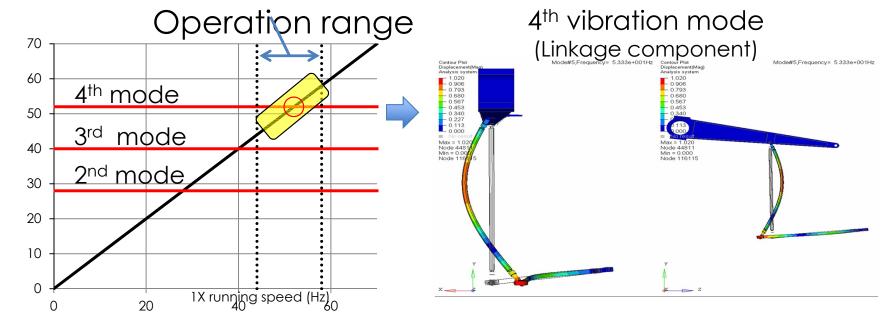

Similar trouble

This turbine reconfigured the bearing size to M16 in 2008. \rightarrow The M16 bearing failed in 2017 after 9 years of operation.

Rod-end Bearing Design

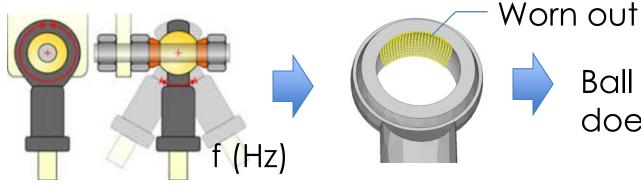
Material specification:							
M8 and M16 are same design							
They are comprised of the same materials.							
	Material	PARTS	Hardness (HV)				
	Martensitic stainless	Ball	≥ 653				
	Austenitic stainless	Body	≤ 200				
	PTFE	Liner	N/A				
É							

Fracture Analysis


high cycle fatigue fracture .

Troubleshooting

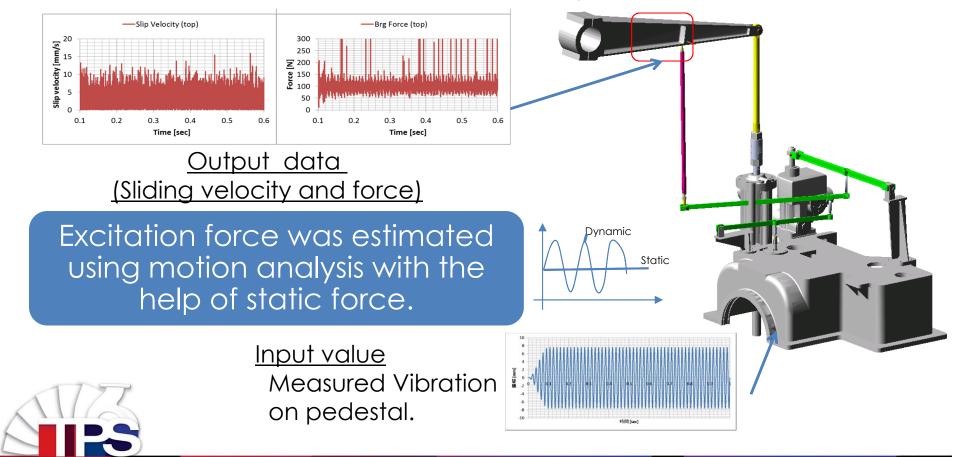
Problem	Possible Causes	Possibility
Bearing failure	High shock load	Low
	Improper strength at design stage	Low
	Corrosive fracture under severe environment	Low
	Vibratory stress	High
1777	 Strength and shock load were ve be within criteria. 	rified to


Possible Cause

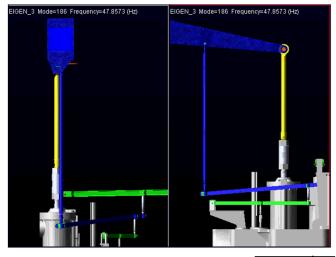
Fatigue fracture pattern and vibration analysis indicated that the 4th resonance mode falls in the Turbine operation range.

<u>Scenario</u>

> PTFE liner wore out due to resonance vibration (4^{th} mode).



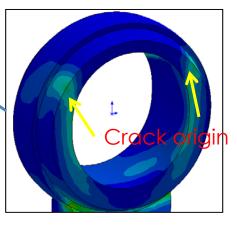
Ball and body doesn't slip

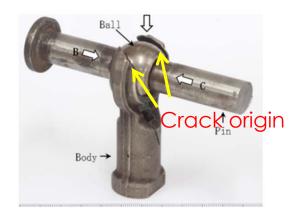

> Bending stress occurred due to resonance vibration.

Motion Analysis

Bearing life estimation

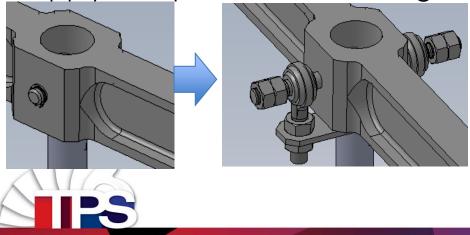
- 1. Excited force was estimated with motion analysis.
- 2. Damping at resonance frequency was confirmed with hammering test.

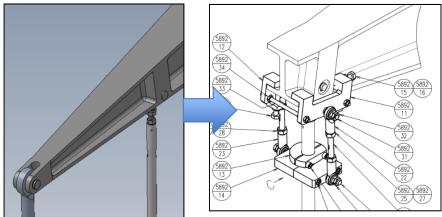

$(A^{\dagger}b) = a a a a - \Gamma (1 / 1 -)$	MAX.	
(4 th mode :51.6Hz)	NOR.	3331 r.p.m
Resonance mode	MIN.	2665 r.p.m


Slip velocity (5.6 mm/sec), Lh = 16,644 hr (1.9 years)

Under resonance condition, PTFE liner will wear out within 1.9 years of operation.

Stress Analysis




The peak stress points due to vibration at resonant frequency was found using FEA. They match the crack origin point of the failed bearing.

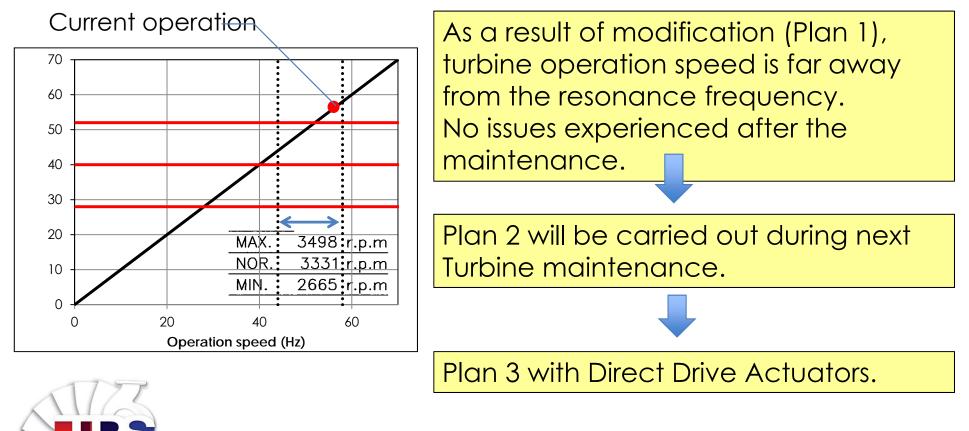
Recommendations

- Plan 1: Provide separation margin from resonant excitation frequency. -> (it is no longer operation range.)
- Plan 2: Improve system integrity using a redundant system.

Apply multiple rod end bearings

Recommendations

Plan 3: Replace with Direct-drive actuator (Linkages are minimized).



Conventional Actuator (Before Revamp)

Direct-drive Actuator (After Revamp)

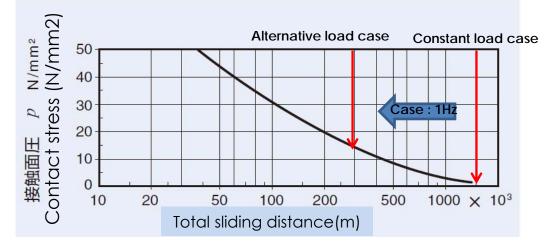
Results after maintenance

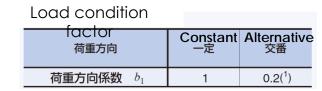
Lessons Learned

- Bearing Life should be considered at the design stage and bearing should be replaced at every maintenance.
- Understand dynamic behavior of linkage system and enforce sufficient separation margin (Authors recommend 5% for similar situations) on damaging modes.
- Root cause analysis and Motion Analysis to know the dynamic force for multiple linkage is an useful tool in understanding the failure modes of Linkages and

bearings.

Thank You...


Questions???



For Q and A

Bearing Life to be determine

Highly depends on contact stress , slip velocity & frequency

