47<sup>TH</sup> TURBOMACHINERY & 34<sup>TH</sup> PUMP SYMPOSIA HOUSTON, TEXAS | SEPTEMBER 17-20, 2018 GEORGE R. BROWN CONVENTION CENTER

### BB1 LATERAL DYNAMIC ANALYSIS

LANDON COOPER







TURBOMACHINERY LABORATORY TEXAS A&M ENGINEERING EXPERIMENT STATION

### Presenter/Author bios

**Landon Cooper** is a Field Engineer at Sulzer Pumps Services. He has10 years of experience working with end user's to help improve pump life.



## Abstract

Customer has four 4x8x13 BB1 booster pumps for produced water injection. One pump was recently repaired and ran for only 4 months. Typically these pumps run about 16-18 months. Before shutting down the pump it had a high 1x vibration. It was discovered that the pump clearances had increased to 5x running clearances. The customer wanted to increase the mean time between repairs. A solution was derived doing a lateral dynamic analysis.



## Outline

- Problem
- Work Scope
- Options and Solution
- Results
- Lateral harmonic Response
- Additional Changes
- Field Results
- Lesson Learned

## Problem

- Customer has four 4x8x13 BB1 pump and are only getting 16-18 months of runtime.
- Produced Water Injection
- Upon a recent repair one only last 4 months.
- High abrasive services
- As the pumps wear clearances increased the customers pump would see a high 1X vibration.



## Work Scope

• A lateral dynamic analysis to determine best possible solution.



# Option 1 - Swirl brakes

#### • Benefits

- Reduces inlet swirl
- Increase rotor stability





# Option 2 - Larger Shaft

Changes

NDE Bearing increase – 3306 to 7208
DE Bearings increase – 3207 to 6208



## Larger Shaft Continued

| Shaft @         | New Design (in) | Old Design (in) |
|-----------------|-----------------|-----------------|
| Impeller Bore   | Ø2.125          | Ø1.688          |
| Mech. Seal Area | Ø2.00           | Ø1.563          |
| Bearings        | Ø1.575          | Ø1.468/1.181    |

New design



## Results – Larger Shaft

### • Lateral dynamic analysis

|              | New Pump  |     | 2x Pump   |    | <b>5</b> X |    |
|--------------|-----------|-----|-----------|----|------------|----|
| Clearance    | Clearance |     | Clearance |    | Clearance  |    |
|              | damping   | hz  | damping   | hz | damping    | hz |
| As Designed  | 34%       | 93  | 26%       | 73 | 19%        | 53 |
| Larger Shaft | 31%       | 101 | 24%       | 84 | 18%        | 69 |



## Results – Swirl Brakes

|              | New Pump  |    | 2x Pump   |    | <b>5</b> X |    |
|--------------|-----------|----|-----------|----|------------|----|
| Clearance    | Clearance |    | Clearance |    | Clearance  |    |
|              | damping   | hz | damping   | hz | damping    | hz |
| As Designed  | 34%       | 93 | 26%       | 73 | 19%        | 53 |
| Swirl brakes |           |    |           |    |            |    |
| – Wear rings | 48%       | 90 | 43%       | 71 | 41%        | 51 |



## Results – Both Options

|               | New Pump  |    | 2x Pump   |    | <b>5</b> X |    |
|---------------|-----------|----|-----------|----|------------|----|
| Clearance     | Clearance |    | Clearance |    | Clearance  |    |
|               | damping   | hz | damping   | hz | damping    | hz |
| As Designed   | 34%       | 93 | 26%       | 73 | 19%        | 53 |
| Both (Shaft - |           |    |           |    |            |    |
| Swirl brakes) | 43%       | 99 | 36%       | 83 | 31%        | 69 |



## Solution

- Larger shaft, and swirl brakes.
  - Larger bearings
  - Rotor stiffness increased
  - Reduce cross-coupling stiffness (increased damping)





### New Clearance

#### Swirl Brake Design

Original Design



## New Clearance

#### Larger Shaft Design

#### Original Design



## New Clearance

#### Upgrade Design

Original Design



## 2X Clearance

#### Swirl Brake Design

#### Original Design



## 2X Clearance

#### Larger Shaft Design

#### Original Design



## 2X Clearance

#### Upgrade Design

#### **Original Design**



### As Received

#### Swirl Break Design

#### **Original Design**



### As Received



### As Received



## Additional Changes

- Hard face wear surfaces (Tungstencarbide)
  - Increases wear ring clearance life.



## Field Results

#### • As of March 2018

- Horizontal .13 IPS RMS
- Vertical .07 IPS RMS

#### **TRANSFER PUMP P-502 A VIBRATION**



## Lesson Learned

• Being my first lateral it was interesting to see how much damping the swirl brakes provide.



# Questions?



