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ABSTRACT 

  

Semi-active vehicle suspensions that use magnetorheological (MR) dampers are 

able to better dissipate vibrations compared to conventional dampers because of their 

controllable damping characteristics. The performance of current MR damper control 

methods is often hindered by incorrect assumptions and linearized models. Therefore, a 

need exists to design an adaptive controller with improved accuracy and reliability. The 

objective of this research is to design an improved controller for MR dampers in vehicle 

suspension using the nonlinear time-frequency control approach and evaluate its 

feasibility by numerically employing MATLAB Simulink. Simulations in this research 

are performed using a simplified quarter car suspension model and modified Bouc-Wen 

damper model. The proposed control method is evaluated based on its ability to reduce 

the amplitude of vibrations and minimize acceleration of the car body for various test 

cases. Simulations are also performed using the skyhook controller and passive 

suspension to assess the performance of the proposed controller. 

The results of the simulations show that the proposed nonlinear time-frequency 

controller can successfully be applied to an MR damper suspensions system for vibration 

control. The proposed controller outperforms the skyhook controller in terms of reducing 

acceleration of the car body in each of the tested scenarios. The proposed controller also 

shows the ability to more efficiently manage the current input to the system. In general, 

the skyhook controller gives more improved vibration amplitude responses but is prone 

to generate large spikes in car body acceleration at higher frequency road profile inputs. 
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Simulations performed with the passive system show large displacement amplitudes and 

inability to prevent oscillation. The feed-forward aspect and adaptive nature of the 

proposed controller gives it the ability to better compensate for the time-delay in the 

operation of the MR damper. The proposed controller shows sensitivity to controller 

parameters when pursuing the best response for different road profile input cases. 
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1. INTRODUCTION  

 

1.1 Magnetorheological Dampers 

Magnetorheological (MR) dampers are the leading technology in high 

performance vehicle suspensions. They can be found in several makes of vehicles 

including Cadillac, Chevrolet, Acura, Ferrari, and Audi. Vehicle suspensions are 

evaluated by how well they reduce road vibrations, minimize forces experienced by the 

passengers and how they improve the handling and stability of the vehicle. Suspensions 

that use MR dampers are referred to as semi-active because the damping forces can be 

controlled depending on the conditions the vehicle is subject to, but still retain damping 

ability should the control system fail. Semi-active suspensions provide great benefits in 

terms of vehicle response over a broader range of frequencies compared to conventional 

vehicle suspensions.  

To better explain the concept of a semi-active control, examples of force versus 

velocity plots are provided in Figure 1 for passive, semi-active, and fully active systems 

[1]. The semi-active force region is referred to as its dissipative domain; hence why 

semi-active control is limited to cases where vibration energy can be dissipated. 

Consequently, traditional control strategies cannot always be used for MR damper 

systems. In contrast, the available control force for a fully active systems is independent 

of relative velocity because they are able to input additional energy into the system to 

provide control [1]. 
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Figure 1: Force range characteristics of passive, semi-active and active systems [1] 

 

 

MR dampers are characterized by containing magnetic particles (usually iron-

nickel and iron-cobalt alloys) suspended in the working fluid of the damper cylinder. 

The viscosity of MR fluid can be altered by varying the current applied to the fluid and 

changing the magnetic field [2]. Upon exposure to a magnetic field, the magnetic 

particles in the fluid align along the magnetic lines of force (shown in Figure 2) [3]. The 

formed lines of magnetic particles require more force to be rearranged; effectively 

increasing the viscosity of the fluid.  
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Figure 2: Illustrated effect of magnetic field [3] 

 

A cross-sectional diagram showing the main components of the MR damper is 

given in Figure 3 [3]. There are multiple available methods that can be used to model the 

operation of MR dampers. Popular methods include Bingham, Dahl, Bouc-Wen, and 

Modified Bouc-Wen. The Modified Bouc-Wen model was chosen for the simulations 

performed in this research. This model and its corresponding equations are explained in 

Section 3.2.  
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Figure 3: Diagram of MR Damper [3] 

 

1.2 Commonly Used Semi-Active Control Strategies 

 Various methods that have shown to be capable of controlling MR dampers are 

described in this section. The performance of current MR damper control methods is 

often hindered by incorrect assumptions. For example, feedback techniques do not 

possess a way to account for the time-delay of the MR damper itself. Other methods lose 

accuracy by linearizing the equations that define the physical model. 

 

1.2.1 Skyhook Control Algorithm 

The skyhook control algorithm is widely used in semi-active vehicle suspension 

control due to its simplicity. The skyhook method requires sensors to measure sprung-

mass acceleration and relative displacement. These two signals are then converted into 

the corresponding velocities which determine the required damping forces to reduce 

vibration. In more advanced skyhook control schemes, the control module receives 

sensor inputs from suspension height, throttle position, steering wheel position, and 
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wheel speed to counteract roll, pitch, and yaw of the vehicle. This more complicated 

configuration requires the damper control system to be completely integrated with the 

vehicle and ECU. [4] This presents challenges in implementing an aftermarket magnetic 

damper system and interfacing it to existing vehicle’s system. The main drawback to a 

feedback algorithm such as skyhook is that it is not adaptive and cannot account for the 

delay in response time of the MR damper as well as a feedforward algorithm. [5] This 

disadvantage leads to a decrease in performance of skyhook control at high frequency 

vibrations; however in an actual vehicle model, high frequency vibrations are often 

dissipated by the wheel and tire and the car body experiences some degree of vibration 

isolation. 

 

1.2.2 Optimal Control 

Optimal control algorithms utilizing Linear-Quadratic Regulator (LQR) or 

Linear-Quadratic Gaussian (LQG) have been used in numerous control methods for MR 

dampers. The LQG controller employs a Kalman filter state estimator that is integrated 

in the controller. A major drawback to using the Kalman filter is that the equations for 

the system and observation model are assumed to be linear. [6] For a highly nonlinear 

case such as MR dampers, these assumptions are not realistic and can present possible 

issues concerning the accuracy of the controller. The LQR method faces shortcomings in 

its inability to account for excitation in the forced vibration of structures. To represent 

practical situations the excitation must be known beforehand to produce ideal control 

forces. Wavelet based LQR methods have shown to be more effective than conventional 
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LQR in terms of improving the displacement response of a structure in the time domain. 

[7] The clipped-optimal control algorithm proposed by Dyke et al. [8] is based on 

reducing either the acceleration or displacement of the structure for a given response. 

The method utilizes an optimal controller to identify a desired control force and a 

clipping algorithm to convert the desired force to voltage or current. 

 

1.2.3 Fuzzy Logic Control 

Fuzzy logic control is also often used in highly nonlinear semi-active systems. 

Fuzzy logic is advantageous to many other control techniques because it does not require 

a precise mathematical model to provide control. However, the design of a fuzzy logic 

controller often relies on trial and error or the designer’s experience. [9] For a given 

system to function properly with a fuzzy controller, the fuzzy rules must be pre-

determined. Genetic algorithms can be used to optimize the number of fuzzy rules and 

membership functions. The research presented by Yan and Zhou [10] uses genetic 

algorithms as an adaptive method to design the fuzzy controller. 

 

1.2.4 Control Using Preview Signal Input 

Other methods are able to take advantage of road preview information when 

equipped with the proper sensors. The preview signal is acquired using sensors that scan 

the road profile to determine the upcoming vertical displacement. This signal can then be 

used to calculate a desired damping force. The method presented by Krauze and 

Kasprzyk [5] uses this technology combined with a modified FXLMS algorithm to 
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control vibration in a vehicle. The disadvantage to this approach is that it cannot function 

without the additional scanning sensors. There is also a source of error in this method 

using the inverse MR damper model to convert the desired control force to voltage or 

current. Controllers that utilize an inverse MR damper model to calculate controlled 

voltage or current are linearized to some degree and therefore lose accuracy. 

 

1.3 Applications of Nonlinear Time – Frequency Control 

The concept of the nonlinear time-frequency control method presented in this 

research has been applied to several mechanical systems that operate using fully active 

control. The ideology behind this control method was explained by Suh and Liu [11] 

along with its applications in milling, micro-machining, and friction induced instability. 

A detailed description of this control scheme is presented in Section 2.3. 

This control scheme has shown to be successful in controlling active magnetic 

bearings in a flywheel energy storage system by Lewallen [12]. Results of this research 

showed that the proposed controller provided reliable control at high operating speeds 

and stability in the frequency domain when external excitations are limited. Another 

application of this control scheme to active magnetic bearings was researched by Liu 

[13] for high speed spindle design. The simulations performed in this research showed 

reliable vibration control with regard for the gyroscopic effect and geometric coupling 

that other models disregard.  

A modified version of this controller utilizing a time-varying reference signal 

was presented by Wang and Suh [14] for concurrent speed and precision tracking of a 
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brushed DC motor. The fundamental difference in this controller is that a proportional 

controller was implemented in the speed control scheme to compensate the time-delay of 

the on-line identification process. The results of this research showed this technique was 

able to provide accurate simultaneous position and speed control while reducing the 

power required by the motor compared to PID and Fuzzy Logic controllers. 

The success of nonlinear time-frequency control in fully active control 

applications suggests that it may be able to provide improvement in a semi-active system 

as well. The fundamental difference in implementing this method in a semi-active 

system is that control forces cannot be directly manipulated. For the case of MR 

dampers, only the damping characteristics of the system can be controlled and control 

force is also a function of relative velocity between the wheel mass and car body mass. 

 

1.4 Research Objective 

  Control methods currently available for MR dampers in vehicle suspension each 

come with their own imperfections and disadvantages. There is a need to design a 

controller with improved accuracy and reliability that is adaptive and does not rely on 

linearized models and unrealistic assumptions.  

The objective of this research is to design an improved controller for MR 

dampers using the nonlinear time-frequency control approach and evaluate its feasibility 

when applied to vehicle suspensions. Simulations will be performed in MATLAB and 

Simulink using the selected vehicle model for various road conditions. Vehicle response 

using the proposed nonlinear time-frequency controller will be compared with results 
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from the skyhook controller and passive suspension. Performance of the controller will 

be assessed in terms of its ability to reduce the amplitude of vibrations and minimize the 

acceleration of the car body. 

 

1.5 Research Task Plan 

1. Develop Analytical Model: 

Parameters will be defined for the suspension of a quarter car model of a light 

passenger vehicle. The Modified Bouc-Wen model will be used to characterize 

the properties of the MR damper. 

 

2. Design Nonlinear Time-Frequency Controller for Model: 

A wavelet based nonlinear time-frequency control scheme will be developed to 

control the MR damper in the quarter car model. 

 

3. Formulate Test Cases: 

The vehicle suspension model will be tested for road profile cases involving 

different types of vibration excitation and a single large bump. 

 

4. Evaluate Controller by Comparison: 

The results produced by the simulations using the proposed nonlinear time-

frequency control scheme will be compared with the skyhook controller and 
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passive system for evaluation. Areas of interest are response time, vibration 

reduction, efficiency, and accuracy of the controller. 
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2. NONLINEAR TIME-FREQUENCY CONTROL CONCEPT 

 

In this section, the proposed wavelet based time-frequency control concept to be 

applied to MR dampers is presented. This nonlinear control method relies on the 

principle defined by the Parseval’s Theorem that energies computed in the time and 

frequency domains are interchangeable. Therefore, vibration amplitudes in the time 

domain and vibration spectra in the frequency domain need to be accounted for 

simultaneously. The time-frequency control method is adaptive, allowing for 

adjustments to be made to improve a system’s performance. Wavelet coefficients are 

adjusted in the time domain to achieve simultaneous time-frequency control. The 

adaptive algorithm used in this controller is the filtered - X least mean square algorithm 

(FXLMS). A schematic of the controller configuration is presented in Figure 4 [11].  
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Figure 4: Wavelet based nonlinear time-frequency control [11] 

 

The time-domain discrete signal x(n) is converted into a wavelet coefficient array 

by the 𝑁 × 𝑁 discrete wavelet transform matrix T. The wavelet coefficient array is then 

multiplied by the weights of the finite impulse response (FIR) filters, 𝑊1 and 𝑊2, and 

summed to reconstruct the time-domain signal. The first adaptive filter 𝑊1 is used for 

system identification and models the system on-line. The second adaptive filter  𝑊2 is 

used as the feed-forward controller. The weight vectors are given by Equations 1 and 2. 

 

 𝑊1(𝑛)  =  [𝑤1,0(𝑛), 𝑤1,1(𝑛), … , 𝑤1,𝑁−1(𝑛)] [1] 

 𝑊2(𝑛)  =  [𝑤2,0(𝑛), 𝑤2,1(𝑛), … , 𝑤2,𝑁−1(𝑛)] [2] 
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Equation 3 gives the identification error, 𝑒̅(𝑛), between the desired signal 𝑑(𝑛) and the 

output from 𝑊1. Where 𝑦̅(𝑛) is defined by Equation 4. 

 

 𝑒̅(𝑛) =  𝑑(𝑛) −  𝑦̅(𝑛) [3] 

 𝑦̅(𝑛) =  𝑊1
𝑇(𝑛) 𝑇 𝑈(𝑛) [4] 

 

The error between the physical system and the desired signal is calculated by Equation 5. 

 𝑒(𝑛) =  𝑑(𝑛) − 𝑦(𝑛) [5] 

 

The identification error, 𝑓(𝑛), is then used to optimize the coefficients of the adaptive 

filter 𝑊1. 

 

 𝑓(𝑛) =  𝑒(𝑛) − 𝑒̅(𝑛) [6] 

 

The adaptive algorithms that are used to update the weights of the filters 𝑊1 and 𝑊2 are 

given by Equations 7 and 8. The variables 𝜇1 and 𝜇2 are the optimization step sizes used 

to minimize the error in the LMS regression scheme. The term 𝑥′, defined by Equation 9, 

is the output of the filter 𝑊1̂. This filter is used to compensate for possible disturbances 

in the propagation route of 𝑢(𝑛) [14]. 

 

 𝑊1(𝑛 + 1) = 𝑊1(𝑛) − 𝜇1 𝑇 𝑈(𝑛) 𝑓(𝑛) [7] 
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 𝑊2(𝑛 + 1) = 𝑊2(𝑛) + 𝜇2 𝑇 𝑋′(𝑛) 𝑒(𝑛)) [8] 

 𝑥′(𝑛) =  𝑊1
𝑇 𝑇 𝑋(𝑛) [9] 

 

The controller parameters that must be specified in the programming include the 

initial values for the filters  𝑊1 and 𝑊2, the wavelet filter length 𝑁, the regression step 

sizes 𝜇1 and 𝜇2 and the time step. These values will be presented with the results. 

The discrete wavelet transform matrix 𝑇 used to decompose the input signal into 

wavelet coefficients is created using the Daubechies-3 (DB3) wavelet. Plots of the DB3 

wavelet and scaling functions are shown in Figure 5. The coefficients used to construct 

the DB3 wavelet are given in Table 1. 

 

 

Figure 5: DB3 Wavelet 
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Table 1: DB3 high-pass & low-pass filter coefficients 

ℎ1 = 0.33267055295095688 𝑔1 = ℎ6 

ℎ2 =  0.80689150931333875 𝑔2 =  −ℎ5 

ℎ3 =  0.45987750211933132 𝑔3 = ℎ4 

ℎ4 =  −0.13501102001039084 𝑔4 =  −ℎ3 

ℎ5 =  −0.085441273882241486 𝑔5 = ℎ2 

ℎ6 =  0.035226291882100656 𝑔6 =  −ℎ1 

 

 

After running multiple trials with various sets of control parameters, the original 

wavelet based nonlinear time-frequency control scheme was modified in attempt to 

further improve performance. The form of the modified controller is similar to the one 

designed by Wang and Suh [14] for concurrent speed and position tracking of DC 

motors. The modified version of the controller implements a proportional controller (P) 

to compensate the time-delay of the on-line identification process. The gain of the 

proportional controller was set at 1 for each simulation performed in this study. The 

output of the proportional control loop is fed into the error signals used by the adaptive 

algorithms. The overall architecture of the modified controller used to produce the 

results presented in this research is presented by Figure 6. 
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Figure 6: Modified nonlinear time-frequency control with proportional controller 

 

The reference signal provided to the adaptive algorithm for minimizing error is 

the vertical acceleration of the car body. By minimizing vertical acceleration, forces 

transferred to the passenger are also minimized. The vertical velocity of the car body is 

fed into the proportional control loop to create a time varying reference signal to aid in 

effectively minimizing the vertical displacements of the vehicle. The secondary control 

parameter for the proportional control loop was chosen as car body velocity because it is 

the time derivative of the displacement and allows the controller to better predict and 

compensate for the direction in which the displacement is changing. The combination of 

these separate control loops creates a way to simultaneously provide vibration and 

acceleration reduction experienced by the passengers. 
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3. CAR AND MAGNETORHEOLOGICAL DAMPER MODELS  

 

The models representing the physical systems analyzed in this research will be 

presented in this section. The nonlinear system used in the simulations consists of a 

quarter car dynamic model and the modified Bouc-Wen MR damper model.  

 

3.1 Quarter Car Model 

A diagram of the quarter car model used in the simulations is show below in 

Figure 7. This simplified two degree of freedom model accounts for the vertical motion 

of the wheel and vehicle body. Parameters included by the simplified model are mass, 

stiffness, and damping coefficient of the wheel and tire, sprung mass, spring stiffness, 

and the MR damper. The values for these parameters are given in Table 2. To expand 

this model to the full car representation, pitch, roll, and yaw motions of the vehicle must 

be related between each quarter car model. 
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Figure 7: Quarter Car Model 

 

 

Table 2: Vehicle Parameters 

Symbol Description Value 

m1 Wheel/tire mass 36 kg 

m2 Car body mass 240 kg 

k1 Wheel/tire stiffness 160000 N/m 

k2 Suspension spring stiffness 16000 N/m 

c1 Wheel/tire damping coefficient 980 N*s/m 
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Figure 31 in the Appendix shows the Simulink block diagram of the quarter car 

model. The governing dynamic equations for the quarter car model, given by Equations 

10 and 11, can be expressed as: 

 

 𝑚1𝑥̈1 = −𝑐1(𝑥̇1 − 𝑥̇0) +  𝑘2(𝑥2 − 𝑥1) −  𝑘1(𝑥1 − 𝑥0) + 𝐹𝑀𝑅 [10] 

 𝑚2𝑥̈2 = −𝑘2(𝑥2 − 𝑥1)  −  𝐹𝑀𝑅 [11] 

 

3.2 Modified Bouc-Wen Model 

The modified Bouc-Wen model, proposed by Spencer, Dyke et al. is 

implemented in the following simulations and has been widely used to describe the 

highly nonlinear properties of MR dampers. The model is a set of differential equations 

describing the hysteretic characteristics of the damper force/velocity response. A 

diagram identifying the parameters of the modified Bouc-Wen model is given by Figure 

8. Experimental verification of the accuracy of the modified Bouc-Wen model 

performed by Spencer, Dyke et al. is presented in Figure 9 [15]. 
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Figure 8: Modified Bouc-Wen Model 

Figure 9: Comparison between the predicted and experimentally obtained responses 

for the Modified Bouc-Wen Model [15] 
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Equations 12 - 14 below provide the differential equations associated with the 

hysteric characteristics of the damper force and velocity response. The force generated 

by the MR damper is given by Equation 12. The internal velocity of the MR damper, 𝑦̇ 

is defined by Equation 13. Z is and evolutionary variable that defines the hysteretic 

properties of the damper. The shape and size of the hysteretic loop is determined by the 

parameters 𝛿, 𝛾, and 𝛽. The remaining terms in the model are as follows: 𝑐0 is the 

viscous damping at high velocity, 𝑐1 is the viscous damping at low velocity, 𝑘0 is the 

stiffness at high velocity, 𝑘1 is the accumulator stiffness, and 𝑥0 is the initial spring 

displacement. [7] 

 

 𝐹𝑀𝑅 = 𝑐1𝑦̇ + 𝑘1(𝑥 − 𝑥0) [12] 

 
𝑦̇ =  

1

𝑐1 + 𝑐0
[𝛼𝑧 + 𝑐0𝑥̇ + 𝑘0(𝑥 − 𝑦) 

[13] 

 𝑧̇  = −𝛾𝑧|𝑥̇ − 𝑦̇||𝑧|𝑛−1 − 𝛽(𝑥̇ − 𝑦̇)|𝑧|𝑛 − 𝛿(𝑥̇ − 𝑦̇) [14] 

 

The terms 𝛼, 𝑐0, and 𝑐1, defined by Equations 15, 16, and 17 respectively, are all 

functions of the electrical current applied to the damper, u. Typical operating ranges for 

MR dampers in vehicle suspensions are 0 – 1 A or 0 – 1.33 A. The current range 

selected for this model is 0 – 1 A. The time-delay required for the MR fluid to reach 

rheological equilibrium is modeled by the first-order filter in Equation 18. 
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 𝛼 = 𝛼(𝑢) = 𝛼𝑎 + 𝛼𝑏𝑢 [15] 

 𝑐0 = 𝑐0(𝑢) = 𝑐0𝑎 + 𝑐0𝑏𝑢 [16] 

 𝑐1 = 𝑐1(𝑢) = 𝑐1𝑎 + 𝑐1𝑏𝑢 [17] 

 𝑢̇ =  −𝜂(𝑢 − 𝑣) [18] 

 

The values for the modified Bouc-Wen model parameters are given in Table 3 

below. A Simulink block diagram of the model is presented in Figure 32. 

 

Table 3: Modified Bouc-Wen parameters 

Symbol Value Symbol Value 

𝑐0𝑎 784 N*s/m 𝑘0 3610 N/m 

𝑐0𝑏 1803 N*s/ V*m 𝑘1 840 N/m 

𝑐1𝑎 14649 N*s/m 𝛽 2059020 m-2 

𝑐1𝑏 34622 N*s/V*m 𝛿 58 

𝛼𝑎 12441 N/m 𝛾 136320 m-2 

𝛼𝑏 38430 N/V*m n 2 

𝑥0 0.0245 m 𝜂 190 s-1 
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4. METHOD OF EVALUATION 

 

The feasibility of the proposed nonlinear time-frequency controller is evaluated 

by comparing its performance with the skyhook controller and passive suspension. The 

performance of each controller is based on its ability to reduce vibration amplitudes and 

car body acceleration. It is a priority that acceleration of the car body is minimized 

because this directly translates into the forces transmitted to the passenger. Different test 

cases for road profile input used in this evaluation are also presented in this section. 

 

4.1 Skyhook Controller 

The skyhook control algorithm has been widely applied to control MR dampers 

in vehicle suspensions with success. Because of its popularity, this control method will 

be used as the baseline for performance evaluation of the proposed nonlinear time-

frequency controller. 

The two input parameters needed for the skyhook method are absolute and 

relative velocities of the sprung mass in the vertical direction. In practical 

implementation, these values are typically acquired using sensors to record acceleration 

and relative displacement measurements, then converting these signals to velocities [16]. 

The velocities 𝑥̇1 and 𝑥̇2 defined in the quarter car model are used in Equation 19 to 

construct the skyhook algorithm. 
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𝐹𝑠𝑘𝑦ℎ𝑜𝑜𝑘 = {

 𝐹𝑚𝑎𝑥 , 𝑥̇2(𝑥̇2 − 𝑥̇1) > 0

 𝐹𝑚𝑖𝑛, 𝑥̇2(𝑥̇2 − 𝑥̇1) < 0
 

[19] 

 

The control force 𝐹𝑚𝑎𝑥 is achieved when the applied current is at the maximum 

value. Likewise, 𝐹𝑚𝑖𝑛 is achieved when the current equals zero. A Simulink model of the 

skyhook controller is presented in the Appendix by Figure 34. 

 

4.2 Passive Vehicle Suspension 

 The passive vehicle suspension will be compared with the two control schemes 

previously described. The passive system utilizes the same quarter car model and MR 

damper as the simulations performed for each control scheme. However, in this case no 

current is applied to the damper. This provides comparison to the worst case scenario 

should the control system fail. 

 

4.3 Road Profile Inputs 

4.3.1 Multiple Frequency Input 

The first test case is given below by Figure 10. This signal is composed by 

summing three sinusoidal terms at different frequencies (2, 4, and 6 Hz) and will 

simulate a nonlinear rough road condition. This case evaluates the controller’s ability to 

handle a broadband input signal applied to the physical model. 
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Figure 10: Multiple frequency input test case 

 

4.3.2 Time-Varying Frequency Input 

The next test case, given by Figure 11, is a time-varying frequency input signal. 

Three different frequencies at 2, 4, and 6 Hz are applied to the system successively. This 

scenario tests the adaptability of the controller and evaluates the controller’s 

performance as frequency is varied. 
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Figure 11: Time varying frequency input test case 

 

 

4.3.3 Single Bump Input  

The final test case shown in Figure 12 simulates the vehicle encountering a large 

bump in the road profile. This case will determine if the controller is able to react 

quickly to sudden, large perturbations. Large single bumps or holes in the road profile 

are the road conditions which are mostly noticeable by the driver and passengers [5]. It 

is expected that this case will provide the greatest challenge for the proposed nonlinear 

time-frequency controller because it does not include past information that can be used 
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to predict the upcoming road condition. The only way to accurately identify a single 

bump is to use profile scanning sensors to create a preview signal. 

 

 

Figure 12: Single bump excitation test case 
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5. MODELLING RESULTS AND DISCUSSION 

  

This section contains the results of the controller simulations performed for each 

test case described in the previous section. The results include simulations for the 

skyhook controller and the proposed Nonlinear Time-Frequency Controller (NTFC) 

along with comparisons to the passive damping system in which no control is applied. 

The following plots describe the vertical motion of the car body in terms of absolute 

displacement and acceleration. Plots of the current applied by the controller and 

equivalent current simulating rheological equilibrium are included to demonstrate the 

energy efficiency of each controller. 

 

5.1 Road Excitation with Multiple Frequencies 

5.1.1 Skyhook Results 

 The results of the skyhook control algorithm for the vertical motion of the car 

body are presented by Figure 13. The skyhook method works well in this case for 

reducing the amplitude of vibration seen by the car body. It should be noted that there 

are some spikes in the acceleration plot. Spikes in acceleration are caused when 

excessive current is applied to the damper at inappropriate times. This presents an issue 

with the skyhook method because maximum and minimum amounts of applied current 

are at set values.  
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Figure 13: Skyhook results for multiple frequency input 

 

  

Figure 14 shows the current applied to the MR damper by the skyhook controller. 

Close inspection and comparison of these plots shows how the time-delay of reaching 

rheological equilibrium affects the response of the damper. At very high frequencies the 

time delay is too prominent to allow the full desired current value to be applied. 
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Figure 14: Skyhook controlled current for multiple frequency input 

 

5.1.2 Nonlinear Time-Frequency Control Results 

 The controller parameters selected for this simulation are given by Table 4 

below. The optimization step size 𝜇2 is much larger than the step size 𝜇1 (used for 

system identification) to allow the controller to react more quickly to the error signal. 
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Table 4: NTFC parameters for multiple frequency excitation 

Parameter Description Value 

dt Time step (s) 0.0001 

N Wavelet Filter length 128 

µ1 Filter step size 0.0000001 

µ2 Filter step size 0.0002 

W1start Filter initial value 1 

W2start Filter initial value 1 

 

 

The results of the NTFC for the vertical motion of the car body are presented in 

Figure 15. The amplitude of vibrations is significantly reduced. The plot of acceleration 

shows control without excessive spiking. 
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Figure 15: NTFC results for multiple frequency input 

 

  

The current applied to the MR damper by the nonlinear time frequency 

controlled is given in Figure 16. The frequency that the current is applied by this 

controller is much lower than the skyhook controller. 
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Figure 16: NTFC controlled current for multiple frequency input 

 

 

Figure 17 and Figure 18 below give the combined plots of skyhook, nonlinear 

time-frequency, and passive control for the displacement and acceleration of the car 

body. Both controllers show the ability to significantly reduce the amplitude of vibration 

compared to the passive system. However, the skyhook controller outperforms the 

nonlinear time-frequency controller in terms of vibration amplitude. 
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Figure 17: Displacement comparison for multiple frequency input 

 

  

From Figure 18, it can be concluded that the nonlinear time-frequency controller 

provided a better response than the skyhook controller in minimizing acceleration of the 

car body. The results of the skyhook controller show more frequent and greater 

magnitude spikes in acceleration. Overall, the acceleration response of the passive 

system is considered acceptable. However, the large magnitude of displacement 

amplitude makes it undesirable. 
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Figure 18: Acceleration comparison for multiple frequency input 

 

 

5.2 Road Excitation with Time-Varying Frequencies 

5.2.1 Skyhook Results 

  The skyhook control results are shown in Figure 19 and Figure 20. The 

controller is able to successfully provide a reduction in vibration amplitude. As the 

higher frequency excitations are applied, the amplitude of displacement decreases. The 

acceleration response becomes worse at higher frequencies. 
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Figure 19: Skyhook results for time-varying frequency input 
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Figure 20: Skyhook controlled current for time-varying frequency input 

 

 

5.2.2 Nonlinear Time-Frequency Control Results 

The controller parameters for this test case are the same as those listed in Table 4 

for the case of multiple frequency input. Figure 21 provides the simulation results for the 

nonlinear time-frequency controller. The results show that the controller is able to 

provide a good reduction in vibration amplitude while also keeping acceleration 

minimized over a range of applied frequencies.  
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Figure 21: NTFC results for time-varying frequency input 

 

 

Figure 22 shows how the controller adapts to a varying input and modulates the 

applied current to optimize the response. The nonlinear time-frequency control method 

is able to provide a significantly improved response while using less power than the 

skyhook controller. 



 

39 

 

 

Figure 22: NTFC controlled current for time-varying frequency input 

 

  

The combined displacement response for each controller is provided in Figure 23 

for a clear comparison. Both controllers showed vast improvement over the passive 

system; specifically at the lowest applied frequency. At higher frequencies, the nonlinear 

time-frequency controller produced the best response in terms of displacement 

amplitude. 
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Figure 23: Displacement comparison for time-varying frequency input 

 

 

 The acceleration response for each controller is shown in Figure 24. At the 

lowest applied frequency, the skyhook and nonlinear time-frequency controllers both 

yield smaller magnitude acceleration than the passive system. However, at the highest 

frequency considered, the skyhook controller performs poorly and shows many large 

spikes in acceleration. 
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Figure 24: Acceleration comparison for time-varying frequency input 

 

 

5.3 Large Bump Excitation 

5.3.1 Skyhook Results 

Figure 25 below show the results of the skyhook controller in response to a 

sudden bump excitation. The plot shows a good reduction in displacement and fast 

return to equilibrium with minimal oscillation. The small oscillations after the bump can 

be considered negligible. However, this causes fluctuations in the controlled current that 

are unnecessary and inefficient. The plots for current applied during this simulation are 

shown in Figure 26. 
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Figure 25: Skyhook results for bump excitation 
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Figure 26: Skyhook controlled current for bump excitation 

 

 

5.3.2 Nonlinear Time-Frequency Control Results 

 The controller parameters for the case of large bump excitation are listed in Table 

5. The only parameter different from the previous test cases is the regression step 

size 𝜇2. This parameter is altered to provide the most improved response. 
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Table 5: NTFC Parameters for bump excitation 

Parameter Description Value 

dt Time step (s) 0.0001 

N Wavelet Filter length 128 

µ1 Filter step size 0.0000001 

µ2 Filter step size 0.00001 

W1start Filter initial value 1 

W2start Filter initial value 1 

 

 

The vehicle response for the simulation using the nonlinear time-frequency 

control method is provided in Figure 27. The controller provides a reduction in 

displacement amplitude with negligible oscillations. The current applied by the 

controller is efficient and without fluctuation. The issue with this controller is that the 

starting current value is based on the initial value of the filters and is set at 1 amp before 

the controller reacts to a perturbation in the input signal. For ideal vibration amplitude 

reduction in this case, the current must be zero as the vehicle approaches the bump and 

compresses the damper. The plots of current are shown in Figure 28. 
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Figure 27: NTFC results for bump excitation 
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Figure 28: NTFC controlled current for bump excitation 

 

 

 The displacement responses of the controllers are compared in Figure 29. The 

passive suspension performs very poorly without control and shows large displacement 

amplitude with oscillations. Both the NTFC and skyhook controllers are able to dissipate 

the energy of the bump excitation with negligible oscillation. However, the skyhook 

controller provides a better response than NTFC in terms of displacement amplitude. 

The skyhook controller response is also able to bring the car body mass back to its 

equilibrium position more quickly than the NTFC. 
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Figure 29: Displacement comparison for bump excitation 

 

 

 Figure 30 provides the comparison of the acceleration responses for each 

controller. The passive system continues to have large magnitude accelerations after the 

bump due to oscillations. The controllers are both able to minimize the acceleration after 

the bump. However, the nonlinear time-frequency controller is able to provide the lowest 

acceleration magnitudes. The responses of the passive system and skyhook controller 

from 1 – 1.5 seconds both show sudden reverses in acceleration whereas the NTFC 

controller does not. 
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Figure 30: Acceleration comparison for bump excitation 

 

 

5.4 Discussion of Performance 

 The results of the simulations performed show that the proposed nonlinear time-

frequency controller is capable of reducing the amplitude of vibrations and acceleration 

experienced by the car body. The adaptive nature of the controller is displayed by the 

reduction of acceleration throughout changes in excitation frequencies. The proposed 

nonlinear time-frequency controller outperformed the skyhook algorithm greatly at high 

frequencies. The skyhook controller performs well for cases where the reduction of 

vibration amplitude is given preference to minimizing acceleration. However, the 

absolute displacement of the car body is not as important to ride quality as vertical 

acceleration and forces transmitted to the passenger. 
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The difference in power efficiency between the two controllers becomes more 

apparent as frequency is increased. The controlled current from the proposed NTFC 

controller shows much less fluctuation than the skyhook controller. The high spikes in 

acceleration from the skyhook simulations are mostly due to the maximum current value 

being applied at times that are not ideal. Residual current due to the time-delay also 

creates high damping forces that are detrimental to the response after the desired current 

returns to the minimum value. A significant disadvantage of the skyhook controller is 

that the applied current is at a set value; whereas the nonlinear time-frequency controller 

can better modulate the applied current between the maximum and minimum values. It is 

possible that different current operating ranges will produce better results. In order to 

best compare the performance of the controllers, current ranges were kept the same. The 

cut-off of the maximum current value likely hinders the performance of the NTFC 

controller. The results presented in this research support the fulfillment of the objective 

to design an improved controller for MR dampers in vehicle suspension. 
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6. CONCLUSIONS  

 

 The proposed nonlinear time-frequency control method evaluated in this research 

can be successfully applied to MR dampers in vehicle suspension to reduce vibration 

amplitudes and forces transmitted to the passenger. For every test case presented, the 

nonlinear time-frequency control outperformed the skyhook control algorithm in terms 

of minimizing acceleration of the car body. If the priority of the controller is only to 

reduce the amplitude of vibrations, the skyhook controller should be selected over the 

proposed nonlinear time-frequency controller. Because nonlinear time-frequency control 

is a feed-forward controller, it has a better ability to compensate for the time delay of the 

MR damper compared to a feed-back controller such as skyhook. Another benefit of the 

nonlinear time-frequency controller is that it is adaptive. This is important so that the 

controller can account for changes in the physical model. The adaptive algorithm also 

benefits the system because when the controller is implemented in a physical system, 

additional nonlinearities not previously accounted for in simulation can be managed. For 

example, depending on how the vehicle is loaded, the mass values will be different and 

the controller must be able to adapt to provide an ideal response. 

 Due to the highly nonlinear nature of MR dampers, the NTFC controller showed 

sensitivity to controller parameters. Selection of the filter length 𝑁 and step sizes 𝜇1 and 

𝜇2 are critical to the success of the controller. Unfortunately, these parameters must 

often be determined by trial and error. The test cases of sinusoidal input and large bump 

excitation performed in this research required different regression step sizes in the feed-
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forward loop to be used in order to provide the best response. In a real world scenario, 

numerous physical tests must be performed so that the controller parameters can be 

optimized to provide improved performance in every case. 
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7. FUTURE WORK 

 

Before actual implementation in a vehicle, the controller should be tested in 

simulations using half-car and full-car models. These models present added challenges 

in accounting for roll, pitch, and yaw of the vehicle body. It is likely that additional 

controllers will be needed to relate the motions of each corner of the vehicle to the 

individual MR dampers.  

Once simulations have been performed to show that the controller is compatible 

with the full car model, actual implementation should be tested. Difficulties may arise in 

creating repeatable system inputs on an actual road for testing controller parameters. The 

parameters will need to be selected based on the expected road conditions. For example, 

off-road conditions will likely have higher amplitude and lower frequency vibrations 

compared to street or track cases. 
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APPENDIX 

 

Simulink Models 

 

 
Figure 31: 2 DOF Quarter Car Simulink Model 
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Figure 32: Modified Bouc-Wen Simulink Model 

 

 

 

 

 
Figure 33: NTFC Controller Configuration 
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Figure 34: Skyhook Controller Configuration 

 

 


