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ABSTRACT 

 

Development of a Tandem, Three-Component Synthesis of Tetrahydrofurans via 

Silylated β-Lactone Intermediates in the Tandem Mukaiyama Aldol-Lactonization. 

(May 2008) 

T. Andrew Mitchell, B. S., Grove City College 

Chair of Advisory Committee: Dr. Daniel Romo 

 

 

Although initial attempts to convert (R)-4-trichloromethyl-β-lactone to 

ketoaldehydes or keto-β-lactones for stereoselective tetrahydrofuran (THF) synthesis 

were unsuccessful, several novel transformations of this malic acid surrogate were 

discovered.  Radical alkylations and α-silylations of optically active (R)-trichloromethyl-

2-oxetanone are described that maintain the integrity of the β-lactone.  Alternate 

methods for selective dechlorinations of both the β-lactone and the derived Weinreb 

amide are presented.  

 The development of a diastereoselective, three-step strategy for the construction 

of substituted tetrahydrofurans from alkenyl-aldehydes based on the tandem Mukaiyama 

aldol-lactonization (TMAL) process and Mead reductive cyclization of keto-β-lactones 

is reported.  Stereochemical outcomes of the TMAL process are consistent with models 

established for Lewis acid-mediated additions to α-benzyloxy and β-silyloxy aldehydes 

while reductions of the five-membered oxocarbenium ions are consistent with Woerpel’s 
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models.  Further rationalization for observed high diastereoselectivity in reductions of α-

silyloxy five-membered oxocarbenium ions based on stereoelectronic effects is posited.  

A diagnostic trend for coupling constants of γ-benzyloxy-β-lactones was observed that 

should enable assignment of the relative configuration of these systems. 

 A single stereocenter generates as many as two C-C bonds, one C-O bond, and 

three stereocenters in a single reaction leading to substituted tetrahydrofurans (THFs) in 

a three-component process.  This process utilizes the tandem Mukaiyama aldol-

lactonization (TMAL) and proceeds through a silylated β-lactone intermediate.  The 

results build on Mead’s reductive cyclization (MRC) of keto-β-lactones and are in 

accordance with Woerpel’s model for “inside attack” of oxocarbenium ions.  

Application to a THF fragment of colopsinol B is described. 

A universal model was set forth that rationalizes the stereochemical outcome of 

the reaction between α- and β-substituted aldehydes and (E)- and (Z)-substituted ketene 

acetals in the ZnCl2-mediated tandem Mukaiyama aldol-lactonization (TMAL).   

 

 



 v

DEDICATION 

 

To my son, Simon 



 vi

ACKNOWLEDGEMENTS 

I would like to sincerely thank Prof. Daniel Romo for inspiring me in chemistry 

and in life; not only do I consider him a great advisor, but a true friend.  I appreciate him 

being available when I needed help, but also allowing me to fall down and learn how to 

get back up.  His guidance and patience are much appreciated and have allowed me to 

become an independent researcher.  I would also like to thank his family for allowing me 

to be a part of their lives during my time at Texas A&M.   

I would like to thank several professors, all of who either served on my 

committee or were prepared to do so if necessary; thanks to all of you for supporting me 

throughout my graduate career.  I would like to thank both Prof. David Bergbreiter and 

Prof. Gary Sulikowski for excellent classes and support in this research.  Unfortunately, 

I did not have the privilege of taking their classes, but I am very thankful for Prof. 

Daniel Singleton and Prof. Brian Connell for their insight, encouragement, and guidance 

throughout the course of my research.  My sincere gratitude goes to both Prof. Carlos 

Gonzalez and Prof. Charles Kenerley for their time and support.  

Much appreciation goes to both former and current members of the Romo group.  

My time here would not have been the same without you.  First, I would like to thank 

those that mentored me.  Dr. Paul Dransfield, thank you for teaching me a lot of 

chemistry and for making the lab an enjoyable place to come work every day.  Your 

English wit and friendship made the bad days bearable and the good days memorable.  

So, G’day mate and I hope that you get home to Oklahoma soon!  Karine Poullennec, 

thank you for teaching me so much chemistry and for all of the fun times we shared in 



 vii

the Romo group.  Thanks to all others who taught me chemistry and shared their lives 

with me for a few years including Yingcai Wang, Guillermo Cortez, Anja Dilley, Gil 

Ma, Mahesh Peddibhotla, Ziad Moussa, Huda Henry-Riyad, and Siva.  Next, I would 

like to thank my peers who went through the fire with me.  Thanks to Ke Kong and 

Richard Duffy for making me laugh, teaching me chemistry, and being great friends for 

several years.  Thanks to Vikram Purohit, Francisco Franco-Torres, Shaohui Wang, 

Seongho Oh, and Min Zhou for more of the same.  I would like to thank those students 

whom I had the privilege of mentoring including Manuel Zancanella, Kay Morris, and 

Ashley Leonard.  It was a joy to be able to play a small part in your chemistry adventure 

and to see you becoming independent scientists.  Thank you for your friendship and 

effort; you are the type of students that are fun to teach.  A special thanks to Manuel, 

Kay, Richard, Andrea and others who took a break on Fridays to enjoy Jin’s (we had to 

get out of the building once in awhile).  Sincere thanks to all other Romo group members 

who helped make chemistry fun including Changsuk Lee, Sung Wook Cho, Yatsandra 

Oyola, Henry Nguyen (special thanks for telling me that I made a good decision about 

post-docs), Gang Liu, Andrea Matla, Dorianne Castillo, Ta Chamni, Ravi Vallakati, and 

JC Reyes.  Finally, I must thank my fellow β-lactoners Hong Woon Yang, Cunxiang 

Zhao, Yingcai Wang, Bill Schmitz, and others without whom I would not be writing this 

dissertation.  “If I have seen further it is by standing on the shoulders of giants.”  

There are several other people that have made my time in graduate school 

memorable.  First, I need to thank Brian Fisher, Walter Bradley, Bob Hildreth, Daniel 

Romo, Nick Repak, David Perry, and Blake Jennings for there mentorship in my 



 viii

spiritual journey.  Second, several people in the chemistry department helped make some 

of my time in graduate school fun:  Guido Verbeck, Bill Russell, Thomas Oliver, Blake 

McElmurry, Brandon Hudder, Shane Tichy, Jay Locklear, BJ Bench, Francisco Franco-

Torres, Marc Gurau, Brant and Danielle Boren, Shayna Sung, Steve Furyk, Rick 

Sanchez, Adriana Salinas DeMoreno, Jesse Reich, and Joe Grill.  I would like to thank 

several friends outside the department that have encouraged me during my graduate 

career:  Robert and Jessie Folmar, John and Shana Mackie, John and Layne Hedden, Joe 

and Veronica Schmidtke, Andrew and Lorraine Page, Neal and Michelle Audenaert, 

Matt and Emily Butler, Louie and Becca Ruiz, Jamie and Mary Schroeder, Nathan and 

Rachael Herrington, Robert and Julie Wilson and family, Rob and Beth Sherburne, Jim 

and Corinne Powell, Josh Onuska, Jim and Jess Kilmartin, Mark Finch, Kevin Sample, 

Noelle Eason, Heather Thomson, Zac and Casey Rosenbaum, and Michael and Christine 

Yaeger.  Also, I would be remiss if I did not thank the chemistry graduate student office 

(Julie Wilson, Joy Monroe, Sandy Manning, April Place, and Ashley Martin) for all of 

the laughs and support.  I especially need to thank Julie for extending a listening ear and 

being a good friend.  I am sure that I have forgotten someone who has been an 

encouragement to me over the last seven years and I thank you too.  I can confidently 

say that my time at Texas A&M would not have been the same without all of these 

people. 

I am greatly indebted to my entire family for years of support and 

encouragement.  I would especially like to thank my parents for raising me the right 

way, for your example of how to live, and for teaching me what is the most important 



 ix

thing in life.  I hope that my life honors the sacrifices that you made for me.  Thank you 

to Matt and Kevin for their encouragement, support, and fun memories over the years.  

Thanks to Renée and Kim for encouragement and for being sisters that I never had 

growing up.  Kevin, thank you for sharing the journey through education with me; I am 

happy that we can now talk about it in the past tense.  I would like to offer my sincere 

gratitude to the entire Vest family, both for accepting a yankee into the family and for 

being so much fun.  A special thanks to Donald and Julie for their support and most 

importantly for the daughter they raised.  Words cannot express how much I appreciate 

my wife.  I am not ashamed to say that I need you; being with you has changed my life 

only for the better.  Not only do you make me want to be a better man, you are helping 

me to become that man.  You will always be my girl and my better half.  Thank you to 

my son, Simon, who has already given me so much joy. 

  Finally, my greatest appreciation must go to the Lord of all creation, Jesus Christ.  

Without Him, we are but dust in the wind, but through Him all of life takes on purpose.  

“All Truth is God’s Truth….Thou awakest us to delight in Thy praise; for Thou madest 

us for Thyself, and our heart is restless until it repose in Thee.” (St. Augustine) 



 x

TABLE OF CONTENTS 
 

              Page 

ABSTRACT ..............................................................................................................  iii 

DEDICATION ..........................................................................................................  v 

ACKNOWLEDGEMENTS ......................................................................................  vi 

TABLE OF CONTENTS ..........................................................................................  x 

LIST OF FIGURES...................................................................................................  xiii 

LIST OF TABLES ....................................................................................................  xiv 

CHAPTER 

 I INTRODUCTION:  ADVENTURES WITH β-LACTONES: 

SYNTHESES, TRANSFORMATIONS, AND APPLICATIONS OF 

  2-OXETANONES................................................................................  1 

            Overview ....................................................................................  1 
            A Brief History of β-Lactones....................................................  2 
            Synthetic and Mechanistic Studies of Lewis Acid Catalyzed  
            [2+2] Cycloadditions of Aldehydes and Ketenes and  
                  Application toward Optically Active β-Lactones.......................  6 
            ZnCl2-Mediated trans-Selective Synthesis of β-Lactones via  
            Tandem Mukaiyama Aldol-Lactonization (TMAL) Processes 
                 and Discovery of a Stereocomplimentary SnCl4-Mediated cis- 
            Selective Synthesis of β-Lactones..............................................  8 
            A Single-Pot, Mild Conversion of β-Lactones to β-Lactams 
            and Application toward β-Lactam FAS Inhibitors .....................  22 
            Use of In Situ Generated Ketene in the Wynberg Process and 
            New Transformations of the Resulting β-Lactones....................  23 
            Development of an Intramolecular Wynberg Process toward 
            Natural Products Inspired Synthesis of Polycyclic β-Lactones 
            via Organonucleophile-Promoted Bis-Cyclization Processes....  26 
            Conversion of 4-Alkylidene-2-Oxetanones to β-Lactones and 
            Unexpectedly Stable Spiroepoxy-β-Lactones ............................  34 
            Conclusions and Future Directions ............................................  36 



 xi

CHAPTER                                                                                                                    Page 

         II RADICAL REACTIONS OF OPTICALLY ACTIVE  

  4-TRICHLOROMETHYL-β-LACTONE: A POTENTIAL ROUTE  

  TO β-LACTONE SUBSTRATES FOR TETRAHYDROFURAN  

   SYNTHESIS ........................................................................................  37 

             Introduction ................................................................................  37 
             Results and Discussion...............................................................  40 
             Conclusions ................................................................................  48 
 

 III DEVELOPMENT OF A DIASTEREOSELECTIVE STEPWISE  

  SYNTHESIS OF TETRAHYDROFURANS VIA MEAD  

  REDUCTIVE CYCLIZATION (MRC) OF KETO-β-LACTONES  

  DERIVED FROM THE TANDEM MUKAIYAMA ALDOL- 

  LACTONIZATION (TMAL) ..............................................................  50 

                     Introduction ................................................................................  50 
             Results and Discussion...............................................................  54 
             Conclusions ................................................................................  66 
 

 IV DEVELOPMENT OF A TANDEM, THREE-COMPONENT 

  SYNTHESIS OF TETRAHYDROFURANS FROM  

  KETOALDEHYDES, THIOPYRIDYL KETENE ACETALS, AND  

  SILYL NUCLEOPHILES....................................................................  68 

                     Introduction ................................................................................  68 
             Results and Discussion...............................................................  69 
             Conclusions ................................................................................  88 
 

  

 



 xii

CHAPTER                                                                                                                    Page 

 V DEVELOPMENT OF A COMPREHENSIVE MODEL TO 

RATIONALIZE DIASTEREOSELECTIVITY IN THE TANDEM 

MUKAIYAMA ALDOL-LACTONIZATION (TMAL).....................  89 

                     Introduction ................................................................................  89 
             Results and Discussion...............................................................  89 
             Conclusions ................................................................................  95 
 

 VI CONCLUSIONS..................................................................................  96 

REFERENCES..........................................................................................................  98 

APPENDIX A: EXPERIMENTAL AND SELECTED SPECTRAL DATA...........  106 

APPENDIX B: LETTERS OF PERMISSION .........................................................  355 

VITA .........................................................................................................................  359 



 xiii

LIST OF FIGURES 
 

FIGURE                                                                                                                        Page 

 1.1 Wynberg’s synthesis of 4-trichloromethyl-β-lactone.................................  2 
 
 1.2 Initial inspiration for a β-lactone research program ...................................  3 
 
 1.3 Inspiration from natural products omuralide and lactacystin.....................  4 
 
 1.4  Transformations of bicyclic β-lactones ......................................................  4 
 
 1.5 Transformations of monocyclic β-lactones ................................................  5 
 
 1.6 Diagnostic coupling constants of γ-benzyloxy-β-lactones.........................  18 
 
 2.1 Original strategy toward substrates for tetrahydrofuran synthesis.............  39 
 
 3.1  General strategies toward tetrahydrofurans................................................  50 
 
 3.2 Overman’s Prins-pinacol strategy toward trans-kumausyne .....................  51 
 
 3.3 Roush’s [3+2] annulation strategy toward asimicin...................................  52 
 
 3.4 Lee’s radical cyclization strategy toward pamamycin 607 ........................  52 
 
 4.1  ORTEP rendering of a single crystal X-ray structure of 4.15a' .................  74 
 
 4.2 Colopsinol B with relative stereochemistry of rings ..................................  82 
 
 5.1 Universal model for diastereoselectivity in the TMAL .............................  95 



 xiv

LIST OF TABLES 
 

TABLE                                                                                                                          Page 
 
 1.1 Effect of steric bulk of the silyl protecting group of ketene acetals 1.9a-d 9 
 
 1.2 Tandem, three-component synthesis of tetrahydrofurans 1.35 ..................  19 
 
 2.1 Selective dechlorination of Weinreb amide 2.16 .......................................  42 

 2.2 Dechlorination of 4-trichloromethyl-β-lactone (R)-2.3..............................  43 
 
 3.1 Alkenyl-β-lactones 3.3a-f from aldehydes (±)-3.1a-c via the TMAL .......  56 
 
 3.2 Coupling constant analysis of γ-benzyloxy-β-lactones 3.3a-c and 3.4a-c .  59 

 3.3 Optimization of Mead reductive cyclization of keto-β-lactone syn-3.4a...  60 
 
 3.4 Mead reductive cyclization (MRC) of keto-β-lactones 3.4b-f ...................  62 
 
 3.5 Coupling constant analysis of tetrahydrofurans 3.5a-c ..............................  63 

 3.6 Coupling constant analysis for tetrahydrofurans 3.5d-f.............................  64 
 
 4.1 Effect of the silyl protecting group of ketene acetals 4.2a-d in the TMAL 70 
 
 4.2 Optimization of the TMAL-MRC to tetrahydrofuran 4.15a ......................  73 

 4.3 TMAL-MRC of functionalized α-benzyloxy-γ-ketoaldehydes (±)-4.1b-g  75 
 
 4.4 Coupling constant analysis of tetrahydrofurans 4.15a-c ............................  76 

 4.5 Coupling constant analysis of tetrahydrofurans 4.15d-g ...........................  77 
 
 4.6 Coupling constant analysis of tetrahydrofurans 4.15h-j ............................  79 
 
 4.7 Nucleophilic additions to lactol (S)-4.29 with TMS-propargyl bromide ...  84 

 4.8 Coupling constant analysis of tetrahydrofurans 4.15k, 4.15k’, and 4.33 ..  85 
 
 4.9 Coupling constant analysis of tetrahydrofurans 4.15m-n ..........................  88 



 
 

1

CHAPTER I 

INTRODUCTION:  ADVENTURES WITH β-LACTONES:  SYNTHESES, 

TRANSFORMATIONS, AND APPLICATIONS OF 2-OXETANONES 

Overview 

“Let me tell you the secret that has led me to my goal: my strength lies solely in my 
tenacity…Chance favors the prepared mind.”  --Louis Pasteur 
 

This account describes syntheses, transformations, and applications of 2-

oxetanones in the Romo group.  After early inspiration from rapamycin and omuralide, 

we attempted to develop a repertoire of β-lactone transformations that could be utilized 

toward total synthesis and biological investigations.  We have developed syntheses of 

these underutilized strained heterocycles that fall into three broad categories:  Lewis 

acid-mediated processes, organonucleophile promoted cyclizations, and transformations 

of ketene dimers.  We have developed several transformations toward other useful 

functionality including γ-lactones, β-lactams, substituted carbocycles, tetrahydrofurans, 

and novel spiroepoxy-β-lactones.  Several natural products have been successfully 

synthesized including grandinolide, tetrahydrolipstatin and derivatives, okinonellin B, 

brefeldin A, belactosin C, dihydroplakevulin A, and salinosporamide A.  Utilizing these 

natural products and derivatives, we have elucidated important information regarding 

structure activity relationships, enzyme inhibition, and other biological properties.  In 

this account, we discuss several short stories in approximately chronological order 

concerning our investigations of these strained and versatile heterocycles.  

____________ 
This dissertation follows the style of the Journal of the American Chemical Society.   
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A Brief History of β-Lactones 

Although the first β-lactone (2-oxetanone) was synthesized by Einhorn in 1883,1 

it was not until almost 100 years later that β-lactones began to emerge as valuable 

intermediates for organic synthesis.2  In 1982, Wynberg and Staring,3 building on earlier 

work by Borrmann and Wegler,4 reported an efficient, asymmetric, and organocatalytic 

route to (R)- and (S)-4-trichloromethyl-2-oxetanones employing quinine and quinidine to 

facilitate the union of chloral and ketene (Figure 1.1).  The utility of these β-lactones was 

demonstrated in concise and efficient syntheses of both L- and D-malic acids.  Since that 

time, β-lactones have continued to gain prominence as versatile intermediates in 

synthesis,5 integral components in bioactive natural products,2 enzyme inhibitors with 

therapeutic potential,6 and building blocks for polymer synthesis.7   

 

Figure 1.1. Wynberg’s synthesis of 4-trichloromethyl-β-lactone 

 

In 1992, as a NSF postdoctoral fellow in the Schreiber lab, Prof. Romo 

fortuitously stumbled upon his first β-lactone as an unexpected byproduct in model 

studies of the rapamycin tricarbonyl region (Figure 1.2).  This auspicious discovery 

would be the spark of a significant portion of research in his independent career utilizing 
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these strained and versatile electrophiles.  Since these early inspirations, his β-lactone 

research program has taken his research group on an adventure worth sharing.   
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Figure 1.2. Initial inspiration for a β-lactone research program 

 

The bicyclic β-lactone containing natural product, omuralide,8 has also served as 

inspiration to our research program.  Upon inspection of this biosynthetic precursor to 

the well-known natural product, (+)-lactacystin,8 we reasoned that perhaps significant 

molecular simplification could be achieved by retrosynthetically cleaving the molecule 

through the middle to reveal an aldehyde-acid precursor.  In the forward sense, this 

aldehyde-acid could conceivably undergo a productive, organonucleophile catalyzed 

aldol-lactonization that would simultaneously form two bonds (1 C-C and 1 C-O) and 

two stereocenters (Figure 1.3).  Interestingly, this was one of the first targets in the 

Romo group and it was not until the requisite aldehyde-acid could be accessed via 

ozonolysis that this program was rejuvenated years later.  Even then, heterocyclic 

systems were difficult to access for several reasons and carbocycles revealed themselves 

as the logical starting point for bis-cyclization studies.    
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Figure 1.3. Inspiration from natural products omuralide and lactacystin 

 

Building on success of the bis-cyclization of carbocycles, we have demonstrated 

the synthesis and application of a variety of bicyclic β-lactones (Figure 1.4).  
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Figure 1.4. Transformations of bicyclic β-lactones 
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Utilizing other β-lactone methodology, we have demonstrated the synthesis, 

utility, and application of monocyclic β-lactones toward several structural motifs and 

natural products (Figure 1.5).  
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Figure 1.5. Transformations of monocyclic β-lactones 

 

Both the moieties that can be accessed from β-lactones and β-lactones 

themselves are prominent features in many natural products.  The natural products 

synthesized in our laboratory have been subjected to biological studies such as 

elucidation of structure activity relationships or enzyme interactions with the natural 

product.  Herein, we discuss several short stories in approximate chronological order 

concerning our adventures with these strained and versatile heterocycles. 
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Synthetic and Mechanistic Studies of Lewis Acid Catalyzed [2+2] Cycloadditions of 

Aldehydes and Ketenes and Application toward Optically Active β-Lactones  

Metals have played a significant role in organic synthesis and Lewis acids have 

allowed innumerable transformations to occur that otherwise may never have been 

discovered.  Our early reports investigated Lewis acid variants of the classic [2+2] 

cycloaddition between ketenes and aldehydes.9  These studies proved fruitful as several 

interesting results sprung from our initial investigation of chelation controlled [2+2] 

cycloadditions (Scheme 1.1).  Both α-benzyloxy aldehyde (S)-1.1a and β-benzyloxy 

aldehyde (S)-1.1b reacted smoothly with TMS-ketene in the presence of a stoichiometric 

amount of MgBr2•OEt2 to deliver the optically active β-lactones 1.2a and 1.2b, 

respectively, with excellent diastereoselectivity.10  

Scheme 1.1 

 

β-Lactone (S)-1.2a, derived from (S)-ethyl lactate, was subjected to FeCl3-

catalyzed transacylation-debenzylation to deliver γ-lactone 1.3 toward a concise total 

synthesis of (-)-grandinolide 1.4 (Scheme 1.2).11  Alkylation of the dianion derived from 

LDA with 1-iodo-19-phenylnonadecane gave (-)-grandinolide 1.4 in 28% overall yield.  

Scheme 1.2 
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Studies toward a catalytic, asymmetric [2+2] cycloaddition utilizing readily 

available dichlorotitanium-TADDOL catalysts were also examined (Scheme 1.3).12  

After diastereoselectivity of the α-silyl-β-lactones was determined, the mixture was 

desilylated and the enantioselectivity was determined by chiral GC or HPLC.  Although 

the optical purities of these β-lactones 1.2 were not synthetically useful, it was 

interesting to find that the cis-β-lactones gave slightly higher enantioselectivity than the 

trans-β-lactones.   

Scheme 1.3 

 

These observations led us to explore a deeper mechanistic understanding of this 

well-known transformation.  Although it is generally accepted that these [2+2] 

cycloadditions are concerted, we concluded that this particular process was stepwise 

wherein the C-C bond is formed first followed by lactonization (Scheme 1.4).  More 

intriguing was that the rate-limiting step of trans-β-lactone formation was found to be 

construction of the C-C bond, while for cis-β-lactone it was union of the C-O bond.13 

Scheme 1.4 

 



 
 

8

ZnCl2-Mediated trans-Selective Synthesis of β-Lactones via Tandem Mukaiyama 

Aldol-Lactonization (TMAL) Processes and Discovery of a Stereocomplimentary 

SnCl4-Mediated cis-Selective Synthesis of β-Lactones  

In 1994, Hirai and co-workers reported a single example of a cis-β-lactone 1.2c 

produced in low yield from p-nitrobenzaldehyde 1.1d and thiopyridyl ketene acetal 1.8 

(Scheme 1.5).14  This was the first example of β-lactone formation through a Mukaiyama 

aldol reaction.15   

Scheme 1.5 

 

Building on the work of Hirai, we reported a similar synthesis via the tandem 

Mukaiyama aldol-lactonization (TMAL) that delivered trans-β-lactones 1.2 from 

aliphatic aldehydes 1.1 in good to moderate yields with high diastereoselectivity 

(Scheme 1.6).16  In the course of optimization of various parameters, several important 

findings were reported.17  First, the pyridine moiety of the thiopyridyl ketene acetal 1.9 

was determined to be crucial to the success of this reaction, but also prevented the 

development of a catalytic version of the TMAL.  Intimately connected to the 

thiopyridyl moiety is ZnCl2 as this is the only Lewis acid to deliver trans-β-lactones 1.2 

in the TMAL thus far.  Experimental evidence also suggests that the Mukaiyama aldol is 

the rate-limiting step due to the fact that no typical aldol products are observed in the 

TMAL.  Finally, the steric bulk of the silyl group of ketene acetal 1.9 was found to play 

a vital role in the outcome of this reaction.   
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Scheme 1.6 

 

One important finding regarding the silyl protecting group of ketene acetals 1.9 was that 

isolated yields of β-lactones 1.2 were increased as much as 30% when TES was used 

instead of TBS (Table 1.1).16  We also found that β-chlorosilyl esters 1.10a-d were 

formed in greater yields as the size of the silyl group increased and when a very bulky 

silyl group (i.e. TBDPS) was utilized, this led to complete termination of the β-lactone 

pathway.  We proposed the presence of a silylated β-lactone intermediate 1.11a to 

account for these findings.17 

 

Table 1.1.  Effect of steric bulk of the silyl protecting group of ketene acetals 1.9a-d  

 
 entry SiR3 1.2d (% yield) 1.10 (% yield) 

1 TES (1.9a) 66 <5 (1.10a) 
2 TBS (1.9b) 53 8 (1.10b) 
3 TIPS (1.9c) 20 40 (1.10c) 
4 TBDPS (1.9d) <5 56 (1.10d) 

 
Our observations led us to propose highly-ordered, boat-like transition state 

arrangements 1.12 en route to silylated β-lactones 1.11 in the TMAL reaction (Scheme 
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1.7).17  The nature of the thiopyridyl ketene acetal 1.9 seems to enable a cyclic transition 

state due to poor overlap between the sulfur atom and the adjacent C(2p) π system 

leading to a high degree of sp3 character and thus availability for coordination to zinc 

(II).  In addition, zinc (II) Lewis acids are softer than titanium (IV), boron (III) and 

magnesium (II) Lewis acids, and thus are expected to have a higher affinity toward the 

soft sulfur atom.  Therefore, upon initial formation of the 4-membered, tetrahedral zinc 

(II) thiopyridyl chelate 1.9•ZnCl2, it can adopt pin-wheel conformations depending on 

ketene acetal geometry.  We propose that (E)- and (Z)-1.9 adopt two different pin-wheel 

conformations that correspond to boat-like, trigonal bipyramidal zinc (II) complexes (E)- 

and (Z)-1.12.18  Aldehyde 1.1 can then associate with zinc to form these diastereomeric 

trigonal bipyramidal zinc (II) complexes (E)- and (Z)-1.12.  Initial C-C bond formation 

leads to boat-like, zwitterionic intermediates (E)- and (Z)-1.13 resulting from initial syn 

or anti coordination with aldehyde 1.1, respectively.  Presumably, these boat-like 

intermediates (E)- and (Z)-1.13 undergo more facile transannular lactonization compared 

to corresponding zwitterionic intermediates derived from either “open” or “chair-like” 

transition state arrangements (not shown) leading to fused ring systems (E)- and (Z)-

1.14.  Cleavage of the sulfur-carbon bond in this tetrahedral intermediate with prior or 

concomitant dissociation of the Zn-O bond releases ring strain and thus provides a 

driving force leading to diastereomeric silylated β-lactone intermediates (E)- and (Z)-

1.11.  Finally, the crucial silylated β-lactone intermediates (E)- and (Z)-1.11 can either 

undergo invertive alkyl C-O ring scission (c.f. Table 1.1) or desilylation by the liberated 

chloride ion from complex 1.15 to deliver trans-β-lactones 1.2. 
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Scheme 1.7 

 

This methodology was applied to a fatty acid synthase (FAS) inhibitor, (-)-

panclicin D 1.17a and was one of our first reported examples of a substrate controlled 

diastereoselective TMAL (Scheme 1.8).16  β-Silyloxy aldehyde 1.1g was subjected to 

standard TMAL conditions with ketene acetal (E)-1.9e to deliver the required β-lactone 

1.2e in moderate yield with good diastereoselectivity.  Although no cis-β-lactone was 

observed, a minor quantity of the undesired syn-β-lactone was formed.  The synthesis 

was complete following silyl deprotection (the minor syn-β-lactone was separated at this 

point) and Mitsunobu inversion of the corresponding alcohol to deliver (-)-panclicin D 

1.17a in 20% overall yield from n-octanal 1.1f.  
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Scheme 1.8 

 

We demonstrated a convergent, “second generation” strategy ((-)-panclicin D 

was not resynthesized) toward (-)-panclicin D derivatives 1.17 that provided rapid access 

to tetrahydrolipstatin (orlistat), valilactone, and several other congeners (Scheme 1.9).19  

These natural products and derivatives were subjected to biological testing including 

inhibition studies of the thioesterase domain of fatty acid synthase (FAS). 

Scheme 1.9 

 

The scope of this diastereoselective TMAL was explored and some of the most 

successful TMAL substrates were found to be α-benzyloxy aldehydes 1.1a,h (Scheme 

1.10).20  These reactions proceeded with good yield and excellent diastereoselectivity 

corresponding to chelation control models with less than 2% racemization in most cases 

(when R = Ph, significant racemization occurs due to increased acidity of the α-protons). 
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Scheme 1.10 

 

This version of the TMAL was used toward the total synthesis of okinonellin B 

1.24a-b (Scheme 1.11).21  L-Malic acid derived γ-lactone (S)-1.21 provided the alkenyl-  

Scheme 1.11 

OO

Me

O

Me

OH
okinonellin B and 8-epi-
okinonellin B (1.24a-b)

O

O

BnO

H

O

OBn

O
O

Me
OBn

O

O

OH

Me

ZnCl2 (1.3 equiv)
CH2Cl2, 14 h, 23 °C

Me OTBS

SPy(E)-1.9g
1.1i

44% (6 steps)
ref . 20

(S)-1.21

BCl3 (1.0 equiv)
CH2Cl2, -78 °C

1) Me3Al, Cp2ZrCl2, H2O
CH2Cl2, -23 °C, 2 h, 1.22

O

Me

I

2) Pd2(dba)3, ZnCl2, AsPh3
NMP, 23 °C, 7.5 h, 1.23a-b

1.22

1.23a-b
12-15%

1.2g

 

aldehyde 1.1i which was subjected to standard TMAL conditions to give the desired β-

lactone 1.2g as a single diastereomer in good yield.  Unfortunately, our previous 

conditions (FeCl3, CH2Cl2, 23 ˚C) for the tandem transacylation-debenzylation11 

delivered the γ-lactone 1.22 in only 29% yield.  Alternative conditions (BCl3, CH2Cl2, -

78 ˚C) proved to be sufficient as the γ-lactone 1.22 was obtained in good yield.  The 

alkyne 1.22 underwent a one-pot coupling with both vinyl iodides 1.23a-b separately to 
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deliver (8S, 21S, 22S, 23 R)- and (8R, 21S, 22S, 23 R)-okinonellin B 1.24a-b, albeit in 

low yields.  Based on optical rotation data, we speculated that the natural product 

configuration is (8R, 21R, 22R, 23S), but could not be sure as none was available for 

direct comparison. 

 In the course of our studies with the ZnCl2-mediated TMAL, we discovered a 

stereocomplimentary SnCl4-mediated process that provides cis-β-lactones 1.2 in good to 

moderate yields and excellent diastereoselectivity (Scheme 1.12).22  This reaction 

proceeds at cooler temperatures (-78 ˚C) and shorter reaction times (2 h). 

Scheme 1.12 

 

Similar to the ZnCl2-mediated TMAL, β-chlorosilyl esters 1.10 were observed in 

the SnCl4-mediated process (Scheme 1.13).  The β-chlorosilyl ester 1.10e was isolated as 

carboxylic acid 1.10e’ in excellent yield over two steps and presumably proceeds 

through silylated β-lactone cis-1.11b.  X-ray analysis of carboxylic acid 1.10e’ 

supported the proposed invertive alkyl C-O scission of silylated β-lactone cis-1.11b. 

Scheme 1.13 
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In both processes, several other interesting byproducts were observed that 

supported our hypothesis regarding a silylated β-lactone intermediate (Scheme 1.14).  

Epimeric THFs carboxylic acids 1.25 were obtained after hydrolysis of the 

corresponding silyl esters (not shown). 

Scheme 1.14 
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We then attempted to intercept this silylated β-lactone with pendant nucleophiles 

to expand the scope of this methodology.  Unfortunately, attempts with a pendant 

allylsilane did not give promising results.  However, a stepwise version was previously 

explored and delivered cyclopentane 1.26 when R = Me in addition to an interesting 

Friedel Crafts byproduct 1.27 when R = OBn (Scheme 1.15).23  Low yields (9%) of the 

desired cyclopentane (not shown) were observed when R = OBn. 

Scheme 1.15 

 

This interesting but undesired isochroman 1.27 was avoided during the total 

synthesis of brefeldin A (not shown) in which a TBDPS protecting group on the ketene 

acetal (Z)-1.9h was utilized instead of the benzyl protecting group (Scheme 1.16).24  The 

length of this reaction (4 days) was a new observation, but more importantly a syn-β-
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lactone 1.2j was produced as the major product for the first time in the diastereoselective 

TMAL instead of the usual anti-β-lactone (c.f. 1.2e, Scheme 1.8).  This was unexpected 

and led us to question whether this reversal resulted from the bulky oxygen substituent 

or if this was a more general trend based on ketene acetal geometry.  Upon purification 

of the major diastereomer 1.2j by MPLC and cross metathesis with allyltrimethylsilane, 

cyclization of an inconsequential mixture of alkenes 1.2k promoted by TiCl4 proceeded 

smoothly to deliver the crucial cyclopentane acid 1.28 as a single diastereomer. 

Scheme 1.16 

 

Our next attempt to trap the proposed silylated β-lactone was with a ketone via 

stepwise tandem Mukaiyama aldol-lactonization16 – Mead reductive cyclization25 

(TMAL-MRC).  We attempted a stepwise MRC (Scheme 1.17) of keto-β-lactones 1.31 

derived from the TMAL to access trisubstituted THFs 1.32 in order to understand each 

reaction before proceeding to a more complex one-pot, three-component variant.26 The 

diastereoselective synthesis of β-lactones 1.30a-e was consistent with previous reports 

except for γ-benzyloxy-β-lactone anti-1.30c, which explored a previously unexamined 

combination of α-benzyloxy aldehyde 1.29a (not shown) and ketene acetal (Z)-1.9h.  A 

similar question as posed previously (c.f. syn-1.2j, Scheme 1.15) regarding ketene acetal 
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geometry now loomed as γ-benzyloxy-β-lactone anti-1.30c departed from the chelation 

control trend and instead seemed to follow Felkin-Anh selectivity.  The keto-β-lactones 

1.31a-e underwent invertive alkyl C-O scission to deliver oxocarbeniums that were 

stereoselectively reduced according to Woerpel’s model to deliver THFs 1.32a-e.27  This 

stepwise TMAL-MRC assisted the development of a three-component TMAL-MRC 

with γ-ketoaldehydes, thiopyridyl ketene acetals, and silyl nucleophiles (vide infra). 

Scheme 1.17 
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 Another interesting observation from these studies was a coupling constant trend 

that should allow assignment of relative stereochemistry of these systems solely based 

on this property (Figure 1.6).26  In the case of these γ-benzyloxy-β-lactones, the coupling 

constants for syn (J4,5 = 4.5-6.0 Hz) and anti (J4,5 = 2.7-3.6 Hz) diastereomers followed a 

clear trend that is also consistent with our previous studies.20,21  

 

Figure 1.6. Diagnostic coupling constants of γ-benzyloxy-β-lactones 

 

We envisioned a three-component TMAL-MRC synthesis of THFs 1.34 from 

ketoaldehydes (±)-1.33, thiopyridyl ketene acetals 1.9, and silyl nucleophiles in which as 

many as two C-C and one C-O bond are formed in conjunction with three new 

stereocenters (Scheme 1.18).28  After extensive optimization studies, we were pleased to 

observe moderate yields of several THFs 1.35 (Table 1.2).   

Scheme 1.18 
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Table 1.2.  Tandem, three-component synthesis of tetrahydrofurans 1.35 

 

Our prediction that the stereochemical outcome would follow the precedent set 

forth by the TMAL,16 invertive alkyl C-O scission via the MRC,25 and Woerpel’s model 

for reduction of oxocarbenium ions27 was supported by nOe enhancements and coupling 

constant analysis.  Ultimately, the relative stereochemistry was confirmed with single 

crystal X-ray analysis of the benzoate ester of THF 1.35a.   
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 To highlight the utility of this methodology, we targeted the THF fragment of 

colopsinol B 1.37 (Scheme 1.19).29  Treatment of α-benzyloxy-γ-ketoaldehyde (±)-1.33f 

with ketene acetal 1.9c followed by reduction of the silyl ester with DIBAlH delivered 

THF 1.35g in moderate yield considering the complexity generated in the TMAL-MRC.   

Scheme 1.19 

 

A mechanistic pathway that rationalizes the stereochemical outcome of this 

tandem process is proposed based on a chelation-controlled TMAL process28 and 

Woerpel’s model27 for oxocarbenium reductions (Scheme 1.20).  Precoordination of 

ZnCl2 and ketene acetal (E)-1.9i leads to tetrahedral complex (E)-1.9•ZnCl2.  Initial 

monodentate coordination with α-benzyloxy aldehyde (±)-1.33a leads to trigonal 

bipyramidal complex 1.38 involving bidentate chelation of Zn (II) with the thiopyridyl 

group.  A highly ordered, boat-like transition state arrangement 1.39 is generated by 

ligand rearrangement leading to bidentate coordination with α-benzyloxy aldehyde (±)-

1.33a.  Chelation-controlled addition leads to high diastereoselectivity in the aldol step 

eventually providing silylated β-lactone 1.11c.  Subsequent invertive alkyl C-O cleavage 

delivers oxocarbenium 1.41.  The pseudoaxially disposed benzyloxy substituent enforces 
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the stereoelectronically favorable envelope conformation and reduction occurs from the 

“inside” of the envelope as predicted by the Woerpel model27 to give silyl ester 1.34a. 

Scheme 1.20 

 

A unique application of the TMAL with chiral ketene acetals toward the total 

synthesis of biologically active (-)-belactosin C 1.42 was demonstrated (Scheme 1.21).30   

Scheme 1.21 
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Strategy B utilizing a chiral auxiliary toward a proximal double diastereoselective 

TMAL proved to give better results and enable the synthesis and separation of an 

advanced intermediate en route to (-)-belactosin C 1.42. 

 

A Single-Pot, Mild Conversion of β-Lactones to β-Lactams and Application toward 

β-Lactam FAS Inhibitors 

Ubiquitous moieties of natural products, β-lactams bear a striking resemblance to 

β-lactones and we investigated a single-pot conversion of β-lactones to β-lactams that 

would further our transformational repertoire of these versatile heterocycles (Scheme 

1.22).31  Acyl C-O ring-opening of β-lactones 1.2 with neat O-benzyloxyamine followed 

by Mitsunobu conditions at ambient temperature delivered the corresponding β-lactams 

1.46 with inversion of configuration at the β-carbon.  In all cases with α-alkyl-β-

lactones, high stereochemical fidelity was observed.  However, when the α-carbon was 

substituted with a heteroatom (i.e. OBn or SiMe3), mixed results were obtained. 

Scheme 1.22 

 

This single-pot conversion of β-lactones to β-lactams was applied to the 

synthesis of the first β-lactam orlistat derivative 1.49 and others which were studied for 

the inhibition of FAS synthase (Scheme 1.23).32 
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Scheme 1.23 

 

 

Use of In Situ Generated Ketene in the Wynberg Process and New Transformations 

of the Resulting β-Lactones 

The utility of the commercially available 4-trichloromethyl-2-oxetanone has been 

well documented and its synthesis via the Wynberg process was truly groundbreaking.3  

As is the case with all landmark advances, however, there were disadvantages to this 

route including the need for both ketene generation and highly active aldehydes.  It was 

our hope that a modified Wynberg process using in situ generated ketene could achieve 

similar results as the original.  Indeed, β-lactones 1.2 were obtained in good to moderate 

yields with excellent enantioselectivities using in situ generated ketene (Scheme 1.24).33 

Scheme 1.24 
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The dichloro-β-lactones were then utilized in further transformations (Scheme 

1.25).33  First, the dichloro-β-lactone 1.2n was dechlorinated and ring-opened under 

hydrogenation conditions with methanol as both solvent and nucleophile.  Upon 

formation of the mono-protected diol 1.53, unsaturation in the form of either a vinyl 

chloride 1.55 or an alkyne 1.56 could be introduced with selective mono- or bis-

elimination, respectively, simply by varying the amount of KOt-Bu present in the 

reaction. 

Scheme 1.25 

 

The optically active 4-trichloromethyl-β-lactone was utilized in the total 

synthesis of a naturally occurring α-amino acid 1.58 from the seeds of Blighia unijugata 

(Scheme 1.26).34  β-Lactone (R)-1.2o was treated with p-TSA followed by protection to 

deliver the β-silyloxy ester (not shown).  The ester underwent half-reduction with 

DIBAlH and was subsequently treated with the Wittig reagent to provide α,β-unsaturated 
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ester 1.57 in excellent yield.  A second reduction followed by TBAF deprotection gave 

the corresponding diol (not shown).  Treatment of the diol with NaN3 and aqueous 

NaOH in THF selectively transformed the trichloromethyl carbinol moiety into the α-

azido carboxylic acid which was then reduced under standard conditions to provide the 

α-amino acid 1.58.   

Scheme 1.26 

 

The optically active 4-trichloromethyl-β-lactone (R)-1.2o and the ring-opened 

Weinreb amide 1.59 were utilized in radical transformations that further demonstrated its 

utility as a malic acid surrogate (Scheme 1.27).35  A unique aspect of several of these 
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reactions is the ability to perform them while maintaining the integrity of the β-lactone.  

Treatment with allylstannanes provided the alkenyl-β-lactones 1.2p-q while Bu3SnH in 

refluxing THF smoothly provided the dichloro-β-lactone 1.2r.  The ring-opened 

trichloro Weinreb amide 1.59 easily provided both dichloro Weinreb amide 1.60 and 

monochloro Weinreb amide 1.61 via mono- and bis-dechlorination, respectively. 

 

Development of an Intramolecular Wynberg Process toward Natural Products 

Inspired Synthesis of Polycyclic β-Lactones via Organonucleophile-Promoted Bis-

Cyclization Processes 

As mentioned previously, another shortcoming of the Wynberg process is the 

need for highly activated aldehydes.  It was thought that perhaps an intramolecular 

version would eliminate the need for such aldehydes.36  Although our initial studies 

toward the total synthesis of omuralide were met with frustration, our investigations 

toward carbocycles found greater initial success (Scheme 1.28).37  When aldehyde-acid 

1.62 was added to a solution of Mukaiyama’s reagent 1.63 and Et3N in CH3CN at 

ambient temperature over 10 h via syringe pump, good to moderate yields of bicyclic-β-

lactones 1.64 were isolated.   

Scheme 1.28 
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Both enantioselective and diastereoselective versions of this reaction showed 

great promise (Scheme 1.29).  When aldehyde-acid 1.62a was utilized, cyclopentane-

fused β-lactone 1.64a was observed in moderate yield and excellent diastereoselectivity.  

We were excited to find that bicyclic-β-lactones such as 1.64b could be obtained with 

high optical purity with the use of Cinchona alkaloids.  Bicyclic-β-lactone 1.64b was 

transformed to cyclopentenone 1.65 followed by protection and reduction to deliver the 

alcohol 1.66 as a single diastereomer.  Comparison of the optical rotations of 

cyclopentenol 1.66 to the known precursor of aristeromycin 1.67 indicated that optical 

purity was maintained.38  

Scheme 1.29 

 

This method was then optimized further using a modified Mukaiyama’s reagent 

1.68 (Scheme 1.30).39  This reagent allowed the use of dichloromethane as solvent due 

to increased solubility and increased yields by as much as 37% while maintaining 

excellent enantioselectivities. 
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Scheme 1.30 

 

Several transformations of these bicyclic systems were then explored.  Both acyl 

C-O and alkyl C-O nucleophilic ring-opening was executed with nitrogen nucleophiles 

demonstrating the hard-soft dichotomy imbedded within β-lactones (Scheme 1.31).40  

For example, β-lactone 1.64c was treated with neat BnONH2 to deliver hydroxamic acid 

derivative 1.69.  Also, invertive alkyl β-lactone cleavage with NaN3 was demonstrated 

and the resulting azide 1.70 was converted to the common 2-aminocyclopentane 1.72. 

Scheme 1.31 

 

Carbon-based nucleophiles were attempted and applied to Merck IND 

intermediate 1.74 (Scheme 1.32).41  Various Grignard reagents and copper sources 

delivered cyclopentanes 1.73 in good yields with excellent diastereoselectivity via SN2-

like inversion of the bicyclic-β-lactones 1.64.  This was applied to a concise synthesis of 

ketone 1.74, a Merck IND intermediate utilized toward anti-HIV CCR5 antagonists.    
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Scheme 1.32 

 

A significant expansion of the scope of this methodology was achieved with the use of 

more tractable keto-acid substrates 1.75 (Scheme 1.33).42  A variety of bicyclic- and 

tricyclic-β-lactones 1.64 were synthesized in good yields and, in some cases, excellent 

diastereoselectivities.  Due to the fact that ketones are substantially less reactive than 

aldehydes, a stronger nucleophilic promoter was necessary.  We found that 

stoichiometric quantities of PPY effected this transformation quite well.   

Scheme 1.33 

 

We then applied this methodology toward the total synthesis of (+)-

dihydroplakevulin A 1.77 (Scheme 1.34).42  Keto-acid 1.75a obtained from known β-

silyloxy ester 1.76 was subjected to the optimized conditions to deliver bicyclic-β-
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lactone 1.64m in good yield as a single diastereomer (>19:1).  Acyl C-O nucleophilic 

ring-opening followed by deprotection delivered (+)-dihydroplakevulin A 1.77 in 11% 

overall yield from ester 1.76.    

Scheme 1.34 
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These polycyclic-β-lactones were transformed to fused γ-lactones and 3(2H)-

furanones via ring expansions and O-H insertions (Scheme 1.35).43  First, δ-hydroxy-α-  
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diazo-β-ketoesters 1.79a were synthesized directly with lithiated ethyl diazoacetate 

(EDA) and δ-hydroxy-α-diazo-β-phosphonates 1.79b were produced by a simple three-

step protocol.  These intermediate diazo compounds then underwent either tandem Wolff 

rearrangement/lactonization to form γ-lactones 1.80a-b or rhodium (II) catalyzed O-H 

insertion to deliver 3(2H)-furanones 1.81a-b.   

 Bicyclic-β-lactones were also utilized toward the total synthesis of (±)-

salinosporamide A 1.82a and (±)-cinnabaramide A 1.82b (Scheme 1.36).44  Although 

omuralide (c.f. Figure 1.3) was our original target, the recently isolated and extremely 

potent (±)-salinosporamide A 1.82a led us to reconsider.  Although (±)-salinosporamide 

A 1.82a and (±)-cinnabaramide A 1.82b differ structurally only in the side chain (R), 

(±)-salinosporamide A 1.82a has revealed fascinating information regarding inhibition 

of the 20S proteasome.  Our original strategy toward omuralide was applied to a unified 

synthetic approach to (±)-salinosporamide A 1.82a and (±)-cinnabaramide A 1.82b 

invoking the organonucleophile-promoted bis-cyclization process. 

Scheme 1.36 
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The total synthesis of (±)-salinosporamide A 1.82a was achieved in only 9 steps 

from O-benzyl-L-serine 1.83 (Scheme 1.37).44  Following protection of amine 1.83 and 

Scheme 1.37 

 

subsequent esterification, coupling with heteroketene dimer 1.84a provided allyl esters 

1.86.  After mild Pd-mediated ester deprotection, bis-cyclization proceeded in 

satisfactory yield and favored the diastereomer 1.64n correlating to the relative 

configuration of (±)-salinosporamide A 1.82a.  It is important to note that if optically 

active heteroketene dimer 1.84a were utilized, epimerization should be minimized 

during the bis-cyclization process due to conformationally controlled (by A1,3 strain) 
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acidity thus constituting an asymmetric route to bicyclic-β-lactone 1.64n.  

Hydrogenation and Moffatt oxidation delivered the aldehyde (not shown) which was 

subjected to the method developed by Corey to introduce the side chain en route to 

alcohol 1.64q.  Finally, PMB deprotection of lactam 1.64q with CAN provided (±)-

salinosporamide A 1.82a. 

 An overall mechanism for the bis-cyclization process was set forth (Scheme 

1.38).42  Upon activation of the carboxylic acid and formation of an optically active acyl- 

Scheme 1.38 
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ammonium 1.89, deprotonation delivers the crucial ammonium enolate 1.90 which 

presumably undergoes aldol-lactonization to bicyclic-β-lactone 1.64.  In the case of 

aldehyde-acids 1.62, the mechanism most assuredly involves an aldol-lactonization 

process due to the observed high levels of asymmetric induction.  Although the evidence 
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is less conclusive when evaluating keto-acids 1.75, at this time we are inclined toward a 

similar aldol-lactonization mechanism instead of a concerted [2+2] cycloaddition. 

 

Conversion of 4-Alkylidene-2-Oxetanones to β-Lactones and Unexpectedly Stable 

Spiroepoxy-β-Lactones 

4-Alkylidene-2-oxetanones, or ketene dimers, are valuable intermediates in 

synthesis and we have shown that they are readily converted to β-lactones and 

spiroepoxy-β-lactones.  Ketene dimerization based on the method of Calter, followed by 

hydrogenation delivered optically active, pseudosymmetric cis-β-lactones 1.2 in good 

yields and excellent enantioselectivities (Scheme 1.39).45  Further manipulations of these 

systems produced mixed results.  While epimerizations were dissatisfying and only 

partial conversions to the corresponding trans-β-lactones were obtained, alkylations 

provided α,α-disubstituted-β-lactones with good diastereoselectivity (not shown). 

Scheme 1.39 

 
A novel ring system was discovered during attempts to oxidize ketene dimers in 

situ and further manipulate the products en route to highly functionalized systems 

(Scheme 1.40).46  The spiroepoxy-β-lactones 1.96 were obtained in good to moderate 

yields and excellent diastereoselectivities when the corresponding ketene dimers 1.95 

were treated with freshly prepared DMDO.  The relative stereochemistry was confirmed 

by X-ray crystallography in one case (1.96a:  R = CH2Cy).    
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Scheme 1.40 

 

Attempts to manipulate spiroepoxy-β-lactone 1.96a led to interesting results 

(Scheme 1.41).46  When treated with diisopropylamine, β-ketoamide 1.98 was obtained 

as a mixture of epimers.  Interestingly, when treated with diethylamine, a single 

diastereomer of the β-ketoamide 1.99 was observed.  A third amine base, DBU, 

delivered butenolide 1.103.  Another interesting experiment with isotopically labeled 

water showed that nucleophilic attack occurs at the epoxide moiety to deliver α-hydroxy 

ketone 1.100 in moderate yield.   

Scheme 1.41 
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Conclusions and Future Directions 

β-Lactones have emerged as valuable tools for the organic chemist and over the 

years Prof. Romo’s research program has contributed to this arena.  We developed 

syntheses of β-lactones via Lewis acid-mediated processes, organonucleophile-promoted 

bis-cyclizations, and conversion of ketene dimers.  We have transformed these strained 

heterocycles into other useful functionality such as γ-lactones, β-lactams, carbocycles, 

THFs, and novel spiroepoxy-β-lactones.  Several natural products have been synthesized 

including grandinolide, tetrahydrolipstatin and derivatives, okinonellin B, brefeldin A, 

belactosin C, dihydroplakevulin A, and salinosporamide A.  Utilizing these natural 

products and derivatives, we have been able to elucidate important information 

regarding structure activity relationships, enzyme inhibition, and other biological 

properties.  We hope to find continued success in the exploration of β-lactones. 
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CHAPTER II 

RADICAL REACTIONS OF OPTICALLY ACTIVE 4-TRICHLOROMETHYL-

β-LACTONE:  A POTENTIAL ROUTE TO β-LACTONE SUBSTRATES FOR 

TETRAHYDROFURAN SYNTHESIS* 

Introduction 

Although the first β-lactone (2-oxetanone) was synthesized by Einhorn in 1883,1 

it was not until almost 100 years later that these strained heterocycles began to emerge as 

valuable intermediates for organic synthesis.2  In 1982, Wynberg and Staring,3 building 

on earlier work of Borrmann and Wegler,4 reported an efficient, asymmetric, and 

organocatalytic route to (R)- and (S)-4-trichloromethyl-2-oxetanones 2.3 employing 

quinine and quinidine to facilitate the union of chloral 2.1 and ketene 2.2 (Scheme 2.1).  

The utility of these β-lactones 2.3 was demonstrated in concise syntheses of both L- and 

D-malic acids 2.5.  

Scheme 2.1 

 

 

____________ 
*Reprinted with permission from “Radical Reactions and α-Silylations of Optically 
Active 4-Trichloromethyl-β-Lactone” by Mitchell, T. A.; Romo, D. Heterocycles 2005, 
66, 627-637.  Copyright 2005 Heterocycles.  See Appendix B. 
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Fujisawa and coworkers, in collaboration with Wynberg’s group, described 

several transformations of the (S)-4-trichloromethyl-β-lactone 2.3, including a novel 

Friedel-Crafts acylation in a formal synthesis of enalapril 2.7, an angiotensin converting 

enzyme (ACE) inhibitor (Scheme 2.2).47  Fujisawa also reported a Claisen condensation 

with this β-lactone to give ketoester 2.8, an intermediate en route to the synthetically 

useful δ-lactone 2.9,48 and selective dechlorination to deliver alkyl chloride 2.10.49  In 

similar fashion, Song and coworkers dechlorinated β-hydroxy ester 2.11 derived from β-

lactone 2.3 to deliver chlorohydrin 2.12, a useful intermediate toward the total synthesis 

of carnitine 2.13.50   

Scheme 2.2 

 

Our group has also developed transformations of this commercially available 

chiral synthon (chiron) 2.3 and described its conversion into other useful intermediates.  
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For example, we prepared aldehyde 2.14 containing a masked α-amino acid functionality 

in the form of a protected trichloromethyl carbinol, a functionality readily converted to 

an α-azido ester.51  This β-silyloxy aldehyde 2.14 was utilized toward the synthesis of a 

naturally occurring amino acid 2.15 isolated from the seeds of the tropical plant, Blighia 

unijugata.34  Our recent interest in this useful chiron was toward substrates for further 

methodology development which will be discussed in subsequent chapters.  We 

envisioned transformations of (R)-4-trichloromethyl-β-lactone to either ketoaldehydes or 

keto-β-lactones (Figure 2.1) which could in turn be stereoselectively manipulated into 

substituted tetrahydrofurans (THFs).26,28  Although this initial goal was not realized, 

several novel transformations of this malic acid surrogate with orthogonal functionality 

of a trichloromethyl carbinol imbedded within an activated ester were discovered.  

 

Figure 2.1. Original strategy toward substrates for tetrahydrofuran synthesis 

 

A unique aspect of several of the described reactions is the ability to perform 

them while maintaining the integrity of the β-lactone (Scheme 2.3).  Several of these 

transformations were designed to provide access to orthogonally protected malic acid 

surrogates to circumvent numerous protection/deprotection steps often required to 

employ this useful chiral synthon.52  Although selective dechlorination of the 

trichloromethyl moiety is known for systems derived from these β-lactones, we now 
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report direct dechlorination in the presence of the β-lactone (i.e. 2.3 → 2.17).  Building 

on these results, we have developed a radical alkylation enabling C-C bond formation at 

the trichloromethyl center while maintaining the integrity of the β-lactone (i.e. 2.3 → 

2.18).  Finally, we have found that α-silylation of β-lactone 2.3 is possible (i.e. 2.3 → 

2.19).  Based on prior work,53 this will enable α-alkylation while circumventing the 

problematic alkylation of α-unsubstituted β-lactones due to competing Claisen 

condensations.54 

Scheme 2.3 

 

Results and Discussion 

β-Lactone 2.3 was opened to Weinreb amide 2.16 in 85% yield, an orthogonal 

malic acid surrogate with a trichloromethyl carbinol and Weinreb amide. (Scheme 11).55   

Scheme 2.4 
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Although β-hydroxy carbonyls are typically protected under acidic conditions, 

minimal attempts were undertaken to protect the alcohol with commercially available 

benzyl bromide under basic conditions (Scheme 2.5).  Although our initial attempt using 

warm THF did not deliver the desired product 2.20, neither was the expected α,β-

unsaturated amide (not shown) produced.  Interestingly, the acid-amide 2.21, which most 

likely arises by the initial formation of the corresponding dichloro epoxide and then 

expected β-elimination, was isolated after aqueous work-up.  When DMF was the 

solvent, however, the desired protection occurred in good yield to deliver amide 2.20.  

Whether this divergent pathway is solely a result of temperature, a more complicated 

solvent effect, or a combination of both factors was not examined further.  

Scheme 2.5 
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Weinreb amide 2.16 was converted to the dichloride 2.22 by reductive 

dechlorination, without the need for additional radical initiator, by the method of Song 

and Fujisawa (Table 2.1, entry 1).50  However, attempts to prepare the monochloride 

2.23 directly from the trichloride 2.16 in this manner with 2.2 equivalents of Bu3SnH 

were unsuccessful delivering primarily the dichloride 2.22 in 78% yield (entry 2).  

Standard radical dehalogenation conditions were then employed with 2,2’-

azobisisobutyronitrile (AIBN) as initiator and the monochloride 2.23 was obtained in 

77% yield (entry 3).56 This constitutes a complimentary route to chiron 2.23 prepared 

previously by other methods including Noyori hydrogenation.57  We investigated a tin-
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free method for dechlorination involving tris(trimethylsilyl)silane58 and this also 

delivered the monochloride 2.23 in similar yield (entry 4).  It is worth noting that the 

dichloride can be obtained under all conditions studied by the use of 1.1 equivalent of 

hydrogen atom donor.  Thus, selective radical dehalogenation of Weinreb amide 2.16 

provides malic acid surrogates 2.22 and 2.23 without recourse to tin-mediated processes. 

 

Table 2.1. Selective dechlorination of Weinreb amide 2.16 

 

entry Conditions 2.22 
(% yield)a 

2.23 
(% yield)a 

1 Bu3SnH (1.1 equiv.), THF, reflux, 24 h 78 <5b 
2 Bu3SnH (2.2 equiv.), THF, reflux, 24 h 78 <5b 
3 Bu3SnH (2.1 equiv.), PhH, AIBN, 60 ˚C, 16 h <5b 77 
4 TMS3SiH (2.1 equiv.), PhMe, Et3B, 23 ˚C, 1 h <5b 78 

a Refers to isolated yields. b Trace amounts of the minor products were detected in crude 
1H NMR analysis but were removed by chromatography.  
 

We next studied direct radical dechlorination of the trichloromethyl-β-lactone 

2.3.  There are a few examples of radical cleavage at the γ-carbon of β-lactones, which 

proceed without cleavage of the ring.59  For example, Crich has previously described 

radical dehalogenations of γ-bromo-β-lactones, and described the use of a full equivalent 

of Ph2Se2 (i.e. 2.0 equiv. of PhSeH) to suppress ring cleavage processes in favor of 

debromination.59e Similar to dechlorination of amide 2.16, initiator-free conditions 

applied to β-lactone 2.3 delivered the dichloride 2.17a in 70% yield with only a trace 

amount of monochloride 2.17b present in the crude 1H NMR spectrum (Table 2.2, entry 
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1).  We also obtained the volatile monochloride 2.17b when AIBN was added to the 

reaction, albeit in only 32% yield (entry 2).  Attempted silicon-mediated dechlorination 

gave the dichloride 2.17a in 57% yield with only 1.1 equivalent of silane (entry 3), but 

the monochloride 2.17b proved difficult to separate from boron byproducts when 2.2 

equivalents of silane were employed.  Ultimately, the use of tributyltin hydride and 

triethylborane cleanly provided the monochloride 2.17b with no dichloride detected, 

albeit in 25% yield (entry 4).  The volatility of the monochloride 2.17b undoubtedly 

contributes to lower yields in this case but may also be a result of alternative reaction 

pathways leading to highly volatile byproducts (e.g. 2.34b, vide infra).  To the best of 

our knowledge, these are the first direct reductive dechlorinations of γ-chloro-β-lactones 

that maintain the integrity of the strained heterocycle.  In contrast to examples by Crich, 

these transformations may be possible due to the stabilizing effect of the resident 

chlorine atoms on the radical center. 

 

Table 2.2. Dechlorination of 4-trichloromethyl-β-lactone (R)-2.3 

 

entry conditions 2.17a 
(% yield)a 

2.17b 
(% yield)a 

1 Bu3SnH (1.1-2.2 equiv), THF, reflux, 24 h 78 <5b 
2 Bu3SnH (2.1 equiv), PhH, AIBN, 60 ˚C, 16 h <5b 32 
3 TMS3SiH (1.1 equiv), PhMe, Et3B, 23 ˚C, 1 h 57c <5b 
4 Bu3SnH (2.1 equiv), PhMe, Et3B, 23 ˚C, 3 h <5b 25 

a Refers to isolated yields. b Trace amounts of the minor products were detected in crude 
1H NMR analysis but were removed by chromatography. c The product was difficult to 
isolate from byproducts. 
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We thought that dechlorination would be possible using samarium diiodide 

(SmI2) based on our success with the fully reduced, monoprotected diol 2.24 (Scheme 

2.6).  Monodechlorination was achieved at ambient temperature to provide dichloride 

2.25, while bis-dechlorination proceeded under more forcing conditions to provide 

monochloride 2.26.  Presumably, SmI2 promotes consecutive single electron transfer 

(SET) processes (vide infra) and the resulting dichloromethyl anion abstracts a proton 

from i-PrOH. 

Scheme 2.6 

 

When these and related conditions were applied directly to β-lactone 2.3, mixed 

results were obtained (Scheme 2.7).  The exact conditions produced the ring-opened 

ester 2.27 with only minor quantities of the dichloride (not shown) and no β-lactones 

detected.  We attempted to trap the dichloromethyl anion with a non-nucleophilic proton 

source, collidinium triflate 2.29.60  The dichloride 2.17a was not formed, but known acid 

2.2861 derived from ring scission was obtained in 94% yield.62  Hydrogen atom sources, 

such as 1,4-cyclohexadiene, met with little success in attempts to capture the 

dichloromethyl radical presumably formed after single electron transfer (vide infra).   

Scheme 2.7 
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As mentioned previously, we propose that SmI2 promotes two consecutive single 

electron transfer (SET) processes to ultimately form the dichloromethyl anion 2.31 as 

opposed to the dichloromethyl radical 2.30 which is presumably formed under more 

conventional radical conditions (Scheme 2.8).  Taken together, these reactions 

demonstrate an interesting dichotomy between radical and anionic dechlorination of γ-

halo-β-lactones and may reflect the relative stability of an oxy radical versus an oxy 

anion.  Based on the work of Crich,59e it is possible that dichloromethyl radical 2.30 

could undergo fragmentation to the oxy radical 2.33a.  A more plausible explanation that 

accounts for the observed mono-dechlorination of β-lactone 2.3 is that radical 2.30 is 

inductively stabilized by two resident chlorine atoms, and therefore has sufficient 

lifetime to abstract a hydrogen atom from Bu3SnH leading to dichloride 2.17a.  

However, after formation of the monochloromethyl radical 2.32, the aforementioned 

fragmentation to form oxy radical 2.33b seems more likely due to the fact that this 

radical is inductively stabilized by only one resident chlorine atom.  In the event that 

either radical 2.30 or 2.32 undergoes ring scission leading to oxy radical 2.33a or 2.33b, 

respectively, it would then undergo rapid decarboxylation as observed by Crich and 

finally reduction if another equivalent of hydrogen atom donor is present.59e This 

pathway would ultimately deliver the volatile dichloroalkenes 2.35a-b (as mixtures of 

regioisomers).  Although we have not detected these byproducts, the expected decrease 

in stability of monochloromethyl radical 2.32 versus dichloromethyl radical 2.30 may be 

reflected in decreased yields in the bis-dechlorination leading to monochloro-β-lactone 

2.17b (c.f. Table 2.2).  In contrast, SET with SmI2 to generate the dichloromethyl anion 
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2.31 from dichloromethyl radical 2.30 should be a favorable process due to similar 

inductive arguments (vide supra) in which two resident chlorine atoms favor the 

formation of dichloromethyl anion 2.31.  These inductive effects, in combination with a 

good leaving group (i.e. β-lactone moiety) alpha to the dichloromethyl anion and an 

effective activating agent (i.e. collidinium triflate), promote the formation of carboxylic 

acid 2.28 in excellent yield.     

Scheme 2.8 

 
 

Encouraged by successful dechlorinations in the presence of the β-lactone moiety 

and with some understanding of the reactivity of the dichloromethyl radical 2.30, we 

focused our attention on tin-mediated C-C formation.63  Several attempts with 

allylstannes, including allyltributylstannane, allyltriphenylstannane, and tetrallyltin, gave 

promising results, but could not be driven to completion with 1.1 equivalent and this was 

complicated further by the inability to separate product from starting material.  However, 
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we ultimately found that treatment of β-lactone 2.3 with 2.5 equivalents of 

allyltributylstannane provided the monoalkylated product 2.18a in 46% yield (Scheme 

2.9).  Employing methallyltributylstannane under similar conditions delivered β-lactone 

2.18b in 45% yield.  Although the yields are moderate, this represents a novel 

functionalization of β-lactone 2.3 and this method should be amenable to radical 

alkylations of other trichloromethyl moieties.64   

Scheme 2.9 

 

Application toward the rubrosides,65 a family of natural products with a related 

chloro-THF substructure, failed to proceed as expected (Scheme 2.10).  Ozonolysis of 

alkenyl-β-lactone 2.18b seemed to deliver keto-β-lactone 2.36, but purification was 

troublesome and this could be attributed to byproducts formed from β-elimination of a 

chloride or some other undesirable pathway.  Lewis acid-mediated reductive 

cyclization25 followed by radical dechlorination58 from the less hindered face of THF 

2.37 would presumably deliver chloride 2.38 as an intermediate to the rubrosides.   

Scheme 2.10 
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 In efforts to functionalize the α-carbon of β-lactone 2.3, we studied enolization 

and subsequent trapping with various electrophiles.  Prior attempts to alkylate α-

unsubstituted β-lactones have proven to be difficult and inefficient due to both self-

condensation (Claisen) and dialkylation with only a few examples being successful with 

highly reactive electrophiles.54  Attempts to apply several of these reported methods to 

β-lactone 2.3 were unsuccessful.  However, we discovered a novel α-silylation of β-

lactone 2.3 when it was treated with lithium hexamethyl disilazide (LiHMDS) and silyl 

triflates at -78 ˚C (Scheme 2.11).  The use of TESOTF provided a moderate yield of α-

triethylsilyl-β-lactone 2.19a with recovered starting material, while TIPSOTf was 

sluggish and lower yielding, possibly due to steric bulk of the TIPS group.  We have not 

determined if this reaction proceeds through a direct α-silylation or by O-silylation 

followed by Brook rearrangement.  This enables further functionalization at the α-carbon 

as previously demonstrated by Pons66 and Mead.53   

Scheme 2.11 

 

 

Conclusions 

We have demonstrated several new transformations of the commercially 

available (R)-4-trichloromethyl-β-lactone including radical alkylations, α-silylations, and 

alternative, tin-free methods for mono- and bis-dechlorinations.  Importantly, several of 
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these reactions can be conducted while maintaining the integrity of the β-lactone, thus 

enabling subsequent acylations or alkylations with the β-lactone moiety.  A Weinreb 

amide derivative was readily prepared and then selectively dechlorinated providing 

access to malic acid surrogates with orthogonal functional groups.  Chain extensions at 

the γ-carbon were possible via radical alkylations providing access to further 

functionalized γ-chloro-β-lactones.  α-silylations of β-lactone were shown to be feasible 

albeit in low yield.  
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CHAPTER III 

DEVELOPMENT OF A DIASTEREOSELECTIVE STEPWISE SYNTHESIS OF 

TETRAHYDROFURANS VIA MEAD REDUCTIVE CYCLIZATION (MRC) OF 

KETO-β-LACTONES DERIVED FROM THE TANDEM MUKAIYAMA 

ALDOL-LACTONIZATION (TMAL)*  

Introduction 

Tetrahydrofurans (THFs) are common heterocyclic motifs in natural products 

and thus many routes have been developed to access these moieties.  These approaches 

can be divided into three major synthetic strategies (Figure 3.1).67  In one strategy, an 

oxygen nucleophile displaces, adds to, or opens an activated group (G) such as a leaving 

group (e.g. mesylate),68 an olefin (e.g. iodoetherification),69 or a strained ring (e.g. 

epoxide)70 to form a new C-O bond (Type I).  In another strategy, a nucleophile adds to 

an oxocarbenium intermediate and a new C-C or C-H bond is formed (Type II).71  

Finally, several miscellaneous strategies have been developed including ring 

contractions of six-membered rings such as tetrahydropyrans72and δ-lactones.73  

 

Figure 3.1. General strategies toward tetrahydrofurans 
 

____________ 
*Reprinted with permission from “Diastereoselective Synthesis of Tetrahydrofurans via 
Mead Reductive Cyclization of Keto-β-Lactones Derived from the Tandem Mukaiyama 
Aldol-Lactonization (TMAL) Process” by Mitchell, T. A.; Romo, D. J. Org. Chem. 
2007, 72, 9053-9059.  Copyright 2007 American Chemical Society.  See Appendix B. 
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Some of the most elegant and efficient approaches to THFs are Type III 

strategies. For example, Overman developed the Prins-pinacol route to THFs74 that has 

been applied to trans-kumausyne (Figure 3.2) and other members of the Laurencia 

family of marine natural products,75 as well as (-)-citreoviral76 and briarellin E.77   

 

Figure 3.2. Overman’s Prins-pinacol strategy toward trans-kumausyne 

 

Roush and Micalizio78 refined and expanded the [3+2] annulation of aldehydes 

and allylsilanes toward THFs first reported by Panek (Figure 3.3).79 This elegant 

strategy has been applied to pectenotoxin II,80 amphidinolide F,81 asimicin (Figure 

3.3),82 (+)-bullatacin,83 angelmicin B,84 and haterumalide ND.85 
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Figure 3.3. Roush’s [3+2] annulation strategy toward asimicin 

 

Lee developed a radical cyclization86 approach to THFs and utilized this method 

in the total synthesis of pamamycin 607 (Figure 3.4),87 (+)-methyl nonactate,88 

kumausallene,89 and kumausyne.90   
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Figure 3.4. Lee’s radical cyclization strategy toward pamamycin 607 

 

β-Lactones continue to gain prominence as versatile intermediates in synthesis,5 

to be found as integral components in bioactive natural products,2 and to demonstrate 

utility as enzyme inhibitors with therapeutic potential.6  We have reported 

diastereoselective routes to both cis22 and trans16 β-lactones 3.3 via tandem 
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Mukaiyama15 aldol-lactonization (TMAL) processes with aldehydes 3.1 and thiopyridyl 

ketene acetals 3.2 (Scheme 3.1).  The TMAL was applied in total syntheses of panclicin 

D,16 tetrahydrolipstatin/orlistat,19 okinonellin B,21 brefeldin A,24 and belactosin C.30    

Scheme 3.1 

 

In addition, Mead demonstrated the utility of simple keto-β-lactones 3.4 for the 

synthesis of THFs 3.5 by a Lewis acid mediated, reductive cyclization (Scheme 3.2).25  

Scheme 3.2 

 

Building on these precedents, we envisioned a highly diastereoselective synthesis 

of substituted tetrahydrofurans 3.5 by combining the TMAL process and Mead reductive 

cyclization of substituted keto-β-lactones 3.4 (Scheme 3.3).26   

Scheme 3.3 
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Results and Discussion 

Herein, we report a hybrid of Type I and Type II strategies toward THFs that 

involves a Mead reductive cyclization (MRC)25 of keto-β-lactones prepared by the 

tandem Mukaiyama aldol-lactonization (TMAL) process.16  The required aldehydes (±)-

3.1a-c, possessing either α- or β-oxygenation, were prepared in racemic fashion by 

standard procedures (Scheme 3.4).  Aldehyde 3.6 was treated with methallylmagnesium 

magnesium chloride and the resulting alcohol was protected as the benzyl ether 3.7.  

TBAF deprotection and Swern oxidation provided the α-benzyloxy aldehyde (±)-3.1a.  

Two similar β-silyloxy aldehydes (±)-3.1b-c that correspond to TMAL substrates 

previously utilized in our group were synthesized by similar sequences.  After silyl 

protection of the β-hydroxy ester 3.8 with either TBSCl or TIPSOTf, we found that 

reduction with DIBAlH followed by Swern oxidation91 was the most straightforward 

route to large scale production of aldehydes (±)-3.1b-c. 

Scheme 3.4 
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Application of the TMAL process with α-benzyloxy aldehyde (±)-3.1a 

employing propionate-derived ketene acetal 3.2a proceeded with high 

diastereoselectivity to give β-lactone syn-3.3a based on chelation control (Table 3.1, 

entry 1).  Acetate-derived ketene acetal 3.2b gave low diastereoselectivity as expected 

based on previous results with a slight preference for the Felkin-Anh derived β-lactone 

anti-3.3b (entry 2).  Both of these TMAL reactions proceeded in comparable yield and 

diastereoselectivity at 0 °C with slightly increased reaction times.  Previous examples of 

the ZnCl2-mediated TMAL have proceeded at ambient temperature and this apparent 

increase in reactivity is presumably a result of increased electrophilicity of the aldehyde 

due to inductive effects of the α-benzyloxy substituent.  The sterically demanding, 

oxygenated ketene acetal 3.2c required prolonged reaction times with aldehyde (±)-3.1a 

to deliver moderate yields and divergent diastereoselectivity of either anti- or syn-β-

lactone 3.3c depending on the equivalents of ZnCl2 that were employed (entries 4-5).  

When equimolar quantities of Lewis acid and ketene acetal 3.2c were employed, β-

lactone anti-3.3c was the major product, whereas when 6-10 equivalents of ZnCl2 were 

utilized, the selectivity was reversed.  The latter example (i.e. syn-3.3c, entry 5) 

represents the first instance of a cis-β-lactone produced in the ZnCl2-mediated TMAL 

from an aliphatic aldehyde.  Both of these results provided new insight regarding 

relative diastereoselectivity in the TMAL and will be discussed further in Chapter V.  In 

the case of β-silyloxy aldehydes (±)-3.1b-c, β-lactones 3.3d-f were obtained in 

acceptable yields and moderate diastereoselectivities and these results (entries 6-8) are 

consistent with Evans’ model92 and our previous studies.16,19  
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Table 3.1. Alkenyl-β-lactones 3.3a-f from aldehydes (±)-3.1a-c via the TMAL 

 
a With the exception of syn-3.3c, only trans β-lactones (when applicable) were produced 
and the major diastereomer is displayed. b Entries 1-2 proceeded efficiently at 0 °C with 
increased reaction times. c Refers to purified yield (SiO2) of both diastereomers. d Refers 
to relative stereochemistry and was determined by analysis of crude reaction mixture by 
1H NMR (300 MHz).  e Diastereomers were separable by flash column chromatography. 
f Yield includes subsequent ozonolysis step.  

 
 Previous studies by Zhao utilizing propionate-derived thiophenyl ketene acetal 

3.2a’ with α-benzyloxy aldehyde (±)-3.9 demonstrated a significant decrease in 



 
 

57

diastereoselectivity when compared to propionate-derived thiopyridyl ketene acetal 3.2a 

(Scheme 3.5).17  In contrast to thiopyridyl ketene acetal 3.2a, thiophenyl ketene acetal 

3.2a’ provides decreased relative diastereoselectivity (i.e. syn vs. anti) and shows no 

discrimination of internal diastereoselectivity (i.e. cis vs. trans) at the α-position of the 

β-lactone 3.10.  Based on these results, we proposed that acetate-derived thiophenyl 

ketene acetal 3.2b’ could effectively reverse the low relative diastereoselectivity 

observed with acetate-derived thiopyridyl ketene acetal 3.2b (i.e. Table 3.1, entry 2 vs. 

entry 3).  This reversal was indeed observed with thiophenyl ketene acetal 3.2b’ to 

provide α-unsubstituted-β-lactone syn-3.3b (entry 3), albeit with diminished 

diastereoselectivity (i.e. 5:1 → 2.7:1) from that observed by Zhao with propionate-

derived thiophenyl ketene acetal 3.2a’ and α-benzyloxy aldehyde (±)-3.9 (vide supra).  

This difference in reactivity between thiophenyl and thiopyridyl ketene acetals could be 

attributed to greater chelation between the monodentate thiophenyl ligand and ZnCl2. 

Scheme 3.5 

 

Ozonolysis of alkenyl-β-lactones 3.3a-f proceeded smoothly to deliver the 

required keto-β-lactones 3.4a-f for MRC (Scheme 3.6).93  The use of PPh3 to reduce the 

ozonides proved to be more efficient leading to fewer byproducts compared to dimethyl 

sulfide and therefore simplified purification.  Due to minor instability noted for keto-β-
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lactones 3.4a-f, they were typically rapidly purified and used immediately in subsequent 

Mead reductive cyclizations. 

Scheme 3.6 

 

With the exception of β-lactones 3.3c, stereochemical assignment of β-lactones 

3.3a-f obtained via the TMAL corresponded to previous reports and were subsequently 

confirmed by nOe analysis of the corresponding THFs 3.5a-f (vide infra).  The γ-

benzyloxy-β-lactones 3.3a-c and 3.4a-c displayed a significant trend in coupling 

constants that may be a predictive tool for the assignment of relative (i.e. syn vs. anti) 

stereochemistry of these systems (Table 3.2).  It is well established that the internal 

stereochemistry (i.e. cis vs. trans) of β-lactones is assigned based on coupling constant 

analysis and this is observed for γ-benzyloxy-β-lactones 3.3a-c and 3.4a-c (cis: J3,4 = 

5.7-6.0 Hz; trans: J3,4 = 3.3-4.5 Hz).94  To the best of our knowledge, the determination 

of relative stereochemistry of these systems has not previously been based solely on 

coupling constant analysis.  In the case of γ-benzyloxy-β-lactones 3.3a-c and 3.4a-c, the 

coupling constants for syn (J4,5 = 4.5-6.0 Hz) and anti (J4,5 = 2.7-3.6 Hz) diastereomers 

followed a clear trend that is consistent with our previous studies.20,21  This is likely due 

to subtle differences of dihedral angles of the lowest energy conformations based on 

torsional strain and cancellation of dipoles.  Although subsequent nOe data for direct 

stereochemical assignment of THF syn- and anti-3.5c was inconclusive, tentative 

assignment of β-lactones 3.3c and 3.4c based on this coupling constant trend is plausible. 
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 Table 3.2. Coupling constant analysis of γ-benzyloxy-β-lactones 3.3a-c and 3.4a-c 

O
O

Me

OBn
Me

entry

1

5

O

Me

OBn anti-3.3cb

syn-3.3a

OTBDPS

O
O

Me

OBn anti-3.3b

3

O

J 4,5 (Hz)a

6.0

2.7

3.0

O
O

Me

OBn
Me

2

anti-3.3ab

3.0

O
O

Me

OBn syn-3.3b

4 5.1

6

O

Me

OBn syn-3.3cb
OTBDPS

O
5.7

11

O

Me

O OBn anti-3.4c
OTBDPS

O
O

Me

O OBn anti-3.4b

9

O

3.3

3.6

O
O

Me

O OBn syn-3.4b

10 4.5

12

O

Me

O OBn syn-3.4c
OTBDPS

O
6.0

O
O

Me

O OBn
Me

7

syn-3.4a

5.1

O
O

Me
R
H3

H5 OBn

H4

O
O

Me

O OBn
Me

8

anti-3.4a

NAc

J 4,5 (Hz)a
O

O

Me

O
R
H3

H5 OBn

H4entry

 
a Determined by analysis of chromatographically pure β-lactones by 1H NMR (300 
MHz).  b Minor diastereomers were carried directly to ozonolysis step and thus not fully 
characterized.  c Not available.  This keto-β-lactone was not prepared. 

 
Initial studies of MRC of keto-β-lactone syn-3.4a employing conditions reported 

by Mead with TiCl4 or BF3•OEt2 led to the desired THF syn-3.5a with significant 

quantities of furan 3.11 (Table 3.3, entries 1-2).  Mead found that silyl triflates promoted 

cyclization of keto-β-lactones to THFs95 and when triethylsilyl triflate (TESOTf) was 

added dropwise at -78 ˚C and warmed quickly to 0 ˚C, the ratio of THF to furan did not 
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Table 3.3. Optimization of Mead reductive cyclization of keto-β-lactone syn-3.4a 

 

 
entry 

Lewis 
Acid 

conc.  
(M)a 

 
methodb 

Et3SiH 
(equiv.) 

THF syn-3.5a/ 
furan 3.11c 

syn-3.5a  
(% yield)d 

1 TiCl4 0.05 A 1.2 1/5 ND 
2 BF3•OEt2 0.05 B 1.2 1/1 ND 
3 TESOTf 0.05 B 1.2 2/1 60 
4 TESOTf 0.01 C 1.2 10/1 68 
5 TESOTf 0.01 C 20.0 68/1 67 
6 TESOTf 0.01 C 0.0 0/1 28 (98)e 

a Refers to the final concentration of keto-β-lactones in CH2Cl2. b Lewis acid (1.2 equiv) 
was added to a solution of keto-β-lactone and Et3SiH in CH2Cl2 at -78 ˚C.  Method A:  
TiCl4 in CH2Cl2 (1.0 M) was added down the side of the flask and stirred for 4 h at -78 
˚C.  Method B:  Neat Lewis acid was added dropwise at -78 ˚C, quickly warmed to 0 ˚C, 
and stirred for 4 h.  Method C:  Lewis acid in CH2Cl2 (0.03 M) was added down the side 
of the flask and allowed to warm to 0 ˚C over 6 h.  c Ratio determined by crude 1H NMR 
(300 MHz) analysis.  d Refers to isolated yield of inseparable mixture of THF and furan.  
e Significant loss of the furan occurred during purification leading to diminished yields.  
However, estimated yield based on crude weight and 1H NMR analysis indicated a 
nearly quantitative reaction. 
 
improve significantly, but did provide the desired THF 13a as the major product (entry 

3).  After extensive experimentation, we found that when TESOTf was added down the 

side of the flask at -78 ˚C (“pre-cooled”) as a dilute solution in CH2Cl2 and allowed to 

warm to 0 ˚C over 6 h, THF syn-3.5a was obtained in 62% yield with only 6% of furan 

3.11 (entry 4).  Further improvements resulted when a large excess of Et3SiH (20.0 

equiv) was employed and THF syn-3.5a was isolated in 67% yield as a single 

diastereomer (entry 5).  A control experiment revealed that furan 3.11 was the only 

product formed in the absence of Et3SiH (entry 6) and recently furan byproducts have 

been observed during reductions of 5-membered oxocarbenium ions.96 
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Using optimized conditions, γ-benzyloxy-keto-β-lactones 3.4b were converted to 

THFs 3.5b with efficient transfer of stereochemistry and only trace quantities of the 

corresponding furan (Table 3.4, entries 1-2).  A stereoreinforcing effect may be 

operative with anti- and syn-β-lactones 3.4b (dr, 14:1 vs 19:1, respectively) which may 

be due to a developing 1,3-diaxial interaction of the oxocarbenium intermediate (cf. 

3.16, vide infra) leading to greater selectivity for “inside attack.”27  In the case of keto-β-

lactone anti-3.4c, TESOTf delivered a complex mixture of products, while BF3•OEt2 

provided a cleaner, albeit slower reaction to provide THF anti-3.5c (entry 3).  Although 

keto-β-lactone syn-3.4c proceeds in moderate yield with TESOTf, it delivers γ-lactone 

syn-3.5c (entry 4) instead of the desired carboxylic acid (not shown).  In the case of δ-

silyloxy-keto-β-lactones 3.5d-f, there was less concern of furan formation based on our 

proposed mechanism (vide infra).  Thus, the strong Lewis acid TiCl4 previously utilized 

by Mead25 promoted reductive cyclization in moderate to good yields with excellent 

levels of stereochemical transfer using 1.2 equivalents of Et3SiH (entries 5-7).  The 

relative stereochemistry of ring stereocenters of THFs 3.5a-b and 3.5d-f was confirmed 

by nOe enhancements observed for multiple protons, which also confirmed invertive 

ring cleavage during cyclization. The relative stereochemistry between the α-

stereocenter and the THF rings is premised on invertive alkyl C-O scission of the trans-

β-lactones by the pendant ketone, which are in turn based on coupling constant analysis 

(vide supra).  Attempts to confirm relative stereochemistry of THFs anti-3.5c and syn-

3.5c by nOe were inconclusive, but coupling constants of β-lactones 3.3c and 3.4c lend 

support to the tentatively assigned relative stereochemistry of THFs 3.5c (cf. Table 3.2).   
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Table 3.4. Mead reductive cyclization (MRC) of keto-β-lactones 3.4b-f 

 
a Refers to isolated yields of mixture of diastereomers.  b Ratio determined by crude 1H 
NMR (300 MHz) analysis.  c TESOTf in CH2Cl2 (0.03 M) was added to a solution of 
keto-β-lactone and Et3SiH (20 equiv) in CH2Cl2 at -78 ˚C and allowed to warm to 0 ˚C 
over 5 h.  d BF3•OEt2 in CH2Cl2 (0.03 M) was added to a solution of keto-β-lactone and 
Et3SiH (20 equiv) in CH2Cl2 at -78 ˚C and allowed to warm to 0 ˚C over 5 h.  This 
reaction was then stirred for 3 d at 0-10 ˚C.  e TiCl4 in CH2Cl2 (1.0 M) was added to a 
solution of keto-β-lactone and Et3SiH (1.2 equiv) in CH2Cl2 at -78 ˚C and stirred for 4 h. 
f Yield in parentheses refers to recovered keto-β-lactone anti-3.4c. 
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Coupling constant analysis of THFs 3.5a-c (Table 3.5) and THFs 3.5d-f (Table 

3.6) lends support to the proposed relative stereochemistry.  The stereochemical outcome 

is consistent with invertive alkyl C-O ring cleavage by the pendant ketone followed by 

reduction of the oxocarbenium as predicted by the Woerpel model (vide infra).27  

Table 3.5. Coupling constant analysis of tetrahydrofurans 3.5a-c 

 

H syn-3.5a 
mult 

J (Hz) 

anti-3.5b 
mult 

J (Hz) 

syn-3.5b 
mult 

J (Hz) 

anti-3.5c 
mult 

J (Hz) 

syn-3.5c 
mult 

J (Hz) 
A d 

6.0 
d 

6.0 
d 

6.0 
d 

6.0 
d 

6.0 
B ddq 

5.0,6.0,10.5 
ddq 

5.5,6.0,9.5 
ddq 

5.5,6.0,10.0 
ddq 

5.0,6.0,10.0 
ddq 

5.0,6.0,10.0 
C ddd 

1.0,5.0,13.5 
ddd 

1.5,5.5,13.0 
ddd 

1.5,5.5,13.0 
dd 

5.0,13.5 
dd 

5.0,14.0 
 C’ ddd 

6.5,10.5,13.5 
ddd 

5.0,9.5,13.0 
ddd 

6.5,10.0,13.0
ddd 

6.5,11.0,13.5 
ddd 

4.5,10.0,14.0
D ddd 

1.0,3.0,6.5 
ddd 

1.5,5.0,5.0 
ddd 

1.5,3.0,6.5 
dd 

2.5,6.5 
dd 

4.5,4.5 
E dd 

3.0,6.0 
dt 

5.0,7.0 
ddd 

3.0,6.0,7.5 
dd 

2.5,4.5 
d 

4.5 
F dq 

6.0,7.0 
d 

7.0 
dd 

6.0,15.5 
d 

4.5 
s 
-- 

G d 
7.0 

d 
7.0 

dd 
7.5,15.5 

-- 
-- 

-- 
-- 

I d 
11.5 

d 
12.0 

d 
12.5 

s 
-- 

-- 
-- 

 I’ d 
11.5 

d 
12.0 

d 
12.5 

s 
-- 

-- 
-- 
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Table 3.6. Coupling constant analysis for tetrahydrofurans 3.5d-f 

O

O

OHHE
MeGHB

HD

MeA

TBSO
HC

HD

HF O

O

OHHE
HGHB

HD

MeA

TBSO
HC

HD

HF
O

O

OHHE
RG

HB

HD

MeA

TBSO
HC

HD

HF

syn-3.5d syn-3.5e anti-3.5f: RG = OTBDPS  

 
H 

syn-3.5d 
mult 

J (Hz)  

syn-3.5e 
mult 

J (Hz) 

anti-3.5f 
mult 

J (Hz) 
A d 

6.5 
d 

6.5 
d 

6.5 
B dq 

4.0,6.5 
dq 

4.0,6.5 
dq 

6.0,6.5 
C ddd 

3.5,4.0,6.5 
ddd 

3.0,4.0,6.5 
ddd 

6.0,7.0,7.0 
D ddd 

3.5,6.5,13.0 
ddd 

3.0,6.5,13.0 
ddd 

7.0,7.0,12.5 
 D’ ddd 

6.5,8.5,13.0 
ddd 

6.5,9.0,13.0 
ddd 

7.0,7.0,12.5 
E ddd 

3.5,7.0,8.5 
dddd 

5.5, 6.5, 7.0,9.0 
ddd 

5.5,7.0,7.0 
F dq 

7.0,7.0 
dd 

5.5, 15.5 
d 

5.5 
G d 

7.0 
dd 

7.0, 15.5 
-- 
-- 

 
Regarding the mechanism of this process for benzyloxy-substituted systems, the 

reductive cyclization leading to THF syn-3.5a and furan 3.11 is presented as an example 

(Scheme 3.7).  Pendant ketone cleavage attack on the silylated β-lactone 3.12 via 

invertive alkyl C-O scission delivers the oxocarbenium 3.13 in line with previous 

proposals by Mead.25  The stereoelectronically favored envelope conformation 3.14 

places the benzyloxy substituent in the pseudoaxial orientation as proposed by Woerpel 

and reduction occurs via “inside attack” of Et3SiH.27  Alternatively, the competing 

pathway leading to furan 3.11 could involve α-deprotonation of oxocarbenium 3.14 
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leading to dihydrofuran 3.15 which is essentially an activated alkyl enol ether.  Acid-

mediated β-elimination of benzyl alcohol would provide conjugated oxocarbenium 3.16.  

Aromatization and hydrolysis of the labile triethylsilyl ester would then deliver furan 

3.11 and may occur upon reaction work-up. 

Scheme 3.7 
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In the case of δ-silyloxy-keto-β-lactones 3.5d-f, based on Woerpel’s findings 

with related α-benzyloxy oxocarbenium intermediates which provided diastereomeric 

ratios of 5-6:1, we expected only moderate selectivity for the reduction of the 

corresponding α-silyloxy oxocarbenium intermediates.27,97 We were pleased to find, 

however, that the diastereoselectivity of this reduction was >19:1 since the 

diastereomeric ratio of the THFs 3.5d-f matched the diastereomeric ratio of the precursor 

keto-β-lactones 3.5d-f (Scheme 3.8).  There appear to be several factors governing this 

increase in selectivity.  Woerpel has shown that hydrogen atoms prefer to reside in the 

pseudoaxial position adjacent to an oxocarbenium in both five and six-membered rings 
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for favorable hyperconjugation between the C-H bond and the 2p orbital of the 

oxocarbenium.27b Less studied by Woerpel were the effects of α-silyloxy oxocarbeniums 

and both steric and electronic differences between silyloxy and benzyloxy moieties 

could influence the stereochemical outcome.  The decreased electron density at the 

oxygen of a silyloxy moiety98 compared to the oxygen of a benzyloxy moiety dictates 

the increased preference for the α-silyloxy pseudoequatorial orientation.  Simple steric 

considerations also dictate that the more bulky silyloxy group should reside in the 

pseudoequatorial position to a greater degree than a benzyloxy substituent.  Additionally, 

developing gauche interactions between the methyl and the pseudoequatorial silyloxy 

substituent in the presumed transition state also enforces “inside attack” of Et3SiH.  

These effects combine with the preferred “inside attack” leading to high 

diastereoselectivity for α-silyloxy oxocarbenium ions.27 

Scheme 3.8 
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Conclusions 

In summary, we developed a three-step strategy for the diastereoselective 

synthesis of THFs from alkenyl-aldehydes proceeding through β-lactone intermediates.  
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The strategy involves the TMAL process and Mead’s reductive cyclization of keto-β-

lactones.  The stereoselectivity of the latter process is rationalized by Woerpel’s model 

for “inside attack” of oxocarbeniums. An increase in selectivity for certain α-silyloxy 

oxocarbenium ions was observed and is rationalized based on stereoelectronic effects 

building on Woerpel's findings.  The stereoselectivity of the TMAL process for γ-

benzyloxy and δ-silyloxy aldehydes with several thiopyridyl ketene acetals was defined 

including a reversal in selectivity when a thiophenyl ketene acetal was employed.  A 

correlation between relative stereochemistry and coupling constants was observed that 

provides a predictive method for the stereochemical assignment of γ-benzyloxy-β-

lactones.  This TMAL-MRC strategy should prove useful for the synthesis of 

tetrahydrofurans found in natural products. 
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CHAPTER IV 

DEVELOPMENT OF A TANDEM, THREE-COMPONENT SYNTHESIS OF 

TETRAHYDROFURANS FROM KETOALDEHYDES, THIOPYRIDYL 

KETENE ACETALS, AND SILYL NUCLEOPHILES* 

Introduction 

Synthetic processes that form multiple bonds and stereocenters in a single 

reaction mixture without isolating the intermediates have become commonplace in 

recent years and are known as tandem, domino, multi-component, or cascade reactions.99  

Previously, we reported stereoselective routes to both cis22 and trans16 β-lactones via 

tandem Mukaiyama15 aldol-lactonization (TMAL) processes.  This methodology has 

been utilized in total syntheses of (-)-panclicin D,16 tetrahydrolipstatin/orlistat,19 

okinonellin B,21 brefeldin A,24 and belactosin C.30  In the course of these studies, we 

observed several interesting byproducts under certain conditions that led us to propose 

silylated β-lactone intermediates in the TMAL.  Prior to that, Mead utilized simple keto-

β-lactones toward the synthesis of tetrahydrofurans (THFs),25 and recently we combined 

these two methods in a stepwise tandem Mukaiyama aldol-lactonization – Mead 

reductive cyclization (TMAL-MRC) to obtain substituted THFs with high 

diastereoselectivity.26  Although there are several approaches toward THFs, many routes 

rely on either C-O bond formation of relatively complex precursors or proceed through  

____________ 
*Reprinted with permission from “Highly, Diastereoselective Tandem, Three-
Component Synthesis of Tetrahydrofurans from Ketoaldehydes via Silylated-β-Lactone 
Intermediates” by Mitchell, T. A.; Zhao, C.; Romo, D.  Angew. Chem., Int. Ed. 2008, in 
press.  Copyright 2008 Wiley-VCH.  See Appendix B. 
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oxocarbenium ions derived from O-glycosides.  We set out to study the possibility of 

intercepting the proposed silylated β-lactone 4.3 in the TMAL process in order to 

provide a three-component (TMAL-MRC) synthesis of THFs 4.4 from α-benzyloxy-γ-

ketoaldehydes 4.1, thiopyridyl ketene acetals 4.2, and silyl nucleophiles in which as 

many as two C-C and one C-O bond are formed in conjunction with three new 

stereocenters (Scheme 4.1). 

Scheme 4.1 

 

Results and Discussion 

Herein, we describe experimental evidence for silylated β-lactone intermediates 

toward diastereoselective THF synthesis based on the TMAL,16,20 MRC of keto-β-

lactones,25,26 and Woerpel’s model for the reduction of oxocarbenium ions.27  Initial 

studies of the TMAL with octanal 4.5 showed a drastic dependence on the size of the 

protecting group of the ketene acetal 4.2a-d (Table 4.1).16  The presumed silylated β-

lactone 4.8 delivered either β-lactone 4.6 (entry 1, pathway a) with TES protected ketene 

acetal 4.2a or β-chloro silyl ester 4.7d with bulky TBDPS protected ketene acetal 4.2d 

(entry 4, pathway b).28  Silyl ester 4.7d was purified by flash column chromatography 

and none of the corresponding carboxylic acid was detected by crude 1H NMR analysis, 

thus providing strong evidence for the proposed silylated β-lactone intermediate 4.8.   
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Table 4.1. Effect of the silyl protecting group of ketene acetals 4.2a-d in the TMAL 

 

 entry SiR3 4.6 (% yield) 4.7 (% yield) 
1 TES (4.2a) 66a <5b (4.7a) 
2 TBS (4.2b) 53a 8b (4.7b) 
3 TIPS (4.2c) 20a 40b (4.7c) 
4 TBDPS (4.2d) <5c 56a (4.7d) 

a Refers to isolated yields. b Estimated based on crude 1H NMR analysis. c Not detected 
based on crude 1H NMR (300 MHz) analysis. 
 

In order to prepare the desired α-benzyloxy-γ-ketoaldehyde (±)-4.1a to rapidly 

test the three-component TMAL-MRC and thereby further our understanding of the 

TMAL, a known procedure was chosen (Scheme 4.2).100  Although the synthesis of bis-

olefin 4.10 was straightforward via Grignard addition to acrolein 4.9 and subsequent 

benzyl protection, accessing the desired ketoaldehyde (±)-4.1a proved to be troublesome 

under a variety of oxidation conditions. 

Scheme 4.2 

 

Our second approach to α-benzyloxy-γ-ketoaldehyde (±)-4.1a was more 

dependable, albeit significantly longer (Scheme 4.3).  Known aldehyde 4.11 was treated 
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with methallylmagnesium chloride and the resulting alcohol was protected as the benzyl 

ether 4.12 (which was also utilized in the stepwise TMAL-MRC).  Reductive ozonolysis 

followed by TBAF deprotection gave a ~1:1 mixture of diols that underwent Swern 

oxidation to provide pure ketoaldehyde (±)-4.1a.101  Although ketoaldehyde (±)-4.1a 

could be stored neat for several weeks at 0 ˚C, we opted to store large quantities of the 

stable diol mixture and access the required substrate in smaller portions immediately 

before each set of reactions. 

Scheme 4.3 

 

More complex α-benzyloxy-γ-ketoaldehydes (±)-4.1b-g were synthesized by 

related pathways (Scheme 4.4).  Treatment of aldehyde 4.11 with allylmagnesium 

chloride, protection with benzyl trichloroacetimidate (BTCA) and subsequent ozonolysis 

delivered aldehyde 4.13.  The necessary Grignard reagents were then utilized, followed 

by TBAF deprotection and Swern oxidation of the inconsequential mixture (~1:1) of 

diols to access the required ketoaldehydes (±)-4.1b-e (vide infra).   

Scheme 4.4 
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In order to introduce functionalized ketone side chains, a lengthy but 

straightforward sequence was undertaken (Scheme 4.5).  Aldehyde 4.13 was treated with 

allyltrimethylsilane and TiCl4 to provide a single diastereomer of the resulting secondary 

alcohol (not shown).  Although the relative stereochemistry was not confirmed, ample 

precedent suggests the formation of the chelation controlled product as shown.102  Even 

though the newly created stereocenter would eventually be destroyed, this procedure (as 

opposed to the Grignard) avoided a troublesome mixture of diastereomers and therefore 

allowed each subsequent step to be carried out with confidence.  Silyl protection of the 

secondary alcohol followed by reductive ozonolysis gave primary alcohol 4.14.  

Protection with benzyl bromide or p-methoxybenzyl trichloroacetimidate (PMBTCA), 

TBAF deprotection of both silyl ethers, and Swern oxidation gave the corresponding α-

benzyloxy-γ-ketoaldehydes (±)-4.1f-g. 

Scheme 4.5 
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TMS
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4.14

TIPSO

HO

O

OBn
(±)-4.1f: R = Bn, 41% (3 steps)
(±)-4.1g: R = PMB, 46% (3 steps)

RO

O
H1) BnBr or PMBTCA

2) TBAF, THF, 23 °C
3) Swern Ox., -78 °C3) O3, CH2Cl2, MeOH;

NaBH4, -78 23 °C
 

In order to provide additional evidence for the silylated β-lactone intermediate 

(c.f. 4.3, Scheme 4.1) while providing access to trisubstituted THFs, we first optimized 

the three-component TMAL-MRC with α-benzyloxy-γ-ketoaldehyde (±)-4.1a and 

ketene acetal (E)-4.2e.  We found that pre-coordination of the more readily prepared 

ketene acetal (E)-4.2e with ZnCl2 and reduction of the resulting silyl ester (c.f. 4.4, 

Scheme 4.1) to the primary alcohol 4.15a with DIBAlH provided optimal results (Table 
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4.2).  Regardless of the relative amount of Et3SiH, initial attempts delivered furan 4.16a 

as the major product (entries 1-4).  Although the yield of THF 4.15a was unsatisfactory, 

we were pleased to observe only the expected diastereomer (>19:1).  Decreasing reaction 

temperature showed a significant increase in the relative amount of THF 4.15a, although 

furan 4.16a remained the major product (entry 5).  An increase in the amount of Lewis 

acid delivered THF 4.15a as the major product in moderate yield (entry 6), but when 

ZnCl2 and Et3SiH were increased further, we obtained THF 4.15a in slightly decreased 

yield (entry 7).  Although crude 1H NMR analysis indicated an improved ratio of THF 

4.15a to furan 4.16a, several minor and unidentified byproducts arise when these slightly 

harsher conditions are utilized.  Finally, complete optimization was achieved after 12 h 

at 0 ˚C to deliver THF 4.15a in satisfactory yield (entry 8). 

 

Table 4.2. Optimization of the TMAL-MRC to tetrahydrofuran 4.15a 

 

entry ZnCl2 
(equiv) 

(E)-4.2e 
(equiv) 

Et3SiH 
(equiv) 

temp 
(˚C) 

4.15a/4.16aa 

(% yield 4.15a)b 
1 2.0 2.0 0.0 23 4.16a only (0) 
2 2.0 2.0 2.0 23 1.0/3.5 (11) 
3 2.0 2.0 10.0 23 1.0/3.5 (9) 
4 2.0 2.0 50.0 23 1.0/3.5 (10) 
5 2.0 2.0 10.0 0→23 1.0/2.0 (24) 
6 4.0 1.2 10.0 0→23 2.0/1.0 (42) 
7 8.0 1.2 100.0 0→23 9.0/1.0 (38) 
8 4.0 1.2 10.0 0 6.2/1.0 (54) 

a Determined by crude 1H NMR (300 MHz) analysis. b Isolated yield over two steps. 
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In addition to nOe enhancements, single crystal X-ray analysis of the para-

bromobenzoate 4.15a' (Figure 4.1) confirmed relative stereochemistry and this provides 

substantial evidence for the proposed mechanistic pathway (vide infra). 

 

Figure 4.1. ORTEP rendering of a single crystal X-ray structure of 4.15a' 

 

Functionalized α-benzyloxy-γ-ketoaldehydes (±)-4.1b-g with ketene acetal (E)-

4.2e delivered THFs 4.15b-g in moderate yields with furans 4.16b-g isolated as 

significant byproducts (Table 4.3).  The general trend of these reactions seems to 

indicate that greater steric bulk of the ketone moiety inhibits the production of the 

desired THF and increases formation of the furan.  In the case of the phenyl substituted 

ketoaldehyde (±)-4.1e, the desired THF 4.15e is isolated in only 13% yield, while furan 

4.16e is produced in 48% yield (entry 4).  Although this could also be a result of steric 

interactions, it is possible that increased stability of the oxocarbenium favors elimination 

to the intermediate dihydrofuran (vide infra) over reduction with Et3SiH.  Additionally, 

THF 4.15g was isolated in diminished yields due to PMB deprotection, but was 

minimized when DIBAlH reduction was maintained at cooler temperatures (entry 6). 
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Table 4.3. TMAL-MRC of functionalized α-benzyloxy-γ-ketoaldehydes (±)-4.1b-g 

 
a Isolated yield over two steps. b Determined by crude 1H NMR (300 MHz) analysis.       
c DIBAlH reduction was slowly warmed from -78 to -30 ˚C over 6 h in order to prevent 
PMB deprotection. 
 

In addition to nOe enhancements for selected examples and the X-ray crystal 

structure for THF 4.15a’, coupling constant analysis of THFs 4.15a-g lend additional 

confirmation of the relative stereochemistry (Tables 4.4-4.5). 
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Table 4.4. Coupling constant analysis of tetrahydrofurans 4.15a-c 

 

 
H 

4.15a 
mult 

J (Hz) 

4.15a’ 
mult 

J (Hz) 

4.15b 
mult 

J (Hz) 

4.15c 
mult 

J (Hz) 
A d 

6.0 
d 

6.5 
m 
-- 

m 
-- 

B ddq 
5.5,6.0,10.0 

ddq 
5.0,6.5,10.0 

m 
-- 

ddq 
5.5,7.0,10.0 

C ddd 
2.0,5.5,13.0 

ddd 
1.5,5.0,13.0 

ddd 
2.5,5.0,13.0 

ddd 
2.0,5.5,13.0 

 C’ ddd 
7.0,10.0,13.0 

ddd 
6.0,10.0,13.0 

ddd 
7.0,10.0,13.0 

ddd 
7.0,10.0,13.0 

D ddd 
2.0,4.0,7.0 

ddd 
1.5,3.5,6.0 

ddd 
2.0,4.0,7.0 

ddd 
2.0,4.0,7.0 

E dd 
4.0,5.0 

dt 
3.5,5.0 

dd 
4.0,5.0 

dd 
4.0,5.0 

F m 
-- 

m 
-- 

m 
-- 

m 
-- 

G d 
7.0 

d 
7.0 

d 
7.0 

d 
7.0 

I d 
12.0 

d 
12.0 

d 
12.0 

d 
12.0 

 I’ d 
12.0 

d 
12.0 

d 
12.0 

d 
12.0 
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Table 4.5. Coupling constant analysis of tetrahydrofurans 4.15d-g 

 

 
H 

4.15d 
mult 

J (Hz) 

4.15e 
mult 

J (Hz) 

4.15f 
mult 

J (Hz) 

4.15g 
mult 

J (Hz) 
A m 

-- 
m 
-- 

m 
-- 

m 
-- 

B m 
-- 

dd 
5.5,10.5 

m 
-- 

m 
-- 

C ddd 
2.0,5.5,13.0 

ddd 
2.0,5.5,13.0 

ddd 
2.0,5.5,13.0 

ddd 
2.0,5.5,13.0 

 C’ ddd 
7.0,10.0,13.0 

ddd 
7.0,10.5,13.0 

ddd 
7.0,10.0,13.0 

ddd 
7.0,10.5,13.0 

D ddd 
2.0,4.5,6.5 

ddd 
2.0,4.0,7.0 

ddd 
2.0,4.0,6.5 

ddd 
2.0,4.5,7.0 

E dd 
4.5,4.5 

dt 
4.0,5.0 

dd 
4.0,5.0 

dd 
4.0,4.5 

F m 
-- 

m 
-- 

m 
-- 

m 
-- 

G d 
7.5 

d 
7.0 

d 
7.0 

d 
7.0 

I d 
11.5 

d 
12.0 

d 
11.5 

d 
11.2 

 I’ d 
11.5 

d 
12.0 

d 
11.5 

d 
11.2 

 
When ketoaldehyde (±)-4.1a was treated with various ketene acetals or silyl 

nucleophiles, mixed results were obtained.  Ketene acetal 4.2c provided THF 4.15h in 

good yield but with poor diastereoselectivity while ketene acetal 4.2g delivered THF 

4.15i in excellent diastereoselectivity but with diminished yield (Scheme 4.6).  Although 

ketene acetal 4.2c was expected to deliver low diastereoselectivity, we were somewhat 
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surprised by the result with ketene acetal 4.2f given the success of previous examples.  

Much of the mass balance in the case of heteroatom substituted ketene acetals is 

accounted for by the production of undesired THF 4.15i’ (25% isolated yield in this case 

with ketene acetal 4.2f) in which the ketoaldehyde (±)-4.1a presumably undergoes self-

condensation and reduction with no incorporation of ketene acetal.  There is an inverse 

relationship between size of the substituent on the ketene acetal and reactivity which 

corresponds to previous TMAL studies.  Similar results were obtained in the TMAL-

MRC when several other heteroatom containing ketene acetals (i.e. SMe, OMe, OTBS, 

OTBDPS) were tested with less favorable results.   

Scheme 4.6 

 

When allyltrimethylsilane was utilized as nucleophile, THF 4.15j was isolated as 

a single diastereomer, albeit in lower yield (Scheme 4.7).  In this case, several minor and 

unidentified byproducts arise in addition to increased quantities of furan 4.16a, but it is 

important to note that an additional C-C bond is constructed with high stereocontrol of 

the resulting quaternary center.  The relative stereochemistry of THFs 4.15h-j was 

confirmed with nOe enhancements and coupling constant analysis (Table 4.6). 
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Scheme 4.7 

 

Table 4.6. Coupling constant analysis of tetrahydrofurans 4.15h-j 

 

 
H 

4.15h 
mult 

J (Hz) 

4.15i 
mult 

J (Hz) 

4.15i’ 
mult 

J (Hz) 

4.15j 
mult 

J (Hz) 
A d 

6.0 
d 

6.0 
d 

6.0 
s 
-- 

B ddq 
5.5,6.0,10.0 

ddq 
5.0,6.0,10.0 

m 
-- 

dd/dd 
7.5,13.5/6.5,13.5

C ddd 
2.0,5.5,13.0 

ddd 
1.5,5.0,13.0 

ddd 
0.9,5.1,12.9 

dd 
4.5,13.0 

 C’ ddd 
7.0,10.0,13.0 

ddd 
6.5,10.0,13.0 

ddd 
6.6,9.9,12.9 

dd 
7.0,13.0 

D ddd 
2.0,4.0,7.0 

ddd 
1.5,3.0,6.5 

m 
-- 

ddd 
4.5,5.5,7.0 

E ddd 
4.0,4.5,8.5 

dd 
3.0,3.0 

dd/dd 
2.7,9.6/5.1,9.6 

dd 
5.0,5.5 

F dddd 
4.0,4.5,7.5,14.0 

ddd 
3.0,5.5, 8.0 

-- 
-- 

m 
-- 

G dddd 
4.0,6.0,8.5,14.0 

-- 
-- 

-- 
-- 

d 
7.5 

I D 
11.5 

d 
12.0 

d 
12.0 

d 
12.0 

 I’ D 
11.5 

d 
12.0 

d 
12.0 

d 
12.0 
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A plausible mechanism for this tandem process can be set forth based on the 

experimental evidence gathered to date.28 Upon stirring ketene acetal (E)-4.2e with 

ZnCl2 in CH2Cl2 for 4 h, the tetrahedral complex (E)-4.2e•ZnCl2 is formed (Scheme 4.8).   

Scheme 4.8 

 

The results suggest that α-benzyloxy-γ-ketoaldehyde (±)-4.1a then complexes in 

monodentate fashion to pre-coordinated ketene acetal (E)-4.2e•ZnCl2 to deliver a highly 

ordered, trigonal-bipyramidal boat-like transition state arrangement 4.17.  After 

dissociation of the pyridyl nitrogen (i.e. 4.18) and ligand rearrangement, the benzyloxy 

moiety then coordinates with zinc to give rise to another highly ordered, boat-like 

transition state arrangement 4.19.  Due to the fact that no aldol products have been 
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isolated in the TMAL, the Mukaiyama aldol is presumably the rate-limiting step and 

provides a boat-like intermediate zinc alkoxide 4.20.  A facile transannular lactonization 

then delivers the crucial silylated β-lactone 4.3a with concomitant production of a 

weaker (compared to ZnCl2) Lewis acid, thiopyridyl zinc chloride (PySZnCl) 4.21. 

Upon invertive alkyl C-O cleavage25 of the silylated β-lactone 4.3a, the resulting 

oxocarbenium 4.24 can proceed to three different pathways (Scheme 4.9).  First, desired  

Scheme 4.9 
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“inside attack” on the favored envelope conformation 4.24 can be achieved to deliver 

THF silyl ester 4.22 when the benzyloxy substituent resides in the favored pseudoaxial 

orientation.27  However, the benzyloxy substituent can also coordinate to either Lewis 
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acid (i.e. ZnCl2 or PySZnCl) in an equilibrium process which would presumably drive 

the conformational equilibrium to the pseudoequatorially inclined conformers 4.26a-b.  

Under the optimized conditions (cf. Table 4.2, entry 8), excess ZnCl2 should deliver 

conformers 4.25-4.26a, but would presumably revert to the desired envelope 

conformation 4.24 to give THF silyl ester 4.22 via “inside attack.”  The third pathway 

arises when PySZnCl 4.21 predominates and conformer 4.26b becomes the major 

contributor which seems primed to achieve an eight-membered pseudo chair-chair 

arrangement leading to deprotonation of the properly aligned α-proton by the pyridine 

nitrogen.  Upon formation of dihydrofuran 4.27, elimination of activated benzyl alcohol 

followed by aromatization of the conjugated oxocarbenium 4.28 ultimately delivers 

furan 4.23.    

To highlight the utility of this methodology, we targeted the THF fragment of 

colopsinol B (Figure 4.2).29  Colopsinol B was isolated from the dinoflagellate 

Amphidinium and is structurally related to the amphidinolides.67d It possesses DNA  

 

Figure 4.2. Colopsinol B with relative stereochemistry of rings 
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polymerase inhibitory activity and the structure was determined by extensive NMR and 

MS techniques.  The relative stereochemistry of the ring systems were determined by 

nOe and ROESY correlations and 1H-1H coupling constants.  To date, no synthetic 

studies toward colopsinol B have been published. 

The need for functionalized ketones and the desire to minimize the length of the 

synthetic sequence led us to pursue the construction of ketoaldehydes 4.1h-k (Scheme 

4.10).  Our early attempts to synthesize an optically active substrate from the L-malic 

acid derived lactol (S)-4.29 with the necessary functionality to obtain an advanced 

colopsinol B THF fragment were met with disappointment.  For a variety of reasons, 

none of these more complex α-benzyloxy-ketoaldehydes 4.1h-k could be accessed.   

Scheme 4.10 

 

One interesting result sprang from these investigations (Table 4.7).  Attempted 

opening of lactol (S)-4.29 to the alkynes 4.31 with the Grignard derived from TMS-

propargyl bromide 4.30 provided allenes 4.32 as the only detectable product.103  We 

were pleased to find that another reaction that is known for aldehydes translated to this 

lactol (S)-4.29 very well.  When latent aldehyde (S)-4.29 was treated with In/InCl3 and 

propargyl bromide 4.30 in refluxing THF, alkynes 4.31 were isolated in excellent yield 
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after minimal optimization (entry 3).104  Unfortunately, several attempts to oxidize diols 

4.31 to the α-benzyloxy-γ-ketoaldehyde (c.f. 4.1h, Scheme 4.10) were unsuccessful.  

  

Table 4.7. Nucleophilic additions to lactol (S)-4.29 with TMS-propargyl bromide 

 

entry conditions 4.31 
(% yield) 

4.32 
(% yield) 

1 Mg˚, Et2O or THF, -78 → 23 ˚C, 16 h <5 67 
2 In˚ (4.0 equiv), InCl3 (20 mol %), THF, reflux, 24 h 53 <5 
3 In˚ (3.0 equiv), InCl3 (10 mol %), THF, reflux, 24 h 86 <5 

 
After these dissatisfying results, we chose to utilize α-benzyloxy-γ-ketoaldehyde 

(±)-4.1g toward a racemic colopsinol B THF fragment 4.15k (Scheme 4.11).  Under 

typical conditions with ketene acetal 4.2c, the alcohols were formed as a mixture of 

diastereomers similar to that observed previously.  The major diastereomer 4.15k could 

be separated and isolated in 23% yield over two steps.  Although the yield is slightly 

lower than the previous example with ketene acetal 4.2c (c.f. Scheme 4.6), this follows 

the trend of increased quantities of furan when the steric bulk of the ketone substituent 

increases (c.f. Table 4.3).  It is important to emphasize that two new stereocenters are 

formed in addition to one C-C and one C-O bond toward a natural product fragment. 

Scheme 4.11 
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Unfortunately, attempts to grow suitable crystals of the corresponding benzoate 

ester 4.15k’ for X-ray analysis in order to confirm the relative stereochemistry of 4.15k 

were unsuccessful.  However, coupling constant and nOe analysis of THFs 4.15k, 

4.15k', and 4.15h (c.f. Table 4.6) all support a correlation of relative stereochemistry to 

the proposed structure of colopsinol B 4.33 (Table 4.8). 

 

Table 4.8. Coupling constant analysis of tetrahydrofurans 4.15k, 4.15k’, and 4.33 

 

 
H 

4.19k 
mult 

J (Hz) 

4.19k’ 
mult 

J (Hz) 

4.31 
mult 

J (Hz) 
A m 

-- 
m 
-- 

m 
-- 

B m 
-- 

m 
-- 

m 
-- 

C ddd 
2.0,5.5,13.0 

ddd 
2.0,5.5,13.0 

ddd 
2.5,5.5,13.1 

 C’ ddd 
7.0,9.5,13.0 

ddd 
7.0,10.0,13.0 

ddd 
6.4,9.8,13.1 

D ddd 
2.0,4.0,7.0 

ddd 
2.0,3.5,7.0 

ddd 
2.5,2.9,6.4 

E ddd 
4.0,4.5,8.5 

ddd 
3.5,4.5,8.0 

dt 
2.9,6.1 

F m 
-- 

m 
-- 

m 
-- 

G m 
-- 

m 
-- 

m 
-- 

I d 
12.0 

d 
11.5 

-- 
-- 

 I’ d 
12.0 

d 
11.5 

-- 
-- 
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In preliminary studies with β-silyloxy-γ-ketoaldehydes (±)-4.15m-n, some 

promising results were obtained.  We were pleased to find that these substrates could be 

accessed quickly (Scheme 4.12) in a similar manner as previously attempted with α-

benzyloxy-γ-ketoaldehyde (±)-4.1a (c.f. Scheme 4.2).  Methacrolein 4.34 was treated 

with allylmagnesium chloride and the resulting alcohols were protected as the 

appropriate silyl ethers 4.35a-b.  Ozonolysis delivered the corresponding β-silyloxy-γ-

ketoaldehydes (±)-4.1m-n in moderate yields.  The success of this oxidation compared 

to the aforementioned unsuccessful result is most likely due to the fact that these systems 

are generally less reactive than α-benzyloxy-γ-ketoaldehyde (±)-4.1a and therefore less 

susceptible to the formation of byproducts. 

Scheme 4.12 

 

With ketoaldehyde (±)-4.1m in hand, it was treated with (E)-4.2e (>19:1) under 

slightly modified tandem conditions to deliver the desired THF 4.15m in low yield but 

good diastereoselectivity (Scheme 4.13).  The TMAL seems to follow precedent 

observed in total syntheses of (-)-panclicin D16 and derivatives19 and the subsequent 

MRC25 is in accordance with that previously observed in our stepwise approach toward 

THFs.26  Treatment of ketoaldehyde (±)-4.1m with 4.2c provided THF 4.15m’ in 

comparable yield but poor diastereoselectivity as expected.  When bulky ketene acetal 
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(Z)-4.2g was utilized, only trace quantities of the desired THF 4.15n were obtained with 

40% of undesired THF 4.15n’ observed with good diastereoselectivity.  This product 

presumably arises in similar fashion as observed previously with bulky ketene acetals 

(c.f. Scheme 4.6) in which ketoaldehyde (±)-4.1n undergoes self-condensation and 

reduction with no incorporation of ketene acetal (Z)-4.2g.  We were disappointed to 

observe this type of undesired THF 4.15n’ again, but the byproduct does lend support to 

our earlier findings in the stepwise TMAL-MRC (c.f. Scheme 3.8) which demonstrated 

high diastereoselectivity for α-silyloxy oxocarbenium reductions.26  This example seems 

to be a more precise measurement of the diastereoselectivity (~9:1) of nucleophilic 

attack on α-silyloxy oxocarbenium intermediates compared to previous trisubstituted 

examples (c.f. 3.5d-f and 4.15m-n) in which matched or mismatched cases are operative.   

Scheme 4.13 

 

Both coupling constant analysis and nOe enhancements supported the relative 

stereochemical assignment of THFs 4.15m and 4.15m’ while THFs 4.15n and 4.15n’ 

were assigned tentatively based on precedent from our previous studies concerning both 

the TMAL16 and MRC25,26 (Table 4.9). 
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Table 4.9. Coupling constant analysis of tetrahydrofurans 4.15m-n 

 

 
H 

4.15m 
mult 

J (Hz) 

4.15m’ 
mult 

J (Hz) 

4.15n 
mult 

J (Hz) 

4.15n’ 
mult 

J (Hz) 
A d 

6.5 
d 

6.5 
d 

6.5 
d 

6.5 
B dq 

6.5,6.5 
m 
-- 

m 
-- 

m 
-- 

C ddd 
3.5,6.5,7.0 

m 
-- 

m 
-- 

m 
-- 

D ddd 
3.5,6.5,13.0 

ddd 
3.0,6.0,12.5 

ddd 
6.0,9.5,13.0 

m 
-- 

 D’ ddd 
7.0,9.5,13.0 

ddd 
6.5,9.0,12.5 

ddd 
3.0,6.5,13.0 

m 
-- 

E ddd 
5.0,6.5,9.5 

m 
-- 

m 
-- 

m,m 
-- 

F m 
-- 

m 
-- 

m 
-- 

-- 
-- 

G d 
7.0 

m 
-- 

-- 
-- 

-- 
-- 

 
Conclusions 

We have demonstrated a diastereoselective, three-component TMAL-MRC 

toward trisubstituted THFs employing α-benzyloxy-γ-ketoaldehydes, ketene acetals, and 

silyl nucleophiles that provides evidence for silylated β-lactone intermediates in the 

tandem Mukaiyama aldol-lactonization.  These results build on Mead’s reductive 

cyclization of keto-β-lactones and are in accordance with Woerpel’s model for “inside 

attack” of oxocarbenium ions.  Application toward a THF fragment of colopsinol B and 

preliminary studies with β-silyloxy-γ-ketoaldehydes wer demonstrated. 
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CHAPTER V 

DEVELOPMENT OF A COMPREHENSIVE MODEL TO RATIONALIZE 

DIASTEREOSELECTIVITY IN THE TANDEM MUKAIYAMA ALDOL-

LACTONIZATION (TMAL) 

Introduction 

The tandem Mukaiyama aldol-lactonization (TMAL) reaction of aldehydes and 

thiopyridyl ketene acetals provides a highly diastereoselective approach to a variety of 

trans-1,2-disubstituted β-lactones.16  Regarding the diastereoselectivity in the TMAL, 

there are two different categories which must be defined.  We refer to cis-trans 

selectivity of the β-lactone as internal diastereoselectivity and syn-anti selectivity with 

respect to the stereochemistry of the alkyl C-O bond of the β-lactone as relative 

diastereoselectivity.  Zhao proposed a comprehensive model to explain the internal 

diastereoselectivity and a rationalization for chelation-controlled products observed with 

α-benzyloxy aldehydes.17  Yang  and Wang both proposed models to rationalize the 

divergent selectivity of the TMAL toward the syntheses of (-)-panclicin D105 and 

brefeldin A,106 respectively.  Both combined Zhao’s model for internal selectivity with 

the 1,3-stereochemical induction model proposed by Evans.92  These disparate results led 

us to consider various transition state arrrangements accessible in the TMAL. 

Results and Discussion 

Herein, we propose a universal model for the ZnCl2-mediated TMAL process in 

an effort to rationalize previous results and to predict future stereochemical outcomes.  

Early studies of the TMAL between aldehydes 5.1 and thiopyridyl ketene acetals 5.2 
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suggested stereoconvergent, trigonal bipyramidal boat-like transition state arrangements 

5.3 toward trans-β-lactones 5.4.  Both (E)- and (Z)-ketene acetals 5.2 delivered trans-β-

lactones 5.4 with excellent diastereoselectivity (Scheme 5.1).17   

Scheme 5.1 

 

For example, β-lactone 5.4a was obtained from hydrocinnamaldehyde 5.1a as a 

single diastereomer regardless of ketene acetal geometry indicating a stereoconvergent 

transition state arrangement.  This trend has proven true for all TMAL reactions with 

aliphatic and achiral aldehydes (Scheme 5.2).   

Scheme 5.2 

 

 In the case of aliphatic, chiral aldehydes, ketene acetal geometry is crucial to 

stereochemical outcome and seems to indicate a stereodivergent transition state 

arrangement. When α-benzyloxy aldehyde 5.5a was treated with ketene acetal (E)-5.2a, 

a single diastereomer (syn-trans) of β-lactone 5.6a was formed.  In contrast, identical 

conditions with (Z)-5.2a delivered a greatly diminished ratio (2.5:1) of trans-β-lactones 

(Scheme 3).17  Due to limitations of ketene acetal synthesis, we were not able to obtain 
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alkyl substituted ketene acetals (i.e. 5.2a) with higher (Z)-selectivity than ~4:1 as 

shown.107  It seems likely that anti-5.6a (not shown) could be accessed with at least 

moderate diastereoselectivity if enriched (Z)-5.2a (>19:1) could be obtained.   

Scheme 5.3 
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The stereochemical outcome of the TMAL between α-benzyloxy aldehydes 5.5 

and ketene acetals (E)-5.2 correlates to a boat-like transition state arrangement in which 

Cram chelation addition in trans fashion is operative (Scheme 5.4).17  

Scheme 5.4 

 

Although the stereochemical outcome with ketene acetal (Z)-5.2 still correlates to 

Cram-chelation addition in trans fashion, the significant drop in diastereoselectivity 

suggests that Felkin-Anh addition in trans fashion is operative (Scheme 5.5). 

Scheme 5.5 
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This transition state arrangement in which Felkin-Anh addition in trans fashion 

operates seemed to be confirmed when α-benzyloxy aldehyde 5.5b was treated with (Z)-

5.2b to deliver anti-β-lactone 5.6b (Scheme 5.6).  Unfortunately, the relative 

stereochemistry (i.e. syn vs. anti) has not been rigorously confirmed, but is supported by 

coupling constant evidence.26  

Scheme 5.6 
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An interesting result was obtained when a large excess of ZnCl2 was utilized.  

When α-benzyloxy aldehyde 5.5b was treated with ketene acetal (Z)-5.2b under these 

conditions, cis-5.6b was obtained, albeit with low diastereoselectivity (Scheme 5.7).26  

The relative stereochemistry (i.e. syn vs. anti) has not been rigorously determined, but is 

supported by coupling constant evidence.  Coupling constants to establish the internal 

stereochemistry is well-precedented,94 and this constitutes the first example of the 

formation of a cis-β-lactone with an aliphatic aldehyde in the ZnCl2-mediated TMAL. 

Scheme 5.7 

 

A plausible explanation for this reversal of diastereoselectivity could be that a 

large excess of ZnCl2 slightly promotes Cram chelation in cis fashion (Scheme 5.8) 

instead of Felkin-Anh in trans fashion (i.e. Scheme 5.5). 
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Scheme 5.8 

 

Treatment of β-silyloxy aldehyde 5.8a with ketene acetal (E)-5.2c toward the 

total synthesis of (-)-panclicin D gave β-lactone 5.9a in moderate yield and good 

diastereoselectivity (Scheme 5.9).16 

Scheme 5.9 

 

In this case, the stereochemical outcome correlates to a transition state 

arrangement in which the ketene acetal (E)-5.2 attacks the β-silyloxy aldehyde 5.8 rom 

the Re face according to the Evans 1,3-asymmetric induction model92 in trans fashion 

(Scheme 5.10).105 

Scheme 5.10 
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In contrast to the previous example, treatment of β-silyloxy aldehyde 5.8b with 

ketene acetal (Z)-5.2b toward the total synthesis of brefeldin A delivered β-lactone 5.9b 

in good yield and moderate diastereoselectivity (Scheme 5.11).24  

Scheme 5.11 

 

The stereochemical outcome of this TMAL reaction can also be rationalized 

using Evans 1,3-asymmetric induction92 in trans fashion, but with ketene acetal (Z)-5.2 

attacking the β-silyloxy aldehyde 5.8 from the Si face.  This stereodivergence was 

attributed to the avoidance of unfavorable non-bonded steric interactions between R2 (i.e. 

OTBDPS) of ketene acetal (Z)-5.2 and the β-silyloxy moiety (abbreviated OSi in 

transition state arrangement (Z)-5.10 for clarity) of aldehyde 5.8.106 

Scheme 5.12 

 

A summary of this universal model of the TMAL reaction portrays the 

stereochemical outcomes that can be rationalized by Cram chelation, Felkin-Anh, or 

Evans models in trans fashion (Figure 5.1). 
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Figure 5.1.  Universal model for diastereoselectivity in the TMAL 

 

Conclusions 

Although not complete, a comprehensive model is set forth that rationalizes the 

stereochemical outcome of the reaction between α- and β-substituted aldehydes and (E)- 

and (Z)-substituted ketene acetals in the ZnCl2-mediated TMAL.  Several experiments 

will be designed to further test this hypothesis including attempted chromatographic 

separation of (E)- and (Z)-substituted ketene acetals for use in the TMAL, other 

synthetic experiments, and molecular modeling of the proposed transition state 

arrangements. 
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CHAPTER VI 

CONCLUSIONS 

β-Lactones have emerged as valuable tools for the organic chemist toward other 

valuable structural motifs en route to natural products.  We have demonstrated several 

new transformations of the commercially available (R)-4-trichloromethyl-β-lactone 

including radical alkylations, α-silylations, and alternative, tin-free methods for mono- 

and bis-dechlorinations.  Importantly, several of these reactions can be conducted while 

maintaining the integrity of the β-lactone, thus enabling subsequent acylations or 

alkylations with the β-lactone moiety.  A Weinreb amide was readily prepared and then 

selectively dechlorinated providing access to malic acid surrogates with orthogonal 

functional groups.  Chain extensions at the γ-carbon were possible via radical alkylations 

providing access to further functionalized γ-chloro-β-lactones.  α-silylations were shown 

to be feasible albeit in low yield.  

 We also developed a three-step strategy for the diastereoselective synthesis of 

THFs from alkenyl-aldehydes proceeding through β-lactone intermediates.  The strategy 

involves the TMAL process and Mead’s reductive cyclization of keto-β-lactones.  The 

stereoselectivity of the latter process is rationalized by Woerpel’s model for “inside 

attack” of oxocarbeniums. An increase in selectivity for certain α-silyloxy oxocarbenium 

ions was observed and is rationalized based on stereoelectronic effects building on 

Woerpel's findings.  The stereoselectivity of the TMAL process for γ-benzyloxy and δ-

silyloxy aldehydes with several thiopyridyl ketene acetals was defined including a 

reversal in selectivity when a thiophenyl ketene acetal was employed.  A correlation 
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between relative stereochemistry and coupling constants was observed that provides a 

predictive method for the stereochemical assignment of γ-benzyloxy-β-lactones.  This 

TMAL-MRC strategy should prove useful for the synthesis of tetrahydrofurans found in 

natural products. 

In addition to the stepwise version, we developed a diastereoselective, three-

component TMAL-MRC toward trisubstituted THFs employing α-benzyloxy-γ-

ketoaldehydes, ketene acetals, and silyl nucleophiles that provides evidence for silylated 

β-lactone intermediates in the tandem Mukaiyama aldol-lactonization.  These results 

build on our extension of Mead’s reductive cyclization of keto-β-lactones and are in 

accordance with Woerpel’s model for “inside attack” of oxocarbenium ions.  

Application toward a THF fragment of colopsinol B was demonstrated.  We also 

presented preliminary studies with β-silyloxy-γ-ketoaldehydes in the tandem process.   

A universal model is set forth that rationalizes the stereochemical outcome of the 

reaction between α- and β-substituted aldehydes and (E)- and (Z)-substituted ketene 

acetals in the ZnCl2-mediated TMAL.  Transition state arrangements based our previous 

results and stereochemical induction models (Cram chelation, Felkin-Anh, or Evans) 

provide a predictive tool for the diastereoselective TMAL.  Several experiments will be 

designed to further test this hypothesis including attempted chromatographic separation 

of (E)- and (Z)-substituted ketene acetals for use in the TMAL, other synthetic 

experiments, and molecular modeling of the proposed transition state arrangements. 
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General Procedures 

All reactions were carried out under N2 in oven-dried glassware (120 ˚C).  All solvents 

were either distilled prior to use or obtained from a solvent purification system.  Triethyl 

amine (Et3N), diisopropylethyl amine (Hunig’s base), and 2,6-lutidine were distilled 

from calcium hydride immediately prior to use.  ZnCl2 was fused under high vacuum 

(~0.5 mm Hg) and cooled to ambient temperature immediately prior to use.  All other 

commercially available reagents were used as received.  Brine refers to a saturated 

aqueous solution of sodium chloride and Rochelle’s salt refers to a saturated aqueous 

solution of sodium potassium tartrate.  Ether refers to diethyl ether unless otherwise 

noted.  Flash column chromatography was carried out with Silica Gel 60Ǻ (230-400 

Mesh) as stationary phase as described by Still.1  Thin layer chromatography was carried 

out with Silica Gel 60Ǻ F254 glass plates (0.25 mm).  Mass spectra were obtained with a 

High Resolution Electrospray Ionization (ESI) Mass Spectrometer.  IR Spectra were 

recorded on a FTIR spectrometer.  1H NMR spectra were recorded on a 500 or 300 MHz 

spectrometer and 13C NMR spectra were recorded on a 125 or 75 MHz spectrometer.  1H 

NMR chemical shifts are reported as δ in ppm relative to residual CHCl3 (7.27 ppm) or 

residual C6D5H (7.16ppm) and deuterochloroform (CDCl3 - 77.23 ppm) or 

deuterobenzene (C6D6 - 128.0 ppm) served as internal standards for all 13C spectra.  1H 

NMR coupling constants (J) are reported in Hertz (Hz), and multiplicities are indicated 

as follows: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), ddd 

(doublet of doublet of doublets), dddd (doublet of doublet of doublet of doublets), dt 

                                                 
1 Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923. 
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(doublet of triplets), dq (doublet of quartets), qq (quartet of quartets), m (multiplet), bs 

(broad singlet).  Based on intensity in the 13C spectra, both magnetic and chemical shift 

equivalent peaks are noted in parentheses.  Only crucial nOe enhancements of THFs 3.5 

and 4.15 are included.  Yields of furans 4.16 are only tentatively reported if at all due to 

either volatility or difficulty in purification.  For the same reasons, some of the furans 

4.16 are either incompletely characterized or not included. 

Chapter II – Radical Reactions of Optically Active 4-Trichloromethyl-β-Lactone:  
A Route to Potential β-Lactone Substrates for Tetrahydrofuran Synthesis 
 

 

Trichloro Weinreb amide 2.16:  To a solution of β-lactone (2.3) (500 mg, 2.68 mmol) 

in CH2Cl2 (25 mL) was added solid N,O-Dimethylhydroxylamine hydrochloride (392 

mg, 4.02 mmol) followed by diisopropylethylamine (700 μL, 4.02 mmol) at 23 °C.  This 

solution was stirred for 17 h and then quenched with sat. aq. NH4Cl (20 mL) and diluted 

with ether (200 mL).  The combined organic extracts were separated and washed with 

additional sat. aq. NH4Cl (2 x 20 mL), water (2 x 20), and brine (2 x 20), and then dried 

over MgSO4, filtered, and concentrated under reduced pressure.  Purification by flash 

column chromatography (hexanes:ethyl acetate 60:40) delivered amide 2.16 (571 mg, 

85%) as a white solid:  Rf  = 0.35 (hexanes:ethyl acetate 50:50); [α]23 +44.6 (1.00, 

CHCl3); IR (thin film) 3384, 1684 cm-1; 1H NMR (300 MHz, CDCl3) δ 2.95 (dd, J = 9.3, 

16.5 Hz, 1H), 3.16 (dd, J = 2.4, 16.5 Hz, 1H), 3.24 (s, 3H), 3.75 (s, 3H), 4.48 (d, J = 4.2 

Hz, 1H), 4.65 (ddd, J = 2.4, 4.2, 9.3 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 32.3, 34.5, 
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61.5, 79.2, 102.9, 171.2; ESI-HRMS calcd for C6H11NO3Cl3 [M + H] 249.9805, found 

249.9803. 

 

Dichloro Weinreb amide 2.22:  To a solution of Weinreb amide 2.16 (2.50 g, 9.98 

mmol) in THF (20 mL) was added tributyltin hydride (3.0 mL, 11.00 mmol) at 23 °C.  

This solution was refluxed for 24 h and then cooled and concentrated under reduced 

pressure.  The residue was dissolved in acetonitrile, washed with hexanes to remove n-

Bu3SnCl, and concentrated under reduced pressure.  Purification by flash column 

chromatography (hexanes:ethyl acetate 50:50) gave amide 2.22 (1.69 g, 78%) as a white 

solid:  Rf 0.56 (hexanes:ethyl acetate 30:70); [α]23 +42.4 (1.00, CHCl3); IR (thin film) 

3355, 1649 cm-1; 1H NMR (300 MHz, CDCl3) δ 2.89 (dd, J = 7.8, 17.1 Hz, 1H), 2.99 

(dd, J = 3.9, 17.1 Hz, 1H), 3.23 (s, 3H), 3.74 (s, 3H), 4.09 (d, J = 4.8 Hz, 1H), 4.36-4.43 

(m, 1H), 5.90 (d, J = 3.9 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 32.1, 33.5, 61.5, 72.8, 

75.2, 171.9; ESI-HRMS calcd for C6H11NO3Cl2Li [M + Li] 222.0276, found 222.0296. 

 

Chloro Weinreb amide 2.23:  To a solution of Weinreb amide 2.16 (500 mg, 2.00 

mmol) in toluene (5 mL) was added tris(trimethylsilyl)silane (1.3 mL, 4.20 mmol) and 

triethylborane (4.4 mL, 4.40 mmol) sequentially at 23 °C and open to the air.  This 

solution was stirred for 2 h and then dissolved in acetonitrile, washed with hexanes to 

remove silyl byproducts, and concentrated under reduced pressure.  Purification by flash 
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column chromatography (hexanes:ethyl acetate 30:70) afforded amide 2.23 (280 mg, 

77%) as a pale red oil:  Rf  = 0.37 (hexanes:ethyl acetate 30:70); [α]23 +46.5 (1.00, 

CHCl3); IR (thin film) 3423, 1643 cm-1; 1H NMR (300 MHz, CDCl3) δ  2.73 (dd, J = 

7.8, 17.1 Hz, 1H), 2.83 (dd, J = 3.9, 17.1 Hz, 1H), 3.22 (s, 3H), 3.63-3.65 (m, 2H), 3.73 

(s, 3H), 3.98 (d, J = 4.2 Hz, 1H), 4.22-4.31 (m, 1H); 13C NMR (75 MHz, CDCl3) δ 31.9, 

35.3, 48.1, 61.4, 68.1, 172.6; ESI-HRMS calcd for C6H13ClNO3 [M + H] 182.0584, 

found 182.0589. 

 

Dichloromethyl-β-lactone 2.17a:  To a solution of β-lactone (2.3) (3.00 g, 16.11 mmol) 

in THF (30 mL) was added tributyltin hydride (4.8 mL, 17.70 mmol) at 23 °C.  This 

solution was refluxed for 24 h at which time it was cooled and concentrated under 

reduced pressure.  Two sequential flash column purifications (pentane:ether 80:20) were 

required to remove all tin impurities and gave β-lactone 2.17a (1.90 g, 78%) as a clear 

oil:  Rf  = 0.72 (hexanes:ethyl acetate 70:30); [α]23 +31.2 (1.00, CHCl3); IR (thin film) 

1846 cm-1; 1H NMR (300 MHz, CDCl3) δ 3.58 (dd, J = 3.9, 16.8 Hz, 1H), 3.67 (dd, J = 

6.0, 16.8 Hz, 1H), 4.81 (ddd, J = 3.9, 4.8, 6.0 Hz, 1H), 5.98 (d, J = 4.8 Hz, 1H); 13C 

NMR (75 MHz, CDCl3) δ 41.1, 70.6, 71.0, 165.7; ESI-HRMS calcd for C4H4Cl2O2Li [M 

+ Li] 160.9748, found 160.9741. 
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Chloromethyl-β-lactone 2.17b:  To a solution of β-lactone (2.3) (1.00 g, 5.37 mmol) in 

toluene (6 mL) was added tributyltin hydride (3.0 mL, 11.00 mmol) followed by 11.0 

mL of triethyl borane (1.0 M in hexanes, 11.00 mmol) at 23 °C and open to the air.  

After stirring for 5 h, the reaction was poured over a pad of silica gel and eluted with 

hexanes to remove tin byproducts and then eluted with ether to remove the product.  

Following removal of ether, the residue was purified by two sequential flash columns 

(pentane:ether 80:20) to obtain β-lactone 2.17b (160 mg, 25%) as a clear oil:  Rf  = 0.35 

(hexanes:ethyl acetate 70:30); [α]23 +10.2 (1.00, CHCl3); IR (thin film) 1836 cm-1; 1H 

NMR (300 MHz, CDCl3) δ 3.42 (dd, J = 4.2, 16.5 Hz, 1H), 3.62 (dd, J = 5.7, 16.5 Hz, 

1H), 3.81 (dd, J = 5.7, 12.3 Hz, 1H), 3.87 (dd, J = 4.8, 12.3 Hz, 1H), 4.71-4.78 (m, 1H); 

13C NMR (75 MHz, CDCl3) δ 41.7, 44.5, 68.6, 166.7; ESI-HRMS calcd for C4H5ClO2Li 

[M + Li] 127.0138, found 127.0141. 

 

Carboxylic acid 2.28:  To a mixture of β-lactone (2.3) (100 mg, 0.54 mmol) and 

collidinium triflate (473 mg, 1.61 mmol) at 23 °C was added 16.0 mL of SmI2 solution 

(0.1 M in THF, 1.61 mmol).  The solution was stirred for 2 h and then the reaction was 

quenched with sat. aq. Na2S2O3, diluted with ether (100 mL), and the organics were 

washed with aq. 10% K2CO3 (3 x 20 mL).  The combined aqueous extracts were 

acidified to pH 2 with 1 N HCl, washed with ethyl acetate (3 x 20 mL), and the 
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combined organics were dried over MgSO4, filtered, and concentrated under reduced 

pressure to deliver acid 2.28 (80 mg, 94% yield) as a pale yellow solid.  Spectral data for 

this compound matched that previously reported.61  

 

Allyl-β-lactone 2.18a:  To a solution of β-lactone (2.3) (500 mg, 2.67 mmol) in toluene 

(3 mL) was added neat allyltributylstannane (2.1 mL, 6.68 mmol) followed by 6.7 mL of 

triethylborane (1.0 M in hexanes, 6.68 mmol) at 23 °C and open to the air.  After stirring 

for 5 h, the crude reaction mixture was directly loaded on a silica column and purified by 

two successive gradient flash column purifications (pentane:ether 99:1 to 97:3) to deliver 

β-lactone 2.18a (240 mg, 46%) as a clear oil: Rf  = 0.60 (hexanes:ethyl acetate 70:30); 

[α]23 +12.5 (1.00, CHCl3); IR (thin film) 3090, 3015, 1851, 1643 cm-1; 1H NMR (300 

MHz, CDCl3) δ 3.00 (ddt, J = 0.9, 7.5, 14.7 Hz, 1H), 3.13 (ddt, J = 1.2, 6.6, 14.7 Hz, 

1H), 3.62 (dd, J = 5.7, 16.8 Hz, 1H), 3.72 (dd, J = 3.9, 16.8 Hz, 1H), 4.73 (dd, J = 3.9, 

5.7 Hz, 1H), 5.28-5.39 (m, 2H), 5.89-6.03 (m, 1H); 13C NMR (75 MHz, CDCl3) δ 41.8, 

48.5, 72.7, 89.8, 122.2, 129.9, 165.7; ESI-HRMS calcd for C7H8Cl2O2Li [M + Li] 

201.0061, found 201.0070. 

 

Methallyl-β-lactone 2.18b:  To a solution of methallyltributylstannane (4.56 g, 2.95 

mmol) in toluene (3 mL) was added β-lactone (2.3) (1.00 g, 5.28 mmol) at 23 °C 
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followed by 13.2 mL of triethylborane (1.0 M in hexanes, 13.2 mmol) at 23 °C and open 

to the air.  After stirring for 6 h, the crude reaction mixture was directly loaded on a 

silica column and purified by two successive gradient flash column purifications 

(pentane:ether 99:1 to 97:3) to deliver β-lactone 2.18b (495 mg, 45%) as a clear oil:  Rf  

= 0.81 (hexanes:ethyl acetate 70:30); [α]23 +9.7 (1.00, CHCl3); IR (thin film) 3082, 

1855, 1647 cm-1; 1H NMR (300 MHz, CDCl3) δ 1.97 (m, 3H), 3.07 (s, 2H), 3.62 (dd, J = 

5.4, 16.8 Hz, 1H), 3.73 (dd, J = 3.9, 16.8 Hz, 1H), 4.79 (dd, J = 3.9, 5.4 Hz, 1H), 5.01-

5.02 (m, 1H), 5.15-5.17 (m, 1H); 13C NMR (75 MHz, CDCl3) δ 24.2, 41.7, 51.5, 72.5, 

89.8, 119.5, 138.1, 165.8; ESI-HRMS calcd for C8H10Cl2O2Li [M + Li] 215.0218, found 

215.0223. 

 

α-Silyl-β-lactone 2.19a:  To a solution of β-lactone (2.3) (200 mg, 1.07 mmol) in THF 

(10 mL) was added TESOTf (250 μL, 1.07 mmol) dropwise at -78 °C followed by 

LiHMDS (1.0 mL, 1.07 mmol) down the side of the flask to ensure cooling.  An 

additional 10 mL of THF was used to wash the side of the flask.  The reaction was 

stirred for 1.5 h at -78 °C, quenched with sat. aq. NH4Cl, and warmed to 23 °C.  The 

mixture was diluted with ether (100 mL), separated, and washed with additional sat. aq. 

NH4Cl (2 x 20 mL), water (2 x 20 mL), and brine (2 x 20 mL).  The organic extracts 

were dried over MgSO4, filtered, and concentrated under reduced pressure.  Purification 

by flash column chromatography (pentane:ether 95:5) delivered the β-lactone 2.19a (100 

mg, 31% yield, 50% based on recovered starting material) as a clear oil:  Rf  = 0.75 
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(hexanes:ethyl acetate 80:20); [α]23 +10.0 (1.00, CHCl3); IR (thin film) 1841 cm-1; 1H 

NMR (300 MHz, CDCl3) δ 0.79-0.84 (m, 6H), 1.03-1.08 (m, 9H), 3.46 (d, J = 3.9 Hz, 

1H), 4.78 (d, J = 3.9 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 2.7, 7.1, 45.3, 78.5, 98.4, 

167.9; ESI-HRMS calcd for C10H17Cl3O2SiLi [M + Li] 309.0223, found 309.0229. 

Chapter III – Development of a Diastereoselective Stepwise Synthesis of 
Tetrahydrofurans via Mead Reductive Cyclization (MRC) of Keto-β-Lactones 
Derived from the Tandem Mukaiyama Aldol-Lactonization (TMAL) 
 

 

Primary Alcohol S1:  To a solution of aldehyde 3.6 (8.50 g, 36.92 mmol) in ether (180 

mL) was added a 0.5 M solution of 2-methylallylmagnesium chloride in THF (94.0 mL, 

47.00 mmol) slowly at -78 °C.  The reaction was allowed to warm quickly to 23 °C and 

was quenched with sat. aq. NH4Cl (100 mL) after 2 h.  After stirring vigorously for 30 

min, the organic layer was separated and washed with additional sat. aq. NH4Cl (2 x 50 

mL), water (2 x 50 mL), and brine (2 x 50 mL).  The residue was then dried over 

MgSO4, filtered over a pad of SiO2, and concentrated under reduced pressure to deliver 

alcohol S1 (9.05 g, 90%) as a colorless oil:  Rf  = 0.47 (90:10 hexanes: ethyl acetate); IR 

(thin film) 3459, 3075 cm-1; 1H NMR (300 MHz, CDCl3) δ 1.06-1.10 (m, 21H), 1.79 (br 

s, 3H), 2.20 (d, J = 6.3 Hz, 2H), 2.48 (d, J = 3.3 Hz, 1H), 3.56 (dd, J = 6.9, 9.9 Hz, 1H), 

3.71 (dd, J = 3.9, 9.9 Hz, 1H), 3.80-3.90 (m, 1H), 4.80 (br s, 1H), 4.85 (br s, 1H); 13C 

NMR (75 MHz, CDCl3) δ 12.0(3), 18.1(6), 22.7, 41.7, 67.3, 70.0, 112.9, 142.5; ESI-

HRMS calcd for C15H32O2SiLi [M + Li] 279.2332, found 279.2346.   
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Benzyl ether 3.7:  To a solution of alcohol S1 (6.00 g, 22.01 mmol) in THF (220 mL) 

was added benzyl bromide (3.9 mL, 33.02 mmol) and NaH 1.32 g, 33.02 mmol, 60% 

dispersion in mineral oil) at 0 °C as a solid.  The reaction was heated to 65 °C and was 

stirred for 8 h after which time it was cooled to 23 °C and quenched slowly with sat. aq. 

NH4Cl (50 mL).  The resulting mixture was stirred vigorously for 30 min, concentrated 

under reduced pressure, and diluted with ether (250 mL).  The organic layer was 

separated and washed with additional sat. aq. NH4Cl (2 x 50 mL), water (2 x 50 mL), 

and brine (2 x 50 mL).  The residue was then dried over MgSO4, filtered over a pad of 

SiO2, and concentrated under reduced pressure to deliver benzyl ether 3.7 (7.50 g, 94%) 

with varying amounts of a product (not shown) derived from silyl migration which is 

removed following the subsequent deprotection as a pale yellow oil:  Rf  = 0.62 (95:5 

hexanes:ethyl acetate); IR (thin film) 3068, 3030, 1117 cm-1; 1H NMR (300 MHz, 

CDCl3) δ 1.07-1.09 (m, 21H), 1.75 (br s, 3H), 2.25 (dd, J = 6.6, 14.1 Hz, 1H), 2.34 (dd, J 

= 4.5, 14.1 Hz, 1H), 3.62-3.82 (m, 3H), 4.63 (d, J = 11.7 Hz, 1H), 4.74 (d, J = 11.7 Hz, 

1H), 4.80 (br s, 1H), 4.81 (br s, 1H), 7.27-7.39 (m, 5H); 13C NMR (75 MHz, CDCl3) δ 

12.1(3), 18.2(6), 23.1, 40.6, 66.2, 72.5, 78.9, 112.8, 127.6, 127.9(2), 128.4(2), 139.2, 

143.0; ESI-HRMS calcd for C22H38O2SiLi [M + Li] 369.2801, found 369.2793. 
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Alcohols S2 and S3:  To a solution of benzyl ether 3.7 (9.00 g, 24.81 mmol) in THF 

(250 mL) was added a 1.0 M solution of TBAF in THF (50.0 mL, 49.62 mmol) at 0 °C, 

stirred for 1.5 h, and allowed to warm to 23 °C.  The solution was quenched with sat. aq. 

NH4Cl (50 mL), stirred vigorously for 30 min, concentrated under reduced pressure, and 

diluted with ether (250 mL).  The organic layer was separated and washed with 

additional sat. aq. NH4Cl (2 x 50 mL), water (2 x 50 mL), and brine (2 x 50 mL).  The 

solution was dried over MgSO4, filtered, and concentrated under reduced pressure.  

Crude 1H NMR analysis revealed a 9:1 mixture of primary alcohol S2 to rearranged 

secondary alcohol S3.  Purification by flash column chromatography (hexanes:ethyl 

acetate 85:15) delivered primary alcohol S2 (2.17 g, 42%), secondary alcohol S3 (282 

mg, 5%) derived from silyl migration during the previous step, and a mixture of the two 

products (2.55 g, 50%) as colorless oils.  Characterization data for primary alcohol S3 

matched that previously reported:2  Rf  = 0.18 (80:20 hexanes: ethyl acetate); IR (thin 

film) 3465, 3070, 3031, 1098 cm-1; 1H NMR (300 MHz, CDCl3) δ 1.78 (br t, J = 1.2 Hz, 

3H), 1.96 (dd, J = 5.3, 7.0 Hz, 1H), 2.19-2.26 (m, 1H), 2.39-2.45 (m, 1H), 3.50-3.76 (m, 

3H), 4.56 (d, J = 11.4 Hz, 1H), 4.69 (d, J = 11.4 Hz, 1H), 4.79-4.82 (m, 1H), 4.82-4.86 

(m, 1H), 7.30-7.38 (s, 5H); 13C NMR (75 MHz, CDCl3) δ 22.9, 39.4, 64.1, 71.5, 78.1, 

113.2, 127.7, 127.8(2), 128.4(2), 138.4, 142.1; ESI-HRMS calcd for C13H18O2Li [M + 

Li] 213.1467, found 213.1471.  Characterization data for secondary alcohol S3 matched 
                                                 
2 Hubbs, J. L.; Heathcock, C. H. J. Am. Chem. Soc. 2003, 125, 12836. 
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that previously reported:3  Rf  = 0.20 (80:20 hexanes: ethyl acetate); IR (thin film) 3454, 

3071, 3032, 1099 cm-1; 1H NMR (300 MHz, CDCl3) δ 1.78 (br s, 3H), 2.20-2.24 (m, 

2H), 2.29 (d, J = 3.3, 1H), 3.40 (dd, J = 7.2, 9.6 Hz, 1H), 3.53 (dd, J = 3.6, 9.6 Hz, 1H), 

3.95-4.05 (m, 1H), 4.58 (s, 2H), 4.78-4.82 (m, 1H), 4.84-4.88 (m, 1H), 7.36 (s, 5H); 13C 

NMR (75 MHz, CDCl3) δ 22.5, 41.9, 68.2, 73.4, 74.2, 113.2, 127.8(3), 128.4(2), 138.0, 

142.1; ESI-HRMS calcd for C13H19O2 [M + H] 207.1385, found 207.1358.   

 

Representative procedure for the Swern Oxidation as described for α-benzyloxy 

aldehyde (±)-3.1a.  To a solution of oxalyl chloride (1.3 mL, 14.54 mmol) in CH2Cl2 

(50 mL) was added DMSO (2.1 mL, 29.08 mmol) dropwise at -78 °C and was stirred for 

5 min.  To this solution was added the primary alcohol S2 (1.50 g, 7.27 mmol) in CH2Cl2 

(25 mL) and stirred for 15 min at which time Et3N (8.1 mL, 58.16 mmol) was added and 

stirred for an additional 2 h.  The reaction was quenched with pH 7 buffer, stirred 

vigorously for 30 min, and allowed to warm to 23 °C.  The crude aldehyde (±)-3.1a was 

diluted with ether (200 mL) and after separation from the aqueous layer was washed 

with water (3 x 50 mL) and brine (3 x 50 mL), dried over MgSO4, filtered, and 

concentrated under reduced pressure.  Purification by flash column chromatography 

(95:5 hexanes:ethyl acetate) delivered pure aldehyde (±)-3.1a (1.35 g, 91%) as a pale 

yellow oil:  Rf  = 0.51 (80:20 hexanes: ethyl acetate); IR (thin film) 3076, 3031, 2721, 

1732, 1103 cm-1; 1H NMR (300 MHz, CDCl3) δ 1.75 (br s, 3H), 2.44 (d, J = 6.6 Hz, 2H), 
                                                 
3 Lachance, H.; Lu, X.; Gravel, M.; Hall, D. G. J. Am. Chem. Soc. 2003, 125, 10160. 



 
 

118

3.93 (dt, J = 2.1, 6.6 Hz, 1H),  4.59 (d, J = 11.7 Hz, 1H), 4.69 (d, J = 11.7 Hz, 1H), 4.83 

(br s, 1H), 4.88 (br s, 1H), 7.30-7.38 (m, 5H), 9.67 (d, J = 2.1 Hz, 1H); 13C NMR (75 

MHz, CDCl3) δ 22.8, 38.4, 72.6, 81.9, 114.1, 128.07(2), 128.13, 128.6(2), 137.3, 140.4, 

203.1; ESI-HRMS calcd for C13H16O2Li [M + Li] 211.1310, found 211.1297. 

 

β-Silyloxy Ester S4:  To a solution of β-hydroxy ester 3.84 in DMF (150 mL) was added 

TBSCl (4.45 g, 29.52 mmol) and imidazole (3.01 g, 44.27 mmol) at 23 °C.  This 

solution was stirred for 12 h and was quenched with sat. aq. NH4Cl (50 mL) and stirred 

vigorously for 30 min.  Upon dilution with ether (200 mL) and removal of the aqueous 

layer, the organic layer was washed with sat. aq. NH4Cl (2 x 50 mL), water (2 x 50 mL), 

and brine (2 x 50 mL).  The ethereal solution was then dried over MgSO4, filtered, and 

concentrated under reduced pressure.  Purification by flash column chromatography 

(95:5 hexanes:ethyl acetate) delivered β-silyloxy ester S4 (6.59 g, 82%) as a pale yellow 

oil:  Rf  = 0.56 (90:10 hexanes:ethyl acetate); IR (thin film) 1740, 1087 cm-1; 1H NMR 

(300 MHz, CDCl3) δ 0.02 (s, 3H), 0.05 (s, 3H), 0.87 (s, 9H), 1.27 (t, J = 7.2, 3H), 1.71-

1.72 (m, 3H), 2.42 (dd, J = 4.5, 14.4 Hz, 1H), 2.55 (dd, J = 9.0, 14.4 Hz, 1H), 4.09-4.17 

(m, 2H), 4.56 (dd, J = 4.5, 9.0 Hz, 1H), 4.80-4.81 (m, 1H), 4.96-4.97 (m, 1H); 13C NMR 

(75 MHz, CDCl3) δ -5.2, -4.7, 14.4, 17.1, 18.2, 25.8(3), 42.7, 60.5, 74.0, 111.7, 146.8, 

171.5; ESI-HRMS calcd for C14H28O3SiLi [M + Li] 279.1968, found 279.1969.   

                                                 
4 (a) Zibuck, R.; Streiber, J. M. J. Org. Chem. 1989, 54, 4717.  (b) Wang, Y. G.; 
Kobayashi, Y. Org. Lett. 2002, 4, 4615. 
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Primary Alcohol S5:  To a solution of silyl ether S4 (6.00 g, 19.20 mmol) in CH2Cl2 

(240 mL) was added DIBAl-H (7.2 mL, 40.32 mmol) dropwise at -78 °C.  This solution 

was immediately warmed to 0 °C and stirred for 4 h at which time it was quenched 

slowly with MeOH (20 mL).  Upon addition of Rochelle’s salt (100 mL), the mixture 

was stirred vigorously for 12 h at which time it was poured over Celite, washed with 

CH2Cl2 and concentrated under reduced pressure.  The residue was dissolved in ether 

(250 mL) and washed with sat. aq. NH4Cl (2 x 50 mL), water (2 x 50mL), and brine (2 x 

50 mL).  The ethereal solution was then dried over MgSO4, filtered, and concentrated 

under reduced pressure.  Purification by flash column chromatography (hexanes:ethyl 

acetate 90:10) delivered pure alcohol S5 (3.72 g, 84%) as a pale yellow oil:  Rf  = 0.33 

(hexanes:ethyl acetate 80:20); IR (thin film) 3344, 3073, 1087, 1064 cm-1; 1H NMR (300 

MHz, CDCl3) δ 0.05 (s, 3H), 0.10 (s, 3H), 0.92 (s, 9H), 1.70-1.72 (m, 3H), 1.77-1.83 (m, 

2H), 2.32 (t, J = 5.4 Hz, 1H), 3.66-3.82 (m, 2H), 4.31 (dd, J = 5.7, 6.0 Hz, 1H), 4.84-

4.87 (m, 1H), 4.99-5.01 (m, 1H); 13C NMR (75 MHz, CDCl3) δ -5.2, -4.7, 17.8, 18.2, 

25.9(3), 37.9, 60.0, 75.4, 111.0, 147.1; ESI-HRMS calcd for C12H26O2SiLi [M + Li] 

237.1862, found 237.1808.   

 

β-silyloxy aldehyde (±)-3.1b was prepared according to the representative procedure for 

the Swern oxidation using oxalyl chloride (750 μL, 8.68 mmol) in CH2Cl2 (30 mL), 
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DMSO (1.2 mL, 17.36 mmol), alcohol S5 (1.00 g, 4.34 mmol) in CH2Cl2 (10 mL), and 

Et3N (4.9 mL, 34.71 mmol).  Representative work-up with water (3 x 50 mL) and brine 

(3 x 50 mL) delivered crude aldehyde (±)-3.1b.  Purification by flash column 

chromatography (hexanes:ethyl acetate 95:5) delivered aldehyde (±)-3.1b (803 mg, 

81%) as a pale yellow oil:  Rf  = 0.46 (hexanes:ethyl acetate 90:10); IR (thin film) 2701, 

1728, 1089 cm-1; 1H NMR (300 MHz, CDCl3) δ 0.04 (s, 3H), 0.07 (s, 3H), 0.89 (s, 9H), 

1.72-1.73 (m, 3H), 2.47 (ddd, J = 2.1, 4.5, 15.3 Hz, 1H), 2.66 (ddd, J = 3.0, 7.5, 15.3 Hz, 

1H),  4.59 (dd, J = 4.5, 7.5 Hz, 1H), 4.85-4.87 (m, 1H), 5.01-5.02 (m, 1H), 9.77 (dd, J = 

2.1, 3.0 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ -5.2, -4.7, 17.5, 18.1, 25.8(3), 49.9, 72.2, 

111.7, 146.3, 201.4; ESI-HRMS calcd for C12H24O2SiLi [M + Li] 235.1706, found 

235.1683. 

 

β-Silyloxy Ester S6:  To a solution of β-hydroxy ester 3.85 (2.50 g, 15.80 mmol) in 

CH2Cl2 (150 mL) was added TIPSOTf (4.4 mL, 15.80 mmol) followed by Et3N (2.2 mL, 

15.80 mmol) and a crystal of DMAP at 23 °C.  This solution was stirred for 2.5 h at 

which time it was quenched with sat. aq. NH4Cl (50 mL), stirred vigorously for 30 min, 

and concentrated under reduced pressure.  Upon dilution with ether (200 mL) and 

removal of the aqueous layer, the organic layer was washed with sat. aq. NH4Cl (2 x 50 

mL), water (2 x 50 mL), and brine (2 x 50 mL).  The ethereal solution was then dried 

over MgSO4, filtered, and concentrated under reduced pressure.  Purification by flash 

column chromatography (hexanes:ethyl acetate 95:5) delivered β-silyloxy ester S6 (3.73 
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g, 75%) as a pale yellow oil:  Rf  = 0.79 (hexanes:ethyl acetate 80:20); IR (thin film) 

1740, 1086 cm-1; 1H NMR (300 MHz, CDCl3) δ 1.05-1.07 (m, 21H), 1.25 (t, J = 7.2, 

3H), 1.74-1.75 (m, 3H), 2.50 (dd, J = 6.9, 14.1 Hz, 1H), 2.61 (dd, J = 6.6, 14.1 Hz, 1H), 

4.11 (q, J = 7.2 Hz, 2H), 4.69 (dd, J = 6.6, 6.9 Hz, 1H), 4.79-4.81 (m, 1H), 4.93-4.94 (m, 

1H); 13C NMR (75 MHz, CDCl3) δ 12.5(3), 14.3, 16.7, 18.1(6), 42.9, 60.4, 74.2, 112.0, 

146.6, 171.2; ESI-HRMS calcd for C17H34O3SiLi [M + Li] 321.2437, found 321.2325.   

 

Primary Alcohol S7:  To a solution of β-silyloxy ester S6 (2.70 g, 8.58 mmol) in 

CH2Cl2 (90 mL) was added DIBAl-H (3.8 mL, 21.46 mmol) dropwise at -78 °C.  This 

solution was immediately warmed to 0 °C and stirred for 4 h at which time it was 

quenched slowly with MeOH (20 mL).  Upon addition of Rochelle’s salt (75 mL), the 

mixture was stirred vigorously for 21 h at which time it was poured over Celite, washed 

with CH2Cl2 and concentrated under reduced pressure.  The residue was dissolved in 

ether (200 mL) and washed with sat. aq. NH4Cl (2 x 50 mL), water (2 x 50mL), and 

brine (2 x 50 mL).  The ethereal solution was then dried over MgSO4, filtered, and 

concentrated under reduced pressure.  Purification by flash column chromatography 

(hexanes:ethyl acetate 80:20) delivered alcohol S7 (1.70 g, 73%) as a pale yellow oil:  Rf  

= 0.24 (hexanes:ethyl acetate 80:20); IR (thin film) 3341, 3073, 1091, 1061 cm-1; 1H 

NMR (300 MHz, CDCl3) δ 1.06-1.09 (m, 21H), 1.71-1.72 (m, 3H), 1.76-2.00 (m, 2H), 

2.32 (dd, J = 3.9, 6.6 Hz, 1H), 3.62-3.83 (m, 2H), 4.43-4.46 (m, 1H), 4.91-4.93 (m, 1H), 
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5.07-5.09 (m, 1H); 13C NMR (75 MHz, CDCl3) δ 12.4(3), 17.9, 18.2(6), 37.3, 59.7, 75.5, 

111.5, 146.6; ESI-HRMS calcd for C15H32O2SiLi [M + Li] 279.2332, found 279.2241.   

 

β-Silyloxy Aldehyde (±)-3.1c was prepared according to the representative procedure 

for the Swern oxidation using oxalyl chloride (925 μL, 10.78 mmol) in CH2Cl2 (30 mL), 

DMSO (1.5 mL, 21.56 mmol), alcohol S7 (1.47 g, 5.39 mmol) in CH2Cl2 (20 mL), and 

Et3N (6.0 mL, 43.12 mmol).  Representative work-up with water (3 x 50 mL) and brine 

(3 x 50 mL) delivered crude aldehyde (±)-3.1c.  Purification by flash column 

chromatography (hexanes:ethyl acetate 95:5) delivered aldehyde (±)-3.1c (1.18 g, 81%) 

as a pale yellow oil:  Rf  = 0.79 (hexanes:ethyl acetate 80:20); IR (thin film) 3077, 2722, 

1726, 1101 cm-1; 1H NMR (300 MHz, CDCl3) δ 1.05-1.07 (m, 21H), 1.74-1.75 (m, 3H), 

2.61-2.64 (m, 2H), 4.68 (dd, J = 5.7, 5.7 Hz, 1H), 4.88-4.90 (m, 1H), 5.06-5.08 (m, 1H), 

9.78 (dd, J = 2.7, 2.7 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 12.4(3), 17.7, 18.09(3), 

18.12(3), 49.8, 72.4, 111.9, 146.2, 201.6; ESI-HRMS calcd for C15H30O2SiLi [M + Li] 

277.2175, found 277.2164. 

 

Representative procedure for the TMAL Reaction as described for γ-benzyloxy-

alkenyl-β-lactone syn-3.3a.  ZnCl2 (273 mg, 2.00 mmol) was freshly fused at ~0.5 mm 

Hg and subsequently cooled to ambient temperature.  The aldehyde (±)-3.1a (204 mg, 



 
 

123

1.00 mmol) and ketene acetal 3.2a (384 mg, 1.20 mmol) were each added as a solution 

in 5 mL of CH2Cl2 (final concentration of aldehyde in CH2Cl2 ~0.1 M).  This suspension 

was stirred for 14 h at 23 °C and then quenched with pH 7 buffer, stirred vigorously for 

30 min, and poured over Celite with additional CH2Cl2.  After concentration under 

reduced pressure, the residue was dissolved in CH2Cl2 (final concentration of β-lactone 

in CH2Cl2 ~0.15 M) and treated with CuBr2 (357 mg, 1.60 mmol).  After stirring for 2.5 

h, the crude β-lactone syn-3.3a was again poured over Celite and washed with ether (200 

mL).   The combined organic layer was washed with 10% aq. K2CO3 (3 x 50 mL), H2O 

(2 x 50 mL), and brine (2 x 50 mL), dried over MgSO4, filtered, and concentrated under 

reduced pressure to deliver crude β-lactone syn-3.3a as a single diastereomer (>19:1) as 

judged by analysis of crude 1H NMR (300 MHz).  Purification by flash column 

chromatography (hexanes:ethyl acetate 95:5) delivered syn-3.3a (216 mg, 83%) as a 

colorless oil:  Rf  = 0.42 (80:20 hexanes:ethyl acetate); IR (thin film) 3071, 3031, 1827, 

1119 cm-1; 1H NMR (300 MHz, CDCl3) δ 1.38 (d, J = 7.5 Hz, 3H), 1.78 (dd, J = 0.9, 1.2 

Hz, 3H), 2.25 (ddd, J = 0.9, 6.3, 14.1 Hz, 1H), 2.40 (ddd, J = 1.2, 6.9, 14.1 Hz, 1H), 3.43 

(dq, J = 4.2, 7.5 Hz, 1H), 3.74 (ddd, J = 6.0, 6.3, 6.9 Hz, 1H), 4.22 (dd, J = 4.2, 6.0 Hz, 

1H), 4.66 (d, J = 12.0 Hz, 1H), 4.70 (d, J = 12.0 Hz, 1H), 4.83-4.86 (m, 1H), 4.88-4.91 

(m, 1H), 7.29-7.37 (m, 5H);  13C NMR (75 MHz, CDCl3) δ 12.2, 22.7, 38.7, 47.5, 72.5, 

76.8, 80.5, 114.2, 127.78, 127.82(2), 128.4(2), 137.9, 140.9, 171.5; ESI-HRMS calcd for 

C16H20O3Li [M + Li] 267.1572, found 267.1591. 
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γ-benzyloxy-alkenyl-β-lactones 3.3b were prepared according to the representative 

procedure for the TMAL using ZnCl2 (273 mg, 2.00 mmol), aldehyde (±)-3.1a (204 mg, 

1.00 mmol), and ketene acetal 3.2b (417 mg, 1.20 mmol) in CH2Cl2 (10 mL).  The 

suspension was stirred for 9 h and subjected to the representative work-up and treated 

with CuBr2 (357 mg, 1.60 mmol) for 2.5 h to deliver crude β-lactones 3.3b as a mixture 

of diastereomers (1.5:1).  Purification by flash column chromatography (pentane:ether 

90:10) delivered anti-3.3b (116 mg, 47%), syn-3.3b (71 mg, 29%), and a mixture of 3.3b 

(10 mg, 4%) as colorless oils.  Characterization data for anti-3.3b:  Rf  = 0.26 (80:20 

hexanes:ethyl acetate); IR (thin film) 3070, 3033, 1833, 1107 cm-1; 1H NMR (300 MHz, 

CDCl3) δ 1.77 (dd, J = 0.9, 1.2 Hz, 3H), 2.13 (ddd, J = 0.9, 6.9, 14.1 Hz, 1H), 2.32 (ddd, 

J = 1.2, 6.6, 14.1 Hz, 1H), 3.34 (dd, J = 6.0, 15.9 Hz, 1H), 3.53 (dd, J = 4.2, 15.9 Hz, 

1H), 4.02 (ddd, J = 2.7, 6.6, 6.9 Hz, 1H), 4.54 (ddd, J = 2.7, 4.2, 6.0 Hz, 1H), 4.64 (d, J 

= 11.4 Hz, 1H), 4.69 (d, J = 11.4 Hz, 1H), 4.77-4.80 (m, 1H), 4.86-4.89 (m, 1H), 7.30-

7.40 (m, 5H);  13C NMR (75 MHz, CDCl3) δ 22.7, 37.9, 39.5, 71.9, 73.6, 75.1, 114.0, 

127.8, 127.9(2), 128.3(2), 137.8, 140.8, 167.9; ESI-HRMS calcd for C15H18O3Li [M + 

Li] 253.1416, found 253.1510.  Characterization data for syn-3.3b:  Rf  = 0.17 (80:20 

hexanes:ethyl acetate); IR (thin film) 3073, 3030, 1826, 1107 cm-1; 1H NMR (300 MHz, 

CDCl3) δ 1.78 (dd, J = 1.2, 1.5 Hz, 3H), 2.30 (ddd, J = 0.9, 6.6, 13.8 Hz, 1H), 2.43 (ddd, 

J = 0.9, 6.3, 13.8 Hz, 1H), 3.27 (dd, J = 4.2, 16.2 Hz, 1H), 3.41 (dd, J = 6.0, 16.2 Hz, 
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1H), 3.72 (ddd, J = 5.1, 6.3, 6.6 Hz, 1H), 4.56 (ddd, J = 4.2, 5.1, 6.0 Hz, 1H), 4.64 (d, J 

= 11.7 Hz, 1H), 4.72 (d, J = 11.7 Hz, 1H), 4.81-4.85 (m, 1H), 4.87-4.91 (m, 1H), 7.28-

7.39 (m, 5H); 13C NMR (75 MHz, CDCl3) δ 22.7, 38.5, 39.7, 72.0, 72.3, 76.5, 114.2, 

127.7, 127.8(2), 128.3(2), 137.8, 140.8, 167.7; ESI-HRMS calcd for C15H18O3Li [M + 

Li] 253.1416, found 253.1337.   

 

γ-benzyloxy-β-lactones 3.3c were prepared according to the representative procedure 

for the TMAL using ZnCl2 (204 mg, 1.50 mmol), aldehyde (±)-3.1a (204 mg, 1.00 

mmol), and ketene acetal 3.2c (712 mg, 1.20 mmol) in CH2Cl2 (6 mL).  The suspension 

was stirred for 12 d and subjected to the representative work-up and treated with CuBr2 

(357 mg, 1.60 mmol) for 5 h to deliver crude β-lactones 3.3c as a mixture of 

diastereomers (4:1).  Purification by flash column chromatography (hexanes: ethyl 

acetate 100:1) gave almost complete separation of the diastereomers, but due to minor 

impurities, both were characterized as the corresponding keto-β-lactones 3.4c.  

 

δ-silyloxy-alkenyl-β-lactones 3.3d were prepared according to the representative 

procedure for the TMAL using ZnCl2 (537 mg, 3.94 mmol), aldehyde (±)-3.1b (690 mg, 

3.02 mmol) and ketene acetal 3.2d (1.02 g, 3.62 mmol) in CH2Cl2 (35 mL).  The 

suspension was stirred for 28 h and subjected to the representative work-up and treated 
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with CuBr2 (1.08 g, 4.83 mmol) for 1 h to deliver crude β-lactones 3.3d as a mixture of 

diastereomers (9:1).  Purification by flash column chromatography (pentane:ether 95:5) 

delivered an inseparable mixture of β-lactones 3.3d (510 mg, 59%, dr 9:1) as a pale 

yellow oil.  Characterization data for the major (anti-trans) diastereomer 3.3d:  Rf  = 

0.31 (hexanes:ethyl acetate 90:10); IR (thin film) 3074, 1827, 1050 cm-1; 1H NMR (300 

MHz, CDCl3) δ 0.03 (s, 3H), 0.08 (s, 3H), 0.91 (s, 9H), 1.39 (d, J = 7.5 Hz, 3H), 1.71-

1.72 (m, 3H), 1.88 (ddd, J = 3.6, 9.0, 14.1 Hz, 1H), 2.03 (ddd, J = 4.2, 8.7, 14.1 Hz, 1H), 

3.24 (dq, J = 4.2, 7.5 Hz, 1H), 4.23 (dd, J = 3.6, 8.7 Hz, 1H), 4.35 (ddd, J = 4.2, 4.2, 9.0 

Hz, 1H), 4.83-4.84 (m, 1H), 4.96-4.97 (m, 1H); 13C NMR (75 MHz, CDCl3) δ -5.1, -4.6, 

12.7, 17.4, 18.4, 26.0(3), 41.5, 50.9, 72.9, 76.8, 111.7, 147.0, 172.3; ESI-HRMS calcd 

for C15H28O3SiLi [M + Li] 291.1968, found 291.1971. 

 

δ-silyloxy-alkenyl-β-lactones 3.3e were prepared according to the representative 

procedure for the TMAL using ZnCl2 (136 mg, 1.00 mmol), aldehyde (±)-3.1b (114 mg, 

0.50 mmol), and ketene acetal 3.2b (268 mg, 2.00 mmol) in CH2Cl2 (10 mL).  The 

suspension was stirred for 20 h and subjected to the representative work-up and treated 

with CuBr2 (670 mg, 1.50 mmol) for 3 h to deliver crude β-lactones 3.3e as mixture of 

diastereomers (2:1).  Purification by flash column chromatography (pentane:ether 90:10) 

delivered an inseparable mixture of β-lactones 3.3e (91 mg, ~68% yield, dr 2:1) as a pale 

yellow oil contaminated with TBSOH.  These β-lactones were characterized as the 

corresponding keto-β-lactones 3.4e.   
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δ-silyloxy-alkenyl-β-lactones 3.3f were prepared according to the representative 

procedure for the TMAL using ZnCl2 (545 mg, 4.00 mmol), aldehyde (±)-3.1c (541 mg, 

2.00 mmol) and ketene acetal 3.2c (2.15 g, 3.81 mmol) in CH2Cl2 (10 mL).  This 

solution was stirred for 10 d at which time it was subjected to the representative work-up 

and treated with CuBr2 (1.11 g, 4.97 mmol) for 5 h to deliver crude β-lactones 3.3f as a 

mixture of diastereomers (5:1).  Purification by flash column chromatography 

(pentane:ether 98:2) delivered an inseparable mixture of β-lactones 3.3f (850 mg, 75%, 

dr 5:1) as a pale yellow oil.  Characterization data for the major (syn-trans) diastereomer 

3.3f:  Rf  = 0.75 (hexanes:ethyl acetate 80:20); IR (thin film) 3077, 1850, 1114 cm-1; 1H 

NMR (300 MHz, CDCl3) δ 0.98-0.99 (m, 21H), 1.08 (s, 9H), 1.43-1.63 (m, 2H), 1.60-

1.61 (m, 3H), 4.22 (dd, J = 4.2,  9.3 Hz, 1H), 4.32 (ddd, J = 2.7, 3.6, 10.8 Hz, 1H), 4.67 

(d, J = 3.6, 1H), 4.89-4.90 (m, 2H), 7.39-7.75 (m, 10H); 13C NMR (75 MHz, CDCl3) δ 

12.3(3), 16.2, 18.1(3), 18.2(3), 19.3, 26.7(3), 38.9, 73.7, 79.4, 81.0, 113.3, 128.3(4), 

130.6, 130.7, 131.6, 132.6, 135.7(2), 135.9(2), 145.2, 169.5; ESI-HRMS calcd for 

C33H50O4Si2Li [M + Li] 573.3408, found 573.3301. 

 

Representative procedure for ozonolysis of γ-benzyloxy-alkenyl-β-lactones as 

described for γ-benzyloxy-keto-β-lactone syn-3.4a (Procedure A).  To a solution of γ-
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benzyloxy-alkenyl-β-lactone syn-3.3a (518 mg, 1.99 mmol) in CH2Cl2 (40 mL) was 

added MeOH (162 μL, 4.00 mmol) at 23 °C.  O3 was bubbled with a gas dispersion tube 

at -78 °C until the solution turned blue (3 min) at which time O2 was bubbled for twice 

the amount of time as O3 (6 min) and then the reaction was quenched with PPh3 (1.05 g, 

4.00 mmol) at -78 °C.  This solution was stirred for 6 h and allowed to warm to 23 °C at 

which time the solvent was removed under reduced pressure.  Purification by flash 

column chromatography (hexanes:ethyl acetate 75:25) delivered syn-3.4a (466 mg, 89%) 

as a colorless oil:  Rf  = 0.53 (60:40 hexanes:ethyl acetate); IR (thin film) 1827, 1714, 

1118 cm-1; 1H NMR (300 MHz, CDCl3) δ 1.37 (d, J = 7.5 Hz, 3H), 2.20 (s, 3H), 2.66 

(dd, J = 5.4, 17.4 Hz, 1H), 2.85 (dd, J = 6.6, 17.4 Hz, 1H), 3.50 (dq, J = 4.2, 7.8 Hz, 1H), 

4.19 (ddd, J = 5.1, 5.4, 6.6 Hz, 1H), 4.26 (dd, J = 4.2, 5.1 Hz, 1H), 4.62 (d, J = 11.4 Hz, 

1H), 4.67 (d, J = 11.4 Hz, 1H), 7.27-7.40 (m, 5H);  13C NMR (75 MHz, CDCl3) δ 12.2, 

31.0, 44.0, 47.2, 73.2, 74.1, 80.0, 127.9(2), 128.0, 128.5(2), 137.6, 171.2, 205.8; ESI-

HRMS calcd for C15H19O4 [M + H] 263.1283, found 263.1262.     

 

γ-benzyloxy-keto-β-lactone anti-3.4b was prepared according to the representative 

procedure for ozonolysis (Procedure A) using γ-benzyloxy-alkenyl-β-lactone anti-3.3b 

(246 mg, 1.00 mmol) in CH2Cl2 (20 mL), MeOH (81 μL, 2.00 mmol), and PPh3 (525 

mg, 2.00 mmol).  Purification by flash column chromatography (hexanes:ethyl acetate 

75:25) delivered anti-3.4b (217 mg, 88%) as a colorless oil:  Rf  = 0.40 (60:40 

hexanes:ethyl acetate); IR (thin film) 1831, 1714, 1115 cm-1; 1H NMR (300 MHz, 
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CDCl3) δ 2.18 (s, 3H), 2.52 (dd, J = 4.8, 17.1 Hz, 1H), 2.73 (dd, J = 7.5, 17.1 Hz, 1H), 

3.36 (dd, J = 5.7, 16.2 Hz, 1H), 3.43 (dd, J = 4.5, 16.2 Hz, 1H), 4.38 (ddd, J = 3.3, 4.8, 

7.5 Hz, 1H), 4.55 (ddd, J = 3.3, 4.5, 5.7 Hz, 1H), 4.65 (d, J = 11.1 Hz, 1H), 4.71 (d, J = 

11.1 Hz, 1H), 7.27-7.39 (m, 5H);  13C NMR (75 MHz, CDCl3) δ 30.8, 38.4, 44.6, 71.7, 

73.3, 74.4, 127.9, 128.0(2), 128.4(2), 137.6, 167.6, 205.2; ESI-HRMS calcd for 

C14H17O4 [M + H] 249.1127, found 249.1102. 

 

γ-benzyloxy-keto-β-lactone syn-3.4b was prepared according to the representative 

procedure for ozonolysis (Procedure A) using γ-benzyloxy-alkenyl-β-lactone syn-3.3b 

(246 mg, 1.00 mmol) in CH2Cl2 (20 mL), MeOH (81 μL, 2.00 mmol), and PPh3 (525 

mg, 2.00 mmol).  Purification by flash column chromatography (hexanes:ethyl acetate 

75:25) delivered syn-3.4b (215 mg, 87%) as a colorless oil:  Rf  = 0.37 (60:40 

hexanes:ethyl acetate); IR (thin film) 1827, 1711, 1108 cm-1; 1H NMR (300 MHz, 

CDCl3) δ 2.20 (s, 3H), 2.71 (dd, J = 6.0, 17.4 Hz, 1H), 2.89 (dd, J = 6.3, 17.4 Hz, 1H), 

3.31 (dd, J = 4.2, 16.2 Hz, 1H), 3.41 (dd, J = 6.0, 16.2 Hz, 1H), 4.17 (ddd, J = 4.5, 6.0, 

6.3 Hz, 1H), 4.59 (ddd, J = 4.2, 4.5, 6.0 Hz, 1H), 4.61 (d, J = 11.4 Hz, 1H), 4.68 (d, J = 

11.4 Hz, 1H), 7.28-7.40 (m, 5H);  13C NMR (75 MHz, CDCl3) δ 30.8, 39.4, 43.9, 71.9, 

73.0, 73.8, 127.8(2), 127.9, 128.4(2), 137.5, 167.5, 205.9; ESI-HRMS calcd for 

C14H17O4 [M + H] 249.1127, found 249.1166. 
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γ-benzyloxy-keto-β-lactones 3.3c were prepared according to the representative 

procedure for ozonolysis (Procedure A) using γ-benzyloxy-alkenyl-β-lactone anti-3.3c 

(ca. 225 mg, 0.44 mmol, dr 18:1) in CH2Cl2 (15 mL), MeOH (44 μL, 1.08 mmol), and 

PPh3 (283 mg, 1.08 mmol).  Purification by flash column chromatography 

(hexanes:ethyl acetate 90:10) delivered an inseparable mixture of keto-β-lactones 3.4c 

(201 mg, 89%, 40% over two steps from (±)-3.1a, dr 18:1) as a pale yellow oil.  

Characterization data for the major diastereomer anti-3.4c:  Rf  = 0.28 (80:20 

hexanes:ethyl acetate); IR (thin film) 3069, 1848, 1714, 1115, 1111 cm-1; 1H NMR (300 

MHz, CDCl3) δ 1.09 (s, 9H), 2.06 (s, 3H), 2.36 (dd, J = 5.7, 17.4 Hz, 1H), 2.63 (dd, J = 

6.6, 17.4 Hz, 1H), 3.72 (ddd, J = 3.6, 5.7, 6.6 Hz, 1H), 3.98 (d, J = 11.1 Hz, 1H), 4.20 (d, 

J = 11.1 Hz, 1H), 4.53 (dd, J = 3.3, 3.6 Hz, 1H), 5.04 (d, J = 3.3 Hz, 1H), 6.95-7.98 (m, 

15H); 13C NMR (75 MHz, CDCl3) δ 19.2, 26.6(3), 30.8, 44.0, 72.6, 73.1, 77.4, 82.7, 

127.7(2), 127.9, 128.28(2), 128.30(2), 128.4(2), 130.5, 130.7, 131.4, 132.5, 135.7(2), 

135.8(2), 137.3, 168.5, 205.7; ESI-HRMS calcd for C30H35O5Si [M + H] 503.2254, 

found 503.2160. 

 

γ-benzyloxy-keto-β-lactone syn-3.4c was prepared according to the representative 

procedure for ozonolysis (Procedure A) using γ-benzyloxy-alkenyl-β-lactone syn-3.3c 
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(ca. 55 mg, 0.11 mmol) in CH2Cl2 (5 mL), MeOH (4 μL, 0.22 mmol), and PPh3 (58 mg, 

022 mmol).  Purification by flash column chromatography (hexanes:ethyl acetate 90:10) 

delivered syn-3.4c (50 mg, 90%, 10% over two steps from (±)-3.1a) as a colorless oil:  

Rf  = 0.26 (80:20 hexanes:ethyl acetate); IR (thin film) 3069, 1834, 1719, 1108 cm-1; 1H 

NMR (300 MHz, C6D6) δ 1.11 (s, 9H), 1.55 (s, 3H), 2.25 (dd, J = 4.8, 17.1 Hz, 1H), 2.33 

(dd, J = 6.9, 17.1 Hz, 1H), 3.96 (dd, J = 5.7, 6.0 Hz, 1H), 4.44 (ddd, J = 4.8, 6.0, 6.9 Hz, 

1H), 4.52 (d, J = 11.1 Hz, 1H), 4.69 (d, J = 5.7 Hz, 1H), 4.74 (d, J = 11.1 Hz, 1H), 7.10-

7.85 (m, 15H); 13C NMR (75 MHz, C6D6) δ 19.3, 26.7(3), 30.3, 44.2, 73.4, 73.6, 76.8, 

78.7, 127.7, 127.8(2), 128.3(2), 128.4(2), 128.5(2), 130.6, 130.7, 131.8, 132.8, 135.8(2), 

136.2(2), 138.8, 169.9, 204.3; ESI-HRMS calcd for C30H34O5SiLi [M + Li] 509.2336, 

found 509.2347. 

 

Representative procedure for ozonolysis (Procedure B) of δ-silyloxy-alkenyl-β-

lactones as described for δ-silyloxy-keto-β-lactones 3.4d.  To a solution of δ-silyloxy-

alkenyl-β-lactones 3.3d (285 mg, 1.02 mmol, dr 9:1) in CH2Cl2 (20 mL) was bubbled O3 

with a gas dispersion tube at -78 °C until the solution turned blue (2 min) at which time 

O2 was bubbled for twice the amount of time as O3 (4 min) and then the reaction was 

quenched with PPh3 (535 mg, 2.04 mmol) at -78 °C.  This solution was stirred for 12 h 

and allowed to warm to 23 °C at which time the solvent was removed under reduced 

pressure.  Purification by flash column chromatography (hexanes:ethyl acetate 85:15) 

delivered an inseparable mixture of keto-β-lactones 3.4d (207 mg, 72%, dr 9:1) as a pale 
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yellow oil.  Characterization data for the major (anti-trans) diastereomer 3.4d:  Rf  = 

0.53 (hexanes:ethyl acetate 70:30); IR (thin film) 1830, 1721, 1123 cm-1; 1H NMR (300 

MHz, CDCl3) δ 0.10 (s, 3H), 0.11 (s, 3H), 0.95 (s, 9H), 1.41 (d, J = 7.5 Hz, 3H), 2.06-

2.10 (m, 2H), 2.21 (s, 3H), 3.30 (dq, J = 4.2, 7.5 Hz, 1H), 4.18-4.22 (m, 1H), 4.31-4.37 

(m, 1H); 13C NMR (75 MHz, CDCl3) δ -5.2, -4.9, 12.4, 18.1, 25.4, 25.7(3), 38.7, 51.1, 

75.3(2), 171.4, 210.4; ESI-HRMS calcd for C14H26O4SiLi [M + Li] 293.1760, found 

293.1758. 

 

δ-silyloxy-keto-β-lactones 3.4e were prepared according to the representative procedure 

for ozonolysis (Procedure B) using δ-silyloxy-alkenyl-β-lactones 3.3e (91mg, 0.34 

mmol, dr 2:1) in CH2Cl2 (7 mL) and PPh3 (176 mg, 0.68 mmol).  Purification by flash 

column chromatography (hexanes:ethyl acetate 80:20) delivered an inseparable mixture 

of keto-β-lactones 3.4e (50 mg, 54%, dr 2:1) as a pale yellow oil.  Characterization data 

for the major (anti) diastereomer 3.4e:  Rf  = 0.46 (hexanes:ethyl acetate 70:30); IR (thin 

film) 1830, 1716, 1114 cm-1; 1H NMR (300 MHz, CDCl3) δ 0.10 (s, 6H), 0.95 (s, 9H), 

2.04-2.12 (m, 2H), 2.21 (s, 3H), 3.17 (dd, J = 4.2, 16.5 Hz, 1H), 3.60 (dd, J = 5.7, 16.5 

Hz, 1H), 4.21 (dd, J = 4.2, 8.7 Hz, 1H), 4.64-4.72 (m, 1H); 13C NMR (75 MHz, CDCl3) 

δ -5.0, -4.8, 18.2, 25.4, 25.8(3), 39.4, 43.6, 67.6, 75.5, 167.7, 210.5; ESI-HRMS calcd 

for C13H24O4SiLi [M + Li] 279.1604, found 279.1497. 
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δ-silyloxy-keto-β-lactones 3.4f were prepared according to the representative procedure 

for ozonolysis (Procedure B) using δ-silyloxy-alkenyl-β-lactones 3.3f (400mg, 0.71 

mmol, dr 5:1)) in CH2Cl2 (15 mL) and PPh3 (370 mg, 1.41 mmol).  Purification by flash 

column chromatography (hexanes:ethyl acetate 90:10) delivered an inseparable mixture 

of keto-β-lactones 3.4f (250 mg, 62%, dr 5:1) as a pale yellow oil.  Characterization data 

for the major (syn-trans) diastereomer 3.4f:  Rf  = 0.52 (hexanes:ethyl acetate 80:20); IR 

(thin film) 3073, 3053, 1846, 1713, 1158, 1114 cm-1; 1H NMR (300 MHz, C6D6) δ 0.92-

0.94 (m, 21H), 1.09 (s, 9H), 1.37 (ddd, J = 2.4, 7.5, 14.7 Hz, 1H), 1.52 (ddd, J = 3.0, 

10.8, 14.7 Hz, 1H), 2.00 (m, 3H), 4.04 (dd, J = 3.0, 7.5 Hz, 1H), 4.48 (d, J = 3.6 Hz, 

1H), 4.74 (ddd, J = 2.4, 3.6, 10.8 Hz, 1H), 7.17-7.86 (m, 10H); 13C NMR (75 MHz, 

C6D6) δ 12.3(3), 18.06(3), 18.07(3), 19.1, 25.5, 26.6(3), 38.0, 75.8, 77.4, 81.5, 128.3(2), 

128.4(2), 130.6, 130.7, 131.9, 132.8, 135.9(2), 136.0(2), 168.1, 209.4; ESI-HRMS calcd 

for C32H48O5Si2Li [M + Li] 575.3200, found 575.3287. 

 

Representative procedure for Mead reductive cyclization of γ-benzyloxy-keto-β-

lactones as described for THF syn-3.5a (Procedure A).  To a solution of γ-benzyloxy-

keto-β-lactone syn-3.4a (262 mg, 1.00 mmol) in CH2Cl2 (50 mL) was added Et3SiH (3.2 

mL, 20.0 mmol) slowly at -78 °C followed by TESOTf (274 μL, 1.20 mmol in 40 mL 
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CH2Cl2) down the side of the flask at -78 °C over 10 min to ensure cooling.  Upon 

addition of 10 mL of CH2Cl2 to rinse down any remaining TESOTf, the solution was 

allowed to warm to 0 °C slowly over 5 h, quenched with pH 4 buffer (50 mL), and 

warmed to 23 °C with vigorous stirring.  The layers were separated and the aqueous 

layer was extracted with CH2Cl2 (3 x 50 mL).  The combined organic extracts were dried 

over MgSO4, filtered, and concentrated under reduced pressure to deliver crude THF 

3.5a as a single diastereomer (>19:1) with only trace quantities of furan 3.11 (68:1) as 

judged by analysis of crude 1H NMR (500).  Purification by gradient flash column 

chromatography (hexanes:ethyl acetate 80:20 to 60:40) delivered THF syn-3.5a (178 

mg, 67%) as a colorless oil.  A center fraction from the column was used for 

characterization:  Rf  = 0.46 (60:40 hexanes:ethyl acetate); IR (thin film) 3500-2300, 

1708, 1091 cm-1; 1H NMR (500 MHz, CDCl3) δ 1.23 (d, J = 7.0 Hz, 3H), 1.29 (d, J = 6.0 

Hz, 3H), 1.54 (ddd, J = 6.5, 10.5, 13.5 Hz, 1H), 2.11 (ddd, J = 1.0, 5.0, 13.5 Hz, 1H), 

2.68 (dq, J = 6.0, 7.0 Hz, 1H), 4.01 (ddd, J = 1.0, 3.0, 6.5 Hz, 1H), 4.12 (dd, J = 3.0, 6.0 

Hz, 1H), 4.21-4.28 (m, 1H), 4.49 (d, J = 11.5 Hz, 1H), 4.52 (d, J = 11.5 Hz, 1H), 7.27-

7.37 (m, 5H); 13C NMR (125 MHz, CDCl3) δ 12.8, 20.5, 40.1, 42.8, 71.4, 75.3, 81.9, 

85.4, 127.88(2), 127.95, 128.6(2), 138.1, 178.7; ESI-HRMS calcd for C15H19O4 [M - H] 

263.1283, found 263.1271.   

Crucial nOe Enhancements for syn-3.5a: 

O

O

OHHE
MeGHB

OBn

MeA

HC
HC'

HD

HF

 

Irradiate H Observed H % nOe 
A C’ 1.9 
B E 0.6 
B C 1.3 
C E 0.2 
C’ F 0.8 
D F 0.9 
D C’ 1.6 
E B 0.6 
F C’ 0.3 
G D 0.6
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Furan 3.11 was prepared according to the representative procedure for Mead reductive 

cyclization (Procedure A) with the exception that Et3SiH was not added, using γ-

benzyloxy-keto-β-lactone syn-3.4a (180 mg, 0.69 mmol) in CH2Cl2 (30 mL) and 

TESOTf (190 μL, 0.83 mmol in 30 mL CH2Cl2).  The representative work-up delivered 

furan 19 in seemingly excellent crude yield based on 1H NMR analysis.  Purification by 

gradient flash column chromatography (hexanes:ethyl acetate 80:20 to 60:40) delivered 

impure furan 3.11 (<30 mg, <28% yield) as a pale yellow oil:  Rf  = 0.42 (60:40 

hexanes:ethyl acetate); IR (thin film) 3582-2359, 1714, 1219 cm-1; 1H NMR (300 MHz, 

CDCl3) δ 1.53 (d, J = 7.5 Hz, 3H), 2.28 (s, 3H), 3.75-3.85 (m, 1H), 5.89-5.94 (m, 1H), 

6.09 (d, J = 3.3 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 13.7, 15.7, 39.4, 106.4, 107.3, 

150.9, 151.9, 178.6; ESI-HRMS calcd for C8H9O3 [M - H] 153.0552, found 153.0541. 

O
O

Me

O OBn

O

O

OHHH

OBn

Me

anti-3.4b anti-3.5b  

THF anti-3.5b was prepared according to the representative procedure for Mead 

reductive cyclization (Procedure A) using γ-benzyloxy-keto-β-lactone anti-3.4b (210 

mg, 0.85 mmol) in CH2Cl2 (45 mL), Et3SiH (2.75 mL, 17.00 mmol), and TESOTf (233 

μL, 1.02 mmol in 35 mL CH2Cl2).  The representative work-up delivered crude THFs 

3.5b as mixture of diastereomers (14:1) with only trace quantities of the corresponding 

furan (43:1).  Purification by gradient flash column chromatography (hexanes:ethyl 
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acetate 80:20 to 50:50) delivered an inseparable mixture of THFs 3.5b (175 mg, 82%, dr 

14:1) as a white solid.  A center fraction from the column was used for characterization.  

Characterization data for the major diastereomer anti-3.5b:  Rf  = 0.37 (50:50 

hexanes:ethyl acetate); IR (thin film) 3500-2500, 1695, 1080 cm-1; 1H NMR (500 MHz, 

C6D6) δ 1.04 (d, J = 6.0 Hz, 3H), 1.05 (ddd, J = 5.0, 9.5, 13.0 Hz, 1H), 1.74 (ddd, J = 

1.5, 5.5, 13.0 Hz, 1H), 2.77 (d, J = 7.0 Hz, 2H), 3.75 (ddd, J = 1.5, 5.0, 5.0 Hz, 1H), 4.04 

(d, J = 12.0 Hz, 1H), 4.10-4.17 (m, 1H), 4.20 (d, J = 12.0 Hz, 1H), 4.40 (dt, J = 5.0, 7.0 

Hz, 1H), 7.08-7.23 (m, 5H); 13C NMR (125 MHz, C6D6) δ 21.2, 35.1, 39.3, 71.4, 73.4, 

77.8, 80.2, 127.7(2), 127.8, 128.6(2), 138.7, 177.5; ESI-HRMS calcd for C14H17O4 [M - 

H] 249.1127, found 249.1109.   

Crucial nOe enhancements for anti-3.5b: 

O

O

OHHE
HFHB

OBn

MeA

HC
HC'

HD

HF'

 

 

O
O

Me

O OBn

O

O

OHHH

OBn

Me

syn-3.4b syn-3.5b  

THF syn-3.5b was prepared according to the representative procedure for Mead 

reductive cyclization (Procedure A) using γ-benzyloxy-keto-β-lactone syn-3.4b (215 mg, 

0.87 mmol) in CH2Cl2 (45 mL), Et3SiH (2.81 mL, 17.40 mmol), and TESOTf (238 μL, 

1.04 mmol in 35 mL CH2Cl2).  The representative work-up delivered crude THF syn-

Irradiate H Observed H % nOe 
A E 0.3 
B F,F’ 0.6 
C F,F’ 0.5 
C’ D 0.7 
D E 1.6 
E A 0.7 
E C’ 0.2 

F,F’ B 0.3 
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3.5b as a single diastereomer (>19:1) with only trace quantities of the corresponding 

furan (54:1).  Purification by gradient flash column chromatography (hexanes:ethyl 

acetate 80:20 to 50:50) delivered syn-3.5b (170 mg, 78% yield) as a pale yellow oil.  A 

center fraction from the column was used for characterization:  Rf  = 0.37 (50:50 

hexanes:ethyl acetate); IR (thin film) 3567-2383, 1715, 1099 cm-1; 1H NMR (500 MHz, 

C6D6) δ 1.06 (d, J = 6.0 Hz, 3H), 1.15 (ddd, J = 6.5, 10.0, 13.0 Hz, 1H), 1.72 (ddd, J = 

1.5, 5.5, 13.0 Hz, 1H), 2.26 (dd, J = 6.0, 15.5 Hz, 1H), 2.34 (dd, J = 7.5, 15.5 Hz, 1H), 

3.55 (ddd, J = 1.5, 3.0, 6.5 Hz, 1H), 4.07-4.14 (m, 1H), 4.21 (d, J = 12.5 Hz, 1H), 4.23 

(d, J = 12.5 Hz, 1H), 4.37 (ddd, J = 3.0, 6.0, 7.5 Hz, 1H), 7.09-7.26 (m, 5H); 13C NMR 

(125 MHz, C6D6) δ 20.8, 39.6(2), 71.0, 75.0, 80.6, 83.6, 127.7, 127.8(2), 128.5(2), 

138.8, 176.8; ESI-HRMS calcd for C14H17O4 [M - H] 249.1127, found 249.1111.  

Crucial nOe enhancements for syn-3.5b: 

O

O

OHHE
HFHB

OBn

MeA

HC
HC'

HD

HF'

 

 

 

Representative procedure for Mead reductive cyclization of γ-benzyloxy-keto-β-

lactones as described for THF 3.5c (Procedure B).  To a solution of γ-benzyloxy-keto-

β-lactones 3.4c (199 mg, 0.40 mmol, dr 18:1) in CH2Cl2 (20 mL) was added Et3SiH 

Irradiate H Observed H % nOe 
A C’ 1.1 
B E 0.1 
B C 1.2 
C E 0.3 

 C’ F,F’ 1.2 
D F,F’ 1.8 
E B 1.2 

F,F’ A 0.4 
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(1.29 mL, 8.00 mmol) slowly at -78 °C followed by BF3·OEt2 (61 μL, 0.48 mmol in 16 

mL CH2Cl2) down the side of the flask at -78 °C over 10 min to ensure cooling.  Upon 

addition of 10 mL of CH2Cl2 to rinse down any remaining BF3·OEt2, the solution was 

allowed to warm to 0 °C slowly over 5 h, and then stirred at 0-10 °C for 3 d.  The 

reaction was quenched with pH 4 buffer (50 mL), and warmed to 23 °C with vigorous 

stirring.  The layers were separated and the aqueous layer was washed with CH2Cl2 (3 x 

50 mL).  The combined organic extracts were dried over MgSO4, filtered, concentrated 

under reduced pressure to deliver crude THF 3.5c as a mixture of diastereomers (18:1, 

~50% conversion) as determined by crude 1H NMR (500 MHz).  Purification by gradient 

flash column chromatography (hexanes:ethyl acetate 90:10 to 60:40) delivered recovered 

keto-β-lactone 3.4c (70 mg, 35%, dr 18:1) as a pale yellow oil and an inseparable 

mixture of THFs 3.5c (102 mg, 51%, dr 18:1) as a pale yellow oil.  A center fraction of 

THF 3.5c from the column was used for characterization.  Characterization data for the 

major diastereomer anti-3.5c:  Rf  = 0.30 (70:30 hexanes:ethyl acetate); IR (thin film) 

3437-2404, 1731, 1108 cm-1; 1H NMR (500 MHz, CDCl3) δ 1.12 (s, 9H), 1.27 (d, J = 6.0 

Hz, 3H), 1.48 (ddd, J = 6.5, 11.0, 13.5 Hz, 1H), 2.03 (dd, J = 5.0, 13.5 Hz, 1H), 4.07 (dd, 

J = 2.5, 6.5 Hz, 1H), 4.16 (dd, J = 2.5, 4.5 Hz, 1H), 4.18-4.24 (m, 1H), 4.32 (s, 2H), 4.43 

(d, J = 4.5 Hz, 1H), 7.23-7.70 (m, 15H); 13C NMR (125 MHz, CDCl3) δ 19.7, 20.0, 

27.2(3), 40.3, 71.5, 72.8, 75.8, 81.0, 86.1, 127.8(2), 127.9, 128.00(2), 128.04(2), 

128.6(2), 130.36, 130.40, 132.3, 132.8, 136.0(2), 136.2(2), 138.1, 173.0; ESI-HRMS 

calcd for C30H35O5Si [M - H] 503.2254, found 503.2241.   
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Crucial nOe enhancements for anti-3.5c: 

O

O

OHHE
HFHB

OBn

MeA

HC
HC'

HD

OTBDPS

 

 

 

Representative procedure for Mead reductive cyclization of δ-silyloxy-keto-β-

lactones as described for THFs 3.5d (Procedure C).  To a solution of δ-silyloxy-keto-

β-lactones 3.4d (202 mg, 0.71 mmol, dr 9:1) in CH2Cl2 (15 mL) was added Et3SiH (137 

μL, 0.85 mmol) dropwise at -78 °C followed by TiCl4 (846 μL, 1.0 M in CH2Cl2) down 

the side of the flask at -78 °C over 5 min to ensure cooling.  Upon addition of 5 mL of 

CH2Cl2 to rinse down any remaining TiCl4, the solution was stirred at -78 °C for 3 h, 

quenched with pH 7 buffer (50 mL), and warmed to 23 °C with vigorous stirring.  The 

layers were separated and the aqueous layer was washed with CH2Cl2 (3 x 50 mL).  The 

combined organic extracts were dried over MgSO4, filtered, concentrated under reduced 

pressure to deliver crude THFs 3.5d a mixture of diastereomers (9:1) as judged by 

analysis of crude 1H NMR (500 MHz).  Purification by gradient flash column 

chromatography (hexanes:ethyl acetate 90:10 to 60:40) delivered an inseparable mixture 

of THFs 3.5d (170 mg, 84%, dr 9:1) as a pale yellow oil.  Characterization data for the 

major (syn) diastereomer 3.5d:  Rf  = 0.49 (hexanes:ethyl acetate 60:40); IR (thin film) 

Irradiate H Observed H % nOe 
A C’ 2.3 
B C 3.8 
C B 6.8 

 C’ A 4.1 
 C’ E 0.4 
D E 0.9 
E D 1.8
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3475-2460, 1707, 1250 cm-1; 1H NMR (500 MHz, C6D6) δ -0.04 (s, 6H), 0.90 (s, 9H), 

1.07 (d, J = 6.5 Hz, 3H), 1.14 (d, J = 7.0 Hz, 3H), 1.74 (ddd, J = 6.5, 8.5, 13.0 Hz, 1H), 

1.78 (ddd, J = 3.5, 6.5, 13.0 Hz, 1H), 2.47 (dq, J = 7.0, 7.0 Hz, 1H), 3.67 (ddd, J = 3.5, 

4.0, 6.5 Hz, 1H), 3.79 (dq, J = 4.0, 6.5 1H), 4.24 (ddd, J = 3.5, 7.0, 8.5 Hz, 1H); 13C 

NMR (125 MHz, C6D6) δ -4.8, -4.6, 13.3, 18.1, 19.1, 25.9(3), 39.0, 45.0, 78.3, 78.7, 

82.5, 180.6; ESI-HRMS calcd for C14H27O4Si [M - H] 287.1679, found 287.1611. 

Crucial nOe enhancements for 3.5d: 

O

O

OHHE
MeGHB

HD

MeA

TBSO
HC

HD

HF

 

 

 

THFs 3.5e were prepared according to the representative procedure for Mead reductive 

cyclization (Procedure C) using δ-silyloxy-keto-β-lactones 3.4e (43 mg, 0.16 mmol, dr 

2:1) in CH2Cl2 (4 mL), Et3SiH (31 μL, 0.19 mmol) and TiCl4 (31 μL, 1.0 M in CH2Cl2).  

The representative work-up delivered a mixture of diastereomers (2:1).  Purification by 

gradient flash column chromatography (hexanes:ethyl acetate 90:10 to 60:40) delivered 

an inseparable mixture of 3.5e (30 mg, 68%, dr 3:1) as a pale yellow oil.  

Characterization data for the major (syn) diastereomer 3.5e:  Rf  = 0.33 (hexanes:ethyl 

acetate 60:40); IR (thin film) 3450-2450, 1711, 1257 cm-1; 1H NMR (500 MHz, CDCl3) 

Irradiate H Observed H % nOe 
A F 0.3 
B E 1.3 
C F 0.2 
E B 0.6 
F C 0.7 
F A 0.3 
G C 0.4 
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δ 0.06 (s, 6H), 0.89 (s, 9H), 1.21 (d, J = 6.5 Hz, 3H), 1.80 (ddd, J = 6.5, 9.0, 13.0 Hz, 

1H), 1.97 (ddd, J = 3.0, 6.5, 13.0 Hz, 1H), 2.59 (dd, J = 5.5, 15.5 Hz, 1H), 2.64 (dd, J = 

7.0, 15.5 Hz, 1H), 3.82 (dq, J = 4.0, 6.5 Hz, 1H), 3.91 (ddd, J = 3.0, 4.0, 9.0 Hz, 1H), 

4.46 (dddd, J = 5.5, 6.5, 6.5, 7.0 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ -4.6, -4.5, 

18.2, 19.5, 26.0(3), 40.8, 41.0, 73.9, 78.0, 83.2, 176.2; ESI-HRMS calcd for C13H25O4Si 

[M - H] 273.1522, found 273.1506. 

Crucial nOe enhancements for 3.5e: 

O

O

OHHE
HFHB

HD

MeA

TBSO
HC

HD

HF'

 

 

THFs 3.5f were prepared according to the representative procedure for Mead reductive 

cyclization (Procedure C) using δ-silyloxy-keto-β-lactones 3.4f (149 mg, 0.26 mmol, dr 

5:1) in CH2Cl2 (8 mL), Et3SiH (51 μL, 0.31 mmol), and TiCl4 (314 μL, 1.0 M in 

CH2Cl2).  The representative work-up delivered a mixture of diastereomers (5:1).  

Purification by gradient flash column chromatography (hexanes:ethyl acetate 90:10 to 

60:40) delivered an inseparable mixture of THFs 3.5f (83 mg, 55% yield, dr 5:1) as a 

pale yellow oil.  Characterization data for the major (anti) diastereomer 3.5f:  Rf  = 0.28 

(hexanes:ethyl acetate 70:30); IR (thin film) 3528-2398, 1729, 1118 cm-1; 1H NMR (500 

MHz, C6D6) δ 0.99-1.01 (m, 21H), 1.11 (d, J = 6.5 Hz, 3H), 1.22 (s, 9H), 1.83 (ddd, J = 

Irradiate H Observed H % nOe 
A F,F’ 1.2 
B E 1.2 
C F,F’ 0.3 
E B 0.7 



 
 

142

7.0, 7.0, 12.5 Hz, 1H), 2.06 (ddd, J = 7.0, 7.0, 12.5 Hz, 1H), 3.73 (ddd, J = 6.0, 7.0, 7.0 

Hz, 1H), 3.80 (dq, J = 6.0, 6.5 Hz, 1H), 4.26 (ddd, J = 5.5, 7.0, 7.0 Hz, 1H), 4.45 (d, J = 

5.5 Hz, 1H), 7.20-7.83 (m, 10H); 13C NMR (125 MHz, C6D6) δ 12.3(3), 18.1(6), 18.9, 

19.6, 27.3(3), 36.7, 75.8, 78.2, 78.7, 81.2, 127.88(2), 127.91(2), 130.0, 130.1, 133.6, 

133.7, 136.47(2), 136.53(2), 175.9; ESI-HRMS calcd for C32H49O5Si2 [M - H] 569.3119, 

found 569.3110. 

Crucial nOe enhancements for 3.5f: 

O

O

OHHE
HFHB

HD

MeA

TIPSO
HC

HD

OTBDPS

 

 

 

 

 

 

 

 

 

 

 

 

 

Irradiate H Observed H % nOe 
A E 0.3 
B F 0.9 
C E 0.8 
E C 0.1 
F B 0.1 
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Table A.3.1. Comparison of Crucial Coupling Constants for THFs 3.5a-c 

Coupling constants (J) for THFs 3.5a-c were not found to have a significant trend.  

Although similarity between the J2,3 of THFs syn-3.5a, syn-3.5b, and anti-3.5c could 

indicate that the relative stereochemistry of THF anti-3.5c should be syn instead of anti, 

it is difficult to make this assumption due to the small data set and the large TBDPS 

group contained in THF anti-3.5c which likely alters the conformational preferences 

significantly. 

 

entry 

 

 

J H1-H2 (Hz) 

 

J H2-H3 (Hz) 

 

1 

 

 

3.0 

 

6.0 

 

2 
 

 

5.0 

 

7.0 

 

3 
 

 

3.0 

 

6.0, 7.5 

 

4 

 

 

2.5 

 

4.5 
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Chapter IV – Development of a Tandem, Three-Component Synthesis of 
Tetrahydrofurans from Ketoaldehydes, Thiopyridyl Ketene Acetals, and Silyl 
Nucleophiles 
 

SPy

OTBDPS

SPy

O

S8 4.2d  

Ketene acetal 4.2d:  To a solution of thioester S8 (1.00 g, 6.53 mmol) in CH2Cl2 (65 

mL) was added TBDPSOTf (2.06 mL, 6.53 mmol) dropwise at 0 °C followed by 

Hunig’s base (1.14 mL, 6.53 mmol) dropwise at 0 °C.  This solution was stirred for 24 h 

and was allowed to warm to 23 °C at which time it was quenched with pH 7 buffer and 

stirred vigorously for 30 min.  The solution was diluted with pentane (200 mL) and 

separated.  The combined organic solution was then washed with water (2 x 50 mL) and 

brine (2 x 50 mL).  The organic extracts were dried over MgSO4, filtered, and 

concentrated under reduced pressure.  Purification by deactivated flash column 

chromatography (pentane:ether:Et3N 90:10:2) delivered ketene acetal 4.2d (1.92 g, 75% 

yield) as a yellow oil:  Rf  = 0.74 (hexanes:ethyl acetate 70:30); IR (thin film) 3072, 

3048, 1184 cm-1; 1H NMR (300 MHz, CDCl3) δ 0.94 (s, 9H), 4.50 (d, J = 1.8 Hz, 1H), 

4.79 (d, J = 1.8 Hz, 1H), 7.08 (ddd, J = 1.0, 4.8, 7.3 Hz, 1H), 7.36-7.48 (m, 1H), 7.38-

7.43 (m, 6H), 7.56 (ddd, J = 1.8, 7.3, 9.0 Hz, 1H), 7.71-7.74 (m, 4H), 8.48 (ddd, J = 1.0, 

1.8, 4.8 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 19.4, 26.5(3), 103.6, 120.7, 124.0, 

127.8(4), 130.2(2), 132.0, 135.8(4), 136.7(2), 149.5, 149.8, 158.1; ESI-HRMS calcd for 

C23H26NOSSi [M + H] 392.1504, found 392.1484. 
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β-Chlorosilyl ester 4.7d was prepared according to the representative procedure for the 

TMAL using ZnCl2 (800 mg, 5.85 mmol), octanal (S9) (600 μL, 3.90 mmol), and ketene 

acetal 4.2d (2.74 g, 4.68 mmol, 67% pure) in CH2Cl2 (40 mL) but without CuBr2 work-

up.  This solution was stirred for 21 h at which time it was quenched with pH 7 buffer 

and stirred vigorously for 30 min.  The solution was poured over Celite, concentrated 

under reduced pressure, and dissolved in ether (200 mL).  The ethereal solution was 

washed with brine (3 x 50 mL), dried over MgSO4, filtered, and concentrated under 

reduced pressure.  Purification by gradient flash column chromatography (pentane:ether 

98:2 to 96:4) delivered silyl ester 4.7d (958 mg, 56% yield) as a yellow oil:  Rf  = 0.44 

(hexanes:ethyl acetate 90:10); IR (thin film) 3072, 3050, 1731, 1192 cm-1; 1H NMR (300 

MHz, C6D6) δ 0.88 (t, J = 7.0, 3H), 1.21 (s, 9H), 1.05-1.31 (m, 10H), 1.41-1.50 (m, 2H), 

2.46 (dd, J = 5.1, 16.3 Hz, 1H), 2.69 (dd, J = 8.4, 16.3 Hz, 1H), 4.21-4.30 (m, 1H), 7.17-

7.25 (m, 6H), 7.80-7.90 (m, 4H); 13C NMR (75 MHz, C6D6) δ 14.4, 19.5, 23.1, 26.7, 

27.3(3), 29.3, 29.5, 32.1, 38.2, 45.4, 58.7, 128.1(4), 130.5(2), 132.3(2), 135.9(4), 169.0; 

ESI-HRMS calcd for C26H37ClO2SiLi [M + Li] 451.2411, found 451.2408. 

 

Alcohols S10:  To a solution of alkene 4.12 (6.50 g, 17.92 mmol) in CH2Cl2 (60 mL) 

and MeOH (60 mL) was bubbled O3 with a gas dispersion tube at -78 °C until the 

solution turned blue (10 min) at which time O2 was bubbled for twice the amount of time 
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as O3 (20 min) and then the reaction was quenched with NaBH4 (2.71 g, 71.69 mmol) at 

-78 °C.  This solution was stirred for 14 h and allowed to warm to 23 °C at which time 

the solvent was removed under reduced pressure.  The residue was dissolved in ether 

(200 mL), quenched with sat. aq. NH4Cl (50 mL), stirred vigorously for 15 min.  The 

organic layer was separated and washed with additional sat. aq. NH4Cl (2 x 50 mL), 

water (2 x 50 mL), and brine (2 x 50 mL).  The solution was dried over MgSO4, filtered, 

and concentrated under reduced pressure.  Purification by flash column chromatography 

(hexanes:ethyl acetate 80:20) delivered silyl ethers S10 (4.87 g, 74%, dr 1:1) as a pale 

yellow oil.  This compound was not fully characterized.  

 

Representative procedure for TBAF deprotection as described for diols S11:  To a 

solution of silyl ethers S10 (4.87 g, 13.29 mmol) in THF (120 mL) was added a 1.0 M 

solution of TBAF in THF (27.0 mL, 26.58 mmol) at 0 °C, stirred for 1.5 h, and allowed 

to warm to 23 °C.  The solution was quenched with sat. aq. NH4Cl (50 mL), stirred 

vigorously for 15 min, concentrated under reduced pressure, and diluted with ethyl 

acetate (200 mL).  The organic layer was separated and washed with additional sat. aq. 

NH4Cl (2 x 50 mL), water (2 x 50 mL), and brine (2 x 50 mL).  The solution was dried 

over MgSO4, filtered, and concentrated under reduced pressure.  Purification by gradient 

flash column chromatography (hexanes:ethyl acetate 50:50 to 30:70 to 10:90) delivered 

diols S2 (1.90 g, 68% over two steps from 4.12) as a colorless oils.  This compound was 

not fully characterized. 
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Representative procedure for the Swern oxidation as described for α-benzyloxy-γ-

ketoaldehyde (±)-4.1a.  To a solution of oxalyl chloride (2.6 mL, 29.88 mmol) in 

CH2Cl2 (50 mL) was added DMSO (4.2 mL, 59.76 mmol) dropwise at -78 °C and was 

stirred for 5 min.  To this solution was added diols S11 (1.57 g, 7.47 mmol) in CH2Cl2 

(50 mL) and stirred for 15 min at which time Et3N (16.7 mL, 119.52 mmol) was added 

and stirred for 2 h at -78 °C.  The reaction was quenched with pH 7 buffer, stirred 

vigorously for 30 min, and allowed to warm to 23 °C.  The mixture was diluted with 

ether (250 mL), separated from the aqueous layer, and washed with water (3 x 50 mL) 

and brine (3 x 50 mL), dried over MgSO4, filtered, and concentrated under reduced 

pressure.  Purification by flash column chromatography (hexanes:ethyl acetate 75:25) 

delivered ketoaldehyde (±)-4.1a (1.28 g, 83%) as a pale yellow oil:  Rf  = 0.46 

(hexanes:ethyl acetate 30:70); IR (thin film) 3029, 2719, 1715, 1111 cm-1; 1H NMR (300 

MHz, CDCl3) δ 2.19 (s, 3H), 2.84 (dd, J = 6.6, 17.4 Hz, 1H), 2.91 (dd, J = 4.8, 17.4 Hz, 

1H), 4.26 (ddd, J = 0.9, 4.8, 6.6 Hz, 1H),  4.66 (d, J = 11.7 Hz, 1H), 4.73 (d, J = 11.7 Hz, 

1H), 7.30-7.39 (m, 5H), 9.78 (d, J = 0.9 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 30.1, 

44.3, 73.0, 79.3, 127.9(2), 128.0, 128.4(2), 137.1, 202.4, 204.5; ESI-HRMS calcd for 

C12H14O3Na [M + Na] 229.0841, found 229.0860. 
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Representative procedure for Grignard addition as described for secondary alcohol 

S12.  To a solution of aldehyde 4.11 (7.00 g, 32.34 mmol) in ether (240 mL) was added 

a 1.0 M solution of allylmagnesium chloride in ether (38.8 mL, 38.81 mmol) slowly at -

78 °C.  The reaction was allowed to warm quickly to 23 °C and quenched with sat. aq. 

NH4Cl (100 mL) after 2 h.  After stirring vigorously for 30 min, the organic layer was 

separated from the aqueous layer and washed with additional sat. aq. NH4Cl (2 x 50 

mL), water (2 x 50 mL), and brine (2 x 50 mL).  The resulting solution was dried over 

MgSO4, filtered over a pad of SiO2, and concentrated under reduced pressure to deliver 

alcohol S12 (7.94 g, 95%) as a colorless oil:  Rf  = 0.47 (80:20 hexanes: ethyl acetate); 

IR (thin film) 3448, 3080, 1113 cm-1; 1H NMR (300 MHz, CDCl3) δ 1.06-1.08 (m, 21H), 

2.24-2.29 (m, 2H), 3.52-3.58 (m, 1H), 3.70-3.79 (m, 1H), 5.07-5.17 (m, 2H), 5.79-5.93 

(m, 1H); 13C NMR (75 MHz, CDCl3) δ 12.0(3), 18.0(6), 37.7, 67.0, 71.4, 117.3, 134.6; 

ESI-HRMS calcd for C14H30O2SiLi [M + Li] 265.2175, found 265.2207.   

 

Benzyl ether S13:  To a solution of alcohol S12 (10.34 g, 40.00 mmol) and 

benzyltrichloroacetimidate (15.15 g, 60.00 mmol) in CH2Cl2 (125 mL) was added triflic 

acid (354 μL, 4.00 mmol) dropwise at 0 °C.  The reaction was allowed to warm quickly 

to 23 °C and stirred for 24 h.  The mixture was filtered over a pad of Celite, washed with 

CH2Cl2, quenched with sat. aq. NaHCO3 (50 mL), and concentrated under reduced 
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pressure.  The residue was dissolved in ether (300 mL), washed with sat. aq. NaHCO3 (2 

x 50 mL), sat. aq. NH4Cl (2 x 50 mL), and brine (2 x 50 mL).  The resulting solution was 

dried over MgSO4, filtered, and concentrated under reduced pressure. Purification by 

flash column chromatography (hexanes:ethyl acetate 98:2) delivered benzyl ether S13 

(10.30 g, 74%) as a pale yellow oil.  This compound was not fully characterized. 

 

β-benzyloxy aldehyde 4.13:  To a solution of benzyl ether S13 (10.30 g, 29.54 mmol) in 

CH2Cl2 (100 mL) and MeOH (100 mL) was bubbled O3 with a gas dispersion tube at -78 

°C until the solution turned blue (10 min) at which time O2 was bubbled for twice the 

amount of time as O3 (20 min) and then the reaction was quenched with PPh3 (9.30 g, 

35.45 mmol) at -78 °C.  This solution was stirred for 14 h and allowed to warm to 23 °C 

at which time the solvent was removed under reduced pressure.  Purification by flash 

column chromatography (hexanes:ethyl acetate 96:4) delivered 4.13 (7.50 g, 53% over 

two steps from S12) as a colorless oil:  Rf  = 0.53 (80:20 hexanes:ethyl acetate); IR (thin 

film) 3032, 2722, 1728, 1094 cm-1; 1H NMR (300 MHz, CDCl3) δ 1.05-1.08 (m, 21H), 

2.67 (ddd, J = 2.4, 6.9, 16.5 Hz, 1H), 2.74 (ddd, J = 2.1, 5.4, 16.5 Hz, 1H), 3.71 (dd, J = 

6.3, 10.2 Hz, 1H), 3.87 (dd, J = 5.1, 10.2 Hz, 1H), 4.00-4.09 (m, 1H), 4.61 (d, J = 11.4 

Hz, 1H), 4.70 (d, J = 11.4 Hz, 1H), 7.25-7.39 (m, 5H), 9.81 (dd, J = 2.1, 2.4 Hz, 1H);  

13C NMR (75 MHz, CDCl3) δ 11.9(3), 17.9(6), 46.3, 65.1, 72.2, 75.2, 127.7, 127.8(2), 

128.3(2), 138.3, 200.8; ESI-HRMS calcd for C20H34O3SiLi [M + Li] 357.2437, found 

357.2441. 
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Secondary alcohols S14 were prepared according to the general procedure for Grignard 

addition using aldehyde 4.13 (830 mg, 2.37 mmol) in ether (20 mL) and a 2.0 M solution 

of hexylmagnesium chloride in ether (1.8 mL, 3.56 mmol) for 1.5 h.  Representative 

work-up with sat. aq. NH4Cl (2 x 20 mL), water (2 x 20 mL) and brine (2 x 20 mL) 

delivered crude alcohols S14 as a pale yellow oil.  This compound was not fully 

characterized. 

S14

OTIPS

OBnOH
S15

OH

OBnOH
 

Diols S15 were prepared according to the general procedure for TBAF deprotection 

using silyl ethers S14 (980 mg, 2.24 mmol) in THF (22 mL) and a 1.0 M solution of 

TBAF in THF (4.5 mL, 4.48 mmol) for 2.5 h.  Representative work-up with sat. aq. 

NH4Cl (2 x 20 mL), water (2 x 20 mL) and brine (2 x 20 mL) then purification by flash 

column chromatography (hexanes:ethyl acetate 60:40) delivered diols S15 (480 mg, 72% 

over two steps from 4.13, dr 1:1) as a colorless oil.  This compound was not fully 

characterized. 

 

α-benzyloxy-γ-ketoaldehyde (±)-4.1b was prepared according to the general procedure 

for Swern oxidation using oxalyl chloride (343 μL, 4.00 mmol) in CH2Cl2 (10 mL), 
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DMSO (568 μL, 8.00 mmol), diols S15 (280 mg, 1.00 mmol) in CH2Cl2 (10 mL), and 

Et3N (2.2 mL, 16.00 mmol).  Representative work-up with water (3 x 20 mL) and brine 

(3 x 20 mL) then purification by flash column chromatography (hexanes:ethyl acetate 

90:10) delivered ketoaldehyde (±)-4.1b (209 mg, 76%) as a pale yellow oil:  Rf  = 0.53 

(hexanes:ethyl acetate 70:30); IR (thin film) 3032, 2722, 1733, 1714, 1108 cm-1; 1H 

NMR (300 MHz, CDCl3) δ 0.88 (t, J = 6.9 Hz, 3H), 1.22-1.34 (m, 6H), 1.50-1.64 (m, 

2H), 2.43 (t, J = 7.5 Hz, 1H), 2.81 (dd, J = 6.3, 17.4 Hz, 1H), 2.87 (dd, J = 5.1, 17.4 Hz, 

1H), 4.28 (ddd, J = 0.9, 5.1, 6.3 Hz, 1H), 4.65 (d, J = 11.7 Hz, 1H), 4.72 (d, J = 11.7 Hz, 

1H), 7.30-7.40 (m, 5H), 9.79 (d, J = 0.9 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 14.1, 

22.5, 23.5, 28.8, 31.6, 43.3, 43.8, 73.3, 79.6, 128.1(2), 128.2, 128.6(2), 137.3, 202.7, 

207.1; ESI-HRMS calcd for C17H24O3Li [M + Li] 283.1885, found 283.1923. 

 

Secondary alcohols S16 were prepared according to the general procedure for Grignard 

addition using aldehyde 4.13 (1.05 g, 3.00 mmol) in ether (30 mL) and a 2.0 M solution 

of isopropylmagnesium chloride in ether (2.3 mL, 4.50 mmol) for 1.5 h.  Representative 

work-up with sat. aq. NH4Cl (2 x 20 mL), water (2 x 20 mL) and brine (2 x 20 mL) 

delivered crude alcohols S16 as a pale yellow oil.  This compound was not fully 

characterized. 
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Diols S17 were prepared according to the general procedure for TBAF deprotection 

using silyl ethers S16 (990 mg, 2.51 mmol) in THF (30 mL) and a 1.0 M solution of 

TBAF in THF (6.0 mL, 6.00 mmol) for 2 h.  Representative work-up with sat. aq. NH4Cl 

(2 x 20 mL), water (2 x 20 mL) and brine (2 x 20 mL) then purification by flash column 

chromatography (hexanes:ethyl acetate 60:40) delivered diols S17 (504 mg, 70% over 

two steps from 4.13, dr 1:1) as a colorless oil.  This compound was not fully 

characterized. 

 

α-benzyloxy-γ-ketoaldehyde (±)-4.1c was prepared according to the general procedure 

for Swern oxidation using oxalyl chloride (343 μL, 4.00 mmol) in CH2Cl2 (10 mL), 

DMSO (568 μL, 8.00 mmol), diols S17 (238 mg, 1.00 mmol) in CH2Cl2 (10 mL), and 

Et3N (2.2 mL, 16.00 mmol).  Representative work-up with water (3 x 20 mL) and brine 

(3 x 20 mL) then purification by flash column chromatography (hexanes:ethyl acetate 

85:15) delivered ketoaldehyde (±)-4.1c (198 mg, 85%) as a pale yellow oil:  Rf  = 0.81 

(hexanes:ethyl acetate 60:40); IR (thin film) 3032, 2722, 1733, 1711, 1102 cm-1; 1H 

NMR (300 MHz, CDCl3) δ 1.12 (t, J = 6.6 Hz, 3H), 1.13 (t, J = 6.9 Hz, 3H), 2.61 (qq, J 

= 6.6, 6.9 Hz, 1H), 2.87 (dd, J = 6.0, 17.4 Hz, 1H), 2.93 (dd, J = 5.1, 17.4 Hz, 1H), 4.29 

(ddd, J = 0.9, 5.1, 6.0 Hz, 1H), 4.65 (d, J = 11.7 Hz, 1H), 4.72 (d, J = 11.7 Hz, 1H), 
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7.26-7.40 (m, 5H), 9.80 (d, J = 0.9 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 17.9(2), 41.2, 

41.7, 73.3, 79.6, 128.07(2), 128.14, 128.5(2), 137.3, 202.8, 210.6; ESI-HRMS calcd for 

C14H18O3Li [M + Li] 242.1416, found 242.1418. 

 

Secondary alcohols S18 were prepared according to the general procedure for Grignard 

addition using aldehyde 4.13 (800 mg, 2.28 mmol) in ether (40 mL) and a 1.0 M solution 

of 3-butenylmagensium bromide in THF (3.4 mL, 3.42 mmol) for 2 h.  Representative 

work-up with sat. aq. NH4Cl (2 x 20 mL), water (2 x 20 mL) and brine (2 x 20 mL) 

delivered crude alcohols S18 as a pale yellow oil.  This compound was not fully 

characterized. 

 

Diols S19 were prepared according to the general procedure for TBAF deprotection 

using silyl ethers S18 (780 mg, 1.92 mmol) in THF (40 mL) and a 1.0 M solution of 

TBAF in THF (3.8 mL, 3.84 mmol) for 1 h.  Representative work-up with sat. aq. NH4Cl 

(2 x 20 mL), water (2 x 20 mL) and brine (2 x 20 mL) then purification by flash column 

chromatography (hexanes:ethyl acetate 60:40) delivered diols S19 (410 mg, 72% over 

two steps from 4.13, dr 1:1) as a colorless oil.  This compound was not fully 

characterized. 
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α-benzyloxy-γ-ketoaldehyde (±)-4.1d was prepared according to the general procedure 

for Swern oxidation using oxalyl chloride (275 μL, 3.20 mmol) in CH2Cl2 (10 mL), 

DMSO (454 μL, 6.40 mmol), diols S19 (200 mg, 0.80 mmol) in CH2Cl2 (10 mL), and 

Et3N (1.80 mL, 12.80 mmol).  Representative work-up with water (3 x 20 mL) and brine 

(3 x 20 mL) then purification by flash column chromatography (hexanes:ethyl acetate 

90:10) delivered ketoaldehyde (±)-4.1d (138 mg, 70%) as a pale yellow oil:  Rf  = 0.56 

(hexanes:ethyl acetate 60:40); IR (thin film) 3066, 3032, 2719, 1733, 1717, 1113 cm-1; 

1H NMR (300 MHz, CDCl3) δ 2.30-2.40 (m, 2H), 2.53-2.58 (m, 2H), 2.82 (dd, J = 6.3, 

17.1 Hz, 1H), 2.88 (dd, J = 4.8, 17.1 Hz, 1H), 4.28 (ddd, J = 0.9, 4.8, 6.3 Hz, 1H), 4.65 

(d, J = 12.0 Hz, 1H), 4.72 (d, J = 12.0 Hz, 1H), 4.97-5.08 (m, 2 H), 5.73-5.87 (m, 1H), 

7.28-7.40 (m, 5H), 9.78 (d, J = 0.9 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 27.5, 42.3, 

43.9, 73.4, 79.5, 115.5, 128.2(2), 128.3, 128.6(2), 136.8, 137.2, 202.7, 206.1; ESI-

HRMS calcd for C15H19O3 [M + H] 247.1334, found 247.1354. 

OTIPS

OBn
4.13 S20

OTIPS

OBnO

H

OH
 

Secondary alcohols S20 were prepared according to the general procedure for Grignard 

addition using aldehyde 4.13 (1.05 g, 3.00 mmol) in ether (30 mL) and a 2.0 M solution 

of phenylmagnesium chloride in ether (2.3 mL, 4.50 mmol) for 1 h.  Representative 

work-up with sat. aq. NH4Cl (2 x 20 mL), water (2 x 20 mL) and brine (2 x 20 mL) 
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delivered crude alcohols S20 as a pale yellow oil.  This compound was not fully 

characterized. 

 

Diols S21 were prepared according to the general procedure for TBAF deprotection 

using silyl ethers S20 (1.09 g, 2.54 mmol) in THF (30 mL) and a 1.0 M solution of 

TBAF in THF (6.0 mL, 6.00 mmol) for 2 h.  Representative work-up with sat. aq. NH4Cl 

(2 x 20 mL), water (2 x 20 mL) and brine (2 x 20 mL) then purification by flash column 

chromatography (hexanes:ethyl acetate 65:35) delivered diols S21 (600 mg, 73% over 

two steps from 4.13, dr 1:1) as a colorless oil.  This compound was not fully 

characterized. 

 

α-benzyloxy-γ-ketoaldehyde (±)-4.1e was prepared according to the general procedure 

for Swern oxidation using oxalyl chloride (343 μL, 4.00 mmol) in CH2Cl2 (10 mL), 

DMSO (568 μL, 8.00 mmol), diols S21 (272 mg, 1.00 mmol) in CH2Cl2 (10 mL), and 

Et3N (2.2 mL, 16.00 mmol).  Representative work-up with water (3 x 20 mL) and brine 

(3 x 20 mL) then purification by flash column chromatography (hexanes:ethyl acetate 

85:15) delivered ketoaldehyde (±)-4.1e (189 mg, 71%) as a pale yellow oil:  Rf  = 0.77 

(hexanes:ethyl acetate 60:40); IR (thin film) 3066, 3032, 2717, 1736, 1683, 1108 cm-1; 

1H NMR (300 MHz, CDCl3) δ 3.42 (dd, J = 6.0, 17.7 Hz, 1H), 3.48 (dd, J = 5.1, 17.7 
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Hz, 1H), 4.48 (ddd, J = 0.6, 5.1, 6.0 Hz, 1H), 4.72 (d, J = 11.7 Hz, 1H), 4.78 (d, J = 11.7 

Hz, 1H), 7.26-7.39 (m, 5H), 7.45-7.52 (m, 2H), 7.57-7.63 (m, 1H), 7.93-7.98 (m, 2H), 

9.90 (d, J = 0.6 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 40.4, 73.4, 79.5, 128.2(2), 

128.3(2), 128.6(2), 128.7(2) 133.6(2), 136.3, 137.3, 196.2, 202.8; ESI-HRMS calcd for 

C17H16O3Li [M + Li] 275.1259, found 275.1251. 

. 

OTIPS

OBn
4.13 S22

OTIPS

OBnO

H

OH
 

Secondary alcohol S22:  To a solution of aldehyde 4.13 (1.00 g, 2.85 mmol) in CH2Cl2 

(40 mL) was added a 1.0 M solution of TiCl4 in CH2Cl2 (3.42 mL, 3.42 mmol) down the 

side of the flask slowly at -78 °C followed by 5 mL of CH2Cl2 to rinse down any 

remaining TiCl4.  The solution quickly turned orange-red and after 10 minutes, 

allyltrimethylsilane (536 μL, 3.42 mmol) was added down the side of the flask in 10 mL 

of CH2Cl2 and then rinsed down with an additional 5 mL of CH2Cl2.  The reaction was 

stirred at -78 °C for 2 h and quenched slowly with MeOH (5 mL).  Upon addition of sat. 

aq. NaHCO3 (20 mL), the reaction was stirred vigorously for 30 min and warmed to 23 

°C.  The mixture was diluted with ether (300 mL) and the organic layer was separated 

and washed with additional sat. aq. NaHCO3 (2 x 20 mL), water (2 x 20 mL), and brine 

(2 x 20 mL).  The resulting solution was dried over MgSO4, filtered, and concentrated 

under reduced pressure to deliver crude alcohol S22 as a single diastereomer (>19:1) as 

judged by analysis of crude 1H NMR (300 MHz).  Purification by flash column 

chromatography (hexanes:ethyl acetate 97:3) delivered alcohol S22 (860 mg, 77%) as a 

colorless oil:  Rf  = 0.51 (80:20 hexanes: ethyl acetate); IR (thin film) 3457, 3069, 3032, 
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1091 cm-1; 1H NMR (300 MHz, CDCl3) δ 1.06-1.08 (m, 21H), 1.63-1.81 (m, 2H), 2.21-

2.26 (m, 2H), 2.74 (br s, 1 H), 3.70-3.96 (m, 4H), 4.63 (d, J = 11.7 Hz, 1H), 4.75 (d, J = 

11.7 Hz, 1H), 5.08-5.14 (m, 2H), 5.76-5.90 (m, 1H), 7.29-7.36 (m, 5H); 13C NMR (75 

MHz, CDCl3) δ 12.1(3), 18.2(6), 38.3, 42.4, 66.1, 68.0, 72.7, 78.0, 117.7, 127.9, 

128.1(2), 128.6(2), 135.2, 138.7; ESI-HRMS calcd for C23H40O3SiLi [M + Li] 399.2907, 

found 399.3074.  

 

Bis-silyl ether S23:  To a solution of alcohol S22 (1.18 g, 3.02 mmol) in CH2Cl2 (60 

mL) was added TIPSOTf (920 μL, 3.32 mmol) followed by Et3N (505 μL, 3.62 mmol) at 

0 °C.  This solution was stirred for 1 h, warmed to 23 °C, and quenched with sat. aq. 

NH4Cl (20 mL).  The reaction was stirred vigorously for 15 min, diluted with ether (200 

mL), and separated.  The combined organic solution was washed with additional sat. aq. 

NH4Cl (2 x 20 mL), water (2 x 20 mL), and brine (2 x 20 mL) and then dried over 

MgSO4, filtered, and concentrated under reduced pressure to deliver crude bis-silyl ether 

S23 as a yellow oil.  This compound was not characterized.      

 

Primary alcohol 4.14:  To a solution of bis-silyl ether S23 (1.66 g, 3.02 mmol) in 

CH2Cl2 (30 mL) and MeOH (30 mL) was bubbled O3 with a gas dispersion tube at -78 

°C until the solution turned blue (5 min) at which time O2 was bubbled for twice the 
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amount of time as O3 (10 min) and then the reaction was quenched with NaBH4 (686 

mg, 18.12 mmol) at -78 °C.  This solution was stirred for 20 h and allowed to warm to 

23 °C at which time the solvent was removed under reduced pressure.  The residue was 

dissolved in ether (200 mL), quenched with sat. aq. NH4Cl (20 mL), stirred vigorously 

for 15 min.  The organic layer was separated and washed with additional sat. aq. NH4Cl 

(2 x 20 mL), water (2 x 20 mL), and brine (2 x 20 mL).  The solution was dried over 

MgSO4, filtered, and concentrated under reduced pressure.  Purification by flash column 

chromatography (hexanes:ethyl acetate 95:5) delivered alcohol 4.14 (1.42 g, 81% over 

two steps from S22) as a pale yellow oil.  This compound was not fully characterized. 

 

Benzyl ether S24:  To a solution of alcohol 4.14 (354 mg, 0.55 mmol) in THF (10 mL) 

was added benzyl bromide (99 μL, 0.83 mmol) and NaH (33 mg, 0.83 mmol, 60% 

dispersion in mineral oil) at 0 °C as a solid.  The reaction was heated to 65 °C and was 

stirred for 14 h after which time it was cooled to 23 °C and quenched slowly with sat. aq. 

NH4Cl (20 mL).  The resulting mixture was stirred vigorously for 15 min, and diluted 

with ether (100 mL).  The organic layer was separated and washed with additional sat. 

aq. NH4Cl (2 x 10 mL), water (2 x 10 mL), and brine (2 x 10 mL).  The residue was then 

dried over MgSO4, filtered, and concentrated under reduced pressure to deliver crude 

benzyl ether S24 as yellow oil.  This compound was not fully characterized. 
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Diol S25 was prepared according to the general procedure for TBAF deprotection using 

bis-silyl ether S24 (301 mg, 0.47 mmol) in THF (10 mL) and a 1.0 M solution of TBAF 

in THF (2.8 mL, 2.82 mmol) for 24 h.  Representative work-up with sat. aq. NH4Cl (2 x 

10 mL), water (2 x 10 mL) and brine (2 x 10 mL) then purification by gradient flash 

column chromatography (hexanes:ethyl acetate 50:50 to 40:60) delivered diol S24 (98 

mg, 54% over two steps from alcohol 4.14) as a colorless oil.  This compound was not 

fully characterized. 

 

α-benzyloxy-γ-ketoaldehyde (±)-4.1f was prepared according to the general procedure 

for Swern oxidation using oxalyl chloride (103 μL, 1.20 mmol) in CH2Cl2 (5 mL), 

DMSO (170 μL, 2.40 mmol), diol S25 (98 mg, 0.30 mmol) in CH2Cl2 (5 mL), and Et3N 

(669 μL, 4.80 mmol).  Representative work-up with water (3 x 10 mL) and brine (3 x 10 

mL) then purification by flash column chromatography (hexanes:ethyl acetate 80:20) 

delivered ketoaldehyde (±)-4.1f (74 mg, 76%) as a pale yellow oil:  Rf  = 0.46 

(hexanes:ethyl acetate 50:50); IR (thin film) 3029, 2719, 1714, 1099 cm-1; 1H NMR (300 

MHz, CDCl3) δ 2.73 (t, J = 6.0 Hz, 2H), 2.87 (dd, J = 6.6, 17.4 Hz, 1H), 2.95 (dd, J = 

4.5, 17.4 Hz, 1H), 3.75 (t, J = 6.0 Hz, 2H), 4.29 (br dd, J = 4.5, 6.6 Hz, 1H), 4.51 (s, 

2H), 4.65 (d, J = 11.4 Hz, 1H), 4.70 (d, J = 11.4 Hz, 1H), 7.28-7.37 (m, 10H), 9.77 (br s, 
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1H); 13C NMR (75 MHz, CDCl3) δ 43.5, 44.4, 65.1, 73.4(2), 79.4, 127.8(3), 128.25(2), 

128.30, 128.5(2), 128.7(2), 137.3, 138.1, 202.6, 205.4; ESI-HRMS calcd for C20H22O4 

[M + H] 333.1678, found 333.1796. 

 

p-Methoxybenzyl ether S26:  To a solution of alcohol 4.14 (552 mg, 1.00 mmol) and 

PMBTCA (565 mL, 2.00 mmol) in CH2Cl2 (4 mL) was added CSA (24 mg, 0.10 mmol) 

as a solid at 23 °C.  After stirring for 24 h, the reaction was filtered over a pad of Celite, 

washed with CH2Cl2, quenched with NaHCO3 (10 mL), and stirred vigorously for 15 

min.  The resulting mixture was diluted with ether (100 mL), washed with NaHCO3 (2 x 

20 mL), sat. aq. NH4Cl (2 x 20 mL), and brine (2 x 20 mL).  The resulting solution was 

dried over MgSO4, filtered, and concentrated under reduced pressure.  Purification by 

flash column chromatography (hexanes:ethyl acetate 97:3) delivered p-methoxybenzyl 

ether S26 (565 mg, 84%) as a pale yellow oil.  This compound was not fully 

characterized. 

 

Diol S27 was prepared according to the general procedure for TBAF deprotection using 

bis-silyl ether S26 (565 mg, 0.84 mmol) in THF (20 mL) and a 1.0 M solution of TBAF 

in THF (5.0 mL, 5.04 mmol) for 24 h.  Representative work-up with sat. aq. NH4Cl (2 x 

20 mL), water (2 x 20 mL) and brine (2 x 20 mL) then purification by gradient flash 
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column chromatography (hexanes:ethyl acetate 50:50 to 40:60) delivered diol S27 (202 

mg, 56% over two steps from alcohol 4.14) as a colorless oil.  This compound was not 

fully characterized. 

 

α-benzyloxy-γ-ketoaldehyde (±)-4.1g was prepared according to the general procedure 

for Swern oxidation using oxalyl chloride (343 μL, 4.00 mmol) in CH2Cl2 (10 mL), 

DMSO (568 μL, 8.00 mmol), diol S27 (361 mg, 1.00 mmol) in CH2Cl2 (10 mL), and 

Et3N (2.2 mL, 16.00 mmol).  Representative work-up with water (3 x 20 mL) and brine 

(3 x 20 mL) and purification by flash column chromatography (hexanes:ethyl acetate 

70:30) delivered ketoaldehyde (±)-4.1g (288 mg, 81%) as a pale yellow oil:  Rf  = 0.67 

(hexanes:ethyl acetate 30:70); IR (thin film) 3031, 2719, 1717, 1105 cm-1; 1H NMR (300 

MHz, CDCl3) δ 2.71 (t, J = 6.0 Hz, 2H), 2.86 (dd, J = 6.6, 17.4 Hz, 1H), 2.94 (dd, J = 

4.8, 17.4 Hz, 1H), 3.72 (t, J = 6.0 Hz, 2H), 3.81 (s, 3H), 4.28 (ddd, J = 0.6, 4.8, 6.6 Hz, 

1H), 4.44 (s, 2H), 4.64 (d, J = 11.7 Hz, 1H), 4.70 (d, J = 11.7 Hz, 1H), 6.84-6.90 (m, 

2H), 7.20-7.26 (m, 2H), 7.31-7.37 (m, 5H), 9.77 (d, J = 0.6, 1H); 13C NMR (75 MHz, 

CDCl3) δ 43.6, 44.5, 55.5, 64.9, 73.2, 73.5, 79.5, 114.0(2), 128.3(2), 128.4, 128.8(2), 

129.6(2), 130.2, 137.3, 159.4, 202.7, 205.6; ESI-HRMS calcd for C21H24O5Li [M + Li] 

363.1784, found 363.1772. 
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Representative procedure for the tandem process as described for THF 4.15a.  

ZnCl2 (423 mg, 3.10 mmol) was freshly fused at ~0.5 mm Hg and subsequently cooled 

to ambient temperature.  The ketene acetal 4.2e (301 mg, 0.93 mmol) was added as a 

solution in CH2Cl2 (5 mL) and stirred for 4 h at 23 °C.  The heterogeneous mixture was 

cooled to 0 °C, then Et3SiH (6.3 mL, 38.80 mmol) and aldehyde (±)-4.1a (160 mg, 0.78 

mmol) in CH2Cl2 (5 mL) were added sequentially and the reaction stirred for 12 h at 0 

°C.  The reaction was quenched with pH 7 buffer and stirred vigorously for 30 min, then 

poured over Celite with additional CH2Cl2 and dried with Na2SO4.  Crude 1H NMR (300 

MHz) analysis revealed a 6.2:1 ratio of a single diastereomer (>19:1) of THF to furan 

silyl esters.  Upon concentration under reduced pressure, the residue was dissolved in 

CH2Cl2 (20 mL).  The resulting solution was treated with DIBAlH (830 μL, 4.66 mmol) 

at -78 °C, warmed to 0 °C quickly and stirred for 6 h.  The reaction quenched with 

MeOH (5 mL) at 0 °C dropwise, treated with Rochelle’s salt (10 mL), and stirred 

vigorously for 12 h.  The resulting suspension was poured over Celite and washed with 

ether (200 mL).  The combined organic solution was washed with sat. aq. NH4Cl (2 x 20 

mL), water (2 x 20 mL) and brine (2 x 20 mL), dried over MgSO4, filtered, and 

concentrated under reduced pressure.  Purification by gradient flash column 

chromatography (hexanes:ethyl acetate 85:15 to 80:20) delivered THF 4.15a (104 mg, 

54%) as a colorless oil and furan 4.16a as a pale yellow oil.  Characterization data for 

THF 4.15a:  Rf  = 0.56 (hexanes:ethyl acetate 60:40); IR (thin film) 3443, 1096, 1058 
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cm-1; 1H NMR (500 MHz, CDCl3) δ 0.94 (d, J = 7.0 Hz, 3H), 1.27 (d, J = 6.0 Hz, 3H), 

1.54 (ddd, J = 7.0, 10.0, 13.0 Hz, 1H), 1.95-2.03 (m, 1H), 2.11 (ddd, J = 2.0, 5.5, 13.0 

Hz, 1H), 3.58 (dd, J = 6.5, 11.0 Hz, 1H), 3.64 (dd, J = 4.5, 11.0 Hz, 1H), 3.93 (dd, J = 

4.0, 4.5 Hz, 1H), 3.98 (ddd, J = 2.0, 4.0, 7.0 Hz, 1H), 4.16 (ddq, J = 5.5, 6.0, 10.0 Hz, 

1H), 4.45 (d, J = 12.0 Hz, 1H), 4.55 (d, J = 12.0 Hz, 1H), 7.29-7.38 (m, 5H); 13C NMR 

(125 MHz, CDCl3) δ 12.4, 20.4, 37.8, 40.4, 66.6, 71.6, 74.5, 81.6, 87.9, 127.96(3), 

128.00(2), 138.0; ESI-HRMS calcd for C15H22O3Li [M + Li] 251.1647, found 251.1686.  

Partial characterization data for furan 4.16a:  Rf  = 0.75 (hexanes:ethyl acetate 60:40); 1H 

NMR (300 MHz, CDCl3) δ 1.26 (d, J = 6.9 Hz, 3H), 1.57-1.61 (m, 1H), 2.27 (d, J = 0.9 

Hz, 3H), 2.99 (app sext, J = 6.6, 1H), 3.71 (dd, J = 5.7, 6.3 Hz, 1H), 5.88-5.89 (m, 1H), 

5.97-5.98 (m, 1H).       

Crucial nOe enhancements for 4.15a: 

 

 

 

 

THF 4.15a’:  To a solution of THF 4.15a in CH2Cl2 (2 mL) was added Et3N (76 μL, 

0.54 mmol), DMAP (2 mg, 0.02 mmol), and 4-bromobenzoyl chloride (59 mg, 0.27 

Irradiate H Observed H % nOe 
A C’ 1.8 
B E 0.6 
B C 0.8 
C E 0.3 
C’ I 0.3 
D F 0.5 
D C’ 1.0 
E B 1.0 
F D 0.5 
G D 0.5 
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mmol) at 23 °C and stirred for 2.5 h.  The reaction was quenched with sat. aq. NH4Cl (5 

mL), stirred vigorously for 15 min, and diluted with ether (50 mL).  The organic layer 

was separated from the aqueous layer and washed with additional sat. aq. NH4Cl (2 x 10 

mL), water (2 x 10 mL), and brine (2 x 10 mL).  The resulting solution was dried over 

MgSO4, filtered, and concentrated under reduced pressure.  Purification by flash column 

chromatography (hexanes:ethyl acetate 95:5) delivered THF 4.15a’ (60 mg, 79%) as a 

white solid.  Slow evaporation with hexanes:ether (1:1) over 24 h delivered THF 4.15a’ 

as a white crystalline compound:  Rf  = 0.84 (hexanes:ethyl acetate 70:30); IR (thin film) 

3029, 1714, 1102 cm-1; 1H NMR (500 MHz, CDCl3) δ 1.04 (d, J = 7.0 Hz, 3H), 1.27 (d, 

J = 6.5 Hz, 3H), 1.48 (ddd, J = 6.0, 10.0, 13.0 Hz, 1H), 2.10 (ddd, J = 1.5, 5.0, 13.0 Hz, 

1H), 2.13-2.19 (m, 1H), 3.96 (dd, J = 3.5, 5.0 Hz, 1H), 3.98 (ddd, J = 1.5, 3.5, 6.0 Hz, 

1H), 4.19 (dd, J = 5.0, 6.5, 10.0 Hz, 1H), 4.23 (dd, J = 7.0, 11.0 Hz, 1H), 4.33 (dd, J = 

6.0, 11.0 Hz, 1H), 4.45 (d, J = 12.0 Hz, 1H), 4.54 (d, J = 12.0 Hz, 1H), 7.27-7.35 (m, 

5H), 7.86-7.90 (m, 2H), 7.56-7.90 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 12.7, 20.4, 

39.3, 40.3, 67.5, 71.4, 74.5, 82.2, 85.7, 127.8(2), 127.9, 128.2, 128.6(2), 129.5, 131.3(2), 

131.9(2), 138.2, 166.0; ESI-HRMS calcd for C22H26BrO4 [M + H] 433.1014/435.0994, 

found 433.1012/435.1005.  Cambridge number for THF 4.15a’ is CCDC #681175. 

 

THF 4.15b was prepared according to the representative procedure for the tandem 

process using ZnCl2 (376 mg, 2.76 mmol), ketene acetal 4.2e (269 mg, 0.83 mmol), 

Et3SiH (5.6 mL, 34.50 mmol), and aldehyde (±)-4.1b (190 mg, 0.69 mmol) for 12 h.  
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Representative work-up and crude 1H NMR (300 MHz) analysis revealed a 1.3:1 ratio of 

a single diastereomer (>19:1) of THF to furan silyl esters.  Representative reduction with 

DIBAlH (738 μL, 4.14 mmol) and purification by gradient flash column 

chromatography (hexanes:ether 85:15 to 80:20) delivered THF 4.15b (92 mg, 42%) as a 

pale yellow oil and furan 4.16b (29 mg, 20%) as a pale yellow oil.  Characterization data 

for THF 4.15b:  Rf  = 0.18 (hexanes:ethyl acetate 80:20); IR (thin film) 3437, 3029, 1069 

cm-1; 1H NMR (500 MHz, C6D6) δ 0.88 (t, J = 6.7 Hz, 3H), 0.91 (d, J = 7.0 Hz, 3H), 

1.18-1.61 (m, 10H), 1.29 (ddd, J = 7.0, 10.0, 13.0 Hz, 1H), 1.80-1.85 (m, 1H), 1.85 (ddd, 

J = 2.0, 5.5, 13.0 Hz, 1H), 2.10 (dd, J = 5.5, 6.0 Hz, 1H), 3.50-3.59 (m, 2H), 3.75 (ddd, J 

= 2.0, 4.0, 7.0 Hz, 1H), 3.99 (m, 1H), 4.02 (dd, J = 4.0, 5.0 Hz, 1H), 4.19 (d, J = 12.0 

Hz, 1H), 4.27 (d, J = 12.0 Hz, 1H), 7.05-7.35 (m, 5H); 13C NMR (125 MHz, C6D6) δ 

12.4, 14.3, 23.0, 26.5, 29.7, 32.1, 35.6, 38.7, 38.9, 66.3, 71.2, 78.4, 81.8, 87.3, 127.79(2), 

127.81(2), 128.0, 138.8; ESI-HRMS calcd for C20H32O3Li [M + Li] 327.2511, found 

327.2515. Characterization data for furan 4.16b:  Rf  = 0.33 (hexanes:ethyl acetate 

80:20); IR (thin film) 3356, 3102, 1013 cm-1; 1H NMR (300 MHz, CDCl3) δ 0.90 (t, J = 

6.9 Hz, 3H), 1.23-1.38 (m, 6H), 1.26 (d, J = 7.2 Hz, 3H), 1.56-1.67 (m, 2H), 2.58 (t, J = 

7.5 Hz, 3H), 3.00 (app sext, J = 6.9, 1H), 3.68-3.73 (m, 1H), 5.87-5.91 (m, 1H), 5.96-

5.99 (m, 1H); 13C NMR (75 MHz, CDCl3) δ 14.3, 15.3, 22.8, 28.16, 28.24, 29.1, 31.8, 

36.3, 66.9, 105.1, 105.8, 155.6, 155.8; ESI-HRMS calcd for C13H22O2Li [M + Li] 

217.1780, found 217.1777.  Unambiguous nOe enhancements could not be obtained for 

THF 4.15b.  
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THF 4.15c was prepared according to the representative procedure for the tandem 

process using ZnCl2 (398 mg, 2.92 mmol), ketene acetal 4.2e (285 mg, 0.88 mmol), 

Et3SiH (5.9 mL, 36.50 mmol), and aldehyde (±)-4.1c (170 mg, 0.73 mmol) for 12 h.  

Representative work-up and crude 1H NMR (300 MHz) analysis revealed a 2.3:1 ratio of 

a single diastereomer (>19:1) of THF to furan silyl esters.  Representative reduction with 

DIBAlH (781 μL, 4.38 mmol) and purification by gradient flash column 

chromatography (hexanes:ether 85:15 to 80:20) delivered THF 4.15c (105 mg, 52%) as a 

colorless oil and furan 4.16c (24 mg, 20%) as a colorless oil.  Characterization data for 

THF 4.15c:  Rf  = 0.42 (hexanes:ethyl acetate 70:30); IR (thin film) 3437, 3029, 1069 

cm-1; 1H NMR (500 MHz, C6D6) δ 0.76 (d, J = 6.5 Hz, 3H), 0.90 (d, J = 7.0 Hz, 3H), 

0.96 (d, J = 6.5 Hz, 3H), 1.31 (ddd, J = 7.0, 10.0, 13.0 Hz, 1H), 1.53-1.61 (m, 1H), 1.76-

1.82 (m, 1H), 1.77 (ddd, J = 2.0, 5.5, 13.0 Hz, 1H), 2.00 (dd, J = 5.5, 6.0 Hz, 1H), 3.49-

3.57 (m, 2H), 3.68 (ddd, J = 5.5, 7.0, 10.0 Hz, 1H), 3.71 (ddd, J = 2.0, 4.0, 7.0 Hz, 1H), 

3.99 (dd, J = 4.0, 5.0 Hz, 1H), 4.17 (d, J = 11.5 Hz, 1H), 4.26 (d, J = 11.5 Hz, 1H), 6.99-

7.31 (m, 5H); 13C NMR (125 MHz, C6D6) δ 12.3, 18.5, 19.4, 33.0, 36.2, 38.7, 66.1, 71.1, 

81.6, 83.5, 86.9, 127.70(2), 127.72(2), 128.5, 138.7; ESI-HRMS calcd for C17H26O3Li 

[M + Li] 285.2042, found 285.2038. Characterization data for furan 4.16c:  Rf  = 0.53 

(hexanes:ethyl acetate 70:30); IR (thin film) 3353, 3108, 1018 cm-1; 1H NMR (300 MHz, 

CDCl3) δ 1.20-1.29 (m, 9H), 2.84-2.96 (m, 1H), 2.97-3.07 (m, 1H), 3.45-3.53 (m, 1H), 
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3.68-3.76 (m, 2H), 5.88 (app d, J = 3.0 Hz, 1H), 5.98 (app d, J = 3.0 Hz, 1H); 13C NMR 

(75 MHz, CDCl3) δ 15.3, 21.26, 21.29, 28.0, 36.3, 66.9, 103.1, 105.6, 155.5, 160.9; ESI-

HRMS calcd for C10H16O2Li [M + Li] 175.1310, found 175.1306. 

Crucial nOe enhancements for 4.15c: 

 

 

 

 

THF 4.15d was prepared according to the representative procedure for the tandem 

process using ZnCl2 (221 mg, 1.62 mmol), ketene acetal 4.2e (158 mg, 0.49 mmol), 

Et3SiH (3.3 mL, 20.30 mmol), and aldehyde (±)-4.1d (100 mg, 0.41 mmol) for 12 h.  

Representative work-up and crude 1H NMR (300 MHz) analysis revealed a 3:1 ratio of a 

single diastereomer (>19:1) of THF to furan silyl esters.  Representative reduction with 

DIBAlH (434 μL, 2.44 mmol) and purification by gradient flash column 

chromatography (hexanes:ethyl acetate 85:15 to 80:20) delivered THF 4.15d (58 mg, 

49%) as a colorless oil and furan 4.16d (10 mg, 14%) as a colorless oil.  Characterization 

data for THF 4.15d:  Rf  = 0.26 (hexanes:ethyl acetate 80:20); IR (thin film) 3426, 3063, 

3032, 1063 cm-1; 1H NMR (500 MHz, CDCl3) δ 0.94 (d, J = 7.5 Hz, 3H), 1.57-1.64 (m, 

Irradiate H Observed H % nOe 
A B 1.5 
B E NA 
C E NA 

 C’ G 0.3 
 C’ A 0.5 
D A NA 
E B 0.4 
E F 0.9 
G D 1.1 
G E 0.9



 
 

168

1H), 1.59 (ddd, J = 7.0, 10.0, 13.0 Hz, 1H), 1.69-1.76 (m, 1H), 1.95-2.02 (m, 1H), 2.10 

(ddd, J = 2.0, 5.5, 13.0 Hz, 1H), 2.11-2.21 (m, 2H), 2.58 (dd, J = 6.0, 6.0 Hz, 1H), 3.55-

3.67 (m, 2H), 3.92 (dd, J = 4.5, 4.5 Hz, 1H), 3.96 (ddd, J = 2.0, 4.5, 6.5 Hz, 1H), 4.01-

4.07 (m, 1H), 4.46 (d, J = 11.5 Hz, 1H), 4.56 (d, J = 11.5 Hz, 1H), 4.96-5.06 (m, 2H), 

5.79-5.87 (m, 1H), 7.29-7.39 (m, 5H); 13C NMR (125 MHz, CDCl3) δ 12.3, 30.5, 34.5, 

37.8, 38.6, 66.9, 71.6, 78.1, 81.2, 87.5, 115.0, 128.0(2), 128.1, 128.7(2), 138.0, 138.4; 

ESI-HRMS calcd for C18H26O3Li [M + Li] 297.2042, found 291.2045.  Characterization 

data for furan 4.16d:  Rf  = 0.42 (hexanes:ethyl acetate 80:20); IR (thin film) 3384, 3080, 

1021 cm-1; 1H NMR (300 MHz, CDCl3) δ 1.26 (d, J = 7.0 Hz, 3H), 1.62 (br s, 1H), 2.37-

2.42 (m, 2H), 2.67-2.73 (m, 2H), 3.00 (app sext, J = 6.5, 1H), 3.69-3.73 (m, 2H), 4.98-

5.09 (m, 2H), 5.82-5.90 (m, 1H), 5.92 (app d, J = 3.0 Hz, 1H), 5.98 (app d, J = 3.0 Hz, 

1H); 13C NMR (75 MHz, CDCl3) δ 15.3, 27.7, 32.3, 36.4, 66.9, 105.6, 105.8, 115.4, 

137.8, 154.7, 155.8; CI-LRMS calcd for C11H17O2Li [M + H] 181.0, found 181.0.  

Unambiguous nOe enhancements could not be obtained for THF 4.15d. 

 

THF 4.15e was prepared according to the representative procedure for the tandem 

process using ZnCl2 (346 mg, 2.54mmol), ketene acetal 4.2e (246 mg, 0.76 mmol), 

Et3SiH (5.1 mL, 31.50 mmol), and aldehyde (±)-4.1e (170 mg, 0.63 mmol) for 12 h.  

Representative work-up and crude 1H NMR (300 MHz) analysis revealed a 1:5 ratio of a 

single diastereomer (>19:1) of THF to furan silyl esters.  Representative reduction with 
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DIBAlH (674 μL, 3.78 mmol) and purification by gradient flash column 

chromatography (hexanes:ether 85:15 to 80:20 to 75:25) delivered THF 4.15e (25 mg, 

13%) as a colorless oil and furan 4.16e (61 mg, 48%) as a colorless oil.  Characterization 

data for THF 4.15e:  Rf  = 0.14 (hexanes:ether 60:40); IR (thin film) 3423, 3029, 1043 

cm-1; 1H NMR (500 MHz, C6D6) δ 0.98 (d, J = 7.0 Hz, 3H), 1.60 (ddd, J = 7.0, 10.5, 

13.0 Hz, 1H), 1.65 (br s, 1H), 1.78-1.87 (m, 1H), 2.13 (ddd, J = 2.0, 5.5, 13.0 Hz, 1H), 

3.48-3.56 (m, 2H), 3.81 (ddd, J = 2.0, 4.0, 7.0 Hz, 1H), 4.13 (dd, J = 4.0, 5.0 Hz, 1H), 

4.18 (d, J = 12.0 Hz, 1H), 4.26 (d, J = 12.0 Hz, 1H), 5.02 (dd, J = 5.5, 10.5 Hz, 1H), 

7.05-7.35 (m, 10H); 13C NMR (125 MHz, C6D6) δ 12.5, 39.0, 41.6, 66.1, 71.3, 79.9, 

82.0, 87.3, 126.2(2), 127.7, 127.8(2), 127.9, 128.59(2), 128.60(2), 138.7, 142.3; ESI-

HRMS calcd for C20H24O3Li [M + Li] 319.1885, found 319.1889.  Characterization data 

for furan 4.16e:  Rf  = 0.25 (hexanes:ether 60:40); IR (thin film) 3353, 3060, 1018 cm-1; 

1H NMR (300 MHz, CDCl3) δ 1.34 (d, J = 6.9 Hz, 3H), 1.58 (dd, J = 6.0, 6.6 Hz, 1H), 

3.13 (app sext, J = 6.6, 1H), 3.74-3.88 (m, 2H), 6.20 (dd, J = 0.9, 3.3 Hz, 1H), 6.59 (d, J 

= 3.3 Hz, 1H), 7.20-7.70 (m, 5H); 13C NMR (75 MHz, CDCl3) δ 15.4, 36.5, 66.7, 105.8, 

107.6, 123.6(2), 127.2, 128.8(2), 131.1, 153.0, 157.2; ESI-HRMS calcd for C13H14O2Li 

[M + Li] 209.1154, found 209.1037. 

Crucial nOe enhancements for 4.15e: 

 

 

Irradiate H Observed H % nOe 
A D NA 
B E 1.7 
B C 1.8 
C E 0.3 

 C’ G 0.8 
D  C’ 2.7 
D F 1.4 
E B 2.0 
F D 1.2 
G D 0.8 



 
 

170

 

THF 4.15f was prepared according to the representative procedure for the tandem 

process using ZnCl2 (114 mg, 0.83mmol), ketene acetal 4.2e (81 mg, 0.25 mmol), 

Et3SiH (1.7 mL, 10.40 mmol), and aldehyde (±)-4.1f (66 mg, 0.20 mmol) for 12 h.  

Representative work-up and crude 1H NMR (300 MHz) analysis revealed a 3.5:1 ratio of 

a single diastereomer (>19:1) of THF to furan silyl esters.  Representative reduction with 

DIBAlH (222 μL, 1.25 mmol) and purification by gradient flash column 

chromatography (hexanes:ethyl acetate 80:20 to 75:25) delivered THF 4.15f (41 mg, 

54%) as a colorless oil and furan 4.16f as a pale yellow oil.  Characterization data for 

THF 4.15f:  Rf  = 0.30 (hexanes:ethyl acetate 80:20); IR (thin film) 3448, 3032, 1097 

cm-1; 1H NMR (500 MHz, C6D6) δ 0.88 (d, J = 7.0 Hz, 3H), 1.32 (ddd, J = 7.0, 10.0, 

13.0 Hz, 1H), 1.72-1.85 (m, 3H), 1.86 (ddd, J = 2.0, 5.5, 13.0 Hz, 1H), 1.95 (br s, 1H), 

3.41-3.44 (m, 2H), 3.49-3.53 (m, 2H), 3.71 (ddd, J = 2.0, 4.0, 6.5 Hz, 1H), 3.97 (dd, J = 

4.0, 5.0 Hz, 1H), 4.15 (d, J = 11.5 Hz, 1H), 4.16-4.21 (m, 1H), 4.24 (d, J = 11.5 Hz, 1H), 

4.28 (s, 2H), 7.07-7.28 (m, 10H); 13C NMR (125 MHz, C6D6) δ 12.4, 35.8, 38.7, 38.9, 

66.2, 67.6, 71.2, 73.0, 75.9, 81.8, 87.2, 127.6, 127.7(2), 127.77, 127.80(2), 128.5(2), 

128.6(2), 138.8, 139.2; ESI-HRMS calcd for C23H30O4Li [M + Li] 377.2304, found 

377.2415.  Partial characterization data for furan 4.16f:  Rf  = 0.40 (hexanes:ethyl acetate 

80:20); 1H NMR (500 MHz, C6D6) δ 1.11 (d, J = 7.0 Hz, 3H), 2.75-2.85 (m, 1H), 2.80 (t, 

J = 6.5 Hz, 1H), 3.45 (dd, J = 6.0, 10.5 Hz, 1H), 3.50 (t, J = 6.5 Hz, 1H), 3.57 (dd, J = 
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6.5, 10.5 Hz, 1H), 4.26 (s, 2H), 5.85 (app d, J = 3.0 Hz, 1H), 5.90 (app d, J = 3.0 Hz, 

1H), 7.05-7.25 (m, 5H).  Unambiguous nOe enhancements could not be obtained for 

THF 4.15f. 

 

THF 4.15g was prepared according to the representative procedure for the tandem 

process using ZnCl2 (262 mg, 1.92mmol), ketene acetal 4.2e (188 mg, 0.58 mmol), 

Et3SiH (3.9 mL, 24.00 mmol), and aldehyde (±)-4.1g (170 mg, 0.48 mmol) for 12 h.  

Representative work-up and crude 1H NMR (300 MHz) analysis revealed a 2.3:1 ratio of 

a single diastereomer (>19:1) of THF to furan silyl esters.  Representative reduction with 

DIBAlH (513 μL, 2.88 mmol) with slow warming from -78 °C to -30 °C to prevent 

PMB deprotection and purification by flash column chromatography (hexanes:ethyl 

acetate 80:20) delivered THF 4.15g (93 mg, 49%) as a colorless oil and furan 4.16g (37 

mg, 27%) as a colorless oil.  Characterization data for THF 4.15g:  Rf  = 0.18 

(hexanes:ethyl acetate 70:30); IR (thin film) 3454, 3029, 1094 cm-1; 1H NMR (500 MHz, 

CDCl3) δ 0.92 (d, J = 7.0 Hz, 3H), 1.61 (ddd, J = 7.0, 10.5, 13.0 Hz, 1H), 1.80-1.92 (m, 

2H), 1.93-2.01 (m, 1H), 2.11 (ddd, J = 2.0, 5.5, 13.0 Hz, 1H), 2.56 (dd, J = 5.5, 6.5 Hz, 

1H), 3.52-3.67 (m, 4H), 3.81 (s, 3H), 3.91 (dd, J = 4.0, 4.5 Hz, 1H), 3.91 (ddd, J = 2.0, 

4.0, 7.0 Hz, 1H), 4.12-4.19 (m, 1H), 4.42 (d, J = 11.5 Hz, 1H), 4.44 (d, J = 11.2 Hz, 1H), 

4.45 (d, J = 11.5 Hz, 1H), 4.55 (d, J = 11.2 Hz, 1H), 6.86-6.90 (m, 2H), 7.24-7.28 (m, 

2H), 7.28-7.38 (m, 5H); 13C NMR (125 MHz, CDCl3) δ 12.3, 35.5, 37.8, 38.7, 55.5, 

66.8, 67.2, 71.6, 72.9, 76.1, 81.2, 87.7, 113.9(2), 127.97(2), 128.03, 128.7(2), 129.5(2), 
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130.7, 138.0, 159.3; ESI-HRMS calcd for C24H32O5Li [M + Li] 407.2410, found 

407.2420.  Characterization data for furan 4.16g:  Rf  = 0.25 (hexanes:ethyl acetate 

70:30); 1H NMR (300 MHz, CDCl3) δ 1.25 (d, J = 6.9 Hz, 3H), 2.91 (t, J = 6.9 Hz, 2H), 

2.95-3.06 (m, 1H), 3.67-3.73 (m, 2H), 3.69 (t, J = 6.9 Hz, 2H), 3.81 (s, 3H), 4.47 (s, 2H), 

5.96-6.01 (m, 2H), 6.86-6.91 (m, 2H), 7.24-7.28 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 

15.3, 29.1, 36.3, 55.4, 66.8, 72.8, 105.9, 106.5, 113.9(2), 129.5(2), 130.5, 152.1, 156.0, 

159.4; ESI-HRMS calcd for C17H22O4Li [M + Li] 297.1678, found 297.1672. 

Crucial nOe enhancements for 4.15g: 

 

 

 

 

THF 4.15h was prepared according to the representative procedure for the tandem 

process using ZnCl2 (390 mg, 2.82 mmol), ketene acetal 4.2c (271 mg, 0.88 mmol), 

Et3SiH (5.9 mL, 36.50 mmol), and aldehyde (±)-4.1a (150 mg, 0.73 mmol) for 12 h.  

Representative work-up and crude 1H NMR (300 MHz) analysis revealed an 

indeterminate ratio of multiple THF diastereomers to furan silyl esters.  Representative 

reduction with DIBAlH (780 μL, 4.38 mmol) and purification by gradient flash column 

Irradiate H Observed H % nOe 
A F NA 
B E 0.6 
C B 2.0 
C E 0.4 

 C’ D 2.5 
 C’ G 0.6 
D F NA 
E B NA 
G D 0.7 
G E 0.5
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chromatography (hexanes:ethyl acetate 80:20 to 75:25 to 50:50) delivered the major 

THF 4.15h (50 mg, 29%) as a pale yellow oil, inseparable minor THFs (39 mg, 23%) as 

a pale yellow oil, and furan 4.16h as a pale yellow oil.  Characterization data for THF 

4.15h:  Rf  = 0.55 (hexanes:ethyl acetate 60:40); IR (thin film) 3426, 3032, 1060 cm-1; 

1H NMR (500 MHz, CDCl3) δ 1.28 (d, J = 6.0 Hz, 3H), 1.63 (ddd, J = 7.0, 10.0, 13.0 

Hz, 1H), 1.77 (dddd, J = 4.0, 4.5, 7.5, 14.0 Hz, 1H), 1.88 (dddd, J = 4.0, 6.0, 8.5, 14.0 

Hz, 1H), 2.10 (ddd, J = 2.0, 5.5, 13.0 Hz, 1H), 2.70 (br s, 1H), 3.77 (ddd, J = 4.5, 6.0, 

15.0 Hz, 1H), 3.77 (ddd, J = 4.0, 7.5, 15.0 Hz, 1H), 3.85 (ddd, J = 2.0, 4.0, 7.0 Hz, 1H), 

4.02 (ddd, J = 4.0, 4.5, 8.5 Hz, 1H), 4.20 (ddq, J = 5.5, 6.0, 10.0 Hz, 1H), 4.47 (d, J = 

11.5 Hz, 1H), 4.55 (d, J = 11.5 Hz, 1H), 7.28-7.39 (m, 5H); 13C NMR (125 MHz, 

CDCl3) δ 21.0, 36.5, 39.5, 61.5, 71.7, 75.0, 84.2, 84.5, 127.9(2), 128.1, 128.7(2), 138.1; 

ESI-HRMS calcd for C14H20O3Li [M + Li] 243.1572, found 243.1568. Partial 

characterization data for furan 4.16h:  Rf  = 0.65 (hexanes:ethyl acetate 60:40); 1H NMR 

(300 MHz, CDCl3) δ 2.77 (br s, 3H), 2.85 (app t, J = 6.0 Hz, 2H), 3.85 (app t, J = 6.0, 

2H), 5.86-5.91 (m, 1H), 5.99 (app d, J = 2.7 Hz, 1H).    

Crucial nOe enhancements for 4.15h: 

 

 

 

Irradiate H Observed H % nOe 
A C’ 1.3 
B E 1.1 
B C 0.9 
C B 0.7 
C’ D 1.0 
C’ A 1.0 
D A 0.3 
D F 0.8 
E B 0.6 
F A NA 
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THF 4.15i was prepared according to the representative procedure for the tandem 

process using ZnCl2 (344 mg, 2.52 mmol), ketene acetal 4.2f (574 mg, 0.76 mmol, 55% 

purity), Et3SiH (5.1 mL, 31.50 mmol), and aldehyde (±)-4.1a (127 mg, 0.62 mmol) for 

12 h.  Representative work-up and crude 1H NMR (300 MHz) revealed a mixture of a 

single diastereomer (>19:1) of THF silyl ester, furan silyl ester, and undesired THF 

4.15i’.  Representative reduction with DIBAlH (674 μL, 3.78 mmol) and purification by 

gradient flash column chromatography (hexanes:ether 85:15 to 80:20 to 75:25 to 70:30) 

delivered the major THF 4.15i (42 mg, 20%) as a pale yellow oil, undesired THF 4.15i’ 

(29 mg, 25%) as a colorless oil, and furan 4.16i as a pale yellow oil.  Characterization 

data for THF 4.15i:  Rf  = 0.44 (hexanes:ethyl acetate 70:30); IR (thin film) 3434, 3063, 

3029, 1085 cm-1; 1H NMR (500 MHz, C6D6) δ 1.16 (d, J = 6.0 Hz, 3H), 1.54 (ddd, J = 

6.5, 10.0, 13.0 Hz, 1H), 1.85 (ddd, J = 1.5, 5.0, 13.0 Hz, 1H), 1.85 (br s, 1H), 3.33 (ddd, 

J = 3.0, 5.5, 8.0 Hz, 1H), 3.75-3.89 (m, 2H), 4.12 (ddq, J = 5.0, 6.0, 10.0 Hz, 1H), 4.19 

(ddd, J = 1.5, 3.0, 6.5 Hz, 1H), 4.21 (d, J = 12.0 Hz, 1H), 4.29 (d, J = 12.0 Hz, 1H), 4.29 

(dd, J = 3.0, 3.0 Hz, 1H), 6.89-7.30 (m, 10H); 13C NMR (125 MHz, C6D6) δ 20.1, 40.7, 

54.8, 63.9, 71.2, 75.2, 82.8, 85.2, 126.7, 127.7, 127.9(2), 128.6(2), 129.2(2), 131.2(2), 

136.6, 138.9; ESI-HRMS calcd for C20H24O3SLi [M + Li] 351.1606, found 351.1618. 

Characterization data for THF 4.15i’:  Rf  = 0.67 (hexanes:ethyl acetate 70:30); IR (thin 

film) 3029, 1099 cm-1; 1H NMR (300 MHz, CDCl3) δ 1.27 (d, J = 6.0 Hz, 3H), 1.53 
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(ddd, J = 6.6, 9.9, 12.9 Hz, 1H), 2.16 (ddd, J = 0.9, 5.1, 12.9 Hz, 1H), 3.81 (dd, J = 2.7, 

9.6 Hz, 1H), 4.08 (dd, J = 5.1, 9.6 Hz, 1H), 4.14-4.26 (m, 2H), 4.48 (d, J = 12.0 Hz, 1H), 

4.53 (d, J = 12.0 Hz, 1H), 7.34 (s, 5H); 13C NMR (75 MHz, CDCl3) δ 20.7, 40.5, 71.3, 

73.2, 74.5, 80.0, 127.8(2), 127.9, 128.7(2), 138.4; ESI-HRMS calcd for C12H16O2Li [M 

+ Li] 199.1310, found 199.1276.  Partial characterization data for furan 4.16i:  Rf  = 0.54 

(hexanes:ethyl acetate 70:30); 1H NMR (300 MHz, CDCl3) δ 2.29 (br s, 3H), 3.83 (dd, J 

= 6.6, 11.4 Hz, 1H), 3.95 (dd, J = 6.6, 11.4, 1H), 4.33 (t, J = 6.6, 1H), 5.86-5.92 (m, 1H), 

6.01 (app d, J = 3.0 Hz, 1H), 7.26-7.40 (m, 5H).  Unambiguous nOe enhancements could 

not be obtained for THF 4.15i’.    

Crucial nOe enhancements for 4.15i: 

 

 

 

 

 

THF 4.15j was prepared according to the representative procedure for the tandem 

process using ZnCl2 (264 mg, 1.94 mmol), ketene acetal 4.2e (188 mg, 0.58 mmol), 

allyltrimethylsilane (3.8 mL, 24.25 mmol), and aldehyde (±)-4.1a (100 mg, 0.48 mmol) 

Irradiate H Observed H % nOe 
A   C’ 1.0 
B E 1.6 
B C 0.9 
C B 1.3 
C E 0.2 

 C’ D 1.5 
 C’ A 1.2 
E B 0.5 
E F 1.5 
F D 1.4 
F A 0.3 
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for 12 h.  Representative work-up and crude 1H NMR (300 MHz) analysis revealed a 

1.0:1.7 ratio of a single diastereomer (>19:1) of THF to furan silyl esters.  

Representative reduction with DIBAlH (519 μL, 2.91 mmol) and purification by 

gradient flash column chromatography (hexanes:ethyl acetate 90:10 to 85:15) delivered 

the major THF 4.15j (37 mg, 26%) as a colorless oil and furan 4.16a as a pale yellow 

oil.  Characterization data for THF 4.15j:  Rf  = 0.67 (hexanes:ethyl acetate 60:40); IR 

(thin film) 3443, 3069, 3029, 1066 cm-1; 1H NMR (300 MHz, C6D6) δ 0.93 (d, J = 7.5 

Hz, 3H), 1.10 (s, 3H), 1.52 (dd, J = 7.0, 13.0 Hz, 1H), 1.81 (dd, J = 4.5, 13.0 Hz, 1H), 

1.78-1.85 (m, 1H), 2.32 (dd, J = 7.5, 13.5 Hz, 1H), 2.43 (dd, J = 6.5, 13.5 Hz, 1H), 3.51-

3.59 (m, 2H), 3.79 (ddd, J = 4.5, 5.5, 7.0 Hz, 1H), 4.06 (dd, J = 5.0, 5.5 Hz, 1H), 4.14 (d, 

J = 12.0 Hz, 1H), 4.25 (d, J = 12.0 Hz, 1H), 5.01-5.01 (m, 2H), 5.77-5.86 (m, 1H), 7.07-

7.25 (m, 5H); 13C NMR (125 MHz, C6D6) δ 12.3, 26.9, 38.8, 42.5, 45.1, 66.4, 71.7, 81.8, 

82.0, 85.8, 117.7, 127.86(2), 127.91, 128.6(2), 135.1, 138.6; ESI-HRMS calcd for 

C18H26O3Li [M + Li] 297.2042, found 297.2085.  

Crucial nOe enhancements for 4.15j: 

 

 

 

Irradiate H Observed H % nOe 
A B 1.0 
A E 0.7 

 A’ B 1.1 
 A’ E 0.9 
B D 0.5 
B  C’ 1.4 
D B 0.5 
D G 1.0 
E A 0.6 
G B 0.4
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THF 4.15k was prepared according to the representative procedure for the tandem 

process using ZnCl2 (466 mg, 3.42mmol), ketene acetal 4.2c (353 mg, 1.14 mmol), 

Et3SiH (6.1 mL, 38.00 mmol), and aldehyde (±)-4.1g (270 mg, 0.76 mmol) for 12 h.  

Representative work-up and crude 1H NMR (300 MHz) analysis revealed an 

indeterminate ratio of multiple THF diastereomers to furan silyl esters.  Representative 

reduction with DIBAlH (813 μL, 4.56 mmol) with slow warming from -78 °C to -30 °C 

to prevent PMB deprotection and purification by gradient flash column chromatography 

(hexanes:ethyl acetate 80:20 to 70:30 to 60:40 to 30:70) delivered the major THF 4.15k 

(67 mg, 23%) as a pale yellow oil, inseparable minor THFs (56 mg, 19%) as a pale 

yellow oil, and furan 4.16k as a pale yellow oil.  Characterization data for THF 4.15k:  

Rf  = 0.42 (hexanes:ethyl acetate 50:50); IR (thin film) 3443, 3029, 1094 cm-1; 1H NMR 

(500 MHz, CDCl3) δ 1.70 (ddd, J = 7.0, 9.5, 13.0 Hz, 1H), 1.71-1.93 (m, 4H), 2.10 (ddd, 

J = 2.0, 5.5, 13.0 Hz, 1H), 2.72 (br s, 1H), 3.51-3.58 (m, 2H), 3.76-3.86 (m, 2H), 3.81 (s, 

3H), 3.83 (ddd, J = 2.0, 4.0, 7.0 Hz, 1H), 4.01 (ddd, J = 4.0, 4.5, 8.5 Hz, 1H), 4.17-4.25 

(m, 1H), 4.42 (d, J = 11.5 Hz, 1H), 4.45 (d, J = 11.5 Hz, 1H), 4.46 (d, J = 12.0 Hz, 1H), 

4.55 (d, J = 12.0 Hz, 1H), 6.86-6.92 (m, 2H), 7.24-7.28 (m, 2H), 7.27-7.39 (m, 5H); 13C 

NMR (125 MHz, CDCl3) δ 35.9, 36.3, 38.1, 55.5, 61.5, 67.2, 71.6, 72.9, 76.6, 83.7, 84.3, 

113.9(2), 127.9(2), 128.0, 128.7(2), 129.5(2), 130.6, 138.1, 159.3; ESI-HRMS calcd for 

C23H30O5Li [M + Li] 387.2171, found 387.2165.  Partial characterization data for furan 

4.15k:  Rf  = 0.62 (hexanes:ethyl acetate 50:50); 1H NMR (300 MHz, CDCl3) δ 2.86 (t, J 
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= 6.3 Hz, 2H), 2.91 (t, J = 6.9 Hz, 2H), 3.69 (t, J = 6.9 Hz, 2H), 3.75-3.90 (m, 2H), 3.82 

(s, 3H), 4.48 (s, 2H), 5.98 (app d, J = 3.0 Hz, 1H), 6.01 (app d, J = 3.0 Hz, 1H), 6.84-

6.93 (m, 2H), 7.22-7.30 (m, 2H).  Crucial nOe enhancements for 4.15k: 

 

 

THF 4.15k’:  To a solution of THF 4.15k in CH2Cl2 (500 μL) was added Et3N (11 μL, 

0.08 mmol), DMAP (3 mg, 0.03 mmol), and 4-bromobenzoyl chloride (6 mg, 0.03 

mmol) at 23 °C and stirred for 3 h.  The reaction was quenched with sat. aq. NH4Cl (1 

mL), stirred vigorously for 15 min, and diluted with ether (20 mL).  The organic layer 

was separated from the aqueous layer and washed with additional sat. aq. NH4Cl (2 x 5 

mL), water (2 x 5 mL), and brine (2 x 5 mL).  The resulting solution was dried over 

MgSO4, filtered, and concentrated under reduced pressure.  Purification by flash column 

chromatography (hexanes:ethyl acetate 90:10) delivered THF 4.15k’ (9 mg, 60%) as a 

colorless oil.  Slow evaporation with hexanes:ether (1:1) over 24 h delivered THF 4.15k’ 

as colorless oil:  Rf  = 0.21 (hexanes:ethyl acetate 80:20); IR (thin film) 3032, 1719, 

1099 cm-1; 1H NMR (500 MHz, CDCl3) δ 1.66 (ddd, J = 7.0, 10.0, 13.0 Hz, 1H), 1.80-

2.08 (m, 4H), 2.11 (ddd, J = 2.0, 5.5, 13.0 Hz, 1H), 3.50-3.60 (m, 2H), 3.80 (s, 3H), 3.85 
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(ddd, J = 2.0, 3.5, 7.0, 1H), 4.02 (ddd, J = 3.5, 4.5, 8.0, 1H), 4.16-4.24 (m, 1H), 4.37-

4.47 (m, 2H), 4.41 (d, J = 11.5 Hz, 1H), 4.44 (d, J = 11.5 Hz, 1H), 4.46 (d, J = 12.0 Hz, 

1H), 4.54 (d, J = 12.0 Hz, 1H), 6.86-6.90 (m, 2H), 7.24-7.26 (m, 2H), 7.26-7.38 (m, 5H), 

7.54-7.60 (m, 2H), 7.86-7.92 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 33.8, 36.0, 38.2, 

55.5, 62.6, 67.4, 71.5, 72.9, 76.2, 81.2, 83.8, 113.9(2), 127.8(2), 128.0, 128.2, 128.7(2), 

129.4, 129.5(2), 130.7, 131.3(2), 131.9(2), 138.2, 159.3, 166.0; ESI-HRMS calcd for 

C30H33BrO6Li [M + Li] 575.1621/577.1600, found 575.1795/577.1785.  Crucial nOe 

enhancements for 4.15k’: 

   

 

β-silyloxy-γ-ketoaldehyde (±)-4.1m was prepared according to the representative 

procedure for ozonolysis (Procedure B) using bis-olefin 4.35a (1.00 g, 3.74 mmol) in 

CH2Cl2 (70 mL) and PPh3 (1.91 g, 8.23 mmol).  Purification by flash column 

chromatography (hexanes:ethyl acetate 85:15) delivered ketoaldehyde (±)-4.1m (560 

mg, 55%) as a pale yellow oil:  Rf  = 0.63 (hexanes:ethyl acetate 60:40); IR (thin film) 

2732, 1723, 1114 cm-1; 1H NMR (300 MHz, CDCl3) δ 0.10 (s, 3H), 0.13 (s, 3H), 0.92 (s, 

9H), 2.28 (s, 3H), 2.78 (m, 2H), 4.48 (dd, J = 5.4, 5.7 Hz, 1H), 9.74 (dd, J = 1.5, 1.8 Hz, 

1H); 13C NMR (75 MHz, CDCl3) δ -5.0, -4.9, 17.9, 25.6(3), 26.0, 48.0, 73.9, 198.8, 
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210.4; ESI-HRMS calcd for C11H23O3Si [M + H] 231.1416, found 231.1439.  An 

alternative procedure could be utilized according to the general procedure for Swern 

oxidation using oxalyl chloride (1.5 mL, 16.84 mmol) in CH2Cl2 (20 mL), DMSO (2.4 

mL, 33.68 mmol), the corresponding diols (987 mg, 4.21 mmol) in CH2Cl2 (20 mL), and 

Et3N (9.4 mL, 67.36 mmol).  Representative work-up with water (3 x 20 mL) and brine 

(3 x 20 mL) then purification by flash column chromatography (hexanes:ethyl acetate 

90:10) delivered ketoaldehyde (±)-4.1m (485 mg, 50%) as a pale yellow oil. 

 

β-silyloxy-γ-ketoaldehyde (±)-4.1n was prepared according to the representative 

procedure for ozonolysis (Procedure B) using bis-olefin 4.35b (315 mg, 1.12 mmol) in 

CH2Cl2 (20 mL) and PPh3 (646 mg, 2.46 mmol).  Purification by flash column 

chromatography (hexanes:ethyl acetate 85:15) delivered ketoaldehyde (±)-4.1n (160 mg, 

50%) as a pale yellow oil:  Rf  = 0.50 (hexanes:ethyl acetate 70:30); IR (thin film) 2727, 

1719, 1122 cm-1; 1H NMR (300 MHz, C6D6) δ 0.93-0.96 (s, 21H), 1.99 (s, 3H), 2.27 

(ddd, J = 1.8, 6.0, 16.5 Hz, 1H), 2.36 (ddd, J = 1.5, 5.4, 16.5 Hz, 1H), 4.37 (dd, J = 5.4, 

6.0 Hz, 1H), 9.33 (dd, J = 1.5, 1.8 Hz, 1H); 13C NMR (75 MHz, C6D6) δ 12.5(3), 

18.0(3), 18.1(3), 25.6, 48.6, 74.9, 197.7, 208.7; ESI-HRMS calcd for C14H29O3Si [M + 

H] 273.1886, found 273.1953. 
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THF 4.15m was prepared according to the representative procedure for the tandem 

process using ZnCl2 (279 mg, 2.05 mmol), ketene acetal 4.2e (190 mg, 0.59 mmol, dr 

>19:1), Et3SiH (4.1 mL, 25.60 mmol), and ketoaldehyde (±)-4.1m (120 mg, 0.52 mmol) 

for 24 h.  Representative work-up and crude 1H NMR (300 MHz) analysis revealed a 9:1 

ratio of THF silyl esters.  Representative reduction with DIBAlH (548 μL, 3.07 mmol) 

and purification by gradient flash column chromatography (hexanes:ethyl acetate 90:10 

to 85:15) delivered THF 4.15m (33 mg, 23%, dr 9:1) as a pale yellow oil:  Rf  = 0.30 

(hexanes:ethyl acetate 70:30); IR (thin film) 3420, 1129 cm-1; 1H NMR (500 MHz, 

C6D6) δ -0.01 (s, 3H), 0.00 (s, 3H), 0.82 (d, J = 7.0 Hz, 3H), 0.93 (s, 9H), 1.09 (d, J = 

6.5, 3H), 1.59 (ddd, J = 3.5, 6.5, 13.0 Hz, 1H), 1.69 (ddd, J = 7.0, 9.5, 13.0 Hz, 1H), 1.77 

(m, 1H), 1.99 (br s, 1H), 3.44-3.56 (m, 2H), 3.69 (dq, J = 6.5, 6.5 Hz, 1H), 3.79 (ddd, J = 

3.5, 6.5, 7.0 Hz, 1H), 4.15 (ddd, J = 5.0, 6.5, 9.5 Hz, 1H); 13C NMR (125 MHz, C6D6) δ 

-4.7, -4.6, 12.1, 18.2, 19.1, 25.9(3), 37.7, 38.8, 66.0, 78.4, 81.1, 82.4; ESI-HRMS calcd 

for C14H30O3SiLi [M + Li] 281.2124, found 281.2095. 

 

THF 4.1m’ was prepared according to the representative procedure for the tandem 

process using ZnCl2 (260 mg, 1.91 mmol), ketene acetal 2c (174 mg, 0.57 mmol), 

Et3SiH (3.9 mL, 23.85 mmol), and ketoaldehyde (±)-4.1m (110 mg, 0.48 mmol) for 24 
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h.  Representative work-up and crude 1H NMR (300 MHz) analysis revealed a 2:1 ratio 

of THF silyl esters.  Representative reduction with DIBAlH (510 μL, 2.86 mmol) and 

purification by gradient flash column chromatography (hexanes:ethyl acetate 90:10 to 

85:15) delivered THF 4.15m (19 mg, 15%) and THF 4.15m’’ (10 mg, 8%) as pale 

yellow oils.  Characterization for the major diastereomer THF 4.15m’:  Rf  = 0.35 

(hexanes:ethyl acetate 70:30); IR (thin film) 3420, 1116 cm-1; 1H NMR (500 MHz, 

C6D6) δ -0.024 (s, 3H), -0.019 (s, 3H), 0.92 (s, 9H), 1.07 (d, J = 6.5, 3H), 1.48 (ddd, J = 

6.5, 9.0, 12.5 Hz, 1H), 1.52-1.61 (m, 2H), 1.64 (ddd, J = 3.0, 6.0, 12.5 Hz, 1H), 2.24 (br 

s, 1H), 3.65-3.68 (m, 3H), 3.75-3.80 (m, 1H), 4.11-4.16 (m, 1H); 13C NMR (125 MHz, 

C6D6) δ -4.8, -4.6, 18.1, 19.4, 25.9(3), 38.3, 41.6, 61.2, 77.9, 78.3, 82.9; ESI-HRMS 

calcd for C13H28O3SiLi [M + Li] 267.1968, found 267.1960. 

 

THF 4.15n was prepared according to the representative procedure for the tandem 

process using ZnCl2 (522 mg, 3.83 mmol), ketene acetal 4.2g (648 mg, 1.15 mmol), 

Et3SiH (7.7 mL, 47.90 mmol), and ketoaldehyde (±)-4.1n (260 mg, 0.96 mmol) for 24 h.  

Representative work-up and crude 1H NMR (300 MHz) analysis revealed a 5:1 ratio of 

THF silyl esters and undesired THF 4.15n’.  Representative reduction with DIBAlH (1.0 

mL, 5.75 mmol) and purification by gradient flash column chromatography 

(hexanes:ether 99:1 to 90:10) delivered THF 4.15n (29 mg, 5%, dr 5:1) as a pale yellow 

oil.  Characterization data for THF 4.15n:  Rf  = 0.30 (hexanes:ethyl acetate 80:20); IR 

(thin film) 3457, 1108 cm-1; 1H NMR (500 MHz, CDCl3) δ 1.04-1.07 (m, 21H), 1.09 (s, 
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9H), 1.17 (d, J = 6.5, 3H), 1.76 (ddd, J = 3.0, 6.5, 13.0 Hz, 1H), 2.12 (ddd, J = 6.0, 9.5, 

13.0 Hz, 1H), 2.45 (dd, J = 5.5, 7.0 Hz, 1H), 3.54-3.67 (m, 2H), 3.80-3.86 (m, 1H), 3.85-

3.90 (m, 1H), 3.98-4.02 (m, 1H), 4.24-4.30 (m, 1H), 7.35-7.74 (m, 10H); 13C NMR (125 

MHz, CDCl3) δ 12.3, 18.2(6), 19.7, 19.8(3), 27.3(3), 36.5, 64.3, 73.2, 77.9, 80.3, 83.3, 

127.8(2), 127.9(2), 130.0(2), 133.6, 134.2, 136.0(2), 136.1(2); ESI-HRMS calcd for 

C32H52O4Si2Li [M + Li] 563.3564, found 563.3464.  Characterization data for THF 

4.15n’:  Rf  = 0.37 (hexanes:ethyl acetate 90:10); IR (thin film) 1127 cm-1; 1H NMR (300 

MHz, CDCl3) δ 1.07-1.08 (m, 21H), 1.20 (d, J = 6.3, 3H), 1.80-1.88 (m, 1H), 2.03-2.15 

(m, 1H), 3.78-3.86 (m, 1H), 3.87-3.98 (m, 2H), 4.01-4.06 (m, 1H); 13C NMR (75 MHz, 

CDCl3) δ 12.3, 18.2(6), 19.5(3), 35.8, 66.8, 78.3, 82.7; CI-LRMS calcd for C14H31O2Si 

[M + H] 259, found 259.   

Crystal and Molecular Structure Determination 

X-ray Diffraction Laboratory 
Department of Chemistry 
Texas A&M University 
 
Report:    November 28, 2007 
Structure:    DRB_112707_Sii (Orig.: am-VI-309); CCDC #681175 
Nattamai Bhuvanesh  (Sample from Andy Mitchell)  
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Table A.4.1.  Crystal data and structure refinement for DRB1127b. 

Identification code  drb1127b 

Empirical formula  C22 H25 Br O4 

Formula weight  433.33 

Temperature  110(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 18.996(16) Å α= 90°. 

 b = 5.709(5) Å β= 115.272(9)°. 

 c = 20.557(17) Å γ = 90°. 

Volume 2016(3) Å3 

Z 4 

Density (calculated) 1.428 Mg/m3 

Absorption coefficient 2.063 mm-1 

F(000) 896 

Crystal size 0.50 x 0.15 x 0.10 mm3 

Theta range for data collection 1.22 to 27.64°. 

Index ranges -24<=h<=24, -7<=k<=7, -26<=l<=26 

Reflections collected 20029 

Independent reflections 4500 [R(int) = 0.0709] 

Completeness to theta = 27.64° 95.7 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8203 and 0.4252 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4500 / 0 / 246 

Goodness-of-fit on F2 1.017 

Final R indices [I>2sigma(I)] R1 = 0.0352, wR2 = 0.0788 

R indices (all data) R1 = 0.0662, wR2 = 0.0934 

Largest diff. peak and hole 0.485 and -0.746 e.Å-3 
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Table A.4.2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for DRB1127b.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
Br(1) -2373(1) 10146(1) 1658(1) 32(1) 

O(4) 1462(1) -382(3) 2798(1) 25(1) 

O(2) 620(1) 4169(3) 4217(1) 24(1) 

O(3) 2449(1) 3648(3) 4170(1) 24(1) 

O(1) 544(1) 7019(3) 4947(1) 28(1) 

C(1) -1577(1) 8801(4) 2501(1) 24(1) 

C(4) -383(1) 6950(4) 3709(1) 21(1) 

C(5) -665(1) 5724(4) 3057(1) 22(1) 

C(11) 1812(1) 2019(4) 3902(1) 20(1) 

C(18) 444(1) -4535(5) 1786(1) 28(1) 

C(6) -1266(1) 6644(4) 2450(1) 24(1) 

C(7) 297(1) 6088(4) 4362(1) 22(1) 

C(17) 302(1) -2385(4) 2039(1) 24(1) 

C(9) 1623(1) 1231(4) 4521(1) 22(1) 

C(16) 801(1) -1595(5) 2795(1) 29(1) 

C(13) 2763(1) 1100(5) 3452(1) 28(1) 

C(20) -602(2) -3797(5) 628(1) 32(1) 

C(14) 2765(1) 3677(4) 3643(1) 25(1) 

C(22) -304(1) -973(5) 1578(1) 27(1) 

C(3) -718(1) 9107(4) 3748(1) 24(1) 

C(8) 1322(1) 3280(4) 4809(1) 25(1) 

C(19) -3(1) -5217(4) 1082(1) 30(1) 

C(21) -758(1) -1671(5) 873(1) 32(1) 

C(12) 2050(1) 61(4) 3510(1) 23(1) 

C(2) -1320(1) 10037(4) 3143(1) 26(1) 

C(10) 2315(1) 95(4) 5145(1) 29(1) 

C(15) 3557(2) 4830(4) 3962(1) 31(1) 

________________________________________________________________________________ 
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Table A.4.3.   Bond lengths [Å] and angles [°] for  DRB1127b. 

_____________________________________________________  

Br(1)-C(1)  1.908(3) 

O(4)-C(16)  1.432(3) 

O(4)-C(12)  1.436(3) 

O(2)-C(7)  1.350(3) 

O(2)-C(8)  1.461(3) 

O(3)-C(11)  1.438(3) 

O(3)-C(14)  1.444(2) 

O(1)-C(7)  1.212(3) 

C(1)-C(6)  1.389(3) 

C(1)-C(2)  1.390(3) 

C(4)-C(5)  1.400(3) 

C(4)-C(3)  1.404(3) 

C(4)-C(7)  1.494(3) 

C(5)-C(6)  1.385(3) 

C(5)-H(5)  0.9500 

C(11)-C(9)  1.530(3) 

C(11)-C(12)  1.553(3) 

C(11)-H(11)  1.0000 

C(18)-C(19)  1.386(3) 

C(18)-C(17)  1.403(3) 

C(18)-H(18)  0.9500 

C(6)-H(6)  0.9500 

C(17)-C(22)  1.394(3) 

C(17)-C(16)  1.503(3) 

C(9)-C(8)  1.528(3) 

C(9)-C(10)  1.534(3) 

C(9)-H(9)  1.0000 

C(16)-H(16A)  0.9900 

C(16)-H(16B)  0.9900 

C(13)-C(14)  1.523(4) 

C(13)-C(12)  1.529(3) 

C(13)-H(13A)  0.9900 
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Table A.4.3 (continued). 

C(13)-H(13B)  0.9900 

C(20)-C(19)  1.383(4) 

C(20)-C(21)  1.393(4) 

C(20)-H(20)  0.9500 

C(14)-C(15)  1.512(3) 

C(14)-H(14)  1.0000 

C(22)-C(21)  1.391(3) 

C(22)-H(22)  0.9500 

C(3)-C(2)  1.386(3) 

C(3)-H(3)  0.9500 

C(8)-H(8A)  0.9900 

C(8)-H(8B)  0.9900 

C(19)-H(19)  0.9500 

C(21)-H(21)  0.9500 

C(12)-H(12)  1.0000 

C(2)-H(2)  0.9500 

C(10)-H(10A)  0.9800 

C(10)-H(10B)  0.9800 

C(10)-H(10C)  0.9800 

C(15)-H(15A)  0.9800 

C(15)-H(15B)  0.9800 

C(15)-H(15C)  0.9800 

C(16)-O(4)-C(12) 112.88(17) 

C(7)-O(2)-C(8) 115.93(17) 

C(11)-O(3)-C(14) 105.78(16) 

C(6)-C(1)-C(2) 122.2(2) 

C(6)-C(1)-Br(1) 119.12(18) 

C(2)-C(1)-Br(1) 118.64(19) 

C(5)-C(4)-C(3) 119.7(2) 

C(5)-C(4)-C(7) 121.8(2) 

C(3)-C(4)-C(7) 118.4(2) 

C(6)-C(5)-C(4) 120.2(2) 

C(6)-C(5)-H(5) 119.9 
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Table A.4.3 (continued). 

C(4)-C(5)-H(5) 119.9 

O(3)-C(11)-C(9) 109.26(17) 

O(3)-C(11)-C(12) 106.22(17) 

C(9)-C(11)-C(12) 116.3(2) 

O(3)-C(11)-H(11) 108.3 

C(9)-C(11)-H(11) 108.3 

C(12)-C(11)-H(11) 108.3 

C(19)-C(18)-C(17) 120.2(2) 

C(19)-C(18)-H(18) 119.9 

C(17)-C(18)-H(18) 119.9 

C(5)-C(6)-C(1) 118.8(2) 

C(5)-C(6)-H(6) 120.6 

C(1)-C(6)-H(6) 120.6 

O(1)-C(7)-O(2) 123.8(2) 

O(1)-C(7)-C(4) 124.6(2) 

O(2)-C(7)-C(4) 111.64(19) 

C(22)-C(17)-C(18) 119.2(2) 

C(22)-C(17)-C(16) 120.2(2) 

C(18)-C(17)-C(16) 120.6(2) 

C(8)-C(9)-C(11) 110.9(2) 

C(8)-C(9)-C(10) 109.16(19) 

C(11)-C(9)-C(10) 113.47(19) 

C(8)-C(9)-H(9) 107.7 

C(11)-C(9)-H(9) 107.7 

C(10)-C(9)-H(9) 107.7 

O(4)-C(16)-C(17) 108.28(17) 

O(4)-C(16)-H(16A) 110.0 

C(17)-C(16)-H(16A) 110.0 

O(4)-C(16)-H(16B) 110.0 

C(17)-C(16)-H(16B) 110.0 

H(16A)-C(16)-H(16B) 108.4 

C(14)-C(13)-C(12) 105.04(18) 

C(14)-C(13)-H(13A) 110.7 
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Table A.4.3 (continued). 

C(12)-C(13)-H(13A) 110.7 

C(14)-C(13)-H(13B) 110.7 

C(12)-C(13)-H(13B) 110.7 

H(13A)-C(13)-H(13B) 108.8 

C(19)-C(20)-C(21) 120.5(2) 

C(19)-C(20)-H(20) 119.8 

C(21)-C(20)-H(20) 119.8 

O(3)-C(14)-C(15) 109.56(19) 

O(3)-C(14)-C(13) 103.10(18) 

C(15)-C(14)-C(13) 115.2(2) 

O(3)-C(14)-H(14) 109.6 

C(15)-C(14)-H(14) 109.6 

C(13)-C(14)-H(14) 109.6 

C(21)-C(22)-C(17) 120.5(2) 

C(21)-C(22)-H(22) 119.8 

C(17)-C(22)-H(22) 119.8 

C(2)-C(3)-C(4) 120.4(2) 

C(2)-C(3)-H(3) 119.8 

C(4)-C(3)-H(3) 119.8 

O(2)-C(8)-C(9) 107.59(18) 

O(2)-C(8)-H(8A) 110.2 

C(9)-C(8)-H(8A) 110.2 

O(2)-C(8)-H(8B) 110.2 

C(9)-C(8)-H(8B) 110.2 

H(8A)-C(8)-H(8B) 108.5 

C(20)-C(19)-C(18) 120.0(2) 

C(20)-C(19)-H(19) 120.0 

C(18)-C(19)-H(19) 120.0 

C(22)-C(21)-C(20) 119.6(2) 

C(22)-C(21)-H(21) 120.2 

C(20)-C(21)-H(21) 120.2 

O(4)-C(12)-C(13) 108.52(18) 

O(4)-C(12)-C(11) 112.49(18) 
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Table A.4.3 (continued). 

C(13)-C(12)-C(11) 103.04(18) 

O(4)-C(12)-H(12) 110.8 

C(13)-C(12)-H(12) 110.8 

C(11)-C(12)-H(12) 110.8 

C(3)-C(2)-C(1) 118.6(2) 

C(3)-C(2)-H(2) 120.7 

C(1)-C(2)-H(2) 120.7 

C(9)-C(10)-H(10A) 109.5 

C(9)-C(10)-H(10B) 109.5 

H(10A)-C(10)-H(10B) 109.5 

C(9)-C(10)-H(10C) 109.5 

H(10A)-C(10)-H(10C) 109.5 

H(10B)-C(10)-H(10C) 109.5 

C(14)-C(15)-H(15A) 109.5 

C(14)-C(15)-H(15B) 109.5 

H(15A)-C(15)-H(15B) 109.5 

C(14)-C(15)-H(15C) 109.5 

H(15A)-C(15)-H(15C) 109.5 

H(15B)-C(15)-H(15C) 109.5 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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Table A.4.4.  Anisotropic displacement parameters  (Å2x 103) for DRB1127b.  The anisotropic 

displacement factor exponent takes the form:  -2π2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

Br(1) 31(1)  34(1) 30(1)  6(1) 12(1)  6(1) 

O(4) 25(1)  32(1) 19(1)  -5(1) 11(1)  -10(1) 

O(2) 23(1)  29(1) 19(1)  -2(1) 9(1)  4(1) 

O(3) 32(1)  24(1) 26(1)  -4(1) 20(1)  -5(1) 

O(1) 32(1)  32(1) 21(1)  -5(1) 13(1)  -4(1) 

C(1) 24(1)  24(1) 27(1)  4(1) 14(1)  -1(1) 

C(4) 21(1)  24(1) 22(1)  1(1) 14(1)  -4(1) 

C(5) 26(1)  21(1) 25(1)  -1(1) 15(1)  -1(1) 

C(11) 20(1)  23(1) 18(1)  0(1) 8(1)  0(1) 

C(18) 23(1)  34(2) 26(1)  4(1) 10(1)  1(1) 

C(6) 26(1)  25(2) 22(1)  -3(1) 13(1)  -4(1) 

C(7) 24(1)  23(1) 27(1)  -1(1) 18(1)  -5(1) 

C(17) 23(1)  29(2) 23(1)  1(1) 13(1)  -6(1) 

C(9) 24(1)  25(1) 20(1)  3(1) 11(1)  -1(1) 

C(16) 28(1)  38(2) 25(1)  -1(1) 14(1)  -7(1) 

C(13) 25(1)  35(2) 26(1)  -10(1) 13(1)  -3(1) 

C(20) 32(1)  38(2) 23(1)  -4(1) 8(1)  -8(1) 

C(14) 27(1)  33(2) 21(1)  1(1) 16(1)  2(1) 

C(22) 30(1)  27(2) 28(1)  0(1) 15(1)  -1(1) 

C(3) 29(1)  21(1) 26(1)  -3(1) 17(1)  -3(1) 

C(8) 25(1)  36(2) 15(1)  3(1) 9(1)  3(1) 

C(19) 32(1)  29(2) 31(1)  -4(1) 15(1)  -4(1) 

C(21) 27(1)  38(2) 27(1)  5(1) 9(1)  1(1) 

C(12) 22(1)  26(2) 19(1)  -2(1) 7(1)  -1(1) 

C(2) 28(1)  22(2) 34(1)  1(1) 20(1)  1(1) 

C(10) 31(1)  33(2) 23(1)  8(1) 11(1)  5(1) 

C(15) 34(1)  32(2) 33(1)  -9(1) 20(1)  -8(1) 

______________________________________________________________________________ 
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Table A.4.5.  Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 
for DRB1127b. 

________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  
H(5) -443 4255 3030 27 

H(11) 1345 2845 3538 24 

H(18) 848 -5527 2099 33 

H(6) -1461 5816 2007 29 

H(9) 1198 39 4326 27 

H(16A) 500 -544 2965 35 

H(16B) 974 -2966 3121 35 

H(13A) 3245 318 3790 33 

H(13B) 2719 924 2957 33 

H(20) -909 -4275 146 39 

H(14) 2408 4570 3209 30 

H(22) -408 477 1746 32 

H(3) -530 9934 4191 28 

H(8A) 1201 2749 5209 30 

H(8B) 1721 4527 4992 30 

H(19) 101 -6659 910 36 

H(21) -1171 -705 561 38 

H(12) 2190 -1410 3802 27 

H(2) -1552 11489 3168 31 

H(10A) 2724 1267 5374 43 

H(10B) 2520 -1191 4960 43 

H(10C) 2143 -518 5498 43 

H(15A) 3511 6416 4123 46 

H(15B) 3760 4913 3598 46 

H(15C) 3913 3910 4374 46 
________________________________________________________________________________ 
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