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ABSTRACT

As of 2011 buildings consumed 41% of all primary energy in the U.S. and can rep-

resent more than 70% of peak demand on the electrical grid. Usage by this sector has

grown almost 50% since the 1980s and projections foresee an additional growth of 17%

by 2035 due to increases in population, new home construction, and commercial devel-

opment. Three-quarters of building energy is derived from fossil fuels making it a large

contributor of the country’s CO2 and NOx output both of which greatly affect the environ-

ment and local air quality. Up to half of energy used by the building sector is related to

Heating, Ventilation, and Air-Condition systems. Focusing on improving building HVAC

control therefore has a large aggregate effect on US energy usage with economic and en-

vironmental benefits for end users.

This dissertation develops cascaded loop architectures as a solution to common HVAC

control issues. These systems display strong load-dependent nonlinearities and coupling

behaviors that can lead to actuator hunting (sustained input oscillations) from standard

PI controllers that waste energy and cost money. Cascaded loops offer a simple way to

eliminate hunting and decouple complex HVAC systems with minimal a priori knowledge

of system dynamics. As cascaded loops are easily implementable in building automation

systems they can be readily and widely adopted in the field.

An examination of the current state of PI control in HVAC and discussion of coordi-

nated, optimal control strategies being developed for reduced energy usage are discussed

in Chapter 1. The following two chapters outline the structure and benefits of the cascaded

architecture and demonstrate the same using a series of simulation case studies. Imple-

mentation approaches and parameterizations of the architecture are explored in Chapter 4

with a derivation showing that the addition of an additional feedback path (i.e., inner loop
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control) provides more design freedom and ultimately allows for improved control. Fi-

nally, Chapter 5 details results from initial cascaded loop implementation at three campus

buildings. Results showed improved control performance and an elimination of identified

hunting behavior.
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NOMENCLATURE

Building Technology

AHU Air Handling Unit

ASHRAE American Society of Heating, Refrigerating and Air-
Conditioning Engineers

EEV Electronic Expansion Valve

HVAC Heating, Ventilation, and Air-Conditioning

LD/HD Low/High Demand

TRV Thermostatic Radiator Valve

TU Terminal Unit

TXV/TEV Thermostatic Expansion Valve

VAV Variable Air Volume

VCC Vapor Compression Cycle

Building Automation

APOGEE Building automation software used by Texas A&M Uni-
versity Utilities

CHW Chilled Water

PPCL Powers Process Control Language

SCHW Building Supply Chilled Water

SP Duct Static Pressure

SPD Fan/Pump Speed

VLV Valve Position
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Control Terms

AMIGO Approximate M-constrained Integral Optimization PI
Tuning Method

FDD Fault Detection and Diagnosis

I/O Input/Output

LPF/HPF Low/High Pass Filter

LPV Linear Parameter Varying Model

LQR Linear Quadratic Regulator Control

MIMO Multi-Input-Multi-Output Control

MPC Model Predictive Control

PID Proportional-Integral-Derivative Control

SISO Single-Input-Single-Output Control

Error Metrics

IAE Integrated Absolute Error

MAE Maximum Absolute Error

MSE Mean Square Error

RMS Root Mean Square Error

Analysis Terms

CDD Cooling Degree Days

LFT Linear Fractional Transformation

LMI Linear Matrix Inequality

NGM Nonlinear Gap Metric

QAD Quarter-Amplitude Damping

RGA Relative Gain Array

ZOH Zero Order Hold
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1. INTRODUCTION AND LITERATURE REVIEW

Improving energy efficiency in the building sector plays an important role in reducing

total United States energy consumption. As of 2011 buildings consumed 41% of all pri-

mary energy in the U.S. (Figure 1.1) [1] and can represent more 70% of peak demand on

the electrical grid [2]. Usage by this sector has grown almost 50% since the 1980’s and

projections foresee an additional growth of 17% by 2035 due to increases in population,

as well as new home and commercial construction [1]. Three-quarters of building energy

is derived from fossil fuels making it a large contributor of the country’s CO2 and NOx

output both of which greatly effect the environment and local air quality [1, 3, 4].

Almost 90% of a persons lifetime is estimated to occur indoors where rooms must be

conditioned to insure comfort and productivity [5, 6]. Indeed, half of all energy used by

buildings is related to just three operations: Heating, Ventilation, and Air-Conditioning

(HVAC) (Figure 1.1). These processes also account for a significant part of expenditures

U.S. Energy Consumption

Industrial

30%

Transportation

29%

Residential

22%

Commercial

19%

Renewables 9%
Petroleum 5%

Nuclear 16%

Coal

35%

Nat. Gas

34%

Cooling 10%
Water Heating 12%

Ventilation 3% Lighting 9%

Plug Loads 6%

Heating

37%

Other

23%

Buildings

Sector

Figure 1.1: Buildings use 41% of all primary energy in the United States with 75% coming
from fossil fuels. Half of that energy is used by HVAC systems (Figure adapted from [1]).
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where splits are 23.4%, 14.3%, and 3.7% respectively [1]. Focus on building HVAC con-

trol can therefore have a large aggregate effect not only on building energy consumption

but US energy usage as a whole with economic and environmental benefits for end users.

There is a large potential for HVAC energy savings through improved control and

sensing. In the residential sector, more than 25% energy savings are possible through a

combination of improved maintenance and continuous commissioning, a process of con-

stantly ensuring a building meets its design efficiency rating [7]. For equivalent programs,

the commercial sector could save more than 15% [8]. There are also energy savings as-

sociated with updating sensing and controls of building systems. Improvements such as

central management systems, occupancy sensing, and demand controlled ventilation have

potential to cut more than 30% of total building energy usage [9].

At the individual building level, energy savings may be equivalent to only a few hun-

dred dollars per year in electricity cost savings. Due to the large number of buildings on

the electrical grid, however, HVAC efficiency savings in the building sector are large en

masse. Although there will always be efficiency savings from improved technology used

in new construction, the majority of savings will be realized through better controls and/or

retrofits of existing buildings. For example, approximately 80% of all US buildings were

constructed before 2000 [10] with turnover of existing stock only 2-5% [11]. Because of

stricter energy policy standards implemented in the last several decades, new buildings

tend to use less energy [12] meaning that improvements to older construction will repre-

sent the majority of possible energy savings. With this in mind, the goals of this disserta-

tion are to develop a cascaded control architecture to improve building HVAC component

control. As it utilizes standard control techniques and is easily implementable in building

automation software, it will enable widespread improvements in existing building control

programs and can easily be incorporated into new systems as well.
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Figure 1.2: Example HVAC system diagram for a small building. Although responsible
for only three rooms, there are a large number of subsystems, actuators and sensors.

1.1 Issues with Building Control∗

Control of HVAC systems has some unique characteristics that make capturing po-

tential savings difficult. Take for example the simplified schematic of an HVAC system

for a small office building shown in Figure 1.2. This building has three main rooms di-

vided into six zones inside a footprint of less than 3,500 square feet. Heating and cooling

is accomplished by a centralized air-conditioning system. Supply air is circulated by a

variable-speed fan responsible for maintaining static pressure in a series of ducts. Air flow

into each zone is regulated by Variable Air Volume (VAV) boxes that modulate damper po-

sition to control flow based on heating load in each zone as well as minimum ventilation

requirements such as ASHRAE Standard 62.1 [13]. Supply air temperature is regulated

by an Air Handling Unit (AHU) that passes a combination of return and outside air over a

set of coils. Hot and/or cold water is passed through these coils by pumps and valves con-

nected to boiler and chiller systems. The chiller may further be connected to a centralized

cooling tower that rejects heat to the environment. As can be seen, HVAC is an extremely

∗Some material from this section was adapted by permission from Springer Nature: Chapter 4 - HVAC
System Modeling and Control: Vapor Compression System Modeling and Control by B. Rasmussen, C.
Price, J. Koeln, B. Keating, and A. Alleyne in Intelligent Building Control Systems c©2018 Springer.
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Table 1.1: List of Sensing and Actuation Points for Example Building in Figure 1.2.

Sensors Actuators

Zone Temperature (1-6) VAV Dampers (1-6)

Zone Ventilation Rate (1-6) Fan Speed

Supply Air Temperature Supply Water Pumps

Supply Air Duct Pressure Cold Water Valve
Supply Air Humidity Hot Water Valve
Outside Air Temperature Outside Air Damper

Return Air Temperature Return Air Damper

broad term covering many different subsystems and actuators. Control of these systems

must be very modular in order to ensure adequate performance of these desperate systems.

Apparent from the description above, HVAC systems will typically consist of numer-

ous subsystems, sensors, and actuators. The example in Figure 1.2 consists of six VAV

units, one supply fan, one AHU, and dampers that are connected downstream of a central

heating and cooling plant. Control of the these systems involves approximately 17 sen-

sors and 13 actuators summarized in Table 1.1. The issue of scale becomes even more

pronounced when dealing with large buildings that have multiple AHUs and dozens of

zones or with campuses consisting of multiple buildings. For example, the campus at

Texas A&M has more than 200,000 sensors and actuators spread over 200 buildings cov-

ering approximately 14 million gross square feet [14]. The sheer number of control loops

means that, in most cases, controls are never altered from factory settings or are marginally

tuned at best. An effective control design for HVAC systems must therefore be easy to im-

plement and tune as well as be modular enough to work with a broad range of systems.

Nonlinearities in HVAC systems and actuators make regulation difficult when using

standard linear control techniques. Actuators themselves come in two main categories that

effect how energy is used: obstruction and displacement. Obstruction actuators include
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Figure 1.3: (a) Valve flow profiles to reduce nonlinear behavior in an installed system. (b)
Actuators with hunting behavior use more energy (Ph) than when at a constant speed (P0)
due to affinity laws. Adapted with permission from [15] c©2018 Springer.

the most well known HVAC components such as valves and dampers. These components

open and close to impinge flow of a working fluid (e.g. air, water, refrigerant, etc.) and

thereby control the rate of energy transfer. For example, an air conditioning expansion

valve reduces outlet superheat of an evaporator by opening to allow more refrigerant flow.

Obstruction actuators are inherently wasteful; energy must be spent to pressurize a work-

ing fluid and deliver it to its destination. That effort is squandered if the delivered pressure

produces excess flow. Displacement actuators, however, actively consume electricity to

displace the fluid. Such actuators include components such as fans, pumps, and com-

pressors. While most energy consumption in an HVAC system will take place in these

components, their use is necessary but can be minimized through control.

Both types of actuators can have nonlinear performance characteristics in terms of flow

and energy consumption. Valves and dampers typically have a nonlinear relationship be-

tween position and flow (Figure 1.3(a)). While valves can be intentionally designed to

have specific flow characteristics [16, 17], many are sized incorrectly or have the wrong
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profile to provide any real benefit. These nonlinear attributes mean that actuators will

have different effects on a system depending on conditions, leading to poor performance

for static controllers in some ranges typically manifesting as undesired oscillations known

as hunting. Operation of fans, pumps, and compressors can be described by well known

affinity laws such as Equation 1.1 where there are cubic and quadratic relationships be-

tween power (Ẇ ), pressure (P ), flow rate (V̇ ), and speed (ω). These relationships mean

that 10% reduction in fan and/or pump speed can reduce power input by more than 25%.

Small reductions, therefore, in the use of these components can reap large energy savings.

Ẇ1

Ẇ2

=

(
ω1

ω2

)3

&
P1

P1

=

(
ω1

ω2

)2

&
V̇1

V̇2

=
ω1

ω2

(1.1)

HVAC actuators also display many classic nonlinear behaviors. Hysteresis is the de-

pendence of an actuators output on time and previous input. For HVAC systems, faulty or

loose linkages may cause immediate action in one direction but delayed action in another.

This effect also manifests as actuator drift where position settings stray over time. Actu-

ators can experience stiction effects whereby large input is required to start motion. This

causes excessive input as controllers must wind up to overcome initial resistance. HVAC

systems are also prone to faults and failures in sensing and control. Communication of

temperature, occupancy, and ventilation data for multiple rooms and systems requires a

large number of sensors any of which can fail or provide erroneous readings. Detailed

descriptions of the behavior of specific HVAC equipment can be found in [18].

Other nonlinear HVAC effects stem from fundamental properties of heat and mass

transfer. The main heat transfer modes used by HVAC systems for temperature control

(free/forced convection and radiation) all display complex and time varying properties.

Also, because the relationship between temperature differentials (e.g. ∆T in Equation 1.2)

and actuator flow rates is multiplicative, HVAC systems have dynamics that are heavily de-
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Figure 1.4: (a) An AHU consists of a cooling coil, fan, ducting, and sometimes a humidi-
fier. (b) For the model from Chapter 3, AHU dynamics can see a 40x range for steady-state
gain over operating conditions. Adapted with permission from [15] c©2018 Springer.

pendent on system operating conditions. This is the case with Air Handling Units (AHUs)

which can see large changes in dynamic response with load (Figure 1.4). Another example

is Variable Air Volume (VAV) dynamics that are dependent on the relative difference be-

tween the supply air, current room air, and outside air temperatures as well as the current

system static pressure and damper position as in Equation 1.2 from [19].

Crm ·
dTrm
dt

= ρa · cp,a · V̇ (Ps, θ)

VAV Flow

· (Ts − Trm)

∆Trm

+αrm · (Toa − Trm)

∆Toa

+Qdis (1.2)

Each of the nonlinearities discussed play a part in a phenomenon known as actuator

hunting, an issue that is well documented in the HVAC field (see [20], [21], or [22] for ex-

amples). Hunting manifests as large, relatively fast oscillations of the actuator (e.g. valves,

dampers, fans, etc.) due to system control. Slow, period variations due to factors such as

outside air temperature or solar loads are not considered hunting (Figure 1.5). Nonlinearity

causes the dynamic characteristics of an HVAC system to vary significantly with operating
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Figure 1.5: Hunting behavior is oscillatory behavior due to poor control. Slow, periodic
disturbances such as weather conditions are not considered hunting.

condition. These changes have profound effects on control gains based on when a system

is tuned. As system conditions move away from those under which tuning occurred, stabil-

ity and performance will degrade. This causes oscillations in actuator control and can even

affect up and downstream systems whose outputs will also begin to fluctuate. Combined,

these effects result in unstable environmental conditions that reduce occupant comfort. In

most cases, hunting is easily identifiable by inspection but automated detection methods

do exist that have explicit criteria for magnitude and frequency [22].

Hunting actuators have several adverse effects that result in wasted energy and re-

sources. As demonstrated in Figure 1.3(b), nonlinear power consumption in displacement

actuators results in more energy being used when hunting occurs as there is more con-

sumption above the mean input than below. The majority of cost savings will however be

from reduced system maintenance. There is a small, infrequent cost saving due to reduced

wear on the actuator resulting in less replacement of failed components. The larger cost

savings will be from eliminating seasonal tuning of HVAC controls. Many institutions,

including Texas A&M University, employ technicians to re-tune controllers biannually
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or when hunting is detected. By reducing hunting and developing a control strategy that

works effectively year-round, significant labor cost savings can be realized.

1.2 Detection of Poorly Performing HVAC Systems

Detection and identification of the root cause of performance issues in physical sys-

tems is known as Fault Detection and Diagnosis (FDD). Research into automating the

FDD process has been very active in the aerospace, process control, and automotive fields

(among many others) for decades [23]. Early HVAC FDD only began to appear during

the 1980s and mainly focused on the operation of refrigeration systems and air handling

units. FDD is especially important to building systems where it is estimated faults waste

5-30% of energy consumed by commercial buildings [24]. HVAC FDD can be purely used

for diagnosis of faulty behavior but can also be used as part of a predictive maintenance

program known as prognostication [23]. FDD methods can be based on modeling (either

physics or statistics based) or complicated rule sets that are similar to fuzzy logic control.

Comprehensive reviews of FDD methods can be found in [23, 24, 25, 26].

Fault detection methods are primarily focused on equipment issues meaning there is

comparatively little research on detection of poorly performing control systems. In fact,

there is no standard methodology in the HVAC industry that will verify a controller has

been tuned properly [27]. In process control, the most common Control Performance As-

sessment (CPA) metric is the Harris Index [28] that compares performance to a theoretical

Minimum Variance Controller. In practice however, this index can be too computationally

complex for HVAC systems where there are often significant hardware limitations. Other

CPA metrics use a variety of indices to determine performance ranging from dynamic

response analysis or integral based error calculation to statistical methods. One method

proposed by [29] for HVAC systems uses only superficial knowledge of a system to distin-

guish between sluggish or oscillatory responses and plant failure. An array of CPA indices

9
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Figure 1.6: (a) The ratio A1/A2 � 1 indicates actuator stiction (Figure adapted from
[29]). (b) A method from [31] uses shape of an input-output plot to identify valve stiction.

were evaluated in [27] to identify metrics better suited for the HVAC field including the

normalized Harris Index and exponentially weighted moving averages.

Beyond simple performance evaluation, detection of hunting behavior and/or poor con-

trol begins with identifying oscillations in the control signal. There are several methods

that seek to automate this process by using a combination of common properties. This is

usually a combination of calculating auto-correlation functions, detecting zero crossings,

and integrated error functions (for more detail see Chapter 5). Alternatively, the method

used to identify hunting in building systems in this dissertation uses the magnitude and

time between consecutive sign changes to determine the presence of oscillations [30].

In [32], the symmetry of control error is used to determine the cause of oscillations.

As seen in Figure 1.6(a), each half-period is divided and the ratio of the areas before and

after the peak is computed. Aggressive or poorly tuned control tends to be sinusoidal

resulting in a ratio of one, while stiction issues result in a ratio much greater than one. The

method proposed by [31], also uses a metric to determine the presence of valve stiction.

Each half period is fit assuming sinusoidal and triangular responses. The Stiction Index
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(SI) is then the ratio of Mean Square Errors (MSE) for each fit defined by Equation 1.3.

The approach proposed by [33] uses the cross-correlation between the input and output

signals. Depending on the type of correlation (odd or even), the cause of oscillation can

be determined as either stiction or due to an external oscillation disturbance. A more

graphical approach was proposed by [34] by observing the shape of a two-axis input-

output plot as in Figure 1.6(b). The shape of that plot is typically a parallelogram where

stiction strongly affects the distance (d) between `1 and `2.

SI =
MSEsin

MSEsin +MSETri
(1.3)

From the discussion above, there are no currently available methods that can com-

prehensively identify and diagnose poor control performance in HVAC systems. A com-

bination of methods can be employed to monitor performance and then systematically

eliminate causes such as stiction or external disturbances. Having eliminated other causes,

the root issue of poor controller performance can be established.

1.3 Traditional Building Control Strategies∗

As in most fields, control of HVAC systems began with mechanically based regulation.

Until the advent of computer technology, thermostats utilized bimetallic strips and relay

control, also known as "bang-bang" control, to regulate temperature. Thermostats relied on

the difference in thermal expansion between the two metals to operate a switch powering

heating and cooling equipment. Although effective, this type of control can only regulate

temperature between a substantial dead-band (Figure 1.7(a)). Such on/off control also ex-

tends to compressor and fan control. Typical refrigeration cabinets found in supermarkets

and convenience stores use this strategy and are toggled by local thermostats. However

∗Some material from this section was adapted by permission from Springer Nature: Chapter 4 - HVAC
System Modeling and Control: Vapor Compression System Modeling and Control by B. Rasmussen, C.
Price, J. Koeln, B. Keating, and A. Alleyne in Intelligent Building Control Systems c©2018 Springer.
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Figure 1.7: (a) On/off control regulates HVAC equipment within a deadband. (b) TXV
diagram showing the flexible diaphragm, sensing bulb, and adjustable setpoint spring.

on/off of control has documented issues with synchronization for parallel systems which

can lead to higher electrical demand and poor temperature regulation [35, 36].

Other mechanical devices offer the ability to provide more analog control. For exam-

ple, Vapor Compression Cycle (VCC) systems can regulate evaporator pressure using a

mechanical valve known as a Pressure Regulating Valve (PRV). The valve uses a flexible

diaphragm to adjust valve stem position based on fluctuations in system pressure. PRVs

provide superior pressure disturbance rejection but are only suitable for applications with

stable load requirements. The Thermostatic Expansion Valve (TEV or TXV) is an exten-

sion of a PRV that uses a sensing bulb filled with saturated refrigerant at the evaporator

outlet to adjust valve position. As the evaporator discharge temperature changes, pressure

inside the bulb fluctuates causing pressure differentials across the flexible diaphragm and

thereby metering refrigerant. This configuration makes the TXV a superheat regulating

device allowing it to adjust to changes in system demand. Due to the physical separation

of the bulb and valve, these valves will often display hunting behavior [37]. A schematic

of a TXV is shown in Figure 1.7(b) to demonstrate key principles mechanical control.
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Over the past few decades, mechanical control devices have steadily been replaced

by digital equivalents. These devices offer the ability to provide adjustable, remote, and

modular control for many HVAC systems. For example, Electronic Expansion Valves

(EEVs) for VCC systems use stepper motors to precisely change valve position based on

digitally acquired signals. Likewise, Variable Frequency Drive (VFD) technology allows

compressors, motors, and fans to operate at intermediate speeds based on system demand.

Not surprisingly, digitization and miniaturization of technology has lead to the expansion

of digital control strategies for HVAC systems.

1.3.1 PID Control

Despite large amounts of research and the development of many advanced control

strategies in the past few years, the most dominant control strategies used today are still

on/off and Proportional-Integral-Derivative (PID). One survey of 11,000 process con-

trollers in refining, chemical, and paper industries found that 97% of all control loops

were PID in structure [38]. PID is also extremely prevalent in Building Automation Con-

trols (BAC) that are used for centralized HVAC management [22]. From Equation 1.4, a

PID controller is made of three parts: a proportional component that directly responds to

system error, an integral part that eliminates steady-state error, and a derivative component

that prevents violent changes in control input. PID control is low order, versatile, and eas-

ily implementable. Note that the ‘D’ term is rarely used in most HVAC controllers due to

its sensitivity to noise and perceived implementation difficulty. Despite its simplicity, PID

has demonstrated effective control in a wide range of applications and even acceptable

performance despite improper tuning. A future decline in the use of PID control seems

unlikely as many advanced control strategies still utilize PID for local control underneath

supervisory controllers and optimization algorithms [39].

u(t) = kp · e(t) + ki ·
∫ ∞

0

e(t)dt+ kd ·
d

dt
e(t) (1.4)
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1.3.2 Simple PID Tuning

The main barrier for implementing PID control is determining the correct control gains

for desired performance. The popularity of PID control has led to the development of

dozens of parameter tuning methods, see [40] and [41]. Because PID tuning is such a vast

field, the remainder of this section will focus on traditional and recent developments in

PID control and tuning for HVAC systems. For more general PID tuning techniques see

references like [42] or [43].

The tuning method created by Ziegler and Nichols [44] is by far the most ubiquitous

procedure used in HVAC control today [45, Chapter 7]. The tuning method was devel-

oped based on the need for a general procedure that could provide decent performance for

large numbers of first order process control loops. The method is based on the principle

of Quarter-Amplitude Damping (QAD) where successive error peaks in a system response

are reduced by 25% in magnitude. QAD may however be undesirable for many applica-

tions as it is inherently oscillatory with a damping ratio of only approximately ζ = 0.2

(see Figure 1.8(a)).

Ziegler and Nichols developed their method based on two closed-loop system charac-

teristics: ultimate proportional gain and period. Ultimate gain (Ku) is the point at which

proportional only control causes sustained oscillation in the measured variable. The period

of the oscillation (Pu) is known as the ultimate period. Experimentally, it was found that

QAD occurs for proportional gains approximately half the ultimate gain while "optimal"

choices for integral and derivative gains were fractions of the oscillation period. With

such large proportional gains, Z-N tuned PID controllers are very susceptible to hunting

behavior, especially in HVAC systems that have constantly varying dynamics. Ziegler

and Nichols were themselves aware of this drawback and even suggested detuning of the

proportional gain for worst-case conditions. Despite limited usefulness beyond first order
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Figure 1.8: (a) The Ziegler-Nichols method is based on Quarter-Amplitude Damping
where successive peaks are reduced by 25%. (b) Important open loop response charac-
teristics for first order identification.

systems and known hunting issues, the Z-N method is still by far the most prevalent tuning

procedure used today because its simplicity lends itself as a good starting point for tuning.

The drawbacks of the closed-loop Z-N method spawned several improvements and/or

similar methods. Modifications of the original Z-N gains have been proposed that do

not aim for QAD (e.g. responses with reduced or no overshoot). These procedures are

very similar to the original Z-N method, in some cases using normalized process gain

(K̄ = Kss/Ku) and dead-time (T̄d = Td/τ ) to select gains [46] or using Nyquist analysis

to adjust the Z-N gains for certain stability properties [47]. Other methods, like Tyreus-

Luyben [48], use the same closed loop tuning technique but arrive at inherently different

ratios of Ku and Pu for tuning the PID gains. Each of the methods discussed require that

the closed loop system be pushed to a condition close to instability. In processes where

sustained oscillation is difficult to achieve and/or detrimental to the system, closed-loop

identification methods have been developed that only require underdamped oscillation to

characterize the system [49]. Information about the decaying oscillations can be used to

estimate the ultimate gain and period from which PID gains can be selected.
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For systems where oscillations of any kind required by the closed loop tuning methods

discussed are impractical, open loop tuning methods can be used. These tests utilize data

from a step test to gather information about the process to be controlled. A step test

is conducted by first setting the control system to a ‘manual’ mode and letting both the

control and output signals stabilize at a constant value. The control signal is then stepped

with enough magnitude to induce a measurable response in the output signal. Ziegler and

Nichols developed rules for step tests or what they termed ‘process-reaction curves’. Two

response characteristics are used to determine PID values: 1) reaction rate (R) which is

the slope of the response curve at its inflection point and 2) apparent lag (Td) which is the

time given by the intersection of a tangent drawn from the inflection point to the x-axis

(see Figure 1.8(b)). Ratios of R and Td are then used to fix the PID gains [44]. Although

this open-loop Z-N method avoids pushing a process near instability in the tuning process,

it is still geared towards results with QAD.

More detailed models of the process response can be used to characterize the open

loop response by finding values for the parameters in Equation 1.5, known as a First Order

Plus Dead Time (FOPDT) model. For Fit ‘a’ in Figure 1.8(b), the inflection point is used

to generate a tangent line from which the time delay (Td) is found as in the Z-N open

loop method. The time constant (τa) is then taken as the difference between the delay and

the intersection of the tangent with the steady-state gain. This first method can however

significantly overestimate the time constant. An improved method, Fit ‘b’, sets the time

constant equal to the time at which the curve crosses 0.632K with the delay calculated

as before. While better, both fits rely on identifying and establishing a tangent to the

inflection point which can be an imprecise process depending on data resolution. A third

fit, Fit ‘c’, does not utilize the inflection point but instead uses times tc1 and tc2 to find

τc and Td by Equation 1.6. Graphical representations for each of these open loop fitting

methods can be found in Figure 1.8(b) and in-depth background can be found in [50].
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P (s) =
Ke−Tds

τs+ 1
(1.5)

τ =
3

2
(tc2 − tc1) & Td = tc2 − τ (1.6)

Many open loop tuning methods take advantage of first order model fits to select PID

gains. Published 11 years after the Z-N method, the Cohen and Coon method [51] can be

used with the first order model discussed before. Despite the improved modeling over the

Z-N method, the C-C method is still subject to robustness limitations as it is also designed

for QAD in the tuned response. The Chien-Hrones-Reswick method uses an open loop

characterization similar to the original Z-N method but with the system time constant

used explicitly. This method is more powerful than most as it offers different gains for

disturbance rejection and setpoint regulation as well as adjustments for responses with 0%

or 20% overshoot [47].

For processes where a FOPDT model does not provide an accurate representation of

the dynamics, other model types and associated rules have been developed. In [47], tuning

rules for plant models such as Integrator Plus Dead Time (IPDT), First Order Integrator

Plus Dead Time (FOIPDT), and Unstable FODPT plants are discussed. Accommodations

for PID control are made in each case, for example with IPDT and FOIPDT models no

additional integrator is required in the controller to eliminate steady-state error as an inte-

grator is already contained in the plant dynamics. Methods for higher order plants such as

the Second Order Plus Dead Time (SOPT) models have also been developed [49]. Rep-

resentations for each of these models are given in Table 1.2 and tuning methods for each

and many other model types can be found in [52].

Early tuning rules were primarily developed based on empirical testing and assump-

tions about what characterized an ‘optimal’ response. In fact, the original paper presented

by Ziegler and Nichols reproduced plots from circular chart recorders using what they
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Table 1.2: Example Process Models Used for PID Tuning.

IPDT FOIDPT UFOPDT SOPDT

Ke−Tds

s
Ke−Tds

s(τs+1)
Ke−Tds

τs−1
Ke−Tds

τ2s2+2ζτs+1

called a typical industrial process. Sense then many techniques have sought to outline

a more rigorous definition of optimality. Typically this involves minimizing the magni-

tude of different cost functions including Integrated Absolute Error (IAE), Integrated Time

weighted Absolute Error (ITAE), or Integrated Square Error (ISE) each defined in Equa-

tion 1.7. The choice of cost function used for determining a tuning formula can greatly a

affect the resulting closed loop response. Some tuning formulas that use these metrics are

the Fertick method [53], Ciancone and Marlin [54], and Lopez et al. [55].

IAE =

∫ ∞
0

|e(t)|dt, IAE =

∫ ∞
0

t|e(t)|dt, ISE =

∫ ∞
0

e2(t)dt (1.7)

The simple closed and open loop tuning methods discussed in this section are by no

means exhaustive. There are dozens of other methods and refinements aimed at improving

and simplifying the tuning process for specific models and industries. There is a large

amount of literature available comparing the performance of different methods including

[48], [56], and [57].

1.3.3 Advanced PID Tuning

Beyond empirical tuning rules, there are a host of tuning methods that utilize more

advanced controls analysis to tune PID controllers. One such strategy relies on what is

known as Internal Model Control. As seen in Figure 1.9(a), IMC design uses an assumed

plant model Ĝ to augment the controller and feedback paths. The IMC procedure involves
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Figure 1.9: (a) IMC design augments the controller and feedback loop with an assumed
ideal plant model Ĝ. (b) A Smith Predictor uses a delay free model to predict the response
of a system with significant time delay.

first factoring Ĝ into its minimum and non-minimum phase components, Ĝ− and Ĝ+

respectively, then augmenting Ĝ−1
− with a stable filter to ensure causality. The original

controller C can then be recovered by using the structure of the IMC controller according

to Equation 1.8. When the assumed plant structure is first or second order, the recovered

controller has the same structure as PI/PID controllers from which gains can be extracted.

Detailed derivation of IMC rules and PID related structures can be found in [58].

Cimc =
Ĝ−1
−

(λs+ 1)n
⇒ C =

Cimc

1 + ĜCimc
(1.8)

Often presented together, an equivalent to IMC is the direct synthesis method. Con-

trollers are determined by first specifying the desired closed loop transfer function Gcl(s),

then using an identified plant model G to solve the closed loop transfer function for the

required controller to achieve the closed loop response (Equation 1.9). For combinations

of first and second order models for the plant and closed loop response, the resulting con-

troller will be a PID structure [57].

Cds =
1

G
· Gcl

1−Gcl

(1.9)
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A special case of direct synthesis design (and IMC design) is when the plant model

contains an input delay. That delay will appear in the resulting controller making it a

non-PID structure. Using the first-order Taylor series expansion of the delay (e−Tds ≈

1 − Tds) recovers a PID type control that includes knowledge of the delay. Incorporating

the delay into the loop is related to Smith Predictor design, a method often used to control

systems with significant time delay [59]. From the block diagram in Figure 1.9(b), a Smith

Predictor is seen to compare a delay free model of the plant dynamics (Gdf ) with the

reference signal. The predictor also compares the actual output with with a delayed model

plant to prevent output drift and reject disturbances. In this way, Smith Predictors can

be used to reduce delay effects while maintaining closed loop performance. An excellent

example of Smith Predictor design can be found in [60].

IMC and direct synthesis can both be used to derive what is known as the Simple-

IMC PID tuning rules developed by [61]. The procedure used direct synthesis to find

PID gains for generalized identified model structures (e.g. first and second order with

time delay). However, the resulting integral time was too slow to adequately reject load

disturbances. To combat this, integral time is adjusted slightly to balance setpoint tracking

and disturbance rejection. Simple-IMC provides gains for what is known as the interacting

form PID controller (Equation 1.10). Equation 1.11 gives gains for the more standard non-

interaction form of a PID controller. Models and settings required to obtain gains for other

variations of PID control are also discussed in [61]. In general, S-IMC tuned controllers

have better performance than traditional tuning rules especially for second order systems.

Interacting PID: C(s) = Kc

(
τIs+ 1

τIs

)
(τDs+ 1) (1.10)

kp =
τI + τD
τI

Kc , ki =
Kc

τI
, kd = KcτD (1.11)
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Similar methods to IMC seek to further simplify the tuning process and/or provide a

measure of adjustability to the process. Lambda tuning was developed for processes with

long dead times but is mostly used in the pulp and paper industries [62]. Tuning uses

a desired closed loop transfer function like Equation 1.12 to explicitly solve for the PI

controller form. Control gains then have a variable (λ) that can be used to adjust perfor-

mance, i.e. smaller λ values mean faster closed loop responses. The Haalman Method is

similar only an ideal loop transfer function G` is determined instead of the closed loop

equation being specified. One specific choice is Equation 1.13, although this leads to total

cancellation of process poles and zeros which can lead to control issues [63].

G(s) =
e−Tds

1 + λTs
(1.12) G`(s) =

2e−Tds

3Tds
(1.13)

In a series of papers [64, 65], Astrom and Hagglund developed a method known as the

M -constrained Integral Gain Optimization (MIGO) method and a simplified approxima-

tion (AMIGO). The MIGO method is based on the inverse relationship between integrated

error and the integral gain (IE =
∫∞

0
e(t) dt = 1/ki). Controllers are therefore optimized

by maximizing integral gain subject to a robustness constraint specified on the Nyquist

curve. The simple AMIGO rules were derived based on a nominal robustness level and

results from a large test batch of plants that included first order, time delayed, and under-

damped second order dynamics. Although the AMIGO rules inherently provide a known

level of robustness and better performance than most traditional methods discussed, they

can still lead to hunting PID controllers due to static nonlinearity [21].

A different kind of tuning procedure was developed for HVAC system in [66] that uses

the Hermite-Biehler Theorem to identify stability regions for PID gains at particular load

conditions that also guarantee a minimum phase margin. This is done by establishing a

signature requirement that uses fixed strings of permissible signs for the real part of the
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Figure 1.10: (a) The design procedure developed by [66] can search planes of PID gains
for feasible combinations. (b) Typical setup for self-tuning PID algorithm. (c) Saturated
relay feedback better approximates sinusoidal intput.

closed loop characteristic equation at its root frequencies leading to a series of linear con-

straints. By fixing one gain, several planes of gains can be easily generated and compiled

into polytopic region of usable PID gains (see Figure 1.10(a)). Final gains are determined

by searching within the polytope for gain combinations that meet design requirements.

Full details on this method for continuous and discrete time plants can be found in [67].

1.3.4 Self-Tuning PID Strategies

Each of the methods discussed so far assumes that PID gains are tuned once by a

control engineer and remain constant for all operation. This process involves using the

identification techniques discussed before and then designing control gains off-line. De-

pending on success, this process has to be done several times and repeated each time the

controller begins to behave poorly. To deal with changing system loads and dynamics,

several automated self-tuning PID control strategies have been developed to reduce setup

effort and provide periodic retuning.
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Self-tuning algorithms rely on automating parameter identification and a built-in gain

selection algorithm. This is done by embedding an algorithmic switch to break the control

loop and then step, ramp, or pulse the input of a system while recording the response.

Another method that has gained popularity is the relay feedback method proposed by [63].

This method generates a sustained oscillation in the output by including a relay block in the

control loop Figure 1.10(b). From the resulting sustained oscillation, the system ultimate

gain and period can be determined and used with a tuning algorithm to automatically select

PID gains. Relay feedback is easily programmable and safe for closed loop identification

as the relay switches control input opposite the output when it crosses the setpoint.

Pure relay feedback has a tendency to underestimate the value of ultimate gain by any-

where between 10-20%. This is because standard relay feedback relations use a Fourier

approximation of the square relay signal. Greater accuracy can be achieved by using a

saturation relay instead of a pure relay [68]. By introducing a slope (k) and saturation

limit (h) to the relay block output, a better approximation of a sine wave is achieved (Fig-

ure 1.10(c)). Some design is required when selecting values of ‘k’ and ‘h’ to ensure accu-

racy of results and to generate a sustained oscillation. Modifications to the procedure are

also available to account for load disturbances and nonlinearities.

While most commercial methods for self-tuning PID controllers are either step test or

relay feedback based, a few other methods are used. Pseudo-Random Binary Signal identi-

fication provides greater frequency content than normal step or impulse tests that only give

information about nearly steady-state conditions [69]. Given a sufficiently exciting PRBS,

an accurate model of a system’s frequency dynamics across a wide spectrum can be iden-

tified. Phase locked loop identification is an alternate method that uses an external control

loop to regulate the phase difference between a reference signal and the measured output.

This method was designed to enable better estimation of a system frequency response both

in open and closed loop operation [70].
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1.4 Advances in Building Control

Despite the prevalence of PID control techniques in process and building controls,

there are numerous other control techniques have been developed. This section will focus

on control techniques beyond PID with the understanding that many of the frameworks

discussed can be augmented to tune PID controllers or use PID control as an underlying

controller.

1.4.1 Model-Free Control Techniques

PID control and many of its associated tuning methods fall under the umbrella of model

free control paradigms. These approaches seek to minimize the system information re-

quired to design and tune a low order controller by relying on the inherent robustness of

the feedback system [70]. Most tuning methods discussed apply a set of performance cri-

teria to a set of normalized plants and then develop generalize rules about control gains.

These methods can provide adequate performance, especially when plant dynamics are

similar to a system from the test set.

Methods are available that offer greater optimization of model free control gains and

performance. For any optimization problem, there is an associated cost function that cap-

tures the relevant performance characteristics. A standard optimization method will use

the gradient to minimize the cost function using a steepest descent algorithm. The Iterative

Feedback Tuning (IFT) method allows for the generation of the gradient matrix without

development of an intermediate model. This is accomplished by first recording the system

response to a reference input r(t) and then feeding the error signal into the system at the

reference input [70]. The relevant partial derivatives needed to calculate the gradient can

then be generated from the resulting signals.

The Newton Procedure is an improved optimization method that uses the Hessian to

determine the location of critical points. Using IFT to find the system’s Hessian matrix
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would require additional system responses making on-line identification lengthy and more

difficult. To address this, the Controller Parameter Cycling (CPC) algorithm perturbs each

input of a system to directly calculate components of the gradient and Hessian matrices

[70]. This method constructs relevant Newton parameters piecewise making it a slightly

more involved process while still maintaining the benefits of the model free approach.

Many HVAC controllers take advantage of operator knowledge of system limitations

and occupant comfort to create a set of rules governing system operation. Rules are typ-

ically triangular or trapezoidal weighting/membership functions that describe a series of

system states. Functions for input states are usually related to comfort and are descriptive

with labels such as hot, warm, comfortable, and cool. Output states are signals to system

actuators and as such will have descriptions like low, medium, and high. The input and

output weighting functions are blended to fix the system state and generate the appropriate

actuation. Rules sets, also known as knowledge bases, create the foundation for a Fuzzy

Logic Controller (FLC) which does not require explicit mathematical models.

FLC has been applied to a wide range of HVAC systems from temperature control for

potato cold storage to compressor control for residential HVAC systems [71]. Fuzzy self-

tuning valve control for single and multi-evaporator vapor compression systems showed

significant improvement over PID control over a wide range of operating conditions.

Fuzzy control has also been used in the automotive industry for independent occupant

climate control using factors such as engine coolant temperature, speed, and temperature

setpoint. In [72], the heating performance of a fuzzy controller was compared to PID and

on/off controllers with varying dead bands. The FLC was found to consume the least en-

ergy, saving approximately 30-70% depending on the comparison. FLC can also be used

to create an adaptive fuzzy PID controller as in [73] where parallel fuzzy P, fuzzy I, and

fuzzy D controllers showed improved performance over traditional PID control and other

fuzzy PID methods.
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There are many other model-free paradigms developed for use with HVAC systems.

In [74] a ‘human in the loop’ approach has been used to show preliminary energy sav-

ings. Occupants interacted with a smartphone application to give basic comfort data.

Researchers displayed aggregate data in the app and speculated users would moderate

their preferences based on group comfort. The method also included a subroutine to drift

the temperature towards outside conditions over time. Another model-free comfort opti-

mization proposed to use additional sensor streams to regulate temperature [75] within a

building zone. By monitoring many points within a multi-room zone, energy usage could

be optimized while preserving occupant comfort throughout a building.

1.4.2 Model-Based Control Techniques

Model-free methods offer good performance with minimal development cost. How-

ever, the greatest energy efficiency savings will come by using techniques that can solve

convex optimization problems using knowledge of system dynamics and building inter-

connections. The following section details common model-based methods used in the

HVAC field to provide improved performance and energy savings.

The simplest model-based techniques use approximation to improve performance. For

example, in [21] the functions in Equation 1.14 are used to characterize static-nonlinearity

of an AHU. The shape of the function can be adjusted using β1 and β2 to generate curves

similar to Figure 1.3(a). Because the function is invertible, it can be used directly in the

feedback path to reduce performance degradation with operating conditions. As discussed

in the previous section, Internal Model Control (IMC), uses an assumed plant model and

desired plant dynamic to generate a controller. The assumed plant model can be low order,

which gives PID equivalents, or higher order for more complex designs.

f(u|β1, β2) =
1− e−β2z

1− eβ2
where z(u|β1) =

1− e−β1u

1− eβ1
(1.14)
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Using measured disturbance signals to improve performance is known as feedforward

control. In [76], an inverse model of dual-duct AHU dynamics was used in parallel with

a PID controller. The inverse feedforward term predicted the appropriate input to meet

the desired reference while the PI controller worked to reject modeling errors and distur-

bances. The feedforward architecture was also used as a fault detection method as output

from the PI controller becomes very large when faults were present. In [77], the benefits of

static and dynamic feedforward terms in temperature control were compared. Both feed-

forward controllers provided better control with dynamic feedforward yielding the best

results.

There has been a lot of development in optimal control techniques for HVAC systems

with the stated goal of reducing electricity usage further and eventually reaching net-zero-

energy buildings. At their most basic level, optimal controllers seek to reduce the magni-

tude of a specified cost function. There are many options for cost functions but standard

options include penalties on output errors and control input. For example, Equation 1.14

is the cost associated with Linear Quadratic Regulator (LQR) control where Q and R are

weighting matrices that can be used to effect the performance of the resulting controller.

Other cost functions can be based on performance norms such as L2 or L∞ that penalize

total energy used by a system and worst-cast performance respectively [78].

J(x, u) =

∫ ∞
0

(xTQx+ uTRu) dt (1.15)

Examples of optimal control techniques on HVAC control design are numerous. Room

temperature control via a VCC air conditioning unit is discussed in [79] where superheat

and room temperature control were combined into a Multi-Input-Multi-Output controller

using an LQG synthesis (i.e. LQR with Kalman Filter). Similarly, the dynamics of a

heating system were analyzed and controlled using H∞ synthesis in [80]. Optimal tuning
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has also been used to generate tuning rules for PID controllers as in [81] where gains were

adaptively tuned to regulate AHU discharge air temperature.

Often exact dynamics of an HVAC system are not know completely due to unmea-

sured disturbances, unmodeled dynamics, and/or modeling errors. Design of controllers

with guaranteed performance despite these issues is known as robust control. Model un-

certainty can be captured by using filters to create a bounding cone around the frequency

response of the plant (Figure 1.11(a)). Using classic loop shaping techniques (i.e. high

loop magnitude at low frequency for reference tracking and small at high frequencies for

disturbance rejection), a controller can be found that guarantees performance despite lim-

ited plant knowledge. Parametric uncertainty is when the structure of a plant model is

correct, but values of parameters vary within a constrained set. Both unstructured and

parametric uncertainty can be grouped and placed in an upper Linear Fractional Transfor-

mation (LFT) configuration (Figure 1.11(b)) for use with optimal control techniques like

H∞. The uncertain and disturbance inputs are bundled together when using anH∞ control

approach to design for worst-case disturbances and modeling errors.

Magnitude

P
h

a
s
e

Reference

Tracking

Disturbance

Rejection

Real Sys.

Model

Envelope

(a)

P

Δ

K

u(t) e(t)

zu(t)wu(t) Uncertainty

wm(t) zm(t)

(b)

Figure 1.11: (a) Loop shaping for uncertain systems ensures model envelope avoids re-
gions defined by disturbance rejection and reference tracking criteria. (b) Model uncer-
tainties (∆) are collected into an upper LFT to be used with optimal tuning techniques.
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This type of robust control design has been done for many HVAC systems. For exam-

ple, in [82] a robust PID controller was designed for a VAV system where parameters in a

FOPDT model where shown to vary more than 300% over the damper input range. With

the integral gain fixed, the intersection of PD gains that satisfy sensitivity performance

criteria in the presence of multiplicative uncertainty were found. The complete operation

of an experimental reheat unit was controlled using a robust MIMOH∞ controller in [83].

Additive uncertainty was included in each of five subsystems and weights were added to

scale the normalized inputs and outputs. The controller was compared to decentralized PI

control and found to have significant performance improvements due to direct compensa-

tion for dynamic coupling and time varying dynamics.

Another approach to robust control is to solve the optimal problem in terms of Linear

Matrix Inequalities (LMIs) given in standard form given by Equation 1.16. LMIs have be-

come increasingly popular in controls as many control problems can be recast as an LMI.

The main advantage of LMIs is that they are convex, numerically stable, and solvable even

for large systems [84]. Also, optimization problems with LMI constraints lend themselves

naturally to multiple objectives and time varying systems which are just additional con-

straints on the optimization. Treating changing dynamics of a system as a polytopic set

involves solving a set of simultaneous LMIs. Solutions to a set of LMIs have guaran-

teed performance for systems within the region defined by the polytopic set. This type

of approach has been used to design robust controllers for HVAC equipment including

air-conditioning [85] and heat pump systems [86].

A(x) = A0 + x1A1 + · · ·+ xnAn < 0 (1.16)

As discussed, HVAC systems display many nonlinear characteristics. Although robust

control design can reduce the effect of nonlinearity in a system, it often results in more
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conservative performance. A different approach involves describing HVAC system dy-

namics as a large set of linear systems with time varying parameters. This description is

known as the Linear Parameter Varying (LPV) modeling approach that has been applied to

many HVAC systems, see [87] and [88] for example. LPV models typically will take the

form of Equation 1.17 where ρ(t) is an unknown parameter that effects the system dynam-

ics. Synthesis of controllers to deal with LPV systems fall into several main categories:

polytope description, Linear Fractional Transformation (LFT), and gridding techniques.

Each technique can be cast as a LMI which can be used in convex optimizations [89].


ẋ = A(ρ(t))x(t) +B(ρ(t))u(t)

y = C(ρ(t))x(t) +D(ρ(t))u(t)

(1.17)

LPV modeling lends itself towards the popular HVAC control strategy of gain schedul-

ing. This technique uses a set of linearized plant models to develop a family of controllers.

During operation, the control parameters can be interpolated or hard-switched as the sys-

tem transitions to a different operating point. Often this leads to better performance than

robust approaches especially in neighborhoods close to the linearization point. As LPV

and gain scheduling can utilize standard linear controllers, they have been used prolifically

for HVAC control spanning systems from hydronic radiators [87] to vapor compression

cycle systems [90, 91].

The strategy that has the most intense focus in recent building controls today is Model

Predictive Control (MPC). The goal of MPC is to coordinate often disparate, coupled

building systems in order to decrease overall energy usage while still maintaining occu-

pant comfort. MPC uses system models to simulate dynamics along a receding time hori-

zon and predict optimal control actions at each time step (Figure 1.12). Cost functions for

MPC are usually quadratic [92] although for buildings systems they are typically related
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Figure 1.12: At time t = k, an MPC controller optimizes the control to produce the best
system output. At the next time step (t = k + 1), this process is repeated given new data
and models.

to the monetary cost of running an HVAC system and avoided productivity loss due to

discomfort (see [93] for example). MPC has always been promising in simulation [94] but

has increasingly been shown effective on various experimental HVAC systems as in [95],

[96], and [97]. MPC is subset of Generalized Predictive Control (GPC) which use similar

horizon techniques for control optimization. In particular, GPC can be used to adapt PID

gains instead of directly changing the plant input signal. GPC-PID controllers have been

used in diverse applications such as water level control in cooling tanks [98] and in HVAC

equipment such as AHU chilled water valve control [99]. Centralized MPC has intense

communication and computation demands that make implementation difficult. Strategies

to limit network infrastructure include steady-state optimization (NC-OPT) [100], Decen-

tralized MPC (DMPC) [101], and Limited-Communication DMPC (LC-DMPC) [102].

Given certain conditions, each of these methods require less communication than central-

ized MPC but are still able converge to the centralized optimal solution.

Inherently, the success of an MPC algorithm is heavily dependent on the system mod-

els it uses to predict along the receding horizon. There are three main methods for devel-

oping these models: physics based (white-box modeling), hybrid physics and data driven
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modeling (grey-box modeling), and pure polynomial identification (black-box modeling).

The choice of modeling technique depends heavily on the application. As buildings are

living spaces that constantly change, real-time polynomial identification is a good option.

In [30], a black-box modeling algorithm uses real time data to select the appropriate poly-

nomial model structure and identify coefficients. The method was applied to a multi-room

simulation model with several MPC algorithms. Results showed improved performance

and the ability of the identification algorithm to stably interact with an MPC controller.

This review is by no means exhaustive. There are many techniques with limited ex-

perimental results that have shown promise in simulation including neural networks and

genetic algorithms as in [103]. The main control technique used in the vast majority of

buildings today is still PID control with MPC algorithms and gain scheduling algorithms

becoming more widespread. This chapter is meant to provide the insight that a controller

that uses the best parts of PID will be more readily adopted by the HVAC field, especially

if it can be used as an underlying architecture for more advanced supervisory algorithms.

1.5 Outline of Dissertation Research

The remainder of this dissertation will explore the use of cascaded PID controllers

for HVAC control. This architecture has multiple benefits including feedback lineariza-

tion and input-output decoupling. As it uses simple PID control loops that are built into

many building automation languages, it is readily adoptable in the field. In the remain-

ing chapters, this dissertation will: introduce the structure, discuss tuning procedures for

maximizing benefits, prove better performance, and discuss results from on-campus im-

plementation in building HVAC systems.
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2. CASCADED CONTROL

At its most basic level, cascaded control is the nesting of one feedback control loop

inside another [63]. The structure of the cascaded loop in most literature is some variation

on the block diagram given in Figure 2.1 where the outer loop generates an intermediate

reference signal for the inner loop controller. Nested loops are particularly helpful when

a system has several distinct dynamics between the controlled and process variables (e.g.

long delays or time constants). The architecture can also be used to reject disturbances

before they spill into other control loops. Typically cascaded control is used on systems

with multiple possible feedback signals with the dynamics of selected inner loop signal

being approximately five times faster than the process variable. The addition of multiple

loops can make implementation of cascaded control more complex, however there are

methods available to automate commissioning such as in [104].

Nested loops have been used in a variety of HVAC applications for the past several

decades [105]. Several aspects of Air Handling Unit (AHU) control have seen improve-

ment from using the architecture. In [106], cascaded control on duct pressure using differ-

ential supply and return air flow rate as the intermediate variable showed greater stability

than either direct pressure control or differential control separately. Also important was

that the nested loop still utilized feedback from the pressure sensor, allowing it to reject

r +

– 

+

– 

Plant

Inner
Controller

e1 u1 e2 u2C1 C2 P2 P1

Outer
Controller

Intermediate 
Setpoint

Figure 2.1: General block diagram of a cascaded control loop used in literature.
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disturbances from infiltration or exhaust airflow. AHU discharge/exit air temperature was

controlled in [107] with a PI and P cascaded loop augmented with a learning neural net-

work. This structure created an adaptive cascaded loop that showed improved temperature

regulation but required significant training data and did not respond quickly to sudden

changes in cooling load. In [108], a cascaded architecture using non-interacting and PD

control was used to decouple temperature and relative humidity control of AHU exit air.

Simulation results showed that within a given time span, the controller could vary temper-

ature or humidity while maintaining the other.

Cascaded control also showed significant improvement of superheat control in vapor

compression systems. In [109], a mechanical Thermostatic Expansion Valve (TEV) was

augmented with a stepper motor to adjust the pressure setpoint stem based on superheat

at the evaporator outlet. The architecture vastly reduced variation in system responses at

high and low flow conditions and improved overall system response. The architecture was

also implemented with an Electronic Expansion Valve (EEV) where the valve stem was

controlled directly by a stepper motor. Authors later discovered that when used with multi-

evaporator systems, cascaded control could reduce coupling [110]. Similar improvement

was discovered in [111] while using refrigerant mass flow as the intermediate variable.

This solution is however more difficult to implement as mass flow sensors are more ex-

pensive and less common than pressure sensors in VCC systems.

The cascaded architecture is widely utilized in a variety of other fields. The structure

is commonly used for robust motor speed regulation using outer loop control to generate

a supply current setpoint for the inner loop. In [112] this structure was augmented with PI

observers to eliminate issues of parameter uncertainty and external disturbances. Cascaded

loops are even seen in robotic systems, as in [113] where it was used for position tracking

and torque control of a four-arm pneumatic muscle tool tip machine. It is also used in

navigation control as in [114] where a three-layer cascaded loop that used LQR stabilizing
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state feedback, input-output decoupling control, and PD control to manage the flightpath

of a robotic helicopter.

This chapter will highlight the additional benefits of cascaded control beyond distur-

bance rejection. As shown, cascaded control can significantly reduce variations in sys-

tem dynamics, eliminate unwanted oscillations (hunting), and decouple multi-input-multi-

output (MIMO) dynamics. This is accomplished by defining the structure of the cascaded

loop and several performance metrics that can quantify the architectures benefits. The

types of systems and signals that can utilized this structure are also outlined.

2.1 Structure∗

In addition to all the benefits discussed before, cascaded control has recently been

shown to effectively linearize inherent and load-dependent nonlinearities for a broad range

of HVAC systems [115, 116]. The specific form for the cascaded loop used in this disserta-

tion is shown in generalized block diagram form in Figure 2.2. The architecture consists of

a fast inner loop controller with proportional gain kL and an outer loop PI controller with

gains kp and ki with respective control signals ui and uo. The system nonlinearity is con-

tained within the inner control loop which, as shown later, will approximately linearize the

system dynamics for the outer loop controller. Plant dynamics are given in Equation 2.1

and consist of a unitary transfer function G(s) and a dynamic nonlinear gain ψ(σ) which

is dependent on the operating condition ‘σ’ assumed to vary between 0 for low load and 1

for high load situations. This plant configuration is related to the Hammerstein modeling

approach which has been widely used in the HVAC field [117, 118]. The system has one

input and at most two distinct outputs which may, or may not, have separate nonlinearities.

∗Material in Sections 2.1-2.4 is adapted with permission from "Effective Tuning of Cascaded Control
Loops for Nonlinear HVAC Systems", C. Price and B. Rasmussen, Proceedings of the 2015 Dynamic Sys-
tems and Control Conference, vol. 2, c©2015 ASME and "Optimal Tuning of Cascaded Control Archi-
tectures for Nonlinear HVAC Systems", C. Price and B. Rasmussen, Science and Technology for the Built
Environment, vol. 23(8), pp. 1190-1202, c©2017 ASHRAE.
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Figure 2.2: Block diagram of a general cascaded loop for the process G(s) with a sin-
gle input and at most two outputs. Variables relating to the inner and outer loops have
subscripts "i" and "o" respectively.

This architecture is extremely modular in that the inner and outer loops can take feedback

on the same or different outputs which can have separate load dependent gains.

G(s) =

[
ψi(σ)Gi(s)

ψo(σ)Go(s)

]
(2.1)

The cascaded loop provides nonlinearity compensation by placing the system non-

linearities in the numerator and denominator of the inner loop transfer function (Equa-

tion 2.2). This structure allows the nonlinearities to counteract each other, reducing their

overall effect on the system dynamics provided that both ψo(σ) and ψi(σ) are monotonic

with respect to load condition and have slopes with the same sign. Such nonlinear trends

are common in HVAC systems that seek to control temperatures through flow control

methods such as variable air volume boxes or air-handling units. The linearization behav-

ior of the cascaded controller is demonstrated by Figure 2.3 where the effects of the inner

loop control are applied to a generic, first-order system with a single nonlinearity. As the

inner loop gain increases, the relative difference between operating conditions ‘A’ and ‘B’

is reduced and the dynamic response of the system is quickened across all conditions.

L(s, kL, σ) =
kLψo(σ)Go(s)

1 + kLψi(σ)Gi(s)
(2.2)
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Figure 2.3: The inner loop (IL) controller of the cascaded architecture reduces differences
in steady-state gains between operating conditions ‘A’ and ‘B’ as well as speeds the overall
response. Adapted with permission from [115] c©2015 ASME.

The main benefits of the cascaded architecture (e.g. reduced gain variation and faster

response times) are realized without the need for detailed models of the system nonlinear-

ities. As both nonlinearities inherently appear in the numerator and denominator of L(s),

the self-countering aspect of the inner loop control is realized regardless of the nonlinear

gain structure. The model-free aspect of the cascaded control loop becomes especially

important in dealing with multicomponent systems. For example, many buildings will

have one or more air-handling units connected to several variable air volume boxes, each

with their own control loop. Developing detailed models for each of these systems can be-

come impractical, especially in large buildings or at large campuses with several hundred

facilities [14].

The following sections outline metrics that can be used to quantify the benefits of

cascaded control and their purpose when tuning loops. The linearization metrics are novel

while the decoupling metrics are well known in multivariable control. Tuning procedures

take advantage of these metrics to present new methods for tuning cascaded loops for

improved HVAC system performance.
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2.2 Linearization Metrics

To develop tuning rules and quantify the amount of linearization provided by inner

loop control, the following Nonlinear Gap Metrics (NGMs) are proposed (see [115]). The

NGM of the open-loop system, symbolized Υ, is defined in Equation 2.3 as the ratio of

the minimum to maximum steady-state gain of the uncompensated outer loop process

ψo(σ)Go(0) over all operating conditions ‘σ’. This open-loop NGM provides a measure

of how much steady-state variation is present in the inner loop dynamics and is taken as

the degree of nonlinearity in the original system. The metric will vary between values of

0 and 1 depending on how gains differ between conditions. Many HVAC systems have

steady-state gain variations of an order of magnitude or more, resulting in Υ < 0.1.

Υ =
min
∀σ

ψo(σ)Go(0)

max
∀σ

ψo(σ)Go(0)
(2.3)

The linearizing effect of the inner loop gain is captured by the closed-loop NGM given

by Equation 2.4. This metric, symbolized Γ(kL), is the ratio of the smallest and largest

steady-state gains of the inner loop transfer function L(0, kL, σ) over all operating condi-

tions for a particular inner loop gain. Greater nonlinearity compensation is indicated by

Γ(kL) values near 1 due to reduced variation in system gains. The closed-loop NGM pro-

vides a measurement to compare the amount of linearization achieved by the inner loop

proportional control and the original nonlinearity of the system.

Γ(kL) =
min
∀σ

L(0, kL, σ)

max
∀σ

L(0, kL, σ)
(2.4)

The values of Υ and Γ(kL) can be used to select an inner loop gain or adjust weighting

variables in optimal tuning methods due to the following important properties. Properties 1
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and 2 show that there always exists an inner loop gain that will improve the linearization of

the system and Property 3 implies that closed-loop gap metric will have two basic shapes.

Property 4 shows that linearization from cascaded control is only achievable if ψi and ψo

have the same monotonic trend with respect to operating conditions. From a practical

standpoint, these properties show that an HVAC technician could safely tune inner loop

gains by starting with an initial small value for kL and then gradually increase the gain

until desired performance is achieved. Each property is stated below with a short proof:

Property 1: The closed-loop gap metric Γ(kL) approaches the open loop gap metric

Υ for small inner loop gains kL.

For kL > 0, let the maximum and minimum values ofL(0, kL, σ) occur at the operating

conditions specified by Equation 2.5. These relations can be used to rewrite the closed-

loop gap metric as shown in Equation 2.6.

σ
¯

= argmin
∀σ

L(0, kL, σ) & σ̄ = argmax
∀σ

L(0, kL, σ) (2.5)

Γ(kL) =
ψo(σ¯

(kL))

ψo(σ̄(kL))
· 1 + kLψi(σ̄(kL))

1 + kLψi(σ¯
(kL))

(2.6)

As inner loop gain becomes small (kL → 0), the dynamics of the inner loop will be

dominated by the numerator of the inner loop control (Equation 2.7). This implies that the

inner loop will be minimized and maximized at the extremes of the outer loop nonlinearity

(Equation 2.8).

lim
kL→0

L(0, kL, σ) = kLψo(σ)Go(0) (2.7)

σ
¯
∗ = lim

kL→0
σ
¯
(kL) = argmin

∀σ
ψo(σ) & σ̄∗ = lim

kL→0
σ̄(kL) = argmax

∀σ
ψo(σ) (2.8)
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Taking the limit of Equation 2.6 as the inner loop gain approaches zero and substituting

for the operating conditions of Equation 2.8 shows that Γ(kL) approaches the open loop

metric for small inner loop gains (Equation 2.9).

lim
kL→0

Γ(kL) =
ψo(σ¯

∗)

ψo(σ̄∗)
= Υ (2.9)

Property 2: The slope of Γ(kL) is positive for small inner loop gains.

The partial derivative of Equation 2.6 with respect to kL at a given inner loop gain

is given by Equation 2.10. The limit of this partial derivative as the inner loop gain ap-

proaches zero has the form of Equation 2.11. For this quantity to be positive, the difference

between the inner loop nonlinearity at the operating conditions σ̄∗ and σ
¯
∗ must be positive.

∂

∂kL
Γ(kL) =

ψo(σ¯
)

ψo(σ̄)
· ψi(σ̄)− ψi(σ¯

)

(1 + kLψi(σ¯
))2

(2.10)

lim
kL→0

{
∂

∂kL
Γ(kL)

}
=
ψo(σ¯

∗)

ψo(σ̄∗)
[ψi(σ̄

∗)− ψi(σ¯
∗)] > 0 (2.11)

As both ψi(σ) and ψo(σ) vary monotonically and have the same trends with respect

to the operating condition σ, Equation 2.8 can be rewritten as Equation 2.12. This fact

shows that the slope of the closed-loop metric will be positive for small kL according to

Equation 2.11.

σ
¯
∗ = lim

kL→0
σ
¯
(kL) = argmin

∀σ
ψi(σ) & σ̄∗ = lim

kL→0
σ̄(kL) = argmax

∀σ
ψi(σ) (2.12)

Property 3: The closed-loop gap metric will approach 1 if the nonlinearities are mul-

tiplicatively related.

For large values of inner loop gain, Γ(kL) will approach the value Ω given by Equa-

tion 2.13. This value simplifies to 1 if the inner and outer loop nonlinearities are equal or
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are multiplicatively related. Otherwise, Ω can be either greater or less than the original

open-loop NGM.

lim
kL→∞

Γ(kL) =
ψo(σ¯

(kL))

ψo(σ̄(kL))
· ψi(σ̄(kL))

ψi(σ¯
(kL))

= Ω (2.13)

Property 4: ψi and ψo must have the same trend with respect to operating conditions.

The closed-loop NGM also shows that cascaded control should not be used when sys-

tems have nonlinearities with differing slopes. If the inner and outer loop nonlinearities

have opposite trends, the inner loop transfer function will have the extremes given by

Equation 2.14 where over- and under-bars signify maximum and minimum values of ψ,

respectively.

Lmin =
kLψo(σ¯

)Go(0)

1 + kLψi(σ¯
)Gi(0)

=
kLψ

¯ o
Go(0)

1 + kLψ̄iGi(0)

Lmax =
kLψo(σ̄)Go(0)

1 + kLψi(σ̄)Gi(0)
=

kLψ̄oGo(0)

1 + kLψ
¯ i
Gi(0)

(2.14)

This information can be used to show that the partial derivative of the closed-loop

metric is always negative according to Equation 2.15. The expression is due to G being

unitary and ψi, ψo > 0. This indicates that any inner loop control applied to such a system

will result in greater nonlinearity over all operating conditions.

∂

∂kL
Γ(kL) =

∂

∂kL

Lmin
Lmax

=
ψ
¯ o

ψ̄o(1 + kLψ̄i)2
(ψ

¯ i
− ψ̄i) < 0 (2.15)

Given these properties, the closed-loop gap metric can have the two basic shapes shown

in Figure 2.4(a). The closed-loop gap metric will have a peak, curve ‘P’, if the partial

derivative of the inner loop transfer function (Equation 2.16) has a constant, positive real

root with respect to kL. In this case the inner loop gain should be chosen as close to the

peak as possible without violating actuator saturation or stability constraints. If Equa-

tion 2.16 does not have a solution, then the metric will have an ‘S’ shaped curve and the
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Figure 2.4: (a) The closed-loop NGM Γ(kL) has two distinct shapes that determine how
inner loop gain is selected. (b) Points on the closed-loop NGM curve are similar to a Pareto
optimal front. Inner loop gain should minimize control effort but maximize linearization.

inner loop gain should be made as large as possible. Gains can be further tuned by inter-

preting the closed-loop NGM as a Pareto optimal front. As in Figure 2.4(b), the distance

d of Equation 2.17 is a weighted distance between the NGM curve and the point (0, 1)

which represents "perfect" linearization with no control effort. The formula can therefore

be used to balance linearization effect with actuation constraints on the inner loop gain.

Selected values of kL are used directly or as target gains for optimal tuning methods.

(1 + kLψi(σ))
∂

∂σ
ψo(σ) = kLψo(σ)

∂

∂σ
ψi(σ) (2.16)

d(kL) =

√
α1(1− Γ(kL))2 + α2

(
kL

kL,max

)2

(2.17)

2.3 Decoupling Metrics∗

A starting point for controlling Multi-Input-Multi-Output (MIMO) systems has tra-

ditionally been attempting to use Single-Input-Single-Output (SISO) controllers for the

∗Material in this section is adapted with permission from "Decoupling of MIMO Systems Using Cas-
caded Control Architectures with Application for HVAC Systems", C. Price and B. Rasmussen, Proceedings
of the American Control Conference, pp. 2907-2912, c©2017 IEEE.
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input-output (I/O) pairs of a system. This approach can work well for some plants pro-

vided that they are diagonally dominant with minimal cross term effects. In many cases,

however, individual inputs can have strong effects on multiple system outputs. Coupling

can act as a strong disturbance for SISO controllers and significantly degrade performance

to the point of instability.

The degraded performance of SISO controllers on MIMO systems has led to the de-

velopment of many decoupling control techniques. These methods seek to untangle the

I/O pairs and allow for the design of simple SISO controllers for the new, decoupled rela-

tionships. This can be done using simple feed-forward terms such as a Static Decoupling

Matrix [119] or by intense analysis of the I/O relationships to determine pairings that yield

the least coupling [120].

Decoupling methods all require detailed knowledge of system dynamics or, at a mini-

mum, steady-state behavior at the desired frequency. Depending on the size of the system

and the complexity of its dynamics, generating detailed models can be time consuming,

if not impractical. These types of controllers also must be updated each time the system

is augmented or altered. The addition of new components or even a slight alteration can

significantly reduce the performance of decoupling controllers.

For highly coupled systems, application of MIMO control techniques can provide bet-

ter performance than modified SISO techniques. Popular control choices includeH2,H∞,

and Model Predictive Control (MPC). MIMO control design seeks to use complete knowl-

edge of system dynamics to formulate optimal controllers. However, as with decoupling

controllers, detailed models are required and controllers are sensitive to system modifica-

tions. MIMO controllers also tend to be computationally expensive as they are typically

high order. See references like [121] for details on the complexity of MIMO control.

Cascaded control has shown the ability to decouple the dynamics of multi-evaporator

Vapor Compression Cycle (VCC) systems [110]. The following section provies detailed
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analysis of how cascaded control can decouple input/output (I/O) pairs and how it can be

used as a model-free MIMO decoupling approach. The section will present decoupling

metrics used in literature and detail the behavior of cascaded control for I/O separation.

2.3.1 Relative Gain Array

The Relative Gain Array (RGA) is a non-singular, complex matrix developed by [122]

as a measure for the interactions between inputs and outputs of MIMO systems. The ma-

trix is defined in Equation 2.18 where ‘◦’ denotes the Schur (element-by-element) matrix

product. The RGA has important properties including independence from I/O scaling and

row/column sums of one. The selection of I/O pairs according to [121] should prefer pair-

ings such that the rearranged system has an RGA matrix close to identity near the closed-

loop bandwidth and avoids pairings with negative elements on the RGA diagonal. Large

elements indicate strong sensitivity to plant uncertainty while negative pairings indicate

open loop instability.

RGA(X) , Λ(X) = X ◦ (X−1)T (2.18)

An associated metric known as the RGA Number is defined in Equation 2.19 for diag-

onal controllers. The sum norm here indicates the sum of the absolute values of all matrix

elements. A completely decoupled system will have an RGA Number of zero while poorly

conditioned systems with large RGA elements will necessarily result in large RGA num-

bers. Controllers seeking to decouple a system for diagonal control should therefore seek

to minimize the RGA Number.

RGA#(X) , N(X) = ‖Λ(X)− I‖sum (2.19)

Previous research has shown that cascaded control can reduce the magnitude of the

RGA Number for coupled systems. This remainder of this section will use the RGA matrix
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and RGA number to demonstrate how this architecture provides model-free decoupling of

highly coupled systems.

2.3.2 Asymptotic Decoupling Behavior

Let the coupled system be given in state-space representation as Equation 2.20. Note

that this system includes non-zero D matrices indicating that the cascaded decoupling

effect will be realized even for systems that are not strictly proper. The only restriction

placed on the system is that coupled outputs be completely observable and controllable.


ẋ = Ax+Bui

yi = Cix+Diui

yo = Cox+Doui

(2.20)

The inner loop control of the cascaded architecture can be written as Equation 2.21

where KL is a real diagonal matrix with positive entries kL,i and uo is the control signal

coming from the outer loop PID controller. Substitution and matrix algebra give the final

form where K∗ = (I +KLDi)
−1KL.

ui = KL(uo − yi)
= (I +KLDi)

−1KL(uo − Cix)

= K∗(uo − Cix)

(2.21)

Further substitution yields Equation 2.22 which is the state-space representation for

the inner loop process.

{
ẋ = [A−BK∗Ci]x+BK∗uo

yo = [Co −DoK
∗Ci]x+DoK

∗uo
(2.22)

Using the Matrix Inversion Lemma (see [121] Appendix A) and the matrix identify

of Equation 2.23, the transfer function form of the coupled inner loop dynamics can be

expressed as Equation 2.24.
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I − (I + P )−1P = (I + P )−1 (2.23)

L(s) =
{
K−1
L Go(s)

−1 +Gi(s)Go(s)
−1
}−1 (2.24)

The transfer function of the inner loop control reveals the asymptotic decoupling be-

havior of the cascaded architecture. When |KL| << 1, the inner loop dynamics are the

same as that of the open loop system Equation 2.25 (i.e. the outer loop process). For small

values of inner loop gain, therefore, the RGA and RGA Number of the inner loop are equal

to that of the open loop response. Conversely, when |KL| >> 1 and the inner and outer

loops take feedback on the same signal (Gi(s) = Go(s)), the inner loop transfer function

will approach identity (Equation 2.26). This means that given unlimited control, the inner

loop will completely decouple the system dynamics. Note that this decoupling is achieved

regardless of frequency and results in an RGA number of zero. When Gi(s) 6= Go(s),

the coupling will approach a level determined by the combination Gi(s)
−1Go(s). Careful

selection of the inner loop signal can minimize the asymptotic coupling.

lim
|KL|→0

L(s) = KLGo(s) (2.25)

lim
|KL|→∞

Gi(s)=Go(s)

L(s) = I (2.26)

2.3.3 Intermediate Behavior

In many cases, intelligent selection of the inner loop gains will significantly reduce

system coupling with minimal gain. Re-writing the RGA Number as Equation 2.27 shows

how it responds to intermediate values of inner loop gain. Note that here, δ represents the

impulse function and X ij is the matrix X with i-th and j-th row and column removed.

N(X) =
∑
i,j

∣∣∣∣(−1)i+j · xij detX ij

detX
− δ(i− j)

∣∣∣∣ (2.27)
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The value of the RGA Number for the inner loop process will be finite given two

criteria: the entries of a steady-state gain matrix G(jω) are finite in magnitude and the

determinant of the gain matrix is not zero. For the inner loop control, the first requirement

means that there are no integrator states, i.e. no poles at the origin. The second requirement

mandates that the system maintain distinct I/O relationships. Should the determinant pass

through zero or change signs for a given inner loop gain, this indicates that multiple control

directions have merged and the system has lost rank at the desired frequency.

The behavior of the relative gain number will therefore be smooth provided there are

no inner loop gains for which the system gain matrix loses rank. Monte-Carlo analysis

of hundreds of random systems indicated that in most cases the RGA will decrease with

increasing inner loop gain excluding peaks caused by loss of rank and asymptotic behavior

if Gi(s) 6= Go(s). Figure 2.5(a) shows several expected RGA number profiles generated

from those random systems. Selection of inner loop gains should utilize the RGA num-

ber to avoid certain values of KL gains at frequencies where loss of rank occurs while

balancing decoupling effect, actuator saturation constraints, and system stability.
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Figure 2.5: (a) Common RGA Number profiles of random systems. Coupling begins at
open loop RGA number and approaches total decoupling for large inner loop gains if
Gi(s) = Go(s). (b) RGA number plot for the system in Equation 2.28. c©2017 IEEE.
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As an example, consider the simple system given by Equation 2.28 where coupling

occurs only in the system output matrix C. The determinant of the steady-state inner loop

process is shown by Equation 2.29 which indicates that a sign change occurs at K∗L = 2.

This means that there will be only one asymptotic peak in the RGA Number curve near

inner loop gain values ofK∗L. Designing a cascaded controller for this system should avoid

gains in that area, specifically aiming for gain values of KL > 3 (see Figure 2.5(b)).
ẋ =

[
−1 0

0 −2

]
x+ Iu

y =

[
1 −1

0 −1

]
x

(2.28)

det (GIL(0)) =
K2
L

(KL − 2)(KL + 1)
(2.29)

2.4 Simple Tuning Rules

Having defined metrics and their behavior, the task becomes how to use them to tune

a cascaded controller for the desired performance. The following section details simple

tuning rules that can be used for field implementation of cascaded controllers. Selection

of the inner loop gain can be done using the linearization metric analysis from Section 2.2

or RGA analysis from Section 2.3. Having selected a kL gain, tuning of the outer loop

controller can be accomplished using any standard tuning method in one of the three fol-

lowing cases. Special care should be taken when using step response tuning methods

as these procedures assume an S-shaped process curve with no overshoot and will often

over-tune outer loop gains for underdamped second order systems (Figure 2.6).

2.4.1 Case 1: Gi(s) & Go(s) Have Similar Time Scales

In this case, the outer loop tuning procedure is a successive loop closure. This is

accomplished by applying the inner loop controller, then tuning the outer loop gains using

48



Assumed S-Shape 
Process Curve

Actual Inner 
Loop Response

Inflection 
Point

Figure 2.6: Step-response tuning procedures should not be used to tune outer loop gains as
they produce aggressive PID gains. Adapted with permission from [115] c©2015 ASME.

any standard method. Because variation in the inner loop steady-state gain is now reduced

significantly, gains determined using this process will be similar no matter the conditions

under which the outer loop is tuned. This procedure is essentially tuning the closed loop

characteristic equation of Equation 2.30.

∆cl(s) = 1 +

(
kps+ ki

s

)(
kLψ(σ)Gi(s)

1 + kLψ(σ)Gi(s)

)
Go(s) = 0 (2.30)

2.4.2 Case 2: Gi(s) & Go(s) Have Different Time Scales

Tuning when the inner and outer loop processes display disparate time scales simplifies

the selection of outer loop gains. Due to the separation, the inner loop process can be taken

as a static gain equal to the steady-state gain L(0). Because the inner loop gain was chosen

to minimize the relative difference betweenL(0) over all operation conditions using Γ(kL),

such an assumption will produce similar outer loop gains no matter when the tuning takes

place. This case is equivalent to tuning the characteristic equation of Equation 2.31.

∆cl(s) = 1 +

(
kps+ ki

s

)
· L(0) ·Go(s) = 0 (2.31)
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2.4.3 Case 3: Feedback on Same Signal (Gi(s) = Go(s))

In this special case, both inner and outer loops take feedback on the same signal. Ma-

nipulation of the closed loop characteristic equation yields the expression of Equation 2.32

which has the appearance of a traditional PI controller with gains k1 and k2 given by Equa-

tion 2.33. Because the inner and outer loop gains are highly coupled, successive loop

closure will not capture the interaction between the two loops. This means that the cas-

caded controller should be tuned by first finding a nominal PI controller and then using

Equation 2.33 to find the final outer loop gains using the selected inner loop gain. As this

process does not involve first applying the inner loop control, the final cascaded gains will

depend on when the loop is tuned. For example, tuning in low system gain conditions will

lead to more aggressive outer loop gains. Tuning will therefore be an iterative process as

performance must be evaluated to determine the final gains.

∆cl(s) = 1 +
k1s+ k2

s
· ψ(σ) ·G(s) = 0 (2.32)

k1 = kL(kp + 1)

k2 = kLki

(2.33)

2.5 Tuning withH∞ Synthesis

As a starting point for optimal selection of cascaded loop gains, an attempt to cast the

tuning process as anH∞ synthesis problem was made. Typically, a system is transformed

into a generalized control configuration like that of Figure 2.7(b). In this representation,

the closed-loop transfer function from w to z is given by the Lower Fractional Transfor-

mation (LFT) z = F`(P,K)w. The control synthesis problem therefore seeks to minimize

the norm of the lower LFT. The H∞ system norm definition of Equation 2.34 means that

this problem will seek to minimize the maximum singular value of the system.
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‖ F`(P,K) ‖∞= max
ω

σ̄ (F`(P,K)(jω)) (2.34)

The next step in typicalH∞ synthesis is the specification of design objectives in terms

of norm constraints. This is done with weighting functions on the inputs and outputs of the

system that seek to warp singular values in the regions of interest. For example, for worst

case error tracking a simple first order low-pass filter can be used to reduce the size of

singular values above a design cut-off frequency. Once the weight system is constructed,

the optimal H∞ controller can be found iteratively using solutions to Riccati equations or

using a Linear Matrix Inequality approach.

The H∞ synthesis formulation, was found to be a poor choice for tuning of cascaded

control gains. As mentioned, dynamic weighting functions are typically used to shape a

systems singular values in order to specify controller performance. However, the addition

of non-static weighting functions will increase the order of the resulting controller. In

order to maintain the cascaded control structure, only static weights can be used with the

consequence of losing the ability to tune the regions of performance for the resulting inner

and outer loop gains. This observation lead to the following section where a more suitable

methodology for tuning of cascaded control gains is presented.
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2.6 LQ Optimal Tuning∗

The previous sections outline simple rules for initial tuning of a cascaded controller. In

many cases, however, tighter and/or more robust control can be required. To deal with this,

this section presents an optimal tuning framework for selecting cascaded control gains that

take advantage of the metrics discussed previously.

Tuning the loops of a cascaded controller can be cast as a linear quadratic (LQ) cost

minimization problem. LQ control is a state-space optimal control method that seeks

to minimize the quadratic cost function J of Equation 2.35 where x and u are vectors

containing the state variables and control inputs, respectively. The weighting matrices

Q and R allow the cost function to be adjusted based on performance requirements and

actuation constraints. LQ designed controllers have an inherent level of robustness due

to guaranteed stability criteria of 60◦ phase margin and a gain margin of at least 1/2.

This method, including the state space techniques used in the following analysis, are well-

covered in many common control textbooks including [59].

J = J(x, u) =

∫ ∞
0

(xTQx+ uTRu)dt (2.35)

The plant of Equation 2.1 can be expressed in state-space form as in Equation 2.36

where x ∈ Rn and y ∈ Rm. If n 6= m (i.e. there are more state variables than inputs) the

cascaded tuning problem can be formulated as a linear quadratic regulator (LQR) problem

subject to output feedback control. To utilize this method, the state equations must be

altered slightly. Under the transformation of Equation 2.37, the state-space representation

of G(s) becomes Equation 2.38. The last two entries in the new state vector xT are now

the two cascaded loop outputs yi and yo.

∗Material in this section is adapted with permission from "Optimal Tuning of Cascaded Control Archi-
tectures for Nonlinear HVAC Systems", C. Price and B. Rasmussen, Science and Technology for the Built
Environment, vol. 23(8), pp. 1190-1202, c©2017 ASHRAE.
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G(s) =


ẋ = Ax+Bui

y = Cx =

[
yi
yo

]
(2.36)

xT = Tx = [ x1 x2 · · · xn−2 yi yo ]T (2.37){
ẋT = TAT−1xT + TBui = ATxT +BTui

yT = CT−1xT = CTxT =
[
~02x(n−2) I

]
xT

(2.38)

In order for the system output to match the feedback signals required in the cascaded

control loop, the transformed system of Equation 2.38 will be augmented with an integra-

tor on the outer loop output signal yo. This addition leads to the final state-space form of

Equation 2.39. From Equation 2.40, the output of this new augmented system is seen to be

the required input for the inner loop control signal of the cascaded loop when the reference

signal is taken as an arbitrary constant (i.e. r ≡ 0).



ẋa =

[
AT ~0nx1

[~01x(n−1) 1] 0

]
xa +

[
BT

0

]
ui = Aaxa +Baui

ya =

 yi

yo∫
yo dt

 =
[
~03x(n−3) I3

]
xa = Caxa

(2.39)

uo = kp(r − yo) + ki
∫

(r − yo) dt
ui = −kL(yi − uo)

= −kLyi − kLkp(yo − r)− kLki
∫

(yo − r) dt
= −k1yi − k2(yo − r)− k3

∫
(yo − r) dt

(2.40)

The LQR problem with static output feedback amounts to minimizing the quadratic

cost function of Equation 2.35 subject to the control input structure of Equation 2.40.

Many solutions have been proposed for this problem all of which iteratively solve the

simultaneous equations of Equation 2.41 whereAc = AaBaKCa is the closed-loop system

matrix. The initial condition x(0) is arbitrary and is, therefore, typically chosen to be on
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the unit sphere for regulation problems. Convergence of the LQ optimization problem is

guaranteed if the system is output feedback stabilizable, C has full row rank, R positive

definite, and Q positive semidefinite with (
√
Q,A) detectible. The complete method and

convergence criteria are outlined in [123] which also includes several examples as well as

sample code.

(I) 0 = ATc P + PAc + CT
aK

TRKCa +Q

(II) 0 = AcS + SATc + x(0)xT (0)

(III) K = R−1BT
a PSC

T
a (CaSC

T
a )−1 =

[
k1 k2 k3

] (2.41)

The weighting matrices Q and R in Equation 2.41 should be selected so as to increase

the linearization effect of the inner loop control while balancing the total amount of ac-

tuation. Results can be adjusted using the open- and closed-loop NGMs outlined in the

previous section. Once the desired solution has been calculated, the final cascaded control

gains can be recovered from the nominal gain K using Equation 2.42.

kL = k1, kp = k2
kL
, ki = k3

kL
(2.42)

The setup for the LQR output feedback problem transforms and augments the original

system dynamics. This process effectively pulls the inner loop feedback gain through the

summation block of the inner control loop as shown in Figure 2.8. The above iterative

procedures may in some cases allow for the inner loop gain (kL = k1) to tend toward zero

or even change signs. Such results will essentially zero any inner loop feedback signal

and reduce the cascaded architecture to a traditional PI controller. Therefore, only weights

that produce positive gains should be considered. In situations where the Q and R weights

result small inner loop gain or a sign change, the LQ optimization is indicating that PI

control might be better suited for such applications.
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Figure 2.8: The setup for the LQ optimization process effectively pulls kL through the
inner loop summation block.

2.6.1 Special Case: Feedback on a Single Signal

The formulation above changes slightly in the case that both the inner and outer loops

take feedback on the same signal. For this configuration, the inner loop control signal has

the form of Equation 2.43. The LQR output feedback problem can be solved using the

same iterative techniques as before except that only two nominal gains will be determined

(i.e. k1 and k2). The inner loop gain should be chosen using the NGM analysis outlined in

the previous section. The outer loop PI control gains can then be recovered from the LQR

tuning using Equation 2.44.

ui = −kL(kp + 1)y − kLki
∫
y dt = −k1y − k2

∫
y dt (2.43)

kp = k1
kL
− 1, ki = k2

kL
(2.44)

2.6.2 Special Case: LQR with Full-State Feedback

When the number of states equals the number of outputs (i.e. n = m) the LQR prob-

lem reduces to a full-state feedback problem. In this case, the quadratic cost function is

guaranteed to be convex in terms of the control gains and minimization algorithms can be

applied. Specifically, the Linear Matrix Inequalities (LMIs) of Equation 2.45 can be used

to find the optimal quadratic cost and associated control gains [84]. For a given cost ‘γ’
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a state feedback controller exists provided that an x ∈ Sn (symmetric), γ ∈ R (real), and

W = KX ∈ R1xn exist. The result from solving the LQR problem using standard Ricatti

equations is therefore γ∗ or the minimum cost for which the LMIs of Equation 2.45 have

a solution.

(I) (AaiX +BaiW ) + (AaiX +BaiW )T + xi0x
T
i0 < 0

(II) tr(Q1/2X(Q1/2)T ) + tr(Y ) < γ

(III)

[
−Y R1/2W

(R1/2W )T −X

]
< 0

(2.45)

The LMI approach has the main advantage of offering a means to robustly optimize

system performance. The dynamics of all HVAC systems can be classified as being

roughly first- or second-order which explains the prevalence of lumped-capacitance mod-

els in the field. This consistency allows for the set of all possible response characteristics

for a given HVAC system to be classified as a polytopic set. Therefore, LMI (I) of Equa-

tion 2.45 can be solved simultaneously over several operating conditions ‘i’. Specifically,

conditions at the extremes of the operating ranges of the HVAC system can be thought of

as existing on the convex hull of all possible responses. Results using LMI solution tech-

niques will therefore guarantee a given quadratic performance over the range of operating

conditions.

2.7 Discrete Time Considerations

Analysis from the previous sections has been conducted in the continuous time domain.

However, modern controllers are implemented with digital hardware in discrete time. This

section provides a brief overview of the effects discrete time design has on cascaded con-

trol using first and second order systems with Zero-Order Hold (ZOH) sampling.

The ZOH equivalent of a first order continuous time system is given by Equation 2.46.

Solving for the closed loop expression of the inner loop control gives the maximum allow-
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able inner loop gain for stability (Equation 2.47). This maximum is a strictly decreasing

function with respect to the dimensionless parameter aT where T is the sampling time.

The benefits of cascaded control therefore vary strictly with sampling time. This intuitive

result suggests that given Nyquist frequency requirements (i.e. aT < 2), nearly all of the

cascaded controllers benefits can be realized in discrete time for first order systems.

Gzoh(z) = Z

{
1− e−sT

s

(
ψ(σ)

a

s+ a

)}
= ψ(σ) · 1− e−aT

z − e−aT
(2.46)

K∗L =
1

ψmax
· 1 + e−aT

1− e−aT
(2.47)

The ZOH approximation of a second order system is given in Equation 2.48 where φ =

arccos(ζ). For the three damping cases (under, critically, and over-damped) stability limits

of inner loop gain were analyzed using the Jury stability test for discrete time systems (see

[124]) which are given in Equation 2.49. The polynomial f(z) is the system characteristic

equation which will be dependent on the inner loop gain. As seen in Figure 2.9 where

ωn = 1 and ψ(σ) = 1, in general if the sampling frequency is faster than the Nyquist

requirement, only one of three Jury conditions determines the maximum allowable inner

loop gain. In this region, the constraint is strictly decreasing with sampling time indicating

that most potential linearization effect can be achieved in discrete time design given proper

sampling. Specific Jury test conditions can be found in Appendix A.

Gzoh(z) = Z

{
1− e−sT

s

(
ψ(σ)ω2

n

s2 + 2ζωns+ ω2
n

)}
= ψ(σ)

{
1− z − 1√

1− ζ2
· z
√

1− ζ2 + e−ζωnT sin(ωn
√

1− ζ2T − φ)

z2 − 2ze−ζωnT cos(ωn
√

1− ζ2T )z + e−2ζωnT

} (2.48)

f(z) = z2 + a1z + a0 is stable if:


(1) |a0| > 1

(2) 1 + a1 + a0 > 0

(3) 1− a1 + a0 > 0

(2.49)
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Figure 2.9: A single Jury stability test condition determines the maximum allowable inner
loop gain given proper sampling. That condition strictly decreases with sampling time.

Another issue when dealing with real systems is the effect of time delay on control. To

analyze its effect, the following assumptions are made about the delayed system: 1) inner

loop dynamics are faster than the outer loop, 2) inner loop time delay is less than outer

loop delay, 3) continuous time gains are tuned during ‘high’ system gain conditions for

conservative control, and 4) time delay is in the feed forward path.

As an example, consider the dynamics given in Equation 2.50. Bode plots for standard

PI control and for a cascaded control with Gi(s) = Go(s) are shown in Figure 2.10(a).

From the plots, the differences in magnitude across operating conditions shrink substan-

tially at low frequencies with cascaded control. This makes the crossover frequency more

consistent during varying conditions and delays. The initial crossover point for both con-

trollers are vary similar (0.9 vs. 0.5 rad/s). Comparisons of control responses indicate that

the cascaded controller is no more sensitive to time delays than traditional PI control.

G(s) =
ψ(σ)

10s+ 1
where ψ(σ) = 1 + 9σ2 (2.50)

For extremely long delays (e.g. approaching the system fundamental time constant),

cascaded control begins to develop resonant peaks in its bode phase and magnitude plots
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Figure 2.10: (a) Bode plot for increasing time delay with PI control of system 2.50. (b)
Bode plot for a cascaded control configuration.

(Figure 2.10(b)). Peaks appear due to the time delay being incorporated into the dynamics

of the inner loop transfer function. As delay increases, its effect becomes larger. Once

the delay becomes large enough, the peak may push the crossover frequency by an order

of magnitude or more. In practice, however, controlling a system whose time delay is

longer than its characteristic time constant is impractical without special approaches such

as Smith predictors.

2.8 Summary

This chapter presented a specific form of cascaded control that utilizes a proportional

inner loop and PI outer loop structure. Previous literature used cascaded control solely for

disturbance rejection and assumed distinct time scale differences between nested loops.

Using a new Nonlinear Gap Metric, this chapter highlights the ability of cascaded control

to linearize load dependent nonlinearities of a system. Relative Gain Array analysis also

showed that for MIMO systems, cascaded control can decouple input-output pairs. These

benefits were realized without exact knowledge of the systems nonlinearity making the
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cascaded structure very modular. Improved performance was also seen for inner and outer

loop feedback on the same signal indicating that cascaded control can be used for systems

that do not display the rule-of-thumb dynamic separation.

The linearization and decoupling behaviors of cascaded control were used to develop

tuning procedures for selecting inner and outer loop gains. Simple tuning rules allow

for quick implementation in the field while an optimal LQ framework allows for robust

tuning across multiple operation conditions using LMIs. Issues with establishing an H∞

framework were also discussed.
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3. BENEFITS OF CASCADED CONTROL IN PRACTICE

In the previous chapter, the benefits cascaded control and methods for tuning loop gains

were presented. This chapter will demonstrate these advantages and procedures through a

series of case studies. Example systems highlight critical behavior while experimental and

simulation results show how Heating, Ventilation, and Air-Conditining (HVAC) systems

control is improved by the cascaded architecture.

The first case study shows how inner loop control reduces the envelope of responses

over all operating conditions using an example second-order system. This is followed by

an analysis of MIMO decoupling behavior using an identified structured multi-evaporator

refrigeration system model. The next several case studies use simulation models of com-

mon HVAC equipment to demonstrate improved performance with cascaded control. Fi-

nally, the optimal tuning of a thermal expansion valve control for an experimental heat

pump system is presented.

3.1 Case Study #1: Nonlinear Second Order Dynamic System∗

To illustrate the differences between traditional tuning methods, simple cascaded tun-

ing rules, and the proposed LQ optimal approach from the previous chapter, consider the

nonlinear second-order system given by Equation 3.1. In this example, the inner loop dy-

namics are first order with a faster response than the outer loop, second order dynamics.

Both processes share a single nonlinear gain from their common input to respective output

(ψo = ψi) that is quadratic with respect to operating condition and varies by an order of

magnitude for σ ∈ [0, 1]. These conditions are common in many HVAC systems including

air handlers [21] and refrigeration systems [90] that use flow to control temperature.

∗This case study is adapted with permission from "Optimal Tuning of Cascaded Control Architectures for
Nonlinear HVAC Systems", C. Price and B. Rasmussen, Science and Technology for the Built Environment,
vol. 23(8), pp. 1190-1202, c©2017 ASHRAE.
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Table 3.1: Gains for Example 2nd Order System Controllers

Controller Tuning Method σ kL kp ki

PI Skogestad IMC
0 — 3.6 2.6

1 — 0.36 0.26

Cascaded
Successive Loop Closure

with Skogestad IMC
0 5 12.8 25.2

1 0.5

LQ with NGM 0 8 8.7 12.9

G(s) = ψ(σ)

[
Gi(s)

Go(s)

]
= (9σ2 + 1)

[
5
s+5

2
s2+3s+2

]
(3.1)

Traditional PI control seeks to regulate the process ψ(σ)Go(s) over all operating con-

ditions. As shown in Table 3.1, the nonlinear gain can cause PI gains to vary significantly

depending on the operating conditions in which the system is tuned. These variations

in many cases lead to hunting behavior, the phenomenon discussed in detail in Chapter 1.

Tuning of cascaded control loops using Successive Loop Closure (SLC) with standard tun-

ing methods still sees large but reduced variations. As seen in Table 3.1 and Figure 3.1(a),

changing system dynamics result in a wide range of closed loop Nonlinear Gap Matric

(NGM) values for different inner loop gains. In the worst case, SLC tuning realizes less

than half of the linearizing effect of the inner loop control with Γ = 0.4 for kL = 0.5.

The spread of closed-loop responses for each controller and tuning method over the

range of all operating conditions is shown in Figure 3.1(b) along with example responses

for σ = 0.25. As shown, the spread of PI control responses is quite significant and con-

tains both severely underdamped and overdamped characteristics. The control spread of

the SLC tuned cascaded controller is much smaller than that of the PI controller; however,

that spread is heavily dependent on the conditions in which the controller is tuned. The LQ

method allows tuning for higher inner loop gains and greater nonlinearity compensation
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Figure 3.1: (a) Closed loop NGM profile for example system. (b) The spread of closed-
loop responses is significantly reduced by cascaded control.

while balancing the response of the outer loop controller. Overall, the proposed quadratic

tuning method provides much more consistent performance while still maintaining stabil-

ity of the closed-loop. State-space models and final weights can be found in Appendix B.

3.2 Case Study #2: Decoupling Multi-Evaporator Dynamics∗

To understand how the cascaded architecture can decouple dynamics of a MIMO sys-

tem, a simplified model of a multi-evaporator water chiller is analyzed. This model is

based off of the experimental Vapor Compression Cycle (VCC) system from [110] where

cascaded control improved performance at startup and during operation. The system used

R-134a refrigerant and water as the primary and secondary fluids respectively. Rooms are

represented by small water tanks and outside weather conditions by a large reservoir tank.

Disturbances to the room, e.g. infiltration or occupancy, are mimicked by variable speed

pumps that cycle water from the warm reservoir and by small water heaters.

∗This case study is adapted with permission from "Decoupling of MIMO Systems Using Cascaded Con-
trol Architectures with Application for HVAC Systems", C. Price and B. Rasmussen, Proceedings of the
American Control Conference, pp. 2907-2912, c©2017 IEEE.
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evaporation. Adapted with permission from [125] c©2017 IEEE.

Room tank temperatures are controlled by passing water through evaporators that are

part of the VCC cycle shown in Figure 3.2. The VCC cycle consists of refrigerant under-

going compression, condensation, expansion, and evaporation. Control of a VCC seeks to

regulate the amount of refrigerant superheat at each evaporator outlet. Excessively high

superheating reduces overall efficiency while unevaporated refrigerant can damage the

compressor. Therefore control designs that can robustly regulate superheat to only a few

degrees are desired.

The dynamics of multi-evaporator VCC systems can be highly coupled for several rea-

sons. Pressure throughout the system is inherently coupled due to the physical connection

of refrigerant lines. Also many systems use only a single common pressure sensor located

downstream of the evaporators to reduce instrumentation costs. As each control input

causes change in pressure, control of one evaporator necessarily affects the others. Valve

movements also affect the flow of refrigerant throughout the system. Changes in mass

flow rate in one evaporator cause fluctuations in flow rate elsewhere.

The following simplified model is based on an understanding of the physics of coupled

variables [118, 120] and can be used to capture the dominant coupling effects in a multi-

evaporator VCC system. The dynamics of the ‘n’ evaporator exit temperatures (~x1) and
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the response of the common pressure state (x2) are each assumed to be first order. Each

control input affects not only the associated temperature state but also the common pres-

sure state. Output for a traditional PI/PID control structure is the difference between the

exit temperatures and the estimated saturation temperature which is related to the shared

pressure state by a lookup table. The simplified state space representation of these dy-

namics is given by Equation 3.2 where L1, B1, B2, and C2 are all positive, nxn diagonal

matrices. 
ẋ =

[
−L1 0

0 l2

][
~x1

x2

]
+

[
−B1

~11xnB2

]
ui

yo =
[
I −C2

~1nx1

]
x

(3.2)

As the system matrices are known explicitly, a closed-form solution for the open loop

transfer function can be expressed as Equation 3.3. Note that all coupling terms in the

transfer function come from the second part of this expression.

G(0) = −
[
I −C2

~1nx1

] [−L1 0

0 −l2

]−1 [
−B1

~11xnB2

]

= −L−1
1 B1 −

1

l2
C2
~1B2

Coupling Terms

(3.3)

Further, the coupling terms have rank one allowing the use of the matrix identify of

Equation 3.4 to determine the closed-form solution for the open loop RGA matrix (Equa-

tion 3.5) where Z = B2B
−1
1 L1. This expression will be used for comparison of several

configurations of a cascaded controller.

(X + Y )−1 = X−1 − 1

1 + tr (Y X−1)
X−1Y X−1 (3.4)

RGAOL = I +

(
1

l2[l2 + trZ]

){
(trZ)I − Z~1

}
Z (3.5)
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Figure 3.3: Block diagram for simplified multi-evaporator VCC system model where ‘P0’
denotes initial system pressure and ‘∆’ changes in system variables. c©2017 IEEE.

Consider the inner loop feedback signal given by Equation 3.6. When Di = 0, the

resulting inner loop control signal (Equation 3.7) is analogous to pressure feedback with

a single common sensor. This type of feedback is shown in block diagram by Figure 3.3.

For large inner loop gains, the inner loop transfer function becomes singular indicating

that the RGA Number will approach infinity. This behavior is seen in the explicit inner

loop transfer function (Equation 3.8). Note that although the transfer function approaches

that of the open loop system (Equation 3.3) for small inner loop gain, the singular coupling

terms grow as a function of the diagonal inner loop control matrix KL. A plot of the RGA

Number curve with single pressure feedback is shown in Figure 3.4. The model used was

identified from experimental data with the structure discussed before and C2 = I .

yi =
[
~0 C2

~1nx1

]
x+Diui (3.6)

uP =


kL,a(uo,a − x2)

kL,b(uo,b − x2)
...

kL,n(uo,n − x2)

 = KL

(
uo −

[
~0 ~1nx1

]
x
)

(3.7)

QP (0) = −L−1
1 B1KL +

1

l2 + trB2KL

[
L−1

1 B1KL − I
]
~1B2KL

Coupling Terms

(3.8)
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Despite lacking asymptotic decoupling, the common pressure feedback signal can re-

duce coupling in the simplified evaporator dynamics with only moderate gains. Note that

the coupling terms in Equation 3.8 are completely eliminated from the inner loop trans-

fer function when individual inner loop gains are selected as k∗L,i = l1,i/b1,i. Further, a

single finite inner loop gain value could approximately decouple the system provided that

evaporator dynamics are sufficiently similar. This behavior is reflected in Figure 3.4 where

steady-state decoupling approaches zero for kL,i ≈ 0.7.

When Di = I in Equation 3.6, the feedback signal has analogies to a mass flow feed-

back loop with sensors for each evaporator; a configuration previously used by [111] to

linearize a VCC system. The output equation is a result of mass flow through a VCC

system being dependent on both valve position and system pressure. This feedback signal

differs from the single pressure feedback in that the inner loop transfer function is invert-

ible. However, the resulting asymptotic RGA Number is greater than with the original

system. Despite this, moderate inner loops can still completely decouple the system with

slightly lower inner loop gain.
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This analysis helps to understand the response of the cascaded controller from [110].

That controller used separate evaporator pressure sensors to decouple evaporator dynam-

ics. After an initial reduction in RGA number, the coupling increased to some intermediate

(but improved) coupling number determined by Gi(s)
−1Go(s). From the analysis above,

the dip is due to the inner loop gain approaching a value K∗L determined by the dynam-

ics of the evaporators and the rise is due to the inner and outer loop taking feedback on

separate signals.

An alternative loop configuration that guarantees asymptotic decoupling takes inner

and outer loop feedback on the same signal, i.e. superheat. This control structure requires

minimal implementation as it adds only a single proportional loop to the control software.

Using the superheat signal gives the inner loop dynamics given by Equation 3.9 where B

is the open loop input matrix. Solving for the determinant of the steady-state gain matrix

yields expression Equation 3.10 for a two evaporator system. From this expression, the

denominator of the determinant has ‘n’ roots indicating ‘n’ peaks in the RGA Number

with respect to KL. This shape is also shown in Figure 3.4. Selection of the inner loop

gain should avoid these roots and place inner loop gain outside the troughs, i.e. KL ≥ 1.

ẋ =

[
−L1 +B1KL −B1KLC2

~1nx1

−~11xnB2KL −l2 + trB2KLC2

]
x+BKLuo (3.9)

det(Lsh(0)) =
l2+tr(L1B

−1
1 B2C2)

(l2+tr(L1B
−1
1 B2C2)+(l2 tr(K−1

L L1B
−1
1 )+det(L1K

−1
L B−1

1 ))[l2−tr(KLB2C2)]
(3.10)

The inner loop feedback signals and their associated RGA Number profiles illustrate

how cascaded control can be used to decouple system dynamics. As shown, each signal of-

fers decoupling for different inner loop gains. Selection of sensor, signals, and inner loop

gains can therefore be balanced against system actuation and control constraints to achieve

decoupling. For example, while superheat feedback with a single sensor can asymptoti-
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cally decouple system dynamics, Electronic Expansion Valves (EEVs) typically have slow

response rates. Other inner feedback signals, e.g. pressure feedback, may therefore be

more appropriate given system actuator response characteristics.

These considerations are in addition to the linearization effects of the cascaded control

loop shown in [86]. Analysis of the Nonlinear Gap Metrics used to tune inner loop gains

showed that under certain cases, increasing inner loop gain could improve linearization

provided by the cascaded architecture. Depending on the system, a situation can therefore

arise where decoupling and linearization considerations are in conflict; changing inner

loop gain my slightly reduce coupling but allow more nonlinearity. For systems with

coupled and nonlinear behavior such as HVAC systems, cascaded control can reduce both

given proper tuning.

3.3 Case Study #3: Fan Speed Control for Linearization∗

The remaining case studies shift away from simplified examples towards physical mod-

els and/or experimental systems. The next two case studies will focus specifically on room

temperature control using two methods: direct fan control and Variable Air Volume (VAV)

dampers. Room air temperature regulation in multi-zone buildings is usually accomplished

by supplying constant temperature conditioned air to a room at variable flow rates. Reg-

ulation of the supply air temperature is done by the Air Handling Unit (AHU), a system

that is the subject of a later case study. These devices typically contain a supply fan, cool-

ing coil, and a humidifier, although the effects of humidity control are not considered in

this section. The conditioned air is then connected to room zones through internal duct

work. By modulating supply fan speed, the volume flow rate of air into a room may be

∗This case study is adapted with permission from "Compensation of HVAC System Nonlinearities Using
Cascaded Control Architecture", C. Price and B. Rasmussen, Proceedings of the Dynamic Systems and
Control Conference, vol. 2, c©2014 ASME and "HVAC Nonlinearity Compensation Using Cascaded Control
Architectures", C. Price, S. Liang, and B. Rasmussen, ASHRAE Transactions, vol. 121, pp. 217-231,
c©2015 ASHRAE.
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controlled directly. For larger systems, terminal boxes located before each control zone

may have individual fans as opposed to a single, central unit.

This case study considers a single zone, lumped capacitance model of room tempera-

ture dynamics [19]. Equation 3.11 details how heat transfer through the building envelope

is dependent on the difference between the room (T ) and outside air temperature (Toa) as

well as the heat transfer coefficient of the walls. Infiltration (Hinf ) was considered as a

constant heat load on the building while the internal gains (Hhg) varied on an approximate

occupant schedule for a typical work day. The dynamics of the motor and fan are governed

by Equation 3.12 and traditional affinity laws, respectively. The torque and back-EMF

constants, kt and ke respectively, are based on those of a typical two horse power motor

[126] while the fan inertia is that of an appropriately sized axial fan.

C
dTa
dt

= ρacp,aV̇a(Ts − Ta) + UA(Toa − Ta) +Hhg +Hinf (3.11)

RJω̇ + ktkeω = ktVin (3.12)

Although these equations are linear ordinary differential equations, the dynamics de-

pend on operating conditions. Equation 3.11 evolves based on differences between the

supply, outside, and room air temperatures meaning that its response characteristics will

vary with operating conditions. As room temperatures evolves depending on these dif-

ferences, response characteristics will vary according to weather conditions, supply air

temperature, and zone temperature set points. Figure 3.5 shows how the steady-state gains

and time constants of the systems dominate first order response vary depending on cooling

demand (as measured by fan load). For a room temperature of 20◦C (68◦F), outside air

temperature was calculated to allow steady-state to occur at the initial fan input. A con-

stant step change in fan speed was then introduced and response data collected. As shown,

steady-state gains more than double across the operating range while time constants in-
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Figure 3.5: (a) Steady-state gains for the fan system vary by more than double across all
operating conditions. (b) The system time constant also varies by approximately 14%.

crease by approximately 15%. Control gains will therefore vary depending on when the

system was tuned. This means that if the system is tuned in low gain conditions, it will

become too aggressive as response gains increase. This operational dependence therefore

has a large contribution in HVAC system hunting.

To compensate for these changing nonlinear gains, the cascaded loop of Figure 3.6(a)

was implemented in simulation. In a slight departure from the loop implemented on the

VCC system in [109], feedback for the inner and outer loops will both be on room temper-

ature. As shown by Equation 3.13, the nonlinear gain function ψ(ω) still appears in both

the numerator and denominator of the inner loop transfer function. This placement will

offset the nonlinear gain without knowledge of its structure. Additionally, the inner loop

gain will approach unity as the proportional gain kL increases. The cascaded loop inher-

ently reduces system nonlinearities while also shrinking the range of steady-state gains.

The loop will therefore operate more consistently across all cooling load conditions while

eliminate fan speed hunting.

L(s) =
kLψ(ω)G(s)

1 + kLψ(ω)G(s)
(3.13)
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Figure 3.6: (a) The proposed cascaded loop takes inner and outer loop feedback on room
temperature. (b) Outside air temperature input for fan cascaded and PI loop simulations.

Simulations used the outside air temperature profile shown in Figure 3.6(b) with results

shown graphically by Figure 3.7 and summarized in Table 3.2. As shown, around 5 PM

the combination of a sudden decrease in outside air temperature and low internal heat load

caused the system to transition to the large gain characteristics on the left side of the axes

in Figure 3.5. After that time, the PI controller tuned in high demand conditions (HDPI)

begins to cause oscillations in room air temperature and stable waves in fan speed of 100

rpm after 8 PM. The PI controller tuned in low demand conditions (LDPI) does not display

the same hunting behavior but does struggle to regulate room temperature. These two

controllers highlight the full range of possible performance seen with traditional control

loops and their associated tuning procedures. While a technician may attempt to tune

gains during "moderate" cooling loads, such conditions are difficult to identify in practice.

This often leads to detuning of controllers to avoid hunting issues and gains that are close

to the LDPI example. The cascaded controller shows similar regulation performance to

the HDPI controller but eliminates the fan speed hunting seen in later hours. As the fan

speed varies between 10% and 90% of its maximum value, the simulation captures both

high and low demand conditions. The cascaded loop provides the best performance across
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all conditions while eliminating fan speed hunting showing that a single controller can be

used to regulate the system under all conditions.

Table 3.2: Fan Control Case Study Results

Error Metric Low Demand PI High Demand PI Cascaded Control

Root Mean Square
Error (RMS) 1.15◦C (2.07◦F) 0.76◦C (1.37◦F) 0.85◦C (1.53◦F)

Mean Bias
Error (MBE) 0.34◦C (0.61◦F) 0.15◦C (0.27◦F) 0.17◦C (0.31◦F)

Hunting No Yes No
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Figure 3.7: Results for fan control case study show oscillatory PI behavior starting around
2 PM with stable oscillations after 8 PM. Cascaded control eliminated hunting behavior.
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3.4 Case Study #4: VAV Terminal Box Control∗

The previous case study has shown that the cascaded loop can improve the performance

of systems with non-constant, nonlinear response characteristics controlled by positive dis-

placement actuators. The predominate configuration in commercial buildings is however

the Variable Air Volume (VAV) system where is conditioned air supplied to building zones

through duct work that ends at Terminal Unit (TU) boxes located in each zone. As each

room may require different amounts of air, TU boxes contain dampers that obstruct the

flow of air. A separate control loop regulates the static pressure in the ducts by regulating

the supply fan speed to ensure adequate flow.

Damper characteristics introduce an additional nonlinearity to the system dynamics

of the previous section. As shown in Figure 3.8(a), the relationship between damper po-
∗This case study is adapted with permission from "Compensation of HVAC System Nonlinearities Using

Cascaded Control Architecture", C. Price and B. Rasmussen, Proceedings of the Dynamic Systems and
Control Conference, vol. 2, c©2014 ASME and "HVAC Nonlinearity Compensation Using Cascaded Control
Architectures", C. Price, S. Liang, and B. Rasmussen, ASHRAE Transactions, vol. 121, pp. 217-231,
c©2015 ASHRAE.
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Figure 3.8: (a) Parallel blade damper characteristics (reproduced from [45, Chapter 7]). (b)
System steady-state gains vary in magnitude by over 50 times. (c) System time response
more than doubles over the operating range.
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sition and volumetric flow rate depends on the ratio between total system pressure loss

and the pressure drop across an individual terminal unit. The relationship in most cases

is highly nonlinear and will result in damper hunting if tuned carelessly. For the simula-

tions presented in this section, the damper characteristics are based roughly on those of

the ‘A = 0.05’ curve with the relationship given by Equation 3.14 where θ is the angle of

the damper opening. The addition of damper nonlinearities has a profound effect on the

systems response characteristics. The steady-state gain to a step input change in damper

position now varies in magnitude by over 50 times while the time constant more than dou-

bles. This change has a large effect on the magnitude of control gains depending on when

the controller is tuned.

V (θ) = −Vmax(θ2 − 2θ) (3.14)

Elimination of the primary nonlinearity in the VAV systems leads to the cascaded loop

shown in Figure 3.9. This architecture will require the addition of a flow averaging sensor

to measure volumetric flow rate. However these sensors are relatively inexpensive and

often come prepackaged with many TU boxes. The inner loop control will regulate the

volume flow rate of air through the terminal box with set points generated by the outer loop
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Figure 3.10: Around 5 PM, system gains become large enough that the high demand PID
controller begins to hunt. The cascaded controller displays no hunting while having similar
performance.

PID controller. This configuration is what [127] refers to as a pressure independent control

loop, named for the way the control eliminates variations in flow rate due to changes in

system static pressure. Beyond this, the cascaded configuration has the same linearizing

properties as the previous section due to the placement of the nonlinear gain in the inner

loop transfer function (Equation 3.15). Therefore the impact of the damper characteristics

will be greatly reduced, improving overall performance.

L(0) =
kLψ(θ)

1 + kLψ(θ)
(3.15)

Simulations were conducted using the outside air disturbance and internal heat gains

from Case Study #3. From the detail plots of Figure 3.10 and the data in Table 3.3, tradi-

tional PID damper control can be seen to suffer from the same issues as fan speed control.

Around 5 PM, the PID controller tuned in high demand (HDPID) causes damper position

to begin oscillating steadily with magnitudes increasing well over 5%. The PID controller

tuned in low demand (LDPID) displays no hunting but shows poor regulation when com-
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Table 3.3: VAV System Case Study Results

Error Metric Low Demand PID High Demand PID Cascaded Control

Root Mean Square
Error (RMS) 1.124◦C (0.223◦F) 0.545◦C (0.981◦F) 0.047◦C (0.085◦F)

Maximum Absolute
Error (MAE) 0.446◦C (0.803◦F) 1.968◦C (3.542◦F) 0.268◦C (0.482◦F)

Hunting No Yes No

pared to the other controllers. Cascaded control displays similar mean performance to the

high demand PID controller without hunting. This is why the RMS error for the cascaded

controller is much lower than the two traditional PID controllers. These simulations show

that the cascaded controller is able to compensate for actuator nonlinearities without re-

quiring knowledge of the actuator dynamics before implementation. The simulations also

show that the cascaded controller is able to work with HVAC systems that both positively

displace and obstruct the flow of cold air for room temperature control.

3.5 Case Study #5: Air Handling Unit Control∗

Both the previous case studies focused on control of room temperature by modulating

the flow rate of chilled air into a designated zone. The supply air temperature itself is con-

trolled by the Air Handling Unit (AHU) shown schematically in Figure 3.11. In cooling

mode, warm return air is mixed with outside air required for ventilation. Air is then passed

through the unit by the supply fan and across a heat exchanger. Chilled water is passed

though the heat exchanger to absorb heat from the air in a forced convection process. The

flow rate of water into the heat exchanger is modulated with a valve whose position is con-

trolled by a stepper motor. In this way discharge air temperature can be controlled based

∗This case study is adapted with permission from "HVAC Nonlinearity Compensation Using Cascaded
Control Architectures", C. Price, S. Liang, and B. Rasmussen, ASHRAE Transactions, vol. 121, pp. 217-
231, c©2015 ASHRAE.
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Figure 3.11: Diagram of a typical Air Handing Unit (AHU) and its components.

on the required demand. Most building HVAC systems use a simple PI control loop to reg-

ulate the discharge air temperature. A survey of AHU chilled water valves on the campus

of Texas A&M University has shown that this approach has serious implementation issues

with 65% of sampled units displaying hunting behavior [22]. This section expands on pre-

vious results and further demonstrates the ability of a cascaded control loop to compensate

for the nonlinearities in the AHU dynamics.

The basic heat transfer process is modeled based on equations from [128]. A finite

volume approach divides the cooling coil into N sections along its travel. The individual

water and coil temperature dynamics are calculated using Equations 3.16 and 3.17 respec-

tively. The water temperature is influenced by convective heat transfer with the coil wall

as well as the temperature and flow rate (q) of water entering the finite volume. Section

temperature also depends on convection between the coil wall and the air passing over a

section. The exit temperature of air leaving a finite volume is calculated by Equation 3.18

with the final discharge air temperature calculated using an average of all N sections. This

model was shown to have good agreement with experimental data by [129].

Cw ·
∂Tw
∂t

+ cp,w · q(δ) ·
∂Tw
∂x

+ hw · Pt(Tw − Tc) = 0 (3.16)

Cc ·
∂Tc
∂t

+ cp,a · ṁa · εa · (Tc − Ta,in) + κw(Tc − Tw) = 0 (3.17)

Ta,out = Ta,in + εa(Tc − Ta,in) (3.18)
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The fluid dynamics involved with the air and water flows are modeled using several

approaches. Water-side flow uses the Churchill Correlation given by Equation 3.19 to

calculate the friction factor for laminar and turbulent flow. The Gnielinski Factor is used to

calculate the Nusselt number using the Reynolds and Prandtl numbers. For the three cases

of laminar, transition, and turbulent flow, the Nusselt number is calculated by assuming

a constant value of 4.364, estimating using an empirical polynomial, or computing using

Equation 3.20 respectively. The convection heat transfer coefficient, hw, for the water can

then be determined from the definition of the Nusselt number. Air-side flow characteristics

use the Colburn J-factor analogy (Equation 3.21) to calculate the convective heat transfer

coefficient, ha, of the air. This information is used to calculate the air flow NTU value

from which the heat transfer effectiveness can be calculated by Equation 3.22.

ff = 2


(

8

Re

)2

+

2.457 ln

[(
7

Re

)0.9

+ 0.27
ε

D

]−1

+

(
37530

Re

)16
−1.5

1
12

(3.19)

Nu =

( ff
8

)
(Re− 1000)Pr

1 + 12.7
( ff

8

)1/2
(Pr2/3 − 1)

(3.20)

Jh =
hPr2/3

cpG
(3.21)

εa = 1− e−NTUa (3.22)

The above equations demonstrate the highly complex, nonlinear dynamics of forced

convection. Despite the complexity, system responses to step changes in chilled water

flow rate are predominately first order, allowing them to be classified as before. Open loop

simulations with 72◦F (22◦C) entering and 55◦F (12.8◦C) exiting air temperatures were

conducted using a range of return air flow rates corresponding to valve openings between

10% and 90% open. Over this range, step changes in valve position resulted in steady-state
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Figure 3.12: The steady-state gain and time constant for the AHU simulation model each
vary by an order of magnitude over all operating conditions.

gains that vary in magnitude by over 30 times and time constants that increase in duration

by over 12 times (Figure 3.12). The previous sections have shown that this type of variation

leads to actuator hunting as the system moves away from the tuning conditions. Therefore

the prevalence of hunting in chilled water valves is not surprising.

To increase the accuracy of the simulations, additional implementation factors were

included. As sensors in HVAC systems typically report readings in quantized values, tem-

perature feedback was discretized in 0.1◦F (0.056◦C) intervals. This in effect creates dead

zones in which there is no sensible change in the controlled output and, consequently, no

change in actuator position. A range of controller sampling rates were also considered

with the simulations using a period of five seconds. Results showed that there is an inter-

action between sensor quantization and controller sampling rate. Depending on the degree

of quantization, degradation of control performance with decreased sampling time may be

masked. If temperatures remain within a discretized block, decreased sampling will have

no effect on performance.

Simulations used real data collected at the Utilities Business Office (UBO) on the

campus of Texas A&M University. Return air temperatures as well as the demand signal
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Figure 3.13: The return air temperatures (a) and supply fan speeds (b) used in the AHU
simulations were recorded on 05/21/2014 at the Utilities Business Office at Texas A&M
University in College Station, Texas from 6 AM to 7 PM.

to the supply fan are shown by Figure 3.13. As the model parameters given by [128] are for

a much smaller AHU than the one used in the UBO building, maximum air and water flow

rates were tuned to allow matching percentages of flow rates and valve positions with real

data. Despite the difference in scale, the underlying physics of the real and model systems

remain the same. In this way, the simulation provides insight into the performance of

traditional PI control of chilled water valves and the benefits of the cascaded approach.

Despite the complicated dynamics, a cascaded loop with inner and outer loop feedback

on discharge air temperature is able to eliminate the chilled water valve hunting seen in

Figure 3.14. As shown, the PI Controller tuned in high demand conditions (HDPI) begins

to show sustained oscillations when the valve position drops below approximately 50%

open. This region has significantly higher response gains than those under which the

controller was tuned. The HDPI controller therefore overestimates the required actuation
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Figure 3.14: The discharge air temperature (a) and valve position (b) of the AHU sim-
ulations show that the high demand PI controller hunts in low demand conditions. The
cascaded controller eliminates hunting without sacrificing performance.

leading to the observed hunting behavior. In contrast, the LDPI controller is much less

aggressive due to the larger system gains present when the controller was tuned. While

the LDPI controller does not show hunting behavior, it struggles to tightly regulate the

discharge air temperature, resulting in large RMS and MAE errors. Without knowledge

of the nonlinear dynamics, the cascaded loop was able to eliminate valve hunting and

maintain comparable mean error values to the HDPI controller. These simulation results

show that the cascaded loop is able to adequately control the system for the entire range

of operating conditions. Results are summarized in Table 3.4.
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Table 3.4: AHU Simulation Results for Data Collected On 5/19/2014

Error Metric Low Demand PI High Demand PI Cascaded Control

Root Mean Square
Error (RMS) 0.249◦F (0.138◦C) 0.062◦F (0.034◦C) 0.089◦F (0.049◦C)

Maximum Absolute
Error (MAE) 1.23◦F (0.68◦C) 0.55◦F (0.31◦C) 0.73◦F (0.41◦C)

Total Valve Travel (%) 214 999 474

Hunting No Yes No

3.6 Case Study #6: Radiator Valve Control∗

The previous case studies have established that cascaded loops are able to compen-

sate for nonlinearities associated with temperature dynamics, actuator characteristics, and

forced convection. Each system was used in cooling mode to reject disturbance from heat-

ing gains. This, however, represents only half the HVAC picture as in cold weather rooms

need to be heated to maintain a comfortable working environment. A common heating

system is the hydronic radiator that passes high temperature hot water through a heat ex-

changer located in each room. Unlike the air handling unit, warming is accomplished by

a combination of free convection and radiative heat transfer, not by forced convection.

The flow rate of water through the heat exchanger is controlled by a Thermostatic Radia-

tor Valve (TRV) whose position is modulated by a stepper motor. The valve allows heat

dissipation to the room to be controlled in relation to heating demand.

Finite volume approximations of N sections along the radiator travel were used to

model the heat transfer process [87]. This model was developed and validated by [130].

Each section has dynamics expressed by Equation 3.23. The first term on the right hand

∗This case study is adapted with permission from "Compensation of HVAC System Nonlinearities Using
Cascaded Control Architecture", C. Price and B. Rasmussen, Proceedings of the Dynamic Systems and
Control Conference, vol. 2, c©2014 ASME and "HVAC Nonlinearity Compensation Using Cascaded Control
Architectures", C. Price, S. Liang, and B. Rasmussen, ASHRAE Transactions, vol. 121, pp. 217-231,
c©2015 ASHRAE.
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side expresses the heat transfer between individual finite volumes and captures the de-

pendence on hot water flow rate (q). The second term gives the heat radiated from the

finite volume to the room. The magnitude of this value is calculated in relation to a nom-

inal condition under which the inlet, outlet, and room temperatures are 70◦C (158◦F),

50◦C (122◦F), and 20◦C (68◦F) respectively. These values give rise to the nominal power

dissipation of the radiator (Φ0) and the mean temperature difference calculated by Equa-

tion 3.24. The total heat radiated to the room is then calculated by Equation 3.25 which

represents a summation of heat transfer by each finite volume. Room dynamics, given in

Equations 3.26 and 3.27, are similar to those used for the fan and VAV controlled systems

with the addition of the building envelope temperature.

Cr
N
· dTn
dt

= cwq(Tn−1 − Tn)− Φ0

N

(
Tn − Ta
∆Tm,0

)1.3

(3.23)

∆Tm,0 =
Tin,0 + Tout,0

2
− T0 (3.24)

H =
Φ0

N

N∑
i=1

(
Tn − Ta
∆Tm,0

)1.3

(3.25)

CeṪe = UA · (Toa − Te) + UA · (Ta − Te) (3.26)

CṪa = UA · (Te − Ta) +H (3.27)

Nonlinearities in the radiator system are dominated by the heat transfer process. The

valve relationship between opening and water flow rate is given by Equation 3.28 which

characterizes a typical TRV [87]. In this equation, the coefficient of the quadratic term is

dominated by the coefficient of the linear term. Because of this, the valve map is nearly

linear and contributes little to the overall nonlinear behavior of the system. The radiator

response characteristics display heavy reliance on operating condition as with the cooling

systems. Response steady-state gains to a step change in valve position vary by an order of

magnitude over the valve working range while the time constant more than doubles. This

accounts for the prevalence of valve hunting in TRV controlled systems.
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Figure 3.15: (a) Radiator outlet temperature equalizes with room temperature at low flow
rates. (b) Estimating heat transfer to the room recovers observability for the inner loop
controller over all valve positions.

q(δ) = (−3.4x10−4)δ2 + 0.75δ (3.28)

The radiator system has interesting dynamics that require a slight variation of the cas-

caded loop. The inner loop control was first applied to the radiator outlet temperature as

the dominant nonlinearities stem from the heat transfer process. At low flow rates, how-

ever, supply water is able to equalize in temperature with the surrounding room air leading

to the flat regions observed in Figure 3.15(a). Feedback on outlet temperature alone will

have a section between approximately 0% and 15% valve opening where there is a total

loss of observability. To correct for this issue, the cascaded loop of Figure 3.16 applies

the inner loop control on an estimation of heat transfer to the room. By multiplying the

valve position (δ) by the change in temperature across the radiator (Equation 3.29), mea-

surable output is attained for all operating regions as seen in Figure 3.15(b). Feedback on

this estimated variable will place the nonlinear gain function of the heat transfer process

in the numerator and denominator of the inner loop transfer function, thereby reducing
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Figure 3.16: The proposed cascaded loop uses an estimation of heat radiated to the space
as the inner loop feedback signal. This configuration will compensate for the nonlinearities
associated with radiative heat transfer.

its effects. This is accomplished without the need for a valve map or a model of the heat

transfer dynamics. The proposed loop will require the addition of a temperature sensor at

the radiator outlet but as such a sensor is relatively inexpensive, this represents a minimal

implementation cost.

Ĥ = δ(Ts − Tout) (3.29)

Simulations follow the same procedure as those used by [87]. Only disturbances due

to fluctuation in outside air temperature are considered with the basic profile given by Fig-

ure 3.17(a). In low heat demand conditions, the initial outside air temperature is 20◦C

(68◦F) while in high heat demand, the initial temperature is -12◦C (10.4◦F). Results show

that in low demand, a PI controller tuned during high heat demand (HDPI) displays hunt-

ing behavior. As shown in Figure 3.17(c), this controller over estimates the required heat

and floods the radiator with hot water. This causes room temperature to rise above the

set point and the valve to completely close. This process is repeated constantly over the

simulation and is clearly a form of valve hunting. The cascaded controller is able to offer

similar performance to the HDPI controller without hunting and avoiding the large initial

overshoot of 2◦C (3.6◦F) of the low heat demand PI controller (LDPI). In high heating
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Figure 3.17: Simulation results for hydronic radiator case study: (a) Outside air tempera-
ture (reproduced from [86] with permission). (b) Room temperature. (c) Valve position.

demand, the LDPI controller struggles to regulate temperature, running a mean of -0.3◦C

(-0.5◦F) below its set point. While the HDPI controller offers the best performance under

these conditions, the cascaded controller has comparable RMS error and in fact is better

able to balance room temperature around the desired set point. These simulations show

that traditional PI control requires a seasonal retuning to offer consistent performance

throughout the year. The single cascaded controller is able to offer equivalent perfor-

mance to the best PI controller in both low and high demand conditions. This means that

a single controller can be used for the entire year, eliminating labor costs associated with

semiannual tuning of HVAC control loops. Results are summarized by Tables 3.5 and 3.6.
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Table 3.5: Radiator Simulation Results for Low Heat Demand Conditions

Error Metric Low Demand PI High Demand PI Cascaded Control

Root Mean Square
Error (RMS) 0.400◦C (0.720◦F) 0.707◦C (1.273◦F) 0.391◦C (0.704◦F)

Maximum Bias
Error (MBE) -0.006◦C (0.68◦F) 0.209◦C (0.376◦F) -0.053◦C (0.095◦F)

Hunting No Yes No

Table 3.6: Radiator Simulation Results for High Heat Demand Conditions

Error Metric Low Demand PI High Demand PI Cascaded Control

RMS 0.629◦C (1.132◦F) 0.439◦C (0.790◦F) 0.482◦C (0.868◦F)

MBE -0.301◦C (-0.542◦F) -0.110◦C (-0.198◦F) -0.033◦C (-0.059◦F)

3.7 Case Study #7: Optimal Tuning of Heat Pump EEV Controller∗

The power of the LQ optimal tuning framework with full state feedback control dis-

cussed in Chapter 2 is demonstrated experimentally through the tuning of an electronic

expansion valve (EEV) on a residential grade heat pump system. Heat pumps are a subset

of vapor compression cycle (VCC) systems and have become increasingly popular in the

past few years [131]. VCC systems typically consist of four main components: a com-

pressor, a condenser, an expansion valve, and an evaporator. Refrigerant cycling through

these components goes through four main stages: (1) compression, (2) condensation, (3)

expansion, and (4) evaporation. The components and processes for a heat pump are shown

in Figure 3.18(a). Control of VCC systems involves regulation of evaporator superheat

which is defined as the difference between the refrigerant temperature and the saturation

temperature at the evaporator exit. As heat transfer is most efficient during liquid-vapor

transition, superheat ideally should be kept small. However, two-phase flow entering the

∗This case study is adapted with permission from "Optimal Tuning of Cascaded Control Architectures for
Nonlinear HVAC Systems", C. Price and B. Rasmussen, Science and Technology for the Built Environment,
vol. 23(8), pp. 1190-1202, c©2017 ASHRAE.
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Figure 3.18: (a) System diagram for a residential heating and cooling system in heat pump
mode. (b) Experimental heat pump system showing the outdoor unit temperature chamber,
indoor unit, and controls.

compressor can cause catastrophic damage leading to typical superheat set-points of a few

degrees.

Refrigerant superheat is controlled by modulating the opening of an expansion valve

located at the entrance of the evaporator. The valve controls the mass flow of refrigerant

into the evaporator and, therefore, has an effect on the magnitude of the superheat. Several

types of expansion valves exist on the market with varying degrees of expense and tech-

nology. The EEV is of particular importance as it has enabled modern control techniques

to be applied to superheat control. EEVs use a stepper motor to control the position of the

valve needle and thereby regulate flow. Direct control of the valve’s position allows for the

integration of several system sensors into the control algorithm such as temperature and

pressure in the evaporator and condenser.

The heat pump cycle is the reverse of the familiar air conditioning cycle. To heat an

indoor space, heat is absorbed from outside air then transported and released inside the

building. As the temperature of the refrigerant passing though the outdoor evaporator

must be colder than the ambient air, several issues arise. When the coil temperature ap-

proaches 0◦C (32◦F), condensate can form and freeze on the evaporator fins. Frost growth
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significantly decreases the efficiency of the heat pump cycle and is the topic of extensive

research [132, 133]. Excessively cold temperatures reduce the efficiency of the cycle by

increasing the load on the compressor and impairing heat transfer. The tuning presented

here avoids these issues by ensuring that ambient temperatures stay above freezing.

The experimental system used for this tuning is a residential grade dual heat pump

and air-conditioning system with a rated capacity of three tons. The system’s indoor unit

consists of a heat exchanger, three stage blower, and thermal expansion valve (TEV). The

outdoor unit package contains a heat exchanger, compressor, variable speed fan, and an

EEV. Switching between heating and cooling modes is accomplished by a reversing valve

that alters the flow of refrigerant through the system. The outdoor unit has been encased

in a temperature controlled, insulated chamber to simulate outdoor conditions. Several

openings and small electronics fans located in the walls of the chamber allowed heating

load on the system to be varied. The EEV used in heating mode has linear flow character-

istics and a full travel of 250 steps with a maximum travel time of 16.6 seconds. However,

the valve is essentially saturated below 30 steps and only has an effective control range of

approximately 50 steps [134]. Despite the limited actuation ability, the cascaded control

loop was still able to significantly improve overall performance. System sensing and con-

trol were accomplished using Labview and Matlab Simulink software. All components

are highlighted in Figure 3.18(b).

Heat pump system dynamics were identified through a series of EEV step tests under

the different load conditions outlined by Table 3.7. For each condition, the system was

allowed to reach steady state with the ambient temperature in the outdoor unit chamber

at around 3◦C (37.5◦F). The valve position was then varied and the resulting responses

in evaporator superheat and discharge pressures were recorded. Steady-state gain models

as well as second-order single input, two output dynamic models were identified to be

used with NGM and LQ tuning methods, respectively. These models capture how system
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Table 3.7: Heat Pump System Identification Test Conditions

Demand Outdoor Fan
Speed (%)

Indoor Blower
Speed (Stage)

Compressor
Speed (rpm)

Low 25 1 1800

Mid 50 2 3525
High 75 3 5300

dynamics vary as the system operating conditions change. The identified models for each

condition can be found in Appendix B.

The cascaded loop used for the heat pump system will take inner loop feedback on

evaporator pressure and outer loop feedback on refrigerant superheat. This is the same

structure used by [109] which was applied to a single evaporator, VCC water chiller sys-

tem. On that system the inner loop pressure control greatly reduced variation in system

dynamics across operating conditions as well as improved disturbance rejection. The iden-

tified heat pump steady-state models were used to find the nonlinear gain models of Equa-

tion 3.30 for the inner and outer loops signals. Using these models and the definition

of Equation 2.4, the NGM curve for this cascaded control structure was generated (Fig-

ure 3.19(a)). As shown, cascaded control will provide more linearization than the open-

loop for inner loop gains less than 1.73 with the most linearization provided by kL = 0.63.

To provide flexibility in the LQ tuning process, a closed-loop gap metric value of Γ > 0.9

was targeted (i.e. 0.44 ≤ kL ≤ 0.87). This target reflects most of the achievable lineariza-

tion of the cascaded loop.

ψi(σ) = 0.57σ2 − 1.35σ + 0.89

ψo(σ) = 0.24σ2 − 0.48σ + 0.74
for 0 ≤ σ ≤ 1 (3.30)

After applying the state transformation of Equation 2.37 and augmenting the dynamics

with an integrator on superheat error as in Equation 2.39, the LQ tuning method for this

91



10-2 10-1 100 101 102

k
L

0

0.2

0.4

0.6

0.8

1
(k

L
)

 = 0.19

 = 0.69

Target:  > 0.9

(a)

0.040.9

1

2

ki

1.1

0.03

k
L

kp

1.2

1.3

4
0.02

q
1 2 2 3 1 3

(b)

Figure 3.19: (a) Closed-loop NGM plot for the heat pump system. Tuning goal with LQR
for inner loop gain is Γ > 0.9 which corresponds to 0.45 ≤ kL ≤ 1.73. (b) Three-
dimensional (3D) plot of how gains vary with respect to LQR weights.

cascaded control structure will have four distinct weights: the three diagonal elements of

the state weighting matrix Q and the control input weight R. The general strategy for

selecting these weights takes into account the goals of the cascaded control loop. As the

cascaded controller seeks to reduce errors in superheat control, the weight on this state

(q1) should be large. Errors in evaporator pressure are secondary and will be masked by

the outer loop integral controller. The weight on the evaporator pressure state (q2) should,

therefore, be smaller than q1. The steady-state value of the outer loop integrator (i.e.

integrated superheat error) is not important in terms of the LQ cost function. This state

is used to compensate for steady-state errors in the proportional control of the inner loop

pressure control. Therefore, the weight on the integrator state should be made small. The

final weight, R, is used to limit the aggressiveness of the control action. Given that the

EEV on the experimental system has a slow response time and coarse step sizes, control

should be expensive and R large. These general strategies are summarized in Table 3.8.
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Table 3.8: LQ Weight Strategies for Heat Pump Loop Tuning

Weight Variable Influenced Magnitude

q1 Evaporator Superheat Large

q2 Evaporator Pressure Less than q1

q3 Superheat Integrator Small

R Valve Position Large

Using these general strategies, the LQ weights were initially selected to be as in Equa-

tion 3.31. For these nominal weights, a plot like that of Figure 3.19(b) was generated using

the full state feedback LMIs of Equation 2.45. The plot shows how varying combinations

of weights affects the three cascaded control gains and can be used to determine which

weight to adjust. For example, the inner loop gain with the nominal weights is too large.

Both R and q3 can reduce the inner loop gain but R has a stronger effect. This process

was repeated until the final weightsQ∗ andR∗ were found (Equation 3.32). These weights

correspond to the cascaded control gains of kL = 0.75, kp = 1.5, and ki = 0.01.

Q =

10 0 0

1 0 0

0 0 1.0e-2

 , R = 1 (3.31) Q∗ =

10 0 0

1 0 0

0 0 3.2e-3

 , R∗ = 66 (3.32)

The LQ optimally tuned cascaded controller was tested against the performance of

two PI controllers tuned under the high- and low-demand conditions given in Table 3.7.

The experimental testing procedure created a change in operating conditions by stepping

compressor speed from 2000 to 2500 rpm at 600 seconds and 2500 to 2000 rpm at 1500

seconds. Both indoor and outdoor fans were set at 50% of their maximum speeds and the

outdoor chamber air temperature was set to 37◦F (2.8◦C). These conditions represent a

mid-range system demand. As shown in Figure 3.20, the optimally tuned cascaded con-

troller significantly outperforms both PI controllers. Initially all three controllers have
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Figure 3.20: Experimental test results comparing traditional PI control of heat pump EEV
with cascaded control tuned using proposed LQ method. Compressor speed step-up oc-
curred at 600 seconds and step-down at 1500 seconds.

equivalent performance keeping evaporator superheat at 6◦C (10.8◦F). After the compres-

sor speed steps up at 600 seconds, the PI controller tuned for high load conditions opens

the expansion valve too quickly and by too much. This has the effect of flooding the evapo-

rator with refrigerant and setting up oscillations in the superheat response as the controller

begins to hunt, eventually saturating the valve position three times. The PI controller tuned

for low heat demand conditions has a much better response to the initial ramp of compres-

sor speed. However, the controller reacts too slowly to the compressor speed drop at 1500

seconds causing the evaporator to nearly lose superheat.
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The cascaded controller outperforms the PI controllers in the experimental test for

three key reasons. From Figures 3.20(a) and 3.20(b), evaporator pressure is seen to re-

spond much more quickly to changes in compressor speed than superheat. The fast inner

loop control operating on pressure is therefore better able to respond to changes in com-

pressor speed which strongly effects evaporator pressure. Control on pressure also helps to

mitigate time delay issues associated with surface mount thermocouples. Both traditional

PI controllers are limited in their response to system disturbances by the transient heat

transfer between the refrigerant, the pipe walls, and the sensor itself. The cascaded con-

troller also performs better because the inner loop gain was selected to reduce variations

in system dynamics through its linearizing effect. This allows the outer loop controller

to avoid the hunting behavior seen with the traditional PI controllers during compressor

speed changes. Finally, the LQ tuning method also contributes in improving the controller

performance. By utilizing the LMI formulation of the LQ method, the selected control

gains provide robustness to changing operating conditions.

3.8 Summary of Case Study Results

This chapter highlights several benefits of cascaded control and the proposed tuning

procedures. The first two case studies used examples to show how cascaded control can

linearize load dependent nonlinearities and decouple MIMO systems. The next four case

studies used models of typical HVAC systems to show that cascaded control can linearize

and improved performance for a variety of nonlinearities and systems. The final case study

used an experimental heat pump system to test the proposed optimal tuning procedure from

Chapter 2 on a real system. While cascaded control generally used more control effort than

a detuned PI controller, it avoided hunting seen with high demand PI controllers. The more

aggressive cascaded control may consume slightly more energy but it linearizes system

responses, enabling supervisory controllers to reduce total building energy consumption.
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4. PERFORMANCE EVALUATION OF CASCADED CONTROL

This section analyzes cascaded control performance using two main methods. The

first is the Dual-Youla parameterization that describes the interconnection of all stabilizing

plants and controllers in terms of a nominal condition. The second is a Linear Parameter

Varying (LPV) description of HVAC dynamics, discussed in Chapter 1, that will be used to

determine the limits of performance improvements provided by the cascaded architecture.

The Youla parameterization of a controller involves a reformulation of the controller

such that it incorporates input from a stable filter Q [135]. Allowing this filter to vary

in RH∞ will describe all stabilizing controllers for a given plant. This method facilitates

performance optimization and adaptive control techniques as variations in the Youla pa-

rameter can be made online without sacrificing system stability. A dual concept can be

used to reformulate the plant in terms of a stable filter S that describes all plants that

are stabilized by a given nominal controller. Together, these two parameters easily lend

themselves to robustness and performance analysis.

In [135], two main control approaches for the Youla parameterization are described.

The first involves nesting Q filters to the controller over time when performance degrades

or desired responses change. This approach is essentially an iterated approximation of

the plant dynamics and the associated optimal controller. Nesting in this way can lead

to very complicated control structures as well as high order systems. Another approach

would be to identify differences between a model and actual plant dynamics, essentially

continuously estimating the S filter. This online estimation can then be used to update the

Q parameter in real time according to some update algorithm.

The Youla parameterization has been incorporated into many control algorithms. In

[136], a gain scheduled controller was developed for a multiple-evaporator air conditioning
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system. Using the Youla formulation, guarantees on system stability and performance

were outlined as well as a bound on reference signal rate changes. The method has also

been incorporated into Iterative Learning Control (ILC) designs for robotic manipulators.

For example, in [137] PD controllers for a six degree of freedom robot manipulator were

coupled with an ILC whose form was determined in part by the Youla parameterization.

Other applications include fault tolerant control design [138] and damping control for

power systems [139].

This section will measure performance using an H∞ framework. The H∞ system norm

captures the worst case performance of a system over all frequencies and input/output di-

rections. As HVAC systems must ensure occupant comfort given any conditions, minimiz-

ing the H∞ norm provides a suitable metric. TheH∞ framework has been well developed

with numerous texts discussing norm calculation and control synthesis as in [121].

The remainder of this chapter outlines the Dual-Youla parameterization for a gener-

alized control connection and uses the result to derive a soft-implementation framework

for phased cascaded control implementation. Evaluation of performance between PI and

cascaded control is discussed based on a combination of controller blending techniques.

Finally, analysis of the cascaded architecture is done to show that cascaded control perfor-

mance will be equal or better than traditional HVAC PI controllers.

4.1 Cascaded Control as Static Feedback

The Youla parameterizations in the following sections are greatly simplified by the

controller being described as a static feedback system. For PI and cascaded control, this

involves shifting the integrator from the controller to the plant dynamics which requires

some manipulation of the nominal system. First, consider the cascaded inner loop feed-

back expression of Equation 4.1 after full substitution of signal definitions. As seen, to

describe cascaded control as static feedback the plant must be augmented with an integra-
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tor state for the outer loop error. This is accomplished by adding an additional state to

the plant that integrates outer loop error using the output matrices C̄P,o and D̄P,o from the

initial system P̄0. The outputs of this augmented plant P can now be manipulated so that

e =
[
eo yi ∫ eo dt

]T as in Equation 4.2. This expression is for continuous time systems

but a similar process can be done for discrete systems.

ui = kL(uo − yi)

= kL {(kp1eo + ki1 ∫ eo dt)− yi}

= kLkp1eo + kLki1 ∫ eo dt− kLyi

(4.1)

P0 :

[
AP0 BP0

CP DP

]
=


ĀP0 0 B̄P0

C̄P,o 1 D̄P,o

C̄P 0 D̄P

0 1 0

 (4.2)

A nominal PI controller K0 operating on yo (i.e. the outer loop signal) can therefore be

written as the output feedback controller in Equation 4.3 with gains kp0 and ki0. Similarly,

a cascaded controller can also be cast as output feedback problem. From Equation 4.1 the

cascaded controllerK1 can be expressed as Equation 4.4 where the gains are combinations

of the cascaded control gains kp1, ki1, and kL. These static descriptions can now be used

in the following sections. Note that this process is similar to that from Chapter 2.6 except

that the no restriction on the reference signal will be used.

K0 :

[
0 0 0 0

0 kp0 0 ki0

]
(4.3) K1 :

[
0 0 0 0

0 kLkp1 −kL kLki1

]
(4.4)

4.2 Dual Youla Parameterization for Stability Analysis

The following section outlines the derivation of Youla parameterizations for stability

analysis of a general plant and static output feedback controller with dynamics given by
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Equations 4.5 and 4.6. These expressions will be combined in the next section to find the

Dual Youla structure of a generalized cascaded loop interconnection.

P0 :

[
AP0 BP0

CP0 DP0

]
(4.5) K0 :

[
0 0

0 DK0

]
(4.6)

4.2.1 Derivation of JK Block

The Youla parameterization for stability analysis of a controller breaks the system K

into two parts (JK and Q) as in Figure 4.1(a). The first step in deriving expressions for

both systems is to find coprime factors for the interconnection of the nominal systems P0

and K0. Left and right coprime factors are defined in Equation 4.7 must must satisfy the

double Bezout relations given in Equation 4.8. Note that the following definitions follow

those outlined in [135, Chapter 2] for a general stabilizing controller.

G = NM−1 = M̃−1Ñ N,M, Ñ, M̃ ∈ RH∞
K = UV −1 = Ṽ −1Ũ U, V, Ũ , Ṽ ∈ RH∞

(4.7)

[
Ṽ −Ũ
−Ñ M̃

][
M U

N V

]
=

[
M U

N V

][
Ṽ −Ũ
−Ñ M̃

]
=

[
I 0

0 I

]
(4.8)

Q

w1

JK

P w2

RH∞
K(Q)

(a)

K

w1
JP

S

w2

RH∞

P(S)

(b)

Figure 4.1: Block diagrams of the Youla parameterization of the controller (a) and plant
(b). When combined, these systems define the Dual Youla parameterization of a system.

99



Coprime factors for the P0 and K0 are given in Equations 4.9 & 4.10 where Y00 =

(I −DK0DP0)−1 and Z00 = (I −DP0DK0)−1. Note that FP is a design variable required

for the stability of the coprime factorization and can be selected using any technique that

stabilizes the system AP0 +BP0FP .

[
M U

N V

]
=

 AP0 +BP0FP BP0 0

FP I DK0

CP0 +DP0FP DP0 I

 (4.9)

[
Ṽ −Ũ
−Ñ M̃

]
=

 AP0 +BP0Y00DK0CP0 −BP0Y00 BP0Y00DK0

FP − Y00DK0CP0 Y00 −Y00DK0

Z00CP0 −Z00DP0 Z00

 (4.10)

The JK block has the form of Equation 4.11 from [135, Chapter 2]. To use this defi-

nition, three systems must be derived: Ṽ −1, V −1, and −V −1N . Details for each of these

parameters are given by Equations 4.12−4.14. Combining all of these expression gives

Equation 4.15.

JK =

[
UV −1 Ṽ −1

V −1 −V −1N

]
=

[
K0 Ṽ −1

V −1 −V −1N

]
(4.11)

Ṽ −1 =

[
AP0 +BP0Y00DK0CP0 −BP0Y00

FP − Y00DK0CP0 Y00

]−1

=

[
AP0 +BP0FP BP0

Y −1
00 FP −DK0CP0 Y −1

00

]
(4.12)

V −1 =

[
AP0 +BP0FP 0

CP0 +DP0FP I

]−1

=

[
0 0

0 I

]
(4.13)

−V −1N =

[
AP0 +BP0FP BP0

−(CP0 +DP0FP ) −DP0

]
(4.14)

JK =

 AP0 +BP0FP 0 BP0

Y −1
00 FP −DK0CP0 DK0 Y −1

00

−(CP0 +DP0FP ) I −DP0

 (4.15)
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4.2.2 Derivation of Q Block

The expression for a specific Q to transform the nominal controller K0 to a new con-

trollerK1 can be found using Equation 4.16. The expression will be broken into two parts:

Ṽ (K1−K0) and (I−G0K1)−1M̃−1. Derivations for each part are given by Equations 4.17

and 4.18. Note that Y01 = (I −DK1DP0)−1 and Z01 = (I −DP0DK1)−1.

Q = Ṽ (K1 −K0)V (Q)

= Ṽ (K1 −K0)(I −G0K1)−1M̃−1
(4.16)

Ṽ (K1 −K0) =

[
AP0 +BP0Y00DK0CP0 −BP0Y00

FP − Y00DK0CP0 Y00

][
0 0

0 DK1 −DK0

]

=

[
AP0 +BP0Y00DK0CP0 −BP0Y00(DK1 −DK0)

FP − Y00DK0CP0 Y00(DK1 −DK0)

] (4.17)

(I −G0K1)−1M̃−1 =

=

[
AP0 BP0DK1

−CP0 I −DP0DK1

]−1 [
AP0 +BP0Y00DK0CP0 BP0Y00DK0

Z00CP0 Z00

]−1

=

[
AP0 +BP0DK1Z01CP0 BP0DK1Z01

Z01CP0 Z01

][
AP0 −BP0DK0

CP0 Z−1
00

]

=

[
AP0 +BP0DK1Z01CP0 BP0(DK1Z01Z

−1
00 −DK0)

Z01CP0 Z01Z
−1
00

]

=

[
AP0 +BP0DK1Z01CP0 BP0Y01(DK1 −DK0)

Z01CP0 Z01Z
−1
00

]
(4.18)

Q =

[
AP0 +BP0DK1Z01CP0 BP0Y01(DK1 −DK0)

−FP + Y01DK1CP0 Y01(DK1 −DK0)

]
(4.19)

Important relationships used to find this expression are given in Equation 4.20. These

relationships are also used in the next sections to find the final forms for JP and S.
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DK1Z01Z
−1
00 −DK0 = Y01(DK1 −DK0)

−Y00(DK1 −DK0)Z01 = Y01(DK1 −DK0)Z00

(4.20)

4.2.3 Derivation of JP Block

The Youla parameterization of the plant (Figure 4.1(b)) uses the definition of Equa-

tion 4.21 to find JP . Derivations for the three systems M̃−1, M−1, and−M−1U ) are given

in Equations 4.22−4.24 which are used to find the final expression in Equation 4.25.

JP =

[
−M−1U M−1

M̃−1 NM−1

]
=

[
−M−1U M−1

M̃−1 P0

]
(4.21)

M̃−1 =

[
AP0 +BP0Y00DK0CP0 BP0Y00DK0

Z00CP0 Z00

]−1

=

[
AP0 −BP0DK0

CP0 Z−1
00

]
(4.22)

M−1 =

[
AP0 +BP0FP BP0

FP I

]−1

=

[
AP0 −BP0

FP I

]
(4.23)

−M−1U=

[
AP0 −BP0

−FP −I

][
AP0 +BP0FP 0

FP DK0

]
=

[
AP0 −BP0DK0

−FP −DK0

]
(4.24)

JP =

 AP0 BP0DK0 −BP0

FP −DK0 I

−CP0 Z−1
00 DP0

 (4.25)

4.2.4 Derivation of S Block

The expression for a filter S to augment the nominal plant can be found using Equa-

tion 4.26. As before, the expression will be broken into two parts: V −1(I − P1K0)−1

and (P1 − P0)M . Derivations for each part are given by Equations 4.27 & 4.28 with

the final form given by Equation 4.29. Note that Y10 = (I − DK0DP1)−1 and Z10 =

(I −DP1DK0)−1.
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S = M̃(S)(P1 − P0)M

= V −1(I − P1K0)−1(P1 − P0)M
(4.26)

V −1(I − P1K0)−1 =

[
0 0

0 I

][
AP1 BP1DK0

−CP1 I −DP1DK0

]−1

=

[
AP1 +BP1DK0Z10CP1 BP1DK0Z10

Z10CP1 Z10

] (4.27)

(P1 − P0)M =

 AP1 0 BP1

0 AP0 BP0

CP1 −CP0 DP1 −DP0

[ AP0 +BP0FP BP0

FP I

]

=


AP1 0 BP1FP BP1

0 AP0 BP0FP BP0

0 0 AP0 +BP0FP BP0

CP1 −CP0 (DP1 −DP0)FP DP1 −DP0


=

 AP1 (AP1 − AP0)− (BP1 +BP0FP ) BP1 −BP0

0 AP0 +BP0FP BP0

CP1 (CP1 − CP0) + (DP1 −DP0)FP DP1 −DP0



(4.28)

S =

 AP1 +BP1DK0Z10CP1 BP1Y10(Y
−1
00 FP −DK0CP0) BP1Y10Y

−1
00

0 AP0 +BP0FP BP0

Z10CP1 Z10DP1FP − Z10(CP0 +DP0FP ) Z10(DP1 −DP0)

 (4.29)

This final form was found by eliminating uncontrollable/unobservable modes, apply-

ing simple state transformations, and using the identify I + DK0Z10(DP1 − DP0) =

Y10Y
−1

00 .

An assumption about how the plant parameters vary will greatly simplify analysis in

the following sections. HVAC systems typically have two types of nonlinearities: static

and dynamic. These variations typically manifest as changes in steady-state gain and

system time constants. Both of these changes can be captured assuming that only the

103



A and B matrices vary meaning that CP0 = CPi and DP0 = DPi. This also leads to

the implicit assumption that the state dimension of the system is constant over HVAC

operating conditions. Equation 4.30 contains identities resulting from this assumption and

Equation 4.31 the resulting simplified form for S.

Z00 = Z10 & Z01 = Z11 & Y00 = Y10 & Y01 = Y11 (4.30)

S =

 AP1 +BP1DK0Z00CP0 BP1(FP − Y00DK0CP0) BP1

0 AP0 +BP0FP BP0

Z00CP0 −Z00CP0 0

 (4.31)

4.3 Stability of the Dual Youla Parameterization

As stated in Theorem 4.2 from [135, Chapter 3], the Dual Youla parameterization

(G(S), K(Q)) is stable if and only if the pair (Q,S) is stabilizing. This theorem is based

on the result shown in Equation 4.32 where the Redheffer Star-Product S(JP , JK) is an

anti-diagonal pass-through matrix after uncontrollable and unobservable states have been

removed. Stability of the parameterization therefore involves determining if either of the

conditions in Equation 4.33 are true.

S(JP , JK)=


AP0 +BP0Y00DK0CP0 −BP0(FP − Y00DK0CP0) 0 −BP0

0 AP0 +BP0FP 0 BP0

FP − Y00DK0CP0 FP − Y00DK0CP0 0 I

−Z00CP0 −Z00CP0 I 0


=

 0 0 0

0 0 I

0 I 0


(4.32)

[
I −Q
−S I

]−1

or

[
(I −QS)−1 −Q(I − SQ)−1

S(I −QS)−1 (I − SQ)−1

]
∈ RH∞ (4.33)
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The expression of interest for stability is therefore Equation 4.34 where Dδ = DK1 −

DK0. This system is stable (i.e. ∈ RH∞) if all eigenvalues of the A matrix are in the left

half plane or in the unit circle for continuous and discrete time systems respectively.


AP0 +BP0DK1Z01CP0 0 0 0 BP0Y01Dδ

0 AP1 +BP1DK0Z00CP0 BP1(FP − Y00DK0CP0) BP1 0

0 0 AP0 +BP0FP BP0 0

FP − Y01DK1CP0 0 0 I −Y01Dδ
0 −Z00CP0 Z00CP0 0 I



−1

(4.34)

To check requirements for the Dual Youla parameterization of an output feedback sys-

tem only the A matrix of Equation 4.34 is required. To simplify analysis, the design

parameter is chosen to be FP = Y01DK1CP0. This choice stabilizes the Youla parameteri-

zation by design (i.e. the new controller K1 stabilizes the nominal system) and makes Q a

static gain. Derivation of the required system matrix is given by Equation 4.35.

A−BD−1C = A−

[
BP1 0

BP0 0

][
I −Y01Dδ

0 I

][
0 0

−Z00CP0 Z00CP0

]

=

[
AP1 +BP1DK1Z01CP0 0

BP0Y01DδZ00CP0 AP0 +BP0Y00DK0CP0

] (4.35)

The matrix above is block diagonal meaning the eigenvalues of the (Q,S) interconnec-

tion are given by Equation 4.36. From this expression, the eigenvalues of the interconnec-

tion are the union of the eigenvalues of the nominal system with the nominal plant and the

eigenvalues of the perturbed plant with the new controller. The first condition is stable by

design while the second needs to be tested over the set of possible plants. Note that the

stability of the varying plant with the nominal controller is implied as it was used to es-

tablish the plant parameterization. Essentially, the stability of the Youla parameterization

depends on the cascaded controller stabilizing the plant over its expected variations.

λ(F`(S,Q)) = λ(AP1 −BP1DK1Z01CP0) ∪ λ(AP0 −BP0DK0Z00CP0) (4.36)
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Figure 4.2: (a) Generic plant-controller connection used for Dual Youla parameterization.
(b) As Q and S vary in RH∞ all stable system interconnections are described.

4.4 Dual Youla Parameterization for Performance Analysis

Having found criteria for stability of a PI to cascaded control transition, this section

develops the Dual Youla parameterization for performance analysis of the system in Fig-

ure 4.2(a). A generic description of a plant and controller interconnection for the block

diagram is given by Equations 4.37 & 4.38 where plant transfer functions P11, P12, P21,

and G describe the input and output relationships of the control system. The assumption

DP0,22 = 0 requires only that there is no instantaneous feed-through of actuator input u to

the sensor output, a common trait of many HVAC systems. Subscripts for the plant C and

D matrices have been shortened because of the assumption that only the A and B matrix

parameters vary.
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P0 :

 AP0 BP0,1 BP0,2

CP1 DP11 DP12

CP2 DP21 0

 (4.37) K0 :

[
0 0

0 DK0

]
(4.38)

Typical signal definitions for a feedback system are given in Equation 4.39 where rs is

a reference input, d is a disturbance input, and n is sensor noise. Sensor/feedback signals

are outer loop error (rs − yo) and the inner loop signal (yi) used for cascaded control. The

error outputs are outer loop error and the control signal (ui) which sets up the trade-off of

balancing tracking error with control effort.

w =

rsd
n

 & z =

[
rs − yo
ui

]
& e =

[
rs − yo
yi

]
(4.39)

Having established the structure of the plant and controllers, the Youla parameteriza-

tions from the previous section can be used to derive the Dual Youla representation of

the output feedback system as in Figure 4.2(b). The parameterization of this system will

initially involve both signals z and e meaning that the controller K0 must be written as

Equation 4.40 so that it operates only on feedback from the signal e. Taking the plant from

Equation 4.37 and the design variable FP =
[
FP1 FP2

]
, the controller Youla parameters

are given by Equations 4.41 and 4.42.

K̂0 :

[
0 0

0 K0

]
=

 0 0 0

0 0 0

0 0 DK0

 (4.40)

JK :


AP0 +BP0,1FP1 +BP0,2FP2 0 0 BP0,1 BP0,2

FP1 0 0 I 0

FP2 −DK0DP21FP1 −DK0CP2 0 DK0 −DK0DP21 I

−(CP1 +DP11FP1 +DP12FP2) I 0 −DP11 −DP12

−(CP2 +DP21FP1) 0 I −DP21 0

 (4.41)
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Q :

 AP0 +BP0,2DK1CP2 0 BP2(DK1 −DK0)

−FP1 0 0

−FP2 +DK1CP2 0 (DK1 −DK0)

 (4.42)

These expressions can be greatly simplified by the design parameter FP . In particular,

choosing FP1 = 0 and FP2 = DK1CP2 will make all states in Q unobservable. After elim-

inating those states, the controller Youla parameter is therefore only a static gain equal to

the difference between the nominal controller (PI) and some new stabilizing state feedback

controller DK1. This selection also has an effect on the JK parameter in that the first input

of the Q block will be multiplied by zero and the first output of Q is always zero. This

means the third input and output of JK can be eliminated. With these eliminations, the JK

block has additional unobservable/uncontrollable states that can also be removed leading

to the final reduced forms of Equations 4.43 and 4.44. This form is the same as if the

parameterization was done for the connection of the system (AP0, BP0,2, CP2, 0) and K0.

JK :


AP0 +BP0,2DK1CP2 0 0 BP0,2

0 0 0 0

(DK1 −DK0)CP2 0 DK0 I

−CP2 0 I 0


=

 AP0 +BP0,2DK1CP2 0 BP0,2

(DK1 −DK0)CP2 DK0 I

−CP2 I 0


(4.43)

Q :

[
0 0

0 DK1 −DK0

]
(4.44)

Similar to the controller parameterization, the plant parametrization requires that the

controller be cast as K̂0. Using the same design parameter FP , the plant Youla parameters

are given by Equations 4.45 and 4.46.
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Figure 4.3: (a) The compact Dual Youla formulation places all plant-controller variations
in one system ∆. (b) A typical control system input and output filter configuration.

JP :


AP0 0 BP0,2DK0 −BP0,1 −BP0,2

0 0 0 I 0

DK1CP2 0 −DK0 0 I

−CP1 I −DP12DK0 DP11 DP12

−CP2 0 I DP21 0

 (4.45)

S :


AP1 +BP1,2DK0CP2 BP1,2(DK1 −DK0)CP2 BP1,1 BP1,2

0 AP0 +BP0,2DK0CP2 BP0,1 BP0,2

CP1 +DP12DK0CP2 −∗ 0 0

CP2 −∗ 0 0

 (4.46)

The final step in the Dual Youla derivation is to gather the Youla parameters as in

Figure 4.3(a). This involves finding the Redheffer Star-Product J = S(JP , JK), see [78,

Chapter 10] and combining systems S and Q into a single diagonal system ∆. In the

final forms of Equations 4.47 and 4.48 where D∆ = DK1 −DK0, all plant variations and

controller augmentations can be captured by the ∆ system in terms of a nominal plant and

controller interconnection described by J .
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J :



AP0 +BP0,2DK0CP2 0 −(BP0,1 +BP0,2DK0DP21) 0 0 0

0 AP0 +BP0,2DK1CP2 0 0 0 BP0,2

−(CP1 +DP12DK0CP2) CP1 +DP12DK1CP2 DP11 +DP12DK0DP21 I 0 DP12

0 0 I 0 0 0

(DK1 −DK0)CP2 0 DK0DP21 0 0 I

−CP2 0 DP21 0 I 0


(4.47)

∆ :


AP1 +BP1,2DK0CP2 BP1,2D∆CP2 BP1,1 BP1,2 0

0 AP0 +BP0,2DK1CP2 BP0,1 BP0,2 0

CP1 +DP12DK0CP2 −∗ 0 0 0

CP2 −∗ 0 0 0

0 0 0 0 D∆

 (4.48)

Both J and ∆ introduce additional states to the plant-controller systems. The number

of Youla parameters ∆i should be minimized in order to keep the parameterization dimen-

sion low while still accurately representing system requirements. In addition, input/output

filtering for robust control should be applied after the Youla parameterization so that fixed

filter dynamics do not become incorporated into either Youla parameters.

4.5 Soft Implementation of Cascaded Control Using Youla Parameterization∗

Analysis from the previous sections can be used to develop a method to bridge the tran-

sition from PI to cascaded control. This is important for the tuning process as gains can be

tested and poor performance identified before occupant comfort is affected. The develop-

ment also lays the groundwork for large scale deployment and adaptive control techniques

in that it offers a way to phase in controllers over time. Ensuring occupant comfort during

implementation helps to maintain working relationships with building administrators by

minimizing discomfort and associated work orders.

Consider a time-invariant plant as in Equation 4.49 with DP = 0 that has been aug-

mented as before with an integrator on the outer loop feedback signal. Given the PI and

cascaded controller structures of Equations 4.38 and 4.4, the an expression for the con-

troller Youla parameters JK and Q with FP = DK1CP are given by Equations 4.50.

∗Work from this section is adapted with permission from "Soft Implementation of Cascaded Control
Architectures Using the Youla Parameterization", C. Price and B. Rasmussen, Proceedings of the American
Control Conference, pp. 4652-4657, c©2018 IEEE.

110



G :

[
AP BP

CP 0

]
=


ĀP 0 B̄P

C̄P,o 1 0

C̄P 0 0

0 1 0

 (4.49)

JK =

 AP +BPDK1CP 0 BP

(DK1 −DK0)CP DK0 I

−CP I 0

 & Q =

[
0 0

0 DK1 −DK0

]
(4.50)

Let a new parameter Q̄ be defined as in Equation 4.51. Because Q is simply a static

gain and λ is a positive scalar less than one, Q̄ is guaranteed to be RH∞. This means that

the controller parameterized by Q̄ (i.e. K(Q̄)) will stabilize the plant G for all values of λ.

By varying the value of λ slowly, the control will stably transition from nominal PI control

(λ = 0) to cascaded control (λ = 1).

Q̄ = λQ where 0 ≤ λ ≤ 1 (4.51)

A realization of this transitional control can be found by combining the systems JK and

Q̄ using a lower Linear Fractional Transformation (LFT) as defined in [78], an operation

that is greatly simplified by Q̄ being a static gain. Note that the resulting transitional

controller given in Equation 4.52 now contains a model of the plant dynamics. At λ = 0

and λ = 1, K(Q̄) is simply a static gain equal to K0 and K1 respectively. However, for all

other values of λ the phased controller will have dynamics. This is a slight departure from

work in the previous chapters as it requires an a priori knowledge of the plant. However,

one advantage of working with HVAC systems is that their dynamics are dominantly first

or second order making identification a simple task.

K(Q̄) = F`(JK , Q̄) =

[
AP0 +BP0(DK1 − λD∆)CP0 λBP0D∆

(1− λ)D∆CP0 DK0 + λD∆

]
(4.52)
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Soft implementation has several advantages when implementing cascaded control.

Both the PI and cascaded controller in output feedback form use the same integrator sig-

nal, so bumpless transfer or complex integrator reset strategies are unnecessary. The tun-

ing process is also simplified as original performance can easily be restored by returning

to λ = 0. Slowly ramping into full cascaded control means issues with test gains can be

spotted before the unset of poor, oscillatory, or unrecoverable behavior.

One important note about this method is the distinction between frozen and transitional

stability. Although the Q-parameterization guarantees stability for each fixed value of λ,

stability of the timevarying λ(t) is not assured. In most gain scheduling literature this issue

is dealt with in one of two ways: 1) variation is assumed to be ‘sufficiently slow’ or 2) the

approach is modified to recover transitional stability. In the first approach, Q is assumed

to vary slowly enough that the system essentially achieves frozen stability at each value of

Q. An exact definition of the allowable rate of change is not defined and varies by system.

For the second approach, see [140] for example, recovering transitional stability often

comes with a trade off as faster transitional stability requires more conservative control.

This distinction is also important in the Dual-Youla parameterization where both the plant

and controller must vary sufficiently slowly to ensure stability. Stability of the transitional

controller is investigated more in the following example.

4.5.1 Example: Radiator Valve Control

Returning to the hydronic radiator valve system from Section 3.6, the system described

by Figure 4.4 is used to simulate room air temperature control. The model is based on

that from [87] and will demonstrate the benefits of soft implementation of a cascaded

controller. The inner loop signal for cascaded control is again estimated heat transfer

Ĥ = δ(Ts − Tr), i.e. TRV valve position multiplied by the water temperature drop across

the radiator.
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Figure 4.4: Diagram of hydronic radiator system simulation model. c©2018 IEEE.

In order to highlight differences between hard switching and a soft transition between

controllers, both a nominal PI and cascaded controller were tuned using standard PI tuning

and techniques from [115] respectively. Resulting tuned gains are given in Equation 4.53.

Also the model from Equation 4.54 was identified from simulation data and used to gen-

erate matrices required to implement Equation 4.51. The outside air temperature signal in

Figure 4.5 is used to model disturbances from sensor noise and variations in solar heat-

ing, occupancy, etc. and features a repeated 2-hour profile (i.e. before, during, and after

switching).

kp0 = 6.12, ki0 = 0.007

kp1 = 2200, ki1 = 1.95, kL = 0.01
(4.53)

Ḡ :


0.9993 0 0 0.0156

0 1.99 −0.9898 1

0 1 0 0

0.0180 0 0 0

0 0.4461 −0.4655 0

 (4.54)

Results for two switching conditions are shown in Figure 4.6. All controllers have

the same response for the initial two hours (i.e. PI control) after which the hard switched

case immediately changes to cascaded control. During the transition period, λ for the soft
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Figure 4.5: Outdoor temperature profile used as disturbance for radiator simulation model.
c©2018 IEEE.
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Figure 4.6: Comparison of transition techniques from PI to cascaded control. The soft
switched controller uses less initial control effort than the hard switched controller making
the transition easier on system resources. c©2018 IEEE.

switched controller is ramped from 0 to 1 and the response begins to converge to the hard

switch case, completely merging at approximately 4.5 hrs. After the transition period, both

switched controllers have improved tracking performance over the nominal PI controller.

The transition period can be used as an important step in the tuning process. The soft

switched controller uses less control effort at the beginning of the transition, closely mir-
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roring the PI controller. This makes the change to cascaded control easier on the system

and its actuators. For this simulation, cascaded control gains were tuned beforehand allow-

ing the hard switch to immediately achieve better performance. During a normal tuning

process, however, the performance of test gains is not known. The transition period allows

for issues with gains to be identified before the onset of oscillations/poor performance.

4.6 Performance Evaluation using Linear Matrix Inequalities

The previous sections outline a blending technique for soft implementation of a cas-

caded control loop. To evaluate the performance of this method and compare performance

of PI and cascaded loops, this section will use the H∞ norm framework. Evaluation of

performance for a control system depends on the design requirements set by expectations

and system limitations. This means that certain signals will be more important than others,

conflicts between units or the relative magnitudes of signals may exist, and only certain

frequencies of signals may be relevant. To deal with these issues, Equations 4.55 and 4.56

are input/output filters for signals w and z in Figure 4.2(a) and can be used to shape the

design process. Filter ‘w’ should define the frequency content of the disturbance/refer-

ence inputs while filter ‘z’ should be the reciprocal of the desired frequency content of the

outputs. Equation 4.57 gives the dynamics of the filtered plant.


ẋw = Awxw +Bww̄

w = Cwxw +Dww̄

(4.55)


ẋz = Azxz +Bzz

z̄ = Czxz +Dzz

(4.56)


ẋf =

 A B1Cw 0

0 Aw 0

BzC1 BzD11Cw Az


 xxw
xz

+

 B1Dw B2

Bw 0

BzD11Dw BzD12

[w̄
u

]
[
z̄

e

]
=

[
DzC1 DzD11Cw Cz

C2 D21Cw 0

]
xf +

[
DzD11Dw DzD12

D21Dw D22

][
w̄

u

] (4.57)
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A typical robust control problem is shown in Figure 4.3(b) where r̄ is a reference in-

put, n̄ represents sensor noise, and d̄ contains disturbance signals. Each of these signals

is assumed to be white noise with unitary gain that must be shaped to meet design re-

quirements. For HVAC systems, disturbance inputs are generally diurnal due to outside

weather conditions or semi-random changes in internal heat load due to occupancy sched-

ules. As both these signals are fairly slow, a Low Pass Filter (LPF) like Equation 4.58 can

be used to approximate their behavior. Similarly, HVAC set points are typically long step

changes that can be approximated with a LPF. Sensor noise is in general a small magni-

tude, high frequency phenomenon that can be modeled with a High Pass Filter (HPF) as

in Equation 4.59.

Glpf (s) =
b

as+ 1
(4.58) Ghpf (s) =

bs

as+ 1
(4.59)

Outputs for HVAC systems are usually temperature error and control effort. HVAC

actuators are often slow and many are rate limited. Therefore high frequency errors are

usually impossible to eliminate due to control limitations. This means that the output

error filter should be an LPF so that the performance metric only considers low frequency

errors. While the magnitude of valve or damper opening is not inherently important, rapid

changes in actuation should be suppressed and therefore Wu should be a high pass filter.

After designing the input and output filters, the H∞ system norm is a good choice

for evaluating HVAC system performance. From Equation 4.60, the H∞ is defined as the

maximum singular value of a system over all frequencies and input directions. The norm

can therefore be thought of as a measure of worst case performance. As building controls

must guarantee occupant comfort even in the most challenging conditions, this norm is a

natural choice for HVAC systems.

‖G(s)‖∞ = sup
ω
{σmax (G(jω))} (4.60)
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The H∞ norm is usually computed numerically by finding the smallest value γ for

which the system Hamiltonian matrix has eigenvalues on the imaginary axis. This is an

iterative process in which an initial guess for γ, usually large, is reduced until an answer

is found with an acceptable level of accuracy. Another option is to solve for the system

norm using Linear Matrix Inequalities (LMIs) where the problem is cast as a convex min-

imization with constraints. LMIs are computationally efficient and are able to incorporate

multiple design objectives. As seen in Equation 4.61, the LMI problem can even incorpo-

rate multiple operating conditions and solve for a polytopic system norm.

min γ

s.t. P > 0A
T
i P + PAi PBi CT

i

BT
i P −γI DT

i

Ci Di −γI

 < 0

(4.61)

Finally, a description of the time varying dynamics of HVAC systems and a descrip-

tion of controller transitions must be outlined. The simplest approach to modeling dynamic

changes is identify a series of linear system models at different operating conditions and

then blend their outputs according to a scheduling variable. This approach can also be

applied to a network of controllers as in Figure 4.7(a). While straightforward, output

blending has no guarantees of stability during transitions of the scheduling variable. An-

other blending approach would be to use the Dual-Youla Parameterization discussed in the

previous section to identify a series of Qi and Si parameters and combine their outputs

through the JK and JP blocks as in Figure 4.7(b). As linear combinations of systems in

RH∞ are themselves stable, this type of blending recovers the stability guarantees of the

parameterization. Differences in these methods are explored in the following example.
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Figure 4.7: (a) A Linear Controller Network (LCN) uses linear interpolation to blend the
outputs of different controllers. (b) A Linear-Q Network (LQN) blends different con-
trollers by interpolating Youla parameters thereby recovering stability guarantees.

4.6.1 Example: AHU Discharge Air Temperature Control

This section presents a case study comparing the performance of PI and cascaded

control for time varying systems with different implementations. The example system

is loosely based on the AHU model from Chapter 3.5 and has the first order, time de-

lay dynamics of Equation 4.62. A series of simulated valve step tests for a range of fan

speeds were conducted for a constant discharge air temperature of 55◦F. Identified param-

eter models are given in Equation 4.63 for the scheduling variable θ ∈ [0, 1].

G(s, θ) =
K(θ)

τ(θ)s+ 1
e−Td(θ)s (4.62)

K(θ) = 3.1e−14.8θ + 1.1e−3.3θ

τ(θ) = 1437e−12.8θ + 387e−2.2θ

Td(θ) = 100e−2.5θ + 2.5e−1.5θ

(4.63)
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Figure 4.8: Comparison of tuned PI and cascaded control responses over the scheduling
parameter θ. Cascaded control shrinks the cone of possible responses.

Analyzing building code across the Texas A&M campus shows that the minimum fan

speed for all AHUs when operating is 20% to ventilation requirements. This means that the

steady-state gain, time constant, and time delay will vary by factors of 18, 8, and 7 over the

operating range θ ∈ [0.2, 1] respectively according to the model. PI and cascaded control

gains were tuned in the θ = 0.2 condition giving conservative gains (Equation 4.64) that

avoid excessive oscillation over the operating range. A comparison of step responses is

given in Figure 4.8 which shows that cascaded control reduces the envelope of possible

responses. This effect will be quantified by the following H∞ analysis.

PI: kp0 = 2.15 ki0 = 0.8

CC: kp1 = 0.20 ki1 = 0.3 kL = 5
(4.64)

The closed loop system in Figure 4.3(b) requires the design of five filters: three input

filters (Wr, Wn, and Wd) and two output filters (We and Wu). References changes for

HVAC systems including AHUs are typically steps with long latency between changes. A

lower bound for the reference signal period is assumed to be 15 minutes and the magnitude
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is assumed to be 1◦F giving the LPF of in Equation 4.65. Input disturbances are slightly

faster than reference changes and must include daily weather conditions. Assuming that

disturbances affect discharge temperature by ±0.5◦F with a period of 10 minutes covers

these effects leading again to an LPF. Finally, sensor noise is inherently high frequency

and small in magnitude. As the dynamics of the system act essentially act as an LPF, noise

considerations will be neglected for this example.

Wr =
1

142s+ 1
& Wd =

1

100s+ 1
(4.65)

Output filters must be designed to penalize poor system and controller behavior. Ref-

erence tracking errors should be kept small and dissipated quickly. The desired maximum

level of error is ±1◦F with an upper period bound of 10 minutes. The system will not be

able to react to faster error frequencies than this limit, so the error filter should be an LPF

as in Equation 4.66. When designing Wu, the steady-state magnitude of the control signal

is not important for the performance problem. The control filter should therefore be an

HPF to penalize sudden changes in position and avoid issues with actuation rate limiting.

Many dampers and valves have travel times of 60 seconds or a maximum rate of change

of 1.67%/s leading to the filter in Equation 4.66.

We =
1

100s+ 1
& Wu =

0.3s

0.3s+ 1
(4.66)

The plots in Figure 4.9 show the results of analyzing the example system with the

designed weights, different implementation methods, and situations. In all combinations,

a Youla parameterization for the varying plant dynamics is found using a nominal system

P0(θ) to create a Linear-S Network (LSN) description of the plant. Figure 4.9(a) shows

results for combinations of frozen plants (i.e. θ fixed in [0.2, 1]) and a frozen controllers

(i.e. φ fixed in [0, 1]). At each operating condition ‘θ’, the cascaded controller gives better
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Figure 4.9: Blue color gradient is for results with LQN and pink gradient for LCN. (a)
Single plant with single controller. (b) Single plant with polytopic controller. (c) Polytopic
plant with single controller. (d) Polytopic plant and controller.

H∞ performance over the range of controllers than PI control. Further, the norm decreases

linearly as the control approaches cascaded control (i.e. φ→ 1). Also shown is that there

is little difference between results for controllers parameterized as Linear-Q or the much

simpler Linear Controller Network (LQN and LCN).
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The LMI norm outlined in the previous section can also be used to analyze the poly-

topic performance of the example system. In Figure 4.9(b), the plant is frozen but the

controller is assumed to vary arbitrarily in φ ∈ [0, 1]. The selection of the nominal plant

appears to have little effect while the operating condition has a strong influence. When

θ = 1, the system has its slowest gain profile and control error will be large which is

borne out in the plot. Interestingly, the LCN network appears to offer better norm results

especially at high load.

Similarly, in Figure 4.9(c) the controller is frozen but the plant scheduling parameter

is free to vary polytopically. Again the choice of nominal system for the plant Youla

parameterization has little effect on the system performance norm. As in the frozen plant

and controller case, as φ → 1 (i.e. cascaded control) the system performance improves.

The LCN network again offers slightly lower performance norms when compared to the

LQN network but there is essentially no difference.

The final condition tested was norm analysis for a fully polytopic plant and controller

system (Figure 4.9(d)). The selection of nominal system for the plant LSN parameteriza-

tion seems to have little or no effect on the norm output. The LCN network does, however

clearly have better norm performance. This may indicate that for simple dynamics, like

most HVAC equipment, the full Youla controller parameterization may not be necessary.

As mentioned before, the LCN approach has no guarantees for stability as the controller

scheduling variable φ varies. This trade-off is therefore system dependent and necessary

when stability is paramount.

Overall, cascaded control shows a distinct improvement of system H∞ performance

for all conditions. Although the selection of nominal system for the LSN parameterization

of the plant does not seem to effect the norm performance at a given operating condition,

it does have an effect on the initial value. Therefore, the nominal plant condition should

be chosen for the most common conditions to minimize modeling errors. The results also
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show that, at least for this example, that while full Dual-Youla analysis of the plant and

controller does provide stability guarantees, overall performance benefits are minimal.

Therefore for implementation in the field, simple control interpolation between PI and

cascaded control can be used.

4.7 Performance Guarantees for Cascaded Control

Results from the previous section indicate that the cascaded controller is able to of-

fer better performance than a well tuned PI controller. This section seeks to provide a

mathematical basis for this observation.

Consider the LPV system and generic static feedback controller of Equation 4.67. Here

a state transformation is assumed to collect all varying parameters into the system A and

B matrices. The closed loop system matrices are then given by Equation 4.68.

G(θ) :

 A(θ) B1(θ) B2(θ)

C1 D11 D12

C2 D21 0

 K :

[
0 0 0 0

0 k1 k2 k3

]
(4.67)

Gcl(θ) :

[
Acl Bcl

Ccl Dcl

]
=

[
A(θ) +B2(θ)DKC2 B1(θ) +B2(θ)DKD21

C1 +D12DKC2 D11 +D12DKD21

]
(4.68)

As discussed, the performance norm of a time varying closed loop system can be ap-

proximated using a polytopic LMI description as in Equation 4.61. The standard form of

an LMI is given in Equation 4.69 where Fi ∈ Rn×n are given and x ∈ Rm is the variable

[141]. The polytopicH∞ norm can be written in standard LMI form by assuming that the

solution P can be written in terms of its basis matrices P = x1E1 + x2E2 + · · ·+ xmEm

where Ei ∈ Sn and m = n(n + 1)/2. Substitution gives Equation 4.70 in terms of its

scalar LMI variables.

F (x) , F0 +
m∑
i=1

xiFi > 0 (4.69)
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 0 0 CT
cl

0 −γI DT
cl

Ccl Dcl −γI

+
m∑
i=1

xi

A
T
clEi + EiAcl EiBcl 0

BT
clEi 0 0

0 0 0

 < 0 (4.70)

An assumption about the structure of the controller can now be made to separate con-

tributions to the LMI that are shared by both cascaded and PI control from those only from

cascaded control. Let Dk = DPI + εD∆ where DPI = [kp 0 ki] and D∆ =
[
0 1 0

]
.

The expression above can then be written as Equation 4.71 where Acl,pi, Bcl,pi, Ccl,pi, and

Dcl,pi are the closed loop system matrices with PI control. 0 0 CT
cl,pi

0 0 DT
cl,pi

Ccl,pi Dcl,pi 0

+
m∑
i=1

xi

A
T
cl,piEi + EiAcl,pi EiBcl,pi 0

BT
cl,piEi 0 0

0 0 0



+ε


 0 0 (D12D∆C2)T

0 0 (D12D∆D21)T

D12D∆C2 D12D∆D21 0



+
m∑
i=1

xi

(B2(θ)D∆C2)TEi + Ei(?) Ei(∗) 0

(B2(θ)D∆D21)TEi 0 0

0 0 0


 < γ

0 0 0

0 I 0

0 0 I



(4.71)

The above expression essentially describes two LMIs: theH∞ performance norm LMI

with PI control and a second LMI containing terms due solely to inner loop feedback.

Equation 4.72 gives the simplified standard form and the dependence of the second ex-

pression on the existence of ε (i.e. an inner loop feedback path).

W0 + x1W1 + x2W2 + · · ·+ xdWd + ε(V0 + x1V1 + x2V2 + · · ·+ xdVd) < γĪ (4.72)

The above expression shows how the performance of a cascaded loop system is guar-

anteed to be as good or better than even a well tuned PI controller. A solution P to the

PI performance problem W0 +
∑m

i=1 xiWi < γĪ gives values for the LMI scalar variables

xi. That solution determines structure of the sum V0 +
∑m

i=1 xiVi in Equation 4.72 when
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ε 6= 0. When ε is allowed to vary, it acts as an additional free variable that can be selected

to further minimize the system performance norm γ. While there is no guarantee that

performance will improve, it is upper bounded by the original PI performance in which

case the optimal inner loop gain is simply kL = 0. However, the additional free variable

provides an opportunity to significantly reduce the performance norm in most cases.

This observation assumes that LMI variables have previously been found such that

there exists a P < 0 for a given performance level γ and PI control. It does not show

how the performance will be affected if the inner loop feedback is included in search for

the xi variables. As before, the solution will be upper bounded this time by the ε-only

minimization. This means that the expected performance of a cascaded controller will

always be better than or equal to an equivalently tuned PI controller.

4.8 Summary of Cascaded Performance Evaluation

This chapter developed the Dual Youla parameterization for a general static feedback

controller and used it to analyze the stability of a system with PI and cascaded control. The

Youla parameterization was also used to analyze the performance of HVAC systems using

an H∞ framework. Input/output filters were developed that penalize poor performance

while respecting actuation limitations present in most HVAC actuators. A simple case

study was used to compare two different cascaded loop implementations: direct control

interpolation and Youla-Q interpolation. Results showed that while the Youla interpolation

recovered stability guarantees, direct interpolation provided similar performance. For field

implementation on HVAC systems, direct interpolation is therefore a good option. Finally,

a proof was discussed showing that cascaded control architectures provide the same or

better performance than traditional PI controllers used in most building systems.
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5. IMPLEMENTATION OF CASCADED CONTROL ON CAMPUS∗

To identify hunting behavior and quantify benefits of the proposed cascaded control

loop on real building systems, an automated method for hunting detection was developed

by [30] and cascaded control was applied to several buildings at Texas A&M University.

Sections 5.1 and 5.2 follow the explanations and figures presented in [30] with permis-

sion. Section 5.3 summarizes results of an HVAC control survey at Texas A&M from [30]

while the remaining sections discuss implementation of cascaded control architectures in

building software and present results from cascaded loop testing at three campus buildings.

5.1 Detection of Hunting Behavior

There are many causes of actuator hunting in HVAC systems and distinguishing be-

tween them is essential. As discussed in Chapter 1, buildings are inherently time varying

and nonlinear systems whose dynamic characteristics can change significantly over time.

Consider a Variable Air Volume (VAV) box with an air flow damper (Figure 5.1). Control

gains tuned when the damper is mostly closed will be smaller than when the damper is

mostly open. These differences would are not an issue if system demand was constant.

HVAC systems are, however, always in flux due to highly variable loads such as weather

and occupancy. Static control will therefore either barely respond or vastly overestimate

required control leading to generally poor performance and/or hunting behavior.

Hunting in signals can also be caused by hunting in upstream and downstream systems.

For example, oscillations in the discharge air temperature of an Air Handling Unit (AHU)

will cause oscillations in the damper position of a VAV as it must adjust to compensate for

the greater/lesser cooling ability of the supply air. The oscillating damper will also cause

∗Material in Sections 5.1-5.3 is adapted with permission from "A Methodology for Automating the Im-
plementation of Advanced Control Algorithms Such as Model Predictive Control on Large Scale Building
HVAC Systems", R. Chintala, PhD Thesis, Texas A&M University, 2017.
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Figure 5.1: For a VAV system (a) steady-state gains vary in magnitude by over 50 times
and (b) time constants more than double over all operating ranges.

hunting in AHU supply fan speed, as the duct static pressure will oscillate with damper

position. Other hunting factors include actuator friction causing periodic windup in the

actuation signal, poor control tuning, and oscillating disturbances.

When observing data from building systems, two distinct frequencies are observed:

slow peaks due to daily variation in outside temperature and faster peaks due to any of the

control hunting factors discussed above. Periodic disturbances caused by daily building

usage are either random or follow a distinct schedule (e.g. weekday work hours, temper-

ature setbacks, etc.). These disturbances will necessarily cause oscillations in the control

signal but should not be identified as hunting. A detection algorithm must therefore distin-

guish between such normal fluctuations and hunting behavior caused by the controllers.

Hunting behavior in process industries led to the development of several oscillation de-

tection methods. Detection of oscillations in process controls can be difficult due to a wide

range of frequencies and asymmetric profiles. In [142], a combination on-line/off-line al-

gorithm was developed that could identify oscillations and determine whether friction or

control was the cause. The procedure uses the Integrated Absolute Error (IAE) of the

process error signal (Equation 5.1) where the integration bounds are the time between
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consecutive zero crossings of e(t). When control performance is good, the time between

crossings and therefore the IAE will be small. When the IAE crosses a threshold value,

a ‘load’ disturbance is said to have occurred. When two or more load disturbances occur

within a given window, hunting behavior will be identified. An extension to this method

was proposed by [143] that improves diagnostic capabilities of the algorithm by analyzing

the power spectrum of process data off-line. From this, distinctions between tuning issues

and limit-cycles caused by nonlinearities such as valve friction can be made.

IAE =

∫ ti

ti−1

e(t)dt (5.1)

Other off-line methods rely purely on statistical analysis of the error signal. In [144],

the decay ratio of oscillations in the error signal Auto-Correlation Function (ACF) were

used to detect hunting. This method has the added benefit of distinguishing between sus-

tained and decaying oscillations. Similarly, [145] used the ACF of the inverse Fourier

transform of the filtered power spectrum. Zero crossing frequency of this ACF can then

be used to infer the presence of hunting. With this method multiple frequencies can be

identified, helping to distinguish between causes.

5.1.1 Hunting in HVAC Systems

Each method described so far has been developed for process control. The main dif-

ficulty in detecting hunting in those industries is the wide range of frequencies present

in normal operation. Buildings, however, have a much more defined band of frequencies

(e.g. daily schedules) during normal operation making identification of hunting behavior

easier than in process applications. A hunting algorithm for buildings must distinguish

between undesired oscillations caused by control loops and daily load disturbances. The

main sources for load disturbances are outside weather conditions that have period of one

day and internal heat loads (e.g. occupancy, computers, etc.) that are inherently non-
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Figure 5.2: Hunting chilled water valve data from air handling unit in the Texas A&M
Therapeutics Manufacturing Building. Figure from [30].

oscillatory. Internal loads will generally have a square profile with distinct step changes.

Control loops regulating these loads will exhibit similar characteristics.

An example of typical oscillations in building HVAC systems is shown in Figure 5.2

where there are two distinct frequencies exhibited by the chilled water valve position and

supply fan speed. The fan oscillates according to daily weather loads while the valve has

oscillations at a much higher frequency. There are no load disturbances that equate with

the fast frequency of the valve control which is a strong indication of hunting.

This chapter will use the algorithm proposed in [22] to identify and quantify hunting

behavior in building HVAC on the Texas A&M campus. The main advantage of this algo-

rithm is that only the control signal is required to detect hunting. This is a simplification

over other methods as they require both setpoint and output signals be recorded by the

building management system to calculate error.

5.1.2 Summary of Detection Algorithm

The algorithm uses two aspects of the control signal to determine whether an oscilla-

tion is hunting: amplitude and frequency. To be identified, an oscillation must fulfill three
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Figure 5.3: Example of the hunting algorithm used to identify and quantify hunting in
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criteria: The peak-to-peak magnitude of an oscillation must be larger than the design limit

Alim, a threshold below which variations are considered negligible. There must also be

at least nlim oscillations within an observation window Tlim to exclude random variations

due to changes in occupancy. Finally, the frequency of oscillation (fosc) must be faster

than daily weather/occupancy loads. Figure 5.3 shows a diagram of the hunting algorithm

and a summary of major steps is provided below:

Initilzation: The algorithm begins by initializing index variables ih, io, and ic that track

the location of the start of the hunting window, the last oscillation, and current index

respectively. All three indices are initialized to 2 (Matlab indices begin at 1). Four other

variablesAmin,Amax, nsgn, and nosc are all created with initial values of 0. Amax andAmin

track the extreme values of the control signal in the current oscillation window while nsgn

and nosc track the number of sign changes and detected oscillations respectively. Finally

an empty array H is created that will track the indices of identified hunting behavior.

Step 1 - Time Check: At each index, the current index is checked against the hunting

window specified by Tlim. If Tlim > ic − ih, no hunting behavior has been detected
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resulting in ih and io being set to the current index ic while nsgn and nosc are reset to 0. If

Tlim < ic − ih, the algorithm proceeds to Step 2.

Step 2 - Inflection Detection: At each index ic, the algorithm determines if there is an

inflection point by calculating the future sign change (S+ = y[ic + 1]− y[ic]) and previous

sign change (S− = y[ic]− y[ic − 1]). If S+ 6= S−, then a sign change is recorded and nsgn

is incremented by one. At each instance, ic is also increased by one.

Step 3 - Oscillation Detection: When nsgn = nlim = 2, two sign changes have occurred

and a possible oscillation has been detected between io and ic. The algorithm then de-

termines the upper and lower magnitudes of the signal and computes the peak-to-peak

magnitude (i.e. A = Amax − Amin). If A > Alim, than an oscillation has been detected,

nosc is incremented by one, and io is set to the current index ic. IfA < Alim, the oscillation

is considered insignificant and no changes are made.

Step 4 - Hunting Detection: When nosc = 2, two significant oscillations have been

detected and possible hunting behavior has been found. The algorithm computes the time

difference between the beginning of the hunting window (ih) and the end of the second

oscillation (ic). Hunting is detected if (ic − ih) ≤ Tlim and H is augmented with starting

and ending indices of the hunting behavior as in Equation 5.2.

H =

[
H

[ih ic]

]
(5.2)

Step 5 - Reset Variables: After two oscillations, variables are reset to advance the hunting

detection window. Specifically, ih = io and io = ic move the indices to the beginning and

end of the last detected oscillation respectively while nsgn is reset to zero and nosc is set to

one. The algorithm then returns to Step 1 until the entire data set has been analyzed.

Post Processing: After the data set has been analyzed, the hunting array H is processed to

remove duplicate indices and later used to create a logical index variable (i.e. a vector of
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boolean values) that contains only the locations of identified hunting. The control signal

is also analyzed to identify long periods of continuous zero input (more than three hours)

indicating the system is in standby mode. The percentage of hunting time is then calculated

by dividing the total time of identified hunting by the total operating time.

Code for the hunting algorithm can be found in Appendix D. The outputs of the func-

tion are locations of all identified periods of hunting behavior and a percentage of time

spent hunting based on total operating hours. The algorithm can be used in real time or be

used to analyze historical building data as in the next section.

5.1.3 Algorithm Considerations

Several algorithm variables must be considered when analyzing a data set for hunting.

At the start of the algorithm, the peak-to-peak amplitude limit (Alim) must be set. Larger

values will make detection less sensitive by only identifying very large oscillations while a

smallAlim may falsely identify sensor noise as hunting. The length of the hunting window

must also be considered as its size will effect the frequency of oscillations detected. As

discussed before, the window must be short enough to exclude frequencies associated with

daily heat loads, but long enough to capture oscillations in actuator input. Both parameters

must be adjusted together for successful hunting identification.

Also important is the sampling time (Ts) of the hunting data. Figure 5.4 shows the

results of applying the hunting algorithm to a common data set sampled at 1-minute and

15-minute intervals. For this example Alim was set to 15% and Tlim was set to 2 hours

for each data set. As shown, while there is some aliasing of the hunting signal due to

the reduced sampling rate, the detection algorithm is still able to identify similar periods

of hunting behavior. The figure makes clear that the success of observing and detecting

hunting is heavily dependent on Ts and consequently Tlim.
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Figure 5.4: Sampling at different rates identifies the same regions as hunting behavior
(adapted from [30]).

While clearly a strong tool for HVAC control performance, the algorithm should not

be used for diagnosis. As discussed, hunting in one process can cause oscillations in other

controllers throughout an HVAC system. Figure 5.5 shows data over a ten day period

for two process variables: average building VAV damper position and AHU fan speed.

As is evident, the periods of identified hunting behavior are similar for both signals. This

indicates that there should always be an extra step after the detecting algorithm is complete

to determine the root cause of the oscillations.

5.2 Current Building Control Technology at Texas A&M

Texas A&M became the second largest university in the United State by total enroll-

ment starting in the 2016-2017 academic year. Due to its size, the university has a large

campus with over 750 buildings spread over 5,200 acres. In order to manage building op-

erations, the university has invested heavily in an extensive Building Automation System

133



0

50

100
F

a
n

 S
p

e
e
d

 (
%

)

Data

Hunting

0 1 2 3 4 5 6 7 8 9 10

Days

0

50

100

A
v
g

. 
D

a
m

p
e
r 

O
p

e
n

in
g

 (
%

)

Data

Hunting

Figure 5.5: Fan speed and average damper opening data shows the occurrence and detec-
tion of simultaneous hunting (adapted from [30]).

(BAS) that centralizes and monitors over 200,000 control points across 14 million square

feet of office and academic spaces.

The university currently uses Siemens APOGEE and the PPCL programing language

to remotely control its HVAC equipment [146]. A digital control panel for a typical AHU

is shown in Figure 5.6 highlighting key processes. For a given unit, there can be as many

as seven control loops operating simultaneously: (1-2) Discharge air temperature control

uses separate hot and cold supply water valve positions to regulate temperature, (3) Duct

static pressure is regulated by the speed of the supply air fan, (4 - 6) Air quality parameters

including CO2, relative humidity, and outside air percentage are all controlled by affecting

system setpoints, (7) Discharge air temperature setpoint is regulated by a control loop that

factors in supply air quality and average VAV damper position. The last loop aims to

minimize energy waste due to over pressurizing supply ducts for room air demands, an
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Figure 5.6: Typical APOGEE control panel configuration for an AHU at Texas A&M.

important savings consideration as the relationship between fan power and speed is cubic.

The sheer number of control loops makes the use of a centralized BAC network essential.

Nearly all control loops across campus are PI/PID type controllers implemented using

the PPCL LOOP command whose syntax is given as:

LOOP(type , pv , cv , sp , pg , ig , dg , st , bias , lo , hi , 0)

• type: refers to the direction of the controller and is either ‘0’ for direct or ‘1’ for

indirect control. The standard definition for a direct process is one where the control

variable increases in response to a rise in the system output. Alternatively, direct

control corresponds to e = y − r and indirect control to e = r − y assuming all

control gains are positive.

• pv: is the name of the Process Variable being regulated (temperature, flow rate, etc.).

• cv: is the name of the Control Variable used for actuation (opening, voltage, etc.).

• sp: is the name of the Set-Point signal against which pv is compared.
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• pg, ig, & dg: are the proportional, integral, and derivative gains.

• st: is the Sampling Time of the loop. Code executes faster than st but the LOOP

command is only executed after the sampling time has elapsed.

• bias: is the bias term for the LOOP command.

• lo & hi: are the saturation limits for the LOOP command. The algorithm has built-in

anti-windup to deal with saturated control issues.

The PPCL User’s Manual suggests initial values for the pg and ig gains of 1000 and

20 respectively. These are suggested as they typically provide conservative control for

the vast majority of control situations. However, the fact that most PI loops on campus

have these values for their control gains strongly indicates many loops never received

additional tuning. As the next section will show, this is usually to the detriment of system

performance and leads to either sluggish control or hunting behavior.

While ON/OFF control makes up the bulk of remaining control loops, recently com-

missioned buildings are being converted to use adaptive control loops. These loops use

either the ADAPTM or ADAPTS statements that use internal weighting factors to up-

date gains every sample time to minimize error. ADAPTM is a single-input, multi-output

adaptive controller designed specifically for AHU supply air temperature control while

ADAPTS is a general purpose controller for use with linear and non-linear processes [147].

Both algorithms require controllability, open-loop stability, and low dead-time.

In many cases, adaptive loops can provide superior performance but they are also sus-

ceptible to some common problems. At startup, ADAPT commands have a discovery pe-

riod that cycles the system through many operating conditions to calibrate weighting fac-

tors. Without care, this can cause a system to enter undesirable operating states. ADAPT

statements also have documented issues with sluggish reaction to setpoint changes over

long periods and can experience lock-up if the control variable saturates. These difficul-
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ties and the greater number of arguments in ADAPT statements (14 compared to 11) mean

that ADAPT statements are often more difficult to implement and explains the persistent

prevalence of PI type controllers in building HVAC systems on campus.

5.3 Survey of Campus HVAC Performance

To help establish the overall performance of current controls on campus and the preva-

lence of hunting in building HVAC equipment, a survey of ten buildings at Texas A&M

University was conducted. In particular, the performance of AHU supply air fans and

chilled water valves was analyzed. The corresponding signals used for hunting detection

are fan speed and valve position.

Data for the selected buildings was collected at 15 minute intervals and the algorithm

was applied with Alim = 15% and Tlim = 2 hr. Table 5.1 gives the results of the campus-

wide survey. Results show that hunting in HVAC controls is a widespread issue. Approxi-

mately 70% of all chilled water valves exhibited hunting for 6-78% of their operating time

while 22% of supply air fans exhibited hunting for 6-26% of operating time. This indicates

Table 5.1: Results from Hunting Survey at Texas A&M University

Building AHUs Fans
Hunting

Hunting
Duration

Valves
Hunting

Hunting
Duration

1 3 1 11% 2 6-19%
2 10 0 - 10 33-78%
3 2 0 - 2 6-7%
4 1 1 23% 1 27%
5 5 0 - 4 7-31%
6 2 0 - 2 12-39%
7 2 0 - 0 -

8 8 7 6-26% 6 7-12%
9 6 0 - 5 14-31%
10 3 0 - 0 -
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that measures aimed at minimizing hunting (e.g. cascaded control) can have a significant

impact on improving HVAC performance and energy usage.

5.4 Implementation of Cascaded Control Loops in PPCL

From previous discussion of the LOOP command, the large magnitude of the recom-

mended pg and ig gains stand out. For example, consider a discharge air temperature error

of 0.1◦F. If pg truly equaled 1000, then an AHU valve would be commanded 100% open

even though the error is quite small. Similarly, ig = 20 would completely saturate the

valve after only 20 sample units assuming ts = 5 sec. This behavior would be extremely

aggressive and does not match the performance seen in loops across campus.

This discrepancy strongly indicates that there are scaling factors included in the LOOP

calculation that reduce the magnitude of the control gains. To determine the exact values

for these factors, data from campus buildings was used to optimally match gains to a

PI controller. From the data, the form of the PPCL PI controller was determined to be

Equation 5.3. This the same as a standard implementation of a discrete PI controller. The

Matlab function fminconwas also used to determine that the relationship between kp and

pg as well as ki and ig. As shown in Figure 5.7, the relationships given by Equation 5.4

provide an excellent match to the output of the LOOP command despite different gains

and sampling times.

u = kp · e+ ki · ts · Σe (5.3)

kp = pg/1000 & ki = ig/1000 (5.4)

Having determined the relationship between the gains in the LOOP command (pg and

ig) and the control gains (kp and ki), the implementation of cascaded control in PPCL

can be considered. Initial deployment for an AHU at the Utilities Business Office (UBO)
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Figure 5.7: Optimization found PPCL gains that matched control output of Building 1600.

building located on the west campus at Texas A&M used Algorithm 5.1. The controller

regulates Discharge Air Temperature (DAT) to its setpoint (DAT.S) using chilled water

valve position (CCV). Note that the inner and outer loops are implemented using two

LOOP commands and an intermediate virtual point named "AH01.DATLOOP1.ILSP" that

stores the inner loop setpoint (i.e. the outer loop output). Although the LOOP command

has built-in saturation and anti-windup, it will only stop integration of each LOOP inde-

pendently. This becomes an issue when the inner loop (i.e. valve position) is saturated but

the outer loop remains enabled. Lines 0060-0070 deal with this issue by checking if the

valve is saturated and then dynamically enabling/disabling the outer loop LOOP command

on line 0110 accordingly. The code is somewhat lengthly, requires creation of extra points,

and has 7 tunable variables.
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0010 C Point Name Abbreviations
0020 DEFINE(X,"AH01.")
0030 DEFINE(Y,"AH01.DATLOOP1.")
0040 DEFINE(Z,"AH01.DATLOOP2.")
0050 C Outer Loop Anti-Windup
0060 IF("%X%CCV" .GT. 1 .AND. "%X%CCV" .LT. 99) THEN SET(0,SECND2)
0070 IF(SECND2 .GT. "DISABLE.TIMER") THEN DISABL(110) ELSE ENABLE(110)
0080 C Inner Loop Control
0090 LOOP(128,"%X%DAT","%Y%ILSP","%X%DAT.S","%Y%P","%Y%I",0,"%Y%TIME

","%Y%BIAS",50,70,0)
0100 C Outer Loop Control
0110 LOOP(0,"%X%DAT","%X%CCV","%Y%ILSP","%Z%P",0,0,"%Z%TIME","%Z%BIAS

",50,70,0)

Algorithm 5.1: Initial PPCL Cascaded AHU Control Implementation

A different approach to cascaded control in PPCL can shorten the code and simplify

its implementation. Consider the inner loop control signal given in Equation 5.5 where

e1 = r−y1, e2 = u1−y2,B1, andB2 are outer and inner loop errors and biases respectively.

The first two terms resemble the output of a PI controller with PI gains of kLkp and kLki

while the final terms are a combination of loop biases and inner loop feedback.

u2 = kLe2 +B2

= kL(u1 − y2) +B2

= kL [(kpe1 + kiΣe1 +B1)− y2] +B2

= kLkp(r − y1) + kLkiΣ(r − y1)

PI Control

+B2 + kLB1 − kLy2

Bias

(5.5)

Expressed in this form, the cascaded controller can clearly be implemented as a single

LOOP command without the need for the extra intermediate virtual point as before. This

is important because inner/outer loop anti-windup issues are avoided as the new algorithm

takes advantage of the built-in PPCL saturation measures. PPCL code based on this im-

plementation for AHU control is given by Algorithm 5.2 taking into account that the outer

and inner loops are reverse and direct acting respectively. The bias term is calculated and

stored in a local variable ($LOC1) on line 0040 because PPCL does not allow for calcu-

lations inside of function calls. Note that the simplified code eliminates fives lines and

140



reduces the number of tuning variables to five. One disadvantage of this implementation

is the loss of ability to have different sampling times for the inner and outer loops. De-

spite this, all benefits of cascaded control can still be realized even through the two loops

operate at the same sampling rate.

0010 C Point Name Abbreviation
0020 DEFINE(X,"AH01.")
0030 C Bias Term Calculation
0040 $LOC1 = "%X%BIAS" + "%X%KL"*"%X%DAT"
0050 C Cascaded Control
0060 LOOP(0,"%X%DAT","%X%CCV","%X%DAT.S","%X%P","%X%I",0,"%X%TIME",

$LOC1,0,100,0)

Algorithm 5.2: Simplified PPCL Cascaded AHU Control Implementation

The final sections of this chapter will detail results of applying cascaded control to

three campus buildings. Details about the size, layout, and location of each building will

be provided as well as comparisons between original PI and cascaded control. Typical

building PPCL code can be found in Appendix E.

5.5 Building 1497: Utilities Business Office

Working with the staff at the Texas A&M Utilities and Energy Services, limited ac-

cess to the HVAC control systems of Building 1497 was established. This building is

known as the Utilities Business Office (UBO) and is located in the Veterinary Medicine

quadrant. The UBO is a single-story, rectangular building consisting of ten temperature

controlled zones and one unconditioned server room with the general floor plan given in

Figure 5.8. The building is serviced by a single rooftop AHU consisting of a variable

speed fan, chilled water coil with valve, and return/outdoor air dampers. The unit has two

sensors for discharge air temperature and end static pressure. Zones 1-10 have VAV ter-

minal boxes equipped with a hot water reheat coil and an air damper. The hot and cold

water needs of the building are serviced by two dedicated loops that provide access to the

universities centralized heating and cooling water supply.
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Figure 5.8: Zone layout for the Utilities Business Office at Texas A&M University.

The UBO building uses a complex, nested PI-based architecture for its HVAC control

(Figure 5.9). During normal operation, PI controller (1) modulates the speed of the supply

fan to maintain static pressure in the air ducts. The End Static Pressure (ESP) setpoint is the

output of another PI controller (2) that compares the damper demand given by Equation 5.6

to a design setpoint Dset = 60. Room air temperature is regulated by a cascaded damper

control architecture similar to the one discussed in [116]. An outer loop PI controller

(3) uses room temperature error to calculate a flow demand Fi ∈ [0, 100] that determines

the flow rate required for each room. Flow demand is converted to a flow rate though

linear interpolation between minimum ventilation requirements and the maximum system

output. Inner loop control (4) uses local control and a flow rate sensor to match the outer

loop flow setpoint. Similar to ESP control, the AHU discharge air temperature setpoint is

generated by a PI controller (5) using the cooling demand calculation of Equation 5.7 and

the design setpoint Cset = 60. PI controllers (6-7) modulate hot and cold water supply

valves to match the exit/supply air temperature setpoint.
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(5.7)
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Figure 5.9: Process flow for UBO HVAC control.

UBO chilled water valve control used to regulate AHU exit air temperature has doc-

umented issues with actuator hunting. As seen in Figure 5.10, the valve had identified

periods of hunting accounting for 50% of its operating time during the first half of August

2015. Oscillations are most pronounced during low load conditions such as early morning

or during cool winter weather. For example, the valve hunted 57% of its operating time

during the three month period of Nov. 1st, 2013 to Feb. 1st, 2014 while the valve hunted

only 14% from May 1st to August 1st, 2016.

AHU exit air temperature control has three distinct hunting behaviors. Under high

load, valve control typically does not hunt. In early spring, temperatures are usually warm

in the afternoon but cool in the evening resulting in hunting late in the day (Figure 5.11).
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Figure 5.10: In August 2015, the UBO chilled water valve hunted (red) fully half of its
operation time.
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Figure 5.11: The UBO chilled water valve control often begins to hunt in late evening.

On other spring days, there is never enough load to prevent hunting behavior (Figure 5.12).

This behavior indicates that control performance is strongly tied to the operating condi-

tions of the system.
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Figure 5.12: The UBO chilled water valve hunts continuously in low load conditions.

In addition to time-varying system characteristics, the chilled water valve has issues

with cold water slug flow. Figure 5.13 shows that for a period of 2 hours, exit air tempera-

ture begins to chatter continuously despite little to no change in valve position. The cause

of this behavior can be explained by Figure 5.14 where oscillations in primary supply

water temperature lead oscillations in exit air temperature despite constant chilled water

valve position at 15% open. When there is no flow, both the supply water and exit air

temperatures rise. After a slug of chilled water passes through the valve, both tempera-

tures drop with supply water leading. Some of the observed hunting behavior in the UBO

building may be due to this slug flow behavior, especially in cases when the valve is almost

completely closed.

Cascaded control was applied to the chilled water valve control at the UBO Building.

Testing utilized Algorithm 5.1 and was conducted daily from 6-10 pm. Several step identi-
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Figure 5.13: The UBO exit air temperature often begins to hunt in late evening.
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Figure 5.14: Despite constant valve position, both supply water and exit air temperatures
oscillate indicating valve slug flow.

fication tests were performed on the system for a range of supply fan speeds from 20-90%

to capture different loads. Cascaded gains of kL = 4, kpc = 1.25, and kic = 0.2 were

chosen using the NGM analysis and the tuning procedure from Chapter 2. Testing began

October 2015 and ran through approximately through the end of the year. Figure 5.15

shows the improved performance of cascaded control by comparing data from two days

with similar load (i.e. valve openings) and outside air temperatures. Figure 5.16 shows

additional results for a range of load conditions, highlighting that hunting behavior seen

with the original PI controller has been eliminated without sacrificing performance.
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Figure 5.15: Comparison of PI and cascaded control at UBO under similar load conditions.
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Figure 5.16: Cascaded control eliminated UBO hunting behavior seen with PI control.

5.6 Building 0474: Philosophy Department & Student Senate Offices

Completed in 1914, Building 0474 originally consisted of a half-basement and two

upper stories that served as the campus YMCA [148]. As such, the lower level contained

an exchange store, barber shop, and a swimming pool. The upper floors housed a two-
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Figure 5.17: Basic layout of HVAC zones and exterior of the YMCA Building.

story auditorium and interfaith chapel. A fourth floor was added six years later for student

and visitor lounges. After construction of a new campus natatorium in 1932, the pool

was filled in and converted to a bowling alley. The construction of the Memorial Student

Center in 1951 and the All Faiths Chapel in 1957 prompted the YMCA to be completely

converted to an office building by filling in the two-story auditorium with an intermediate

floor. A total renovation was completed in 2012 that included upgraded HVAC equipment

and controls. The building currently houses the Texas A&M Philosophy Department and

offices for the Student Senate. Despite being over 100 years old and undergoing many

conversions, the building is still known as the YMCA Building.

In its current form, the YMCA Building has approximately 54,000 ft2 of office space

consisting of four floors with approximately 20 heating and cooling zones each (Fig-

ure 5.17). Each floor has its own AHU where return and outside air are mixed and con-

ditioned. Every zone has a parallel fan powered VAV terminal box with hot water reheat

coil. These boxes have return air ducting that draws warm air from the ceiling plenum for

‘free’ reheat and can use the heating coil to substitute reheat when at the minimum supply
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Table 5.2: Summary of 2017 Hunting Evaluation at Building 0474.

AHU 1 2 3 4

CHW Valve 2.29% 1.05% 11.4% 2.12%
Fan Speed 2.78% 0.17% 0.32% 0.52%

DAT Setpoint 1.53% 0% 0.10% 1.00%

air flow rate. The building control system has a wide array of sensors including relative

humidity, CO2, and outside air flow rate (ventilation). The overall temperature control

structure is the same as at the UBO building (see Figure 5.9) except with additional com-

plexity due to the upgraded terminal boxes and ventilation sensors.

YMCA Building operations were transferred to a new server in the spring of 2017.

Full historical trending of relevant HVAC system operating points began around August 1st

with a sample time of 5 minutes. Table 5.2 gives the results of analyzing each floors AHU

operation for fan and chilled water valve hunting through December 31st, 2017. Overall,

control in the YMCA building does not display much hunting behavior except for the third

floor where the CHW valve hunts just over 10% of its operating time.

Observations of building performance point to two main causes for the hunting behav-

ior. First, identified hunting in AHU3 occurs almost entirely in low cooling conditions.

This indicates that the PI controller was likely tuned for mid-to-high load conditions.

While there may be some reduction in hunting from implementing the cascaded controllers

(mainly with the third floor), the main benefits will be improved tracking performance due

to more aggressive performance afforded by the cascaded architecture.

The second cause of valve hunting seems to be oscillations in the AHU discharge air

temperature setpoint as with the data in Figure 5.18. Exit air temperature setpoint is set

by a PI controller (see Figure 5.9) whose output can swing five or more degrees several

times a day. As the CHW valve control tries to follow the setpoint changes, the resulting
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Figure 5.18: Hunting in the YMCA Building AHU exit air temperature setpoint may be
identified as hunting in the chilled water valve control.

fluctuations in CHW demand cause large oscillations in chilled water valve position that

can be identified as hunting. To estimate the effect setpoint hunting on the identified

CHW valve control, Table 5.2 also includes the results of applying the hunting algorithm

to discharge temperature setpoint with an amplitude limit of 3-5◦F. As expected, a small

part of the identified valve hunting overlaps with setpoint oscillations with the remainder

mostly from operating in low demand conditions. While changes to the supervisory DAT

setpoint PI controller were beyond the scope of this project, cascaded control was applied

to the chilled water valve control. Total elimination of hunting behavior in valve control

may not be realized due to the supervisory control issue, however, any reduction of valve

hunting behavior can be attributed to the application of cascaded control.

Algorithm 5.2 was initially tested on the fourth floor AHU chilled water valve and

later applied to the other three floors. All four original PI controllers had gains of pg =
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1000 and ig = 20 with a sampling time of ts = 1 second which are the recommended

LOOP gains in the PPCL User’s Manual. As a starting point, the inner loop gain was set

at a conservative value kL = 0.5 and the outer loop gains at kpc = 1 and kic = 0.04.

When converted to nominal gains using the relationships of Equation 2.33, k1 = 1 and

k2 = 0.02 are equal to the original PI control gains. This choice should provide similar

transient performance to the original control but with the added linearization benefits of

the inner loop control. The resulting control gains (pgc and igc) used in Algorithm 5.2 are

calculated using Equation 5.8. For the bias term, the inner loop bias is the average of the

minimum and maximum valve position (i.e. B2 = 50%). The outer loop bias is the average

of the minimum and maximum allowable exit/discharge air temperatures, 52◦F and 65◦F

respectively. The bias term B for the PPCL code is therefore given by Equation 5.9 where

DAT is discharge air temperature. Note that the bias term of the LOOP command has no

scaling factor. Inner loop gains for all units were later increased to kL = 1 starting in

March 2018 to increase the level of cascaded linearization.

pgc = 1000kLkpc = 500 & igc = 1000kLkic = 20 (5.8)

B = B2 + kL(DAT−B1)

= 50% +

(
0.5

%
◦F

)(
DAT− 65◦F + 52◦F

2

)
= 20.75% +

(
0.5

%
◦F

)
DAT

(5.9)

After initial testing on the top floor unit, cascaded control for discharge air tempera-

ture control was implemented throughout the YMCA building. To fairly compare HVAC

performance before and after implementation, weather disaggregation was applied to the

data using the Degree Day (DD) method. A DD is related to how long and by how much

outside ambient conditions stay above or below a baseline temperature. Usually assumed
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to be 65◦F, this balance temperature is the ambient load condition under which a building

requires no conditioning. Cooling and heating degree days, CDD and HDD respectively,

can be thought of as the area above or below the balance temperature for a given out-

side temperature profile. The DD is therefore a useful tool to compare HVAC data as it

inherently normalizes for warmer or colder weather.

System performance will be measured using two metrics: Root-Mean-Square (RMS)

error and average (AVG) error. For error to be calculated, the system must be ON and in

cooling mode for more than 90 minutes. These criteria are important because, particularly

on weekends, AHUs will cycle ON/OFF randomly for short periods of time to maintain

building air quality. These bursts are not long enough for the AHUs to reach their tem-

perature setpoints and are not representative of the tracking ability of the valve controller.

Detecting cooling mode is important as the chilled water valve can be saturated at 0%

causing large error accumulation despite not being utilized. Criteria for detecting these

conditions are given in Table 5.3 and cooling time is then found by the intersection of

ON/OFF and the negation of HEAT detection.

Typical daily AHU results from 6AM to 6PM are shown in Figure 5.19. Each AHU

tracks is discharge temperature setpoint throughout the day and displays no hunting be-

havior. Hunting algorithm results are givn in Table 5.4, where the hunting in AHU 3 has

been reduced by 45%. Hunting percentages for all other floors are up slightly (∼1%) but

still small enough to not indicate an issue.

Table 5.3: Cooling Mode Detection Criteria for YMCA Building.

Condition Criteria Comment

ON/OFF ωi = 0 Minimum ωi when LOOP is active is 20%.

HEAT δi = 0 Identified when true continuously for 90 minutes.
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Figure 5.19: Typical performance of DAT cascaded controllers at YMCA Building.
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Table 5.4: Summary of 2018 Hunting Evaluation at Building 0474.

AHU 1 2 3 4

CHW Valve 1.91% 3.79% 6.32% 3.35%
Fan Speed 1.24% 0.02% 0.42% 0.40%

DAT Setpoint 0.55% 1.11% 0.25% 1.28%

Improvements in system performance are better seen in Figures 5.20-5.23 that show PI

data from 2017 and cascaded control data from 2018. For each floor, at least marginally,

there is a reduction in dependence on load condition (i.e. flatter trend lines) and a tighter

dispersion of error metrics with cascade control than PI control, particularly with AVG

error. This is seen visually and in the decrease in standard deviation from the trend line.

Improved RMS error results show that the controllers are better able to track setpoint

changes while less negative AVG error values means occupants will be more comfortable

rather than slightly warm (because e = r − y).

The minimal improvements in AHUs 1 & 4 are the results of two main issues. For

AHU 1, PI data from 2017 has significantly less days in cooler weather than CC in 2018.

As these conditions tend to result in more error for this unit, the 2017 trend line is smaller

in this region than expected. AHU 4 data is the result of the unit being slightly undersized

for observed loads. In warm weather, Unit 4 will be maxed out with the valve and supply

fan operating at 100% but only slowly reaching command setpoints for static pressure and

air temperature. This leads to large errors in warm weather that will be similar for both

PI and CC control. However, in Figure 5.23 there does appear to be an improvement in

performance in cooler conditions. Overall, cascaded control was applied successfully to

all AHUs at the YMCA building and showed performance benefits without introducing

control hunting issues.
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Figure 5.20: AHU 1 performance comparison between PI and cascaded control.
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Figure 5.21: AHU 2 performance comparison between PI and cascaded control.
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Figure 5.22: AHU 3 performance comparison between PI and cascaded control.
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Figure 5.23: AHU 4 performance comparison between PI and cascaded control.
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Figure 5.24: Basic layout of HVAC zones and exterior of the TTI Building.

5.7 Building 1600: Gilchrist (TTI) Building

The Gilchrist Building is an approximately 85,000 ft2 office and research facility lo-

cated in the Texas A&M Research Park on west campus. The building was completed

in 1999 and consists of three floors in a mostly L-shaped configuration with additional

space on the ground floor. The building hosts a branch of the Texas A&M Transportation

Institute (TTI) whose mission is to develop solutions to challenges in all modes of trans-

portation. Institute facilities at this location include a driving simulator, an eye tracking

system, a hardware-in-the-loop simulation testbed, and a fully instrumented test vehicle.

There are 32 heating and cooling zones on the first floor, 40 on the second and 38 on the

third roughly corresponding to the floor plan given in Figure 5.24.

The Gilchrist Building utilizes a Dedicated Outdoor Air System (DOAS) for its ven-

tilation requirements. The DOAS, also known as a fresh air unit, is functionally similar

to a normal AHU except that its supply air is 100% outside air (see Figure 5.25). The

system supplies preconditioned ventilation air to AHUs on every floor. Each AHU has a

local cooling coil to make up for latent heat in the return air stream. Parallel fan powered
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Figure 5.25: The Gilchrist Building uses a dedicated outdoor air unit for ventilation air.

VAV terminal boxes in each zone have reheat capabilities if necessary. Separating the ven-

tilation stream represents a new trend in building HVAC systems and has shown promise

in reducing energy usage between 10-40% [149, 150] as subsystems can be downsized

and/or other cooling technologies utilized for return air conditioning.

Historical trended data for this building is not available due to software limitations.

However, dynamic trending of critical points was facilitated by the Texas A&M Utilities

Office. This method of data collection records point values in real time with a maximum

sampling time of 2 minutes and/or when point values change above a threshold. Data was

collected from approximately 10 am to 4 pm from November through December 2017 to

capture original building operations. The nature of dynamic trending resulted in data sets

with random sampling times. To utilize the hunting algorithm of Section 5.1, each dataset

was resampled to enforce a 2 minute sampling time.

Even though the TTI Building is less than 20 years old and has an advanced HVAC

system design, the AHU chilled water valve controls still have significant hunting issues.

As seen in Figures 5.26 and 5.27, each floors AHU valve control experiences some level

of hunting behavior. AHU1 has a hunting period of approximately 60 minutes, AHU2 30

minutes, and AHU3 20 minutes. The level of hunting, in terms of amplitude and period, is

again correlated with system load as seen when outdoor air temperature approached 70◦F.
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Figure 5.26: Chilled water valve hunting becomes less prominent as outside air warms.
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Figure 5.27: All three AHU CHW valve controllers hunt continuously on cool days.

159



Also apparent from the figures, is that the supply air fan for AHU2 has a large issue with

hunting. Fan speeds are allowed to very within ω ∈ [20%, 100%] which accounts for the

saturated appearance of the signal. Fan speeds for AHUs 1 and 2 vary only slightly or are

constant during a normal day. Note that access to record data for the DOAS was given in

early 2018, well after the time frame of these nominal plots.

The tuning process at the TTI Building highlights several fundamental issues of prac-

tical building control. In particular how hunting controllers can mask multiple system

faults. The following sections detail issues discovered at the TTI as they arose and how

implementing cascaded control revealed several other underlying problems.

5.7.1 Problem 1 - Poorly Tuned Control Gains

Parsing the Gilchrist Building control code, the chilled water LOOP command settings

for each AHU were found to vary widely as seen below. At issue are the vastly different

sampling times seen in the upper floors. Due to the multiplication of the integral gain and

sampling time (see Equation 5.4), the effective ki gain for these systems is 30 times larger

for those floors than the first floor. Differences in gains help to explain the variation in

loop performance between AHUs. Most likely, hunting behavior was observed in AHU3

and to compensate the magnitude of pg was reduced by an order of magnitude. Similarly,

the integral gain for AHU1 was reduced to avoid oscillations.

AHU 1: pg = 600, ig = 7.5, ts = 1 sec ⇒ kp = 0.6 kits = 0.0075

AHU 2: pg = 600, ig = 15, ts = 15 sec ⇒ kp = 0.6 kits = 0.225

AHU 3: pg = 60, ig = 15, ts = 15 sec ⇒ kp = 0.06 kits = 0.225

DOAS: pg = 600, ig = 20, ts = 1 sec ⇒ kp = 0.6 kits = 0.020

The main culprit of the nearly constant hunting in the initial dynamic data is there-

fore the large effective integral gains. However, as seen in Figure 5.26, there is still a

demonstrated reliance on operating conditions as warmer ambient temperatures reduce

the prevalence of hunting. Implementing a properly tuned cascaded controller will there-
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fore inherently eliminate oscillations due to poor tuning as well as reduce variations in

performance due to changing operating conditions.

For initial cascaded tuning, the LOOP sampling time will be ts = 1 second with an

initial inner loop gain of kL = 0.5. The gains pg and ig for AHU1 will be used as initial

nominal gains for the tuning process. The cascaded loop gains are therefore kpc = 0.2 and

kic = 0.015 which correspond to the initial LOOP gains pgc = 100 and igc = 7.5 to be used

with with Algorithm 5.2. These calculations, including for the LOOP bias term, are given

by Equations 5.10 and 5.11.

pgc = pg− 1000kL = 100 & igc = ig = 7.5 (5.10)

B = B2 − kLB1 = 50%−
(

0.5
%
◦F

)(
65◦F + 55◦F

2

)
= 20% (5.11)

After some initial testing, the inner loop gain was increased to kL = 1 to amplify the

linearization effect of the cascaded controller. Due to the additional issues discussed be-

low, the integral gain was slowly decreased to igc = 2.5. With these gains, the system

showed a qualitative improvement in performance as seen in Figure 5.28. This improve-

ment represents incremental progress with notable reductions in oscillation period and

magnitude. After the remaining issues were fixed, the final integral gains for each unit

were increased to 7.5, 10, 10, and 7.5 respectively.

5.7.2 Problem 2 - Failed End Static Pressure Sensors

As seen in Figure 5.28, fan speed for AHU2 hunts periodically throughout a normal

day. The architecture of Figure 5.9 shows that the fan speed is used to maintain a certain

static pressure at given points in the system ducting. Usually End Static Pressure (ESP)

sensors are located at a point two-thirds along the longest path of the ducting. Given the

L-shape of the TTI Building, floors 2 and 3 have two ESP sensors.
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Figure 5.28: ESP setpoint for AHU2 oscillates throughout the day due broken ESP sensors.
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In normal operation, PPCL code takes the minimum reading from the two ESP sensors

as the input to the static pressure control loop. On floor 2 however, a comment in the

system code indicated that one of the sensors had failed at an earlier date. Given that the

second sensor continuously read a similar value to the failed sensor and both showed no

reaction to drastic changes in supply fan speed, the failure of both ESP sensors was deter-

mined. This has the effect of breaking the ESP feedback loop at the red ‘x’ in Figure 5.9,

thereby effectively introducing a constant disturbance between ESP SP and fan speed con-

trollers. While unmeasurable from the failed ESP sensors, the effect of the hunting fan

speed was still observable through the damper command calculation. As dampers at each

zones VAV box closed to accommodate rising ESP due to the increased fan speed, the ESP

SP controller would lower the ESP setpoint. This process would reverse and eventually

cause the observed sustained oscillation in the ESP setpoint. As soon as one of the ESP

sensors on floor 2 was replaced, the oscillations in AHU2 fan speed were eliminated giving

the slightly improved results of Figure 5.29 where fan speed hunting has been eliminated.

Note that although AHU2 is parallel to AHU1 and AHU3, the hunting fan speed acted as

a disturbance, affecting the distribution of fresh air being delivered to each AHU.

5.7.3 Problem 3 - Failed CHW System Pressure Sensor & Control Issue

After fixing the ESP sensor, a synchronized oscillation in all four AHUs at the Gilchrist

Building began to manifest (see Figure 5.29). Due to the configuration of the system, an

issue with the DOAS was suspected as oscillations in discharge air temperature for that

unit could propagate to the other three units. Trouble shooting proved inconclusive as

simple valve stiction tests such as [151] failed to positively identify the issue.

In early April 2018, weather conditions in College Station were cold enough that no

conditioning of fresh air was needed from the DOAS. Despite the stable supply fresh air

temperature being delivered to AHUs 1-3, discharge air temperatures still displayed the
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Figure 5.29: Synchronized disturbances in all AHUs point to an common upstream distur-
bance determined to be CHW supply system.
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same synchronized oscillations. Their persistence strongly indicated that another upstream

disturbance besides the DOAS was causing the oscillations.

Such a disturbance was determined to be coming from the buildling CHW supply

system. As seen in Figure 5.30(a), the system consists of two actuators (a pump and a

valve), four pressure sensors, and two temperature sensors. The CHW control architecture

seen in Figure 5.31 seeks to maintain a Differential Pressure (DP) between supply and

return water. The DP setpoint is determined through a rule set that uses a time averaged
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Figure 5.30: (a) Schematic of CHW supply system. (b) Original CHW supply control had
a significant region (shown in red) where the return valve and pump actuated simultane-
ously. New pump control settings fixed this issue.
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Figure 5.31: Control digram of TTI Building CHW supply control architecture.
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Root-Mean-Square (RMS) valve position for the four AHUs. A PI controller operates

on DP error to output DPLOOP ∈ [20, 100], a demand variable that is interpolated to

determine settings for the return water valve position and pump speed. The deadband

block in the pump control is meant to prevent short cycling of the pump and to ensure that

the pump and valve are actuating separately.

As seen in Figure 5.32, the building CHW pump short cycles ON/OFF several times

throughout the day. These cycles correspond to the periodic oscillations seen in AHU

discharge air temperature. The sudden changes in pump speed cause sharp changes in

building CHW flow rate which affects flows to individual AHUs. This causes the sudden,

synchronized drops in exit air temperatures.

The short cycling was due to several concurrent system issues. Firstly, the deadband

region meant to prevent rapid pump cycles was extremely small turning the pump ON

when DPLOOP rose above 36 and OFF when it dropped below 34. As DPLOOP would

drop below 34 almost immediate after the pump switched ON, the pump would cycle

OFF after the five minute sampling time of the DP Setpoint rules block. Also because

the linear interpolation for the return water valve was for 20 ≤ DPLOOP ≤ 66, both

the pump and the valve were actuating simultaneously for a significant range of operation

shown graphically in Figure 5.30(b). Secondly, the return CHW pressure sensor had a fault

causing large swings in measurements. The resulting oscillation was propagated through

the SCHW PI controller causing the pump and valve to oscillate. Finally, the integral

gain in the SCHW PI loop was ig = 125 with a sampling time ts = 1. The large integral

gain caused DPLOOP to hunt even for small errors in DP. Each of these identified issues

was fixed by working with TAMU Utilities. The CHW program was changed to expand

the the deadband zone and alter the interpolations to regions where the pump and valve

actuate separately (see Figure 5.30(b))). The return pressure sensor was also replaced and

calibrated and the DPLOOP PI controller was returned.
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After fixing CHW supply issues, the system began to operate fault free. Initial results

showed that hunting had been completely eliminated and that large disturbance oscilla-

tions from system faults had been removed. However, tracking performance was poor as

cascaded controllers had been detuned to tolerate the many system faults. After retuning

the controllers to improve tracking performance, system results are similar to those from

Figure 5.33. Comparing with the original performance seen in Figure 5.26 and 5.27, fixing

the multiple faults and implementing cascaded control has significantly improved building

performance. At the end of the tuning process, final cascaded PPCL gains were kL = 1,

pgc = 100, and igc= 10 except for the DOAS whose integral gain was igc = 7.5.

5.8 Estimated Energy Savings

Having established that cascaded control has significantly improved the performance

of AHU exit air temperature, one question that can now be answered is how much energy

poor AHU control wastes. The trouble shooting from the previous section has, for the time

being, left the Gilchrist Building HVAC system operating fault free and a comparison of

daily energy usage and costs can be made by alternating between the original PI and new

cascaded controllers. As the only difference will be the AHU exit air control architecture,

assuming similar loads, any differences in usages will be due to control alone.

To estimate daily resource consumption, additional information about the building

HVAC system is required. From the building HVAC floor plans, the nominal power of

the four AHU fans and CHW pump are known (Table 5.5). Each of these motors are vari-

able speed, normally operating at some fraction of their top speed. The part load power

Table 5.5: Gilchrist Building HVAC Motor List

Unit AHU1 AHU2 AHU3 DOAS SCHW

Type Fan Fan Fan Fan Pump

Power 25 HP 25 HP 20 HP 7.5 HP 20 HP
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can be found using standard fan/pump affinity laws leading to the instantaneous electrical

power estimate of Equation 5.12 where ωi ∈ [0, 100] are speeds and the subscripts ‘oa’

and ‘p’ are for the DOAS fan and CHW pump respectively. Each building on campus is

billed at a rate of approximately $0.08/kWh of electricity which represents the average

cost of electricity production at the campus generation sites.

Pelec = 18.65 ω3
1 + 18.65 ω3

2 + 14.92 ω3
3 + 5.595 ω3

oa + 14.92 ω3
p kW (5.12)

The volume of chilled water used daily by the Gilchrist HVAC system is relatively easy

to compute as CHW flow is monitored in real time. However, estimating cost is slightly

more complicated as Texas A&M Utilities does not bill by volume but by energy content.

As all conditioning water is returned to the central processing plants, buildings that require

more cooling will return warmer water. Solely billing on volume usage therefore does not

capture the additional cost of re-cooling warmer return water. Calculating energy used by

the HVAC system requires monitoring chilled water flow rate as well as the temperature

differential between supply and return water. Instantaneous CHW power consumed by

the HVAC system is given by Equation 5.13 and has an associated cost of approximately

$0.052/kWh of chilled water which represents the average cost of cold water production.

PCHW = cp ρ V̇∆T = 0.1463 V̇∆T kW (5.13)

Starting in May 2018, the AHU discharge air temperature control was switched be-

tween the original PI control and the new cascaded control approximately every two

weeks. Energy consumption, costs, and cooling degree days were calculated daily to gen-

erate plots comparing the two control architectures. As seen in Figures 5.34 and 5.35,

there are two distinct schedules at the Gilchrist Building: weekday and weekend. The

weekend schedule completely shuts down the first floor AHU resulting in the bifurcation.

On particularly hot days AHU1 will however operate on Saturdays.
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Preliminary results show that for high demand conditions (CCD > 10), the PI and cas-

caded controllers result in similar daily energy consumption. Analysis of control perfor-

mance in these conditions shows that the PI controllers are well tuned for such conditions.

Under these loads, mixed air temperatures are higher and discharge air temperature set

points are in the low 50◦F range. It is expected though that in cooler conditions (CCD <

10) that PI hunting will be come more prominent. Under such conditions discharge tem-

perature set points will be in the mid to low 60◦F range with the system operating in much

higher response gain region.

Expected trends for PI and cascaded control on weekday schedules are shown by dotted

lines in both Figures 5.34 and 5.35. As shown, the cost of operating with PI control is

expected to level off in cooler weather with respect to CCDs. Cascaded control should

eliminate hunting behavior and therefore avoid the extra cost due to the nonlinear power

consumption of the fans and pump. Should the shaded region in the cost plot prove correct,

hunting could cost up to $100 per day depending on outside weather conditions.

5.9 Summary of Cascaded Control Testing

This chapter has detailed detection of hunting behavior in several buildings on the

Texas A&M Campus and the implementation of cascaded control loops to eliminate that

problem. Hunting at the UBO and TTI buildings was virtually eliminated through a com-

bination of troubleshooting and cascaded control design. Results at the YMCA building

were more mixed, but a general trend in improved tracking performance without introduc-

ing control oscillations was observed. The basis for an estimation of hunting/poor control

costs was started at the TTI building. Data will continue to be recorded in order to capture

differences in PI and cascaded control in cool weather conditions.
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Figure 5.34: Daily control energy comparison at Gilchrist Building.
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172



6. CONCLUSIONS & FUTURE WORK

6.1 Summary of Contributions & Conclusions

This dissertation has developed the cascaded control architecture for building HVAC

systems. A thorough analysis of the current state of building HVAC controls was dis-

cussed, placing the proposed architecture in context and identifying issues with current

PI controllers. The structure and benefits of cascaded loops were outlined and quantified

by defining new Nonlinear Gap Metrics. Those metrics were used in the development of

simple tuning techniques and in the generation of an optimal LQ tuning framework. Sev-

eral case studies on both simulated and experimental systems highlighted the benefits of

the architecture and the proposed tuning techniques. Analysis of several implementation

approaches were studied taking advantage of the developed Dual Youla parameterization

of a generalized static output feedback cascaded controller. Also a mathematical analysis

of performance guarantees of the cascaded loop was outlined using LMIs and a polytopic

representation of plant dynamics. Finally, results from a series of pilot cascaded loop im-

plementations in several campus Air Handling Units were presented showing improved

performance.

While this dissertation demonstrates the ability of the cascaded architecture to improve

the operation of a wide array of HVAC equipment, there are many opportunities to further

develop the control methodology. The following sections outline continued work and

possible avenues for future research.

6.2 Performance & Optimization Opportunities

The analysis in Chapter 4 developed soft cascaded implementation techniques and an-

alyzed simple control interpolation approaches. The analysis pointed to cascaded control

being a simple control method that can be widely adopted by the HVAC field. Experimen-
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tal results in three campus buildings shows that cascaded loops can easily be incorporated

into existing architectures and provide better performance and even help to uncover addi-

tional system faults. A survey of campus AHUs show that hunting and poor PI control are

widespread issues and easily fixed with cascaded control.

The LMI analysis in Chapter 4.7 also points to synthesis opportunities for cascaded

control. Similar to the work presented there, consider the general cascaded loop controller

of Equation 6.1. After substitution, the resulting closed loop LMI can be written as Equa-

tion 6.2 where Fol is the open loop H∞ LMI and each LMI equation Fi is defined by the

control feedback. Unlike Chapter 2.6 where the cost function was constrained to LQ, the

LMI expression allows for a minimization based off of I/O filter selection. Also, the order

of the controller is unaffected unlike in full H∞ synthesis. Further development of opti-

mal control methodologies could further improve cascaded loop performance and reveal

simple tuning techniques for HVAC systems.

DK = k1

[
1 0 0

]
+ k2

[
0 1 0

]
+ k3

[
0 0 1

]
= k1D∆1 + k2D∆2 + k3D∆3 (6.1)

Fol(x) +
3∑
i=1

kiFi(x,D∆i) < γĪ (6.2)

6.3 Application of Cascaded Control on Building Systems

In Chapter 5 cascaded control was applied to Air Handling Unit (AHU) chilled wa-

ter valve control. Results showed an improvement in control performance due to three

unique issues associated with PI control hunting: hunting due to changing loads, hunting

due to supervisory control oscillations, and poor initial control tuning. The three buildings

identified as a test set for this project were selected by the Texas A&M Building facilities.

Poor performance was not the main criteria for building selection but ultimately conve-

nience and testing risk minimization. Hunting behavior in these buildings was merely

coincidental and a symptom of fundamental issues with PI control with HVAC systems.
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Figure 6.1: Texas A&M East Campus buildings with identified AHU valve and/or fan
hunting issues (red).

Hunting issues on the Texas A&M campus are not confined to the buildings studied.

A survey of HVAC control performance on East Campus focusing mainly on buildings in

the engineering section found more than a dozen additional buildings with some level of

hunting (Figure 6.1). Important to note is that these identified buildings are not a complete

list and represent only buildings that have points trended for historical analysis. Several

buildings had no data on control performance and thus could not be analyzed. Results

from this building survey indicate that there is significant opportunity to apply cascaded

control across campus and improve building chilled water valve performance.

Chapter 5 results also highlighted the opportunity for cascaded control in other HVAC

control loops. Several AHU supply air fans had distinct periods of speed hunting and

many setpoint loops had oscillations such as in the YMCA Building discharge air temper-

ature setpoint control. Applying cascaded control to these loops would further improve
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overall HVAC system performance. Implementing these loops would also help leaning to

distinguish the ultimate cause of hunting in a given system. The dynamics of an AHU

are inherently coupled, not to mention the highly coupled control structure employed in

campus buildings (see Figure 5.9). Piecewise cascaded control roll-out would allow future

projects to develop tools to identify the source of large oscillations.

Application of cascaded control at the test facilities underscored the overall lack of

common metrics to assess building control performance. There are only a handful of

papers dedicated to performance measures and detection of hunting behavior in HVAC

systems (see [27, 30]) and no definitive ASHRAE standard exists. Going forward, es-

pecially as more advanced HVAC control paradigms are developed, a common building

operating metric will become necessary to both measure current energy/comfort and to

quantify improvement.

Along with developing such metrics, fault detection in building controls needs to be

developed. While there are numerous equipment fault detection methods for HVAC sys-

tems, particularly for AHUs and VCC systems, there is very little development of tools for

identifying faulty controls. As seen with cascaded control implementation at the Gilchrist

Building, fundamental control architecture issues can significantly hamper HVAC opera-

tion. For example, incorrect settings for the deadband region in the Gilchrist CHW supply

system caused short cycling of the CHW pump that manifested as a large synchronized

disturbance in all four AHUs. Future work in the HVAC field should include development

of holistic diagnostic tools that can identify such oscillations and pinpoint problem sys-

tems. Whether this takes the form of machine learning algorithms or diagnostic decision

trees is an open question.

Given development of performance metrics and diagnostics tools, an additional area

of future work with cascaded control is the development of automated deployment pro-

cedures. Ideally, this would be a form of plug-and-play device or software package that
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would incorporate easily into existing building controls. Such a module would need to

identify several factors for proper implementation. Firstly, identification of candidate con-

trol loops needs to be understood. If existing controls offer satisfactory performance, the

additional time and cost of implementing cascaded control may not be feasible. Also, as

seen in Chapter 5, oscillations in a signal may not be the result of poor control but due to

rejecting upstream disturbances. Locating upstream control faults will point to the correct

candidate for cascaded loop implementation. Second, automating the structure of cascaded

control needs to be developed. For example, there may be several intermediate signals that

can be utilized to linearize system responses (e.g. air flow rate for VAV dampers) or the

inner and outer loops could take feedback on the same signal (e.g. cascaded control for

AHU exit air temperature control). Finally, tuning of the cascaded control loop gains

would need to be automated. This can proceed in multiple directions such as adaptive

control paradigms or auto-tuning algorithms.
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APPENDIX A

JURY STABILITY CRITERIA FOR SECOND ORDER SYSTEMS

A.1 Under & Over Damped Case (ζ 6= 1)
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where φ = arccos(ζ) and T is the hold time.

Jury Test #1-2:

K∗1−2 =
±1− e−2ζωnT

e−2ζωnT + e−ζωnT√
1−ζ2

sin(ωn
√

1− ζ2T − φ)

Jury Test #3-4:

K∗3−4 =
−1− e−2ζωnT ± 2e−ζωnT cos(ωn

√
1− ζ2T )

e−2ζωnT + e−ζωnT√
1−ζ2

[
sin(ωn

√
1− ζ2T − φ)∓ sin(ωn

√
1− ζ2T + φ)

]
± 1

A.2 Critically Damped Case (ζ = 1)
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{
1− e−sT

s

(
a2ψ(σ)

(s+ a)2

)}
= ψ(σ)

[1− e−aT (1 + aT )]z + e−aT (−1 + aT + e−aT )

(z − e−aT )2

Jury Test #1-2: K∗1−2 =
1

ψ(σ)
· ±2e−aT ∓ e−2aT ∓ 1

±1∓ 2e−aT + e−2aT

Jury Test #3-4: K∗3−4 =
±1− e−2aT

e−aT (−1 + aT + e−aT )
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APPENDIX B

MODELS FOR CHAPTER 2 CASE STUDIES

B.1 Case Study #1: Tuning Models
ẋT =

[ −2 0 0
0 −5 0

0.7071 0 −1

]
xT +

[
2.8284

5
0

]
ui

y =

[
0 1 0
0 0 1

]
xT


ẋA =

[ −2 0 0 0
0 −5 0 0

0.7071 0 −1 0

]
xA +

2.8284
5
0
0

ui
y =

[
0 1 0 0
0 0 1 0
0 0 0 1

]
xA

Final Tuning Parameters: R = 3.16, q1 = 1x10−5, q2 = q3 = 1, q4 = 1.25x104

B.2 Case Study #7: Heat Pump Models

Demand State-Space Steady-State

Low


−0.00327 0.00233 6.99x10−5

−0.00482 −0.00084 1.19x10−4

−24.92 5.238 0

197.9 76.42 0

 yss =

[
−0.42

6.26

]

Moderate


−0.00488 0.00304 1.31x10−4

−0.00447 −0.00412 1.09x10−4

−9.972 1.619 0

96.22 55.29 0

 yss =

[
−0.33

2.53

]

High


−0.00420 −0.00083 7.43x10−5

0.00027 −0.00221 −1.86x10−6

−17.92 −1.515 0

80.85 −54.74 0

 yss =

[
−0.29

0.94

]
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APPENDIX C

TABLES FOR CHAPTER 4.5 EXAMPLE

LQN stands for Linear-Q Network and LCN stands for Linear Controller Network. These

are defined respectively by interpolating the Youla parameter Q or the controller directly.

Note that θ and φ are the plant and controller scheduling variables respectively.

Table C.1: Single Plant with Single Controller and LSN-LQN Network (P0 = 0.6)

θ \ φ 0 (PI) 0.25 0.5 0.75 1 (CC) PI - CC

0.2 1.2712 1.0849 0.9415 0.8329 0.7547 0.5165
0.4 0.9677 0.9151 0.8698 0.8332 0.8067 0.1611
0.6 1.0147 0.9851 0.9561 0.9290 0.9059 0.1088
0.8 1.1317 1.1080 1.0823 1.0552 1.0284 0.1033
1 1.2368 1.2192 1.1991 1.1761 1.1508 0.0860

Table C.2: Single Plant with Single Controller and LSN-LCN Network (P0 = 0.6)

θ \ φ 0 (PI) 0.25 0.5 0.75 1 (CC) PI - CC

0.2 1.2712 1.0556 0.9144 0.8150 0.7547 0.5165
0.4 0.9677 0.8956 0.8501 0.8227 0.8067 0.1611
0.6 1.0147 0.9751 0.9454 0.9230 0.9059 0.1088
0.8 1.1317 1.0993 1.0719 1.0485 1.0284 0.1033
1 1.2368 1.2121 1.1898 1.1694 1.1508 0.0860

Table C.3: Single Plant with Polytopic Controller and LSN-LQN Network

θ \ P0 0 (PI) 0.25 0.5 0.75 1 (CC)

0.2 2.7699 2.4114 2.4061 2.4693 2.5196
0.4 2.2844 1.9317 1.7966 1.7966 1.7966
0.6 2.9579 2.9579 2.9579 2.9579 2.9579
0.8 6.4954 6.4954 6.4954 6.4954 6.4954
1 13.8410 13.8410 13.8410 13.8410 13.8410
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Table C.4: Single Plant with Polytopic Controller and LSN-LCN Network

θ \ P0 0 (PI) 0.25 0.5 0.75 1 (CC)

0.2 2.5491 2.5491 2.5491 2.5491 2.5491
0.4 1.5834 1.5834 1.5834 1.5834 1.5834
0.6 2.1601 2.1601 2.1601 2.1601 2.1601
0.8 4.7436 4.7436 4.7436 4.7436 4.7436
1 10.1081 10.1081 10.1081 10.1081 10.1081

Table C.5: Polytopic Plant with Single Controller and LSN-LQN Network

P0 \ φ 0 (PI) 0.25 0.5 0.75 1 (CC)

0.2 2.2735 2.1515 2.0227 1.8821 1.7245
0.4 2.2735 2.1106 1.9679 1.8392 1.7245
0.6 2.2735 2.0703 1.9174 1.8033 1.7245
0.8 2.2735 2.0381 1.8853 1.7858 1.7245
1 2.2735 2.0273 1.8791 1.7846 1.7245

Table C.6: Polytopic Plant with Single Controller and LSN-LCN Network

P0 \ φ 0 (PI) 0.25 0.5 0.75 1 (CC)

0.2 2.2735 2.0496 1.9021 1.7988 1.7246
0.4 2.27353 2.04955 1.90211 1.79882 1.7245
0.6 2.27353 2.0495 1.9021 1.7988 1.7245
0.8 2.27353 2.0495 1.9021 1.7988 1.7245
1 2.27353 2.0495 1.9021 1.7988 1.7245

Table C.7: Comparison of full Polytopic Plant & Controller Combination

P0 0.2 0.4 0.6 0.8 1.0

LSN + LQN 15.1023 14.6304 14.6273 14.7174 14.8266
LSN + LCN 10.7169 10.7168 10.7168 10.7168 10.7168
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APPENDIX D

HUNTING DETECTION ALGORITHM

The following code implements the hunting detection algorithm developed by [30]. This

implementation builds upon the one discussed there by adding additional features includ-

ing excluding off-time from the hunting percentage calculation and reducing false posi-

tives by checking the forward and previous magnitudes between oscillations to exclude

large step changes.

function [hunting_amt] = FNC_IdentifyHunting_CRP(t,data,Alim,Tlim,h)
% Alim is peak-to-peak minimum amplitude
% Tlim is the index window for two oscillations

% Indices of identified hunting & total length of data
data_loc = [];
data_len = length(data);

% Step 1: Calculate sign changes
sgns_bck = sign(data(2:end-1) - data(1:end-2));
sgns_fwd = sign(data(3:end+0) - data(2:end-1));
sgns_bck(sgns_bck == 0) = 1;
sgns_fwd(sgns_fwd == 0) = 1;
sgns = find(sgns_bck ~= sgns_fwd);

% Step 2: Initialize Hunting Variables
if ~isempty(sgns)

i_h = 1;
i_o = sgns(1);
n_osc = 0;

% Step 3: Detect hunting behavior
for i = 3:2:length(sgns)

i_c = sgns(i);

% Calculate peak-to-peak amplitude of oscillation
A = abs([data(i_c)-data(sgns(i-1)) data(sgns(i-1))-data(i_o)]);

% Check in inside hunting window
if (i_c - i_h) > Tlim

i_h = sgns(i-2);
i_o = i_c;
n_osc = 0;
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% Check forward & back magnitude of oscillation
elseif all(A > Alim)

% If first large oscillation, set up window variables...
if n_osc == 0

n_osc = 1;
i_h = sgns(i-2);
i_o = i_c;

% Otherwise there is hunting...
else

data_loc = [data_loc; i_h i_c];
i_h = i_o;
i_o = i_c;

end
end

end
end

% Check if there was any hunting...
if ~isempty(data_loc)

i = 2:data_len-1;

% Check if last index of hunting is within Tlim of end...
if (data_len - data_loc(end,2)) < Tlim

data_loc(end,2) = data_len-1;
end

% Create logical index variable with identified hunting locations
j = i >= data_loc(:,1);
k = i <= data_loc(:,2);
data_loc = sum(logical(j.*k),1) > 0;

% Look for times when the system is off & sum off time
offtime = find(data ~= 0)’;
offtime = diff(offtime);
i = offtime > 36;
offtime = sum(offtime(i));

% Plot hunting periods
data(data_loc == 0) = nan;
plot(h,t,data,’r-’,’linewidth’,2)

% Calculate time spent hunting while on
% (the -1 is to fix earlist index of 2...)
hunting_amt = sum(data_loc)/(data_len - 2 - offtime)*100;

else
hunting_amt = 0;

end
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APPENDIX E

PPCL BUILDING CODE

The following code is from the TTI Building and is representative of PPCL code for nor-

mal building HVAC control. Sections are grouped by shading and annotated to improve

understanding. See Figure 5.9 for control diagram.

00001 C --- START OF CODE ---

00100 C --- DEFININTIONS ---
00101 DEFINE(RM, "TTI1600.FV3")
00102 DEFINE(DN, ":DAY.NGT")
00103 DEFINE(CLO, ":CLG LOOPOUT")
00104 DEFINE(DMP, ":DMPR COMD")
00105 DEFINE(VLV, ":VLV COMD")
00106 DEFINE(NOV, ":NGT OVRD")
00107 DEFINE(MODE,"1600_AHU3")
00108 DEFINE(OAT,"1600_VOADBT")
00109 DEFINE(OAD,"TTI1600.A3OAD")
00110 DEFINE(SFSS,"TTI1600.A3SS")
00111 DEFINE(SVF,"TTI1600.A3VFD")
00112 DEFINE(SVFV,"1600_A3.SVF.V")
00113 DEFINE(DAT,"TTI1600.A3DT")
00114 DEFINE(DATS,"1600_A3.DAT.S")
00114 DEFINE(CCV,"TTI1600.A3CDV")
00115 DEFINE(CCVV,"1600_A3.CCV.V")
00116 DEFINE(DAS1,"TTI1600.A3SP1")
00117 DEFINE(DAS2,"TTI1600.A3SP2")
00118 DEFINE(DASS,"TTI1600.A3SSP")
00119 DEFINE(DSMK,"TTI1600.A3DSM")
00120 DEFINE(ACLP,"1600_A3.ACLP")
00121 DEFINE(ACDMP,"1600_A3.ACDMP")

00200 C --- DEFINE LOCAL VARIABLES ---
00210 LOCAL(XDATS,NDATS,XDASS,NDASS,CLPTTL,DMPTTL,MDAS,TECCNT)

00300 C --- CONVERT PERCENTAGES TO VOLTAGES ---
00310 TABLE("1600_A3.CCV.V","TTI1600.A3CDV",0,10,100,0)
00320 TABLE("%SVFV%","%SVF%",0,0,100,10)

00400 C --- CALCULATE GLOBAL VARIABLES ---
00410 C find smallest end static pressure value
00411 MIN($MDAS,"%DAS1%","%DAS2%")
00420 C caltulate damper and flow demand every 30 seconds
00421 SAMPLE(30) GOTO 500
00430 C initialize values for damper and flow demand
00430 IF("%ACLP%" .EQ. 0 .AND. "%ACDMP%" .EQ. 0) THEN GOTO 325
00440 GOTO 700
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00500 C --- CALCULATE DEMAND VALUES (FOR LOOP) ---
00505 SET(0,"$TECCNT","$CLPTTL","$DMPTTL",$LOC10,$LOC11,$LOC12,$LOC1)
00510 GOSUB 700 "%RM%01%DN","%RM%01%CLO","%RM%01%DMP"...
00590 GOSUB 700 "%RM%99%DN","%RM%99%CLO","%RM%99%DMP"
00595 GOTO 800

00700 C --- SUBROUTINE TO SUM VAV BOX VALUES ---
00710 IF($ARG1 .EQ. FAILED) THEN GOTO 770
00720 C count number of boxes
00721 "$TECCNT" = "$TECCNT" + 1
00730 C sum flow commands and find max
00731 "$CLPTTL" = "$CLPTTL" + $ARG2
00732 MAX($LOC10,$LOC10,$ARG2)
00740 C sum damper commands and find max
00741 "$DMPTTL" = "$DMPTTL" + $ARG3
00742 MAX($LOC11,$LOC11,$ARG3)
00750 RETURN

00800 C --- CALCULATE WEIGHTED AVG ---
00810 "%ACLP%" = "$CLPTTL" / "$TECCNT" * (2 / 5) + $LOC10 * (3 / 5)
00820 "%ACDMP%" = "$DMPTTL" / "$TECCNT" * (2 / 5) + $LOC11 * (3 / 5)

00900 C --- FIRE SAFETY CHECK ---
00910 IF("%RMSMK%" .NE. ON .AND. "%DSMK%" .NE. ON) THEN GOTO 950
00920 OFF(@SMOKE,"%SFSS%","%OAD%")
00930 SET(0,"%CCVV%","%SVFV%")
00940 GOTO 1700
00950 RELEAS(@SMOKE,"%SFSS%","%OAD%")

01000 C --- DETERMINE MODE / REDIRECT ---
01010 IF("%MODE%" .EQ. 0) THEN GOTO 1100
01020 IF("%MODE%" .EQ. 1) THEN GOTO 1200
01030 IF("%MODE%" .GE. 2 .AND. "%MODE%" .LE. 11) THEN GOTO 1300
01040 IF("%MODE%" .EQ. 12) THEN GOTO 1400
01050 GOTO 1300

01100 C --- UNOCC - ESSENTIAL ONLY ---
01110 ON("%SFSS%")
01120 OFF("%OAD%")
01130 $XDATS = 70
01140 $NDATS = 53
01150 $XDASS = 1.5
01160 $NDASS = 0.5
01170 GOSUB 1500
01180 GOTO 1600

01200 C --- NORMAL OCCUPATION ---
01210 ON("%SFSS%")
01220 IF("%OAT%" .LT. 50) THEN OFF("%OAD%") ELSE ON("%OAD%")
01230 $NDATS = 53
01240 $XDATS = 57
01250 $XDASS = 2.3
01260 $NDASS = 0.5
01270 GOSUB 1500
01280 GOTO 1600
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01300 C --- LOW OCCUPATION ---
01310 ON("%SFSS%")
01320 OFF("%OAD%")
01330 $XDATS = 70
01340 $NDATS = 55
01350 $XDASS = 1.75
01360 $NDASS = 0.5
01370 GOSUB 1500
01380 GOTO 1600

01400 C --- OCC3 - OCC5 ---
01410 C --- WARMUP ---
01420 C --- COOLDOWN ---
01430 C --- NIGHT HEATING/COOLING ---
01440 C --- STOP HEATING/COOLING ---
01450 C --- HIBERNATE (CAMPUS BREAK) ---
01460 OFF("%SFSS%","%OAD%")
01470 SET(0,"%CCVV%","%SVFV%")
01480 GOTO 1600

01500 C --- SUBROUTINE TO RESET SETPOINTS AND MODULATE FAN/VALVE ---
01505 C discharge air temperature setpoint
01515 $XDATS = 63
01520 $LOC1 = $NDATS + ($XDATS - $NDATS) / 2
01525 LOOP(128,"%ACLP%","%DATS%",50,15,1.5,0,300,$LOC1,$NDATS,$XDATS,0)
01530 C chilled water valve position
01535 C PI control is line 1540, CC is lines 1545 and 1550
01540 C LOOP(0,"%DAT%","%CCVV%","%DATS%",60,15,0,15,50,0,100,0)
01545 $LOC2 = 20+1.0*"%DAT%"
01550 LOOP(0,"%DAT%","%CCVV%","%DATS%",100,5,0,1,$LOC2,0,100,0)
01555 C end static pressure setpoint
01560 $NDASS = 0.5
01565 $LOC11 = $NDASS + ($XDASS - $NDASS) / 2
01570 LOOP(0,"%ACDMP%","%DASS%",58,.5,.05,0,300,$LOC11,$NDASS,$XDASS,0)
01575 C fan speed
01580 LOOP(128,$MDAS,"%SVFV%","%DASS%",2500,250,20,15,60,20,100,0)
01585 RETURN

01600 C --- END OF CODE---
01601 GOTO 1
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