
FEATURE SELECTION FOR SUPERVISED AND UNSUPERVISED LEARNING

A Dissertation

by

XIAOPENG SUI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Tie Liu
Co-Chair of Committee,      Xiaoning Qian
Committee Members, Aniruddha Datta

Anxiao (Andrew) Jiang
Head of Department, Miroslav M. Begovic

December 2018

Major Subject: Electrical Engineering

Copyright 2018 Xiaopeng Sui



ABSTRACT

Unsupervised and semi-supervised learning are explored in convex clustering with metric

learning while supervised learning is explored in a novel feature selection method. First, we eval-

uate the performance of convex clustering against previous clustering formulations. Moreover,

we implement two metric learning schemes in convex clustering to replace the Euclidean distance

used in the original convex clustering formulation. The first metric learning scheme involves us-

ing a full-rank positive definite matrix to characterize a Mahalanobis metric and the second metric

learning scheme involves using a sparse compositional metric. This sparse compositional metric is

a weighted sum of a set of orthonormal rank-1 basis vectors. In experimentation on both simulated

data and real life data, convex clustering with metric learning, especially a sparse compositional

metric, can outperform convex clustering, other methods based on convex clustering and previ-

ous popular clustering algorithms. Second, a novel feature selection method is proposed using

Chow-Liu tree approximations to estimate Shannon’s mutual information. In experimental anal-

ysis, this Chow-Liu tree feature selection method out performs previous feature selection method

when classification accuracy is used as a performance measure.
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1. INTRODUCTION

1.1 Background

Clustering is an unsupervised machine learning algorithm that has been well researched. Clus-

tering is the task of grouping a set of data points into clusters so that the data points in each cluster

are similar to each other and the date points in different cluster are dissimilar to each other. It is

considered unsupervised because no training data is required to perform the algorithm. In most

clustering algorithms, the only needed input is the set of testing data and sometimes the number

of clusters. By introducing metric learning to clustering algorithms, the problem then become

semi-supervised. Metric learning can use partial training information or partial and preliminary

clustering solutions to enhance the performance of clustering algorithms. Metric learning algo-

rithms focus on the feature dimension of the data and has the effect of dimension reduction and

feature weighing. Feature selection is a supervised learning algorithm. It uses a set of training

data to train for the best subset of features that enhances clustering or classification algorithm per-

formance accuracy. This dissertation can be divided into the following two parts: clustering with

metric learning and feature selection.

1.1.1 Clustering with Metric Learning

Clustering analysis is a fundamental problem in many diverse scientific fields [1–10]. For ex-

ample, clustering can be used in brain imaging where regions of the brain are clustered according

to their MRI signals so that each cluster is related to certain brain functions [2]. In the economic

sciences, clustering can be used in market research where consumers are clustered into groups that

are similar in their shopping trends [11]. And in robotics, clustering can be used for situational

awareness to track and detect objects in sensory data [12]. Many previous works have been de-

veloped in clustering, tackling the problem using various schemes. There are centroid models,

such as the classical k-means method [6], graphical models, such as normalized-cut algorithm [5],

hierarchical clustering [13] and distribution model clustering [14]. However, these algorithms can

1



be trapped at local minima, which can be sub-optimal. These traditional clustering methods take

a greedy approach and also suffer from instabilities due to their nonconvex optimization formu-

lations. Chi et al. [15] then proposed a convex clustering scheme that can be viewed as a convex

relaxation of k-means clustering and hierarchical clustering. The convexity ensures that it achieves

a global optimizer. Let {x1,x2, . . . ,xN} be a collection of N data points to be clustered, and let X

be the data matrix for which the jth column is given by xj (so each row of X represents a feature

of the data). In [15], the convex clustering problem was formulated as the following optimization

problem:

Minimize
U

1

2

N∑
j=1

‖xj − uj‖22 + γ
∑

1≤j1<j2≤N

w{j1,j2}‖uj1 − uj2‖1 (1.1)

where γ is a positive tuning constant, w{j1,j2} is a nonnegative weight, and the jth column uj of

the matrix U is the center of the cluster that the data point xj belongs to.

Although the convex clustering problem solves many of the issues that traditional clustering

algorithms had, it still uses Euclidean distance to calculate the distance between the data point

and the cluster centers. Many data sets in the scientific fields have features or dimensions in the

data that are noisy or irrelevant to the clustering solution. Therefore it would naturally enhance

clustering performance to use a distance measure that takes feature importance into consideration.

In our work we propose to add a Mahalannobis metric to the convex learning problem [16]. In an

iterative procedure, the convex clustering and the metric learning problem can be both solved. The

convex clustering with metric learning problem can be written as

Minimize
U,B

1

2

N∑
j=1

(xj − uj)
TB(xj − uj) + γ

∑
1≤j1<j2≤N

w{j1,j2}‖uj1 − uj2‖1 (1.2)

In the above formulation, the Mahalanobis metric is characterized by the matrix B. This Maha-

lanobis metric is symmetric and positive semi-definite. If B is diagonal, then the diagonal values

weigh more important features with higher coefficients and weigh less important features with

lower coefficients. For a general positive semi-definite B, this can be understood through principal

component analysis. In this dissertation, we first formulate B to be a full rank, positive definite

2



matrix. With a given data set X and U, the full-rank B can be solved in closed-form. Secondly,

we formulate B as a sparse compositional metric. B is represented as a nonnegative weighted sum

of s rank-1 positive semidefinite matrices:

B =
s∑
i=1

σiqiq
T
i = QΣQT , (1.3)

where Q = (q1,q2, . . . ,qs) and Σ = diag(σ1, σ2, . . . , σs). The sparse compositional metric

learning also serves as a dimension reduction technique as s < d.

1.1.2 Feature Selection

Feature selection or variable selection is a supervised learning method. Unnecessary features

in a data set decreases training speed, model interpretability, and performance in the test set. Fea-

ture selection algorithms select features from the training data by eliminating features with high

percentage of missing values, highly correlated or redundant features, features with zero impor-

tance or relevance to the outcome variable, and features with low variance in any of the data set

classes [17–23]. Most feature selection methods use a measure that tries to incorporate all the

appropriate selection criterias and select a subset of features in a greedy fashion [24, 25].

Formally, we let (XV ,Y) be a collection of jointly distributed random variables, where XV :=

(Xi : i ∈ V ) are the features and the outcome variable is Y. The goal of feature selection is to find

a subset of features, B ⊆ V , of size k that are highly relevant to the outcome variable based on a

give set of independent and identically drawn samples from (XV ,Y). By far, most of the previous

feature selection methods rely on the heuristic of maximum relevance and minimum redundancy.

1. Minimum Redundancy Maximum Relevance (mRMR) [24]. Using Shannon’s mutual in-

formation as the correlation measure between two variables X1 and X2, rX1,X2 = I(X1,X2).

Using r̄xy(B) := 1
|B|
∑

i∈B rXi,Y as the average relevance betwen the feature and the outcome

and r̄xx(B) := 1
|B|(|B|−1)

∑
(i,j)∈B2:i 6=j rXi,Xj

as the average redundancy between the features,
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the mRMR selection criteria is:

max
Xj∈XV −Sm−1

I(Xi,Y)− 1

m− 1

∑
Xi∈Sm−1

I(Xi,Y). (1.4)

2. Correlation-based Feature Selection (CFS) [25]. Using a value called symmetric uncertainty

rxy = 2I(Xi,Y)
H(Xi)+H(Xj)

as the correlation measure between random variables, the selection crite-

ria for CFS is
|B|r̄xy(B)√

|B|+ |B|(|B| − 1)r̄xx(B)
. (1.5)

In this work we propose a new feature selection algorithm that instead of following the max-

imum relevance minimum redundancy principle, it uses a direct approximation on the Shannon

mutual information I(XB;Y) by using the well known Chow-Liu tree approximations. The algo-

rithm is an incremental search algorithm over the entire feature set to select a subset of features

greedily by solving the problem

max
i∈V \B

I(XB∪{i};Y). (1.6)

1.2 Overview

The rest of this dissertation is as follows. In Chapter 2, the problem statement and previous

works of clustering will be formally stated and explained. The types of clustering models and

algorithms will be described to inspire the advantages of convex clustering. In Chapter 3, the def-

inition of Mahalanobis metric will be stated and how it enhances the performance of clustering

algorithms. Two notable works in metric learning that the work in Chapter 4 are inspired from

will also be explained. In Chapter 4, the convex clustering formulation and the algorithm to solve

convex clustering will be introduced. Moreover, the two works on convex clustering with full-

rank metric learning and sparse compositional metric learning will be proposed. It will conclude

with experimental results comparing the two proposed convex clustering with metric learning al-

gorithms along with convex clustering and two previous works with convex clustering - robust

convex clustering [26] and sparse convex clustering [27]. In Chapter 5 of the dissertation, it will
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move towards supervised learning. Chapter 5 will formally introduce the feature selection prob-

lem. It will also describe two earlier works in feature selection: minimum redundancy maximum

relevance [24] and correlation based feature selection [25]. In Chapter 6, we propose a novel fea-

ture selection algorithm by estimating mutual information using Chow-Liu Tree approximations.

The chapter will end with experimental results comparing the novel algorithm with the two pre-

vious classic feature selection algorithms. The dissertation will conclude in Chapter 7 with some

closing remarks.
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2. CLUSTERING

2.1 Introduction

Clustering is a well researched machine learning technique that has many applications [1–10].

It is the grouping of various data points into groups, or clusters, thus that the data points within one

cluster are similar to each other and data points in different clusters are dissimilar from each other.

The goal is to divide the data set into meaningful and useful clusters. The clusters are meaningful

when they capture the natural structures of the data. There are many application for clustering

methods in various fields such as neuro-imaging [2], image segmentation [5], social sciences and

economics [11]. The structure of the data points and the desired structure of the resulting clusters

dictate the method and algorithm that is most appropriate for the application of clustering.

2.2 Problem Statement

Here we begin by defining variables in clustering and data mining. Let N denote the number

of sample points in the data set and let the number of “features" be d, then let {x1,x2, . . . ,xN} be

a collection of N data points to be clustered, where xj ∈ Rd for each j = 1, 2, . . . , N . Let X be

the data matrix for which the jth column is given by xj (so each row of X represents a feature of

the data). The features of the data can be continuous or discrete variables. Some examples of the

data features are color and intensity of image data, genetic markers, and grades from students in

grade prediction algorithms. The problem of clustering is to group the data points into k number

of clusters based on a similarity measure or distance measure based on the values of the features

in the data.

2.3 Previous Clustering Methods

There has been many works in clustering - the optimization problem can be formulated in

various ways and the optimization problem can be solved using various methods as well. Below is

four groups of clustering methods.
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2.3.1 Centroid Models

Centroid model algorithms are iterative algorithms where similarity or distance is derived from

the closeness of the data points to the centroid of the individual clusters. The most well-known

centroid based clustering algorithm is k-means clustering [6]. In k-means clustering, as well as

other centroid models, the number of clusters k is a required aprior knowledge. These models are

iterative algorithms that finds a local optimum.

The main idea of k-means clustering is to define k centroids for k clusters. In theory, the

centroids should be placed far from each other to distinguish the clusters. The next step is to

associate each data point to the nearest cluster centers. The algorithm is thus iterative between the

two steps: updating centroids and assigning the next data points to a centroid that it is currently

closest to. Formally the objective function for k-means can be written as,

Minimize
U

J(U) = Minimize
U

k∑
i=1

kj∑
j=1

‖xi − uj‖22 (2.1)

where uj are the cluster centroids, k is the number of clusters, and kj is the number of data points

in the j-th cluster. Note the distance measure here is Euclidean distance or l2 norm.

The algorithm steps of k-means clustering can be formally described as followed. With the set

of data points be X = {x1,x2, . . . ,xN} and U = {u1,u2, . . . ,uN}.

1. Randomly select k cluster centroids.

2. Find the Euclidean distance between each data point and the k cluster centroids.

3. Cluster assignment: assign each data point to a cluster by its smallest distance to the cluster

centroid.

4. Recalculate the centroids with:

uj =
1

kj

kj∑
i=1

xi

where kj are the number of data points in each cluster currently.
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5. Repeat step 2 to 4 until,

6. None of the data points has been reassigned and cluster centroids are unchanged. The algo-

rithm has come to a convergence point.

Figure 2.1 is an example of a k-means clustering solution [28]. The data set used is the "Iris" data

set from the UCI Machine Learning Repository [29]. The left figure is the solution from k-means

clustering while the right of the figure is the groundtruth of the data set.

The advantages of k-means clustering is that it is fast and easy to understand. The concept

is intuitive to the idea of clustering. It also performs relatively well when the data points are

well separated from each other and when all dimensions of the features are considered. The main

disadvantage is that although this is a unsupervised learning algorithm, it still needs the apriori

knowledge of the number of clusters. It also lacks the ability to separate clusters that are over-

lapping in some dimensions. The algorithm is also not invariant to non-linear transformations.

This means that with different representation of data (such as from Cartesian plane to polar co-

ordinates) k-means will give different results. Another big disadvantage is that the algorithm can

often be trapped in a local minimum instead of achieving a global minimum.

2.3.2 Graphical Models

Another approach to solve the clustering problem is to view the data set as a graphical model.

In these models, the data points are the nodes of the graph V and the edges of the graph, E , are

measures of similarity or distance between the data points. The graphical model is denoted as

G = {V , E}. The goal of these clustering algorithms is to segregate the graph G into disconnected

subgraphs with cuts along edges with low similarity or high distance measures. Each subgraph is

then a cluster.

The most well-known graphical model based clustering algorithm is the normalized cut (N-cut)

algorithm [5]. Prior to this work there was a pure minimum graph cut algorithm. Its criteria is to

minimize a cut value

cut(A,B) =
∑

xi∈A,xj∈B

w(xi,xj) (2.2)
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Figure 2.1: Example of the k-means clustering of "Iris" Data

whereA andB is the two disjoint subgraphs andw(xi,xj) is the edge weight, similarity or distance

measure, between the nodes xi and xj . The drawback of this minimum cut criteria is that it will

support cutting isolated nodes in the graph due to the small values achieved by partitioning such

nodes. In the work of Shi et al. [5], the normalized cut computes the cut cost as a fraction of the

total edge connections to all the nodes in the graph. The N-cut is defined as

N-cut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
(2.3)

where assoc(A, V ) =
∑

u∈A,t∈V w(u, t). The distinct advantage is that it is an unbiased measure;

the N-cut value with respect to the isolated nodes will be of a large percentage compared to the

total connection from small set to all other nodes. Figure 2.2 shows an example of how normalized

cut can outperform minimum cut [5]. To solve the normalized cut clustering problem, a similarity

matrix, W, of size N -by-N is first constructed where w(i, j) is the similarity measure between

xi and xj . Second a diagonal matrix D of also size N -by-N is constructed where D(i, i) =∑
j w(i, j) is the total connection weight from node i to all other nodes. The problem is then

solved by constructing an eigensystem with the similarity matrix and the diagonal matrix. The
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Figure 2.2: Example of when normalized cut performs better than min-cut

eigenvectors with the smallest eigenvalues for (D−W)x = λDx. Due to the construction of the

eigensystem, the main disadvantage of normalized cut is that it is only an approximate solution.

Another disadvantage from the eigensystem is that it is limited computationally in the dimension

of the data.

2.3.3 Hierarchical Models

Hierarchical clustering creates clusters in a tree-like structure. There are two types of hierar-

chical clustering, divisive and agglomerative [13]. In the divisive, or top-down method, the entire

data set is first divided into two clusters. The procedure is repeated recursively on each sub-cluster

until there is one cluster for each observation. The agglomerative, or bottom-top method, start

with each data point in their own cluster, i.e. N clusters. Then the two most similar clusters are

joined. This is also a recursive procedure until all the data points are in one cluster of size N . The

main advantage of this clustering method is that clustering solutions of various fineness and cluster

size can be obtained. The disadvantage is that hierarchical methods are usually computationally

10



expensive.

2.3.4 Distribution Models

Lastly, another clustering method is fitting the data into a probabilistic graphical model. These

methods calculate how probable is it that all data points in the cluster belong to the same dis-

tribution, such as Gaussian Mixture Model (GMM) [14]. The disadvantage for these methods is

over-fitting as well as susceptible to noise.

2.4 Conclusion

Clustering is a very useful technique in many areas of machine learning. Therefore, it is a

well study subject with many previously well-known clustering methods. However, all of these

previous methods have distinct disadvantages. Many of the algorithms only solve the problem

approximately or is only able to find a local optimum. Graphical models for clustering requires

solving eigensystem that is computationally too expensive with large dimensions. In the following

sections, we propose a convex clustering scheme that solves the above disadvantages.
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3. METRIC LEARNING

3.1 Introduction

As seen from the previous chapter, it is clear that all clustering algorithms relies on a measure

of either distance or similarity. The most popular method of distance or similarity uses Euclidean

distance. Euclidean distance between two points xi and xj is

d2(xi,xj) =
√

(xi − xj)T (xi − xj).

It is clear that Euclidean distance weighs every feature equally in the distance calculation. That

is not the case in most real world data sets. Thus, the goal of metric learning is to adapt a metric

function to the problem of interest using training information. This metric function is characterized

by a Mahalanobis metric:

dB(xi,xj) =
√

(xi − xj)TB(xi − xj).

The Mahalanobis metric is characterized by a symmetric positive semi-definite matrix B. To learn

this matrix, most methods learn it from in a weakly-supervised way from pair or triplet based

constraint of the form:

• Must-link/cannot-link training information:

S = {(xi,xj) : xi and xj are similar },

D = {(xi,xj) : xi and xj are dissimilar }.

• Relative constraint:

R = {(xi,xj,xk) : xi is more similar to xj than to xk}.
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Metric learning algorithms aim to find a Mahalanobis metric, in the form of the matrix B, such

that it best agrees with the training constraints. A general optimization problem for metric learning

can be written as,

Minimize
B

`(B,S,D,R) + λR(B) (3.1)

where `(B,S,D,R) is a loss function that penalizes when the training constraints are not met,

R(B) is a regularizer function on B and λ is the regularization parameter.

Metric learning is useful in many applications outside of clustering and classification as well.

For example, in computer vision, there is a great need to find appropriate distance metrics not only

to compare images or video in ad-hoc representations but also in pre-processing step [30]. Thus

there has been many different works in computer vision problem such as image classification [31],

object recognition [32], or visual tracking [33].

3.2 Notable Works in Metric Learning

The Mahalanobis distance came from Mahalanobis in 1936 [34] and originally refers to a

distance measure with the matrix being the inverse of the correlation between features: B = Ω−1.

The data vectors are from the same distribution with covariance matrix Ω. The pioneer work on

modern metric learning was in 2002 by Xing et al. [35] that formulated the metric learning problem

as a convex optimization problem using must-link/cannot-link constraints in the training data. The

convex optimization is stated as follows:

Max
B∈Sd+

∑
(xi,xj)∈D

dB(xi,xj)

s.t.
∑

(xi,xj)∈S
dB(xi,xj)

2 ≤ 1.
(3.2)

The above optimization is then solved using a simple projected gradient approach requiring the

full eigenvalue decomposition of B at each iteration.

Since Xing et al.’s work from 2002, many new methods of metric learning has stemmed. In

particular, two works inspired the works in the following chapter. The first work was done by Hoi
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et al. [36] in metric learning in the image clustering and retrieval field of research. In their work,

it was proposed to follow the principles of manifold regularization for semi-supervised learning.

Their formulation begins with a set of training data of size N in an d-dimensional vector space

C = {xi}Ni=1 ⊆ Rd, and the must-link and cannot-link pairwise constraints:

S = {(xi,xj) : xi and xj are similar},

D = {(xi,xj) : xi and xj are dissimilar}.

The metric distance is then expressed as

dB = ‖xi − xj‖B =
√

(xi − xj)TB(xi − xj) =
√

tr(B(xi − xj)(xi − xj)T ), (3.3)

where B is the d-by-dmetric and tr is the trace operator. In general, the metric matrix is valid if and

only if it satisfies the nonnegativity and triangle inequality properties, meaning that it is positive

semi-definite (PSD). With this formulation, Hoi et al. enhances the generalization and robustness

performance of the distance metric learning problem proposed by Xing et al. by introducing the

regularization principle. The regularization framework for distance metric learning was formulated

as

min
B�0

g(B) + γsVs(S) + γdVd(D), (3.4)

where g(B) is a regularizer defined on the target metric B, and Vs(·) and Vd(·) are some loss

functions defined on the must-link and cannot-link constraints, respectively. Moreover, γs and γd

are two regularization parameters for balancing the two sets of constraints. Intuitively, the loss

functions should result in the minimization of the distances in the must-link constraints and the

maximization of the distances in the cannot-link constraints. In Hoi et al. the two loss functions

are chosen as

Vs(·) =
∑

(xi,xj)∈S

‖xi − xj‖2B, Vd(·) = −
∑

(xi,xj)∈D

‖xi − xj‖2B. (3.5)
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To formulate the regularizer, the formulation takes advantage of the unlabeled data information in

the regularization framework. For a set of unlabeled data, it uses a weight matrix W that encodes

the similarity between pairs of points. The similarity matrix is constructed as

Wi,j =


1, if xi ∈ N (xj) or xj ∈ N (xi)

0, otherwise.

whereN (xi) denotes the nearest neighbor list of xi. Then the metric B can be seen as the product

of a linear mapping P to itself: B = PPT .

dB = ‖PT (xi − xj)‖2 = (xi − xj)
TPPT (xi − xj) = (xi − xj)

2B(xi − xj), (3.6)

where PT : Rd → Rs and P = [p1,p2, . . . ,ps] ∈ Rd×s. With this formulation of B and the weight

matrix W, a Laplacian regularizer is as follows:

g(B) =
1

2

N∑
i,j=1

‖PTxi −PTxj‖2Wij = tr(XLXTB), (3.7)

where L is the Laplacian matrix: L = D −W (D is a diagonal matrix whose elements Dii =∑
jWij). Having defined the regularizer and the two loss function, the regularized metric learning

problem in (3.4) can be rewritten as follows:

min
B�0

tr(XLXTB) + γs
∑

(xi,xj)∈S ‖xi − xj‖2B − γd
∑

(xi,xj)∈D ‖xi − xj‖2B

s. t. logdet(B) ≥ 0

(3.8)

The constraint of logdet(B) ≥ 0 prevents trivial solutions but also ensures that B is full rank

and thus positive definite. This constraint will also be used in our work in convex clustering and

(full-rank) metric learning.

In the work of Hoi et al. the learned Mahalanobis metric was constraint to be full-rank. The

disadvantages of having a full rank metric in a cluster scheme is that the metric learning gives no
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dimension reduction and cannot eliminate completely irrelevant features. Thus, sparsity can be

introduced in the structural constraints of the matrix B. Shi et al. [37] proposed a new approach

for metric learning that separates the Mahalanobis metric into a combination of orthonormal basis

and a weighing vector. In their work they extract locally discriminative basis elements from the

training data. The metric learning problem then learn the sparse combination of those elements.

In this sparse compositional metric learning (SCML) scheme, the number of basis vectors in the

basis set is much smaller than the number of features in the data, this reduces the computational

complexity of the metric learning algorithm. SCML can also be seen a feature reduction algorithm

as well as a metric learning algorithm. The metric matrix B can be represented as nonnegative

weighted sum of s rank-1 PSD matrices:

B =
s∑
i=1

σiqiq
T
i = QΣQT , (3.9)

where Q = (q1,q2, . . . ,qs) and Σ = diag(σ1, σ2, . . . , σs). Each rank-1 basis qi is a d-dimensional

column vector. To solve the SCML problem given a set of training data, Shi et al. proposes a

two parts algorithm. Here the training data is presents a sets of triplet constraint C where each

(xi,xj,xk) ∈ C indicates that xi and xj are similar or a must-link set and xi and xk are dissim-

ilar or a cannot-link set. The first step of the algorithm is to find the orthonormal rank-1 basis

vectors. Fisher linear discriminant analysis (LDA) [38] is used to project the training data in to

s-dimensional data. After having found the set of basis, the second part of the algorithm is to find

Σ = diag(σ1, σ2, . . . , σs). The optimization problem can then be stated as

min
Σ

1

|C|
∑

(xi,xj ,xk)∈C

LΣ(xi,xj,xk) + β‖Σ‖1. (3.10)

The first term is the margin-based hinge loss function and LΣ(xi,xj,xk) = [1 + dΣ(xi,xj) −

dΣ(xi,xk)]+. Note that [·]+ = max(0, ·). The second term is a l1 norm regularizer with β ≥ 0

being the regularization parameter. In Shi et al. [37], this problem is convex by the linearity of both

terms and bounded from below. A global minimum can be reached. Our second work on convex
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clustering with sparse compositional metric learning was inspired by this work.

3.3 Conclusion

Metric learning methods have shown to enhance the results of clustering or classification. In

this chapter, three methods of metric learning was introduced. In the earliest work of Xing et al.

[35] the metric learning problem relies on a convex formulation with no regularization parameter.

They first introduced the notion of must-link and cannot-link sets for training data. The algorithm

maximizes the distance between pairs of the cannot-link set while constraining on the distances

between pairs of the must-link set to be small. In Hoi et al. semi-supervised metric learning,

Laplacian regularization is used to solve the metric learning problem. Moreover, to ensure a full-

rank metric the optimization is constraint with the logdet(B) ≥ 0. Lastly, the sparse compositional

metric learning algorithm in Shi et al. decomposes metric learning into finding orthonormal rank-1

basis and nonnegative weights for each of the basis vectors. In this work, the metric also has the

effect of dimension reduction.
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4. CONVEX CLUSTERING WITH METRIC LEARNING

4.1 Introduction

A common challenge for developing clustering algorithms is that many clustering formulations

are inherently difficult to solve and in practice can only be approximately solved based on various

heuristics 1. The famous k-means [6] and normalized-cut [5] algorithms are two prime examples.

One interesting exception is the recently proposed convex clustering (CC) formulation by Chi and

Lange [15].2 In their formulation, each data point is associated with a cluster center, and the goal

is to minimize the aggregated distance between the data points and their corresponding cluster

centers. A regularization term is then added to the objective function to leverage group sparsity

to the clustering solution. Varying the weight of the regularization term creates a clustering path

that may contain multiple meaningful solutions. More importantly, as demonstrated in [15], this

formulation leads to a convex optimization problem, which can be precisely and efficiently solved

using the well-known Alternating Direction Method of Multipliers (ADMM) [40–42].

One potential drawback about the CC formulation of Chi and Lange [15] is that it uses the

standard Euclidean metric to measure the distance between the data points and their corresponding

cluster centers. As is well known, the Euclidean metric treats each feature of the data equally, and

as a result, the performance of the CC algorithm of Chi and Lange [15] deteriorates significantly

in the presence of outlier features.

To address this issue, Wang et al. [26] proposed the so-called robust convex clustering (RCC)

formulation, in which they introduced the so-called robust component to explicitly identify the

outlier features of the data. By assuming that the outlier features are sparse, it was shown [26] that

the robust component can be learned from the unlabeled data. However, even though RCC [26]

can provide a performance boost over the CC algorithm of Chi and Lange [15], the underlying

modeling assumption that the outlier features are sparse can be questionable. For example, for

1Part of this section is reprinted with permission from X. Sui, X. Li, X. Qian, and T. Liu, "Convex clustering with
metric learning," Pattern Recognition, vol. 81, pp. 575-584, September 2018

2Using convex optimization techniques to solve clustering problems has also been previously explored in [7, 39].
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many real-world data sets, it is the highly relevant features, rather than the outlier features, that

are sparse. In a similar fashion, Wang et al. [27] proposed the so-called sparse convex clustering

(SCC) formulation, in which they introduced sparsity constraints on the feature vector itself. SCC

reformulates the convex clustering problem on the feature-level and add a sparsity constraint on

the feature vectors itself. The goal of SCC is to eliminate features that shows low variance across

all clusters. This sparsity of features only solves one type of feature relevancy problem. Thus, the

SCC formulation does not yield the desirable effects as well. We propose to add metric learning to

the distance calculation in convex clustering to solve these issues.

4.2 Convex Clustering

Let {x1,x2, . . . ,xN} be a collection of N data points to be clustered, and let X be the data

matrix for which the jth column is given by xj (so each row of X represents a feature of the data).

In [15], the CC problem was formulated as the following optimization problem:

Minimize
U

1

2

N∑
j=1

‖xj − uj‖22 + γ
∑

1≤j1<j2≤N

w{j1,j2}‖uj1 − uj2‖1 (4.1)

where γ is a positive tuning constant, w{j1,j2} is a nonnegative weight, and the jth column uj of

the matrix U is the center of the cluster that the data point xj belongs to. Multiple data points

that belong to the same cluster will have the same cluster center vector, thus the columns of U are

not unique: If there are k clusters, there will be k unique cluster centers, i.e. k unique columns

of U. Clearly, the goal of this convex optimization problem is to cluster the set of data points

{x1,x2, . . . ,xN} such that the aggregated distance between the data points and their correspond-

ing cluster centers is minimized. The second term in the objective function is a regularizer that

leverages group sparsity to control the complexity (the number of clusters) of the clustering solu-

tion.

To solve the optimization problem using the aforementioned ADMM framework, let E be the

set of edges in a complete graph with nodes 1, 2, . . . , N , i.e., E = {{j1, j2} : 1 ≤ j1 < j2 ≤ N}.

We define a one-to-one edge-labeling mapping φ : {1, 2, . . . , ε} −→ E with ε = N(N − 1)/2,
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and let φ1(`) = j1 and φ2(`) = j2 if {j1, j2} = φ(`) and j1 < j2. For notational simplicity, let

w` := wφ(`) for 1 ≤ ` ≤ ε. For each 1 ≤ ` ≤ ε, let v` := uφ1(`) − uφ2(`) be the difference between

the centroids uφ1(`) and uφ2(`). The matrix V is given by the collection of v`, 1 ≤ ` ≤ ε as its

columns. With this notion of the matrix V, the convex clustering problem (4.1) can be recast as

the following constrained optimization problem:

Minimize
U,V

1

2

N∑
j=1

‖xj − uj‖22 + γ
ε∑
`=1

w`‖v`‖1

Subject to uφ1(`) − uφ2(`) − v` = 0, 1 ≤ ` ≤ ε.

(4.2)

Considering a vectorization of U and V, the optimization problem (4.2) is a special case of the

following general optimization problem:

Minimize
u,v

f(u) + g(v)

Subject to A1u + A2v = c.

(4.3)

The augmented Lagrangian of this general optimization problem is given by:

Lν(u,v,λ) := f(u) + g(v) + 〈λ, c−A1u−A2v〉+
ν

2
‖c−A1u−A2v‖22, (4.4)

where λ is a vector of Lagrangian multipliers, and ν is a nonnegative tuning parameter. The

ADMM minimizes the augmented Lagrangian Lν(u,v,λ) over its variables u, v and λ separately

and one block of variables at a time. This leads to the following sequential updates for u, v, and

λ:

um+1 := arg min
u
Lν(u,vm,λm);

vm+1 := arg min
v
Lν(um+1,v,λm);

λm+1 := λm + ν(c−A1u
m+1 −A2v

m+1).

(4.5)
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The CC algorithm proposed in [15] is based on calculating the updates of um+1 and vm+1

efficiently until convergence. We shall describe these updates as a special case of our more general

CC algorithm under a positive definite Mahalanobis distance metric in the next section.

4.3 Robust Convex Clustering

To improve the performance of CC in the presence of the outlier features, Wang et al. [26]

proposed the following RCC problem:

Minimize
U,Q

1

2

N∑
j=1

‖xj − (uj + qj)‖22 + γ
∑

1≤j1<j2≤N

w{j1,j2}‖uj1 − uj2‖1 + β‖Q‖2,1 (4.6)

where the matrix Q is the so-called robust component for which the jth column is given by qj , and

β is a second tuning parameter in addition to γ. The penalization term β‖Q‖2,1 is introduced to

achieve row-wise sparsity: If a feature is relevant, the corresponding row in Q will be zero for all

elements; if a feature is an outlier, this row will be non-zero.

To solve the optimization problem (4.6), Wang et al. [26] proposed an alternating procedure

that alternates between CC (minimizing over U) and learning the robust component Q. More

specifically, for a fixed Q, the optimization problem (4.6) reduces to the original CC problem (4.1)

with the data set X replaced by X − Q. For a fixed U, the optimization problem (4.6) admits a

closed-form solution for Q whose ith row is given by [26]:

max

(
0, 1− β

‖(X−U)i‖2

)
(X−U)i, (4.7)

where (X−U)i denotes the ith row of the matrix X−U. Thus, to solve the optimization problem

(4.6), we may begin by setting the robust component Q as zero and perform CC. For the next itera-

tions, one may alternate between learning the robust component according to (4.7) and CC, where

learning the robust component is based on the optimal U obtained from the previous iteration, and

CC is then based on the just-updated robust component Q. We may continue such iterations till

the solutions converge.
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4.4 Convex Clustering with Full Rank Metric Learning Algorithm

To incorporate ML into the formulation of CC, let B be a full rank positive definite matrix and

consider the following optimization problem:

Minimize
U,B

1
2

∑N
j=1(xj − uj)

TB(xj − uj) + γ
∑

1≤j1<j2≤N w{j1,j2}‖uj1 − uj2‖1

Subject to log det(B) > 0,

(4.8)

where the choice of the constraint log det(B) ≥ 0 was motivated by [36] and ensures that the

matrix B has a full rank. (As we shall see, maintaining the full rank of the matrix B is also crucial

for developing the proper convex clustering algorithm.) The structure of the matrix B shows

which features of the data are more congruent with the cluster assignment. In particular, when B is

diagonal, the larger diagonal values of B correspond to the features that are of higher relevance or

of lower noise corruptions. Note that for the original CC formulation [15] where B is an identity

matrix, all features are uniformly weighted for clustering, which can be very sub-optimal in the

presence of outlier features. For a general positive definite B, its operational meaning can be

understood through the standard singular value decomposition.

To solve the optimization problem (4.8), we shall consider an alternating procedure that alter-

nates between CC (minimizing over U) and ML (minimizing over B).

4.4.1 Solving U for a Fixed B

Fix B to be positive definite matrix and consider the artificial variables v` := uφ1(`) − uφ2(`)

for 1 ≤ ` ≤ ε. The optimization problem (4.8) can be equivalently written as:

Minimize
U,V

1
2

∑N
j=1(xj − uj)

TB(xj − uj) + γ
∑ε

`=1w`‖v`‖1

Subject to uφ1(`) − uφ2(`) − v` = 0, 1 ≤ ` ≤ ε.

(4.9)

Note that when B is an identity matrix, the optimization problem (4.9) reduces to the original CC

formulation (4.2), which can be solved efficiently and precisely using the ADMM framework.

To apply the ADMM framework to solve the optimization problem (4.9), note that its aug-
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mented Lagrangian is given by:

Lν(U,V,Λ) :=
1

2

N∑
j=1

(xj − uj)
TB(xj − uj) + γ

ε∑
`=1

w`‖v`‖1+

ε∑
`=1

λT` (v` − uφ1(`) + uφ2(`)) +
ν

2

ε∑
`=1

‖v` − uφ1(`) + uφ2(`)‖22,
(4.10)

where Λ := (λ1,λ1, . . . ,λε). We shall update U and V in each iteration of the ADMM according

to the procedure described in (4.5).

Updating U. To update U, we need to minimize the function

f(U) :=
1

2

N∑
j=1

(xj − uj)
TB(xj − uj) +

ν

2

ε∑
`=1

‖ṽ` − uφ1(`) + uφ2(`)‖22, (4.11)

where ṽl := v` + ν−1λ`. Let u := vec(U) and x := vec(X). Then, the function f(U) can be

equivalently written as:

f(u) =
1

2
(x− u)TB(x− u) +

ν

2

ε∑
`=1

‖E`u− ṽ`‖22, (4.12)

where B := I⊗B and E` := (eφ1(`) − eφ2(`))
T ⊗ I. We can further simplify f(u) as follows. Let

E :=


E1

...

Eε

 and ṽ :=


ṽ1

...

ṽε

 . (4.13)

Then

f(u) =
1

2
(x− u)TB(x− u) +

ν

2
(Eu− ṽ)T (Eu− ṽ). (4.14)
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We calculate the optimality condition for minimizing the quadratic function (4.14) as:

(
B + νETE

)
u = Bx + νET ṽ. (4.15)

Note that

ETE =

[
ε∑
`=1

(eφ1(`) − eφ2(`))(eφ1(`) − eφ2(`))
T

]
⊗ I (4.16)

=
(
NI− 11T

)
⊗ I (4.17)

and

ET ṽ =
ε∑
`=1

[(eφ1(`) − eφ2(`))⊗ I]ṽ`. (4.18)

Then, the optimality condition (4.15) can be written as:

[I⊗B + ν
(
NI− 11T

)
⊗ I]u = Bx + ν

ε∑
`=1

[(eφ1(`) − eφ2(`))⊗ I]ṽ`, (4.19)

yielding the following equivalent linear system:

BU + UD = BX + R, (4.20)

where D := ν
(
NI− 11T

)
and R := ν

∑ε
`=1[ṽl(eφ1(`) − eφ2(`))

T ]. Note that the system equation

(4.20) is in fact a Sylvester equation [43].

By assumption B is positive definite so all eigenvalues of B are positive, while the eigenvalues

of −D are 0,−N, . . . ,−N . By the unique solution criterion [43], the Sylvester equation (4.20)

must have a unique solution. To solve (4.20), note that when B = I, we simply have U =

(X + R) (I + D)−1. This is the update procedure proposed in [15]. For a general positive definite

B, we can first transform B into a lower real Schur form [44] and D into an upper real Schur form
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as follows:

B̃ := PTBP =



B̃1,1 0
B̃2,1 B̃2,2

...
... . . .

B̃d,1 B̃d,2 · · · B̃d,d


(4.21)

and

D̃ := QTDQ =



D̃1,1 D̃2,1 · · · D̃r,1

D̃2,2 · · · D̃r,2

0
. . . ...

D̃r,r


, (4.22)

where B̃ is lower quasi-triangular, D̃ is upper quasi-triangular, the diagonal blocks B̃i,i and D̃i,i

are order of at most two, and P and Q are both orthogonal. Then, we can solve the transformed

equation

B̃Ũ + ŨD̃ = PT (BX + R)Q = B̃PTXQ + PTRQ (4.23)

by backward substitutions [45]. The solution of the original equation (4.20) is thus given by

U = PŨQT .

Updating V. To update V, observe that the augmented Lagrangian Lν(U,V,Λ) is separable

in the vectors v`. Thus, for any 1 ≤ ` ≤ ε, v` can be updated as [15]:

v` = arg min
v

[
1

2
‖v − (uφ1(`) − uφ2(`) − ν−1λ`)‖22 +

γw`
ν
‖v‖1

]
= S

(
uφ1(`) − uφ2(`) − ν−1λ`,

γw`
ν

1
)
,

(4.24)

where S is the element-wise soft-thresholding function given by S(x, a) := (x−a)+−(−x−a)+.

Algorithm, convergence, and complexity. Algorithm 1 summarizes the updates of U, V, and

Λ in the ADMM. It is straightforward to verify that the optimization problem (4.9) satisfies the

Slater’s condition [46] and hence that the strong duality holds. It then follows from the saddle-

point property [47] that there exists a (U∗,V∗,Λ∗) such that the un-augmented Lagrangian L0
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Algorithm 1 Solving U for a fixed B via the ADMM
Input: X,B, γ, ν and {wl}ε`=1.
Output: U,V, and Λ.

1: Set the maximum number of iterations ω.
2: Initialize Λ(0) and V(0).
3: D := ν

(
NI− 11T

)
.

4: Find the Schur forms B̃ = PTBP and D̃ = QTDQ of B and D by (4.22), respectively.
5: X̃ := B̃PTXQ.
6: for m = 1, 2, 3, . . . , ω do
7: R(m) := ν

∑ε
`=1

[
(v

(m−1)
` + ν−1λ

(m−1)
` )(eφ1(`) − eφ2(`))

T
]
.

8: Find the solution Ũ
(m)

of B̃Ũ + ŨD̃ = X̃ + PTR(m)Q by backward substitution.
9: U(m) := PŨ

(m)
QT .

10: for ` = 1, 2, . . . , ε do
11: v

(m)
` := S

(
u
(m)
φ1(`)
− u

(m)
φ2(`)
− ν−1λ(m−1)

` , γw`

ν
1
)

12: λ
(m)
` := λ

(m−1)
` + ν

(
v
(m)
` − u

(m)
φ1(`)

+ u
(m)
φ2(`)

)
.

13: end for
14: end for
15: return U := U(ω), V := V(ω), and Λ := Λ(ω).

satisfies:

L0(U
∗,V∗,Λ) ≤ L0(U

∗,V∗,Λ∗) ≤ L0(U,V,Λ
∗) (4.25)

for any U,V, and Λ. We may thus conclude by the convergence criterion of ADMM [40, 42]

that Algorithm 1 converges to the optimal value of the optimization problem (4.9). Finally, we

note that the computational complexity for solving the Sylvester equation (4.20) is O(d3 + d2N +

dN2 + N3) [45], where d is the number of features of the data and N is the number of data

points. Considering that N is usually much larger than d, this is rather comparable to the O(N3)

complexity for inverting the matrix I + D needed for solving the original CC formulation of Chi

and Lange [15].
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4.4.2 Solving B for a Fixed U

Fixing U, the optimization problem (4.8) can be equivalently written as:

Minimize
B

∑N
j=1(xj − uj)

TB(xj − uj)

Subject to log det(B) ≥ 0.
(4.26)

To find an optimal solution for B, let

A :=
N∑
j=1

(xj − uj)(xj − uj)
T = (X−U)(X−U)T . (4.27)

The Lagrangian of (4.26) is given by:

L(B, µ) =
N∑
j=1

(xj − uj)
TB(xj − uj)− µ log det(B) (4.28)

= tr(AB)− µ log det(B). (4.29)

Its Karush-Kuhn-Tucker conditions yield:

0 =
∂L
∂B

= AT − µ(B−1)T (4.30)

log det(B) ≥ 0 (4.31)

µ ≥ 0 (4.32)

µ log det(B) = 0. (4.33)

Assuming that A has a full rank, i.e., no features are completely redundant, a closed-form solution

of (4.26) is given by:

B = det(A)A−1. (4.34)
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4.4.3 Iteration between Convex Clustering and Metric Learning

To solve the optimization problem (4.8), we shall begin by setting the matrix B as an identity

matrix and perform Algorithm 1. This is equivalent to the ADMM algorithm for CC proposed

in [15]. For the next iterations, we alternate between ML according to (4.34) and CC according to

Algorithm 1, where ML is based on the optimal U obtained from the previous iteration, and CC

is then based on the just-updated matrix B from the ML. We may continue such iterations till the

solutions converge to a local minimum.

4.5 Sparse Convex Clustering

The above metric learning algorithm proposed constraints the Mahalanobis metric matrix B to

be full rank. Although in experiments with data set of relatively small dimensions the results for

convex clustering with full rank metric learning performs well, it is too computationally expensive

when the dimension of the data set grows large. Moreover, in many real life applications, some

data set has variable features that are very noisy, irrelevant or invariant. In these cases, it is best to

eliminate meaningless dimensions in the data.

Wang et al. proposes an alternative to convex clustering that imposes sparsity to the dimensions

of the data in convex clustering. They introduce a sparse convex clustering (SCC) algorithm that

formulate convex clustering in a form of regularization with an adaptive group-lasso penalty term

on cluster centers to encourage the sparsity.

Wang et al. reformulates the convex clustering optimization (4.1). The data matrix X can be

rewritten in feature-level as column vector X = (x1,x2, . . . ,xd), where xj = (X1j, . . . ,XNj)
T

for j = 1, . . . , d. The center matrix, U, can be rewritten as well in feature vector as column

vector A = (a1, a2, . . . , ad). In this formulation, it is assumed the feature vectors are centered, i.e.∑N
i=1 Xij = 0 for each j = 1, . . . , d. Thus the problem (4.1) can be formulated as:

min
A∈RN×d

1

2

d∑
j=1

‖xj − aj‖22 + γ
∑
l∈E

wl‖Ai1. − Ai2.‖q, (4.35)
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where E = {l = (i1, i2) : 1 ≤ i1 ≤ i2 ≤ N}. Denoting Â = (Â1, . . . , ÂN)T = (â1 − âd) as

a solution to the convex clustering problem, if Âi1. = Âi2. then the data points i1 and i2 belong

to the same cluster (have the same cluster center). The feature-level estimate âj, j = 1, . . . , d

implies feature importance - if the components of a feature-level estimate âj are identical, then

the corresponding feature j is not useful in clustering. In high dimensional data, the solution Â

is desired to be sparse, meaning with many of the columns being exactly 0. Wang et al. then

incorporate an adaptive group-lasso penalty [48] into the convex clustering optimization problem

to exclude uninformative features. The sparse convex clustering is then defined as:

min
A∈RN×d

1

2

d∑
j=1

‖xj − aj‖22 + γ1
∑
l∈E

wl‖Ai1. − Ai2.‖q + γ2

d∑
j=1

uj‖aj‖2, (4.36)

where the tuning parameter γ1 controls the cluster size or number of clusters and the parameter

γ2 controls the sparsity of the informative features. In the group-lasso penalty, the weight uj

adaptively penalizes the features. Wang et al. shows in [27] that this SCC problem can still be

solved using the ADMM method.

Although the SCC scheme brings sparsity in the feature space to the convex clustering problem,

it is only able to capture one type of uninformative feature. The SCC is formulated thus that

features with low or zero variance is eliminated. This however is only one of the ways a feature

can be irrelevant to clustering. The SCC formulation is not able to identify features that are highly

noisy or features that are redundant. It is then inadequate in elevating performance of convex

clustering by removing invariant features alone. Therefore, we propose in the below section to

impose sparsity in metric learning instead of the clustering algorithm.

4.6 Convex Clustering with Sparse Compositional Metric Learning

In the formulation of the previous convex clustering with metric learning work, the Maha-

lanobis distance metric B is required to have a full rank (so the entire collection of features will

be utilized for the purpose of clustering). While this seems to be necessary for avoiding trivial

clustering solutions without any structural constraint on B, there are two potential problems with
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this choice.

• First, from the computational complexity viewpoint, when dealing with high-dimensional

data, solving the full-dimensional convex clustering problem (4.1) using the ADMM is com-

putationally demanding.

• Second, from the performance viewpoint, the relevant features are known to be sparse for

many real-world data sets and forcing all features (the outliers especially) to be used may

incur (significant) performance loss. We mention here that the issue of sparsity has been

considered in a convex clustering formulation known as robust convex clustering [26]. How-

ever, the modeling assumption there was that it is the outlier features, rather than the relevant

ones, that are sparse.

4.6.1 Structural Constraints on Metric Learning

A natural idea for addressing the above issues is to impose structural constraints on the Ma-

halanobis distance metric B. In this work, we focus on the so-called sparse compositional Ma-

halanobis distance metric, which was first considered by Shi et al. [37]. More specifically, let

Q = (q1,q2, . . . ,qs), where {qi}si=1 is a set of orthonormal vectors in Rd, and let Σ be an s × s

diagonal matrix with the diagonal elements given by the positive real numbers σ1, σ2, . . . , σs. The

so-called sparse compositional Mahalanobis distance metric takes the form

B =
s∑
i=1

σiqiq
T
i = QΣQT , (4.37)

where s is usually much smaller than d to justify the name “sparse". One way to interpret the above

distance metric is that it first projects the data along the directions of {qi}si=1 and then computes the

weighted square Euclidean distance using σ1, σ2, . . . , σs as the corresponding weights. Motivated

by this interpretation, let us consider the following convex clustering problem:

Minimize
U

1
2

∑N
j=1(Q

Txj − uj)
TΣ(QTxj − uj)+

γ
∑

1≤j1<j2≤N w{j1,j2}‖uj1 − uj2‖1
(4.38)
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Algorithm 2 Solving U for a fixed (Q,Σ) via the ADMM
Input: X, Q, Σ, γ, ν, and {w`}ε`=1.
Output: U,V, and Λ.

1: Set the maximum number of iterations ω.
2: Initialize Λ0 and V0.
3: for m = 1, 2, 3, . . . , ω do
4: Rm := ν

∑ε
`=1

[
(v

(m−1)
` + ν−1λ

(m−1)
` )(eφ1(`) − eφ2(`))

T
]
.

5: for i = 1, 2, . . . , s do
6: Um

i := (ΣQTX + Rm)i

(
1

σi+νN
I + ν

σi(σi+νN)
11T

)
.

7: end for
8: for ` = 1, 2, . . . , ε do
9: vm` := S

(
umφ1(`) − umφ2(`) − ν

−1λm−1` , γw`

ν
1
)

.

10: λm` := λm−1` + ν
(
vm` − umφ1(`) + umφ2(`)

)
.

11: end for
12: end for
13: return U := Uω, V := Vω, and Λ := Λω.

for a given (Q,Σ).

Note that by viewing {QTxj}Nj=1 as the new data set in Rs, the convex clustering problem

(4.38) reduces to the convex clustering problem (4.1) but with two important advantages. First,

the dimension of the data set {QTxj}Nj=1 for (4.38) is s, which is usually much smaller than d,

the dimension of the data set {xj}Nj=1 for (4.1). Therefore, the ADMM described in Section 4.4 is

much more efficient for solving (4.38) than for solving (4.1). Second, the de facto Mahalanobis

distance metric for (4.38) is Σ, which is diagonal. This can be taken advantage of for the update

of U in the ADMM as follows. Note that the Sylvester equation for the convex clustering problem

(4.38) can be written as:

ΣU + UD = ΣQTX + R, (4.39)

where the dimensions of U and R are now s×N instead of d×N . When Σ is diagonal, there is

a simpler way for solving U. Let Ui and (ΣQTX + R)i, i = 1, 2, . . . , s be the row vectors of U
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and ΣQTX + R, respectively. From (4.39) we have

σiUi + UiD = (ΣQTX + R)i (4.40)

for i = 1, 2, . . . , s. It follows immediately that

Ui = (ΣQTX + R)i(σiI + D)−1 (4.41)

= (ΣQTX + R)i((σi + νN)I− ν11T )−1 (4.42)

= (ΣQTX + R)i

(
1

σi + νN
I +

ν

σi(σi + νN)
11T

)
(4.43)

for i = 1, 2, . . . , s. Algorithm 2 summarizes the ADMM for solving the convex clustering problem

(4.38).

4.6.2 Convex Clustering with Sparse Compositional Metric Learning

To incorporate metric learning into the convex clustering formulation (4.38), we shall follow

[16] and consider the following optimization framework:

Minimize
U,Q,Σ

1
2

∑N
j=1(Q

Txj − uj)
TΣ(QTxj − uj)+

γ
∑

1≤j1<j2≤N w{j1,j2}‖uj1 − uj2‖1

Subject to
∏s

i=1 σi ≥ 1, σi ≥ 0 ∀i = 1, 2, . . . , s,

(4.44)

where the optimization is jointly over the cluster centers U, the set of orthonormal vectors {qi}si=1,

and the nonnegative weights {σi}si=1. The constraint
∏s

i=1 σi ≥ 1 is to ensure that all weights

{σi}si=1 are in fact strictly positive.

To solve the optimization problem (4.44), we shall consider the following iterative algorithm
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that sequentially updates Q, Σ, and U in each iteration:

Qm+1 := Q(Um)

Σm+1 := Σ(Qm+1,Um)

Um+1 := U(Qm+1,Σm+1).

(4.45)

To update Q from Um, we shall first extract the clustering assignment from Um, i.e., to put the

data points with the same cluster center in the same cluster. Based on this clustering assignment,

we shall follow [37] and use the Fisher Linear Discriminant Analysis (LDA) to find a new set of

orthonormal vectors {qm+1
i }si=1. The details of the LDA are included in the next section.

To update Σ from Qm+1 and Um, we shall consider the following metric learning problem:

Minimize
Σ

1
2

∑N
j=1(Q

Txj − uj)
TΣ(QTxj − uj)

Subject to
∏s

i=1 σi ≥ 1, σi ≥ 0 ∀i = 1, 2, . . . , s
(4.46)

where we fix Q = Qm+1 and U = Um. Note that the objective function of (4.46) can be equiva-

lently written as
∑s

i=1Aiωi, where Ai := 1
2

∑N
j=1(Q

Txj − uj)
2
i . It follows immediately from the

inequality of arithmetic and geometric means [49] that the optimal solution to (4.46) is given by:

σi =
1

Ai

(
s∏
t=1

At

)1/s

(4.47)

for i = 1, 2, . . . , s. We mention here that the problem of learning a sparse compositional Ma-

halanobis metric was also considered in [37], where the choice of the objective function was the

regularized margin-based hinge loss function. By comparison, the objective function of our metric

problem (4.46) follows directly from the convex clustering formulation (4.38) and admits a very

simple closed-form solution (4.47).

Finally, to update U from Qm+1 and Σm+1, we simply solve the convex clustering problem

(4.38) by setting Q = Qm+1 and Σ = Σm+1.

We conclude this section by discussing how to obtain a good initial value for U. We propose
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the following solution. First, we obtain a clustering assignment by solving the convex clustering

formulation of Chi and Lange [15]. Based on this clustering assignment, next we use the Fisher

LDA to obtain a set of orthonormal vectors and project the data points using these vectors. Finally,

we set the the cluster centers U as the (arithmetic) means of the projected data points within each

cluster.

4.6.3 Fisher Linear Discriminant Analysis

The first step to learning a sparse compositional metric is to find the set of orthonormal basis.

We use Fisher Linear Discriminant Analysis (LDA) to find the basis. The main idea of Fisher LDA

is to separate the samples of distinct clusters by projecting them onto a subspace that maximizes

the inter-cluster distance while minimizing the intra-cluster distance. Let {x1,x2, . . . ,xN} be the

collection of data points in Rd, and let c : {1, 2, . . . , N} → {1, 2, . . . , K} be a cluster assignment

that assigns each of the data points to one of theK clusters. The Fisher LDA considers maximizing

the following objective function [38]:

J(q) :=
qTSBq

qTSWq

where

SB :=
K∑
k=1

(µk − µ)(µk − µ)T

and SW :=
N∑
j=1

(xj − µc(j))(xj − µc(j))
T .

Here, µ is the (arithmetic) mean of all data points {xj}Nj=1, and µk is the mean of the data points

{xj : c(j) = k} from the kth cluster. The matrices SB and SW are known as the inter-cluster

and the intra-cluster scatter matrices, respectively. Setting the derivative dJ(q)
dq

= 0 leads to the
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optimality condition:

S−1W SBq = J(q)q

which can be solved by computing the singular value decomposition (SVD) of S−1W SB and finding

the largest s < d eigenvectors.

To increase the robustness of the selections, it is a common practice to first pick the data points

close to the cluster centers (based on the given clustering assignment) and use the selected data

points to form the inter-cluster and the intra-cluster scatter matrices. In our implementations, we

pick the top 75% closest data points to the center in each cluster. We consider this data selection

process as part of the Fisher LDA.

4.7 Experimental Results

In this section, we use one set of synthetic data and four sets of real-world data to benchmark

the performance of the proposed convex clustering with metric learning (CCML) and convex clus-

tering with sparse compositional metric learning (CCSCML) against the convex clustering (CC)

of Chi and Lange [15], the robust convex clustering (RCC) of Wang et al. [26], and sparse convex

clustering (SCC) [27]. When applying the ADMM to solve the various convex clustering problems,

we use the following choices for the tuning parameters:

• In our implementations, we use the k-nearest neighbor method to determine the weighting

coefficients w{j1,j2} [15]. More specifically, we choose the weighting coefficient w{j1,j2}

between the data points xj1 and xj2 as:

w{j1,j2} = ιk{j1,j2} exp
[
−α‖xj1 − xj2‖22

]
,

where ιk{j1,j2} is 1 if both xj1 and xj2 are among the kth nearest neighbors (under the Eu-

clidean distance metric) of each other and 0 otherwise, α is a nonnegative real constant, and

k is a natural number. Note that setting α = 0 gives uniform weights between the data points
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among the k-nearest neighbors of each other. In our implementations, however, we tune α

as a small positive number to improve the clustering accuracy. Following [15] and [16], we

choose the value of k in our numerical experiments as the expected average cluster size.

• Note if we set the tuning parameter γ = 0, this will lead to the trivial solution of partitioning

the data points into singletons. On the other hand, if we set γ to be sufficiently large, this will

lump all the data points into a single cluster. Varying γ in between gives rise to the entire

clustering path. In our numerical experiments, we choose γ so that the results match the

expected number of clusters. Even though mathematically there seems to be no guarantee

that this is always possible, we were able to achieve the exact matches in all of our numerical

experiments. The convergence of the ADMM algorithms does not appear to be sensitive to

the choice of the augmentation parameter ν.

In addition, we use the well known Rand index [50] to measure the accuracy of the clustering

results. More specifically, for each set of testing data the ground truth is known and from that we

can construct an N -by-N binary ground truth adjacency matrix Ā with entries Āi,j = 1 if xi and

xj are in the same cluster and 0 otherwise. For a given output of a convex clustering algorithm,

we look at the columns of the matrix V, i.e., the difference variables v`. If v` = 0 (or close

to 0 within the numerical accuracy), we set Ãφ1(`),φ2(`) = Ãφ2(`),φ1(`) = 1; otherwise, we set

Ãφ1(`),φ2(`) = Ãφ2(`),φ1(`) = 0. The clustering accuracy is then calculated by counting the number

of matching values in the upper triangles (excluding the diagonal entries) of Ā and Ã, normalized

by the total number of adjacency pairs N(N − 1)/2.

4.7.1 Synthetic data

We considered the same synthetic data set that had been used in [16], which was generated

based on the standard Gaussian mixture model (GMM). More specifically, three classes of data

in R3 were generated, with 100 data points in each class. All data points were generated using

the same variance but different means for different classes. Then, outlier feature values were

added to each of the data points, making each data point a higher-dimensional vector. Each outlier
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Figure 4.1: Example of synthetic data before outlier features were added. 3

feature value was generated independently using an identical distribution across all 300 data points.

Different distributions of high variance were used for different outlier features. An example of the

GMM data before outlier features were added can be seen on Figure 4.1.

Figure 4.2 compares the clustering accuracies of CC, RCC, SCC, CCML, and CCSCML under

different numbers of outlier features (from 0 to 7). Each data point was calculated based on the

average of 50 experiments, and for each experiment the tuning parameters are tuned such that

the number of clusters matches that of the ground truth and the achieved clustering accuracy is

highest possible. For CCSCML, the number of orthonormal vectors obtained from the Fisher LDA

3Reprinted with permission from X. Sui, X. Li, X. Qian, and T. Liu, "Convex clustering with metric learning,"
Pattern Recognition, vol. 81, pp. 575-584, September 2018
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Figure 4.2: Gaussian GMM data: Clustering accuracy as a function of the number of outlier fea-
tures. The narrow line on top of each bar indicates the standard deviation for each set of experi-
ments.

s was set as three to match the number of relevant features in the ground truth. As illustrated, the

accuracies of CC, RCC, SCC and CCML all decrease (to various extent) with the number of outlier

features. By comparison, CCSCML appears to be very robust to outlier features and can achieve

near 100% accuracies under all configurations.

Figure 4.3, figure 4.4, and figure 4.5 illustrates the clustering accuracy and the minimum value

of the optimization problem (again averaged over 50 experiments) as a function of the number of

iterations for RCC, CCML, and CCSCML respectively. Here, the number of outlier features was

chosen as seven (so the total dimension of the data was ten). As illustrated, the proposed iterative

algorithm appears to converge within three iterations. Under the same setting, Figure 4.6 illustrates
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Figure 4.3: Gaussian GMM data: Convergence of the clustering accuracy and the minimum value
for RCC.

the cumulative running time as a function of the number of iterations for RCC, CCML, and CC-

SCML (the three iterative algorithms). All three algorithms use CC to obtain an initial clustering

solution. However, the running time per iteration afterwards is much smaller for CCSCML than for

RCC and CCML. This is mainly due to the fact that while RCC and CCML run full-dimensional

convex clustering in each of their iterations, the convex clustering algorithm for CCSCML runs

over the projected data (after initialization), which has a much smaller dimension.

Figure 4.7 illustrates the intensity map and the singular values of the full rank metric B learned

from the final iteration for a particular experiment on a set of simulated data. As illustrated, the

Mahalanobis distance metric B learned from the final iteration can successfully identify the three
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Figure 4.4: Gaussian GMM data: Convergence of the clustering accuracy and the minimum value
for CCML.

highly relevant features (the first three features) of the data.

4.7.2 Real-world data

Table 4.1: The basic parameters of four real-world data sets.

# of samples # of features # of clusters
“Seeds" 210 7 3
“Wine" 178 13 3
“Images" 2310 19 7
DLBCL 321 661 3
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Figure 4.5: Gaussian GMM data: Convergence of the clustering accuracy and the minimum value
for CCSCML.

Table 4.2: The clustering accuracies of various clustering algorithms for four real-world data sets.

k-means N-cut CC RCC SCC CCML CCSCML
“Seeds" 72.5 73.3 72.0 75.4 72.5 75.6 80.5
“Wine" 70.0 70.1 65.4 67.2 69.0 71.5 72.9
“Images" 73.4 72.0 80.5 83.0 81.7 82.2 86.0
DLBCL 49.2 54.5 65.2 67.5 65.5 68.2 70.2

We also tested the performance of CC, RCC, CCML and CCSCML (and the more traditional

k-means [6] and normalized-cut [5] algorithms) using the real-world data sets “seeds", “wine",

and “images" from the UCI machine learning repository [29] and the higher-dimensional Diffuse
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Figure 4.6: Gaussian GMM data: Cumulative running time as a function of the number of itera-
tions. The algorithms were implemented using MATLAB R2017b on a Windows 10 PC with an
Intel Core i7 2.8 GHz processor.

Large B-cell Lymphoma (DLBCL) data set [51]:

• The “seeds" data set contains the measurements of geometrical properties of seeds belonging

to three different types of wheat. There are 70 samples for each of the three classes. The

three classes of wheat are Kama, Rosa, and Canadian. A soft X-ray technique was used

to image the seed samples, and seven real-valued features were extracted from the X-ray

images.

• The “wine" data set contains the results of a chemical analysis of wines grown in the same

region of Italy, but derived from three different cultivars. There are 59, 71, and 48 samples
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Figure 4.7: Gaussian GMM data: Intensity map and the singular values of the full rank metric B
learned from the final iteration. 4

in each of the three cultivars, respectively. Wines grown in the same cultivar are considered

to be similar to each other. There are 13 features in this data.

• The “images" data set contains images of seven different classes of images, each with a

different subject. The subjects are brick-face, sky, foliage, cement, window, path, and grass.

There are 330 data points in each of the seven classes. Each image was hand-segmented into

3-by-3 regions, from which 19 features were extracted.

• The Diffuse Large B-Cell Lymphoma (DLBCL) data set contains 321 samples of gene ex-

pressions from three sub-types of Lymphoma cancer. The clustering goal is to find the clus-

ters according to tissue and cancer types, conditioned on the generation of micro-array plat-

forms. The three clustered sub types are designated as oxidative phosphorylation (OxPhos),

B-cell response (BCR), and host response (HR) according to relevant molecular mecha-

nisms. There are 661 features representing various gene expressions. Results from this data

set is comparable to results found in recent clustering publication [52].

4Reprinted with permission from X. Sui, X. Li, X. Qian, and T. Liu, "Convex clustering with metric learning,"
Pattern Recognition, vol. 81, pp. 575-584, September 2018
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The basic parameters of the above data sets are summarized in Table 4.1, and the exact choices

of the features can be found in [29] and [51].

Table 4.2 lists the clustering accuracy of the k-means, normalized-cut, CC, RCC, SCC, CCML,

and CCSCML algorithms for the four real-world data sets mentioned above. As illustrated, CC-

SCML performs consistently as the best among the algorithms considered (all accuracy numbers

are state-of-the-art to the best of our knowledge).

Figure 4.8 illustrates the intensity map and the singular values of the full rank distance metric

B learned from the final iteration for “seeds", “wine", and “images" data sets. From these plots, we

can identify that: 1) or the “seeds" data, the third feature “Compactness" is clearly the most relevant

one to this clustering; 2) for the “wine" data, the eighth feature “Nonflavenoids phenols" is the most

relevant one to this clustering, and the third and the eleventh features “Ash" and “Hue" are also

highly relevant to this clustering; 3) for the “image" data, the third, tenth, eleventh, twelfth, and

thirteenth features “Region-pixel-count", “Intensity-mean", “Raw-red-mean", “Raw-blue-mean",

and “Raw-green-mean" are the most relevant ones to this clustering.

For CCSCML, the number of orthonormal vectors obtained from the Fisher LDA s was set as

5, 2, 5, and 200 for the “seeds", “wine", “images", and DLBCL data sets, respectively. The number

of orthonormal vectors was determined by looking at the significant eigenvalues of S−1W SB while

performing the initial Fisher LDA (see Figure 4.9 for the ordered eigenvalues of the four data sets).

4.8 Conclusion

The first work showed that metric learning can significantly improve the performance of con-

vex clustering. However, the use of a full-dimensional Mahalanobis distance metric can lead to

high computational complexity for high-dimensional data sets and incur performance loss in the

presence of outlier features. Motivated by this, in our subsequent work we show that both issues

can be effectively addressed by imposing a sparse compositional structure on the Mahalanobis

distance metric. Numerical experiments based on both synthetic and real-world data sets demon-

strated that the proposed algorithm can significantly outperform all previous convex clustering
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algorithms [15,16,26] as well as the more classical k-means [6] and normalize-cut [5] algorithms.
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Figure 4.8: Real-world data sets: Intensity map and the singular values of the full rank metric B 
learned from the final iteration.5
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Figure 4.9: The ordered eigenvalues of S−1W SB in the Fisher LDA.
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5. FEATURE SELECTION

5.1 Introduction

Clustering is considered as a method in unsupervised learning. However, with the addition

of metric learning and the iterative algorithm between convex clustering and metric learning, the

works in the previous chapter can be consider as semi-supervised learning. In particular, in the

sparse compositoinal scheme, metric learning served as a way of dimension reduction, or feature

selection. In many pattern recognition applications, identifying the most meaningful features in the

data set is critical in the performance of clustering and classification methods. Given data set with

N data points of the dimension d denoted as {x1,x2, . . . ,xN}, and the target classification variable

Y , the feature selection problem aims to find from d-dimensional observation space a subspace of

s features where s < d, that best characterizes Y . The set of all features can be denoted as V with

each feature denoted as Xi, the subset of features that best represent the data in the classification

scheme is denoted as B.

Given a set of training data, the feature selection algorithm is a search algorithm that searches

for the best subspace that fits the training data and its classification outputs. The total number of

subspaces is thus 2d, and the number of the subspace with dimension smaller than or equal to s

is
∑d

i=1

(
d
i

)
, it thus difficult to exhaustively search the entire subspace. Therefore, the feature se-

lection problem is predominantly solved using a sequential-search-based method. In a sequential-

search-based method, each feature is evaluated one after another on three factors: relevancy, redun-

dancy, and interaction. Relevancy is a measure between the feature and the outcome’s variables

dependency on its variance. However, some features might be redundant, as in they contribute

the same information towards the outcome variable. Lastly, the effect of certain features on the

outcome variable can also be dependent on its interaction with each other.

In the section below, two classical methods of feature selection are described. Both algorithms

are greedy methods that searches incrementally the features with the most relevance, least redun-
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dancy while taking interaction into account.

5.2 Related Works

By far, most previous works relies on the heuristic of maximum relevance and minimum redun-

dancy. Denoting V as the full set of features and B as a small subest of feature that is desired, let

rX1,X2 be a correlation measure between two discrete random variables X1 and X2 in V , previous

literatures use averages such as:

• The average relevance between the features in a subset and the outcome:

r̄xy(B) :=
1

|B|
∑
i∈B

rXi,Y

• The average redundancy between the features in a subset:

r̄xx(B) :=
1

|B|(|B| − 1)

∑
(i,j)∈B2:i 6=j

rXi,Xj

To address the algorithmic challenge, it is common to perform an incremental search over the entire

feature set via a greedy algorithm.

5.2.1 Minimum Redundancy Maximum Relevance (mRMR)

The immensely popular Minimum Redundancy Maximum Relevance (mRMR) [24] algorithm

is based on the following feature selection criteria:

r̄xy(B)− r̄xx(B) (5.1)

where the correlation measure is chosen as Shannon’s mutual information. The mRMR algorithm

is an incremental search greedy algorithm. It starts with B as an empty set, and the first feature

chosen is the feature with the highest mutual information between the feature and the outcome
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I(Xi,Y). At the mth feature to select, the selection criteria is

max
Xj∈XV −Sm−1

I(Xi,Y)− 1

m− 1

∑
Xi∈Sm−1

I(Xi,Y) (5.2)

where Sm−1 is the set of features of size (m− 1) that have already been selected.

5.2.2 Correlation Based Feature Selection (CFS)

Another set of popular feature selection algorithms known as the Correlation Based Feature

Selection (CFS) [25] are based on the following criteria:

|B|r̄xy(B)√
|B|+ |B|(|B| − 1)r̄xx(B)

(5.3)

where the correlation measure used is called symmetric uncertainty:

rxy =
2I(X,Y)

H(X) +H(Y)
(5.4)

The CFS algorithm is also an incremental search greedy algorithm. It starts with B as an empty

set, and the first feature chosen is the feature with the highest symmetric uncertainty between the

feature and the outcome r(Xi, Y ). At the mth feature to select, the selection criteria is

max
Xj∈XV −Sm−1

mr̄cf√
m+m(m− s1) ¯rff

(5.5)

where Sm−1 is the set of features of size (m − 1) that have already been selected, r̄cf is the mean

of already selected feature-to-class symmetric uncertainty, and ¯rff is the mean of all pairwise

feature-to-feature symmetric uncertainty.

5.3 Conclusion

Feature selection is a supervised learning pattern recognition method. Given a set of data with

d features, denoted as V , selecting a small set of features, B, can not only reduce the dimension of

the data set but can eliminate irrelevant and redundant features in the data set to produce a better
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result. Previous classical feature selection methods uses a greedy incremental search method that

grows the set B one feature at a time with a selection criteria. However, these selection criteria are

often heuristic. In our work in the next section we use a direct approximation of Shannon’s mutual

information on the underlying joint distribution.
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6. FEATURE SELECTION USING CHOW-LIU TREE APPROXIMATION

6.1 Introduction

Feature selection is a fundamental problem in machine learning. Formally, let (XV ,Y) be a

collection of jointly distributed discrete random variables, where XV := (Xi : i ∈ V ) are the

features and Y is the outcome variable. The goal is to find the small subset B ⊆ V of features

that are highly relevant to the outcome based on a given set of identically and independently dis-

tributed drawn samples of(XV ,Y). By eliminating irrelevant and redundant features, feature selec-

tion not only helps to reduce the complexity of the training algorithm, but can also help improve

the interpret-ability of the accuracy of the learned model.

This work focuses on the so-called filter method (for with the selection of features is indepen-

dent of the training algorithm), which is known to be less prone to over-fitting than the so-called

wrapper method (for which feature selection and training are performed jointly) [53]. Tradition-

ally, information theory plays an important role in addressing the filter feature selection problem.

In particular, Shannon’s mutual information provides a well-accepted correlation measure, which

can capture both linear and nonlinear dependencies between two groups of random variables. Thus,

assuming that the joining distribution of (XV ,Y) is known, a natural formation of the filter feature

selection problem is given by:

max
B⊆V :|B|=k

I(XB;Y) (6.1)

for some fixed inter k (which is usually much smaller than |V |), where I(XB;Y) denotes the

Shannon mutual information between the features XB and the outcome variable Y.

By far, most of the literature relies on the heuristic of maximum relevance and minimum re-

dundancy, such as the popular mRMR algorithm [24] and the CFS [25] algorithm. This work

is a continued effort to seek an alternative feature-selection criteria that can be efficiently com-

puted from the lower-order marginals of (XV ,Y). Instead of following the maximum relevance

minimum redundancy principles, we provide a direct approximation on the Shannon mutual infor-
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mation I(XV ;Y) by using the well-known Chow Liu tree (CLT) approximations [54]. This led to

a new feature-selection criteria which can be efficiently computed from the pairwise mutual infor-

mation between the features and the outcome variable. There are two major challenges for solving

the optimization problem in (6.1):

1. From the algorithm point of view, the Shannon mutual information I(XB;Y) as a set function

on B has no known structures.

2. From the practical viewpoint, the Shannon mutual information has to be estimated from the

given set of data samples, and that can be computationally challenging.

To address the algorithmic challenge, a common practice is to perform an incremental search over

the entire set of features. For example, given a set B ⊆ V of features that have already been

chosen, a new feature can be greedily added via solving:

max
i∈V \B

I(XB∪{i};Y) (6.2)

6.2 Chow-Liu Tree Approximation

In our approach, instead of heuristic measures we adopt to use a Chow-Liu Tree approximation.

For a collection of jointly distributed discrete random variables XV = (Xi, i ∈ V ), consider a tree

T with vertex set V . A dependency-tree approximation of XV , denoted as XTV , can be written as a

joint distribution of XB where |B| ≤ 2:

PXT
V

(xV ) :=

(∏
i∈V

PXi
(xi)

) ∏
(i,j)∈E(T )

PXi,Xj
(xi, xj)

PXi
(xi)PXj

(xj)
(6.3)

for any xV ∈ XV and E(T ) is the edge set of T . Such a distribution forms a Markov tree or a

Bayesian network with respect to T thus we can relabel the indices in V

PXT
V

(xV ) :=
∏
i∈V

PXi|Xpi
(xi|xpi) (6.4)
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where p1 = ∅, pi < i, and {i, pi} ∈ E(T ) for i > 1.

A set of Chow-Liu tree is defined as:

T ∗(XV ) := arg min
T

D(PXV
||PXT

V
) (6.5)

where D(PXV
||PXT

V
) is the divergence between XV and a dependency-tree approximation XTV [54].

It can be shown that

D(PXV
||PXT

V
) = D

(
PXV
||
∏
i∈V

PXi

)
−

∑
{i,j}∈E(T )

I(Xi;Xj) (6.6)

where

D

(
PXV
||
∏
i∈V

PXi

)
=
∑
i∈V

H(Xi)−H(XV) (6.7)

is known as the total correlation of XV . In particular, for any XV and any tree T with vertex set V :

D

(
P T
XV
||
∏
i∈V

PXi

)
=

∑
{i,j}∈E(T )

I(Xi;Xj). (6.8)

The Chow-Liu algorithm computes a Chow-Liu tree as a maximum spanning tree with the Shannon

mutual information I(Xi,Xj) as the weight of the edge {i, j}, since the minimization in (6.5)

corresponds to the maximizing the second term on the right had side of (6.6), which is the total

weight of the tree T . Furthermore, by (6.8) we have,

D

(
PXT

V
||
∏
i∈V

PXi

)
= MST (XV ) (6.9)

where MST (XV ) is the total weight of a maximum spanning tree of XV .

6.3 Feature Selection Algorithm

Having introduced Chow-Liu tree approximation, we can show that the information theory

between a given set of features, B ⊆ V and the outcome variable Y. Thus letting T1 ∈ T ∗(XB)
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and T2 ∈ T ∗(XB, Y ) we can approximate I(XB;Y):

I(XB;Y) = H(XB) +H(Y)−H(XB;Y); (6.10)

=
[∑
i∈B

H(Xi) +H(Y)−H(XB,Y)
]
−
[∑
i∈B

H(Xi)−H(XB)
]

(6.11)

= D
(
PXB ,Y||

(∏
i∈B

PXi

)
PY

)
−D

(
PXB
||
∏
i∈B

PXi

)
(6.12)

≈ D
(
P(XB ,Y)T2 ||

(∏
i∈B

PXi

)
PY

)
−D

(
P
X
T1
B
||
∏
i∈B

PXi

)
(6.13)

= MST (XB,Y)−MST (XB) (6.14)

where (6.12) follows from (6.7), (6.13) follows by approximating PXB ,Y and PXB
by their respec-

tive Chow-Liu tree approximations, and (6.14) follows from (6.8). Note that the right-hand side of

(6.13) can be computed from pairwise mutual information between the features and the outcome

variable via standard maximum spanning tree algorithms [54].

Note that the new criteria (6.14) involves two separate Chow-Liu tree approximations: one for

the joint distribution of (XB,Y) and the other for the distribution of XB only. By definition, both

distributions are needed to compute the Shannon mutual information between XB and Y. While

the distribution of XB can be obtain via marginalization of the distribution of (XB,Y), it is known

that the marginal distributions of a tree are not necessarily trees any more. Consider, for example,

the situation where Xi, i ∈ B are independent given Y. In this case, the joint distribution (X,Y) is

a star. However, the Shannon mutual information I(XB;Y) cannot be efficiently computed from

the conditional distribution PXi|Y, i ∈ B and the marginal distribution of Y.

Inspired by the greedy algorithm of mRMR and of CFS and using the difference of two maxi-

mum spanning trees in (6.14) as the update parameter, we propose the feature selection algorithm

in Algorithm 3. Given a set of training data with the set of features V , the outcome variable Y, as

well as all the pairwise mutual information between each pair of the feature values and the features

and outcome variable. The output of the feature selection algorithm is the set of most relevant and
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least redundant variable set B of size k. The algorithm begins with B as an empty set, then adds

features to the set one by one in a greedy fashion. In each step we construct the two maximum

spanning tree and find the the different between their weight value. The feature with the largest

different value is added to the set B.

Algorithm 3 Feature Selection via Chow-Liu Tree
1: Input: All pairwise mutual information for features and outcome, number of features to be

selected k.
2: Output: Set of selected features B.
3: Initialize: B = ∅ and running maximum M = −1.
4: while |B| < k do
5: M = −1, j = 0.
6: for i ∈ V \B do
7: T1 = MST (XB, Xi).
8: T2 = MST (XB, Y,Xi).
9: if weight(T2) − weight(T1) > M then

10: j = i.
11: M = weight(T1) − weight(T2).
12: end if
13: end for
14: Add Xj to B.
15: end while

6.4 Experimental Results

In this section, we use classification accuracy using the chosen features as an evaluation of

our proposed feature selection algorithm against the well-known mRMR and CFS algorithm. The

first step to the experimental tests on all three of the algorithms is to estimate the pairwise mutual

information between all the features and the features and the outcome variable. To estimate the

mutual information between two random variable, we first discretized the raw continuous data.

Each feature variable was preprocessed to have zero mean-value and unit variance. The data is

then discretized into three levels at the positions µ ± σ (µ is the mean value and σ is the standard

deviation): it takes the discrete value of -1 if it is less than µ− σ, 1 if larger than µ+ σ, and 0 if it
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is in between the two values. Having discretized the data, the entropies and joint entropies of each

feature and the outcome is first estimated then the mutual information is calculated using

I(Xi,Xj) = H(Xi) +H(Xj)−H(Xi,Xj)

With a large training data set, we also did 10-fold cross validation on each of the three data sets:

randomly choosing 10% of the data set as the training data and 90% of the data set as the testing

data. After finding the pairwise mutual information of the training data set, we used the three

feature selection algorithms to select a set B of features with the size of B varying between 5 to

50. For each set of selection features, those features are selection from the testing data. These

small set of chosen features in the testing data is then used in classification algorithms to test the

classification accuracy. Three classification algorithms were used: naive Bayesian (NB), support

vector machines (SVM) and random forest (RF).

6.4.1 The Data Sets

Experiments were performed using three different real life data sets: arrhythmia (ARR) [29],

HDR-MultiFeature (HDR) [29] and Columbia University Image Library (COIL-20) [55] data set.

These three data sets are popular among other feature selection studies [24, 25].

The arrhythmia (ARR) data [29] contain 278 features and 420 samples. The attributes describe

patients and the goal is to predict the presence and absence of cardiac arrhythmia. There are

two classes, class 1 refers to "normal" cardiac functions and class 2 refers to having some kind

of cardiac arrhythmia. The attributes or features are age, sex, height, weight, time duration of

different waves in heart rhythms. The results of the ARR data using first three-level discretization,

10-fold cross validation and NB, SVM and RF classification are presented in Figure 6.1, Figure 6.2

and Figure 6.3, respectively.

The HDR-MultiFeature (HDR) data [29] contains 649 features for 2000 binary images of hand-

written digits. This data set consists of images of handwritten numbers of 0 through 9, therefore

there are 10 classes. The features are extracted from a collection of Dutch utility maps. There are
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Figure 6.1: Classification accuracy result of ARR data using NB classification.

200 patterns per class with 2000 samples in total. The features include 76 Fourier coefficients of the

character shapes, 216 profile correlations, 64 Karhunen-Love coefficients, 240 pixel average in a

2-by-3 windows, 47 Zernike moments, and 6 morphological features. The results of the HDR data

using first three-level discritization, 10-fold cross validation and NB, SVM and RF classification

are presented in Figure 6.4, Figure 6.5 and Figure 6.6, respectively.

The Columbia University Image Library (COIL-20) data set [55] is a database of gray-scale

images of 20 objects. Thus, the classification has 20 classes. The objects were places on a motor-

ized turntable against a black background. The turntable was rotated through 360 degrees to vary

object pose with respect to a fixed camera. Images of the object were taken at pose intervals of

5 degrees. Therefore there are 72 images per object. Thus the total number of samples is 1440.
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Figure 6.2: Classification accuracy result of ARR data using SVM classification.

Each image is 32-by-32 pixels, which means there are 1024 features each on a 256 gray scale

level per pixel. Figure 6.7 shows a sample image from each of the 20 objects. The results of the

COIL-20 data using first three-level discritization, 10-fold cross validation and NB, SVM and RF

classification are presented in Figure 6.8, Figure 6.9 and Figure 6.10, respectively.

It can be seen in all 9 figures that the CLT feature selection algorithm outperforms both the

mRMR and CFS feature selection algorithm. The results also show that despite having 278, 649

and 1024 features respectively in each of the three data sets, the classification accuracy stabilizes

using less than 50 features in each case. This shows that feature selection is a much needed pre-

processing procedure for classification.
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Figure 6.3: Classification accuracy result of ARR data using RF classification.

6.5 Conclusion

In this work, we proposed a new feature selection using Shannon’s mutual information. The

proposed algorithm is a greedy algorithm. At each iteration of the greedy algorithm the mutual

information between a subset B ⊂ V of the full set of features and the out come variable Y. This

mutual information between a set of random variable and outcome random variable is computation-

ally difficult to estimate. To estimate the mutual information, the distribution of XB can be obtain

via marginalization of the joint distribution of (XB,Y). To achieve this, a Chow-Liu tree approx-

imation was used. The mutual information I(XB,Y) is estimated to be the different between two

maximum spanning trees: one of XB and one of (XB,Y). Classification accuracy was used to test
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Figure 6.4: Classification accuracy result of HDR data using NB classification.

the effectiveness of the feature selection algorithm. Using three data sets and three classification

algorithms, the proposed CLT algorithm outperforms previous feature selection algorithms.
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Figure 6.5: Classification accuracy result of HDR data using SVM classification.
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Figure 6.6: Classification accuracy result of HDR data using RF classification.
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Figure 6.7: The 20 objects of the COIL-20 data set.
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Figure 6.8: Classification accuracy result of COIL-20 data using NB classification.
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Figure 6.9: Classification accuracy result of COIL-20 data using SVM classification.
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Figure 6.10: Classification accuracy result of COIL-20 data using RF classification.

67



7. CONCLUSION

This dissertation can be divided into two main topics, clustering with metric learning and fea-

ture selection. The flow of this dissertation is to first discuss works in the unsupervised scheme,

namely in clustering, then move to a semi-supervised scheme when metric learning is added to

clustering, lastly supervised learning is discussed in feature selection methods.

The previous work of Chi et al. [15] in convex clustering is first introduced. The convexity

of the clustering scheme and its ability to produce multiple clustering solutions with varying size

proved this new clustering optimization formulation desirable in comparison to older clustering

algorithms. The convex clustering formulation aims to assign every data point to a cluster center

vector, the data point with the same cluster center is considered to be in the same cluster. The

optimization minimizes the aggregated distance between each point and its corresponding cluster

along with a regularization parameter that controls the number of clusters. The convex clustering

algorithm can be solved using ADMM. It is clear that in this cluster scheme, there is a need for

an appropriate distance measure to measure the distance between two data points with d features.

This dissertation proposed two metric learning algorithms that learns a Mahalanobis metric that

beat the results of convex clustering using Euclidean distance in the original formulation. The

first metric proposes a positive definite full-rank matrix to characterize the the metric. A principle

component analysis of the full-rank matrix can reveal which features is more important in the

clustering scheme. The second formulation of the Mahalanobis matrix is to characterize the matrix

as a weighted sum of s rank-1 positive semidefinite matrices, which are orthonormal basis. The

number of basis s can be significantly smaller than the original dimension of that data d. This

produces a dimension reduction effect that projects the data into a smaller and more meaningful

space and also introduces sparsity into the metric learning scheme. Experiments were conducted

using both simulated data and real life data to evaluate the performance of convex clustering with

both metric learning schemes and showed that metric learning greatly improve the performance of

convex clustering.
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With the introduction of sparsity into metric learning scheme, we moved from a unsupervised

learning problem to a supervised learning problem. The sparsity of metric learning can also be

seen as a method of feature selection which is the second topic of this dissertation. We proposed

a new method of feature selection that uses Chow-Liu tree approximations to estimate the mutual

information between a subset of features to be selected and the outcome variable. This algorithm

is a incremental search greedy algorithm much like the previously popular mRMR and CFS al-

gorithms. However, it does not rely on heuristics and thus produce much desirable effects when

the selected features are used in classification algorithms. The feature selection methods were

evaluated over the classification accuracy in three different classification methods. Three large

real life data were used in the experiments and they showed that the new Chow-Liu tree method

outperforms previous state-of-the-art methods.
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