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ABSTRACT 

 

Fungal infections caused by opportunistic pathogens tend to be particularly 

severe and systemic in the case of immunocompromised patients. The current treatment 

options fall under classes such as azoles, polyenes, echinocandins and nucleoside 

analogs, to which resistance has been widely reported. Occidiofungin is a novel non-

ribosomal peptide with a base mass of 1,200 Da that has sub-micromolar activity against 

a wide spectrum of fungi. Occidiofungin does not have a similar mechanism of action as 

the other classes of antifungals. Preliminary toxicological analyses suggested that 

occidiofungin was well tolerated in mice at high doses. This dissertation is aimed at 

characterizing the structural, functional and pharmacological aspects of occidiofungin. 

We describe the structural and functional characteristics of occidiofungin without the 

xylose group. Loss of the xylose group affected the secretion of occidiofungin by the 

bacterium but did not affect activity of the purified compound. We analyze a variant that 

is produced when a free standing thioesterase in the biosynthetic pathway is mutated. 

We observed that a distinct diastereomer of occidiofungin cyclized by the mutated 

thioesterase contributed to the activity of occidiofungin. Microscopy assays indicated 

that the wild type compound rapidly triggered apoptosis. Time course analysis showed 

immediate concentration of occidiofungin at the bud tips of S. cerevisiae; after an hour 

of exposure it distributed throughout the parent cells. In S. pombe, localization was seen 

at the poles and division septum. In vivo and in vitro affinity purification assays 

indicated binding of occidiofungin to actin. Pharmacokinetic evaluation of occidiofungin 
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indicated that highest peak plasma concentration could be achieved in a murine model 

via the intravenous route. Lipoformulation of occidiofungin led to a marked increase in 

the peak plasma concentration. Histopathology performed on mice that were exposed to 

long duration treatment indicated that changes in all organ tissues were within normal 

limits. Efficacy of occidiofungin in reducing the fungal load in a murine model of 

systemic candidiasis could not be demonstrated due to the possibility of high levels of 

binding of occidiofungin to serum proteins. Future studies will be aimed at the chemical 

modification of occidiofungin to reduce the binding of serum proteins.  
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1. INTRODUCTION 

 

1.1 Overview 

Fungal pathogens cause diseases in a wide variety of hosts such as plants, 

animals and human beings and lead to the expenditure of several billion dollars annually 

by way of treatment. Fungal infections in plants and livestock lead to extensive loss of 

crop and rapid transmission of infection in animals. In humans, fungal infections may 

manifest as superficial infections, such as thrush and athlete’s foot or as invasive, 

systemic conditions which are more frequently seen in immunocompromised 

individuals.  

Since the 1900s, several antifungals have been developed and clinically 

employed to combat fungal infections in different hosts. These antifungals can be 

classified into groups based on their mechanism of action. Since their use in clinical 

settings, development of resistance to each class of antifungal has been reported. This 

development led to an eventual lull in the antibiotic development arena and progress in 

further identification of bioactive antifungal compounds has been slow. More recently, 

interest in identifying small molecules with novel mechanisms of action has increased 

and several natural products are being investigated for their potential as viable treatment 

alternatives.  
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1.2 Classes of antifungals 

Antifungal agents can be classified into various classes. The most commonly 

used classes of antifungal agents to treat fungal infections are the azole derivatives, 

polyenes, echinocandins and allylamines (Figure 1.1).  

1.2.1 Polyenes 

Polyenes are a class of natural products produced by Streptomyces species. They 

are synthesized by polyketide synthases and typically consist of a cyclic structure with 

multiple carbon-carbon double bonds and hydroxyl groups. The members of this class 

differ from each other based on the number of the double bonds and presence or absence 

of aromatic and aminoglycosidic groups
1
. Polyenes constituted the standard method of 

treatment of systemic fungal infections before the discovery of other classes of 

antifungals such as azoles
2
. It has been observed that a correlation exists between the 

amount of sterols present in the cell wall of an organism to how susceptible it is to 

polyene toxicity
3
. Polyenes interact with the sterols present in the membrane of the 

fungal cell. The predominant sterol found in fungal cell membranes is ergosterol and it 

functions the same way cholesterol does in mammalian cells. Ergosterol plays an 

important role in maintaining structural integrity of the fungal cell membrane
4
.   

Based on the structures of the polyenes and their biological effects, this class of 

antifungals was broadly categorized into two groups by Kotler-Brajtburg et al
5
. Briefly, 

this study analyzed the effect of different concentrations of polyenes on S. cerevisiae and 

mouse erythrocytes. The study concluded that tri-, tetra-, penta- and hexaenes induced 

K
+
 ion leakage and yeast cell death and hemolysis at a range of concentrations tested 



 

3 

 

(approximately 0.5μg/ml to 45 μg/ml) whereas heptaenes (including amphotericin B) 

induced K
+ 

ion leakage at lower concentrations and hemolysis only at higher 

concentrations.  Amphotericin B, a polyene that was discovered in the 1950s, was the 

‘gold standard’ to treat systemic fungal infections
3
. It is proposed that the antibiotic 

interacts with the hydrophobic leaflet of the membrane and forms a ring like structure 

composed of eight amphotericin B molecules. The ring like structure is formed with the 

hydroxyl residues of amphotericin B facing the cytoplasm of the fungal cell
6,7

. 

Due to poor bioavailability following oral administration of polyenes, amphotericin B is 

administered intravenously. The major limiting factor of the clinical use of amphotericin 

B is the severe nephrotoxicity associated with the use of this compound. The antibiotic 

has been formulated in liposomes and it is believed that targeted delivery of the 

liposomes to the fungal cells can be achieved
8
. Although efficacy against systemic 

fungal infections did not improve with the liposomal preparation, toxicity to the host 

organism was highly reduced
9
. Liposomal amphotericin B does not induce cation efflux 

and cell lysis in mammalian erythrocytes, demonstrating its selectivity at the cellular 

level
10

.  

Development of resistance to amphotericin B is less common than the other 

classes of antifungals and has been suggested to occur through multiple mechanisms. For 

example, alteration of cell wall composition in Aspergillus species
11

, alteration of 

ergosterol content and protection against oxidative damage
12

 have been proposed as 

possible mechanisms by which resistance against amphotericin B occurs. Several studies 

have suggested that presence of sterols other than ergosterol in the cell membrane leads 
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to resistance to polyenes
13,14

. More recently, it has been suggested that in vivo resistance 

to liposomal formulations of amphotericin B possibly occurs due to the administration of 

lower than optimal levels of the drug
15

. 

1.2.2 Azoles 

Azole derivatives are synthetic antifungal compounds that were discovered in the 

1960s. They are reported to be fungistatic, and are the most rapidly expanding group of 

antifungals. They demonstrate broad spectrum activity against yeast and filamentous 

fungi
16

. They are classified into two groups based on the number of nitrogen atoms in 

the azole ring. The imidazoles, such as ketoconazole and miconazole, contain two 

nitrogen atoms in the azole ring, whereas the triazoles, such as itraconazole and 

fluconazole, contain three nitrogen atoms.  

Ergosterols are an important group of sterols in fungal species. They are 

derivatives from squalene and make up the bulk sterol in fungal membranes
17

. 

Membrane integrity requires that sterol C14 demethylation occurs without hindrance. 

Azoles disrupt the demethylation stage thereby causing an accumulation of lanosterols 

and other 14-methylated sterols. Both imidazoles and triazoles act by targeting lanosterol 

demethylase which is a cytochrome P-450 enzyme. The enzyme has a heme moiety in its 

active site
18

. The azoles, which carry an unhindered nitrogen atom in their ring, bind to 

the iron molecule in heme
19

. This prevents activation of oxygen that is necessary for the 

demethylation of lanosterol.  It has also been reported that a second nitrogen atom 

interacts with the apoprotein of the lanosterol demethylase enzyme and the interaction is 

influence by the proximity of the nitrogen atom to the apoprotein
20

. 
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The presence of methylated sterols in the plasma membrane of the fungi disrupts 

the stability of the membrane and cell lysis occurs. It has also been observed that some 

imidazoles have a direct disruptive effect on the cell membrane at higher concentrations 

and are seen to be fungicidal
21

.  

The ergosterols, in addition to providing structural integrity to the fungal cell 

membranes, also carry out a ‘sparking’ function
17

. At low concentrations, ergosterol 

upon addition to other bulk sterols (such as cholesterol) induces growth of yeast cells. 

Sterol-starved cells undergo G1 arrest and release from such an arrest can be mediated 

by the addition of exogenous ergosterol
22

. Azoles are seen to cause loss of both types of 

ergosterol function
22

. 

Azoles were some of the antifungal agents to have high bioavailability when 

administered orally. The conditions at which maximum availability following oral 

administration is achieved, differs by the type of azole in question. For example, 

itraconazole is best administered following consumption of food whereas voriconazole is 

administered on an empty stomach
23,24

. Fluconazole can be administered via multiple 

routes, including intravenous and oral. Fluconazole and oral itraconazole have relatively 

low in vivo toxicities whereas other members of the triazoles have been reported to 

display severe hepatotoxicity, phototoxicity and cutaneous irritation
25-27

. 

Resistance to azoles has been observed in several isolates and multiple mechanisms of 

resistance have been reported. Initially, mutations in the catalytic site of the target 

enzyme, P450 14α demethylase (ERG11), were reported to confer resistance in S. 

cerevisiae and C. albicans. Further, other non-catalytic site mutations that hindered 
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inhibition were isolated
19

. More recently, independent studies that analyzed clinical 

isolates suggested overexpression of efflux pump genes CDR1 and CDR2 in addition to 

mutations in ERG11 as possible mechanisms of resistance in C. albicans
28

 and 

C.glabrata
29

.  

1.2.3 Echinocandins 

Echinocandins are lipoprotein molecules consisting of cyclic peptides which are 

linked to a long chain fatty acid. They are semi-synthetic compounds derived from 

fermentation products
30-32

. Three types of echinocandins have been approved for clinical 

use by the Food and Drug Administration (caspofungin, micafungin and anidulafungin). 

Though the activity of the three compounds is similar, they vary structurally. The 

activity of the echinocandins is attributed to the hexapeptide nucleus.  Caspofungin 

contains a fatty acid, micafungin a complex aromatic, and anidulafungin an 

alkoxytriphenyl side chain
33

. The most recent addition to the echinocandin family is 

ASP9726, developed by Astellas Pharmaceuticals and currently in preclinical 

development
34

. The structures of caspofungin, micafungin and ASP9726 are depicted in 

Figure 1.1. 

Echinocandins demonstrate antifungal activity by non-competitively inhibiting 

1,3-β-D glucan synthase which is necessary for the synthesis of 1,3-β-D glucan, an 

important cell wall component. The enzyme consists of at least two subunits: Fks1p and 

Rho1p. Rho1p is a regulatory component, controlling the production of 1,3-β-D 

glucan
35

. The echinocandins target FKS1p gene product which constitutes the active site 

of the enzyme, 1,3-β-D glucan synthase
36

. As a result, 1,3-β-D glucan is not produced 
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and the cell wall loses stability. Eventually, the fungal cell is incapable of resisting the 

osmotic pressure due to loss of membrane integrity leading to lysis of the fungal cells
37

. 

The activity of echinocandins against target fungal species depends on the proportion of 

1,3-β-D glucan in the cell wall. The amount of glucan varies between species and it is 

obvious that the species that have a lower quantity of glucan in their cell wall would not 

be highly susceptible to treatment by echinocandins. It has been reported that exposure 

of yeast cells to sub-inhibitory concentrations of echinocandins leads to a dynamic shift 

in the ratio of chitin to glucan in the cell walls and cell with increased amounts of chitin 

are resistant to echinocandins
38

. Candida species and Aspergillus species are seen to be 

highly susceptible to echinocandins. As an exception, Cryptococcus neoformans whose 

cell wall has a large amount of glucan is not very susceptible to echinocandin treatment, 

indicating that echinocandins may target cells by an alternative mechanism that is, as 

yet, unknown
39

. Echinocandins have also been reported to induce apoptosis in fungal 

cells at lower concentrations, but the intracellular component responsible for the 

induction is still unknown
40

. 

Echinocandins are known to display very low drug-drug interactions. The 

advantage of echinocandin use is also due to the fact that human cells do not have 1,3-β-

D glucan and hence toxicity to host cells can be minimized. Echinocandins are usually 

formulated for administration via the intravenous route and are cleared slowly following 

degradation in the liver
35

. 

Resistance to echinocandins has been widely reported. Mutations in the hotspot 

regions of Fks1 (HS1 and HS2) have been reported as one of the major causes of 
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resistance. Ghannoum et al report multiple studies which suggest other mechanisms of 

resistance. For example, over expression of chitin synthase provides additional 

protection against echinocandins and over expression of Sbe2, a golgi protein involved 

in synthesis of cell wall components has been linked with echinocandin resistance
41

. 

1.2.4 Allylamines 

Allylamine derivatives are a class of chemically derived compounds that have 

antifungal properties. Allylamines were derived by chemically altering the structure of 

naftifine, an antimycotic compound. These compounds inhibit the enzyme squalene 

epoxidase leading to the disruption of ergosterol biosynthesis. It also leads to the buildup 

of squalene within the cell. This results in the cidal activity of the compounds
42

.  

Synthetic modifications of naftifine aimed specifically at making orally bioactive 

compounds led to the development of several allylamines that are used in the treatment 

of infections caused by fungi such as Aspergillus species. Further, allylamines have been 

reported to have remarkable activity against dermatophytes such as Trichophyton spp. 

and Epidermophyton spp. with in vivo efficacy in treating these infections in a porcine 

model
42

. A liposomal formulation of terbinafine has been reported for nasal delivery to 

treat Aspergillosis in order to improve efficacy and bioavailability of the drug
43

. 

Development of resistance to allylamine compounds has been reported and resistant 

clinical isolates have been found. Mechanisms of squalene resistance include over 

expression of and a single amino acid substitution in the squalene epoxidase enzyme
44,45

. 

Efflux pump mediated resistance has also been suspected to occur in Candida albicans
46

. 
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1.2.5 Nucleoside analog 

5-fluoroctyosine (5-FC) is a synthetic compound that was developed in the late 

1950s and adapted for use as an antimycotic agent by 1968
47

. 5-FC is converted to 5-

fluorouracil (5-FU) following uptake by fungal cells. 5-fluorouracil is then converted to 

metabolites which inhibit nucleotide and protein synthesis leading to fungal cell death. 

The conversion of 5-FC to 5-FU involves deamidation by cysteine deamidase and the 

lack of this enzyme in the fungal cell leads to absence of activity against that type of 

fungus
47

. 5-FC is currently used in combination with amphotericin and azoles in the 

treatment of systemic fungal infections
47

. 

Resistance to 5-FC has been widely reported and has been attributed to 

mechanisms such as mutations leading to reduced uptake of 5-FC, increased synthesis of 

pyrimidines and defective uridine monophosphate pyrophosphorylase
47

. Due to the 

extensive prevalence of resistance to 5-FC, it is not used as an antifungal agent by itself.   

1.3 Novel antifungals that target unique cellular components 

In addition to the previously mentioned classes, several compounds with novel 

cellular targets are currently in clinical trials (Figure 1.2). Denning and Bromley (2015) 

highlight these antifungals currently being developed and point out the promise of novel 

antifungals in the fight against resistance
48

. Antifungals in pre-clinical development 

include [N′-(3-bromo-4-hydroxybenzylidene)-2-methylbenzohydrazide (BHBM) and its 

derivative, 3-bromo-N′-(3-bromo-4-hydroxybenzylidene) benzohydrazide, which were 

discovered in a screen that probed synthetic drugs that could target the synthesis of a 

sphingolipid (glucosylceramide) found in fungi. Glucosylceramide is a possible 
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virulence factor that is necessary for fungal cell proliferation in neutral and alkaline 

conditions. The compounds mentioned above inhibit transport of vesicles that carry 

ceramide that is essential in the synthesis of fungal glucosylceramide, thereby halting 

progress through the cell cycle and inhibiting cytokinesis
49

. Sampangine, an alkaloid 

compound derived from plants, is another novel antifungal that possesses broad 

spectrum activity against fungi, protozoans and cancer cell lines. It is believed to inhibit 

heme biosynthesis by hyperactivating uroporphyrinogen III synthase which is encoded 

by the gene HEM4. Due to the fact that the target is conserved in humans, this class of 

compounds possesses antiproliferative properties in human cancer cell lines as well
50

. 

Ilicicolin H is a non-ribosomal tetracyclic peptide which is cytotoxic to HeLa cells and 

also possesses antifungal activity against several fungal species. It causes cell death by 

inhibiting mitochondrial respiration by binding to the Qn site of the cytochrome bc(1) 

complex
51,52

. One of the antifungal compounds currently in Phase I clinical trials is 

biafungin that is currently being developed by Cidara Therapeutics
53

. Biafungin is active 

against Aspergillus species and several resistant strains of Candida. It is also active 

against caspofungin-resistant fungi and has efficacy against an fks mutant of Candida 

albicans in a murine model. Another antifungal in Phase I trials is VT-1129 developed 

by Viamet Inc. VT-1129 belongs to a new class of lanosterol 14-α-demethylase 

inhibitors that contain a tetrazole moiety that binds heme. It has been reported to be 

more effective against fungal enzymes compared to their human counterparts
54

. F901318 

is an orotomide, a novel class of antifungals, which is being developed by F2G Limited 

and is currently in phase I trials. It has been reported that F901318 has in vivo efficacy 
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against Aspergillus species. Antifungals currently in Phase II trials include Nikkomycin 

Z, which is a nucleoside-peptide natural product developed by Valley Fever Solutions 

that targets chitin synthetase. Specifically, Nikkomycin acts as a competitive inhibitor of 

chitin synthetase and eventually leads to osmotic lysis of the cell
55,56

. Additionally, 

VT1161 (developed by Viamet Inc.) is also in Phase II and is related to the tetrazole 

class described above
57

. SCY078 (SCYNEXIS), also in Phase II trials, was developed as 

an orally available glucan synthase inhibitor that has been shown to reduce fungal load 

in a murine disseminated candidiasis model
58

. The development of these antifungals is 

encouraging since they target cellular components that are different from the common 

classes of antifungals. 

1.4 NRPS antifungal agents 

Non-ribosomal peptides are unique bioactive molecules that garner extensive 

interest. NRPs show a broad spectrum of biological activities and pharmaceutical 

applications. They can harbor antimicrobial, immunomodulator, or antitumor activities. 

Non-ribosomal synthesis of peptides occurs independently of messenger RNA. This 

method requires enzymes known as non-ribosomal peptide synthetases (NRPS). NRPS 

may work in conjunction with polyketide synthases (PKS). A unique property of this 

mechanism is that it can catalyze the production of peptides containing proteinogenic 

and non-proteinogenic amino acids. Some common examples of NRPs of high 

therapeutic importance are cyclosporine, an immunosuppressant drug, daptomycin, used 

in the treatment of certain infections caused by Gram-positive bacteria, aminoadipyl-

cysteinyl-valine (ACV)-tripeptide, which is the precursor of cephalosporin and 
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penicillin
59

 and of bleomycin
60

, which is used in the treatment of several cancers. 

Echinocandins are one of the most popular families of non-ribosomal antifungal peptides 

due to their prevalence and wide use. Gramicidin, a non-ribosomally synthesized 

antimicrobial compound has been shown to have activity against Candida species
61

. 

More recently, Cawoy et al reported the production of lipopeptide compounds in 

Bacillus subtilis that possessed bioactivity against fungal pathogens
62

. Pelgipeptin, a 

recently characterized antibacterial and antifungal compound produce by Paenibacillus 

elgii, is another non-ribosomal peptide with nine amino acids and a β-hydroxy fatty 

acid
63

. In addition to these, several antimicrobial, anti-tumor and immunosuppressive 

compounds that are non-ribosomally synthesized have been characterized and some, 

such as cyclosporine and daptomycin, are currently in clinical use. 

The NRPS-PKS process holds immense promise for the production of bioactive 

compounds with novel residues that are capable of targeting new regions of the fungal 

cell, potentially creating new classes of antifungal compounds. One such NRP with 

antifungal properties that appears to target a novel cellular component as compared to 

the existing classes of antifungals is occidiofungin, a glycolipopeptide produced by the 

soil bacterium, Burkholderia contaminans MS14
64

. 
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1.5 Occidiofungin 

Occidiofungin possesses antifungal properties against a host of fungal species 

which have been reported to have acquired resistance to antifungals such as azoles and 

echinocandins, making it an exciting alternative to currently available treatment options.  

Structure and biosynthesis of occidiofungin: 

The covalent structure of occidiofungin consists of eight amino acid residues. 

Occidiofungin is a cyclic compound having a base mass of 1,200 Da and composed of 

an asparagine in the first position, followed by a novel amino acid, a serine, a β-hydroxy 

tyrosine, a diaminobutyric acid (DABA), a glycine, another asparagine and ending with 

a serine. Several variants of the base compound occur naturally and the variations occur 

on the first residue (presence or absence of a hydroxyl group on the asparagine) and the 

fourth residue (presence or absence of a chlorine group on the β-hydroxy tyrosine). 

Further, the novel amino acid has a lipid chain that has a xylose attached to it.  A model 

biosynthesis pathway for the production of occidiofungin has been suggested and the 

enzymes involved in the production of the antifungal have been outlined.  

The gene cluster which was predicted to be responsible for the production of 

occidiofungin, the ocf cluster, was characterized and of the 16 ORFs that are present in 

the cluster, five (ORF5, 6, 7, 9 and 11) were predicted to be NRPS or NRPS-PKS. ORFs 

4, 12, 13, 14 and 15 are involved in the modification of occidiofungin. AmbR1 and 

AmbR2 regulate the production of occidiofungin
65

.     
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1.5.1 Mechanism of action and toxicity profile of occidiofungin 

Occidiofungin has a broad spectrum of activity against fungi. The activity of 

occidiofungin against several plant and animal pathogens was tested. Filamentous fungi 

such as Rhizoctonia solani, Aspergillus fumigatus and Aspergillus niger, were highly 

susceptible to occidiofungin
64

. The activity of occidiofungin against several yeast-like 

fungi was also tested. MICs done on these were according to CLSI standards. The wide 

range of activity of occidiofungin against several fungi suggests that the target of the 

antifungal is highly conserved. 

In order to determine its mode of action, occidiofungin was tested against several 

species of fungi. The inhibition of the enzyme 1,3-β-glucan synthase is the main 

pathway by which echinocandins target yeast cells and cause lysis. Fks1p/Fks2p are 

catalytic subunits of 1,3-β-glucan synthase. Fks1 mutants show reduced sensitivity to 

echinocandins. On treating Fks1 mutants of S. cerevisiae with occidiofungin, no 

reduction in sensitivity was observed. This indicates that occidiofungin does not have a 

similar mode of action as echinocandins. Further, addition of ergosterol to the growth 

medium is seen to reduce the sensitivity of yeast cells to amphotericin B. When DOPC 

vesicles containing 20% ergosterol were introduced in the treatment of C. glabrata with 

amphotericin B, there was a marked decrease in sensitivity. This was not observed when 

the same procedure was carried out during treatment of the cells with occidiofungin, 

indicating that occidiofungin may not act by binding to ergosterol. Therefore 

occidiofungin follows an entirely different mechanism of action from the other classes of 

antifungals
66

.  
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Previous studies done on cells of Rhizoctonia solani and Geotrichum candidum 

treated with sub lethal concentrations of occidiofungin display loss in cell wall thickness. 

Candida cells that were treated with a sub lethal dose of occidiofungin displayed a 

visible loss of mannoproteins. TEM images also showed the presence of visible 

inclusion bodies in these cells. Visualization of S. cerevisiae cells under the microscope 

showed intact cells, though they were reduced in size, indicating that occidiofungin does 

not lyse the target cell. This phenotype was indicative of the induction of apoptosis. 

Apoptotic assays, such as the TUNEL assay, detection of ROS production and 

phosphatidylserine externalization, done on S. cerevisiae and C. albicans cells following 

exposure to multiple concentrations of occidiofungin indicated the occurrence of 

apoptosis in the fungal cells
66

. 

In vitro toxicity studies of occidiofungin have been done using rat hepatoma 

(H4IIE) cell line and it was seen that greater than 90% cell viability was observed in all 

variables until a 5 μM concentration of occidiofungin was attained. Body weight 

analyses have been performed in female BALB/C mice and loss of less than 15% body 

weight was observed in mice treated with 5 mg/kg of occidiofungin in methylcellulose
67

. 

The loss observed was transient and rapidly recovered when drug challenge was 

removed. Further histopathology analyses have been performed on tissues from different 

organs following intravenous administration of occidiofungin at doses of 5mg/kg. 

Tubular necrosis was seen in kidney tissue and was seen to be repaired when the 

treatment was stopped. All other tissues were seen to be normal
68

. 
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The toxicity profile of occidiofungin along with its broad spectrum activity 

against several different kinds of fungi and a potentially unique molecular target makes 

it a promising drug to investigate and develop for treatment against pathogenic fungi that 

are resistant to other classes of antifungals. 

1.6 Conclusion 

This section provides a background for the necessity of developing novel 

antifungal agents and concludes with an introduction to occidiofungin. The sections that 

follow will discuss the merits of and challenges facing the development of occidiofungin 

as a viable treatment option for fungal infection. The following section will introduce 

and characterize one of the naturally synthesized variants of occidiofungin in an effort to 

understand the biosynthesis of the compound. 

 

 

 



 

17 

 

 

 

 

Figure 1.1. Structures of clinically used antifungal classes: a) Polyenes: Amphotericin 

B; b) Azoles: Imidazoles (left to right): Miconazole, Ketoconazole; Triazoles (left to 

right): Fluconazole, Itraconazole; c) Echinocandins (left to right): Caspofungin, 

Micafungin, ASP9726; d) Allylamines: Naftitine, Terbinafine; e) Nucleoside analog: 5-

Flucytosine 
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Figure 1.2: Antifungals in clinical development: BHBM, Sampagnine and Ilicicolin H 

are in pre-clinical development, Biafungin and VT-1129 are in Phase I trials, 

Nikkomycin Z, SCY078 and VT-1161 are in Phase II trials 
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2. THE OCFC GENE ENCODES A XYLOSYLTRANSFERASE FOR THE 

ANTIFUNGAL OCCIDIOFUNGIN PRODUCTION BY BURKHOLDERIA 

CONTAMINANS MS14
*
 

 

2.1 Overview 

Burkholderia contaminans strain MS14 produces the antifungal compound 

occidiofungin, which is responsible for significant antifungal activities against a broad 

range of plant and animal fungal pathogens. Occidiofungin is a cyclic glycolipopeptide 

made up of eight amino acids and one xylose. A 56-kb ocf gene cluster was determined 

to be essential for occidiofungin production. In this study the ocfC gene, which is located 

downstream of ocfD and upstream of ocfB gene in the ocf gene cluster, was examined. 

Antifungal activity of the ocfC gene mutant MS14KC1 was reduced against the indicator 

fungus Geotrichum candidum compared with the wild-type strain. Furthermore, the 

analysis of the protein sequence suggests that the ocfC gene encodes a 

glycosyltransferase. Biochemical analyses using NMR and Mass spectroscopy revealed 

that the ocfC mutant produced the occidiofungin without the xylose. Purified ocfC 

mutant MS14KC1 product had similar level of bioactivity as compared to the wild-type 

product. The revertant MS14KC1-R of the ocfC mutant produced the same antifungal 

activity level on plate assays and the same antifungal compound based on HPLC and 

                                                 

*
 Reprinted with permission from The Burkholderia contaminans MS14 ocfC Gene Encodes a 

Xylosyltransferase for Production of the Antifungal Occidiofungin by Akshaya Ravichandran, Kuan-Chih 

Chen, Adam Guerrero, Peng Deng, Sonya M. Baird, Leif Smith and Shi-En Lu. Applied and 

Environmental Microbiology 79:9. Copyright [2013] American Society for Microbiology. DOI: 

10.1128/AEM.00263-13 
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mass spectroscopy analysis as the wild type strain MS14. Collectively, the study 

demonstrates the ocfC gene encodes a glycosyltransferase responsible to add a xylose to 

the occidiofungin molecule and that the presence of the xylose is not important for 

antifungal activity against Candida species.  The finding provides a novel variant for 

future studies aimed at evaluating its use for inhibiting clinical and agricultural fungi and 

the finding could also simplify the chemical synthesis of occidiofungin variants. 

2.2 Introduction 

Members of the bacteria Burkholderia exist naturally in environments such as 

water, soil, and the rhizosphere of crop plants
69

. Some Burkholderia strains show 

striking efficacy in controlling fungal diseases of crops as biological control agents for 

plant disease management
70

. However, the use of Burkholderia strains is prohibited 

because of difficulty differentiating taxonomically these beneficial strains from the 

strains that are opportunistic pathogens associated with the human disease cystic 

fibrosis
71

. Understanding the molecular mechanisms of antifungal activities of the 

Burkholderia strains will provide important clues for the development of biologically 

based fungicides while eliminating potential health risks. 

Burkholderia contaminans strain MS14 showed a broad range of antifungal 

activity to plant and human fungal pathogens
64

. A glycopeptide, named occidiofungin, 

produced by strain MS14 is responsible for its antifungal activity
64,72

. It is a cyclic 

glycopeptide made up of eight amino acids and one xylose
65

.  Four variants, named as 

occidiofungin A, B, C and D have been identified from the MS14 strain culture
65

. 

Occidiofungin inhibits the growth of a broad range of fungal pathogens and it was 
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shown to inhibit the production of cell wall of Geotrichum candidum 
65

. The compounds 

have shown great potential for pharmaceutical and agricultural applications
67,73

. 

Genetic analysis revealed that a 56-kb ocf gene cluster is required for production of 

antifungal activity by Burkholderia contaminans strain MS14. Sixteen genes have been 

predicted in the ocf gene cluster, including the genes encoding nonribosomal peptide 

synthetases (ocfD, ocfE, ocfF, ocfH, and ocfJ), the bacterial LuxR regulatory proteins 

(ambR1 and ambR2), and an ATP-binding cassette (ocfA)
65

. Mutagenesis and sequence 

analysis revealed that these genes are associated with occidiofungin production by strain 

MS14. Functions of a few genes in the ocf gene cluster, such as ocfC, remain to be 

investigated.  Preliminary analysis showed the deduced protein of the ocfC gene shares a 

significant similarity to galactosyltransferases. We hypothesized that the ocfC gene 

codes for an enzyme to catalyze addition of xylose to the backbone peptide of 

occidiofungin. In this study, the ocfC gene was disrupted with an insertional mutation 

and effects of the mutation on occidiofungin production were evaluated.  Possible 

functions of the ocfC gene are discussed.  

2.3 Materials and methods 

2.3.1 Bacterial strains, plasmids and media  

Bacterial strains and plasmids used in this study are listed in Table 2.1. 

Escherichia coli JM109 (Promega, Madison, WI) was used for cloning and was cultured 

at 37°C on Luria-Bertani (LB) agar. Nutrient broth-yeast extract (NBY) agar media
74

 

were used to culture Burkholderia contaminans strain MS14 at 28°C. Potato dextrose 

agar (PDA) (Difco, Detroit, MI) was used for antifungal activity assays. Antibiotics 
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(Sigma Chemical Co., St. Louis, MO) were added to media at the following 

concentrations: ampicillin (100 µg/mL), kanamycin (100 µg/mL for Escherichia coli and 

300 µg/mL for the MS14 mutants) and trimethoprim (50 µg/mL). 

DNA isolation, manipulation and sequence analysis: The cetyl trimethyl 

ammonium bromide protocol
75

 (10) or Wizard
®
 Genomic DNA Purification kit 

(Promega Corporation, Madison, WI) was used for extraction of bacterial genomic 

DNA. Primers were synthesized by Integrated DNA Technologies Inc. (Coralville, IA) 

and Eurofins MWG Operon (Huntsville, AL). Plasmid extraction was done using the 

QIAprep
®
 Spin Miniprep kit (QIAGEN Inc., Valencia, CA). Wizard

®
 SV Gel and PCR 

Clean-Up System kit (Promega) was used to recover DNA fragments for cloning. 

Sequencing was sent to Eurofins MWG Operon. The evolutionary history of the putative 

OcfC was inferred using the Minimum Evolution method
76

. The evolutionary distances 

were computed using the Poisson correction method
77

. Phylogenetic analyses were 

conducted in MEGA4
78

.  

2.3.2 Mutagenesis of the ocfC gene  

Primers 6471R1649 (5’- GCCTACCTGCG CGTCTATCA) and 6471F137 (5’- 

CCATGGCGGCGATTTGCTTTGA) were designed in order to amplify the ocfC gene 

by polymerase chain reaction (PCR). The final concentrations of PCR reagents in the 50 

μL reaction were: MgCl2, 2 mM; dNTPs, 0.4mM; primers, 0.6mM each; Taq DNA 

polymerase, 0.75 units. The PCR cycling conditions were 4 min at 95°C, then 50 s at 

95°C, 50 s at 56°C and 2 min at 72°C for 30 cycles, followed by 8 min at 72°C. The 

PCR amplicon containing the ocfC gene with the flanking regions was cloned into the 



 

23 

 

vector pGEM-T Easy (Promega) to generate the plasmid pKC1. Plasmid pBSL15
79

 was 

partially digested with EcoRI and then self-ligated to remove the restriction 

endonuclease EcoRI digestion site as described previously
80

. A 1.3-kb PstI fragment of 

the plasmid pBSL15 lacking EcoRI site and carrying the terminatorless kanamycin 

cassette (the nptII gene fragment) was cloned into the ocfC gene of the plasmid pKC1 

using a PstI partial digestion strategy.  The resulting plasmid pGEM-T Easy-ocfC::nptII  

was named pKC2. The ocfC::nptII DNA fragment was introduced to the EcoRI site of 

the suicide vector pBR325
81

 for Burkholderia spp.
82

 to generate plasmid pKC3. Plasmid 

pKC3 was electroporated into competent cells of the wild type MS14, which was 

prepared using the 10% glycerol-washing protocol
83

, for marker exchange mutagenesis 

(C=25µF, 200Ω, v=1.8KV, and cuvette 1mm).  NBY media containing kanamycin 

(300µg/mL) were used for selection of the mutants. PCR amplification and sequencing 

were used for confirmation of double crossover mutagenesis. Plate bioassays were used 

to evaluate the production and biological activity of occidiofungin as described 

previously
84

. 

The intact ocfC gene was obtained by PCR for the complementary assays.  

Primers ocfC-compF (5’- CGGAA- TTCCATGTCAATTCGTTTCTG) and ocfC-compR 

(5’- TTAAGCTTCGCTTCGAGGTCAACGGT) were designed for PCR amplification 

of the functional ocfC gene. The purpose of these two primers is to add EcoRI and 

HindIII sites at the both end of PCR product. The 0.8 kb PCR product was inserted into 

the Burkholderia gene expression vector pMLS7 digested with EcoRI and HindIII, to 

generate pKC4. Plasmid pKC4 were electroporated into cells of the mutant MS14KC1. 
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NBY plates with trimethoprim were used to screen the colony with pMLS7
85

 which were 

confirmed by sequencing. Complementation experiments were done by the plate assay to 

examine the antifungal activity against G. candidum. 

2.3.3 Reversion of the ocfC mutant into its wild genotype  

To revert the ocfC mutant into its wild genotype, plasmid pDP12 was generated 

for marker exchanger gene replacement.  The 1.5 Kb EcoRI fragment of pKC1 was 

cloned into the EcoRI site of the suicide vector pBR325.  To obtain the revertants of the 

ocfC mutant MS14KC1, plasmid pDP12 was electroplated into MS14KC1 cells for 

marker exchange.  Transformed cells were cultured in NBY broth with shaking for 4 

hours. Bacterial colonies that grew on NBY supplemented with 25 µg/mL of tetracycline 

were used for further analysis. The colonies that were able to grow on the NBY plates 

supplemented with 100 µg/mL kanamycin but not 300 µg/mL were selected as 

candidates of the revertants.  The revertants were confirmed by PCR analysis as 

compared with the mutant MS14KC1 and the wild type strain MS14. Verified revertant 

MS14KC1-R was used for further analyses of occidiofungin production.     

Isolation of antifungal compound of the mutant MS14KC1 and MS14KC1-R: 

Isolation and purification of the occidiofungin variant produced by the ocfC mutant and 

its revertant were conducted as described previously
84

. In brief, the bacterial strains were 

incubated at 28
o
C for 7 days without shaking.  The cell free culture extract was 

precipitated using ammonium sulfate (AS) (50% w/v) on ice for 2 hours. The pellet was 

resuspended in 1 ml of 35% acetonitrile (ACN):water (v/v) and placed in a 1.5 ml 

microcentrifuge tube.  RP-HPLC was done using a 4.6 × 250 mm C18 column (Grace-
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Vydac, catalog 201TP54) on a Bio-Rad BioLogic F10 Duo Flow with Quad Tec UV-Vis 

Detector system.  

2.3.4 In vitro susceptibility testing  

Microdilution broth susceptibility testing was performed in triplicate according to 

the CLSI M27-A3 method (21) in RPMI 1640 [buffered to a pH of 7.0 with MOPS 

(morpholinepropanesulfonic acid)] growth medium.  100X stock solutions of 

occidiofungin were prepared in dimethyl sulfoxide (DMSO).  Minimum inhibitory 

concentration (MIC) endpoints for occidiofungin were determined by visual inspection 

and were based on the wells that had no visible growth (an optically clear well) after 24 

hours of incubation.  DMSO containing no antifungal agent was used as a negative 

control.  

2.3.5 NMR spectroscopy  

The same procedure for NMR analysis was used as described previously
65

. 

Occidiofungin was dissolved in deuterated dimethyl sulfoxide (DMSO-d6) and the NMR 

data were collected on a Bruker Avance DRX spectrometer with a CryoProbe, operating 

at a proton frequency of 600 MHz. The 
1
H resonances were assigned according to 

standard methods
86

 using COSY, TOCSY NOESY and 
13

C-HSQC experiments.  NMR 

experiments were collected at 25°C. The TOCSY experiment was acquired with a 60 ms 

mixing time using the Bruker DIPSI-2 spinlock sequence. The NOESY experiment was 

acquired with 400 ms mixing times. Phase sensitive indirect detection for NOESY, 

TOCSY, and COSY experiments was achieved using the standard Bruker pulse 

sequences. Peaks were assigned using NMRView
87

.  
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Molecular weight of the occidiofungin variant produced by MS14KC1 was 

measured as described previously
64,84

. Matrix-Assisted Laser Desorption/Ionization 

Mass Spectrometry — Time of Flight (MALDI-TOF, Shimadzu/Kratos) was used to 

determine the mass of peaks. The antifungal HPLC fraction was evaporated to dryness 

and was dissolved in 100 µL of 35% acetonitrile containing 0.1% trifluoroacetic acid. 

From these resuspended fractions, 0.5 µL was mixed with 0.5 µL of α-cyano-4-

hydroxycinnamic acid matrix (6 mg/ml in 50% acetonitrile containing 0.1% 

trifluoroacetic acid) and dried on the target plate.  

2.4 Results 

2.4.1 Sequence analysis of the ocfC gene  

The ocfC gene is located downstream of the ocfD gene and upstream of the ocfB 

gene in the ocf gene cluster (GenBank accession number: EU938698)
65

.  No significant 

promoter region or terminator was identified from the 5’ and 3’ termini of the ocfC gene, 

suggesting the ocfC gene may be organized as a transcriptional operon with the 

downstream and upstream genes.  The 657 base-paired ocfC gene was predicted to code 

for a 218-amino acid putative protein which was predicted to be the glycosyltransferase 

that catalyzes the transfer of a xylose to the C-7 site of occidiofungin
65

. Sequence 

analysis showed this putative protein encoded by the ocfC gene shared 94.0 % identity 

with the putative glycosyltransferase (Bamb_6471) of Burkholderia ambifaria AMMD 

(GenBank accession number: NC_008392). BLAST search showed there is one 

conserved domain from amino acid 13 to 89 on the OcfC protein, which is the signature 

of the Glycosyltransferase family 25
88

. According to the phylogenetic analysis, the OcfC 
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putative protein of Burkholderia contaminans MS14 is clustered with Bamb_6471 of 

Burkholderia ambifaria AMMD with a bootstrap value of 100 and both were predicted 

to be members of the glycosyltransferase family 25. The Xcc-b100_0220 protein for 

Xanthomonas campestris pv. campestris B100
89

 and the PXO_04234 protein of 

Xanthomonas oryzae pv. oryzae PXO99A
90

 shared 55% of similarity to OcfC. 

2.4.2 Site-directed mutagenesis of the ocfC gene  

A 1.5-kb PCR product was amplified using the primers 6471R1649 and 

6471F137 and confirmed by sequencing to be the ocfC gene with its flanking regions. 

Sequencing further confirmed the plasmid pKC1 identity, which is the vector pGEM-T 

Easy carrying the ocfC gene. An insertional mutation was obtained by insertion of an 

nptII cassette, resulting in plasmid pKC2. The plasmid pKC3 was obtained by cloning 

the nptII- disrupted ocfC gene into pBR325. Introduction of pKC3 into cells of strain 

MS14 resulted in generations of the ocfC mutants MS14KC1, which was confirmed by 

PCR and sequencing. 

2.4.3 Effect of mutation in ocfC on antifungal activity  

Mutant MS14KC1 with an insertion in the nptII gene cassette was evaluated for 

occidiofungin production by inhibitory activities against the indicator fungus G. 

candidum (Figure 2.1). The ability of MS14KC1 to inhibit the growth of the indicator 

fungus G. candidum remained with a reduced inhibitory zone (0.82 ± 0.02 cm). In 

contrast, the antifungal activity for wild-type strain MS14 was 1.42 ± 0.06 cm in radius. 

The disruption of ocfC gene caused a 42% decrease in the antifungal activity against G. 

candidum (Figure 2.1). Based on the Fisher’s least significant difference (LSD) test, this 
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was a significant difference (α < 0.05). As expected, the revertant strain MS14KC1-R 

produced the wild-type level of antifungal activity against G. candidum. As a negative 

control, the mutant MS14MT18, in which the biosynthetase gene ocfE is knocked out by 

transposon
65,84

, did not produce measurable antifungal activity.  These results revealed 

the importance of ocfC gene for the production of the antifungal activity of strain MS14. 

Interestingly, no significant restoration of antifungal activity was observed when the 

mutant MS14KC1 harboring the intact ocf gene under the control of promoter plac in the 

broad-host range vector pMSL7.  A significant reduction of occidiofungin production by 

the ocfC mutant was observed compared to the wild type strain. The average yield per 

liter of the wild-type and ocfC mutant product was approximately 350 µg/L (average 

taken from 9 liters) and 47 µg/L (average taken from 10.5 liters), respectively. The seven 

fold reduction in yield indicates that the attachment of the xylose might be important for 

biosynthesis or transport.   

NMR analysis reveals a loss of the xylose from the wild-type product in the ocfC 

mutant (Figure 2.2A and 2.2B). Comparison of the TOCSY spectrum of the product 

from the ocfC mutant to the wild-type product reveals the loss of the proton chemical 

shifts for the xylose sugar. MALDI-TOF analysis also reveals the loss of the xylose 

sugar. The product of the ocfC mutant has a base mass of 1068.73 Da (Figure 2.2C), 

which correlates to the loss of a pentose sugar (149 Da) plus the addition of a hydroxyl 

group remaining on the antifungal compound. The NMR spectrum of occidiofungin has 

multiple spin systems for each amino acid due to different conformers on the NMR time 

scale. Interestingly, the spectrum is complex for a peptide that is only eight amino acids 
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(Figure 2.3A).  The ocfC mutant product has a far less complex spectrum than the wild 

type (Figure 2.3B and Table 2.2). This is due to the loss of the bulky xylose sugar which 

presumably allows the compound to interchange between conformations more freely. 

This is reflected in the loss of conformational families in the NMR spectra for Asn1, 

BHY4 Gly6 and Asn7 (Figure 2.3C). The conformational families that are missing in the 

ocfC mutant have been highlighted green in the overlays of the wild-type and mutant 

spectrum. Cyclization of the peptide is carried out by two cyclase thioesterases that form 

two distinct conformational families of occidiofungin. These conformational families are 

visible in the ocfC mutant spectrum, and are easily observed by the presence of two 

different amide proton frequencies for Asn1 and NAA2. Therefore, the loss of the xylose 

sugar does not affect the formation of these two conformational groups of the antifungal 

compound.  

2.4.4 Effects of the ocfC mutation on production and antifungal activity of occidiofungin 

Occidiofungin products of the wild-type and the ocfC mutant MS14KC1 were 

purified by RP-HPLC. The ocfC mutant product eluted with a lower percentage of water 

(46%) than the wild-type product (49%) (Figure 2.4).  Additionally, the ocfC mutant 

product did not elute as a doublet peak as observed in the wild-type fraction.  

Presumably, the observed doublet peak in the wild-type fraction is attributed to the 

presence of the xylose and that its presence contributes to conformational variants that 

have slightly different retention times. NMR analyses also revealed the loss of 

conformers (Figure 2.3).  As expected, product isolated from ocfC revertant strain 
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(MS14 KC1-R) has the same RP-HPLC retention time and mass as the wild-type product 

(Figure 2.5).  

MIC assay was conducted according to the CLSI M27-A3 method to determine 

whether the loss in activity in the G. candidum overlay assay was attributed to the loss of 

the xylose or a reduction in production. Comparing the purified wild-type and the ocfC 

mutant product on several strains of the genus Candida, G. candidum and 

Saccharomyces cerevisiae provided a quantitative assessment of the bioactivity of the 

mutant product. The results are listed in Table 2.2. The ocfC mutant product essentially 

had the same antifungal activity as the wild-type product in the in vitro assay. 

Presumably, the addition of the xylose may help promote solubility under normal 

environmental conditions. The RP-HPLC chromatograms do reveal that the ocfC mutant 

product had a longer retention time with an increased percentage of the organic solvent 

acetonitrile (Figure 2.4).  

2.5 Discussion 

2.5.1 The ocfC gene encodes a member of the GT25 family of glycosyltransferases   

Glycosyltransferases are identified from various organisms and classified based 

on amino acid sequence similarity
91

. The GT25 family includes the known members of 

beta- 1,4-galactosyltransferase and lipopolysaccharide biosynthesis protein
92

. For 

Haemophilus influenza, glycosyltransferase LpsA is responsible for the addition of a 

hexose which can be either glucose or galactose
93

. Previous GC-MS analysis has showed 

that a xylose sugar is attached to the antifungal compound occidiofungin
65

. In this study, 

we hypothesized that the ocfC gene codes for glycosyltransferase, which was predicted 
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to add xylose to the oligopeptide backbone to form occidiofungin.  This is proved by the 

sequence analysis showing that this putative protein encoded by the ocfC gene shared 

94.0 % identity to glycosyltransferase of B. ambifaria AMMD in the phylogenetic tree 

generated. The known activities of the GT25 family include beta-1, 4- 

galactosyltransferase, beta-1, 3- glucosyltransferase, beta-1, 2 – glucosyltransferase and 

beta-1, 2- galactosyltransferase
94

. This study is the first evidence that xylosyltransferase 

is found in GT25 family. This novel glycosyltransferase has expanded the function 

categories of this family. Based on the evidence of this study, glycosyltransferase 

encoded by the ocfC gene should be named xylosyltransferase. 

2.5.2 The ocfC gene is important for the production of occidiofungin 

  The ocfC mutant strain MS14KC1 has approximately 42% less inhibitory activity 

to G. candidum than the wild-type strain and the occidiofungin yield of the mutant was 

decreased significantly compared with the wild-type strain.  The revertant strain 

MS14KC1-R, in which the ocfC::nptII DNA fragment was replaced with the wild-type 

ocfC gene, restored the wild-type level of antifungal activity.  More  importantly, the 

function of the ocfC gene to add xylose to the occidiofungin molecule was further 

verified by RP-HPLC and MALDI-TOF analyses. The results further confirmed the role 

of ocfC gene in occidiofungin biosynthesis. The broad-host range vector pMLS7 was 

successfully used to complement the phenotype of the mutant MS14GG44 to that of the 

wild type strain B. contaminans MS14
80

. Surprisingly, like other studies
95

, a functional 

ocfC gene did not fully restore occidiofungin production of the mutant MS14KC1. The 

downstream genes of ocfC include the ABC transporter gene (ocfB), the hypothetical 
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gene (ocfA) and the regulator gene (ambR2), which have the same transcriptional 

orientation
65

. However, the mutation was made by a insertion of a terminatorless nptII 

gene
79

, which should not have any polar impacts on the expression of the downstream 

genes
96

. The phenotype of the mutant MS14KC1 was resulted from the disruption of the 

targeted gene ocfC. It is speculated that the accurate balance of gene expression based on 

the correct genomic position and gene dosage of ocfC may be critical for its function.  

The derivative of occidiofungin produced by the ocfC mutant MS14KC1 lacks 

xylose, which is confirmed by both NMR and MALDI-MS analysis. As noted in the 

TOCSY fingerprint analyses, the xylose-free occidiofungin has a far less complex 

spectrum than the wild type occidiofungin, which may be due to the loss of the sugar 

which allows the compound to interchange between conformations more freely. The two 

distinct conformational families of occidiofungin
65

 carried by two cyclase thioesterases 

have been observed in the xylose-free occidiofungin, which suggests that the xylose 

sugar is not an important component for the cyclization step in occidiofungin production.       

The mechanism by which the sugar xylose affects the production of 

occidiofungin remains to be investigated. In this study, a mutation of the ocfC gene 

results in significant reduction of occidiofungin production based on the standard plate 

bioassays and the yield of the xylose-free occidiofungin was decreased in the ocfC 

mutant. However, the purified xylose-free occidiofungin, which is produced by the 

mutant MS14KC1, showed similar antifungal activity as the wild-type occidiofungin 

product. Yethon et al. found that mutation of the waaG gene, a glycosyltransferase gene 

for liposaccharide (LPS), destabilized the outer membrane of Escherichia coli
97

. It was 
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shown that this glycosyltransferase gene, waaG, played an important role in stabilization 

of the lipopolysaccharide core protein of the outer cell membrane. We hypothesize that 

xylose in occidiofungin may be associated with efficient secretion or for the 

biosynthesis.  However, sonication of the bacterial pellet did not improve the yield of the 

occidiofungin, which indicates the produced occidiofungin may not be significantly 

accumulated in bacterial cells. It is possible that the lower yield is attributed to the 

insertion of a terminatorless nptII gene, lowering the production of the downstream gene 

products. This is not likely given the number of reports that have shown that the cassette 

is non polar. Collectively, there is no significant impact of xylose on the peptide 

backbone and no significant effect of xylose on antifungal activity of purified 

occidiofungin. More investigations are needed to understand the effect of xylose on 

occidiofungin production.  

2.6 Conclusion 

In conclusion, this study demonstrated that the ocfC gene encoding 

glycosyltransferase is responsible for the addition of xylose to the occidiofungin 

molecule. This discovery has provided important genetic and enzymatic clues for 

engineering new chemical variants of occidiofungin that may have applications in 

treating or preventing fungal infections in plants and animals.  
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Table 2.1: Bacterial strains and plasmids 

 

Strains or 

plasmids Relevant Characteristics* 

Sources or 

reference 

Strains   

  E. coli JM109 recA1, endA1, gyrA96, thi,hsdR17,  

supE44, relA1, Δ(lac-proAB)/F'[traD26,  

rpoAB+, laclq, lacZΔM15] 

Promega 

  B. contaminans   

     MS14 Wild type strain (19) 

     MS14KC1 ocfC::nptII derivative of MS14; km
r
 This study 

     MS14MT18 ocfE::Tn5 derivative of MS14; km
r
 (6) 

     MS14KC1-R Revertant strain of the ocfC::nptII mutant This study 

Plasmids   

     pBR325 Cloning vector; Cm
r
, Tc

r
, Ap

r
 (16) 

     pMLS7 Expression vector of Burkholderia; Tp
r
 (20) 

     pGEM-T 

Easy Cloning vector; Ap
r
 Promega 

     pBSL15 Kanamycin resistance gene cassette; Km
r
 (14) 

     pKC1 pGEM-T Easy carrying 1.5-kb PCR 

product containing the intact ocfC gene; 

Ap
r
 

This study 

     pKC2 pGEM-T Easy containing 2.8-kb ocfC 

and nptII; Km
r
 

This study 

     pKC3 pBR325 carrying 2.8-kb EcoRI fragment 

containing the intact ocfC gene; Km
r
, Tc

r
, 

Ap
r
 

This study 

     pKC4 pMLS7 carrying 1.5-kb 1.5-kb PCR 

product containing the intact ocfC gene; 

Cm
r
, Tp

r
 

This study 

     pDP12 pBR325 carrying 1.5-kb EcoRI fragment 

of pKC1  containing the intact ocfC gene; 

Km
r
, Tc

r
, Ap

r
 

This study 

*Km
r
, kanamycin resistance; Ap

r
, ampicillin resistance; Tp

r
, trimethoprim 

resistance; Cm
r
, chloramphenicol resistance 
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Table 2.2: Chemical shift values for the ocfC mutant product 

 

Amino 

acid 
H

N 
H

α 
H

β 
Other proton 

Asn1 
8.13

a
 4.53 [52.91] 2.58, 2.36 

[40.09] 

γ-NH2: 7.23, 6.84 

BHN1 
7.95 4.62 [58.79] 4.03 [74.94] γ-NH2: 7.20, 6.77, β-

OH: 5.71  

NAA2 

7.49 

 

7.35 

 

 

 C2:CH2- 2.38 [39.98], 

C3:CH- 4.14 [47.49], 

C4:CH2- 1.77 [41.32] 

C2:CH2- 2.32 [43.78], 

C3:CH- 4.19 [47.49], 

C4:CH2- 1.39 [41.32] 

Ser3 
8.13 

8.18 

4.21 [58.90] 

4.18 [58.81] 

 β-OH: 5.08 

β-OH:5.08 

BHY4 8.02 

 

 

4.18 [63.07] 5.08 [73.89] β-OH: 5.70 

 

DABA5 
7.71 4.39 [53.86] 

 

2.11, 1.91 

[32.78] 

 

γ-H: 2.92 [32.78] NH2: 

7.74 

Gly6 

7.93 

7.85 

3.81, 3.64 

[45.11] 

3.87, 3.65 

[45.11] 

  

Asn7 

8.36 

8.30 

4.58 [58.71] 

4.56 [52.91] 

2.63, 2.41 

[40.09] 

2.63, 2.40 

[40.09] 

γ-NH2: 7.38, 6.92 

γ-NH2: 7.38, 6.92 

Ser 8 7.81 4.20 [58.70] 3.62 [63.07] β-OH: 5.69 

a
Proton chemical shift values are from a TOCSY and NOESY experiments. 

Chemical shifts in brackets are 
13

C values from the HSQC experiment. 
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Table 2.3: Antifungal activities of the ocfC mutant product 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strain 

Antifungal (μg/ml) 

Wild-type ocfC mutant 

C. tropicalis 66029 0.5 0.5 

C. glabrata 66032 0.5 0.5 

C. albicans 66027 1.0 1.0 

C. albicans LL 0.5 0.5 

C. albicans  TE 0.5 0.5 

C. parapsilosis 90018 1.0 1.0 

C. glabrata TE 0.5 0.25 

G. candidum 0.5 0.5 

S. cerevisiae BY4741 0.06 0.06 
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Figure 2.1: Plates of bioassays for antifungal activities of Burkholderia contaminans 

strains (A: The wild type strain MS14; B: MS14KC1, ocfC::nptII; C: MS14KC1-R, a 

revertant of the ocfC mutant; and D: MS14MT18, ocfE::Tn5) against indicator fungus 

Geotrichum candidum. Potato dextrose agar plates were inoculated with each strain (5 µl 

containing ~10
6
 cells) and the inoculated plates were incubated at 28

o
C for 4 days. The 

plates were oversprayed with spore suspensions of the indicator fungus G. candidum Km 

and further incubated at 28
o
C overnight. 
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Figure 2.2: Absence of Xylose in the ocfC mutant product.  A. Region of the TOCSY 

spectrum showing the proton chemical shifts of the xylose in the wild-type sample.  B.  

Region of the TOCSY spectrum showing the absence of the xylose in the ocfC mutant 

product sample. C. MALDI-TOF spectrum of the ocfC mutant product showing a base 

mass of 1068 Da, which is a loss of 132 Da compared to the wild-type product mass. 

 

 

  



 

39 

 

 

Figure 2.3: TOCSY fingerprint region (NH correlations). A. NH correlations in the 

wild-type sample.  B. NH correlations in the ocfC mutant sample. C. Overlay of the NH 

correlations found in the wild-type and mutant samples. NH correlations that are not 

present in the ocfC mutant sample are colored green. 
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Figure 2.4: Overlaid RP-HPLC chromatogram obtained from the extracts of both the 

wild-type strain MS14 (black) and the ocfC mutant (grey). 
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Figure 2.5: Product analysis of the ocfC mutant revertant MS14 KC1-R. A. Overlaid 

RP-HPLC chromatogram obtained from the extracts of the wild-type strain MS14 (grey 

dashed line), the ocfC mutant (grey) MS14 KC1, and ocfC revertant (black) MS14 KC1-

R.  B. MALDI-TOF spectrum of the ocfC revertant MS14 KC1-R product showing a 

base mass of 1200 Da and the absence of the ocfC mutant MS14 RC1 base mass of 1068 

Da. 
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3. THE PRESENCE OF TWO CYCLASE THIOESTERASES EXPANDS THE 

CONFORMATIONAL FREEDOM OF THE CYCLIC PEPTIDE 

OCCIDIOFUNGIN
*
 

 

3.1 Overview 

Occidiofungin is a cyclic nonribosomally synthesized antifungal peptide with 

submicromolar activity produced by Gram-negative bacterium Burkholderia 

contaminans. The biosynthetic gene cluster was confirmed to contain two cyclase 

thioesterases. NMR analysis revealed that the presence of both thioesterases is used to 

increase the conformational repertoire of the cyclic peptide. The loss of the OcfN cyclic 

thioesterase by mutagenesis results in a reduction of conformational variants and an 

appreciable decrease in bioactivity against Candida species. Presumably, the presence of 

both asparagine and β-hydroxyasparagine variants coordinate the enzymatic function of 

both of the cyclase thioesterases. OcfN has presumably evolved to be part of the 

biosynthetic gene cluster due to its ability to produce structural variants that enhance 

antifungal activity against some fungi. The enhancement of the antifungal activity from 

the incorporation of an additional cyclase thioesterase into the biosynthetic gene cluster 

of occidiofungin supports the need to explore new conformational variants of other 

therapeutic or potentially therapeutic cyclic peptides. 

                                                 

*
 Reprinted with permission from The Presence of Two Cyclase Thioesterases Expands the 

Conformational Freedom of the Cyclic Peptide Occidiofungin by Akshaya Ravichandran, Ganyu Gu, 

Jerome Escano, Shi-En Lu, and Leif Smith. Journal of Natural Products 76:2. Copyright [2013] American 

Chemical Society. DOI: 10.1021/np3005503 
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3.2 Introduction 

Nonribosomal peptide synthetases (NRPSs) produce a wide array of small and 

structurally complex peptides that have therapeutic potential. The system enables the 

incorporation of nonproteinogenic amino acids into the polypeptide. Polyketide 

synthetases (PKSs) are a family of enzymes or enzyme complexes that produce 

polyketides. Integration of PKSs into the NRPSs system further increases the variety of 

polypeptides that can be produced by these systems. Recent studies are aimed at 

exploiting nonribosomal peptide synthetases (NRPSs) for producing peptide libraries 

that can be screened for therapeutic applications.
98-105

  

Unlike linear peptides, cyclic peptides are restrained to fewer conformations that 

facilitate their interaction with their molecular target.
106-114

 These structural constraints 

provide resistance to proteases, extreme pH, and temperature.
106,115

 These attributes 

make them one of the most promising scaffolds for pharmacophores.  Classical total 

synthesis of peptides by solid phase or solution phase peptide synthesis followed by 

subsequent cyclization reactions requires the addition and removal of protecting groups 

at the right stages to drive the cyclization among the correct residues.
105

 Even with these 

considerations, proper cyclization is hindered by intermolecular interactions and 

entropically disfavored pre-cyclization conformations resulting in a vast mixture of 

compounds or low yields. Microorganisms ensure the formation of a functional cyclic 

peptide conformation by enzymatically catalyzing the cyclization and release of the 

peptide with regioselectivity using a cyclase thioesterase.
98,104

 The cyclase thioesterase is 
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often located at the C-terminal end of the last NRPS involved in the synthesis of the 

peptide and is referred to as the TE domain.  

The TE domain can hydrolyze the bound peptide as a linear peptide or it can 

catalyze an intramolecular reaction resulting in the formation of a cyclic peptide. At 

present, little is known about the cyclization mechanism of peptides. The crystal 

structure of the surfactin peptide cyclase provided the first basic understanding of its 

mechanism of action.
116,117

 The peptidyl chain bound to 4-phosphopantetheine cofactor 

(ppan) that is attached to the thiolation (T)-domain is transferred to a serine, which is 

part of a catalytic triad in the adjacent TE domain. Once the peptide is transferred to the 

TE domain, the cyclase binding pocket enables proper orientation and cyclization of the 

peptide substrate. The enzyme was found to share structural homology to the α,β-

hydrolase family. The lack of water in the binding cleft of the cyclase, which prevents 

hydrolysis, is the significant alteration from the hydrolase family that gives the cyclase 

thioesterase its ability to form cyclic peptides.   

Occidiofungin is a broad spectrum nonribosomally synthesized cyclic antifungal 

peptide that has submicro/nanomolar activity and low toxicity.
64,115,118-121

 ESI-MS and 

NMR data revealed the existence of four structural variants of the antifungal peptide 

occidiofungin produced by the soil bacterium Burkholderia contaminans MS14, having 

a mass [M + 1] of 1,200.39, 1216.41, 1234.17, and 1250.41 Da.
118

 The mass differences 

correspond to the addition of oxygen to Asparagine (Asn1) forming β-

hydroxyasparagine (BHN1) and/or addition of chlorine to β-hydroxytyrosine (BHY4) 

forming chlor-BHY4.
118

 NMR data sets and amino acid analysis revealed that 
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occidiofungin is produced via a hybrid PK-NRPS system and that the antifungal 

compound is composed of eight amino acids (Figure 3.1). Using NRPS-PKS web-based 

software and interProScan software in EMBL-EBI, predicted epimerase domains were 

identified in the NRPS modules for BHY4, 2,4-diaminobutyric acid (DABA5), and 

Ser8.
118

 The peptide is predicted to have L-Asn1(BHN1), L-Ser3, D-BHT4, D-DABA5, 

L-Asn7, and D-Ser8. An interesting feature in the biosynthetic pathway of occidiofungin 

is the presence of two putative thioesterases. One is present as an independently 

expressed thioesterase, OcfN, and the other is a C-terminal TE domain of OcfD.  We set 

out to gain a better understanding of the role of the two putative thioesterases in the 

biosynthetic gene cluster of occidiofungin.  

We have focused our study on the last step in the formation of the cyclic NRP 

occidiofungin.
118

 Here we conclusively show that the biosynthesis utilizes two distinct 

cyclase thioesterases to expand the formation of conformers and that the evolutionary 

integration of an additional cyclase thioesterase improves its bioactivity against Candida 

species. Restrictions in the conformational freedom of a peptide may facilitate the 

interaction of the compound with its molecular target, but there is also an inherent 

evolutionary constraint using an enzymatic cyclization approach. Our results suggest that 

when the molecular target is associated with a broad spectrum of microorganisms, the 

constrained conformers of a cyclic peptide may not always provide the best activity 

against all organisms. Our study supports the need to investigate new stereoisomers of 

antimicrobial cyclic peptides in an effort to identify the most effective therapeutic 
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compound. In addition, our study provides further understanding of the function of 

cyclase thioesterases. 

3.3 Materials and methods 

3.3.1 Materials   

Occidiofungin produced by both the wild type strain MS14 and the ocfN mutant 

MS14GG88 were purified as previously described for the wild-type sample.
119

  

Chemicals were purchased from Sigma-Aldrich (St. Louis, MO) and were the highest 

grade, unless otherwise stated. Media were purchased from Fisher Scientific, enzymes 

were purchased from New England BioLabs (Ipswich, MA), and primers were 

purchased from Integrated DNA Technologies (Coralville, IA) unless otherwise stated. 

Candida strains used were purchased from the ATCC biological resource center and 

were a gift from Thomas Edlind (Drexel University College of Medicine). 

3.3.2 Site directed mutagenesis   

A nonpolar mutation was constructed in the open reading frame of wild-type 

ocfN by the insertion of a kanamycin resistance gene, nptII.
79

  To mutate ocfN, a 1-kb 

fragment containing ocfN was obtained by PCR using primers MocfNF (5'-

CGCCACCCGTTACGAGGATTC) and MocfNR (5'-ACGCGTCCCCTCTTCCTACG). 

The 1-kb PCR product was cloned into the pGEM-T Easy Vector System I (Promega 

Corporation, Madison, WI) resulting in plasmid pGG30.  The nptII gene was inserted 

into the cloned ocfN at SmaI, generating plasmid pGG31.  The ~2-kb EcoRI fragment of 

pGG31 harboring the ocfN gene disrupted by insertion of nptII was cloned into 

pBR325
81

 at the EcoRI site to generate pGG32.  Mutagenesis of the ocfN gene was 
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conducted via a marker exchange procedure as described previously,
122

 to generate the 

mutant MS14GG88.  PCR analysis and sequencing were used to verify the double 

crossover mutants.  Production and purification of the antifungal were done as 

previously described.
119

   

3.3.3 NMR spectroscopy   

A 2 mM sample of ocfN thioesterase mutant fraction of occidiofungin was 

prepared in DMSO-d6 (Cambridge Isotopes) and data were collected as previously 

described for the wild-type fraction.
118

 The NMR data were collected on a Bruker 

Advance DRX spectrometer, equipped with a CryoProbe, operating at 600 MHz. The 
1
H 

NMR resonances were assigned according to standard methods
123

 using COSY, TOCSY, 

NOESY and HSQC experiments.  NMR data were collected at 25°C. The carrier 

frequency was centered on the residual water resonance (3.33 ppm), which were 

suppressed minimally using standard presaturation methods. A 2.0 s relaxation delay 

was used between scans. The TOCSY experiment was acquired with a 60 ms mixing 

time using the Bruker DIPSI-2 spinlock sequence. The NOESY experiment was 

acquired with 400 ms mixing time. The parameters for collecting the HSQC spectrum 

were optimized to observe aliphatic and aromatic CH groups. The sweep width for the 

TOCSY and NOESY experiments was 11.35 ppm in both dimensions. The sweep widths 

for the HSQC experiments were 11.35 ppm in the proton dimensions and 0 and 85 ppm 

for the carbon dimension. 2D data were collected with 2048 complex points in the 

acquisition dimension and 256 complex points for the indirect dimensions, except for the 

HSQC which was collected with 2048 and 128 complex points in the direct and indirect 
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dimension, respectively. Phase sensitive indirect detection for NOESY, TOCSY, and 

COSY experiments was achieved using the standard Bruker pulse sequences. 
1
H NMR 

chemical shifts were referenced to the residual water peak (3.33 ppm). Data were 

processed with nmrPipe
124

 by first removing the residual water signal by deconvolution, 

multiplying the data in both dimensions by a squared sinebell function with 45 or 60 

degree shifts (for the 
1
H NMR dimension of HSQC), zerofilling once, Fourier 

transformation, and baseline correction. Data were analyzed with the interactive 

computer program NMRView.
125

 1D NMR temperature titrations were collected on the 

wild type and mutant peptides, using a Bruker AVANCE III HD 600 MHz spectrometer 

equipped with a cryoprobe.  Eight scans were collected in each 1D experiment, using 

32K points, at 298 K.  The experiments were repeated using higher temperatures for 

both samples in 5 degrees K increments, up to a temperature of 323 K.  2D TOCSY 

spectra were collected at 323 K, using a mixing time of 60 milliseconds.  Eight scans 

and 256 indirect points were used for both the wild type and mutant peptides. The 2D 

spectra were processed using NMRPipe, with 45 degree sinebell squared shifts in both 

dimensions. 

3.3.4 Mass spectrometry  

The wild-type occidiofungin and the ocfN mutant sample (10 µg) were 

evaporated to dryness in a Speed Vac Concentrator (ThermoScientific, San Jose, CA) 

and the residue was taken up in 50 µL MeOH and analyzed by direct infusion at 3 

µL/minutes into an LCQ DecaXP (ThermoScientific, San Jose, CA).   Data were 

acquired over a mass range of m/z 200 to 2000.   
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Microdilution broth susceptibility testing was performed in triplicate according to 

the CLSI M27-A3 method in RPMI 1640 [buffered to a pH of 7.0 with MOPS 

(morpholinepropanesulfonic acid)] growth medium.  100X stock solutions of 

occidiofungin were prepared in DMSO.  MIC endpoints for occidiofungin were 

determined by visual inspection and were based on the wells that had no visible growth 

(an optically clear well) after 24 hours of incubation.  DMSO containing no antifungal 

agent was used as a negative control. Colony forming units (CFUs) were determined in 

triplicate by plating 100 µL from the MIC wells onto a Yeast Peptone Dextrose (YPD) 

plate as well as plating 100 µL from 10-fold serial dilutions of the cell suspension in 

Yeast Peptone Dextrose (YPD) Broth. Colony counts were performed and reported as 

CFUs/mL. Time-kill experiments were performed as previously reported.
115

 C. glabrata 

(ATCC 66032) colonies on 24-h-old YPD plates were suspended in 9 mL of sterile H2O. 

The density was adjusted to a 0.5 McFarland standard and was diluted 10-fold with 

RPMI 1640 medium to a final volume of 10 mL containing a final concentration of 2, 1, 

0.5 and 0 µg/mL of occidiofungin from wild type strain MS14 and the ocfN mutant 

MS14GG88. The cultures were incubated at 35°C with agitation. Samples were drawn, 

serially diluted, and plated on YPD medium for colony counts. 

3.4 Results 

3.4.1 Proportion of occidiofungin variants in the sample  

The C-terminal TE domain of OcfD and the OcfN cyclase thioesterase in the 

occidiofungin biosynthetic gene cluster are both predicted to be involved in the 

termination of synthesis and formation of the cyclic peptide. Given that the N-terminal 
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of the linear peptide is an Asn or a BHN, we hypothesized that each thioesterase was 

required for cyclization of the Asn1 and BHN1 variants. The Asn1 and BHN1 variants 

of occidiofungin are not separable by RP-HPLC, thus, both variants are present in the 

purified fraction (Figure 3.2). The final RP-HPLC step in the purification process reveals 

the presence of three peaks. Occidiofungin samples elute as a double peak before the 

third peak. Occidiofungin derived from the wild type strain MS14 and the ocfN mutant 

MS14GG88 have the same chromatographic profile as observed in the last purification 

step. Occidiofungin peaks were confirmed by MALDI-TOF and bioassays. It is 

important to note that the presence of the doublet peak is not associated with the 

presence of Asn1 or BHN1. Each peak of the double peak contains both the Asn1 and 

BHN1 variants.  

The relative proportion of the Asn1 and BHN1 variants could not be directly 

compared, because direct measurement of the Asn1 peak intensities could not be done 

due to the peaks overlapping with Asn7. The relative proportion of the Asn1 and BHN1 

variants in the wild-type fraction was determined by measuring the 
13

C NMR HSQC Ha-

Ca cross peak intensities of each BHY4 peak in the data set,
126,127

 given that each of the 

BHY4 peaks could be attributed to either the Asn1 or BHN1 variant. Based on the Ha-

Ca cross peak intensities for BHY4 in the HSQC spectrum, the Asn1 and BHN1 variants 

were determined to be approximately 36 and 64% of the total amount of occidiofungin, 

respectively (Figure 3.3). The peaks in red and green represent the BHY4 peaks 

associated with BHN1 and Asn1 variants, respectively. A similar ratio was also observed 

in the relative abundance of each peak in the ESI-MS spectrum (Figure 3.4A). 



 

51 

 

Furthermore, the HSQC Ha-Ca cross peak intensities for the BHN1 peaks were 

determined to be 90.50 and 38.65, which support the intensities measured for BHY4 

peaks corresponding to the BHN1conformational variants. 

Mutagenesis of the ocfN gene was conducted via a marker exchange procedure as 

described previously,
118

 to generate the mutant MS14GG88. The percentage of Asn1 to 

BHN1 variants in the ocfN mutant MS14GG88 fraction could be determined by 

measuring the proportion of each BHN1 variant using the HSQC data set and by the 

integration of the HN of Asn1 and BHN1 in the 
1
H NMR spectra. Asn1 and BHN1 

variants are approximately 20 and 80% of the total amount of occidiofungin, 

respectively. The ESI-MS spectrum also shows a lower relative abundance for the Asn1 

variant (1200.39 Da) compared to the BHN1 variant (1216.41 Da) (Figure 3.4B). 

3.4.2 Comparison of wild-type and ocfN mutant NMR spectra  

Occidiofungin has a complex spectrum for a peptide of only eight amino acids 

(Figure 3.5A, Table 3.1). The NMR spectrum represents an average of the conformers 

on the NMR time scale. Conformers in slow exchange on the NMR time scale may 

result in multiple spin systems for each amino acid. In some situations, multiple 

conformers are known to arise for cyclic peptides due to slow interconverting 

conformational families.
128,129

 Despite the conformational restrictions brought about by 

the cyclization, occidiofungin still has a significant amount of conformational freedom. 

Both Asn1 and BHN1 variants are visibly present in the wild-type fraction, which are 

colored red in Figure 3.5A. The TOCSY fingerprint region (NH correlations) is not as 

complex for the ocfN thioesterase MS14GG88 mutant spectra (Figure 3.5B). A 
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significant number of spin systems found in the wild-type spectra are absent in the ocfN 

thioesterase mutant spectra. Our experiments show that the TE domain on the C-terminal 

region of OcfD is able to perform the peptide macrocyclization of both the Asn1 and 

BHN1 variants, although there is only one amide spin system for Asn1 produced by 

OcfD. The loss of OcfN results in the disappearance of the other three Asn1 amide spin 

systems.  

An overlay of the wild-type and ocfN mutant NMR spectra shows the amino acid 

spin systems in green that are absent in the mutant spectra (Figure 3.5C). These spin 

systems are for Asn7, Ser8, Asn1, Novel Amino Acid 2 (NAA2), Ser3, BHY4, and 

Gly6. The loss of these spin systems suggests that the complex spin system observed for 

the wild-type occidiofungin fraction is not only due to interconverting conformational 

families, but is the result of distinct diastereomers formed by the regiospecific activity of 

the OcfN cyclase and OcfD TE domain. Dramatic chemical shifts observed, such as the 

2 ppm shift for HN of the NAA2, supports the formation of a structurally unique 

conformer of occidiofungin. A unique conformer is further supported by the subsequent 

loss of an NAA2 spin system in the NMR spectra of the ocfN mutant. Furthermore, the 

presence of both Asn1 and BHN1 spin systems in the mutant spectra along with the 

absence of the amide spin systems shown in green indicate that the additional spin 

systems are not due to the presence of the β-hydroxy group on Asn1.  The additional 

spin systems are due to the formation of a unique diastereomer produced by OcfN 

cyclase thioesterase. To further test for the formation of a configurational isomer versus 

an interchangeable conformer, 1D NMR temperature titrations were performed.  Amide 
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and aromatic regions revealed little change in the complexity of peaks present with the 

occidiofungin derived from ocfN mutant MS14GG88 or wild-type strain MS14 (Figure 

3.6). Given that NAA2 spin systems are a good indicator for the presence of both 

diastereomers in the wild-type spectrum, we collected TOCSY spectra for occidiofungin 

derived from ocfN mutant MS14GG88 or wild-type strain at 50°C (Figure 3.7). There 

was no loss or addition of a spin system for NAA2 in the mutant spectrum.  

Furthermore, both spin systems for NAA2 remained in the wild-type spectrum. This data 

supports that the stereoisomers are non-interchangeable isomers, supporting their 

classification as diastereomers rather than conformers.   

3.4.3 Model for the coordinated function of two cyclase thioesterases  

There was no loss of an amide spin system for a BHN1 in the ocfN mutant NMR 

spectra. This suggests that OcfN thioesterase has a substrate requirement for the peptide 

containing Asn1, since there is no concomitant loss of a BHN1 spin system with the 

observed loss of the Asn1 spin systems.  The C-terminal TE domain of OcfD has a 

preference for the peptide containing the BHN1, but is capable, albeit at a lower 

efficiency of cyclizing the Asn1 variant. This provides an interesting scenario for the 

activity of the two thioesterases (Figure 3.8). Both thioesterases contain the GXSXG 

motif, which is important for the catalytic transfer of the peptide from the T domain to 

the cyclase.
130

 This suggests that substrate recognition occurs prior to the catalytic 

transfer of the peptide to the cyclase. Presumably, OcfN cyclase has a higher affinity or 

better access for the Asn1 peptide product given that the proportion of the Asn1 cyclic 

peptide produced by OcfD compared to the BHN1 product is reduced in the wild-type 
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fraction. Therefore the biosynthesis of occidiofungin utilizes the structural differences 

between Asn and BHN to increase the conformational biodiversity of occidiofungin. The 

increase in conformational diversity is accomplished by the regiospecific activity of each 

cyclase, presumably by differences in their binding clefts that helps orientate the peptide 

before cyclization.  

3.4.4 Comparison of the bioactivity of the wild-type and ocfN mutant product 

To determine whether the increase in conformational diversity is important for 

bioactivity, minimum inhibitory concentrations were determined against medically 

relevant Candida species (Figure 3.9A). There was a 2-fold decrease in the MIC with the 

purified ocfN mutant product with respect to the wild-type product against Candida 

albicans LL, C. albicans TE, C. glabrata ATCC66032, C. parapsilosis ATCC90018, 

and C. tropicalis ATCC66029. There was no difference in the MIC for C. albicans 

ATCC66027. Colony forming units (CFUs/mL) were determined for the MIC wells of 

wild-type product for each Candida species and compared to the corresponding well 

containing the same concentration of the ocfN mutant product (Figure 3.9B). Following 

exposure to the same concentration of wild-type and ocfN mutant products, these results 

show a 5 to 7-log decrease in cell density of the Candida species treated with wild-type 

product. The differences in activity are also visualized by the rate of cell death.  Time-

kill experiments were performed against C. glabrata  ATCC66032. There was a 10-fold 

difference in yeast present at 4 and 8 hours when cells were treated with 0.5 µg/mL of 

occidiofungin derived from ocfN mutant MS14GG88 or wild-type strain (Figure 3.7). 

Furthermore, a slower rate of cell death was also observed for yeast treated with 
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occidiofungin derived from ocfN mutant MS14GG88 at 1.0 and 2.0 µg/mL. Given that 

the cyclic occidiofungin variants produced by OcfN constitute less than half of the total 

structural variants, a 2-fold loss in activity suggests that the diastereomers synthesized 

by OcfN are 4-fold more active than the isomer produced by OcfD against five of the 

Candida species tested. Another possible explanation for the observed differences in 

activity could be attributed to possible synergism between the diastereomers produced 

by each cyclase thioesterase. Furthermore, the antifungal activity of the ocfN mutant 

(MS14GG88: 8.79 ± 0.38 mm) was also significantly reduced (P < 0.05) compared to 

wild-type activity (inhibitory zone radius ± SEM: 13.00 ± 0.58 mm) in an overlay assay 

against Geotrichum candidum (Figure 3.10). 

3.5 Discussion 

The findings from this study include experiments showing the following: the 

relative proportion of the Asn1 and BHN1 variants in the purified fraction; distinct 

differences in spin systems for the wild-type and ocfN mutant products; a proposed 

model for the coordinated function of two cyclase thioesterases; and demonstrated 

differences in biological activity of wild-type and ocfN mutant products against 

therapeutically relevant Candida species.  Expanding the conformational repertoire of 

cyclic peptide natural products can be beneficial to microorganisms. These data suggest 

that the bacterium Burkholderia contaminans MS14 is benefited by maintaining two 

distinct cyclase thioesterases that improves the spectrum of activity of occidiofungin.  

Our data support the observation that cyclase thioesterase substrate recognition 

occurs prior to the catalytic transfer of the peptide. The presence or absence of a hydroxy 
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group on the β-carbon of the N-terminal amino acid (Asn1) appears to be important for 

the substrate recognition by the two cyclase thioesterases.  It has also been shown that 

the N-terminal amino acid is important for substrate recognition for other 

thioesterases.
101,105

 It is possible that the presence of the hydroxy group promotes a

hydrogen bond with the ocfD cyclase thioesterase domain or more likely promotes an 

interaction within the T domain of the NRPS. Different bound orientations of the peptide 

to the T domain would establish a basis for the coordinated function of two cyclase 

thioesterases. 

The presence of the hydroxy group on the β-carbon and the bound orientation of 

the peptide to the T domain may prevent the interaction of the OcfN cyclase, while 

enabling the continued substrate recognition by the OcfD TE domain. Conformational 

diversity of the T domain has been shown to be important for the directed movement of 

the peptide substrate bound to the ppan cofactor and its interaction with externally acting 

enzymes.
100

 More specifically, the active site serine of the cyclase thioesterase needs to

attack the linear peptide attached by a thioester linkage to the ppan forming an acyl-O-

TE intermediate. The position of the peptide bound to the ppan in the T domain will be 

important for bringing the peptide substrate in proximity of the appropriate cyclase 

thioesterase. 

Furthermore, some cyclase thioesterases are capable of transacylation of the 

peptide to the active site serine, when the peptide is bound to a biomimetic prosthetic 

group.
101,112

 However, there are several cyclase thioesterases that will not function when

the product is bound to a biomimetic group. These data suggest that the interaction of the 
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peptide with the T domain is important for the enzymatic activity of some thioesterases 

and this interaction cannot be mimicked using a prosthetic group. It is conceivable that 

the coordinated function of the two cyclase thioesterases, involved in the synthesis of 

occidiofungin, utilize differences in the interaction of the ppan bound peptide within the 

T domain. 

Presumably, ocfN was integrated into the occidiofungin biosynthetic gene cluster 

to improve its spectrum of activity against fungi. Given the broad spectrum of antifungal 

activity associated with occidiofungin, the molecular target is likely to be highly 

conserved. However, there must be some variation among fungal species to account for 

the differences in biological activity. Increasing the conformational repertoire must be a 

selective advantage to the bacterium for it to maintain the two functional cyclase 

thioesterases. The microbial environment is considerably different than how we intend to 

apply the natural products produced by microorganisms. For instance, the bacterium 

Streptomyces roseosporus is a soil saprotroph responsible for the production of 

daptomycin.
131,132

  The microbial community that this bacterium encounters is far more

diverse than the group of bacteria that cause human infection. Thus, evolutionary 

pressures that selected for the current conformers of daptomycin may not necessarily be 

the best conformers for treating a Staphylococcus aureus infection. It is very likely that 

the therapeutic application of daptomycin or other cyclic peptide drugs could be 

improved by engineering novel conformational or configurational isomers. 
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3.6 Conclusion 

Creating novel diastereomers of other cyclic peptide drugs using new or 

engineered cyclase thioesterases may lead to improvements in their therapeutic activity 

against clinically relevant pathogens. This is true for occidiofungin produced by the 

bacterium Burkholderia contaminans MS14, which accomplishes this goal by the 

evolutionary integration of an additional cyclase thioesterase into the occidiofungin 

biosynthetic gene cluster. These sections conclude our analysis of naturally occurring 

variants of occidiofungin. In addition to better understanding the biosynthetic machinery 

involved in the production of occidiofungin, these studies expanded our understanding 

of the variants themselves. The information obtained will be utilized in future endeavors 

involving clinical development of occidiofungin. 

Following this, we will focus on reporting the studies performed on determining 

the mechanism by which occidiofungin causes death in fungal cells and analyzing the 

specific molecular target to which occidiofungin binds, in order to achieve cell death. 
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Table 3.1: Chemical Shift Values for Occidiofungin Derived from the ocfN Mutant 

MS14GG88
a 

 

 

Unit 

 

No. 

 

δC 

 

δH (JHNHα  in 

Hz) 

 

Asn1 

2 

2-NH 

3 

4 

4-NH2 

52.71, CH 

 

39.91, CH2 

- 

4.59 

7.75 (12.1) 

2.62, 2.41 

 

7.39, 6.93 

 

BHN1 

2 

2-NH 

3 

3-OH 

4 

4-NH2 

58.47, CH 

 

75.01, C 

 

- 

4.66, 4.61 

7.81, 7.9 

(8.1, 12.1) 

3.98, 4.02 

4.66 

 

7.24 

 

NAA2 

2 

3 

3-NH 

4 

5 

6 

7 

8 

9-17 

18 

43.88, CH2 

47.25, CH 

 

41.57, CH2 

66.36, CH 

76.07, CH 

79.61, CH 

33.19, CH2 

25.14-28.02, CH2 

16.94, CH3 

2.34, 2.36 

4.23 

7.31, 7.34 

(8.4, 11.4) 

1.39, 1.76 

3.50 

3.08 

3.72 

1.54 

1.27 

0.86 

 

Ser3 

2 

2-NH 

3 

3-OH 

58.59, CH 

 

70.23, 64.29 

4.07, 4.15 

8.11, 8.14 

(11.2, 8.0) 

3.49, 3.45 

4.95 

 

BHY4 

2 

2-NH 

3 

3-OH 

4 

5,6 

8,9 

58.71,CH 

 

73.75,CH 

 

- 

- 

- 

4.06, 4.15 

7.83, 7.94 

(8.7, 11.7) 

4.98, 5.08 

5.66, 5.73 

 

7.15 

6.67 
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Table 3.1(continued): Chemical Shift Values for Occidiofungin Derived from the 

ocfN Mutant MS14GG88
a 

 

 

Unit 

 

No. 

 

δC 

 

δH (JHNHα  in 

Hz) 

 

DABA5 

2 

2-NH2 

3 

4 

4, NH 

53.49, CH 

 

32.68, CH2 

39.17, CH2 

4.43 

7.66 (8.5) 

1.88, 2.11 

2.92 

7.71 

 

Gly6 

2 

2-NH 

44.76, CH2 3.87, 3.58, 

3.84, 3.70 

7.68, 7.85 

 

Asn7 

2 

2-NH 

3 

4 

4-NH2 

53.25, CH 

 

40.03, CH2 

- 

4.51, 4.58 

8.35, 8.41 

(9.3, 8.7) 

2.61, 2.38 

 

7.39, 6.93 

 

Ser8 

2 

2-NH 

3 

3-OH 

58.11, CH 

 

64.59 

 

4.33, 4.32 

7.76, 7.78 

(8.2, 12.00) 

3.61, 3.62 

4.79 

 

a 
Proton chemical shift values are from a TOCSY and NOESY experiments. 

13
C values 

are from the HSQC experiment. 
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Figure 3.1: Covalent structure of occidiofungin.  (R1 = H or OH; R2 = H or Cl) 

  

  



 

62 

 

 

Figure 3.2: RP-HPLC Chromatograms. A.  Chromatogram of the final purification step 

of the wild-type occidiofungin fraction at 220 nm using a 4.6 x 250 mm C18 column. B. 

Chromatogram of the final purification step of ocfN mutant occidiofungin fraction at 220 

nm using a 4.6 x 250 mm C18 column.  C. Overlay of the wild-type (black) and the 

mutant (grey) fractions of occidiofungin. 
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Figure 3.3:  TOCSY (left panel) and HSQC (right panel) spectra of BHY4 in the wild-

type sample.  The proportions of Asn1 and BHN1 variants were determined by the 

measurement of the Ha-Ca cross peak intensities of BHY4 in the HSQC spectra.  These 

values are listed next to their corresponding peaks in the right panel.  The peaks in red 

and green represent the BHY4 peaks associated with BHN1 and Asn1 variants, 

respectively.  Based on the calculation of their relative proportions, i.e. (34.81 + 87.97 

for the BHY4 peaks found in the BHN1 conformational variants) and (32.79 + 37.61 for 

the BHY4 peaks found in the Asn1 conformational variants), the approximate proportion 

of the Asn1 variants could be calculated as (32.79 + 37.61)/(34.81 + 87.97) + (32.79 + 

37.61). 
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Figure 3.4:  ESI mass spectrometry.  A. ESI-MS data of purified wild-type 

occidiofungin fraction.  B. ESI-MS data of purified ocfN mutant occidiofungin fraction. 

 

 

 

Figure 3.5: TOCSY fingerprint region (NH correlations).  A. NH correlations in the 

wild-type sample. The two BHN1 and four Asn1 spin systems present in the wild-type 

sample are colored red.  B. NH correlations in the ocfN mutant sample.  C. Overlay of 

the NH correlations found in the wild-type and ocfN mutant samples.  NH correlations 

that are not present in the ocfN mutant sample are colored green. 

 

 



 

65 

 

 

Figure 3.6: One-dimensional NMR temperature titration curves for occidiofungin 

derived from ocfN mutant MS14GG88 and wild-type strain MS14. 
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Figure 3.7: Time-kill experiments performed against Candida glabrata ATCC66032. 

Solid black lines and dashed grey lines correspond to samples treated with occidiofungin 

derived from wild-type strain MS14 and ocfN mutant MS14GG88, respectively.  

Circles, squares, and triangles represent samples treated with 0.5, 1.0, and 2.0 µg/mL of 

occidiofungin, respectively. The diamonds represent the sample treated with the blank 

control.   
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Figure 3.8:  Schematic of occidiofungin ring closure.  The completely synthesized eight 

amino acid linear peptide is bound by a 4-phosphopantetheine cofactor (ppan) linker to 

the thiolation (T) domain. The peptide varies by the presence or absence of a hydroxy 

group on the β-carbon of Asn1. The TE domain of OcfD is capable of forming the cyclic 

peptide of both variants in the absence of a functional OcfN cyclase thioesterase. 

However, it is not as efficient at producing the Asn1 cyclic peptide variant as OcfN. In 

the presence of a functional OcfN cyclase thioesterase, novel diastereomers of 

occidiofungin are formed by the selective ring closure of the Asn1 cyclic peptide. R1 and 

R2 are BHN1 and Asn1, respectively. 
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Figure 3.9: Comparison of the bioactivity from the wild-type and ocfN mutant 

occidiofungin fractions. A. MICs of wild-type and ocfN mutant fraction determined by 

CLSI M27-A3 method in RPMI 1640.  B. Comparison of the CFUs in the MIC wells of 

wild-type fraction to the corresponding well having the same concentration of the ocfN 

mutant occidiofungin fraction. Asterisks represent no detectable colonies in the MIC 

wells of the wild-type occidiofungin fraction. Black and grey bars are ocfN mutant and 

wild-type fractions, respectively. Standard deviations for the CFU measurements are 

presented. 
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Figure 3.10: Potato dextrose agar plates were inoculated with each of the strains and 

incubated for 3 days at 28°C. The plates were oversprayed with the indicator fungus 

Geotrichum candidum and incubated overnight.  A: The wild-type strain MS14; B: 

Negative control MS14GG78 (ocfJ::nptII); C: MS14GG88 (ocfN::nptII). 
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4. THE ANTIFUNGAL OCCIDIOFUNGIN TRIGGERS AN APOPTOTIC 

MECHANISM OF CELL DEATH IN YEAST
*
 

 

4.1 Overview 

Occidiofungin is a non-ribosomally synthesized cyclic peptide having a base 

mass of 1200 Da. It is naturally produced by the soil bacterium Burkholderia 

contaminans MS14 and possesses potent broad-spectrum antifungal properties. The 

mechanism of action of occidiofungin is unknown. Viability, terminal deoxynucleotidyl 

transferase dUTP nick end labeling (TUNEL), reactive oxygen species (ROS) detection, 

membrane and cell wall stability, and membrane mimetic assays were used to 

characterize the effect of occidiofungin on yeast cells. Confocal and electron microscopy 

experiments were used to visualize morphological changes within treated cells. TUNEL 

and ROS detection assays revealed an increase in fluorescence with increasing 

concentrations of the antifungal. Yeast cells appeared to shrink in size and showed the 

presence of ‘dancing bodies’ at low drug concentrations (1μg/ml). A screen carried out 

on Saccharomyces cerevisiae gene deletion mutants in the apoptotic and autophagy 

pathways identified the apoptotic gene for YCA1, as having an important role in 

occidiofungin response as cells deleted for this gene exhibit a 2-fold increase in 

resistance. Autophagy mutants had no difference in sensitivity compared to the wild-

                                                 

*
Reproduced with permission from ‘The antifungal occidiofungin triggers an apoptotic mechanism of cell 

death in yeast’ by Akshaya Ravichandran, Dayna Emrick, Jivendra Gosai, Shi-En Lu, Donna Gordon, Leif 

Smith. Journal of Natural Products 76, 829-838. Copyright (2013) American Chemical Society. DOI: 

10.1021/np300678e 
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type control. Results from our experiments demonstrate that the mechanism of action for 

occidiofungin in yeast is different from that of the common classes of antifungals used in 

the clinic, such as azoles, polyenes, and echinocandins. Our study also indicates that 

occidiofungin causes cell death in yeast through an apoptotic mechanism of action. 

4.2 Introduction 

Discovery and implementation of novel antifungal agents are needed for more 

effective treatment of serious fungal infections.
133

 Antifungals currently used in the 

clinic do not meet the growing needs of an increasing population of immuno-

compromised patients due to limitations in their spectra of activity and toxicities. Some 

current antifungal treatments lead to abnormal liver function test and are primarily 

fungistatic. Discovery of novel antifungals with a broader spectrum of activity and lower 

toxicity are needed. There is a significant demand for new antifungals given the 

prevalence of resistant fungal pathogens to conventional therapies.
134,135

 Furthermore, 

identifying novel antifungals with a different mechanism of action from the current class 

of therapeutically used antifungals may aid in the development of new and more 

effective treatments. 

There are three major therapeutic groups of antifungal agents used for the 

treatment of serious fungal infections: polyenes, azoles, and the echinocandins. The first 

two groups primarily target ergosterol biosynthesis or bind to ergosterol, disrupting the 

fungal membrane.
136-138

 Ergosterol, much like cholesterol found in mammalian cells, is 

important for maintaining proper cell permeability and fluidity. These antifungals lead to 

an osmotic disruption of the cell membrane, leading to an efflux of essential cellular 
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contents resulting in cell death. Echinocandins, the third group, are the newest fungal 

treatment option that has fairly recently (in 2003) entered the clinic. The echinocandins 

are synthetically modified lipopeptides that originate from natural compounds produced 

by fungi and function to selectively inhibit -1,3-glucan biosynthesis.
139,140

 In fungi, 

covalently cross-linked polysaccharides such as -1,3-glucan, -1,6-glucan, and chitin 

form the primary scaffold that is responsible for the structural integrity and shape of the 

cell.
141-143

 As non-competitive inhibitors of -1,3-glucan synthase, echinocandins reduce 

-1,3-glucan levels leading to loss of fungal cell wall integrity and osmotic disruption of 

the fungal cells.
144-148

 Echinocandins are primarily used to treat Aspergillus spp. and 

Candida spp. infections. They are fungistatic against Aspergillus spp. and only 

moderately fungicidal against Candida spp.
139,149-152

 Infections are often refractory to 

treatment with echinocandins due to their mechanism of action resulting in their use 

against a limited spectrum of fungi.
153,154

   

Induction of apoptosis in fungal cells is an area that holds an immense 

opportunity for the development of new antifungals, because factors that are involved in 

the induction of apoptosis in yeast are different from those found in mammalian 

cells.
155,156

 These differences afford an opportunity to selectively target fungal cells, 

while minimizing the toxicological impact the antifungal has on a patient. Cellular 

changes typical of mammalian cell apoptosis, such as accumulation of reactive oxygen 

species (ROS), fragmentation and degradation of DNA, and externalization of 

phosphatidylserine, occur in fungal cells.
157

 Reports have shown that amphotericin B, a 

polyene antifungal drug, is capable of inducing apoptosis in fungal cells.
158-160

  This 
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apoptotic response appears to occur within a narrow concentration of amphotericin B,
159

 

while a large portion of the fungal cells die from an expected necrotic mechanism 

attributed to its binding to ergosterol. Papiliocin, an antifungal first identified from a 

swallowtail butterfly, is also reported to induce apoptosis in fungal cells.
161

 Papiliocin is 

believed to function in the same manner as other cationic amphipathic peptides, causing 

membrane disruption and leakage of cytoplasmic constituents. The peptide also has 

antibacterial activities associated with its broad-spectrum membrane disruptive function. 

Presumably, amphotericin B also contributes to a nonspecific disruption of membrane 

function, which triggers an apoptotic mechanism of cell death in a subset of cells.
162

  

  Occidiofungin is a cyclic glyco-lipopeptide and its complete chemical 

composition has been determined.
64,118

 Its base molecular weight is 1200 Da (Figure 

3.1). Occidiofungin has been demonstrated to have a broad spectrum of antifungal 

activity.
64,115

 Minimum inhibitory concentrations (MICs) of occidiofungin against 

Candida species are between 0.5 and 2.0 µg/mL, which is similar in activity to 

echinocandins and amphotericin B.
115

 Pharmacodynamic experiments revealed that 

occidiofungin's fungicidal activity against Candida albicans is more rapid than the 

fungicidal activity reported for the echinocandin caspofungin. Occidiofungin exhibited 

potent antifungal activity when Candida albicans was exposed to the antifungal for as 

little as one hour, suggesting that occidiofungin has a strong interaction with a cellular 

target.
115

 A mouse toxicity study showed that doses higher than those commonly used to 

treat fungal infections did not result in mortality.
163

 A dose as high as 20 mg/kg, resulted 

in no negative gross or microscopic findings in the liver or kidneys. Hematology and 
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serum biochemistry tests also revealed that occidiofungin does not significantly alter 

organ function. 

Considering that the mechanism action of occidiofungin is unknown, the aim of 

this study was to determine the cause of fungal death following exposure to 

occidiofungin. We found that exposure to sublethal doses of occidiofungin leads to 

morphological anomalies and that exposure to lethal concentrations results in an increase 

in ROS, cell shrinkage, and DNA fragmentation. Overall, our study supports an 

apoptotic mechanism of cell death for yeast exposed to occidiofungin, which might be 

triggered by membrane perturbation. 

4.3 Materials and methods 

4.3.1 Antifungal preparation  

Isolation of the antifungal compound was accomplished as previously 

reported.
119

  In brief, Burkholderia contaminans MS14 was incubated at 28
o
C for 7 days 

without shaking.  The cell free culture extract was precipitated using ammonium sulfate 

(50% w/v) on ice for 2 hours. The pellet was resuspended in 1 ml of 35% acetonitrile 

(ACN):water (v/v) and placed in a 1.5 mL microcentrifuge tube.  RP-HPLC was done 

using a 4.6 × 250 mm C18 column (Grace-Vydac, catalog 201TP54) on a Bio-Rad 

BioLogic F10 Duo Flow with Quad Tec UV-Vis Detector system with a 30 minute 

gradient from 10 to 90% (ACN):water (v/v). Purifed occidiofungin elutes as a doublet 

peak around 45% (Figure 4.1). 
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4.3.2 Strains, media, and plasmids  

C. albicans (ATCC 66027), C. glabrata (ATCC 66032), and S. cerevisiae 

(BY4741) strains were used for all experiments described. All strains were maintained 

on Sabouraud dextrose (SD), yeast peptone dextrose (YPD), or synthetic selective media 

(-leucine) with 2% agar added for solid media. Candida spp. were also grown in RPMI-

1640 with MOPS media where indicated.  To express the human Bcl2 gene in yeast, 

primers were designed to amplify the Bcl2 coding sequence by PCR using pDNR-Dual-

Bcl2 plasmid as the template (PMID 16512675)
164

. Standard molecular techniques were 

used to clone the resulting DNA fragment into the LEU2-marked pRS415 plasmid 

downstream of the constitutive GAPDH promoter and in frame with a C-terminal HA3 

(three haemagglutinin) epitope tag. All constructs were confirmed by sequencing before 

use. 

4.3.3 In vitro susceptibility testing  

Minimal Inhibitory Concentrations (MICs) were determined using Clinical 

Laboratory Standards Institute (CLSI) method M27-A3. Prior to susceptibility testing, 

yeasts were subcultured and grown for 24 hours on fresh SD, YPD, or -leucine media. 

MIC endpoints were reported based on consistency in sensitivity differences from wild-

type S. cerevisiae BY4741 after 24 and 48 hours of incubation. Susceptibility testing was 

done in experimental triplicate of technical duplicates. Dimethyl sulfoxide (DMSO) was 

used as a negative control. The strains on which the MICs were performed included 

haploid mutants of wild type S. cerevisiae BY4741 obtained from the yeast deletion 
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collection in which the entire open reading frame of each gene was deleted (Thermo 

Scientific).  

Colony forming units (CFUs) were determined in duplicate by plating 100 µL 

from the MIC wells following the 48 hour exposure to occidiofungin onto a YPD plate. 

In addition, 100 µL from two-fold serial dilutions of the cell suspension in YPD broth 

were plated to aid in determining the CFUs. Deletion mutants (apg7, aif1, 

csg2, hos3, nde1, nma1, nuc1, rny1, rpd3, vtc2, vtc3, and yca1) that had more than a 10-

fold increase or decrease in CFUs were tested by a yeast drop assay. For the drop assay, 

yeasts were taken from a 24 hour YPD plate and resuspended in 5 mL of YPD to an 

OD530 of 0.095 (density of a 0.5 McFarland standard).  The suspension was divided into 

two samples of 0.8 mL each and occidiofungin was added to one sample at 0.5µg/mL, 

which is equivalent to 0.5X MIC for this cell density. After 4hrs at 30 ˚C, 200 µL 

aliquots were placed onto a 96-well microtiter plate and the cells were five-fold serially 

diluted seven times using YPD as the diluent. Then, 2 µL from each well was spotted to 

YPD plates in duplicate. Photos were taken after a72 hour incubation at 30 ˚C. Drop 

assays were carried out in duplicate.  

  In the sorbitol protection assay, MIC values were determined using Candida 

glabrata 66032 using the in vitro susceptibility assay described above except that 0.8M 

sorbitol was included in the suspension media. Assays were performed in duplicate and 

MICs were read 24 hours following incubation at 35 °C. 

MIC measurements in the presence of ergosterol were performed using C. glabrata 

66032. 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) was purchased from Avanti 
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Polar Lipids (Alabaster, AL) and ergosterol was purchased from Sigma-Aldrich (St. 

Louis, MO). Vesicles were prepared using a standard sonication procedure provided by 

Avanti Polar Lipids in which 20 mg of DOPC with and without 2 mg of ergosterol was 

dissolved in 1mL of chloroform. The lipid-chloroform solution was placed in a 250 mL 

flask attached to a vacuum line at room temperature and dried to remove the chloroform. 

The dry lipid film was hydrated in 1.0 mL of RPMI 1640 media. The suspension was 

added to the microtiter wells yielding a final concentration of ~80 μg/mL of ergosterol. 

Each microtiter well contained a series of occidiofungin concentrations as described 

above for the in vitro susceptibility assay. Amphotericin B was used as a positive 

control, while DOPC vesicles containing no ergosterol were used as a negative control.  

The MICs were determined after 24 hours of incubation at 35˚C. 

4.3.4 Monitoring cell-cycle progression  

Samples of Candida spp. were treated with 0, 0.5, 1, and 2 µg/ml occidiofungin 

over a 2.5 hour period with aliquots removed at 30 minute intervals for analysis.  All 

cells were fixed with the addition of formaldehyde to 3.7% final and stored at 4 ˚C until 

analyzed.  Cells were viewed by phase contrast microscopy (100X objective) and 

multiple random images were captured using a Retiga EXi Black and White CCD 

Camera and Image Q software.  A minimum of 250 cells per time point per treatment 

were scored for cell cycle distribution using bud size as a marker for position within the 

cell cycle.  
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4.3.5 Protein extracts and Western blot analysis  

C. albicans (ATCC 66027) and C. glabrata (ATCC 66032) strains were grown in 

YPD at 35 ˚C until reaching an OD600 of 0.5.  The cultures were split and occidiofungin 

added to achieve a 2-fold series of concentrations ranging from 4 to 0.062 µg/mL.  

Samples were returned to 35 ˚C with shaking for 10 or 20 minutes.  For each sample, an 

equivalent number of cells were isolated by centrifugation, and the resulting cell pellets 

stored at -20 ˚C.  Total cellular protein was isolated by alkaline lysis,
165

 separated by 

SDS polyacrylamide gel electrophoresis (PAGE), and transferred to nitrocellulose for 

Western blot analysis. Activation of the cell wall integrity pathway was determined 

using phospho-specific antibodies against p44/42 MAP kinase (Cell Signaling 

Technology) shown to cross react with the doubly phosphorylated form of Mkc1p from 

Candida spp.
166,167

  Weak cross recognition of the phosphorylated form of Cek1p was 

also detected under some experimental conditions.  Total Mkc1p was detected using 

anti-p44/42 antibodies (Cell Signaling Technology).  A monoclonal antibody to 3-

phosphoglycerate kinase (Pgk1p) was used as a loading control (Molecular Probes).  

Activation of Hog1p was achieved by growing cells in the presence of 1M NaCl for the 

time periods indicated and monitored using phospho-specific antibodies against p38 

MAP kinase (Cell Signaling Technology). Autoradiographs were scanned and images 

analyzed using NIH Image J software.  The ratio of phosphorylated Mkc1p to total 

Mkc1p was calculated using the intensity of each protein band taken from the same 

autoradiograph with the value of untreated or DMSO treated samples normalized to one.   
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For S. cerevisiae expressing plasmid-borne human Bcl2, cells were grown in -leucine 

synthetic media at 30 ˚C until an OD600 of 0.5.  An equivalent number of cells were 

isolated by centrifugation, and the resulting cell pellets stored at -20 ˚C.  Total cellular 

protein was isolated by alkaline lysis,
165

 separated by SDS PAGE, and transferred to 

nitrocellulose for Western blot analysis. HA3 tagged Bcl2 protein was detected using 

anti-HA antibodies (Covance); an anti-3-phosphoglycerate kinase (Pgk1p) antibody was 

used as a loading control (Molecular Probes). 

4.3.6 Electron microscopy  

For transmission electron microscopy (TEM), samples were fixed in 2.5% 

glutaraldehyde pH 7.2 for 2 hours at 4 ˚C. Specimens were rinsed in 0.1 M phosphate 

buffer, pH 7.2, post-fixed in 2% OsO4 in 0.1 M phosphate buffer for 2 hours then rinsed 

in distilled water and dehydrated in a graded ethanol series. Specimens were infiltrated 

and embedded in Spurr’s resin and polymerized at 70 ˚C for 15 hours. Thin sections (60-

100 nm) were collected and mounted on 50 mesh grids.  Samples were stained with 

uranyl acetate and lead citrate and were examined and photographed with a JEOL 100 

CX II TEM (JEOL USA, Peabody, Massachusetts) at 80 kV.  

For scanning electron microscopy (SEM), C. albicans was grown in RPMI to an 

OD600 of 1.0 at which time occidiofungin was added to 2 µg/mL final concentration.  

After 30 minute exposure, cells were isolated by centrifugation and fixed in 2.5% 

glutaraldehyde in 0.1M sodium cacodylate pH 7.2. Samples were rinsed and post-fixed 

in osmium tetraoxide in 0.1M sodium cacodylate pH 7.2. Samples were rinsed, 

dehydrated through a graded ethanol series and then critical point dried with a Polaron 
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critical point dryer (Quorum Technologies, Newhaven, UK).  Dried samples were 

mounted on aluminum stubs using carbon tape, coated with gold/palladium using a 

Polaron E5100 sputter coater, and viewed on a JEOL JSM-6500 FE Scanning Electron 

Microscope (JEOL USA, Peabody, MA) 

4.3.7 Fluorescent microscopy  

C. glabrata 66032 cells were grown at a sub-inhibitory concentration of 

occidiofungin (0.25 µg/mL) for 24 hours at 35 ˚C using the CLSI method described 

above.  Cells were fixed with the addition of 3.7% formaldehyde to the media and stored 

at 4 ˚C until staining with Calcofluor White (Sigma; 18909) as described by the 

manufacturer. To visualize mannoproteins, cells were fixed for 30 minutes in 3.7% 

formaldehyde, washed in PBS, incubated with 0.1mg/ml Concanavalin A-FITC (Sigma; 

C7642) for 10 minutes at room temperature, and washed again with PBS before 

visualization. Stained cells were visualized using a 100X objective on a Nikon 50i 

fluorescent microscope.  Random images were captured using a Retiga EXi Black and 

White CCD Camera and Image Q software. 

Cell culture for fluorescent microscopy studies was prepared as follows. S. 

cerevisiae BY4741 and C. albicans (ATCC 66027) were grown overnight in YPD at 30 

˚C. The cell suspension was then diluted to 0.1 OD600 with YPD and incubated at 30 ˚C 

until the culture reached an OD600 between 0.6 to 0.8. The minimum inhibitory 

concentration of occidiofungin against S. cerevisiae C. albicans with this cell density in 

YPD medium is 2 µg/mL.  Images were acquired using Olympus confocal microscope 

with a 40x/0.90 dry objective.  



 

81 

 

Viability assay using FUN-1 dye (Invitrogen) was carried out by adding 15μM of 

dye to the untreated cells and cells treated with 2μg/ml of occidiofungin and incubating 

at 30 ˚C for 30 minutes. The cells were mounted on a glass slide and observed using an 

Olympus confocal microscope. The excitation wavelength of FUN-1 is 480 nm and the 

emission wavelengths are 510-560 nm (green) and 560-610 nm (red). Negative control 

in this assay was 1.6% DMSO. 

ROS detection was performed using dihydrorhodamine 123 (DHR123) 

(Invitrogen) which has an excitation and emission maxima of 505 nm and 534 nm, 

respectively.
168,169

 The dye (25μg/ml) was added to cells treated with 1, 2 and 4 μg/ml of 

occidiofungin for 3 hours. Terminal deoxynucleotidyl transferase dUTP nick end 

labeling (TUNEL) assay was carried out using the APO-BrdU TUNEL assay kit 

(Invitrogen).
168,169

  The assay was performed on cells treated with 1, 4, and 8 μg/ml of 

occidiofungin for 3 hours. Protoplasts of the treated cells were obtained by treatment of 

cells with 24 μg/ml of zymolyase in 1.2 M sorbitol. Staining was then carried out 

according to the protocol outlined by APO-BrdU TUNEL assay kit (Invitrogen). The dye 

used in the TUNEL assay is Alexa Fluor 488 which has an excitation and emission 

maxima of 495 nm and 519 nm, respectively. Negative and positive controls included 

1.6% DMSO and 5 mM H2O2, respectively. FITC-labeled annexin-V staining was done 

using Annexin-V-FLUOS kit (Roche Applied Science).
168,169

  Cells were treated with 1 

and 4 μg/ml of occidiofungin for 3 hours and washed with PBS. The cell pellet was 

incubated in 100 μL of Annexin-V-FLUOS labeling solution for 10-15 minutes at room 

temperatures, as specified by the manufacturer. The cells were mounted on a slide and 
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observed. Excitation and emission maxima for fluorescein are 488nm and 518nm 

respectively and for propidium iodide are 488nm and 617nm respectively. 

4.4 Results 

4.4.1 Membrane and cell wall stability  

Candida albicans ATCC 66027 was used to determine whether occidiofungin 

activated cell wall stress following a 10 minute and 20 minute exposure to occidiofungin 

(Figure 4.2).  The MIC value of occidiofungin in these assays was 4 µg/mL.  

Phosphorylation of Mkc1p indicates the presence of oxidative stress, changes in osmotic 

pressure, or cell wall damage. For C. albicans, an increase in the phosphorylation status 

of this MAP kinase was observable at a dose of 250 ng/mL, which is one sixteenth less 

than the inhibitory concentration. A dose-dependent increase in Mkc1p phosphorylation 

at 10 minutes was also seen for C. glabrata (Figure 4.3). Mkc1p phosphorylation 

occurred at 125 ng/ml occidiofungin, one half of the concentration seen for C. albicans. 

Both C. albicans and C. glabrata had a maximum increase in Mkc1p phosphorylation at 

1 µg/ml. The decreased levels of Mkc1p phosphorylation at 2 µg/ml and the absence of 

Mkc1p phosphorylation at 4 µg/ml is likely due to the increased cell death occurring at 

these concentrations. Similarly, an increase in the level of phospho- Cek1-p indicates 

that occidiofungin induces cell wall stress at subinhibitory concentrations. At the higher 

concentrations of occidiofungin, phosphorylation of Hog1p, a MAP kinase in the 

osmotic stress response pathway, was also detected. Although Hog1p phosphorylation 

was induced by occidiofungin, the extent of activation was significantly lower than that 
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seen for conditions known to induce the osmotic stress response pathway (e.g. 1M 

NaCl).   

To further analyze the impact that occidiofungin may have on cell wall integrity, 

MICs were determined in media supplemented with 0.8M sorbitol. Sorbitol functions as 

an osmotic stabilizer and would decrease the activity of occidiofungin if the antifungal 

targets cells by disrupting membrane stability.
170

 MICs for C. albicans (ATCC 66027) in 

the presence and absence of sorbitol in RPMI 1640 media at 24 hours were determined 

to be 0.5 µg/mL (Table 4.1). This observation suggests that osmotic disruption, which 

would be predicted for a cell wall biosynthesis inhibitor or a membrane disruptive 

compound, is not likely involved in the cidal activity of occidiofungin.  

Echinocandins inhibit -1,3-glucan synthase, a multi-enzyme complex composed 

of catalytic subunits Fks1p/Fks2p. Mutations in FKS1 exhibit decreased sensitivity to 

echinocandins.
144,145

 To determine whether occidiofungin’s mode of action is similar to 

that of echinocandins, we compared the sensitivity of a S. cerevisiae Δfks1 mutant to the 

wild type strain. MIC values were similar (Table 4.2), suggesting that the mechanism of 

action of occidiofungin differs from that of echinocandins.   

Lipoformulation of ergosterol has been used in media as a competitive inhibitor 

of amphotericin B.
171

 We made 1,2-dioleoylphosphatidylcholine (DOPC) vesicles 

containing 20% ergosterol and added them to microtiter wells yielding a final 

concentration of ~80 μg/mL of ergosterol. As controls we also used DOPC vesicles with 

no ergosterol and vesicle free media. In these experiments we observed a 16-fold 

decrease in activity of amphotericin B against C. glabrata in the presence of DOPC 
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vesicles containing 20% ergosterol and a 2-fold decrease in activity in the presence of 

DOPC vesicles with no ergosterol (Table 4.1). There was no change in the sensitivity of 

C. glabrata treated with occidiofungin in the presence of DOPC vesicles containing 20% 

ergosterol or DOPC vesicles with no ergosterol as compared to the vesicle free control. 

These data suggest that binding of ergosterol is not an important component to the 

activity of occidiofungin.  

4.4.2 Morphological changes following subinhibitory dosing of occidiofungin  

Cell density of C. albicans cells exposed to a sublethal concentration of 

occidiofungin (0.25 µg/mL) was notably lower than that of untreated cells. To determine 

whether occidiofungin inhibited cell cycle progression, bud morphology of 

occidiofungin treated and untreated cell populations were scored. In budding yeast there 

is a correlation between cell growth and division such that cell cycle progression can be 

determined visually by simply measuring the bud size. We found that even at 

concentrations of occidiofungin shown to decrease cell viability; there was no difference 

in cell cycle distribution between the two groups (Table 4.3).    

SEM and TEM were used to determine whether occidiofungin caused aberrant 

morphological features in Candida cells treated with a subinhibitory concentration of 

occidiofungin.  Comparison of untreated cells and cells grown in subinhibitory 

concentrations of occidiofungin did not reveal any morphological differences by SEM 

(Figure 4.4). However, TEM showed a number of mild cell morphological defects in the 

cells grown in the presence of subinhibitory concentrations of occidiofungin. The most 

dramatic defect was with the organization of the coat (manno) proteins (Figure 4.5). The 
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coat proteins appear to be reduced (Figure 4.5B, demarcated by black arrows) compared 

to untreated samples. TEM results also showed the presence of intracellular inclusions 

(Figure 4.5B, demarcated by white arrow). Cell wall thickness was the same for treated 

and untreated sample supporting our Fks1 results, and suggesting that inhibition of cell 

wall synthesis is not involved in the mechanism of action of occidiofungin against yeast 

cells. Prior TEM microscopy studies with the non-yeast fungus Geotrichum candidum 

showed loss of cell wall thickness and the accumulation of intracellular inclusions.
64

 The 

accumulation of intracellular inclusions appears to be the common factor between these 

two groups of fungi.  In addition, microscopy studies using concanavalin A-FITC 

fluorescence against yeast cells showed no major disruption in -1,3-glucan distribution 

(Figure 4.6).  However, microscopy studies using calcofluor white, which binds to 

chitin, did reveal some other interesting morphological differences. Calcofluor staining 

of C. glabrata showed an enhanced distribution of chitin in daughter cells following 

exposure to a subinhibitory concentration of occidiofungin. Enhanced chitin localization 

was observed primarily at the emerging bud tips (Figure 4.7).  

4.4.3 Cell death experiments  

Microscopy studies were carried out on S. cerevisiae using FUN-1 dye as a cell 

viability indicator. The MIC for S. cerevisiae in these experiments was determined to be 

1 µg/mL. FUN-1 is a membrane permeable dye with red and green emission properties. 

The dye accumulates within the cytosol of cells (live or dead) with an intact plasma 

membrane to generate a green fluorescence. In metabolically active yeast, FUN-1 is 

transported from the cytosol into a vacuole where it forms cylindrical intravacuolar 
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structures (CIVS) that fluoresce red.
172

 The viability assay indicated that the untreated 

cells possessed well defined vacuoles and the presence of CIVS. However, cells exposed 

to 2 µg/ml of occidiofungin for 30 minutes did not possess these cylindrical structures 

and appeared to have lost volume (Figure 4.8). This reduction in cell size is not typical 

of a cell wall active antifungal which would be expected to result in swelling or lysis of 

the cell. These results suggest that occidiofungin does not function through a lytic 

pathway in S. cerevisiae and these results indicate the need for additional studies in non-

lytic pathways of cell death.  

Microscopy assays were carried out to determine whether occidiofungin-induced 

cell death through an apoptotic or autophagic pathway. TUNEL and ROS assays were 

performed to determine whether occidiofungin induced an increase in ROS and double 

stranded DNA breaks. In the TUNEL and ROS assays, C. albicans and S. cerevisiae 

cells were treated for 3 hours at 30 °C.  Both assays were performed with 5mM H2O2 as 

positive control and a solvent blank as a negative control. In the TUNEL assay, an 

increase in fluorescence was observed for cells exposed to H2O2 but not for cells treated 

with the solvent blank (Figure 4.9A and Figure 4.10A). For occidiofungin treated cells, 

fluorescence of increasing intensity was observed with increasing concentration of 

occidiofungin. ROS was detected using DHR123 which is oxidized to rhodamine 123 in 

the presence of ROS to generate a red fluorescent signal. This experiment showed results 

similar to the TUNEL assay; fluorescence increased with increasing concentrations of 

occidiofungin (Figure 4.9B and Figure 4.10B). To determine the importance of ROS 

accumulation to occidiofungin mediated cell death, MIC measurements were carried out 
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anaerobically, conditions known to reduce ROS production.
173

 A reduction in sensitivity 

to occidiofungin was observed when wild type S. cerevisiae BY4741 and S. cerevisiae 

BY4741 rho
0
 were grown under anaerobic conditions (Table 4.2).   

We noticed a large population of S. cerevisiae cells, when exposed to 

occidiofungin at 1 µg/mL, showed the presence of “dancing bodies” in the vacuole. 

These are presumably polyphosphate granules and have been shown to form prior to 

apoptotic cell death.
174

 Dancing bodies are indicated by an arrow in the DIC image of 

cells processed for ROS detection (Figure 4.10B).  As further evidence for activation of 

apoptosis, an increased binding of Annexin-V-Fluos to externalized phosphatidylserine 

was detected with increasing concentrations of occidiofungin without membrane 

disruption as would be observed with propidium iodide staining (Figure 4.11 and Figure 

4.12).  

MIC measurements of S. cerevisiae deletion mutants in the apoptotic and 

autophagic pathway were done to determine whether mutants defective in these 

pathways were resistant to occidiofungin (Table 4.2). Thirteen mutants involved directly 

or indirectly with the apoptotic pathway and seventeen autophagy mutants were 

evaluated. Among the apoptotic mutants, Δnde1, which is a mutant of the gene encoding 

the cytosolic NADH for the mitochondrial respiratory chain, was two-fold more 

sensitive compared to wild-type. Deletion of yca1, which is the gene responsible for 

synthesis of a cysteine protease similar to caspase, was two-fold more resistant 

compared to wild type. Sensitivity of S. cerevisiae expressing plasmid-borne human 

Bcl2 was tested and there was no difference in the MICs for the plasmid-borne human 
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Bcl2 and empty vector, thus, Bcl2 did not have a protective role in preventing cell death. 

This inability to rescue occidiofungin mediated cell death was not due to lack of Bcl2 

protein expression (Figure 4.13). All of the autophagy mutants tested (Δizh2, Δizh3, 

Δstm1, Δmre11, Δapg12, Δapg5, Δaut7, Δapg7, Δapg10, Δapg3, Δvtc1, Δvtc2, Δvtc3, 

Δvtc4, Δmms22, Δatg14, and Δvps30) had the same sensitivity profile as the wild type 

strain suggesting that autophagic cell death was not a central mechanism of 

occidiofungin action. Cell viability was tested for all the mutants by determining the 

colony forming units following a 48-hour incubation at the minimum inhibitory 

concentration. Deletion mutants (nde1, yca1, rny1, rpd3, nma1, vtc2, vtc3, csg2, apg7, 

nuc1, hos3, and aif1) that showed at least a ten-fold higher or lower viability than wild-

type after a 48 hour exposure to the MIC of occidiofungin were further analyzed by a 

drop assay (Figure 4.14). Deletion mutants nde1 and yca1, were used as a control for an 

increase or decrease in sensitivity in this assay, respectively. Deletion mutants (rpd3, 

nma1,  apg7, nuc1, hos3, and aif1) that showed a difference in viability from wild-type, 

showed no difference in sensitivity in the drop assay. Deletion mutants (rny1, csg2, vtc2, 

vtc3) demonstrated resistance to occidiofungin. Gene rny1 codes for a vacuolar RNase 

that promotes apoptosis under oxidative stress conditions.
175,176

 Gene csg2 codes for 

calcium regulatory protein that is involved in sphingolipid metabolism.
177

 Genes vtc2 

and vtc3 code for vacuolar transport chaperone proteins that are involved in 

polyphosphate accumulation and autophagic and non-autophagic vacuolar fusion.
178,179
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4.5 Discussion 

  The experimental findings from this study show that: 1) the mechanism of action 

for occidiofungin differs from current antifungal agents used in the clinic, 2) there are 

morphological changes in yeast cells exposed to sub-lethal concentrations of 

occidiofungin, 3) microscopy studies demonstrate that occidiofungin is rapidly 

fungicidal against yeast, and 4) there is a dramatic increase in ROS, double stranded 

DNA breakage, and externalization of phosphatidylserine, all documented indicators of 

apoptosis. 

The yeast cell wall is composed of chitin, -1,3-glucan, -1,6-glucan, and 

mannoproteins, the organization of which is critical for cell survival under altering 

environmental conditions.  Disruption of cell wall composition is sensed by an 

intracellular signaling pathway mediated by a cascade of MAP kinases. Activation of 

this pathway leads to the upregulation of genes whose protein products are involved in 

cell wall synthesis including Chs3p, the catalytic subunit of chitin synthase III (CSIII).  

Phosphorylation of both Mkc1p and Cek1p within a short period of time after 

occidiofungin addition is indicative of cell wall damage.
166,167,180

 Further evidence for 

the activation of the cell wall integrity pathway comes from the microscopy studies of 

chitin staining using calcofluor white.  Calcofluor staining of C. glabrata showed an 

enhanced distribution of chitin in daughter cells following exposure to a subinhibitory 

concentration of occidiofungin (Figure 4.7).  Localization of chitin deposits is strictly 

cell cycle dependent.  Fks1p localizes at the site of active cell wall growth and no cell 

wall material is deposited in the mother cell during bud growth.
181

 Chs3p is primarily 
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responsible for the production of the chitin found in the septal ring and the majority of 

the cell wall.  The increased chitin deposition at the site of bud growth should be the 

result in an upregulation of chitin synthase activity and this increase is known to occur in 

response to mutations resulting in cell wall weakening mutations
182

 or hypo-osmotic 

stress.
183

 Activation of the cell wall integrity pathway is not unique to occidiofungin as 

the echinocandin, capsofungin, has also been shown to induce both CHS expression and 

Mkc1p phosphorylation.
184,185

 

These results suggest that occidiofungin does perturb the membrane integrity of 

yeast; however activity assays using the osmotic stabilizer sorbitol or the Fks1 mutant 

resulted in no change in sensitivity compared to controls. Presumably, activation of the 

cell wall stress pathway compensates for the effect of occidiofungin at the 

concentrations resulting in cell death in our study. Upregulation of Hog1p, which is an 

osmotic disruption indicator, was significantly lower than that seen for conditions known 

to induce the osmotic stress response pathway (e.g. 1M NaCl).  This may be attributed to 

a rapidly cidal function induced by apoptosis compared to osmotic stress induced by 

exposure.  Activation of both the Mkc1p and Hog1p MAPK pathways have been 

detected in cells treated with the cell wall disruption agent zymolyase and the oxidative 

stress inducer hydrogen peroxide suggesting that a level of coordinated regulation exists 

between these two signaling pathways.
186,187

 

There were no differences in activity of occidiofungin in the ergosterol 

competition assay or the Fks1 deletion mutant, which are known to confer resistance to 

polyenes (amphotericin B) and echinocandins (caspofungin), respectively. Based on the 
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results of the microscopy assays and the MIC values of the selected mutants, it can be 

concluded that occidiofungin triggers an apoptotic pathway in the fungal cell. The 

apoptotic mechanism reported for amphotericin B resulted in an accumulation of cells at 

the G2/M phase of the cell cycle.
159

 However, the apoptotic mechanism for 

occidiofungin resulted in no differences in cell cycle distribution, supporting distinct 

differences in the apoptotic mechanism of action for occidiofungin compared to 

amphotericin B. The antifungal protein osmotin also induces an apoptotic mechanism of 

cell death in yeast and does not arrest cell cycle progression.
188

 Studies have shown that 

both apoptotic and autophagic pathways can be induced simultaneously,
189,190

 supporting 

a common upstream signal in their respective pathways. VPS30 is essential for the 

transport of cytoplasmic material, such as large proteins and organelle material, to the 

lysosome under starvation conditions. Autophagy is known to be absent in null vsp30 

mutants.
191

 Since there was no decrease in sensitivity to occidiofungin in the S. 

cerevisiae Δvsp30 mutant, the non-lytic autophagy pathway is not likely a major 

component in the killing mechanism of occidiofungin. The fact that most mutants 

deleted for components of the autophagic pathway, except for vtc2 and vtc3, did not 

confer any increase or decrease in sensitivity to occidiofungin suggests that autophagy is 

not a key pathway activated by occidiofungin and that the apoptotic pathway triggered 

by occidiofungin is distinctly separate from the autophagy pathway. It is likely that the 

non-autophagic vacuolar fusion activity of vtc2 and vtc3 is involved in the observed 

resistance of these mutants in the drop assay.   



 

92 

 

We propose that induction of apoptosis is likely the causative mechanism of cell 

death for cells exposed to occidiofungin. Deletion of the caspase like enzyme, Yca1p, 

resulted in an increase in resistance to occidiofungin, while there was a decrease in 

resistance with the deletion of NADH dehydrogenase (Nde1). Yca1p caspase like 

activity is known to contribute to the degradation of proteins under oxidative conditions 

and this activity contributes to apoptotic cell death.
192

 Nde1p is known to provide 

cytosolic NADH to the mitochondrial respiratory chain and the decrease in respiratory 

chain activity should contribute to a reduction in the production of ROS that should 

contribute to resistance against occidiofungin. The MIC activity results for these mutants 

support an apoptotic mechanism of cell death. Confocal microscopy studies clearly 

reveal an increase in ROS and double stranded DNA breakage following a short 

exposure to occidiofungin. Together, the studies presented in the manuscript suggest that 

occidiofungin mediated cell death is primarily through apoptosis.   

4.6 Conclusion 

Studies aimed at understanding the apoptotic mechanism of cell death induced by 

occidiofungin are warranted. The specific target of occidiofungin is still unknown and 

the identification of the molecular target in yeast may provide an avenue for the 

development of antifungal agents that have reduced toxicity in mammalian cells. 

Occidiofungin is resistant to gastric proteases
115

 and may provide an alternative to 

azoles, which are the only orally available class of antifungals. An understanding of 

occidiofungin’s function may provide novel opportunities towards the development of 

other new antifungal compounds for the treatment of serious fungal disease. 
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Table 4.1: Bioactivity of Occidiofungin 

 

Isolate                                                                    

   

   Experiment                                 MIC/MLC*               

                                                           (µg/mL)          

 

Bioactivity Compared 

to Control 

Occidiofungin  

C. glabrata 66032 CLSI                                               0.5/N.D. - 

C. glabrata 66032 0.8 M sorbitol                                 0.5/N.D.                       No Change 

C. glabrata 66032 DOPC vesicles                                0.5/N.D.                       No Change 

C. glabrata 66032 DOPC vesicles:ergosterol               N.D./0.5                       No Change 

Amphotericin B  

C. glabrata 66032 CLSI                                               0.5/N.D. - 

C. glabrata 66032 DOPC vesicles                               1.0/N.D.              2-Fold Decrease 

C. glabrata 66032 DOPC vesicles:ergosterol              N.D./ > 8.0          >16-Fold Decrease 

* Only the MLC is reported, given the turbidity of the ergosterol DOPC suspension. 
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Table 4.2: Occidiofungin MICs 

 
Isolate                                            MIC (µg/ml) 

S. cerevisiae  BY4741 0.1250 

S. cerevisiae  BY4741 Rho
0
 0.1250* 

S. cerevisiae  BY4741 0.2500
¥
 

S. cerevisiae  BY4741 Rho
0
 0.2500*

¥
 

Membrane and Cell Wall Mutants 

S. cerevisiae Δsur1 0.1250 

S. cerevisiae Δipt1 0.1250 

S. cerevisiae Δcsg2 0.1250 

S. cerevisiae Δfks1p 0.1250       

Apoptotic Mutants 

S. cerevisiae Δyca1 0.2500 

S. cerevisiae Δnde1 0.0625* 

S. cerevisiae Δaif1 0.1250 

S. cerevisiae Δhos3 0.1250 

S. cerevisiae Δuth1 0.1250 

S. cerevisiae Δnma1 0.1250 

S. cerevisiae Δhda1 0.1250 

S. cerevisiae Δste20 0.1250 

S. cerevisiae Δrny1 0.1250 

S. cerevisiae Δrpd3 0.1250 

S. cerevisiae Δsir2 0.1250 

S. cerevisiae Δnuc1 0.1250 

S. cerevisiae Δybh3 0.1250 

Autophagy Mutants 

S. cerevisiae Δizh2 0.1250 

S. cerevisiae Δizh3 0.1250 

S. cerevisiae Δstm1 0.1250 

S. cerevisiae Δmre11 0.1250 

S. cerevisiae Δapg12 0.1250 

S. cerevisiae Δapg5 0.1250 

S. cerevisiae Δaut7 0.1250 

S. cerevisiae Δapg7 0.1250 

S. cerevisiae Δapg10 0.1250 

S. cerevisiae Δapg3 0.1250 

S. cerevisiae Δvtc1 0.1250 

S. cerevisiae Δvtc2 0.1250 

S. cerevisiae Δvtc3 0.1250 

S. cerevisiae Δvtc4 0.1250 

S. cerevisiae Δmms22 0.1250 

S. cerevisiaeΔatg14 0.1250 

S. cerevisiaeΔvps30 0.1250 

*MIC recorded at 48 hours  

¥
Cells were grown anaerobically 
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Figure 4.1:  RP-HPLC chromatogram of 50 µg of purified occidiofungin.  
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Figure 4.2:  Western blot detection of MAPK activation. Candida albicans cells were 

treated with increasing concentrations of occidiofungin (0-4 µg/mL) for 10 or 20 

minutes.  Cell extracts were analyzed by immunoblotting with antibodies against 

phospho-Mkc1p, total Mkc1p, and phospho-Hog1p. Detection of phosphoglycerate 

kinase (Pgk1p) was used to verify equal protein loading.  Cells grown in the presence of 

1M NaCl were used as a positive control for Hog1p activation.  The relative ratios of 

phosphorylated Mkc1p to total Mkc1p are indicated for each set of immunoblots with 

the ratio of DMSO treated cells normalized to one. 
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Figure 4.3: Western blot detection of MAPK activation in Candida glabrata. Cells were 

treated with increasing concentrations of occidiofungin (0-4 µg/mL) for 20 minutes. Cell 

extracts were analyzed by immunoblotting with antibodies against phospho-Mkc1p, total 

Mkc1p, and phospho-Hog1p. Detection of phosphoglycerate kinase (Pgk1p) was used to 

verify equal protein loading. The relative ratios of phosphorylated Mkc1p to total Mkc1p 

are indicated with the ratio obtained for untreated cells set to one. 
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Figure 4.4: Scanning electron microscopy (SEM) images of Candida albicans: 

untreated (a) and occidiofungin treated (b) cells.  C. albicans cells were propagated at 

35˚C in RPMI until reaching an OD600 of 1.0.  Occidiofungin (2 µg/mL), or an 

equivalent volume of DMSO, was added and cells returned to 35˚C for 30 minutes.  

Cells were isolated by centrifugation and processed for SEM as described in Materials 

and Methods. 4000X magnification is shown. 
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Figure 4.5:   TEM Micrographs.  (A) Candida albicans cells treated with the solvent 

blank, DMSO. (B) Candida albicans cells grown in a sub-lethal concentration of 

occidiofungin.  The arrows revealed a loss of coat proteins on the surface of the cell wall 

as well as vesicle-like inclusions inside the cell. Side panels show an expanded region of 

cells having the morphological defect. 
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Figure 4.6: Cell wall mannoprotein distribution in Candida glabrata treated with 

occidiofungin remains unchanged.  C. glabrata cells were grown for 24hr in the absence 

(A) or presence (B) of a sublethal concentration of occidiofungin. 1,3-b-glucan was 

visualized with concanavalinA-FITC staining by fluorescence microscopy. A montage 

of cells is shown for each treatment. 
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Figure 4.7:  Chitin staining in Candida glabrata.  Chitin staining was visualized with 

calcofluor white staining in live cells by fluorescence microscopy using a 100X 

objective and a DAPI filter set.  (A) Chitin localization in cells treated with a sublethal 

concentration of occidiofungin.  (B) Chitin localization in untreated cells. A montage of 

cells is shown for each. 
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Figure 4.8:  FUN-1 Assay. DIC and fluorescence images of yeast cells stained with 

FUN-1. Panels “a-d” are untreated yeast cells. CIVS stained red with FUN-1(shown by 

arrows). Panels “e-h” are occidiofungin treated cells (2μg/ml). CIVS not present in cells. 

Panels “a” and “e" are DIC images. Panels “b” and “f” are the green emission, while “c” 

and “g” are the red emission channels. Panels “d” and “h” are overlays of “a-c” and “e-

g”, respectively. 

 

 

 

 

 

 

 



 

103 

 

 

Figure 4.9: Fluorescent Microscopy Studies on Candida albicans. (A) TUNEL Assay. 

Rows “1” and “2” are DIC and fluorescence images, respectively.  Column “a” shows 

cells treated with the solvent blank (DMSO with no occidiofungin), “b” shows cells 

treated with 5mM H2O2 and “c-e” correspond to cells treated with 1 μg/ml, 4 μg/ml and 

8 μg/ml of occidiofungin, respectively. (B) ROS Detection Assay.  Rows “1” and “2” are 

DIC and fluorescence images, respectively. Column “a” corresponds to treatment with 

solvent blank, “b” corresponds to cells treated with 5mM H2O2, and “c-e” show cells 

treated with 1μg/ml, 2 μg/ml and 4 μg/ml of occidiofungin, respectively. 
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Figure 4.10: Fluorescent Microscopy Studies on S. cerevisiae. (A) TUNEL Assay. 

Rows “1” and “2” are DIC and fluorescence images, respectively.  Column “a” shows 

cells treated with the solvent blank, “b” shows cells treated with 5mM H2O2 and “c-e” 

correspond to cells treated with 1 μg/ml, 4 μg/ml and 8 μg/ml of occidiofungin, 

respectively. (B) ROS Detection Assay.  Rows “1” and “2” are DIC and fluorescence 

images, respectively. Column “a” corresponds to treatment with solvent blank, “b” 

corresponds to cells treated with 5mM H2O2, and “c-e” show cells treated with 1μg/ml, 2 

μg/ml and 4 μg/ml of occidiofungin, respectively. 
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Figure 4.11:  Phosphatidylserine Detection Assay on Candida albicans.  Rows A-D are 

negative control (treatment with DMSO with no occidiofungin), positive control (5mM 

H2O2), cells treated with 1 μg/ml, 4 μg/ml of occidiofungin, respectively. Columns “a-d” 

correspond to DIC image, annexin fluorescence image, propidium iodide fluorescence 

image, and overlay of annexin and propidium iodide fluorescence images, respectively. 
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Figure 4.12:  Phosphatidylserine Detection Assay on S. cerevisiae.  Rows A-D are 

negative control (treatment with DMSO with no occidiofungin), positive control (5mM 

H2O2), cells treated with 1 μg/ml, 4 μg/ml of occidiofungin, respectively. Columns “a-d” 

correspond to DIC image, annexin fluorescence image, propidium iodide fluorescence 

image, and overlay of annexin and propidium iodide fluorescence images, respectively. 
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Figure 4.13: Western blot analysis. Constitutive expression of HA3 tagged Bcl2 protein 

was observed. Anti-HA antibodies were used to detect HA3 tagged Bcl2 protein and 

anti-3-phosphoglycerate kinase (Pgk1p) antibody was used as a loading control.  
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Figure 4.14: Drop assay.  Growth sensitivity of S. cerevisiae deletion mutants exposed 

to 0.5µg/mL occidiofungin for 4 hours was analyzed by spotting five-fold serially 

diluted cells to a YPD plate.  The growth profile for untreated (-) or occidiofungin 

treated (+) cells are shown after 72 hours at 30 ˚C. An untreated and treated wild-type 

strain was included on all plates to control for experimental variations. 
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5. IDENTIFICATION OF THE CELLULAR TARGET FOR THE NOVEL 

ANTIFUNGAL OCCIDIOFUNGIN 

 

5.1 Overview 

Since the 1950s, the antifungal compounds that have been developed for clinical 

use fall under three broad families: azoles, polyenes and echinocandins.
193,194

 These 

compounds target fungal cells by inhibiting ergosterol production, binding of ergosterol, 

or by disrupting cell wall biosynthesis.
195-197

 Widespread resistance to these mechanisms 

of action has been reported
19,28,29,198,199

 and this has created an urgent need to identify 

antifungal compounds that have new fungal cell targets.
48

 Here, we show that a novel 

antifungal named occidiofungin targets actin. An alkyne functionalized variant of 

occidiofungin (alkyne-OF) was synthesized enabling affinity purification and confocal 

microscopy studies. Affinity purification assays of yeast exposed to alkyne-OF showed a 

high proportion of actin and actin associated proteins. Furthermore, occidiofungin was 

shown to bind to rabbit muscle G-actin and F-actin. Localization studies and time course 

experiments indicated the binding of occidiofungin to bud tips in Saccharomyces 

cerevisiae and eventual internalization into the mature cell. Similar studies in 

Schizosaccharomyces pombe demonstrated localization of occidiofungin near the poles 

of the cells and along the division septum, which are well-documented regions for actin 

patches.
200

 These observations support the binding of occidiofungin to actin causing cell 

cycle arrest, starvation and death. 
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5.2 Background  

Occidiofungin is a cyclic glycolipopeptide produced by a soil bacterium called 

Burkholderia contaminans MS14 and has been reported to have a wide spectrum of 

activity against several fungal species.
64

 Preliminary toxicological analyses of 

occidiofungin using a murine model indicated that it was well tolerated at concentrations 

of 10 to 20 mg/kg.
67

 Blood chemistry analyses and histopathology performed on 

multiple organs showed a transient non-specific stress response with no damage to organ 

tissues.
67

 Taken together, the data suggest that occidiofungin is a promising candidate 

for development as a clinically useful antifungal agent. This study is directed towards 

identifying the molecular target of occidiofungin within the fungal cell to better 

understand how it causes fungal cell death. 

5.3 Materials and methods 

5.3.1 Spectrum of activity of occidiofungin 

Minimum inhibitory concentration (MIC) susceptibility testing was performed 

according to the CLSI M27-A3 and M38-A2 standards for the susceptibility testing of 

yeasts and filamentous fungi, respectively.
 
Incubation temperature was 35° C and the 

inoculum size was 0.5 – 2.5 x 10
3 

colony-forming units (CFU)/mL and
 
0.4 - 5 x 10

4
 

conidia/mL for yeasts and filamentous fungi, respectively. Inoculum concentration for 

dermatophytes was 1-3x10
3 

conidia/mL. RPMI was used throughout as the growth 

medium and Cryptococcus strains were tested in YNB. Occidiofungin MICs were 

recorded at 50% and 100% growth inhibition after 24 and 48 hours of incubation, with 
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the exception of dermatophytes which were incubated for 96 hours. Fluconazole MICs 

against Candida strains were recorded at 50% inhibition after 24 hours and against 

Cryptococcus strains after 72 hours. Voriconazole MICs were recorded at 100% 

inhibition after 24 hours for zygomycetes and after 48 hours for Fusarium and 

Aspergillus strains. Voriconazole MICs were recorded at 80% inhibition after 96 hours 

of incubation for dermatophytes.  

5.3.2 Derivatization of occidiofungin 

Occidiofungin was purified from a liquid culture of Burkholderia contaminans 

MS14 as previously described.
84

 Pure occidiofungin was aliquoted into 100 μg fractions 

and stored dry at 4°C until use. Addition of an alkyne reactive group to the primary 

amine on occidiofungin was performed initially at the Texas A&M Natural Products 

LINCHPIN Laboratory at Texas A&M University and subsequently at the CPRIT 

Synthesis and Drug-Lead Discovery Laboratory at Baylor University. The reaction is 

depicted in Supplementary Figure 1a and the synthetic procedure employed is described 

below along with 
1
H and 

13
C NMR line listing.   Spectral data (

1
H and 

13
C NMR , X 

MHz and Y MHz, respectively) are depicted in Figure 1b. The derivatized occidiofungin 

was purified by Reversed-Phase High Performance Liquid Chromatography (RP-HPLC) 

using a 4.6- by 250-mm C18 column (Grace-Vydac; catalog no. 201TP54) on a Bio-Rad 

BioLogic F10 Duo Flow with Quad Tec UV-Vis detector system. The solvents used 

were 99.9% water (with 0.1% trifluoroacetic acid) and 99.9% acetonitrile (with 0.1% 

TFA). Alkyne occidiofungin (Alkyne-OF) eluted at 48% water and was collected 

separately and dried down. Matrix-assisted laser desorption/ionization–time of flight 
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mass spectrometry (MALDI-TOF MS; Shimadzu/Kratos) was used to confirm mass of 

the isolated peak. The fraction collected from the HPLC was evaporated to dryness and 

was dissolved in 100 μL of 35% acetonitrile containing 0.1% TFA. From these 

resuspended fractions, 0.5 μL was mixed with 0.5 μL of α-cyano-4-hydroxycinnamic 

acid matrix (6 mg/mL in 50% acetonitrile containing 0.1% TFA) and dried on the target 

plate. 

5.3.3 Confirmation of activity of alkyne-OF 

The activity of the purified alkyne-OF was compared to the native compound 

using the CLSI M27-A3 method of determination of the minimum inhibitory 

concentration (MIC) against yeast such as Saccharomyces cerevisiae BY4741 and 

Schizosaccharomyces pombe 972h (wild type), which was obtained from Dr. Susan 

Forsburg (Department of Biological Sciences, University of Southern California). 

Additionally, activity of the alkyne derivatized occidiofungin was also checked against a 

higher density (OD600=0.6 to 0.8) of cells of both the afore-mentioned types of yeast. In 

order to confirm that the alkyne-OF triggered the same response in yeast as native 

occidiofungin, the apoptosis assays such as the TUNEL assay (APO™-BrdU TUNEL 

Assay Kit, LifeTechnologies), phosphatidylserine externalization assay (Annexin-V-

Fluos staining kit, Roche) and ROS detection assay (Dihydrorhodamine 123, Sigma) 

were repeated as previously described
(16)

. 

5.3.4 Affinity purification of proteins with alkyne-OF 

An overnight culture of S. pombe was grown to OD600 of 0.6 to 0.8. 1 mL of cells 

was incubated with 8 μg/mL of alkyne-OF for 30 minutes at 30°C. The cells were spun 
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down and washed in PBS. The cells were then sonicated with a probe tip sonicator for 30 

seconds and placed on ice for 30 seconds alternatingly to avoid overheating. The sample 

was then spun down at 16000x g for 10 minutes and the supernatant was removed. The 

Click-it protein reaction kit (Life Technologies) was used and the alkyne-OF was reacted 

with azide-biotin, as per the instructions on the kit. The reaction was allowed to proceed 

for 90 minutes at 37°C while shaking. The reacted mixture was passed through a 10 kDa 

cutoff filter and the proteins retained at the top of the filter were solubilized in 100 μL of 

100 mM Tris HCl (pH=7.5). Streptavidin agarose beads (ThermoFisher Scientific) 

obtained from a 100 μL of a 50% slurry were added and the mixture was incubated at 

37°C for 90 minutes. The beads were washed with 10 mL of 100 mM Tris HCl (pH=7.5) 

and the proteins extracted by boiling in 50 µl of 1X SDS sample loading buffer for 15 

minutes. This sample was run on a 12% SDS gel until the band runs just out of the 

stacking phase to create a single band. The band was then cut out and used for analysis. 

Trypsin digestion on the band was done in the Protein Chemistry Laboratory (Texas 

A&M University) and subsequent LC-MS/MS analysis was performed by the Mass 

Spectrometry Laboratory at the University of Texas Health Science Center (San 

Antonio). The results were analyzed using the Scaffold software. Cells treated with 

DMSO and native occidiofungin were used as controls. An additional sample using cells 

that were lysed prior to alkyne-OF treatment was used for comparison.  

5.3.5 Localization of alkyne-OF over a time course of exposure 

An overnight culture (S. pombe or S. cerevisiae) was grown using colonies from 

a freshly streaked plate to an OD600 of 0.6 to 0.8. 1 mL of cells was incubated with MIC 
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quantities of alkyne-OF for 60 minutes at 30°C while removing 200 μL of the cell 

suspension at 10 minutes, 30 minutes and 60 minutes post incubation. The cells were 

spun down, washed in phosphate buffered saline (PBS) and fixed for 15 minutes in 3.7% 

formaldehyde (in PBS) at room temperature. Permeabilization of cells was done using 

0.5% Triton-X (in PBS) at room temperature for 20 minutes. The cells were then washed 

twice using 1 mL of PBS per wash. Click reaction with azide derivatized Alexa-488 was 

done according to the manufacturer’s protocol (Click-iT EdU Imaging kit, ThermoFisher 

Scientific).  The cells were washed with PBS and added to the microscope slide for 

visualization. A competition assay was carried out by pre-treating cells with an MIC 

amount (0.5 μg/mL) of the native occidiofungin followed by treatment with alkyne-OF. 

Cells were observed using Olympus FV1000 confocal microscope with a 100x/1.4 oil 

immersion objective and 40x/0.9 dry objective.  

5.3.6 Estimation of endocytosis following occidiofungin treatment 

Three 1 mL aliquots of S. pombe, at a density of OD600 0.6 to 0.8, were treated 

with 1 μL DMSO, 0.5 μg/mL (0.5x MIC) or 1 μg/mL (1x MIC) of native occidiofungin 

for 30 minutes at 30°C. Cells were isolated by centrifugation at 21000x g for 2 minutes, 

washed thrice with PBS and resuspended in YPD containing 8 mM FM-464 

(ThermoFisher Scientific). The cells were incubated in the presence of the dye for 60 

minutes at 30°C, followed by two washes with PBS and then added to a microscope 

slide for visualization. Images were obtained using an Olympus FV1000 confocal 

microscope with a 40x/0.9 dry objective. 
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5.3.7 Affinity purification of actin 

Purified rabbit skeletal muscle filamentous actin (Catalog no.: AKF99) and G-

actin (Catalog no.: AKL95) was purchased from Cytoskeleton Inc. According to the 

supplier’s instructions, the protein was reconstituted in Milli-Q water to achieve a stock 

concentration of 0.4 mg/mL. This resulted in the filaments being stored in a buffer that 

consisted of 5 mM Tris-HCl (pH 8.0), 0.2 mM CaCl2, 0.2 mM ATP, 2 mM MgCl2 and 

5% (w/v) sucrose. The solution was aliquoted into 50 μL quantities and stored at -80°C 

until use. Immediately before use, each aliquot was thawed by placing the tube in a 37°C 

water bath for 5 minutes followed by room temperature. 24 μg of F- or G-actin was then 

reacted with 8 μg alkyne-OF. Click chemistry was performed on this mixture to react the 

alkyne-OF with azide-biotin for 90 minutes as described (Click-iT protein reaction 

buffer kit, ThermoFisher Scientific).  Unreacted reagents were removed by passing the 

mixture through a 10 kDa cutoff filter with 20 minutes of centrifugation at 15000x g. 

Proteins retained in the filter chamber were solubilized in 200 μL of 100 mM Tris-HCl 

(pH=7.5) and reacted with streptavidin beads as described above. The beads were 

washed multiple times using 100 mM Tris HCl (pH=7.5) and bound proteins eluted by 

boiling in 50 µL of SDS sample loading buffer. The sample was electrophoresed through 

a 12% SDS gel and protein bands were visualized by silver staining according to the 

manufacturer’s protocol (Pierce Silver stain kit, ThermoFisher Scientific). F- and G-

Actin treated with DMSO and native occidiofungin were used as controls.  
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5.3.8 Actin polymerization and depolymerization assays 

The effect of unmodified occidiofungin on actin polymerization and 

depolymerization was measured using the Actin Polymerization Biochem Kit 

(fluorescence format): rabbit skeletal muscle actin purchased from Cytoskeleton Inc. 

(Catalog no.: BK003). Occidiofungin was brought up in 1.5% β-cyclodextrin in PBS 

(pH=7.5) at a concentration of 1 µg/µL. 20 µL of this solution was used per well as 

described in the instructions. The same buffer without occidiofungin was used for the 

test buffer controls. G-buffer was made by adding 2 μL of 100 mM ATP stock for every 

1 mL of General Actin buffer prior to the start of the experiment as instructed. G-actin 

and F-actin stock were prepared as described in the kit to achieve stock concentrations of 

0.4 mg/mL and 1 mg/mL respectively. The polymerization and depolymerization assays 

were then carried out as per the manufacturer’s instructions. 

5.3.9 Microscopic analysis of actin treated with occidiofungin 

Purified rabbit skeletal muscle filamentous actin (Catalog no.: AKF99, 

Cytoskeleton Inc.) was treated with alkyne-OF (24 μg of F-actin to 8 μg of alkyne-OF) 

as described above. The mixture was reacted with azide functionalized Alexa Fluor 488 

according to the manufacturer’s instructions (Click-iT EdU Imaging kit, ThermoFisher 

Scientific). Unbound dye was removed by overnight dialysis at 4°C against actin 

polymerization buffer using a 1 kDa cutoff membrane (Catalog no.: BSA02, 

Cytoskeleton Inc.). The actin filaments were removed, added to a slide and analyzed 

using an Olympus FV1000 confocal microscope 40×/0.90 dry objective and a 100x/1.4 
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oil immersion objective. A control was done using 140 nM Acti-stain 670 phalloidin 

(Cytoskeleton Inc.) staining of actin filaments as per instructions provided. 

F-actin filaments were also reacted with different concentrations of the native 

occidiofungin. Approximately, molar ratios of 1:10 (24 μg actin:8 μg native 

occidiofungin) and 1:5 (24 μg actin:4 μg native occidiofungin) were tested. The 

filaments were reacted with occidiofungin for 15 minutes at room temperature. The 

respective mixtures were then stained with 140 nM Acti-stain 670 phalloidin for another 

15 minutes at room temperature. The stained filaments were then added to a glass slide 

and observed on an Olympus FV1000 confocal microscope using a 100x/1.4 oil 

immersion objective. Untreated actin filaments were stained and observed as the control. 

5.4 Results and discussion 

We have previously demonstrated that the mechanism of action of occidiofungin 

differs from the primary mode of action of the three common classes of antifungals.
66

 

Occidiofungin has been observed to rapidly induce apoptosis in yeast cells at the 

minimal inhibitory concentrations.
66

 In addition, occidiofungin was seen to have sub-

micromolar activity against Pythium species which lacks ergosterol in the membrane and 

Cryptococcus neoformans which is resistant to echinocandins.
64

 Several studies have 

reported occurrence of widespread resistance to these mechanisms of action, especially 

in the case of the azoles
19,28,29

 and the echinocandins.
198,199

 Due to its unique mechanism 

of action, occidiofungin has sub-micromolar activity against azole and echinocandin 

resistant strains of fungi. For example, several species of Candida that were resistant to 

fluconazole at high concentrations (32-64 μg/mL) were inhibited at 1-8 μg/mL of 
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occidiofungin. Furthermore, strains of Candida parapsilosis and C. neoformans that 

were resistant to treatment with caspofungin were found to be susceptible to treatment 

with occidiofungin. Occidiofungin was also found to have a broader spectrum of activity 

than clinically available antifungals and was found to be active against Aspergillus, 

Mucor, Fusarium and Rhizopus species. The results, as reported in Table 5.1, indicate 

that occidiofungin has activity against filamentous and non-filamentous fungi at sub-

micromolar concentrations.  

Occidiofungin was chemically modified to have a functional alkyne for Click 

chemistry (Sharpless-Hüisgen cycloaddition) on the free amino group of the 

diaminobutyric acid residue at position 5 (Figure 5.1). The modified occidiofungin, 

alkyne-OF, had an eight-fold reduction in activity with the minimum inhibitory 

concentration of 1 and 0.5 µg/mL against Saccharomyces cerevisiae BY4741 and 

Schizosaccharomyces pombe 972 h-, respectively (Table 5.2). To determine whether 

alkyne-OF still had the same apoptosis inducing bioactivity as the native occidiofungin, 

S. cerevisiae was treated with alkyne-OF and apoptotic assays such as TUNEL, reactive 

oxygen species (ROS) detection and phosphatidylserine externalization assays were 

performed. Double stranded DNA breaks, the generation of ROS, and the externalization 

of phosphatidylserine were observed in the alkyne-OF treated cells, supporting the same 

mechanism of action (Figure 5.2A, 5.2B, 5.2C). Although this alkyne modification 

moderately reduced the inhibitory activity of the compound, the functionalized 

derivative has the same apoptotic bioactivity and was therefore used to identify the 

fungal target. 
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Alkyne-OF was used in a pull-down assay to identify intracellular proteins that 

directly or indirectly interact with the compound (Figure 5.3A). Data from multiple 

analyses using S. pombe 972h- and S. cerevisiae BY4741 were pooled. The resulting list 

of proteins obtained following LC-MS/MS analysis of bands cut from gels was distilled 

as follows. The proteins that were observed in the control samples (i.e. treatment with 

DMSO and native occidiofungin) were removed from consideration resulting in proteins 

that were exclusively found in the test sample (Table 5.3). The culled protein list was 

grouped based on gene ontology including cellular localization or molecular function. 

The resulting distribution is presented in Figure 5.3B. From this analysis, the majority of 

the proteins that were pulled down by alkyne-OF are actin or actin associated proteins, 

e.g. Pil1 and Cap1. In addition to the actin-related proteins, proteins involved in vesicle 

transport and mannosylation were found associated with alkyne-OF. The remaining 

proteins that were pulled down were ribosomal and mitochondrial related proteins. The 

data indicate that occidiofungin may play a role in binding to actin since a majority of 

the proteins either directly interacted with actin (such as Arp2/3 complex and myosin) or 

are in close proximity to actin patches within the cell.  

Pull-down assay and confocal microscopy were used to confirm occidiofungin 

interaction with actin. Biotinylation of alkyne-OF following incubation with F- or G-

actin and streptavidin agarose beads was performed to determine whether occidiofungin 

directly associated with purified actin in vitro. F- or G-actin incubated with the wild type 

occidiofungin and DMSO was used as a control for potential non-specific interaction of 

actin with the agarose beads. As shown in Figure 5.4a, the biotinylation of alkyne-OF 
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was required for the binding of F- or G- actin to the streptavidin beads (Lane 5 and 8). 

Actin was not present in the control lanes (lanes 6,7,9 and 10). The eluant from the 

biotinylated alkyne-OF had a single band at approximately 42 kDa which is the expected 

size for actin. Therefore, the affinity purification assays done with F- or G-actin 

confirmed that occidiofungin binds to actin. To further support this observation, confocal 

microscopy using the fluorophore Acti-stain 670 phalloidin was used to visualize F-actin 

exposed to occidiofungin or alkyne-OF. F-actin exposure to increasing concentrations of 

occidiofungin leads to more aggregation of actin filaments (Figure 5.4b).  Using alkyne-

OF labeled with azide functionalized Alexa Fluor 488 dye, occidiofungin interaction 

with F-actin is directly observed (Figure 5.5).  In this experiment, F-actin also appears to 

aggregate following exposure to occidiofungin. Fluorescence visualization of this 

interaction following treatment with alkyne-OF and native occidiofungin demonstrated a 

high degree of aggregation of the filaments which could not be seen in the untreated 

controls. These results indicate that occidiofungin directly interacts with actin leading to 

the formation of aggregated filaments. However, occidiofungin association with actin 

was found to have no effect on its in vitro polymerization or depolymerization properties 

(Figure 5.6). 

In vivo visualization of the localization of occidiofungin was done in intact yeast 

cells. Cellular localization of F-actin is well characterized in S. pombe and S. cerevisiae. 

Time course analysis of S. pombe following alkyne-OF treatment and derivatization with 

azide Alexa-488 showed a specific pattern of localization of the compound (Figure 

5.7a). Alkyne-OF was seen to have a faint pattern of staining at the polar tips at 10 
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minutes post treatment, which subsequently increased in intensity at 30 minutes post 

treatment. Strong fluorescence was observed at the polar ends of the cell and at the 

septum of dividing cells. A similar assay done using S. cerevisiae showed localization of 

alkyne-OF at the bud tips at the early time points and staining throughout the parent cell 

at later time points (Figure 5.7b). The unique pattern formed was observed to be a 

combination of striated and inclusion-like structures. In both yeast systems, when the 

cells were pre-treated with the native occidiofungin prior to treatment with alkyne-OF, 

the observed cellular localization patterns disappeared (Figure 5.7a & b, panels D, E, and 

F). This indicates that alkyne-OF and occidiofungin compete for the same target. The 

vesicular pattern observed at the later time points of exposure is indicative of endocytic 

vesicles that are coated with actin being circulated through the cell.
201

 Additionally, actin 

patches in the cells of S. pombe were seen at the cell tips in growing cells and at the 

division septum in dividing cells. Actin patches recruited to the division septum interact 

with myosin to form the acto-myosin ring which is instrumental in cell division.
202

 The 

time course analysis in both types of fungal cells indicates localization of occidiofungin 

to the regions with high concentration of actin. Recent studies have shown that the 

dynamic nature of actin is necessary to maintain the cellular functions in which actin is 

involved.
203

 The effect of native occidiofungin on endocytosis in fission yeast was 

evaluated by staining cells with FM-464 following treatment (Figure 5.8). Cells exposed 

to 0.5X MIC and 1X MIC demonstrated a concentration dependent reduction in stained 

endocytic vesicles.  A newly formed bud has several actin patches which co-ordinate the 

retrograde transport of vesicles along the actin cable into the mother cell. Actin 
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nucleation is carried out by the Arp2/3 complex and a host of proteins including Cap1, 

Abp1 and Sac6 which are involved in the actin patch based transport of vesicles.
200

 

Fluorescence time course assays done on the cells of S. cerevisiae and S. pombe support 

this hypothesis. The early time points in S. cerevisiae cells show localization to bud tips 

with the compound eventually forming a vesicular pattern within the parent cell. Bud 

tips in S. cerevisiae are known to be rich in actin patches which are necessary to carry 

out cellular functions such as cell division and endocytosis.
204

 Disruption of the 

dynamics of actin turnover has been reported to trigger apoptosis in yeast and 

mammalian cells. Specifically, clustering of actin filaments has been reported to trigger 

mitochondrial damage which in turn leads to release of reactive oxygen species.
205

 In 

addition, caspase dependent pathways have been theorized to be induced following 

aggregation of actin filaments in animal cells and it is possible that a similar pathway 

takes place involving Yca1, the caspase found in yeast.
206

   

5.5 Conclusion 

One of the challenges facing the development of antifungals is the fact that 

uptake of compounds into yeast cells does not occur as easily as it does in bacteria. 

Yeast cells have a sturdy cell wall made of several glycoproteins that make up almost 

one-third of the dry weight of the cell. The efficiency of antifungals relies heavily upon 

being able to penetrate the cell envelope. Occidiofungin has the advantage of being 

easily taken up by the yeast cell, as evidenced by the low MICs against several different 

types of fungi. Susceptibility to occidiofungin can be seen in pathogenic strains that are 

resistant to treatment with azoles and echinocandins (Table 5.1). Although it is now 
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observed that occidiofungin binds to F- and G-actin and causes aggregation of the F-

actin filaments leading to apoptosis, the exact chain of events needs to be determined. 

Future studies aimed at understanding how occidiofungin enters the fungal cell and how 

this leads to the induction of apoptosis needs to be determined. Nevertheless, an actin-

targeting antifungal that has a wide spectrum of activity against clinically pathogenic 

fungi and minimal toxicity in animal models could be the novel drug that is needed in 

the current antifungal arsenal to combat fungal infections. 

In these sections we reported that occidiofungin rapidly induces apoptosis in 

fungal cells by binding to actin filaments and setting off an as yet unknown pathway of 

events that culminate in the apoptotic death of the cell. Knowing the target of 

occidiofungin is vital to the development of the compound as a clinically viable drug. In 

the following section, we will discuss additional findings that are vital to our 

understanding of how occidiofungin behaves in an animal system.   
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Table 5.1: Activity of occidiofungin against filamentous and non-filamentous fungi 

 

 

 

 

Species 

 

Occidiofungin (μg/mL) 

 

Voricona

zole 

 

Flucona

zole 

24 hours 48 hours 72 hours 96 hours MIC 

(μg/mL) 

MIC 

(μg/mL) 

50

% 

100

% 

50

% 

100

% 

50

% 

100

% 

80

% 

100

% 

  

*Trichophy

ton 

mentagrop

hytes 

10207 

      1 2 0.25 >16 

Trichophyt

on 

mentagrop

hytes 

28556 

      1 2 0.06 >16 

Trichophyt

on 

mentagrop

hytes 

28641 

      1 2 0.06 16 

&
Trichophy

ton rubrum 

11199 

      1 2 0.008 0.25 

Trichophyt

on rubrum 

28658 

      1 2 0.03 2 

Trichophyt

on rubrum 

28659 

      1 2 0.03 2 

Rhizopus 

microsporu

s 28506 

4 8 - 8     16  

Rhizopus 

oryzae 

28403 

4 8 - 8     >16  

Rhizopus 

microsporu

s 27785 

2 4 - 8     >16  

Mucor 

circinelloid

es 19445 

 

4 8 4 8     >16  
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Table 5.1 (continued): Activity of occidiofungin against filamentous and non-

filamentous fungi 

 

 

 

 

Species 

 

Occidiofungin (μg/mL) 

 

Voricona

zole 

 

Flucona

zole 

24 hours 48 hours 72 hours 96 hours MIC 

(μg/mL) 

MIC 

(μg/mL) 

50

% 

100

% 

50

% 

100

% 

50

% 

100

% 

80

% 

100

% 

  

Mucor 

racemosus 

27784 

 

2 

 

4 

 

- 

 

4 

     

>16 

 

Mucor 

fragilis 

27782 

2 4 - 4     >16  

Fusarium 

solani 

28386 

2 4 - 4     >16  

Fusarium 

oxysporum 

27718 

2 4 - 4     >16  

Fusarium 

solani 

18749 

2 4 2 4     >16  

Aspergillus 

flavus 

28517 

- 4 - 4     1  

Aspergillus 

flavus 

28455 

2 4 - 4     2  

Aspergillus 

flavus 

28445 

2 4 - 4     2  

Aspergillus 

fumigatus 

28434 

- 4 - 4     1  

Aspergillus 

fumigatus 

28435 

- 2 - 2     1  

Aspergillus 

fumigatus 

28436 

2 4 2 4     1  

#
Candida 

albicans 

23512 

- 1 - 2      32 
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Table 5.1 (continued): Activity of occidiofungin against filamentous and non-

filamentous fungi 

 

 

 

 

Species 

 

Occidiofungin (μg/mL) 

 

Voricona

zole 

 

Flucona

zole 

24 hours 48 hours 72 hours 96 hours MIC 

(μg/mL) 

MIC 

(μg/mL) 

50

% 

100

% 

50

% 

100

% 

50

% 

100

% 

80

% 

100

% 

  

Candida 

albicans 

28200 

4 8 4 8      8 

Candida 

albicans 

28102 

- 2 - 2      0.125 

#
Candida 

glabrata 

27243 

2 4 - 4      64 

Candida 

glabrata 

25742 

- 2 - 2      4 

Candida 

glabrata 

28271 

4 8 4 8      >64 

Candida 

krusei 9541 

2 4 - 4      16 

#
Candida 

krusei 

28415 

4 8 4 8      64 

Candida 

krusei 

28570 

4 8 4 8      16 

+
Candida 

parapsilosi

s 2006 

2 4 - 4      0.125 

Candida 

parapsilosi

s 28364 

4 8 4 8      0.25 

Candida 

parapsilosi

s 28174 

- 4 - 4      0.25 

Candida 

tropicalis 

9624 

 

- 2 - 2      0.25 
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Table 5.1 (continued): Activity of occidiofungin against filamentous and non-

filamentous fungi 

 

 

 

 

Species 

 

Occidiofungin (μg/mL) 

 

Voricona

zole 

 

Flucona

zole 

24 hours 48 hours 72 hours 96 hours MIC 

(μg/mL) 

MIC 

(μg/mL) 

50

% 

100

% 

50

% 

100

% 

50

% 

100

% 

80

% 

100

% 

  

Candida 

tropicalis 

28272 

4 8 4 8      0.125 

Candida 

tropicalis 

28478 

4 8 4 8      0.125 

+
Cryptococ

cus 

neoformans 

19526 

 

    - 2    4 

Cryptococc

us 

neoformans 

27708 

    - 2    2 

Cryptococc

us 

neoformans 

28446 

    - 1               

4 

‘-‘ indicates absence of isolates with 50% inhibition endpoint. 

Shaded regions indicate antifungal resistant strains: ‘*’ indicates itraconazole resistance, 

‘&’ indicates terbinafine resistance, ‘#’ indicates fluconazole resistance and ‘+’ indicates 

caspofungin resistance. 
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Table 5.2: Activity of alkyne-OF compared to native occidiofungin 

 

Strain MIC (µg/mL) 

Native 

occidiofungin  

Alkyne-OF 

Saccharomyces cerevisiae BY4741 0.125 1 

Schizosaccharomyces pombe 972 h 0.0625 0.5 
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Table 5.3: List of proteins pulled down exclusively by alkyne-OF using the affinity 

purification. Proteins in the cells highlighted in green are those that were found in 

the pulldown assays in both S.pombe and S.cerevisiae. Proteins in the cells that are 

not highlighted were found in the S.pombe assays only. 

 

Standard 

Name 

 

Description 

Systematic Name 

S.cerevisiae S.pombe 

Act1  Actin YFL039C SPBC32H8.

12c 

Chc1  clathrin heavy chain (predicted) YGL206C SPAC26A3.

05 

Arc5  ARP2/3 actin-organizing complex 

subunit 

YIL062C SPAC17G8.

04c 

Dpm1  dolichol-phosphate mannosyltransferase 

catalytic subunit 

YPR183W SPAC31G5.

16c 

Mpg1  mannose-1-phosphate guanyltransferase YDL055C SPCC1906.

01 

Rho1  Rho family GTPase YPR165W SPAC1F7.0

4 

Sec24 COPII cargo receptor YIL109C SPAC22F8.

08 

Naa25  NatB N-acetyltransferase complex 

regulatory subunit 

YOL076W SPBC1215.

02c 

Rad25  14-3-3 protein YIL143C SPAC17A2.

13c 

Rad24  14-3-3 protein YER173W SPAC8E11.

02c 

Dis2 serine/threonine protein phosphatase PP1 YER133W SPBC776.0

2c 

Pr65 protein phosphatase 2A 65kD regulatory 

subunit (A subunit) 

YAL016W SPBC146.1

4c 

Cka1  serine/threonine protein kinase YIL035C SPAC23C1

1.11 

Myo1 myosin type I YMR109W SPBC146.1

3c 

Pil1 fungal protein associated with 

endocytosis (predicted) 

YGR086C SPBC146.1

4c 

Cap1  adenylyl cyclase-associated protein YKL007W SPCC306.0

9c 

Sey1  GTP binding protein (predicted) YOR165W SPAC222.1

4c 

Sfb3 vesicle component COPII-coated 

(predicted)  

YHR098C SPBC4.03c 
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Table 5.3 (continued): List of proteins pulled down exclusively by alkyne-OF using 

the affinity purification. Proteins in the cells highlighted in green are those that 

were found in the pulldown assays in both S.pombe and S.cerevisiae. Proteins in the 

cells that are not highlighted were found in the S.pombe assays only. 

 

Standard 

Name 

 

Description 

Systematic Name 

S.cerevisiae S. pombe 

Sar1  ADP-ribosylation factor YPL218W SPBC31F10

.06c 

Sec21  coatomer gamma subunit (predicted) YNL287W SPAC57A7.

10c 

Sec26 coatomer beta subunit (predicted) YDR238C SPBC146.1

4c 

RPS002 40S ribosomal protein S0B YLR048W SPAPJ698.0

2c 

RPL200

2 

60S ribosomal protein L20 YMR242C SPAC26A3.

04 

RPS110

1 

ribosomal protein S11 homolog YDR025W SPAC31G5.

03 

RPP0 60S acidic ribosomal protein P0 YLR340W SPCC18.14

c 

RPL170

1 

60S ribosomal protein L17 YKL180W SPBC2F12.

04 

Cyc1 cytochrome c (predicted) YJR048W SPCC191.0

7 

Tom70 mitochondrial TOM complex subunit 

Tom40 (predicted) 

YNL121C SPAC6B12.

12 

Sif2 mitochondrial conserved protein 

(predicted) 

YBR103W SPCC16C4.

01 
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Figure 5.1: Derivatization and characterization of alkyne-OF. A) Chemical addition of 

alkyne group to occidiofungin; B) Purification of alkyne-OF by RP- HPLC; C) 

Confirmation of the addition of alkyne group to occidiofungin by MALDI-TOF mass 

spectrometry. 
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Figure 5.2: Induction of apoptosis by alkyne-OF. The ‘DMSO’ and ‘H2O2’ columns 

represent the negative and positive controls, respectively. The ‘WT’ column corresponds 

to cells treated with 1x MIC quantity of native occidiofungin and the last two panels 

represent treatment of cells with alkyne-OF at the concentration indicated. A) 

Externalization of phosphatidylserine demonstrated by the fluorescence of Annexin-V-

Fluorescein, B) Release of reactive oxygen species indicated by the formation of 

rhodamine from dihydrorhodamine 123 and C) Double stranded breaks visualized by 

TUNEL assay, following treatment with native and alkyne-OF. 
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Figure 5.3: Determination of in vivo interaction of occidiofungin.  A) Samples obtained 

following affinity purification of whole cell extracts run on 12% SDS gels and stained 

with Coomassie blue (top) and silver staining (bottom). The Coomassie stained gel was 

run only until the proteins entered the separating phase whereas the silver stained gel 

was allowed to run completely. The proteins from the bands in the Coomassie stained 

gel were determined by LC-MS/MS analysis. Broad range (10-250kDa) ladder was used 

on both gels; B) Cellular distribution of the results obtained following trypsin digest of 

the bands and LC-MS/MS analysis. 
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Figure 5.4: In vitro interaction of occidiofungin with F- and G-actin.  a) Affinity 

pulldown of actin using alkyne-OF: Lane 1- Ladder, Lane 2-100 ng pure F-actin, Lane 

3-100 ng pure G-actin, Lane 4-Empty, Lane 5-F-actin treated with alkyne-OF, Lane 6-F-

actin treated with native occidiofungin, Lane 7-F-actin treated with DMSO, Lane 8-G-

actin treated with alkyne-OF, Lane 9-G-actin treated with native occidiofungin, Lane 10-

G-actin treated with DMSO; b) Fluorescence microscopy analysis of the effect of 

occidiofungin treatment on actin filaments: A: untreated actin filaments, B: Actin:native 

occidiofungin (24 μg actin:4 μg native occidiofungin), C: Actin:native occidiofungin (24 

μg actin:8 μg native occidiofungin). Scale bar represents 5µm. 
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Figure 5.5: Visualization of actin filaments. a) Untreated F-actin filaments stained with 

phalloidin 670 dye; Alkyne-OF treated F-actin filaments stained with azide derivatized 

AlexaFluor488 [(b)- 40x; (c)- 100x]  
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Figure 5.6: Effect of occidiofungin on actin (a) polymerization and (b) 

depolymerization in vitro. Symbols are as follows:     - G-buffer (control),    - G-

buffer and pyrene actin,    , ∆ - Test buffer (1.5% β-cyclodextrin in PBS) and pyrene 

actin (control), X – 20 μL of test buffer containing 20 μg of occidiofungin and pyrene 

actin. 
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Figure 5.7: Time course analysis (A-C) and competition with native occidiofungin (D-

F) in a) Schizosaccharomyces pombe and b) Saccharomyces cerevisiae. Arrows indicate 

specific localization patterns observed in each cell at 10, 30, and 60 minutes. 
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Figure 5.8: Effect of the native occidiofungin on endocytosis in fission yeast. DIC (top 

row) and fluorescence (bottom row) images of cells stained using FM-464 following 

treatment with sample blank (left column), 0.5x MIC of occidiofungin (middle column), 

and 1x MIC occidiofungin (last column). FM-464 dye uptake by endocytosis decreases 

in cells exposed to occidiofungin a dose dependent fashion. 
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6. PHARMACOLOGICAL DEVELOPMENT OF OCCIDIOFUNGIN: 

LIPOFORMULATION, TOXICOLOGICAL ANALYSIS AND EFFICACY 

STUDIES 

 

6.1 Overview 

Occidiofungin is a non-ribosomally synthesized cyclic glycolipopeptide, 

produced by a soil bacterium, which possesses broad spectrum antifungal properties. It 

has been reported to have anti-tumor properties at sub-micromolar concentrations. It has 

been previously shown to have minimal toxicity when administered intraperitoneally and 

subcutaneously at a high dose. This report explores multiple routes of administration of 

occidiofungin to determine the most efficient method of delivery and analyzes the 

toxicity associated with each route. Encapsulation of occidiofungin in lipid vesicles was 

done. Upon administering the liposomal occidiofungin, the peak plasma concentration 

was seen to increase several fold. Histopathology tests revealed mild toxicity in the 

kidneys, which was reversed as occidiofungin was cleared from the blood. A long 

duration study over 28 days, with liposomal occidiofungin administration every 48 

hours, indicated absence of toxicity in organ tissues. Further, the rate of killing of yeast 

by liposomal occidiofungin was found to be similar to that of free occidiofungin. This 

provides an alternate formulation of occidiofungin with reduced organ toxicity, higher 

peak plasma concentration and similar rate of killing as free occidiofungin. 
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6.2 Introduction 

Toxicity to host organisms is a major limiting factor in the clinical use of 

bioactive compounds. This is an important factor in the development of antifungal 

compounds for use in human beings since the fungal cells being targeted share several 

similar features to the host. Currently existing classes of antifungals are limited in their 

use by the maximum tolerated dose, especially when used against strains that have 

acquired resistance. Amphotericin B formulated as amphotericin deoxycholate has been 

associated with severe renal and hepatotoxic side effects.
207,208

 Lipid formulations of 

amphotericin have been developed in order to reduce the toxicity associated with 

amphotericin deoxycholate. These formulations are reported to have reduced the 

nephrotoxic effects but appear to induce a cytokine response following 

administration.
209,210

 The azole class of antifungals, by comparison, is less toxic than the 

polyenes. The most common side effects of azole treatment include skin sensitivity, 

occurrence of rashes and nausea.
211

 Although less common, hepatotoxicity has been 

reported in cases with voriconazole treatment and less frequently with isoconazole and 

itraconazole treatment.
212

 The risk for in vivo toxicity due to azoles is higher due to the 

occurrence of drug-drug interactions. Azoles have the highest drug-drug interactions of 

the three classes of antifungals and this leads to numerous side-effects.
213

 Echinocandins 

are a well-tolerated class of antifungals with minimal toxicity to the host. Reports of 

mild side effects such as gastro-intestinal distress and elevated aminotransferase levels, 

which indicate liver distress, have been seen.
214

 With the occurrence of low drug-drug 
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interactions, the limiting factor of the echinocandins appears to be the development of 

resistance in fungal strains to this class.
215,216

  

There is an urgent need to identify antifungal compounds with novel mechanisms 

of action and low toxicity to the host organisms to treat infections that are resistant to 

currently available forms of treatment. Occidiofungin is a cyclic, non-ribosomally 

synthesized peptide that can be purified from a liquid culture of the soil bacterium 

Burkholderia contaminans MS14.
64

 The covalent structure of occidiofungin has eight 

constituent amino acids, two of which are non-standard. One of the non-standard amino 

acids, NAA2 has an eighteen carbon lipid chain, to which a xylose sugar is attached.
64

 

The bacterium naturally makes several variants of the base structure of occidiofungin 

(1200Da) which contribute to a more varied conformational repertoire of the wild type 

pool of occidiofungin.
217,218

 Occidiofungin has been reported to possess activity against 

a wide spectrum of fungi that are pathogenic to plants, animals and human beings.
64

 

Occidiofungin has been reported to cause cell death in fungi by triggering apoptosis in 

the cells. Occidiofungin does not target cell compartments that the currently available 

families of antifungals target i.e. cell wall and cell membrane stability.
66

 The fact that 

occidiofungin targets actin, an entirely new cellular component for an antifungal, is 

encouraging, in the face of extensive resistance to the existing treatment options.
199

 In 

order to develop occidiofungin as a clinically viable treatment option, the availability 

and toxicity of occidiofungin in animal models need to be determined. Previous research 

indicates that occidiofungin, when administered intraperitoneally and subcutaneously, 

was well tolerated at a dose of 20 mg/kg in 0.5% methylcellulose (constituted with 0.1% 
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Tween-80 in PBS), with minimal tissue toxicity. Repeated dosing, at 2 mg/kg, 

administered intraperitoneally for 5 days indicated up to 12% loss in body weight, which 

was recovered when treatment was stopped. Blood chemistry and microscopic tissue 

analyses indicated no severe effects on organ function and health.
67

 Even so, questions 

regarding the formulation and other possible routes of administration of occidiofungin 

remain. In this report, we discuss alternate formulations of occidiofungin administered 

via multiple routes in an effort to determine the most efficient method of delivery of 

occidiofungin in an organism while monitoring parameters that indicate toxicity. 

6.3 Materials and methods 

6.3.1 In vitro quantification of occidiofungin in plasma 

6.3.1.1 Evaluation of extraction protocols and establishment of standard curve: 

In order to determine the most optimal solvent for the extraction of occidiofungin 

from plasma, different solvents were used. Purified occidiofungin was dissolved in 

phosphate buffered saline (PBS) containing 1.5% hydroxy propyl-beta-cylcodextrin and 

this formulation was used for all the in vitro and in vivo assays reported in this study. 

Occidiofungin was added to commercial BALB/c mouse plasma in vitro to achieve a 

final concentration of 2 μg/mL and multiple solvents at different concentrations were 

used to extract the occidiofungin out of the serum. Each solvent, at the described 

concentration, was added as shown in Figure 6.1 and the mixture was vortexed 

thoroughly. The samples were then spun down at 13000 rpm for 10 minutes and the 

supernatant was utilized for LC-MS/MS analysis. Azithromycin at a concentration of 



 

143 

 

100 ng/mL was used as the internal standard. Based on the comparison of the solvents, 

50% methanol was found to be the most efficient method to extract the compound.  

Liquid chromatography was done using Acclaim 120 C18 columns (Length: 150mm; 

I.D: 2.1mm; 5µm) to purify the occidiofungin in the sample. Occidiofungin was then 

subjected to MS/MS using the ThermoScientific TSQ Vantage and fragmentation of 

occidiofungin (parent mass 1200 m/z) was carried out. Every compound with a mass of 

1200 m/z which fragmented to yield the fragment of 1068 m/z, which corresponds to 

occidiofungin molecule without the xylose sugar, was used for quantification of 

occidiofungin. 

  A concentration gradient of occidiofungin was set up in commercially available 

plasma from BALB/c mice. An initial concentration of 1000 ng/mL was setup and serial 

dilutions were done in plasma down to a concentration of 12.5 ng/mL. Methanol was 

added to each sample to reach a final concentration of 50% (v/v) and the samples were 

vortexed. The samples were then spun down at 13000rpm for 10 minutes and the 

supernatant was analyzed. Azithromycin at a concentration of 100 ng/mL was used as 

the internal standard.  

6.3.1.2 Lipoformulation of occidiofungin: 

Encapsulation of occidiofungin in vesicles using the lipids 1,2-dioleoyl-sn-

glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-

glycerol) (DPPG) was carried out. Two types of lipid formulations were tested: the first 

type of formulation was done by encapsulating occidiofungin in 100% DOPC whereas 

the second type was done by encapsulating occidiofungin in a mixture containing a 9:1 
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ratio of DOPC:DPPG. In each case, the appropriate amount of lipid to achieve a final 

concentration of 20 mg/mL was added to the bottom of an acid washed glass beaker. The 

lipids were vacuum dried to create a lipid cake at the bottom of the beaker. The lipids 

were then rehydrated using 0.5 mg/mL of occidiofungin in 1.5% hydroxy propyl-beta-

cylcodextrin suspended in phosphate buffered saline. The cloudy suspension that was 

formed was transferred into a 1.5 mL Eppendorf tube. Sonication was carried out using a 

probe sonicator at 30 second on-off cycles while placing the tube on ice to minimize 

thermal effects. Sonication was done until the solution became translucent. The quantity 

of occidiofungin in the vesicles was estimated by running the vesicles made using 100 

μg of occidiofungin through a gel filtration column in order to separate the encapsulated 

compound from free occidiofungin. The column was prepared using a bed volume of 15 

mL of Sephadex G-10 beads. The void volume was estimated using Blue dextran 

(Sigma) as the marker. Both types of liposomal preparations containing 100 μg of 

occidiofungin were run on the gel filtration column and the void volume was collected. 

Occidiofungin from the vesicles was extracted using 50% methanol and purified by 

Reversed-Phase High Performance Liquid Chromatography (RP-HPLC) using a 4.6- by 

250-mm C18 column (Grace-Vydac; catalog no. 201TP54) on a Bio-Rad BioLogic F10 

Duo Flow with Quad Tec UV-Vis detector system. The solvents used were 99.9% water 

(with 0.1% trifluoroacetic acid) and 99.9% acetonitrile (with 0.1% TFA). The amount of 

occidiofungin extracted from the vesicles was compared to a standard run of 100 μg of 

occidiofungin and the difference was estimated. 
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6.3.1.3 Comparison of bioactivity of free and liposomal occidiofungin: 

Bioactivity assays were carried out using the CLSI method. The strain used to 

carry out the bioactivity assays was Candida glabrata ATCC 2001. A time course 

analysis of yeast cell death in YPD using free and liposomal occidiofungin was done as 

previously described
(11)

.  

6.3.2 In vivo analysis of occidiofungin in a murine model 

6.3.2.1 Comparison of administration routes: 

Six to eight week old female BALB/c mice were used for all in vivo studies.  In 

order to determine the most efficient route of administration of occidiofungin, different 

routes such as the oral, subcutaneous, intraperitoneal and intravenous routes were 

evaluated. 2.5 mg/kg of occidiofungin in 1.5% hydroxy propyl-beta-cylcodextrin 

suspended in PBS was administered to the mice. Four groups of nine mice were used; 

each group corresponding to a different route of administration. The mice were weighed 

prior to occidiofungin administration and changes in body weight were monitored every 

24 hours. Blood draws were done by nipping the tail vein of the mice at 1, 3, 5, 7, 9, 12, 

18, 24 and 48 hpi (hours post injection). Following the intravenous route of 

administration, blood draws were done from the lateral saphenous vein of the mouse for 

the initial two time points. 50μL of blood was drawn from each mouse at each time point 

and the samples were pooled in groups of three. 0.6% sodium citrate was used as the 

anticoagulant. The samples were then spun down at 13000 rpm for 10 minutes and the 

supernatant was removed and stored at -20°C until methanol extraction and LC-MS/MS 

analysis as described above.  
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6.3.2.2 Evaluation of vesicle encapsulated occidiofungin: 

Vesicle encapsulated occidiofungin was prepared as described above using 

DOPC and DOPC-DPPG (9:1 ratio). 2.5 mg/kg of the liposomal occidiofungin was 

administered to six to eight week old female BALB/c mice intravenously and blood 

draws were done at 1, 3, 5, 7, 9, 12, 18, 24 and 48 hpi. Occidiofungin was extracted and 

concentrations were estimated as described above.   

6.3.2.3 Toxicological evaluation: 

In order to determine the toxicological effects of occidiofungin, analysis of blood 

components and tissue was carried out following treatment with 2.5 mg/kg (free and 

liposomal occidiofungin) and 5 mg/kg of free occidiofungin in a murine system. 

Toxicological analyses were carried out as previously described
68

. Briefly, occidiofungin 

in 1.5% hydroxy propyl-beta-cylcodextrin suspended in PBS was administered via tail 

vein to the mice. The mice were monitored for behavioral changes. The mice were 

anesthetized using isoflurane and blood draws were done from the heart for serum 

biochemistry assays (alkaline phosphatase, alanine aminotransferase, aspartate 

aminotransferase, albumin, and blood urea nitrogen) and hematology (white blood cell 

count and white blood cell differentiation). Body weight was measured immediately 

before treatment and 24 hours later before the mice were fully anesthetized and fixed in 

10% neutral buffered formalin. Histological examination of each organ was done by 

embedding tissue in paraffin and staining with hematoxylin and eosin (H & E).  

Six to eight week old mice received 2 mg/kg liposomal occidiofungin every 48 hours for 

28 days, to study the effects of repeated dosing of occidiofungin. The changes in body 
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weight were recorded and histological analyses on tissues were carried out. A control 

group of three mice received empty vesicles for the same duration.  

6.3.2.4 Determination of efficacy of occidiofungin in a murine model of systemic 

candidiasis: 

A group of eighteen female, six week old BALB/c mice was used to determine 

the efficacy of liposomal occidiofungin. Liposomal occidiofungin was prepared using a 

9:1 ratio of DOPC:DPPG as described above. Neutropenia was induced in the mice by 

administering 150 mg/kg of cyclophosphamide in sterile PBS via the intraperitoneal 

route. After 72 hours, the mice were infected with 5x10
6
 CFUs of Candida glabrata 

ATCC 2001 in 100 μL of sterile PBS intravenously. Drug treatment was carried out 24 

hours following administration of C. glabrata. The first group of seven mice was treated 

with 2.5 mg/kg of liposomal occidiofungin intravenously, the second group of seven 

mice was treated with an equal volume of empty vesicles and the last group of four mice 

was treated with 5 mg/kg of caspofungin in PBS intraperitoneally
219

. The mice were 

returned to the cages and their behavior and body weight changes were monitored. The 

mice were sacrificed at 24 hours post drug treatment and the kidneys were removed, 

weighed, macerated in YPD and plated on YPD plates to determine the fungal load. The 

plates were incubated at 35°C before a CFU count was done on each group.  

6.3.3 Estimation of the activity of occidiofungin in the presence of serum 

A freshly streaked plate of Candida glabrata ATCC 2001 was used to test the 

bioactivity of free and liposomal occidiofungin in the presence of 50% serum and whole 

blood from different animals. A culture of the yeast at an OD600 of 0.13 in sterile water 
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was used. This was then diluted into YPD according to the CLSI M27-A3 protocol. 

Occidiofungin was diluted in 100 % serum or blood to achieve a starting concentration 

of 16 μg/mL. An equal volume of the diluted culture was overlaid and the plates were 

incubated overnight at 35°C. The MIC was read at 24 hours post inoculation. MLCs 

were estimated for the assays done in blood by plating 100μL of each well onto YPD 

plates and incubating at 35°C for 24 hours.  

6.4 Results 

6.4.1 Estimation of peak plasma concentration of non-liposomal occidiofungin by 

different routes of administration 

In order to determine the most efficient method of delivery of occidiofungin, four 

different routes of delivery were compared. Prior to the in vivo aspect of this assay, 

occidiofungin was added to commercial mouse plasma in vitro and an extraction 

protocol was developed. Several different solvents at different concentrations were 

tested and the results are listed in Figure 6.1. The table shows the peaks obtained when 

extraction was carried out with each solvent and detection for the parent mass of 

occidiofungin (1200 Da) with a signature fragment of mass 1068 Da (indicating loss of 

sugar due to fragmentation) was performed. An accompanying peak for the detection of 

the internal standard, azithromycin, is also represented. Of the multiple solvents tested, 

50% methanol was found to be best suited to extract occidiofungin from plasma. All 

further extractions of occidiofungin from plasma were carried out using 50% methanol. 

With this established extraction protocol, a standard curve was constructed using known 

concentrations of occidiofungin added to plasma. The standard curve, as represented in 
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Figure 6.2, was seen to have an R
2
 value of 0.9957. As a result, the reliable limit of 

quantification of occidiofungin by this process was determined to be 50 ng/mL and the 

limit of detection was seen to be 10 ng/mL. The comparison of the different routes of 

administration yielded important information regarding the retention of the parent form 

of occidiofungin (1200 Da) in the bloodstream, following an injection of 2.5 mg/kg of 

occidiofungin in 1.5% hydroxy propyl-beta-cyclodextrin by oral, subcutaneous, 

intraperitoneal and intravenous routes of administration (Figure 6.3). The oral and 

subcutaneous routes of administration yielded peak plasma concentrations below the 

limit of quantification. Furthermore, the intraperitoneal route yielded a peak plasma 

concentration of 200 ng/mL at 9-12 hpi. Occidiofungin appears to be cleared from the 

bloodstream at 48 hpi. Intravenous route of administration appeared to yield the highest 

peak plasma concentration: 390 ng/mL at 1 hpi. The compound was eliminated gradually 

from the bloodstream by 24 hpi with a half-life of approximately 14 hours.  

6.4.2 Determination of peak plasma concentration following liposomal occidiofungin 

administration 

Liposomal formulation of occidiofungin was done to improve the peak plasma 

concentration of occidiofungin, since the above mentioned concentrations are not 

sufficient to effect inhibition of fungal load in a murine model. Administration of 2.5 

mg/kg of DOPC vesicles intravenously resulted in higher peak plasma concentration of 

occidiofungin as can be seen in Figure 6.4A. At 1 hpi, the concentration of occidiofungin 

in plasma was seen to reach 1800 ng/mL following which it gradually reduced and was 

eventually cleared out of the system at 48 hpi. In comparison, plasma concentration of 
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occidiofungin following administration of vesicles made out of 9 parts DOPC and 1 part 

DPPG containing 2.5 mg/kg of occidiofungin was seen to be approximately 7500 ng/mL 

at 1 hpi (Figure 6.4B). The half-life in both cases was seen to be around 14.6 hours.  

6.4.3 Comparison of pharmacodynamics between free and liposomal occidiofungin 

The in vitro analysis to estimate the kill kinetics of purified liposomal 

occidiofungin indicated no significant differences in the rate of killing of yeast by 

purified liposomal occidiofungin compared to free occidiofungin. The comparison of 

different concentrations of free and liposomal occidiofungin can be seen in Figure 6.5.  

Ten-fold changes in CFUs between the free and liposomal occidiofungin was observed 

at 4 to 12 hours post antibiotic administration at 0.5x MIC. Similar differences were also 

observed at 1x MIC. Even though differences in CFUs were seen between free and 

liposomal occidiofungin, the rate of killing between free and liposomal occidiofungin 

were found to be consistent over a 12 hour period of time. 

6.4.4 Toxicology and histopathology analysis 

Hematology and serum biochemistry assays done on the blood from the mice 

used for comparison of different routes of administration of free occidiofungin indicated 

that there were no significant differences between the treated mice and the control mice 

for all parameters except levels of alanine transaminase (ALT). ALT levels in the mice 

that received occidiofungin intraperitoneally and intravenously were significantly higher 

than the controls
68

. Further, histopathology analyses conducted on the organs of these 

mice indicated that no significant differences between the treated and the control mice 

were seen, except in the renal medulla of the mice treated intravenously, and in some 
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cases, intraperitoneally. The renal medullary findings included scattered minimal to 

occasionally mild small foci interpreted as acute tubular necrosis with minimal granular 

casts (Figure 6.6). This effect has been reported to be transient as it is not seen at 48 hpi 

following treatment at a higher dose (5 mg/kg)
68

.  

The changes in body weight of mice that were repeatedly dosed with 2 mg/kg 

liposomal occidiofungin every 48 hours for 28 days indicated that weight lost following 

administration of occidiofungin was recovered when the challenge was removed (Figure 

6.7). Furthermore, the histopathology report on these mice indicated no prolonged 

effects on the organ tissues (Figure 6.8). Sections of lung, thyroid, trachea, small 

intestine, thymus, esophagus, stomach, brain, colon, adrenal gland and heart were 

analyzed microscopically for abnormalities. They were found to be histologically within 

normal limits compared to the controls, suggesting that repeated dosing for a long 

duration did not have lasting effects on the organ tissues. 

6.4.5 Efficacy analysis of liposomal occidiofungin 

Comparison of fungal load in the kidneys of mice treated with 5 mg/kg of 

liposomal occidiofungin with the control indicated that no significant reduction 

occurred. The mice treated with 5 mg/kg of caspofungin demonstrated several fold 

reduction in the number of CFUs compared to the controls, as seen in Figure 6.9.  

6.4.6 Activity of occidiofungin in the presence of serum 

When activity of occidiofungin against C. glabrata ATCC 2001 was determined 

in the presence of 50% serum, the activity of occidiofungin was significantly less when 

compared to its effectiveness in YPD (Table 6.1). MIC of free and liposomal 
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occidiofungin in the presence of mouse, rat and porcine serum was seen to be greater 

than 16 μg/mL. When the mouse serum was heat inactivated and when esterase 

inhibitors were added, the activity of free and liposomal occidiofungin was seen to be 

greater than 16 μg/mL. When the assay was carried out using human serum, the MIC 

was seen to be 8 μg/mL. When purified liposomal occidiofungin was used in the place of 

free occidiofungin in human serum, activity was seen to improve two-fold. The same 

two-fold difference was observed in MLCs when the assay was done using 50% human 

whole blood instead of serum. When the activity of free and purified liposomal 

occidiofungin was tested in hamster and guinea pig blood, the MLCs were seen to be 

greater than 16 μg/mL. Liposomal occidiofungin demonstrated an MLC of 16 μg/mL in 

beagle and rhesus monkey blood whereas the MLC of free occidiofungin was greater 

than 16 μg/mL. Liposomal occidiofungin has increased activity in human blood with an 

MLC of 8 μg/mL whereas free occidiofungin has activity at 16 μg/mL.  

6.5 Discussion 

Occidiofungin has a wide spectrum of activity against several types of fungi that 

are resistant to the commonly used classes of antifungals. In addition to being active 

against resistant strains of fungi, occidiofungin is also active against Pythium species 

and filamentous fungi. Preliminary toxicological evaluations done on occidiofungin 

indicated that a transient allergy response, indicated by an increase in neutrophils, 

occurred following administration
68

. Body weight changes observed were within normal 

limits and tubular necrosis seen in the kidney tissue was found to be transient
68

. This 

study focuses on determining the most effective formulation of occidiofungin to 
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minimize toxicity in the animal system while increasing peak plasma concentration of 

occidiofungin in an effort to demonstrate efficacy in reducing fungal load in a murine 

model. 

Following the evaluation of four different routes of administration of 

occidiofungin formulated in 1.5% hydroxy propyl-beta-cylcodextrin, we were able to 

demonstrate that intravenous administration of occidiofungin yielded the greatest peak 

plasma concentration. Even so, peak plasma concentration of approximately 390 ng/mL 

following a 2.5 mg/kg intravenous administration would be insufficient to cause a 

significant reduction in the fungal load in organs. Lipoformulation of occidiofungin was 

attempted using two different combinations of lipids to boost the amount of 

occidiofungin that could be recovered from the blood. Lipoformulation has the 

advantage of not only limiting interaction of the drug with other components of blood 

but also reducing toxicity to organs. Following encapsulation of occidiofungin using 

DOPC and a 9:1 mixture of DOPC:DPPG, a marked increase in the peak plasma 

concentration of occidiofungin via intravenous administration was seen for both 

formulations. Between the two, the combinations of the two lipids yielded a peak plasma 

concentration of about 7000ng/ml on average compared to an average of 1500 ng/mL 

with the pure DOPC formulation. Therefore, the DOPC:DPPG (9:1) lipoformulation of 

occidiofungin was used for further studies.  

Tolerability analysis of the lipoformulation by administration of 2 mg/kg of 

DOPC:DPPG-OF every 48 hours for 28 days showed that fluctuations in body weight 

occurred when each dose was administered but recovery was rapid. No significant 



 

154 

 

behavioral changes could be seen following administration. Histopathology assays done 

on multiple organs at the end of 28 days suggested that no significant toxicity could be 

observed following repeated dosing. In addition to being well-tolerated by the mice, the 

lipoformulation of occidiofungin demonstrated similar pharmacodynamics to free 

occidiofungin. Kill curve assays done on free and liposomal occidiofungin demonstrated 

that the rate of killing between the two formulations was not significantly different. 

Therefore, by encapsulating occidiofungin in lipid vesicles we were able to improve the 

formulation of occidiofungin that resulted in a higher peak plasma concentration. In 

addition, the formulation had a reduction in toxicity, while having a similar activity 

against fungi in vitro. 

Efficacy study done in a murine model of systemic candidiasis using 2.5 mg/kg 

of liposomal occidiofungin in comparison with empty vesicle control indicated that there 

was no significant difference in the fungal load in the kidneys of the treated group. A 

positive control group of mice that received 5 mg/kg caspofungin had greater than a log 

reduction in CFU count compared to the negative control. This indicated that even 

though there was enough occidiofungin in the plasma to cause reduction in fungal load 

following administration, efficacy could not be observed. This suggests that 

occidiofungin is not bioavailable in vivo possibly due to binding to serum proteins. This 

was confirmed by bioactivity assays done using 50% serum and blood from different 

animals that could be used as model systems. Interestingly, activity can be seen in 

human blood and serum with both liposomal and free occidiofungin. Liposomal 

occidiofungin was consistently more active in the presence of different sera and blood 
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compared to free occidiofungin. Chemical modification of the base structure of 

occidiofungin or development of alternative formulation needs to be done in order to 

reverse the binding of occidiofungin to proteins in serum.  

6.6 Conclusion 

One of the common problems associated with treatment with antifungals such as 

amphotericin B or caspofungin is the toxicity associated with the drugs. We have been 

able to demonstrate a formulation of occidiofungin that is taken up by a wide spectrum 

of fungal cells and is well tolerated at doses that are capable of controlling fungal 

infection. This opens avenues for the development of occidiofungin as a treatment 

alternative with lower toxicity and histopathological side effects than the antifungals 

currently in use.
8,220

 Additionally, we have reported sub-micromolar activity of 

occidiofungin against multiple cancer cell lines in the presence of serum. Given that 

occidiofungin binds to actin to cause cell death, it may be possible that occidiofungin has 

greater activity against actively growing cells. Further studies will be aimed at 

understanding the reduction in activity of occidiofungin in blood and development of 

ways to combat the problem to demonstrate efficacy in treating systemic candidiasis.  
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Table 6.1: Activity of free and liposomal occidiofungin in serum and blood 

 

  

  

  

Medium 

Minimum Inhibitory 

Concentration 

(μg/mL) 

Minimum Lethal  

Concentration 

(μg/mL) 

 Free 

occidiofungin 

 Liposomal 

occidiofungin 

 Free 

occidiofungin 

 Liposomal 

occidiofungin 

YPD 0.5 0.5  

Mouse serum >16 >16 

Mouse serum 

(Heat inactivated) 

>16 >16 

Mouse serum (w/ 

esterase 

inhibitors) 

>16 >16 

Rat serum >16 >16 

Human serum 8 4 

Porcine serum >16 16 

Hamster whole 

blood 

 >16 >16 

Guinea pig whole 

blood 

>16 >16 

Beagle whole 

blood 

>16 16 

Rhesus monkey 

whole blood 

>16 16 

Human whole 

blood 

16 8 
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Figure 6.1: Comparison of extraction methods of occidiofungin from plasma  
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Figure 6.2: Calibration curve. Standard concentrations of occidiofungin in serum. 

r
2
=0.9957; y=-159.8398x+3152.4367 
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Figure 6.3: Comparison of different routes of administration. The plots demonstrate 

occidiofungin extracted from the plasma of mice treated with 2.5 mg/kg of occidiofungin 

via A) Intravenous route, B) Intraperitoneal route, C) Sub-cutaneous route and D) Oral 

route. Error bars indicate standard error of the mean (S.E.M) 
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Figure 6.4: Comparison of peak plasma concentrations between administration of free 

and liposomal occidiofungin via intravenous administration. A) DOPC vesicles, B) 

DOPC:DPPG (9:1) vesicles. Error bars indicate S.E.M. 
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Figure 6.5: Comparison of kill kinetics. The effects of A) free and B) liposomal 

occidiofungin against Candida glabrata ATCC 2001 are represented. Figure legends are 

denoted adjacent to each graph.  
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Figure 6.6: Histopathology analysis of kidney tissue. Images showing tubular necrosis 

in kidney tissue following treatment with 2.5 mg/kg of occidiofungin for 24 hours by i.v 

(right). Tissue from the control group that did not receive occidiofungin (left) 

demonstrates the normal state. Images are at 40x magnification.  
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Figure 6.7: Effects of occidiofungin treatment on body weight of mice. The trendlines 

denote body weight changes in mice treated with 2 mg/kg liposomal occidiofungin for 

28 days compared with a control group that received empty vesicles for the same 

duration. Error bars indicate standard deviation. 
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Figure 6.8: Histopathology analysis of organs from mice treated with 2mg/kg liposomal 

occidiofungin every 48 hours for 28 days. A) Lung (20x), B) Trachea (20x), C) Thyroid 

(20x), D) Thymus (20x), E) Esophagus (20x), F) Kidney (20x), G) Heart (20x), H) 

Spleen (20x), I) Liver (20x), J) Stomach (20x), K) Pancreas (20x), L) Small intestine 

(20x), M) Colon (20x), N) Brain (10x), O) Adrenal gland (20x). All tissues were found 

to be normal. 
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Figure 6.9: Analysis of efficacy of occidiofungin in vivo. Efficacy analysis of liposomal 

occidiofungin in a murine model of systemic candidiasis. No statistically significant 

reduction in fungal load was observed following occidiofungin treatment. Error bars 

denote deviation from the mean. 

 

 

 

 

 

 

 

 

 

100

1000

10000

100000

1000000

2.5 mg/kg
liposomal OF

Empty vesicles 5 mg/kg
Caspofungin

C
o

lo
n

y 
Fo

rm
in

g 
U

n
it

s 
(p

e
r 

gr
am

 o
f 

ki
d

n
e

y)
 



 

166 

 

7. CONCLUSION 

 

Major breakthroughs in the development of antifungals to treat systemic fungal 

infections have been few and far between since the discovery of amphotericin. The 

mechanisms of action of those classes of antifungals cluster around cell wall and cell 

membrane biosynthesis, leading to the development of resistance. Widespread resistance 

to the antifungals in use has created an urgent necessity for the identification and 

development of antifungals with novel targets. Such antifungals have a better chance of 

working against fungal infections that are resistant to the currently available antifungals. 

Our research suggests that occidiofungin holds promise to be developed as a clinically 

useful alternative to treat systemic fungal infections. 

This dissertation is a compilation of studies that have expanded our 

understanding of occidiofungin. We report findings that suggest occidiofungin has 

multiple advantages over other antifungals. One such advantage is derived from the fact 

that the bacterium produces a pool of variants of the base structure of occidiofungin. 

Sections two and three discuss the structural and functional characterization of two such 

variants. We were able to characterize a variant of occidiofungin that retained activity 

without the xylose sugar that is found attached to the base structure. The advantage lies 

in the fact that future development of this variant could further minimize toxicity in an 

animal system since xylose is a sugar that is alien to higher vertebrates. In addition, we 

discovered that an additional thioesterase that was evolutionarily incorporated into the 

biosynthetic pathway of occidiofungin added unique diastereomers of the compound to 
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the wild type pool. This could potentially be advantageous against other microbes that 

the bacterium naturally encounters in its surroundings. These studies aided in improving 

our understanding of the biosynthetic machinery of occidiofungin and the benefits of 

these structural variants.  

One of the most important advantages of occidiofungin lies in the fact that the 

mechanism of action and the molecular target are unique. Sections four and five discuss 

the induction of apoptosis, possibly as a result of the perturbation of actin dynamics in 

yeast. Although other actin binding compounds such as jasplakinolide have antifungal 

properties
221

, occidiofungin is taken up much more efficiently by fungal cells at a much 

lower concentration. Its activity against caspofungin and fluconazole resistant strains of 

fungi is possibly due to its unique target. We observed that occidiofungin binds to actin, 

as a result of affinity purification assays. Further, filaments of F-actin were seen to 

clump together following occidiofungin treatment. This could lead to induction of 

apoptosis resulting in cell death. Discovery of the molecular target of occidiofungin is 

important for pre-clinical development of the drug. 

This dissertation also reports formulation of occidiofungin in lipid vesicles to 

improve plasma concentration and mitigate toxicity effects. Toxicity analysis of 

occidiofungin reported in section six of this dissertation suggests that liposomal 

occidiofungin is well- tolerated in murine models. Histopathology studies on multiple 

organs showed that exposure of occidiofungin over a long period of time to mice did not 

cause toxic effects. Although occidiofungin could be recovered from the plasma, it was 

found to be unavailable to reduce fungal load in select organs in mice. This effect was 
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observed in the in vitro bioactivity assays done in serum. This suggests strong, 

irreversible binding of occidiofungin with serum proteins. Our findings from our 

experiments identify areas where further development of occidiofungin can be done to 

improve availability and effect activity in the presence of animal serum.  

One of the ways that the problem of binding to serum can be overcome is by 

chemically modifying the structure of occidiofungin to achieve improved bioavailability 

while retaining fungicidal activity in an animal model. We have already reported a 

xylose-free variant of occidiofungin that retains activity. Further experiments in 

modifying this variant for use in animal systems could lead to potential alternatives. In 

addition, other formulations of occidiofungin could be attempted in order to minimize 

interaction with proteins. Another area which requires focus is the subsequent process 

that is triggered following the binding of occidiofungin to actin leading up to apoptosis. 

Research in this area could also open up new avenues that could be potential target for 

antifungals. We believe this research could broaden the field of antifungals leading to 

the development of a successful, novel compound that could be used to treat invasive 

fungal infections. 
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