
IN PURSUIT OF DESIRABLE EQUILIBRIA IN LARGE SCALE

NETWORKED SYSTEMS

A Dissertation

by

JIAN LI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Srinivas Shakkottai
Committee Members, Jean-Francois Chamberland

Anxiao Jiang
P. R. Kumar
Vijay Subramanian

Head of Department, Miroslav M. Begovic

December 2016

Major Subject: Computer Engineering

Copyright 2016 Jian Li

ABSTRACT

This thesis addresses an interdisciplinary problem in the context of engineering,

computer science and economics: In a large scale networked system, how can we

achieve a desirable equilibrium that benefits the system as a whole? We approach

this question from two perspectives. On the one hand, given a system architecture

that imposes certain constraints, a system designer must propose efficient algorithms

to optimally allocate resources to the agents that desire them. On the other hand,

given algorithms that are used in practice, a performance analyst must come up

with tools that can characterize these algorithms and determine when they can be

optimally applied. Ideally, the two viewpoints must be integrated to obtain a simple

system design with efficient algorithms that apply to it.

We study the design of incentives and algorithms in such large scale networked

systems under three application settings, referred to herein via the subheadings:

Incentivizing Sharing in Realtime D2D Networks: A Mean Field Games Perspective,

Energy Coupon: A Mean Field Game Perspective on Demand Response in Smart

Grids, Dynamic Adaptability Properties of Caching Algorithms, and Accuracy vs.

Learning Rate of Multi-level Caching Algorithms. Our application scenarios all entail

an asymptotic system scaling, and an equilibrium is defined in terms of a probability

distribution over system states. The question in each case is to determine how to

attain a probability distribution that possesses certain desirable properties.

For the first two applications, we consider the design of specific mechanisms

to steer the system toward a desirable equilibrium under self interested decision

making. The environments in these problems are such that there is a set of shared

resources, and a mechanism is used during each time step to allocate resources to

ii

agents that are selfish and interact via a repeated game. These models are motivated

by resource sharing systems in the context of data communication, transportation,

and power transmission networks. The objective is to ensure that the achieved

equilibria are socially desirable. Formally, we show that a Mean Field Game can be

used to accurately approximate these repeated game frameworks, and we describe

mechanisms under which socially desirable Mean Field Equilibria exist.

For the third application, we focus on performance analysis via new metrics to

determine the value of the attained equilibrium distribution of cache contents when

using different replacement algorithms in cache networks. The work is motivated

by the fact that typical performance analysis of caching algorithms consists of de-

termining hit probability under a fixed arrival process of requests, which does not

account for dynamic variability of request arrivals. Our main contribution is to define

a function which accounts for both the error due to time lag of learning the items’

popularity, as well as error due to the inaccuracy of learning, and to characterize

the tradeoff between the two that conventional algorithms achieve. We then use

the insights gained in this exercise to design new algorithms that are demonstrably

superior.

iii

To my parents, sister and brother-in-law, for their love and support.

iv

ACKNOWLEDGEMENTS

Working towards a Ph.D. was an extraordinary experience with many ups and

downs along the way. Some moments were extremely elating, and others were deeply

depressing, but all of them were very rewarding when looking back now. Many people

guided me through critical times during this journey, and this dissertation cannot

have been completed without the help from all of them. I am forever grateful to

everyone.

First and foremost, I owe my deepest gratitude to my advisor, Professor Srinivas

Shakkottai. Many memories come to mind, and I do not even know where to start

and how to thank him. Without any exaggeration, the work presented here would

not be possible without his guidance and constant encouragement. He was always

ready to sit down with me to help with tackling problems, with seemly endless

reserves of patience in tolerating my capricious views at times. He taught me how

to find interesting research problems, conduct solid research, and present results to

different audiences. I have benefited greatly from his insights, ideas and enthusiasm

in research, and most importantly, his friendship. I am very lucky to have an advisor

who would treat you not only as a student, but also as a friend. Srinivas, thank you.

I am also very grateful to Professor Vijay Subramanian from the University of

Michigan. Serving effectively as my co-advisor, Vijay always had his door open to me

and provided guidance during my graduate studies. I have been surprised on many

occasions by Vijay’s deep insights on the fundamental problems, and his incredible

conscientiousness and attention to the mathematical details in every piece of work. I

hope I have learned and inherited some characteristics from him through these years.

Being a student of you and working with you is one of the luckiest experiences in my

v

life. Vijay, thank you.

It has been a great pleasure to work with both of you, and I look forward to

continuing working together in the future.

I also benefited much from collaborations with Professor John C.S. Lui, with

whom I have been working over multiple visits to the Chinese University of Hong

Kong. John introduced me to caching problems that constitute the second part of

this dissertation. I am fortunate to get a chance to work with and learn from John.

He always kept reminding me to find interesting problems that could be applied in

real systems, and find practical tools to solve them. John, thank you.

I would like to acknowledge my committee members, Professors P. R. Kumar,

Jean-Francois Chamberland, and Anxiao Jiang. Thank you for comments and sug-

gestions on my proposal and dissertation, support and encouragement you have

shown on my work. I have learned a lot from all of you, both from your research

and your courses. Professor Kumar taught me optimization and stochastic systems,

and I have used ideas from these courses in multiple parts of my work. Professor

Chamberland introduced coding theory to me. I learned analysis of algorithms from

Professor Jiang’s class, one of my favorite topics.

I would like to thank my previous and current group members Navid Abe-

dini, Vinod Ramaswamy, Mayank Manjrekar, Bainan Xia, Rajarshi Bhattacharyya,

Suman Paul, Vamseedhar Reddyvari, Ki-Yeob Lee, Kartic Bhargav, Adway Dogra

for their discussions and comments on my work, as well as other students in Com-

puter Engineering and Systems Group (CESG) for their friendship and enthusiasm.

I am also equally indebted to many of my friends who have made my research and

life much richer in my years at Texas A&M University. I cannot image a life without

them. Thank you for being part of my life.

I would like to thank the administrative staff at Electrical and Computer Engi-

vi

neering Department and CESG, especially Tammy Carda, Carolyn Warzon, Melissa

Sheldon, and Anni Brunker for their patience, support and help over the past few

years.

I would like to thank everyone who brought piano playing into my life. Special

thanks go to Scott, who has been so patient and helpful over the years. I would

also like to thank the TAMU Recreation center and everyone who has worked out

together with me. You all have changed me in many aspects of my life: I started

working out, running and swimming since I came to College Station.

Last, but not least, I would like to thank my family. My parents, you raised

me, loved me, gave me all that I needed and supported me always. My sister and

brother-in-law, I am very blessed to have you in my life. I owe my deepest gratitude

to them.

vii

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . v

TABLE OF CONTENTS . viii

LIST OF FIGURES . xiii

LIST OF TABLES . xvii

1. INTRODUCTION . 1

1.1 Overview and Main Contributions . 2

2. INCENTIVIZING SHARING IN REALTIME D2D NETWORKS:
A MEAN FIELD GAME PERSPECTIVE 7

2.1 Introduction . 7
2.1.1 Related Work . 11
2.1.2 Organization and Main Results 13

2.2 Content Streaming Model . 14
2.3 Mean Field Model and Mechanism Design 17

2.3.1 Transfer . 22
2.3.2 Allocation Scheme . 23

2.4 Properties of Mechanism . 25
2.4.1 Truth-telling as Dominant Strategy 25
2.4.2 Nature of Transfers . 25
2.4.3 Value Functions and Optimal Strategies 26

2.5 Mean Field Equilibrium . 27
2.5.1 Stationary Distribution of Deficits 28
2.5.2 Agent and Cluster Decision Problems 29
2.5.3 Mean Field Equilibrium . 30

2.6 Existence of MFE . 30
2.6.1 Steps to Prove MFE Existence 31

2.7 Passage to the Mean Field Limit . 33
2.8 Value Determination . 34
2.9 Android Implementation . 36

viii

2.10 System Viability . 39
2.11 Conclusion . 40

3. ENERGY COUPON: A MEAN FIELD GAME PERSPECTIVE ON DE-
MAND RESPONSE IN SMART GRIDS 41

3.1 Introduction . 41
3.1.1 Prospect Theory . 44
3.1.2 Mean Field Games . 45
3.1.3 Demand Response in Deregulated Markets 46
3.1.4 Main Results . 46
3.1.5 Related Work . 48
3.1.6 Organization . 50

3.2 Mean Field Model . 50
3.3 Lottery Scheme . 55
3.4 Optimal Value Function . 59

3.4.1 Stationary Distributions . 60
3.5 Mean Field Equilibrium . 61

3.5.1 Existence of MFE . 62
3.6 Characteristics of the Best Response Policy 63

3.6.1 Existence of Threshold Policy 64
3.6.2 Relations Between Utility Function u(x) and the Optimal Value

Function Vρ . 64
3.7 Numerical Study . 66

3.7.1 Home Model . 66
3.7.2 Actions and Costs . 68
3.7.3 Coupons, Lottery and Surplus 70
3.7.4 Mean Field Equilibrium . 73
3.7.5 Reward, Saving and Profit . 75

3.8 Conclusion . 77

4. DYNAMIC ADAPTABILITY PROPERTIES OF CACHING ALGORITHMS 79

4.1 Introduction . 79
4.1.1 Structure of Caching Paradigms 82
4.1.2 Related Work . 83
4.1.3 Organization . 84

4.2 Technical Preliminaries . 84
4.2.1 Traffic Model . 84
4.2.2 Popularity Law . 85
4.2.3 Caching Algorithms . 85

4.3 Steady State Distribution . 86
4.4 Hit Probability . 87

ix

4.5 Permutation Distance . 88
4.5.1 Generalized Kendall’s Tau Distance 88
4.5.2 Wasserstein Distance . 90
4.5.3 τ -distance . 91
4.5.4 Model Validation and Insights 91

4.6 Mixing Time . 92
4.6.1 Spectral Gap and Mixing Time 93
4.6.2 Reversibility and Mixing Time 94
4.6.3 Conductance and Mixing Time 96
4.6.4 Analysis of Mixing Time . 97
4.6.5 Comparison of Mixing Times 99

4.7 Learning Error . 100
4.7.1 Model Validation and Insights 101

4.8 Conclusion . 102

5. ACCURACY VS. LEARNING RATE OF MULTI-LEVEL CACHING AL-
GORITHMS . 103

5.1 Introduction . 103
5.1.1 Organization . 105

5.2 Performance of Multi-level Caching Algorithms 105
5.2.1 Preliminaries . 105
5.2.2 Steady State Distribution . 107
5.2.3 Hit Probability . 108
5.2.4 Permutation Distance . 113
5.2.5 Mixing Time of Multi-level Caching Algorithms 115
5.2.6 Trace-based Simulations Using Youtube Traces 117

5.3 A-LRU Algorithm . 121
5.3.1 Caching Algorithms . 122
5.3.2 Hit Probability and Permutation Distance 126
5.3.3 Learning Error . 127
5.3.4 Markov Modulated Requests 129
5.3.5 Trace-based Simulations . 131

5.4 Conclusion . 133

6. CONCLUSIONS . 136

REFERENCES . 138

APPENDIX A. PROOFS FROM SECTION 2 148

A.1 Properties of Allocation Scheme . 148
A.1.1 Proof of Lemma 1 . 148

x

A.2 Properties of Mechanisms . 150
A.2.1 Proof of Theorem 1 . 150

A.3 Nature of Transfers . 150
A.3.1 Proof of Lemma 2 . 150
A.3.2 Proof of Lemma 3 . 152

A.4 Properties of the Optimal Value Function 152
A.4.1 Proof of Theorem 2 . 152

A.5 The Existence and Uniqueness of Stationary Surplus Distribution . . 154
A.5.1 Proof of Lemma 4 . 154

A.6 Existence of MFE . 155
A.6.1 Proof of Lemma 5 . 155
A.6.2 Proof of Lemma 6 . 156
A.6.3 Proof of Theorem 6 . 158
A.6.4 Proof of Theorem 7 . 161

APPENDIX B. PROOFS FROM SECTION 3 163

B.1 Properties of the Optimal Value Function 163
B.1.1 Proof of Lemma 7 . 163
B.1.2 Proof of Lemma 8 . 167

B.2 The Existence and Uniqueness of Stationary Surplus Distribution . . 168
B.2.1 Proof of Lemma 9 . 168
B.2.2 Existence of MFE . 169

B.3 Characteristics of the Best Response Policy 173
B.3.1 Proof of Lemma 13 . 173
B.3.2 Proof of Lemma 14 . 174

B.4 Numerical Study: Reward, Saving and Profit 177
B.4.1 Case 1 . 177
B.4.2 Case 2 . 178

APPENDIX C. PROOFS FROM SECTION 4 180

C.1 Steady State Distribution . 180
C.1.1 Proof of Theorem 9 . 180

C.2 Characteristics of Mixing Time . 181
C.2.1 Proof of Theorem 11 . 181
C.2.2 Proof of Theorem 12 . 183
C.2.3 Proof of Theorem 13 . 183
C.2.4 Proof of Theorem 14 . 185
C.2.5 Proofs of Theorem 15 and Theorem 16 185

APPENDIX D. PROOFS FROM SECTION 5 186

D.1 Characteristics of Mixing Time . 186

xi

D.1.1 Proof of Theorem 18: . 186
D.1.2 Proof of Theorem 5.2: . 188

xii

LIST OF FIGURES

FIGURE Page

2.1 Wireless content distribution via multiple interfaces [4]. 8

2.2 Streaming architecture [4] in which each block must be delivered within
two frames after its creation. 9

2.3 The mean field system from perspective of agent 1. 18

2.4 Deficit distribution. 35

2.5 Convergence of value iteration. 36

2.6 Transfer distribution. 37

2.7 Sample deficit trajectories. We have used δ = 0.98 in this run to
illustrate frequent resets, which cause sharp decreases or increases. . . 38

3.1 Day-ahead electricity market prices in dollars per MWh on an hourly
basis between 12 AM to 12 PM, measured between June–August, 2013
in Austin, TX. Standard deviations above and below the mean are
indicated separately. 41

3.2 Mean field game. 51

3.3 Ambient temperature of 3 arbitrary days from June–August, 2013 in
Austin, TX. Measurements are taken every 15 minutes from 12 AM
to 12 PM. 68

3.4 Simulated ON/OFF state of AC over a 24 hour period in a home and
the corresponding interior temperature. The interior temperature falls
when the AC comes on, and rises when it is off. 68

3.5 Value function . 73

3.6 Convergence of surplus distribution 73

3.7 Mean field distribution of surplus . 74

3.8 Action distribution . 74

xiii

3.9 Simulated ON/OFF state of AC over a 24 hour period in a home
under actions 0, 3 and the mean field action on an arbitrary day and
the corresponding interior temperature. The temperature graph is
slightly offset for actions 4, 5 and the mean field action for ease of
visualization. 75

3.10 Energy distribution . 76

3.11 The relation between offered reward, LSE savings and LSE profit.
Left: l = 1. Right: l = 5. 77

4.1 Different dimensions of caching paradigms. 82

4.2 τ -distance vs. hit probability for various caching algorithms with IRM
arrivals. 92

4.3 Learning error of various caching algorithms under the IRM arrival
process. 101

4.4 Hit probability of various caching algorithms under the IRM arrival
process. 101

5.1 Linear cache network: “S” and “U” stands for the server and user,
respectively. 106

5.2 Hit probability of LRU(m) with mi+1 = 0.5mi for i = 1, · · · , h − 1
and

∑
imi = m. 109

5.3 Hit probabilities of various replacement algorithms with mi+1 = 0.5mi

for i = 1, · · · , h− 1 and
∑

imi = m: h = 1. 110

5.4 Hit probabilities of various replacement algorithms with mi+1 = 0.5mi

for i = 1, · · · , h− 1 and
∑

imi = m: h = 3. 110

5.5 Hit probabilities of LRU(m) with mi = (m − m1)/(h − 1) for i =
2, · · · , h and

∑
imi = m. 111

5.6 Hit probabilities of various replacement algorithms with mi = (m −
m1)/(h− 1) for i = 2, · · · , h: h = 2. 112

5.7 Hit probabilities of various replacement algorithms with mi = (m −
m1)/(h− 1) for i = 2, · · · , h and

∑
imi = m: h = 5. 112

5.8 τ -distance vs. number of caches h for various replacement algorithms
with IRM arrivals. 114

xiv

5.9 Hit probability vs. cache number h for various replacement algorithms
with IRM arrivals. 114

5.10 Hit probability vs. number of requests for RANDOM(m) replacement
algorithm with IRM arrivals. 115

5.11 Trace-based hit probabilities of LRU(m) with mi+1 = 0.5mi for i =
1, · · · , h− 1 and

∑
imi = m. 118

5.12 Trace-based hit probabilities of various replacement algorithms with
mi+1 = 0.5mi for i = 1, · · · , h− 1 and

∑
imi = m: h = 1. 119

5.13 Trace-based hit probabilities of various replacement algorithms with
mi+1 = 0.5mi for i = 1, · · · , h− 1 and

∑
imi = m: h = 3. 119

5.14 Trace-based hit probabilities of LRU(m) with mi = (m−m1)/(h− 1)
for i = 2, · · · , h. 120

5.15 Trace-based hit probabilities of various replacement algorithms with
mi = (m−m1)/(h− 1) for i = 2, · · · , h: h = 3. 121

5.16 Trace-based hit probabilities of various replacement algorithms with
mi = (m−m1)/(h− 1) for i = 2, · · · , h: h = 5. 122

5.17 Operation of the A-LRU algorithm. 125

5.18 τ -distance vs. hit probability for various caching algorithms with IRM
arrivals. 126

5.19 Learning error of various caching algorithms under the IRM arrival
process. 127

5.20 Hit probability of various caching algorithms under the IRM arrival
process. 127

5.21 Hit probability for A-LRU with time-varying β under IRM arrival
process. 129

5.22 Hit probabilities under Markov-modulated arrivals with ξ = 0.1. . . . 129

5.23 Hit probability vs. cache size, for various caching algorithms with
two-week long YouTube trace [95]. 131

5.24 Hit probability vs. cache size, for various caching algorithms with one
particular day YouTube trace [95]. 132

xv

5.25 Hit probability vs cache size for various caching algorithms with SD
network trace [13] for ICN. 134

B.1 The relation between customer reward, LSE savings and LSE profit.
Left: l = 1. Right: l = 5. 178

B.2 The relation between customer reward, LSE savings and LSE profit.
Left: l = 1. Right: l = 5. 179

xvi

LIST OF TABLES

TABLE Page

3.1 Parameters for a residential AC unit 67

3.2 Daily AC usage for four homes . 69

3.3 Day-ahead price and energy coupons 71

3.4 Actions, costs and energy coupons . 72

5.1 Relation between ξ and β. 131

5.2 SD network trace overview [13] . 133

B.1 Day-ahead price and energy coupons 177

B.2 Actions, costs and energy coupons . 178

B.3 Day-ahead price and energy coupons 179

B.4 Actions, costs and energy coupons . 179

xvii

1. INTRODUCTION

We have become increasingly dependent on large scale networked systems that

are used to allocate shared resources so as to benefit the largest possible set of users.

These systems include societal networks that are crucial to the functioning of society

such as those used for data communication, transportation and power transmission.

In each such network, resource allocation decisions have to be made based on the

current state of the system, either in a distributed or centralized manner, and the

net result is probability distribution over the states of the system. Typically, the

decision makers are individual users who might make choices by using algorithms

that maximize their individual utilities. In many problems, we have an asymptotic

scaling regime in the number of decision makers that each try to maximize their own

value over a set of choices. A fundamental question that we aim at answering in this

thesis is whether it is possible to design incentive schemes such that the resulting

equilibrium distribution of system states is a desirable one in terms of maximizing

user utility.

We are also dependent on engineered systems in which the designer has the free-

dom to select a decision algorithm, which must then select between large number of

choices each of whose value is unknown. An example of such a system is content

caching wherein the popularity of different items of content is unknown apriori and

continually changes. Here, as each request arrives, a caching algorithm must take a

decision on which item to evict in order to make room for the newly cached item.

The decision rule creates a distribution over the combination of content items in

the cache, with different distributions resulting in different probabilities of finding a

desired item in the cache. A basic problem that we wish to solve in this thesis is that

1

of determining a rule that will achieve a desired tradeoff between ensuring a high hit

probability at equilibrium versus quickly converging to the equilibrium distribution.

While in the first problem, we have limited control over the distribution of decision

makers’ states and can only try to modify their behavior using incentive schemes, in

the second we have full control over the decision rule but only have limited knowledge

about the distribution that generates the arrival process of requests. An underlying

theme in both trains of thought has to do with generation of equilibrium proba-

bility distributions, with system value being tied to some function of the resultant

distribution. Attaining desirable equilibria is the goal of our work.

1.1 Overview and Main Contributions

In the first part of this thesis, we describe our results on achieving desirable

equilibria under a repeated game framework in societal networks. The mean field

game (MFG) framework is a promising approach towards studying societal networks,

which typically have a large number of agents, and where any subset of agents has

infrequent interactions. Here, agents model their opponents at any particular in-

teraction through an assumed distribution over their action spaces, and play the

best response action against this distribution. We say that the system is at a mean

field equilibrium (MFE) if this best response action turns out to be a sample drawn

from the assumed distribution. Our objective is to ensure that the achieved MFE

is socially desirable. We consider two scenarios in which we wish to attain such a

desirable MFE.

Realtime D2D Streaming Networks : In Section 2, we consider the problem of stream-

ing live content to a cluster of co-located wireless devices that have both an expensive

unicast base-station-to-device (B2D) interface, as well as an inexpensive broadcast

device-to-device (D2D) interface, which can be used simultaneously. Our setting is

2

a streaming system that uses a block-by-block random linear coding approach to

achieve a target percentage of on-time deliveries with minimal B2D usage. Our goal

is to design an incentive framework that would promote such cooperation across de-

vices, while ensuring good quality of service. Based on ideas drawn from truth-telling

auctions, we design a mechanism that achieves this goal via appropriate transfers

(monetary payments or rebates) in a setting with a large number of devices, and

with peer arrivals and departures. Here, we show that a Mean Field Game can be

used to accurately approximate our system. Furthermore, the complexity of cal-

culating the best responses under this regime is low. We implement the proposed

system on an Android testbed, and illustrate its efficient performance using real

world experiments.

Societal Networks and Electricity Usage: In Section 3, we consider the problem

of a Load Serving Entity (LSE) trying to reduce its exposure to electricity market

volatility by incentivizing demand response in a Smart Grid setting. We focus on the

day-ahead electricity market, wherein the LSE has a good estimate of the statistics

of the wholesale price of electricity at different hours in the next day, and wishes

its customers to move a part of their power consumption to times of low mean and

variance in price. Based on the time of usage, the LSE awards a differential number

of “Energy Coupons” to each customer in proportion to the customer’s electricity

usage at that time. A lottery is held periodically in which the coupons held by all

the customers are used as lottery tickets.

Our study takes the form of a Mean Field Game, wherein each customer models

the number of coupons that each of its opponents possesses via a distribution, and

plays a best response pattern of electricity usage by trading off the utility of winning

at the lottery versus the discomfort suffered by changing its usage pattern. The

3

system is at a Mean Field Equilibrium (MFE) if the number of coupons that the

customer receives is itself a sample drawn from the assumed distribution. We show

the existence of an MFE, and characterize the mean field customer policy as having

a multiple-threshold structure in which customers who have won too frequently or

infrequently have low incentives to participate. We then numerically study the sys-

tem with a candidate application of air conditioning during the summer months in

the state of Texas. Besides verifying our analytical results, we show that the LSE

can potentially attain quite substantial savings using our scheme. Our techniques

can also be applied to resource sharing problems in other societal networks such as

transportation or communication.

In the second part of this thesis, we explore the construction of desirable equilib-

ria for content distribution using caching algorithms. Caching algorithms typically

follow Markovian dynamics, with a decision on what to cache and evict being made at

each time based on the current cache content and arriving request. Hence, a caching

algorithm generates a Markov process over the occupancy states of the cache. Perfor-

mance analysis of caching replacement algorithms usually consists of determining the

stationary distribution of this process, and using it to calculate the hit probability

at the cache under either a synthetic request data, or by using a trace observed in a

real system. However, this approach loses all notion of dynamically changing request

popularities, and does not allow us to compare the performance of each algorithm

with the best possible. We consider adaptability of such caching algorithms from

two perspectives: the accuracy of learning a fixed popularity distribution; and the

speed of learning items’ popularity. We wish to study the adaptability of caching

algorithms by defining a function that accounts for both the error due to time lag

of learning items’ popularity, as well as error due to the inaccuracy of learning. Our

4

goal is to obtain such a characterization over multiple existing algorithms, and to

develop new ones.

Algorithms on Simple Caches : In Section 4, we analyze the performance of conven-

tional caching algorithms such as LRU, FIFO and RANDOM, as applied to simple

(single-stage) caches. We first determine the stationary distributions of these al-

gorithms, and compute the distance between the stationary distributions of each

algorithm with that of an algorithm that has knowledge of the true popularity rank-

ing. We adopt the well known Wasserstein distance to compare the distance between

distributions by taking the generalized Kendall’s tau distance as the cost function.

We call this metric as the τ -distance, which correctly represents the accuracy of

learning the request distribution. We next use the mixing time to study the evolu-

tion of the Markov chain associated with caching algorithm to understand its rate

of convergence to stationarity. We use a triangle inequality bound and combine the

τ -distance and mixing time with appropriate normalization to obtain a new metric,

called learning error, which represents both how quickly and how accurately an al-

gorithm learns the optimal caching distribution. This allows us to determine how

well each algorithm would perform after it has learned for a certain time interval.

Algorithms on Multi-level Caches : Multi-level caches have been shown to improve

the hit probabilities of conventional caching algorithms through numerical studies.

However, it is unclear how the number of levels and the partition of total cache

size across these levels impacts the performance. In Section 5, we explore the value

of multi-level caching by first considering a particular topology called a linear cache

network. As the name suggests, the linear cache network consists of a stack of caches,

potentially of different sizes and at different distances from the content requesting

site. In such a network, an item enters via the first cache and moves up to a higher

5

cache whenever there is a cache hit on it, with a replacement algorithm determining

which item should be replaced. We desire to understand the replacement algorithm

from the perspective of how the division of cache levels impacts both the stationary

hit probability and the rate of adaptation to a changing request distribution, through

the τ -distance and mixing time metrics mentioned above. A main finding is that

multi-level caches are a good way of increasing the accuracy of a caching algorithm

for a given cache size, but at the expense of increasing the mixing time. Motivated

by our analysis, we propose a novel hybrid algorithm, Adaptive-LRU (A-LRU) that

learns both faster and better the change in popularity. We show numerically that

it outperforms all other candidate algorithms when confronted with a dynamically

changing synthetic request process, as well by using real world trace files.

We conclude with a brief summary of the main results of this thesis, and provide

discussion on the future research directions in Section 6.

6

2. INCENTIVIZING SHARING IN REALTIME D2D NETWORKS:

A MEAN FIELD GAME PERSPECTIVE

2.1 Introduction

There has recently been much interest in networked systems for collaborative

resource utilization. These are systems in which agents contribute to the overall

welfare through their individual actions. Usually, each agent has a certain amount of

resources, and can choose how much to contribute based on the perceived return via

repeated interactions with the system. An example is a peer-to-peer file sharing net-

work, wherein each peer can contribute upload bandwidth by transmitting chunks to

a peer, and receive downloads of chunks from that peer as a reward. Interactions are

bilateral, and hence tit-for-tat type strategies are successful in preventing free-riding

behavior [26]. More generally, collaborative systems entail multilateral interactions

in which the actions of each agent affect and are affected by the collective behavior

of a subset of agents. Here, more complex mechanisms are needed to accurately

determine the value of the contribution of each individual to the group.

An example of a collaborative system with repeated multilateral interactions is

a device-to-device (D2D) wireless network. Suppose that multiple devices require

the same content chunk. The broadcast nature of the wireless medium implies that

several agents can be simultaneously satisfied by a single transmission. However, they

might each have different values for that particular chunk, and may have contributed

different amounts in the past to the transmitting agent. Furthermore, D2D systems

undergo “churn” in which devices join and leave different clusters as they move

around. How then is an agent to determine whether to collaborate with others, and

whether it has received a fair compensation for its contribution?

7

Our objective in this section is to design mechanisms for cooperation in systems

with repeated multilateral interactions. As in earlier literature, we assume that

there exists a currency to transfer utility between agents [7, 93], and our goal is to

determine how much should be transferred for optimal collaboration. We focus on

wireless content streaming as our motivating example. In particular, as shown in

Figure 2.1, we assume that all devices are interested in the same content stream,

and receive a portion of chunks corresponding to this stream via a unicast base-

station-to-device (B2D) interface. The B2D interface has a large energy and dollar

cost for usage, and the devices seek to mitigate this cost via sharing chunks through

broadcast D2D communication.1

Internet

Figure 2.1: Wireless content distribution via multiple interfaces [4].

A content sharing system is described in [4], in which the objective is to achieve

live streaming of content synchronously to multiple co-located devices. The system

architecture of that work forms an ideal setting for studying mechanism design in

1Note that, as we describe in greater detail later in this section, it is possible to enable the usage
of both the 3G (unicast) and WiFi (broadcast) interfaces simultaneously on Android smart phones.

8

which multilateral interactions occur. The setup is illustrated in Figure 2.2. Here,

time is divided into frames, which are subdivided into T slots. A block of data is

generated by the content server in each frame, and the objective is to ensure that

this block can be played out by all devices two frames after its generation, i.e., data

block k is generated in frame k − 2, and is to be played out in frame k. Such a

strict delay constraint between the time of generation and playout of each data block

ensures that the live aspect of streaming is maintained.

B2D block (k) B2D block (k+1) B2D block (k+2)

frame kframe k-1frame k-2

create block (k)

D2D block (k)D2D block (k-1) D2D block (k+1)

create block (k+1) create block (k+2)

play block (k-2) play block (k-1) play block (k)

Figure 2.2: Streaming architecture [4] in which each block must be delivered within
two frames after its creation.

Upon generation of block k (in frame k− 2), the content server divides it into N

chunks and performs random linear coding (RLC) over these chunks [28]. The server

unicasts some of these coded chunks to each device using its B2D interface. This

number is to be kept small to reduce B2D usage. Next, in frame k − 1, the devices

use the broadcast D2D network to disseminate these chunks among themselves. At

the end of frame k − 1 the devices attempt to decode block k. If a device i has

received enough coded chunks to decode the block, it plays out that block during

frame k. Otherwise, i will be idle during this frame. The use of RLC results in two

desirable system features. First, the server can unicast a fixed number of chunks to

the devices in each frame over a lossy channel (Internet plus B2D link) without any

9

feedback. Second, the devices do not need to keep track of what chunks each one

possesses while performing D2D broadcasts.

The notion of quality of experience (QoE) here is delivery-ratio denoted by η,

which is the average ratio of blocks desired to the blocks generated [42]. For instance,

a delivery ratio of 95% would mean that it is acceptable if 5% of the blocks can be

skipped. A device can keep track of its QoE thus far via the “deficit” incurred upto

frame k, which is the difference between the actual number of number of blocks

successfully decoded by frame k and the target value ηk. In [4], it was shown that,

assuming complete cooperation by the participating devices, it is possible to design

a chunk sharing scheme whereby all devices would meet their QoE targets with

minimal usage of the B2D interface. But how do we design a mechanism to ensure

that the devices cooperate?

The setting of interest in this section is that of a large number of D2D clusters,

each with a fixed number of agents, and with all clusters interested in the same

content stream. Examples of such settings are sports stadia, concerts or protest

meetings, where a large number of agents gather together, and desire to receive

the same live-stream (replays, commentary, live video etc.) Devices move between

clusters as agents move around, causing churn. The objective of our work is to

develop an incentive framework wherein each device truthfully reports the number

of chunks that it receives via B2D and its deficit in each frame, so that a system-wide

optimal allocation policy can be employed. Such an incentive framework should be

lightweight and compatible with minimal amounts of history retention. Finally, we

also desire to implement the system on Android smart phones and measure its real

world performance.

10

2.1.1 Related Work

The question of how to assign value to wireless broadcast transmissions is in-

triguing. For instance, [43] considers a problem of repeated interaction with time

deadlines by which each node needs to receive a packet. Each node declares its

readiness to help others after waiting for a while; the game lies in choosing this time

optimally, and the main result is to characterize the price of anarchy that results.

However, decision making is myopic, i.e., devices do not estimate future states while

taking actions. In a similar fashion, [93] propose a scheme for sharing 3G services

via WiFi hotspots using a heuristic scheme that possesses some attractive properties.

Here too, decision making is myopic. The question of fair scheduling at a base sta-

tion that uses the history of interactions with individual stations in order to identify

whether they are telling the truth about their state is considered in [52]. However,

since the devices in our network undergo churn and keeping track of device identities

is infeasible, we desire a scheme that does not use identities or history to enable

truthful revelation of state.

2.1.1.1 Perfect Bayesian and Mean Field Equilibria

The typical solution concept in dynamic games is that of Perfect Bayesian Equi-

librium (PBE). Consider a strategy profile for all players, as well as beliefs about the

other players’ types at all information sets. This strategy profile and belief system is

a PBE if: (i) Sequential rationality : Each player’s strategy specifies optimal actions,

given her beliefs and the strategies of other players; (ii) Consistency of beliefs : Each

player’s belief is consistent with the strategy profile (following Bayes’ rule). PBE re-

quires each agent to keep track of their beliefs on the future plays of all other agents

in the system, and play the best response to that belief. The dynamic pivot mech-

anism [11] extends the truth-telling VCG idea [56] to dynamic games. It provides

11

a basis for designing allocation schemes that are underpinned by truthful reporting.

Translating the model in [52] to the language of [11], it is possible to use the dynamic

pivot mechanism to develop a scheme (say FiniteDPM) with appropriate transfers

that will be efficient, dominant strategy incentive compatible and per-period indi-

vidually rational; note that while this scheme would use the identities of the devices,

it will not need to build up a history of interactions. We omit the details of this as

it is a straight-forward application of the general theory from [11].

Computation of PBE becomes intractable when the number of agents is large.

An accurate approximation of the Bayesian game in this regime is that of a Mean

Field Game (MFG) [44, 49, 58]. In MFG, the agents assume that each opponent

would play an action drawn independently from a static distribution over its action

space. The agent chooses an action that is the best response against actions drawn

in this fashion. The system is said to be at Mean Field Equilibrium (MFE) if

this best response action is itself a sample drawn from the assumed distribution,

i.e., the assumed distribution and the best response action are consistent with each

other [47,64,69]. Essentially, this is the canonical problem in game theory of showing

the existence of a Nash equilibrium, as it applies to the regime with a large number

of agents. We will use this concept in our setting where there are a large number of

peer devices with peer churn.

To the best of our knowledge, there is no prior work that considers mechanism

design for multilateral repeated games in the mean field setting. One of the important

contributions of this section is in providing a truth-telling mechanism for a mean-

field game. In the process of developing the mechanism we will also highlight the

nuances to be considered in the mean-field setting. In particular, we will see that

aligning two concepts of value—from the system perspective and from that of the

agents—is crucial to our goal of truth-telling.

12

2.1.2 Organization and Main Results

We describe our system model in Section 2.2. Our system consists of a large

number of clusters, with agents moving between clusters. The lifetime of an agent is

geometric; an agent is replaced with a new one when it exits. Each agent receives a

random number of B2D chunks by the beginning of each frame, which it then shares

using D2D transmissions.

In Section 2.3, we present an MFG approximation of the system, which is accurate

when the number of clusters is large. Here, the agents assume that the B2D chunks

received and deficits of the other agents would be drawn independently from some

distributions in the future, and optimize against that assumption when declaring

their states. The objective is to incentivize agents to truthfully report their states

(B2D chunks and deficit) such that a schedule of transmissions (called an “alloca-

tion”) that minimizes the discounted sum of costs can be used in each frame. The

mechanism takes the form of a scheme in which tokens are used to transfer utility

between agents. A nuance of this regime is that while the system designer sees each

cluster as having a new set of users (with IID states) in each time frame, each user

sees states of all its competitors but not itself as satisfying the mean field distribu-

tion. Reconciling the two view points is needed to construct a cost minimizing pivot

mechanism, whose truth-telling nature is shown in Section 2.4. This is our main

contribution in this section. The allocation itself turns out to be computationally

simple, and follows a version of a min-deficit first policy [4].

Next, in Sections 2.5–2.6, we present details on how to prove the existence of

the MFE in our setting. Although this proof is quite involved, it follows in a high-

level sense in the manner of [47, 69]. For the ease of exposition, the details of the

proof are provided in Appendix A. We then turn to computing the MFE and the

13

value functions needed to determine the transfers in Section 2.8. The value iteration

needed to choose allocation is straightforward.

We present details of our Android implementation of a music streaming app used

to collect real world traces in Section 2.9. We discuss the viability of our system in

Section 2.10, and illustrate that under the current price of cellular data access, our

system provides sufficient incentives to participate. Finally, we conclude in Section

2.11.

2.2 Content Streaming Model

We consider a large number of D2D clusters, each with a fixed number of agents,

and with all clusters interested in the same content stream. We assume that a cluster

consists of M co-located peer devices denoted by i ∈ {1, . . . ,M}2. The data source

generates the stream in the form of a sequence of blocks. Each block is further

divided into N chunks for transmission. We use random linear network coding over

the chunks of each block (with coefficients in finite field Fq of size q). We assume

that the field size is very large; this assumption can be relaxed without changing

our cooperation results. Time is divided into frames, which are further divided into

slots. At each time slot τ , each device can simultaneously receive up to one chunk

on each interface.

B2D Interface: Each device has a (lossy) B2D unicast channel to a base-station.

For each device i, we model the number of chunks received using the B2D interface

in the previous frame by a random variable with (cumulative) distribution ζ, inde-

pendent of the other devices. The support of ζ is the set {0, 1, · · · , T}, denoted by

T. The statistics of this distribution depend on the number of chunks transmitted

by the server and the loss probability of the channel. In [4], a method for calcu-

2Our analysis is essentially unchanged when there are a random but finite number of devices in
each cluster.

14

lating statistics based on the desired quality of service is presented. We take the

distribution ζ as given.

D2D Interface: Each device has a zero-cost D2D broadcast interface, and only

one device can broadcast over the D2D network at each time τ . For simplicity of

exposition, we will assume that the D2D broadcasts are always successful; the more

complex algorithm proposed in [4] to account for unreliable D2D is fully consistent3

with our incentive scheme. Since each D2D broadcast is received by all devices, there

is no need to rebroadcast any information. It is then straightforward to verify that

the order of D2D transmissions does not impact performance. Thus, we only need

to keep track of the number of chunks transmitted over the D2D interfaces during a

frame in order to determine the final state of the system.

Allocation: We denote the total number of coded chunks of block k delivered to

device i via the B2D network during frame k − 2 using ei[k] ∼ ζ. We call the vector

consisting of the number of transmissions by each device via the D2D interfaces over

frame k − 1 as the “allocation” pertaining to block k, denoted by a[k]. Also, we

denote the number received chunks of block k by device i via D2D during frame

k − 1 using gi[k]. Due to the large field size assumption, if ei[k] + gi[k] = N, it

means that block k can be decoded, and hence can be played out. For simplicity

of exposition, we develop our results assuming that the allocation is computed in a

centralized fashion in each cluster. However, we actually implement a distributed4

version on the testbed.

Quality of Experience: Each device i has a delivery ratio ηi ∈ (0, 1], which is the

minimum acceptable long-run average number of frames device i must playout. In

the mobile agents model, we assume that all devices have the same delivery ratio η for

3We will discuss this at the end of Section 2.6.1.
4At the end of Section 2.6.1 we will argue that the distributed implementation is also consistent

with our incentive scheme.

15

simplicity. It is straightforward to extend our results to the case where delivery ratios

are drawn from some finite set of values. The device keeps track of the current deficit

using a deficit queue with length di[k] ∈ K. The set of possible deficit values is given

by K =
{
kη−m : k,m ≥ 0,m ≤ bkηc

}
, where for x ∈ R, bxc = max{k ∈ Z : k ≤ x}

is the largest whole number that x is greater than. Note that K is a countable set and

the possible deficit values are all non-negative. In fact, by the well-ordering principle

K can be rewritten as {dn}n∈N with dn an increasing sequence (without bound) such

that d1 = 0. We will use this representation to enumerate the elements of K. If a

device fails to decode a particular block, its deficit increases by η, else it decreases

by 1 − η. The impact of deficit on the user’s quality of experience is modeled by a

function c(di[k]), which is convex, differentiable and monotone increasing. The idea

is that user unhappiness increases more with each additional skipped block.

Transfers: We asume the existence of a currency (either internal or a monetary

value) that can be used to transfer utility between agents [7, 93]. In our system, a

negative transfer is a price paid by the agent, while a positive value indicates that

the agent is paid by the system. Such transfer systems are well established; see for

instance a review in [7]. Transfers are used by agents either to pay for value received

through others’ transmissions, or to be compensated for value added to others by

transmitting a chunk. We assume that the transmissions in the system are monitored

by a reliable device, which can then report these values to decide on the transfers.

In practice we use the device that creates each ad-hoc network as the monitor.

An allocation policy maps the values of the B2D chunks received and deficits as

revealed by agents, denoted by θ̂[k] := (ê[k], d̂[k−1]), to an allocation for that frame

a[k]. Given an allocation, agents have no incentive to deviate from it, since an agent

that does not transmit the allocated number of chunks would see no benefit; those

time slots would have no transmissions by other agents either. The fundamental

16

question is that of how to incentivize the agents to reveal their states truthfully so

that the constructed allocation can maximize system-wide welfare.

2.3 Mean Field Model and Mechanism Design

Our system consists of JM agents (or users) organized into J clusters with M

agents per cluster. As mentioned earlier, time is slotted into frames. At the end of

a frame, any agent i can leave the system only to be replaced by a new agent (also

denoted by i) whose initial deficit is drawn from a (cumulative) distribution Ψ with

support K. This event occurs with probability δ̄ = (1 − δ) independently for each

agent, so that the lifetimes of the agents are geometrically distributed. As described

in the previous section, we assume that the number of chunks received via B2D for

agent i in frame k, denoted by ei[k], is chosen in an i.i.d. fashion according to the

(cumulative) distribution ζ, with support T; one such distribution is the binomial

distribution. In addition to the agents having geometrically distributed lifetimes,

we also allow mobility in our set-up. In particular, in every frame we assume that

all the agents are randomly permuted and then assigned to clusters such that there

are exactly M agents in each cluster. Using this system as a starting point we will

develop our mean-field model that will be applicable when the number of clusters J

is extremely large.

The mean field framework in Figure 2.3 illustrates system relationships that will

be discussed below. The blue/dark tiles apply to the value determination process

for mechanism design, which will be discussed in this section. The beige/light tiles

are relevant to showing the existence of an MFE on which the mechanism depends,

which will be discussed in Sections 2.5–2.6.

The mean field model yields informational and computational savings, since oth-

erwise each agent will need to not only be cognizant of the values and actions of all

17

agents, but also track their mobility patterns. Additionally, the mean field distri-

bution accounts for regenerations, which do not have to be explicitly accounted for

when determining best responses.

Decode&&
or¬&

Sta,onary&
Distribu,on&&&&

.&

B2D&Arrivals&

Transfer&

Value&from&cluster&view&
Value&from&agent&1&view&

Next&
state&

Revealed&
state&

Regenera,on&
Distribu,on&

[⌦⇢M�1,

⌦⇣M�1]
⇥̂�1

c(d)

⇧⇢⇥⇣

⇣

⇥1

Assumed&
future&&

distribu,on&
of&other&
agents& Revealed&state&

of&other&agents&

Deficit&cost& �1(a, ✓)

aTrue&
state& ✓̂�1✓̂1✓1

Alloca,on&

Ŵ , W̃

p⇤(✓̂1, ✓̂�1)

Figure 2.3: The mean field system from perspective of agent 1.

There is, however, an important nuance that the mean-field analysis introduces:

when there are a large number of clusters, each cluster sees a different group of

agents in every frame with their states drawn from the mean-field distribution, but

even though each agent interacts with a new set of agents in every frame, it’s own

state is updated based on the allocations made to it, so that the differing viewpoints

of the two entities need to be reconciled while providing any incentives.

The number of chunks received over the B2D interface and the deficit value

constitute the state of an agent at the beginning of a frame. At frame k we collect

together the state variables of all the agents in system as θ[k] = (e[k],d[k− 1]). Our

18

mechanism then aims to achieve

W (θ[k]) = min
{a[l]}∞l=k

E


J∑
j=1

∞∑
l=k

δl−k
∑
i∈sj [l]

vi(asj [l], θi[l])

 , (2.1)

where j = 1, 2, · · · , J is the number of clusters in the system, sj[k] is the set of agents

in cluster j at frame k, asj is the allocation in cluster j and vi(asj [l], θi[l]) is the value

that agent i makes from the allocation in frame k. For agent i set ji[k] to be the

cluster he belongs in during frame k, i.e., i ∈ sji[k][k]. Note that the probability of

remaining in the system δ appears as the discount factor in the above expression.

Given the allocation in each cluster, if agent i does not regenerate, then his deficit

gets updated as

di[k] = (di[k − 1] + η − χi(aji[k][k], θi[k]))+, (2.2)

where (·)+ = max(·, 0), whereas if the agent regenerates, then di[k] = d̃i[k] where

d̃i[k] is drawn i.i.d. with distribution Ψ. Here,

χi(a, θi) = 1{ei+gi(a)=N} =


1 if ei + gi(a) = N

0 otherwise,

(2.3)

where χi(.) is 1 if and only if agent i obtains all N coded chunks to be able to

decode a block, gi(a) is the number of packets agent i can get during a frame under

the allocation a (where we suppress the dependence of a on θ). We specialize to

the case where the value per frame for agent i with system state θ and vector of

allocations a is given by vi(a, θi) = c
((
di+η−χi(a, θi)

)+
)

if there is no regeneration

and vi(a,θi) = c(d̃i) otherwise, where d̃i is i.i.d. with distribution Ψ and c(·) is the

holding cost function that is assumed to be convex and monotone increasing.

As there are a large number of clusters, in every frame there is a completely

19

different set of agents that appear at any given cluster. The revealed states of these

agents will be drawn from the mean field distribution. Hence, from the perspective

of some cluster l, the revealed state of the agents in that cluster Θ̂l will be drawn

according to the (cumulative) distributions [⊗ρM ,⊗ζM], with ρ pertaining to the

deficit, and ζ pertaining to the B2D transmissions received by that agent. Note

that the support of ρ is K while the support of ζ is T, and ⊗ indicates the i.i.d

nature of the agent states. Whereas from the perspective a particular agent i, the

revealed states of all the other agents in that cluster will be drawn according to

Θ̂−i ∼ [⊗ρM−1,⊗ζM−1]. These facts will simplify the allocation problem in each

cluster and also allow us to analyze the MFE by tracking a particular agent.

First, we consider the allocation problem as seen by the clusters. Pick any finite

number of clusters. In the mean-field limit, the agents from frame to frame will be

different in each cluster, therefore the allocation decision in each cluster can be made

in an distributed manner, independent of the other clusters; this is one of the chaos

hypotheses of the mean-field model. This then implies that the objective in (2.1) is

achieved by individual optimization in each cluster, i.e.,

W (θ̂[k]) =
J∑
j=1

Wj(θ̂sj [k]), (2.4)

where we recall that θ̂sj [k] is the revealed state of agents in cluster j at time k and

Wj(θ̂sj [k]) = min
{asj [l]}∞l=k

∞∑
l=k

δl−k
∑
i∈sj [l]

vi(asj [l], θ̂i[l]). (2.5)

Under mean field assumption, the method of determining value does not change from

step-to-step. The value function in the mean-field is determined by the first solving

20

the following Bellman equation

Ŵ (θ̂) = min
a

M∑
i=1

vi(a, θ̂i) + δE
{
Ŵ (Θ̂)

}
(2.6)

to obtain function Ŵ (·), where θ̂ is the M -dimensional revealed state vector (with el-

ements θ̂i) and the future revealed state vector Θ̂ is chosen according to [⊗ρM ,⊗ζM],

and thereafter setting Wj(θ̂sj [k]) = Ŵ (θ̂sj [k]) for every j = 1, 2, . . . , J . This obser-

vation then considerably simplifies the allocation in each cluster to be the greedy

optimal, i.e., determine (multi)function

a∗(θ̂) = arg min
a

M∑
i=1

vi(a, θ̂i), (2.7)

and for j = 1, 2, . . . , J we set a∗sj = a∗(θ̂j).

Next, we consider the system from the viewpoint of a typical agent i; w.l.o.g let

i = 1. Any allocation results in the deficit changing according to (2.2) and the future

B2D packets drawn according to ζ, whereas the state of every other agent that agent

1 interacts with in the future gets chosen according to the mean field distribution.

Then the value function (of the cluster) from the perspective of agent 1 is determined

using

W̃ (1, (θ̂1, θ̂−1)) = min
a

M∑
i′=1

vi′(a, θ̂i′) + δE
{
W̃ (1, (Θ̂1, Θ̂−1))|a, θ̂1

}
. (2.8)

Here, θ̂−1 represents the revealed states of all the agents in cluster except 1, Θ̂−1 ∼

[⊗ρM−1,⊗ζM−1], and for Θ̂1, the deficit term is determined via (2.2) (setting θi = θ̂i)

while the B2D term follows ζ. This recursion yields a function W̃ (1, ·) which applies

to all agents. Using this function, one can also determine the allocation that agent

21

1 expects his cluster to perform, namely,

ã(θ̂1, θ̂−1) = arg min
a

M∑
i′=1

vi′(a, θ̂i′) + δE
{
W̃ (1, (Θ̂1, Θ̂−1))|a, θ̂1

}
. (2.9)

Using the two allocations a∗ and ã we can write down the value of agent 1 from

the system optimal allocation and the value of agent 1 in the allocation that the

agent thinks that the system will be performing. For a given allocation function a(·)

(for the state of agents in the cluster where agent 1 resides at present), we determine

the solution to the following recursion

V (a(θ̂), θ̃1) = v1(a, θ̃1) + δE
{
V (a(Θ̂1, Θ̂−1), Θ̃1)

}
(2.10)

to get function V (·, ·), where θ̃1, is an arbitrary state variable, the deficit term of

Θ̃1 follows (2.2) while the B2D term is generated independently (setting θi = θ̃i),

a is an arbitrary allocation, the B2D term is generated independently, and Θ̂−1 is

chosen using the mean-field distribution. Notice that θ̃1 = θ1 would yield the true

value of allocation a to agent 1. By the cluster optimal allocation (what the cluster

actually does), agent 1 gets V (a∗(θ̂1, θ̂−1), θ1) whereas from the perception of agent 1

he thinks he should be getting V (ã(θ̂1, θ̂−1), θ1) (based on what he thinks the cluster

should be doing).

2.3.1 Transfer

We will use the different value functions to define the transfer for agent 1 depend-

ing on the reported state variable θ̂1 such that the transfer depends on the difference

between what he gets from the system optimal allocation and what he expects the

system to do from his own perspective. Using this logic we set the transfer for agent

22

1 as

p∗(θ̂1, θ̂−1) = V (a∗(θ̂), θ̂1)− V (ã(θ̂), θ̂1) +H(θ̂−1)− (W̃ (1, (θ̂1, θ̂−1))− V (ã(θ̂), θ̂1)).

(2.11)

where H(θ̂−1), following the Groves pivot mechanism, can be chosen using the re-

cursion

H(θ̂−1) = min
a−1

∑
i 6=1

vi(a−1, θ̂i) + δE
{
H(Θ̂−1)

}
, (2.12)

where Θ̂−1 ∼ [⊗ρM−1,⊗ζM−1], and a−1 is used to denote an allocation in a system

in which agent 1 is not present.

The Clarke pivot mechanism idea ensures that the net-cost of agent 1, V (a∗(θ̂), θ̂1)

−p∗(θ̂1, θ̂−1), equals W̃ (1, (θ̂1, θ̂−1))−H(θ̂−1). This is simply the value of the system

as a whole from the viewpoint of agent 1, minus a function only of θ̂−1. As in the

Vickrey-Clarke-Groves mechanism, such formulation of net-cost naturally promotes

truth-telling as a dominant strategy at each step.

2.3.2 Allocation Scheme

The basic building block of our mechanism is the per-frame optimal allocations

that solve (2.1). We will now spell out the allocation in greater detail. First, we

observe that the allocation problem separates into independent allocation problems

in each cluster that have the same basic structure. Therefore, it suffices to discuss

the allocation problem for one cluster.

23

From (2.7), the objective in this cluster is

min
a

M∑
i=1

c((di[k − 1] + η − χi(a[k], θi[k]))+). (2.13)

An optimal allocation is determined using the following observations. First, we

partition the agents into two sets, ones who cannot decode the frame even if they

never transmit during the T slots of the D2D phase and the rest; the former agents

are made to transmit first. After this we determine agents who have extra chunks

(number of slots that they can transmit on such that there is still time to decode

whole frame) and make these agents transmit their extra chunks. After all the extra

chunks have been transmitted, it is easy to see using the properties of the holding

cost function that agents are made to transmit in a minimum-deficit-first fashion in

order to prioritize agents with large deficits. This is summarized in the follow lemma.

Lemma 1 The algorithm delineated in Algorithm 1 provides an optimal greedy al-

location.

Algorithm 1 Optimal Mean Field D2D Allocation Rule

At the beginning of each frame k − 1, given the arrivals (e1[k], ..., eM [k]):
Partition the devices into sets S = {i ∈ {1, ...,M} : N − ei[k] ≤ T, ei[k] +∑

j 6=i ej[k] ≥ N} and Sc.
If S = ∅, none of the agents can decode the block. Else,
Phase 1) Let all the agents in Sc transmit all that they initially received for the
next T1 = min{∑

i∈Sc
ei[k], T} slots.

If there exists time and a need for more transmissions,
Phase 2) Let each agent i ∈ S transmit up to (ei[k]+T−N)+ of its initial chunks.
Phase 3) While there exists time and a need for more transmissions, let devices
in S transmit their remaining chunks in an increasing order of their deficit values.

24

2.4 Properties of Mechanism

2.4.1 Truth-telling as Dominant Strategy

Since we consider a mean-field setting, we will assume that deficit of agent i

changes via the allocation while the deficits of all the other agents are drawn using

the given distribution ρ. The e values are generated i.i.d. with distribution ζ. Based

on the system state report θ[k] at time k, we assume that the mechanism makes the

optimal greedy allocation a∗[k] from (2.7) and levies transfers p∗[k] from (2.11) that

uses the allocations from the agent’s perspective from (2.9). We can then show that

truthfully revealing the state, i.e., (d, e) values at the beginning of every frame is

incentive compatible.

Definition 1 A direct mechanism (or social choice function) f = (a, p) is dominant

strategy incentive compatible if θi is a dominant strategy at θi for each i and θi ∈ Θi,

where a(·) is a decision rule and p(·) is a transfer function.

Theorem 1 Our mechanism {a∗[k],p∗[k]}∞k=0 is dominant strategy incentive com-

patible.

2.4.2 Nature of Transfers

We now determine the nature of the transfers that are required to promote truth-

telling. We will show that the transfers constructed in (2.11) are always non-negative,

i.e., the system needs to pay the agents in order to participate. In other words,

each agent needs a subsidy to use the system, since it could simply choose not to

participate otherwise. Thus, the system is not budget-balanced. We will show later

how the savings in B2D usage that results from our system provides the necessary

subsidy in Section 2.10. Given these transfers, we will also see that our mechanism

is individually rational so that users participate in each frame.

25

Lemma 2 The transfers defined in (2.11) are always non-negative.

The proof of individual rationality follows along the same lines as Lemma 2.

Lemma 3 Our mechanism {a∗[k],p∗[k]}∞k=0 is individually rational, i.e., the volun-

tary participation constraint is satisfied.

We remark that not participating in a frame is equivalent to free-riding, and our

transfers ensure a lower cost is obtained when participating. However, as the net

payment to the users is non-negative5, we will not immediately have budget-balance.

For the broader class of Bayes-Nash incentive-compatible mechanism, [8] shows that

only under the assumption of “independent types” (the distribution of each agent’s

information is not directly affected by the other agents’ information), budget can be

balanced ex-interim. However, in our system, each agent’s information will have an

impact on the other agents’ information through the allocation. Nevertheless, using

the same technique of an initial sum being placed in escrow with the expectation

that it would be returned at each stage (i.e,. interim), our system may be budget-

balanced. Details using current prices of B2D service are provided in Section 2.10.

2.4.3 Value Functions and Optimal Strategies

We will now show that the value function given by the solution to (2.6) is well-

defined and can be obtained using value iteration. Similarly, we will show that both

the value function and the optimal allocation policy from a agent’s perspective, given

by (2.8) and (2.9) respectively, exist and can also be determined via value iteration.

5While we don’t prove it, we expect the transfer to be positive if the agent transmits, but we
also note that it need not be zero if he doesn’t, owing to the translation of viewpoints mentioned
earlier.

26

Define operators T1 and T2 by

T1w(θ) =
M∑
i=1

vi(a
∗(θ), θi) + δE {w(Θ)} , (2.14)

T2w̃(1, (θ1,θ−1)) = min
a

M∑
i′=1

vi′(a, θi′) + δE {w̃(1, (Θ1,Θ−1))|a, θ1} , (2.15)

using (2.6) and (2.8), respectively.

Theorem 2 The following hold:

1. There exists a unique W (θ) such that T1W (θ) = W (θ), and given θ for every

w ∈ RM
+ , we have limn→∞ T

n
1 w = W (θ);

2. There exists a unique W̃ (1, (θ1,θ−1)) such that T2W̃ (1, (θ1,θ−1))

= W̃ (1, (θ1,θ−1)), and given (θ1,θ−1) for every w ∈ RM
+ , we have limn→∞ T

n
2 w

= W̃ (1, (θ1,θ−1)); and

3. The Markov policy ã((θ1,θ−1)) obtained from (2.9) is an optimal policy to be

used in cluster j1[·] from the viewpoint of agent 1.

2.5 Mean Field Equilibrium

In the mean-field setting, assuming the state of every other agent is drawn i.i.d.

with distribution ρ× ζ, the deficit of any given agent evolves as a Markov chain. We

start by showing that this Markov chain has a stationary distribution. If this station-

ary distribution is the same as ρ, then the distribution ρ is defined as a mean-field

equilibrium (MFE); we use the Schauder fixed point theorem to show the existence

of a fixed point ρ. Using the regenerative representation of the stationary distribu-

tion of deficits given ρ and a strong coupling result, we prove that the mapping that

takes ρ to the stationary distribution of deficits is continuous using a strong coupling

27

result. Finally, we show that the set of probability measures to be considered is

convex and compact so that existence follows.

2.5.1 Stationary Distribution of Deficits

Fix a typical agent i and consider the state process {di[k]}∞k=−1. This is a Markov

process in the mean-field setting: if there is no regeneration, then the deficit changes

as per the allocation and the number of B2D packets received, and is chosen via

the regeneration distribution otherwise. The allocation is a function of the past di,

the number B2D packets received and the state of the other agents. The number

of B2D packets received and the state of the other agents are chosen i.i.d in every

frame. This Markov process has an invariant transition kernel. We construct it by

first presenting the form given the past state and the allocations, namely,

P(di[k] ∈ B|di[k − 1] = d, ei[k] = e, a) = δ1{(
d+ηi−χi(a,(d,e))

)+

∈B
} + (1− δ)Ψ(B),

(2.16)

where B ⊆ R+ is a Borel set and Ψ is the density function of the regeneration process

for deficit. In the above expression, the first term corresponds to the event that agent

i can either decode the packet using D2D transmissions or not, and the second term

captures the event that the agent regenerates after frame k. Using (2.16) we can

define the one-step transition kernel Υ̃ for the Markov process as

Υ̃(B, d) = P(di[k] ∈ B|di[k − 1] = d) = δ

∫
1{(

d+ηi−χi(a∗((d,e),θ̂−i),(d,e))
)+

∈B
}

× d(⊗ρM−1 ×⊗ζM−1)(θ̂−i)dζ(e) + (1− δ)Ψ(B).

(2.17)

For later use we also define the transition kernel without regeneration but one ob-

tained by averaging the states of the other users while retaining the state of user i,

28

i.e.,

Υ(B|d, e) =P(di[k] ∈ B| no regeneration, di[k − 1] = d, ei[k] = e)

=

∫
1{(

d+ηi−χi(a∗((d,e),θ̂−i),(d,e))
)+

∈B
} × d(⊗ρM−1 ×⊗ζM−1)(θ̂−i)dζ(e).

(2.18)

The k fold iteration of this transition kernel is denoted by Υ(k).

Lemma 4 The Markov chain where the allocation is determined using (2.7) based

on choosing the states of all users other than i i.i.d. with distribution ρ× ζ and the

number of B2D packets of user i independently with distribution ζ, and the transi-

tion probabilities in (2.16) is positive Harris recurrent and has a unique stationary

distribution. We denote the unique stationary distribution for the deficit of a typical

agent by Πρ×ζ; the dependence on Ψ is suppressed. The expression of this stationary

distribution Πρ×ζ in term of Υ
(k)
ρ×ζ(B|D,E) is given as,

Πρ×ζ(B) =
∞∑
k=0

(1− δ)δkEΨ(Υ
(k)
ρ×ζ(B|D,E)), (2.19)

where D = {Dk}k∈N is the deficit process, E = {Ek}k∈N is the B2D packet reception

process, and EΨ(Υ
(k)
ρ×ζ(B|D,E)) =

∫
Υ

(k)
ρ×ζ(B|d, e)dΨ(d)dζ(e).

2.5.2 Agent and Cluster Decision Problems

Suppose that each agent has common information about the distribution for the

deficit ρ ∈ M1(K) (where M1(K) is the set of probability measures on K); this is

one of the mean-field assumptions. We further assume that ρ ∈ P where

P =
{
ρ|ρ ∈M1(K) with finite mean

}
. (2.20)

29

We will also assume that the regeneration distribution Ψ ∈ P . From Section 2.4, the

best strategy for each agent is to truthfully reveal its state based on the transfers

suggested in each frame as per (2.11). Then each cluster simply maximizes the

system value function by choosing the greedy optimal allocation based on (2.7).

2.5.3 Mean Field Equilibrium

Given the distribution for deficit ρ and the station distribution Πρ×ζ , we have the

following definition.

Definition 2 (Mean field equilibrium). Let ρ be the common cumulative distribution

for deficit and telling-truth is the optimal policy for each agent in every frame. Then,

we say that the given ρ along with the truth-telling behavior constitutes a mean field

equilibrium if

ρ(d) = Πρ×ζ(d),∀d ∈ K. (2.21)

2.6 Existence of MFE

The main result showing the existence of MFE is as follows.

Theorem 3 There exists an MFE of ρ and truth-telling policy such that ρ(d) =

Πρ×ζ(d), ∀d ∈ K.

As mentioned earlier, we will be specializing to the space M1(K), its subset P

and further subsets of P . The primary topology on M1(K) that we will consider

is the uniform norm topology, i.e., using the l∞ norm given by ‖ρ‖ = maxd∈K ρ(d).

Another topology onM1(K) that we will use is the point-wise convergence topology,

i.e., {ρn}∞n=1 ⊂ M1(K) converges to ρ ∈ M1(K) point-wise if limn→∞ ρn(d) = ρ(d)

for all d ∈ K; it is easily verified that the convergence is the same as weak convergence

of measures. Also, define the mapping Π∗ that takes ρ to the invariant stationary

30

distribution Πρ×ζ(·). Let P ′ ⊂ P . We will use the Schauder fixed point theorem to

prove existence which is given as follows.

Theorem 4 (Schauder Fixed Point Theorem). Suppose F(P ′) ⊂ P ′, F is continu-

ous and F(P ′) is contained in a convex and compact subset of P ′, then F has a fixed

point.

Note that from the definition of P , it is already convex. Then in the following

section, we will prove that under the topology generated by the uniform norm, Π∗ is

continuous and the image of Π∗ for a specific subset P ′ is pre-compact.

2.6.1 Steps to Prove MFE Existence

We first need to prove the continuity of Π∗ with the uniform norm topology.

For this we will start by showing that for any sequence ρn → ρ with ρn, ρ ∈ P in

uniform norm, Π∗(ρn)⇒ Π∗(ρ) (where⇒ denotes weak convergence). Finally, using

some properties of M1(K) we will strengthen the convergence result to prove that

Π∗(ρn)→ Π∗(ρ) in uniform norm too.

2.6.1.1 Continuity of the Mapping Π∗

We will restrict our attention to subset of probability measures P(F) ⊂ M1(K)

such that

P(F) =

{
ρ ∈M1(K) :

∑
d∈K

dρ(d) ≤ F

}
, (2.22)

where F is a given non-negative constant; in other words, probability measures with

a specified bound on the mean and not just a finite mean. We will assume that the

regeneration distribution Ψ ∈ P(F ′) for some F ′. Later on we will specify the values

of F and F ′ to be used.

31

We start with the following preliminary result that establishes compactness of

sets like P(F) in the uniform norm topology; note that convexity is immediate.

Lemma 5 Given a sequence of non-negative numbers {bn}n∈N such that limn→∞ bn =

0, then C =
{
x : |xn| ≤ bn ∀n ∈ N

}
is a compact subset of l∞ and sequences of

elements from C that converge point-wise also converge uniformly.

One can also use the Cantor diagonalization procedure to show sequential compact-

ness in the proof above.

We have an immediate corollary of this result.

Corollary 1 The set of probability measures P(F) on K is a compact set of l∞ for

every F ∈ R+.

Proof For any ρ ∈ P(F), p(d1) ≤ 1 and by Markov’s inequality for n > 1

p(dn) ≤
∞∑
k=n

p(dk) ≤
F

dn
, (2.23)

with limn→∞
F
dn

= 0. Using Lemma 5 the result follows.

Next, we present a coupling result from Thorisson [86, Theorem 6.1, Chapter 1].

This result will be used in proving continuity of the stationary distribution of the

deficit process under the topology of point-wise convergence and in strengthening

the convergence result.

Theorem 5 Let {ρn}∞n=1 ∈M1(K) converge weakly to ρ ∈M1(K), then there exists

a coupling, i.e., random variables {Xn}∞n=1, X on a common probability space and a

random integer N such that Xn ∼ ρn for all n ∈ N, X ∼ ρ and Xn = X for n ≥ N .

32

This result shows that weak convergence of probability measures on K is equiva-

lent to convergence of probability measures in total variation norm, and hence, also

in uniform norm.

Next we show that Πρ×ζ ∈ P(F) whenever ρ ∈ P(F).

Lemma 6 If ρ ∈ P(F) for F ≥ δη
1−δ and the regeneration distribution Ψ ∈ P(F ′) for

F ′ ≤ F − δη
1−δ , then the stationary distribution of the deficit process of any specific

user Πρ×ζ ∈ P(F).

Next we show continuity properties of the mapping Π∗.

Theorem 6 The mapping Π∗ : P(F) 7→ P(F) is continuous in the uniform topology.

In addition, Π∗ has a fixed point in P(F).

Theorem 7 The MFE is unique.

As mentioned earlier, we constrain our analysis to the case of D2D transmissions

being error-free. We give a discussion on generalizing the D2D transmission model

in [61].

2.7 Passage to the Mean Field Limit

We gave an overview of the finite agent system in Sections 2.1.1.1 (description of

FiniteDPM) and 2.3. Here, we briefly discuss the passage between the finite agent

system and the mean field model that we have used throughout the section. As

in other literature on repeated games under the mean field setup [47, 69], we have

considered the system with an infinitely large number of agents at finite time. It

is straight-forward to follow the steps in [47, 69] to prove convergence of the finite

agent system to the mean-field model in our context. However, to the best of our

knowledge, the study of mean field games as time also becomes infinitely large is

33

currently open. There has been recent work in non-game-theoretical settings (using

a fixed policy) studying the question of the conditions required to ensure that the

mean field model is indeed the limiting case of the finite system when time becomes

asymptotically large [10, 16]. In the case of our system, the set of measures that we

consider is tight, since they are all stochastically dominated by a fictitious system

in which no D2D transmissions happen and the agents’ deficits simply increase and

then they regenerate. Furthermore, we showed in Theorem 7 that the MFE, which

is efficient, dominant strategy incentive compatible and per-period individually ra-

tional, is unique. We believe that these two properties might aid us in characterizing

the equilibrium as time becomes large, and we defer this problem to future work.

2.8 Value Determination

We now turn to computing the system value from the viewpoint of a cluster and

also a typical agent (say 1). Here, we suppose there are M = 4 agents in each

cluster, and all have η = 0.95, δ = 0.9995. Hence, each agent spends an average of

2000 frames in the system before leaving. A new agent has a deficit drawn uniformly

at random from the interval [0, 13]. Each agent needs to receive N = 10 packets to

decode the block, and there are T = 8 time slots in each frame. We wish to determine

the value function from the perspective of the cluster and from the perspective of

agent 1, using (2.6) and (2.8).

The following observation is useful to determine the allocations a∗ and ã. It is

straightforward to find a∗, since it simply follows Algorithm 1. Now, consider ã. It

is simple to see that it too would follow Phases 1 and 2 of Algorithm 1. Then, from

the perspective of agent 1, after the completion of these two phases, there are only

two classes of allocations–those in which he transmits and those in which he does

not. Now, since all the other agents that agent 1 comes in contact with in the future

34

are drawn from [⊗ρM−1,⊗ζM−1], the allocation should follow a greedy minimization

with respect to the other agents. Thus, we only need consider two allocations while

conducting value iterations: min-deficit-first with agent 1 (identical to Phase 3 of

Algorithm 1) and min-deficit-first without agent 1 (just set aside agent 1 in Phase 3

of Algorithm 1).

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

Deficit

N
o
rm

a
liz

e
d
 F

re
q
u
e
n
c
y

Figure 2.4: Deficit distribution.

We first run the system according to Algorithm 1, and use the results to find

the empirical deficit distribution, denoted by R. This is identical to the Mean Field

deficit distribution. The empirical distribution of deficit R, is shown in Figure 2.4.

We find that deficit lies in the range 0− 13.

With η = 0.95, the (countable) deficit set is {0, 0.05, 0.1, 0.15, ...}. With a deficit

range of 0 − 13, there are totally 260 potential values for deficit. For the number

of B2D chunks received e, we take values 3, 4 and 5 (uniformly). Therefore, there

are totally 2604 × 34 states in the system. Using R to represent the MF deficit

35

0 2000 4000 6000 8000 10000 12000
0

2

4

6

8

10
x 10

4

Iteration Round

T
ra

n
s
m

is
s
io

n
s

State 1

State 2

State 3

Figure 2.5: Convergence of value iteration.

distribution, and a linear holding cost function, we run value iteration; we present

an example for a few states in Figure 2.5. We thus obtain the mean field value

functions.

The empirical distribution of the average discounted transfers over the lifetime of

each device is shown in Figure 2.6. The average transfer is 18039. We will discuss the

economic implications of this observation after describing the Android experiments

in the next section.

2.9 Android Implementation

We now describe experiments on an Android testbed using a cluster size of four

Google Nexus 7 tablets. We modified the kernel of Android v 4.3 to simultaneously

allow both WiFi and 3G interfaces to transmit and receive data.

Our system consists of a server application on a desktop that codes data and sends

it to the tablets over the Internet, an Android app that receives data over Internet on

a 3G interface and shares it over the WiFi interface, and a monitor that keeps track

36

1 1.5 2 2.5 3

x 10
4

0

0.02

0.04

0.06

0.08

0.1

Transfer Value

N
o
rm

a
liz

e
d
 F

re
q
u
e
n
c
y

Figure 2.6: Transfer distribution.

of the state of the system and generates a trace of events. The server initializes each

tablet in the system with a randomly selected number of chunks. Additionally, churn

is emulated in the system by making the application on the tablet reset randomly

with a probability δ̄ = 5× 10−4 (i.e., δ = 0.9995).

We set the frame duration as 500 ms. Since we have δ = 0.9995, this means that

the average duration that a device spends in the system is 1000 seconds. We use an

MP3 music file as the data, and divide it into blocks, with the blocks being further

divided into chunks. Chunks are generated using an open source random linear

coding library [2], using field size 256 and 10 degrees of freedom per block. Hence,

a block is decodable with high probability if 10 chunks are received successfully.

Each chunk has an average size of 1500 Bytes, and has a header that contains the

frame number it corresponds to as well as its current deficit. The system maintains

synchronization by observing these frame numbers.

The allocation algorithm proceeds as suggested by Algorithm 1. We approximate

the three phases by setting back-off times for D2D access. Devices that cannot com-

37

plete (i.e., Phase 1 devices) should be the most aggressive in D2D channel access. We

set them to randomly back-off between 1 and 5 ms before transmission. Devices that

can afford to transmit some number of chunks (Phase 2) should be less aggressive,

and transmit chunks by backing off between 1 and 15 ms. Finally, each device enters

Phase 3, and modulates its aggressiveness based on deficits. Each device normalizes

its deficit based on the values of deficits that it sees from all other transmissions, and

backsoff proportional to this deficit within the interval of 5 to 15 ms. The average

error in value due to a back-off based implementation is about 10− 15%.

We conducted experiments to determine the stable delivery ratio achieved using

D2D for different B2D initializations per frame. We present some sample deficit

trajectories in Figure 2.7. The random resets emulating peer churn are visible as

sharp changes in the deficit. We found that on average, B2D transfer of 4 chunks to

each device is sufficient to ensure a delivery ratio of over 0.95. Hence, it is easy to

achieve a 60% reduction in B2D usage, while maintaining a high QoE.

0 50 100 150 200 250 300 350 400 450
0

5

10

Frame

D
e
fi
c
it

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

Frame

D
e
fi
c
it

0 50 100 150 200 250 300 350 400 450
0

5

10

Frame

D
e
fi
c
it

Figure 2.7: Sample deficit trajectories. We have used δ = 0.98 in this run to illustrate
frequent resets, which cause sharp decreases or increases.

38

2.10 System Viability

We saw in Section 2.8 that the average transfer to each agent is positive, meaning

that the agents need to obtain some kind of subsidy in order to use the system. What

kind of subsidy should they be given? The Android experiments indicate that each

agent is able to save 60% of the B2D costs when participating in the system. Would

this be sufficient?

The price of B2D service is currently $10 per GB across many US cellular

providers. Suppose that we consider music streaming at a rate of 250 kbps cor-

responding to our Android system. If each device uses only B2D communication (no

D2D at all), the cost of spending 1000 seconds in the sytem is 31.25 cents. The per

frame communication cost is 0.0156 cents, and we can consider this to be the value

of each frame to the agent.

The experiments in Section 2.9 indicate that the agents have to utilize their

B2D connection for at least 40% of the chunks to maintain the desired QoE. Hence,

the value that can potentially be received by participating in the D2D system is

0.6× 0.0156 = 0.00936 cents per frame. Let us assume a linear deficit cost function

that takes a value of 0.00936 cents at deficit value of 15. In other words, if the agent

were to experience a deficit of 15 or above in a frame, it gets no payoff from that

frame. Using this linear transformation, we can translate the average transfer of

18039 (the value found in Section 2.8) over the entire 1000 seconds into a total of

11.26 cents. Thus, if each agent saves at least 11.26 cents, it has an incentive to

participate in the D2D system. The actual saving is 0.6 ∗ 31.25 = 18.75 cents (60%

of the B2D costs) per agent, which is well above the minimum required saving.

The situation is still better for video streaming at a rate of 800 kbps. A similar

calculation indicates that a 16 minute video costs about $1 using pure B2D, while

39

the B2D cost in the hybrid system is only 40 cents, yielding a savings of 60 cents

per agent. However, a saving of about 36 cents per agent is all that is needed to

incentivize them to participate.

In a full implementation, each agent would place an amount (eg. 36 cents for a

16 minute average lifetime) in escrow with the monitor upon connecting. Each agent

would receive transfers according to our mechanism, and, on average, would receive

its amount back from the monitor for its contributions. Hence, the system would

then be ex-ante budget balanced.

2.11 Conclusion

We studied the problem of providing incentives for cooperation in large scale

multi-agent systems, using wireless streaming networks as an example. The objec-

tive was to incentivize truth telling about individual user states so that a system wide

cost minimizing allocation can be used. We showed how a mean field approxima-

tion for large systems yields a low-complexity framework under which to design the

mechanism. Finally, we implemented the system on Android devices and presented

results illustrating its viability using the current price of cellular data access as the

basis for transfers.

40

3. ENERGY COUPON: A MEAN FIELD GAME PERSPECTIVE ON

DEMAND RESPONSE IN SMART GRIDS

3.1 Introduction

There has recently been much interest in understanding societal networks, con-

sisting of interconnected communication, transportation, energy and other networks

that are important to the functioning of human society. These systems usually have

a shared resource component, and participants have to periodically take decisions on

when and how much to utilize such resources. Research into these networks often

takes the form of behavioral studies on decision making by the participants, and

whether it is possible to provide incentives to modify their behavior in such a way

that the society as a whole benefits [72, 78].

0 4 8 12 16 20 24
0

20

40

60

80

100

120

140

160

Time

A
v
e

ra
g

e
 P

ri
c
e

s
 a

n
d

 t
h

e
 S

ta
n

d
a

rd
 D

e
v
ia

ti
o

n Day−ahead Prices Distribution

Figure 3.1: Day-ahead electricity market prices in dollars per MWh on an hourly
basis between 12 AM to 12 PM, measured between June–August, 2013 in Austin,
TX. Standard deviations above and below the mean are indicated separately.

41

Our candidate application in this section is that of a Load Serving Entity (LSE)

or a Load Aggregator (LA) (e.g., a utility company) trying to reduce its exposure to

daily electricity market volatility by incentivizing demand response in a Smart Grid

setting. The reason for our choice is the ready availability of data and reliable models

for the cost and payoff structure that enables a realistic study. For instance, consider

Figure 3.1, which shows the (wholesale) price of electricity at different hours of day

during the summer months in Texas. The data was obtained from the Electric Reli-

ability Council of Texas [1], an organization that manages the deregulated wholesale

energy market in the state. The price shows considerable variation during the day,

and peaks at about 5 PM, which is the time at which maximum demand occurs. A

major source of this demand in Texas is air conditioning, which in each home is of

the order of 30 kWh per day by [3]. Incentivizing customers to move a few kWh of

peak-time usage to the sides of the peak each day could lead to much reduced risks

of peak price borne by the LSE. When coupled with a reduction in energy usage,

such demand shaping could also have a positive effect on environmental impact of

power plant emissions.

As an example, we take the baseline temperature setpoint as 22.5◦C, and consider

a customer that every day increases the setpoint by 1◦C in 5− 6 PM and decreases

the setpoint by 0.5◦C in the off-peak times. We will see later that even such a

small change of the setpoint of AC can yield substantial savings of the order of a

hundred dollars per week to the LSE when conducted over a group of fifty homes.

This result is under the implicit assumption that the LSE in question is a price-taker

so that changes in its demand profile are assumed not to perturb the prices. The

shifting of daily energy usage could potentially cause a small increase in the mean

and deviation of the internal home temperature, which is a discomfort cost borne

by the customer. In our system (an actual system that we are currently developing,

42

and using which we intend to conduct user trials soon), the LSE awards a number of

“Energy Coupons” to the customer in proportion to his usage at the non-peak times,

and these coupons are used as tickets at a lottery conducted by the LSE. A higher

number of coupons would be obtained by choosing an option that potentially entails

more discomfort, and would also imply a higher probability of winning at the lottery.

Since the customers do not observe the impact of day-ahead prices on a day-to-day

basis nor do they see the aggregate demand at the LSE, the lottery scheme serves as

a mechanism to transfer some of this information over to the customers by coupling

them.

In our analytical model, each agent has a set of actions that it can take in each

play of a repeated game, with each action having a corresponding cost. Higher

cost actions yield a higher number of coupons. At the end of each play, the agents

participate in a lottery in which they are randomly permuted into groups, and one

or more prizes are given in each group. The state of each agent is measured using

his surplus, which captures the history of plays experienced by the agent, and is

a proxy to capture his interest in participating in the incentive system. Each win

at the lottery increases the surplus, and each loss decreases it. Furthermore, we

assume that the agent has a prospect utility function that is increasing and concave

for positive surplus and convex for negative surplus. This prospect theory model

captures the decision making under risk and uncertainty for agents. Any agent could

depart from the system with a fixed probability, and a departing agent is replaced

by a new entrant with a randomly drawn surplus. The question we answer in this

section then is how would agents decide on what action to take at each play?

43

3.1.1 Prospect Theory

Most previous studies account for uncertainty in agent payoffs by means of the

expected utility theory (EUT). Under EUT, the objective of the decision maker is to

maximize the probabilistically weighted average utilities under different outcomes.

However, EUT does not incorporate observed behavior of human agents, who can

take decisions deviating from this conventional norm. For example, empirical stud-

ies have shown that agents ascribe higher weights to rare, positive events (such as

winning at a lottery) [50].

Prospect theory (PT) [50, 51, 87, 88] is perhaps the most well-known alternative

theory to EUT. It was originally developed for binary lotteries [50] and later refined

to deal with issues related to multiple outcomes and valuations [88]. This Nobel-

prize-in-economics-winning theory has been observed to provide a more accurate

description of decision making under risk and uncertainty than EUT. There are

three key characteristics of PT. First, the value function is concave for gains, convex

for losses, and steeper for losses than for gains. This feature is due to the observation

that most decision makers prefer avoiding losses to achieving gains. Thus, the value

function is usually S-shaped. Second, a nonlinear transformation of the probability

scale is in effect, i.e., decision makers will overweight low probability events and

underweight high probability events. The weighting function usually has an inverted

S-shape, i.e., it is steepest near endpoints and shallower in the middle of the range,

which captures the behaviors related to risk seeking and risk aversion. Finally the

third, the framing effect is accounted for, i.e., the decision maker takes into account

the relative gains or losses with respect to a reference point rather than the final asset

position. As PT fits better in reality than EUT based on many empirical studies, it

has been widely used in many contexts such as social sciences [32,39], communication

44

networks [24, 65, 92] and smart grids [90, 91]. Since we study equilibria that arise

through agents’ repeated play in lotteries, we use prospect theory as opposed to

expected utility theory to account for agent-perceived value while taking decisions.

3.1.2 Mean Field Games

The problem described is an example of a dynamic Bayesian game with incom-

plete information, wherein each player has to estimate the actions of all his potential

opponents in the current lottery (and in the future) without knowing their surpluses,

play a best response, and update his beliefs about their states of surplus based on

the outcome of the lottery. However, since the set of agents is large and, from the

perspective of each agent, each lottery is conducted with a randomly drawn finite set

of opponents, an accurate approximation for any agent is to assume that the states of

his opponents (and hence actions) are independent of each other. This is the setting

of a Mean Field Game (MFG) [44,49,58], which we will use as a framework to study

equilibria in societal networks. Here, the system is viewed from the perspective of

a single agent, who assumes that each opponent’s action would be drawn indepen-

dently from an assumed distribution, and plays a best response action. We say that

the system is at a Mean Field Equilibrium (MFE) if this best response action turns

out to be a sample drawn from the assumed distribution. We will use such a MFG

model to model dynamics in societal networks.

In our analysis, we can prove that regardless of the exact form of the utility

function, a MFE exists in our system. In our numerical study, we use the prospect

utility function for study, we can observe further properties of the value function

based on this special utility function.

45

3.1.3 Demand Response in Deregulated Markets

Demand Response is the term used to refer to the idea of customers being incen-

tivized in some manner to change their normal electricity usage patterns in response

to peaks in the wholesale price of electric power [5]. Many methods of achieving

demand response exist, including an extreme one of turning off power for short in-

tervals to customers a few times a year if the price is very high. In any method of

achieving demand response, customers expect a subsidy in return, often in terms of

a reduced electricity bill.

The idea is particularly relevant in deregulated electricity markets that exist in

several US states, such as in Texas, wherein the firm that serves customer demand

might have no infrastructure of its own, and merely buys on the wholesale market

and sells to the home consumer. Customers have a choice between many different

LSEs that they can obtain service from. For instance, many urban neighborhoods

in Texas are served by 5 − 10 LSEs and customers can periodically choose to sign

contracts of 1, 6 and 12 months with them.

3.1.4 Main Results

Our objective in this section is to design a system that would incentivize the

convergence of user action profiles to one that would result in large savings to the

LSE. Our contributions in this section towards such an objective are as follows:

1. We propose a mean field model to capture the dynamics in societal networks.

Our model is well suited to large scale systems in which any given subset of

agents interact only rarely. This kind of system satisfies a chaos hypothesis

that enables us to use the mean field approximation to accurately model agent

interactions. The state of the mean field agent is his surplus, which forms a

Markov process that increases by winning and decreases by losing at the lottery.

46

Our mean field model of societal networks is quite general, and can be applied

to different incentive schemes that are currently being proposed in the field of

public transportation and communication network usage.

2. We develop a characterization of a lottery in which multiple rewards can be

distributed, but with each participant getting at most one by withdrawing the

winner in each round. Each lottery is played amongst a cluster of M agents

drawn from a random permutation of the set of all agents. While the exact

form of the lottery is not critical to our results, we present it for completeness.

3. We characterize the best response policy of the mean field agent, using a dy-

namic programming formulation. We find that under our assumptions the

value function is continuous in the action distribution. Further, we show us-

ing this result that given our ordering in which higher cost actions result in a

higher probability of winning the lottery (due to more coupons being given),

the choice of one action versus another depends on thresholds in the surplus,

i.e., we obtain a threshold policy for the action choices.

4. The probability of winning the lottery defines the transition kernel (along with

the regeneration distribution) of the Markov process of the surplus, and hence

maps an assumed distribution across competitors states to a resultant station-

ary distribution. We show the existence of a fixed point of this kernel, which is

the MFE, by using Kakutani’s fixed point theorem. Our proof of the existence

of MFE doesn’t depend on the shape of the utility function, which is quite

general. Since we have a discrete action and state space, showing a fixed point

in the space of stationary distributions is quite intricate.

5. We develop an accurate model of the daily usage of electricity in each hour,

47

using available measurements over several months in Texas. We also use the

data on wholesale electricity prices during the interval to calculate what times

of day would yield the best returns to rewards. We show that if customers

are willing to change the setpoints of AC as small as 1◦C each day then each

week the LSE gains a benefit of the order of a $100 over a cluster of 50 homes.

Further, we show that such behavior can be incentivized by offering a weekly

prize of $40 at the lottery.

3.1.5 Related Work

In terms of the mean field game, our framework is based on work such as [46,60,

62,69]. In [46] the setting is that of advertisers bidding for spots on a webpage, and

the focus is on learning the value of winning (making a sale though the advertisement)

as time proceeds. In [69], apps on smart phones bid for service from a cellular base

station, and the goal is to ensure that the service regime that results has low per-

packet delays. In both works, the existence of an MFE with desired properties is

proved. In [60,62], even though the state-space and deficit dynamics are similar, the

reward structure is determined using a resource allocation problem necessitating a

different proof technique and the exploration of truthful dynamic mechanisms.

Nudge systems are typically designed and used to encourage socially beneficial

behaviors and individually beneficial behaviors. For instance, lottery schemes are

widely used in practice to incentivize good behavior, e.g., to combat (sales) tax

evasion in Brazil [76], Portugal [77], Taiwan [22], and for Internet congestion man-

agement [67]. Similarly, [72, 78] provide experimental results on designing lottery

based “nudge engines” to provide incentives to participants to modify their behav-

iors in the context of evenly distributing load on public transportation. In another

scheme, [6] study the impact of nudging on social welfare by sending one-year home

48

energy reports to participants and using multiple price lists to determine participants’

willingness to stay in the system for the next year. Our system is a form of nudge

engine, but our focus is on analytical characterization of system behavior and at-

tained equilibria with large number of customers with repeated decision-making. We

aim to design incentive schemes to modify customer behavior such that the system

as the whole benefits from the attained equilibrium.

Our idea of offering coupons for electricity usage at certain times of day is based

on one presented in [94], which suggests offering such incentives to coincide with

the predicted realtime price peaks. An experimental trial based on a similar idea is

described in [15], in which the focus is on designing algorithms to coordinate demand

flexibility to enable the full utilization of variable renewable generation. In [38], this

kind of system is modeled as a Stackelberg game with two stages: setting the coupon

values followed by consumer choice. The decision making model in all the above

research is myopic. [83] study demand-response as trading off the cost of an action

(such as modifying energy usage) against the probability of winning at a lottery in

terms of a mean field game. However, the game is played in a single step according

to their model, and there is no evolution of state or dynamics based on repeated play.

Further, their conception of the mean field equilibrium is that the mean value of the

action distribution (not the distribution itself) is invariant. Unlike these models, we

are interested in characterizing repeated consumer choice with state evolution when

the number of customers is large, and identifying the action distribution and benefits

(if any) of the resulting equilibrium.

A rich literature studies lottery schemes, and here we can only hope to cover

a fraction of them that we see most relevant. In this section, we model lotteries

as choosing a random permutation of the M agents participating in it, and picking

the first K of them as winners, with the distribution on the symmetric group of

49

permutations of {1, · · · ,M} being a function of the coupons assigned to the different

actions. Assuming that different actions yield different numbers of coupons, we will

choose the distribution such that more coupons results in a higher probability of

winning. There are various probabilistic models on permutations in the ranking

literature [68,81], Here we use the popular Plackett-Luce model [45] to implement our

lotteries. While the Plackett-Luce model is used for concreteness, other probabilistic

models on permutations such as the Thurstone model [68] can also be used with the

number of coupons as parameters of the distribution as long as more coupons results

in a higher probability of winning.

3.1.6 Organization

This section is organized as follows. In Section 3.2, we introduce our mean field

model. In Section 3.3 we develop a characterization of a lottery in which multiple

rewards can be distributed, but with each participant getting at most one by with-

drawing the winner in each round. We discuss the basic property of the optimal

value function in Section 3.4. The existence of MFE is considered in Section 3.5.

We characterize the best response policy of the mean field agent, using a dynamic

programming formulation in Section 3.6. We then conduct numerical studies in

Section 3.7, on utilizing our framework to the context of electricity markets. We

conclude in Section 3.8. To ease exposition of our results, all proofs are relegated to

the Appendix B.

3.2 Mean Field Model

We consider a general model of a societal network in which the number of agents

is large. Agents have a discrete set of actions available to them, and must take one of

these actions at each discrete time instant. The actions result in the agents receiving

coupons, with higher cost actions resulting in more coupons. The agents are then

50

randomly permuted into clusters of size M and a lottery is held using the coupons to

win real rewards. Thus, agents must take their actions under some belief about the

likely actions, and hence the likely coupons held by their competitors in the auctions.

Figure 3.2 illustrates the mean field approximation of our model, which is an

accurate representation of the Bayesian system when the number of agents is large

[36,46]. The diagram is drawn from the perspective of a single agent (w.l.o.g, let this

be agent 1), who assumes that the actions played by each of his opponents would

be drawn independently of each other from the probability mass function ρ. In this

section, we will introduce the notation, costs and payoffs of the agent, and provide

a brief description of the policy space and equilibrium.

Figure 3.2: Mean field game.

Time: Time is discrete and indexed by k ∈ {0, 1, · · · }.

Agents: As discussed above, the total number of agents is infinite, and in the

MFG, we consider a generic agent 1 who in each lottery will be paired with M − 1

51

other agents drawn randomly from the infinite population.

Actions: We suppose that each agent has the same action space denoted as

A = {1, 2, · · · , |A|}. Hence, the action that this agent takes at time k is a[k] ∈ A.

Under the mean field assumption, the actions of the other agents would be drawn

independently from the p.m.f. ρ = [b1, b2, · · · , b|A|], where ba is the probability mass

associated with action a. We call ρ as the assumed action distribution.

Costs: Each action a ∈ A taken at time k has a corresponding cost θa. This cost

is fixed and represents the discomfort suffered by the agent in having to take that

action.

Coupons: When agent takes an action a, it is awarded some fixed number of

coupons ra for playing that action. These coupons are then used by the agents as

lottery tickets.

Lottery: We suppose that there are only K rewards for agents in one cluster,

where K is a fixed number less than M . The probability of winning is based on the

number of coupons that each agent possesses. We model each lottery as choosing a

permutation of the M agents participating in it, and picking the first K of them as

winners.

States: The agent keeps track of his history of wins and losses in the lotteries

by means of his net surplus at time k, denoted x[k]. The value of surplus is the state

of the agent, and is updated in a Markovian fashion as follows:

x[k + 1] =


x[k] + w, if agent 1 wins the lottery

x[k]− l, if agent 1 loses the lottery

(3.1)

where w and l is the impact of winning or losing on surplus. Effectively, the as-

sumption is that the agent expects to win at least an amount l at each lottery. Not

52

receiving this amount would decrease his surplus. Similarly, if the prize money at

the lottery is w + l, the increase in surplus due to winning is w. Surplus values are

discrete, and the set of possible values is given by a countable X, that ranges from

(−∞,+∞).

Value function for prospect: The impact of surplus on the agent’s happiness

is modeled by an S-shaped utility function u(x[k]), which is monotone increasing,

concave for a positive surplus and convex for a negative surplus. Moreover, the

impact of loss is usually larger than that of gain of the same absolute value. Following

[88], we use the value function for prospect

u(x) =


u+(x) = xγ, x ≥ 0

u−(x) = −ϕ(−x)γ, x < 0,

(3.2)

where ϕ > 1 is the loss penalty parameter and 0 < γ < 1 is the risk aversion

parameter. A larger ϕ means that the operator is more loss averse, while a smaller

γ (i.e., the value function is more concave) indicates that the operator is more risk

seeking. From past empirical studies [51, 88], realistic values are ϕ = 2.25 and

γ = 0.88.

Weighting function for prospect: In earlier studies [79], it has been observed

that people tend to subjectively weight uncertain outcomes in real-life decision mak-

ing. In the proposed game, this weighting factors capture the agent’s subjective

evaluation on the mixed strategy of its opponents. Thus, under PT, instead of ob-

jectively observing the probability of winning the lottery pρ,a, each user perceives a

weighted version of it, φ(pρ,a). Here, φ(·) is a nonlinear transformation that maps

the objective probability to a subjective one, which is monotonic increasing in prob-

ability. It has been shown in many PT studies that, people usually overweight low

53

probability outcomes and underweight high probability outcomes. Following [79], we

use the weighting function

φ(p) = exp(−(− ln p)ξ), for 0 ≤ p ≤ 1 (3.3)

where ξ ∈ (0, 1] is the objective weight that characterizes the distortion between

subjective and objective probability. Note that under the extreme case of ξ = 1, (3.3)

reduces to the conventional EUT probability, i.e., φ(p) = p.

Regeneration: We assume that an agent may choose to quit the system at any

time. This event occurs with probability 1−β, where β ∈ (0, 1). When this happens,

a new agent takes the place of the old one, and his state is drawn from a probability

mass function Ψ.

Best Response Policy: The agent must choose an action at each time; we

including staying with the status-quo/baseline as an action too. The green/light tiles

in Figure 3.2 relate to the problem of the agent determining his best response policy.

The agent assumes that the actions taken by each of his M − 1 opponents are drawn

independently from probability mass function ρ. Given this assumption, the state of

his surplus is x and current utility is u(x), the agent must calculate the probability

of winning at the lottery pρ,a(x), if he were to take action a(x) ∈ A, incurring a cost

θa(x) and gaining ra(x) coupons. Since the agent must take this decision repeatedly, he

must solve a dynamic program to determine his optimal policy. There could be many

best response actions, and we assume that the agent chooses a randomized policy

σ(x) , [σ1(x), σ2(x), · · · , σa(x), · · · , σ|A|(x)], in which σa(x) specifies the probability

of playing action a when the agent’s surplus is x. The action taken by the agent is

a random variable A ∼ σ(x). The details of the lottery and how to calculate the

probability of success are given in Section 3.3. The properties of the best response

54

policy are described in detail in Section 3.6.

Stationary Surplus Distribution: The assumed action distribution ρ, and the

best-response randomized policy σ(x) yield the state transition kernel of the Markov

chain corresponding to the surplus, via the probability of winning the lottery pρ,a(x).

This is illustrated by means of the blue/dark tiles in Figure 3.2. The transition kernel

also is influenced by the regeneration distribution Ψ. The stationary distribution

of surplus associated with the transition kernel is denoted as ζρ. This stationary

distribution of the single mean field agent is equivalent to the one-step empirical state

distribution of infinite agents who all assume that the actions of their competitors

would be drawn from ρ.

Mean Field Equilibrium: The triple of an assumed action distribution ρ,

randomized policy σ and stationary surplus distribution ζ gets mapped into a triple

of action distribution ρ̃, best-response randomized policy σ̃ and a stationary surplus

distribution ζ̃ via the operations described above. A fixed point of the resulting map

is called an MFE. For a formal definition and details of the proof of existence see

Section 3.5.

3.3 Lottery Scheme

We first construct the lottery scheme that will be used in our mean field game.

We permute all the agents into clusters, where there are exactly M agents in each

cluster, and conduct a lottery in each such cluster. Suppose there are K rewards for

all agents in one cluster, where K is a fixed number less than M . When an agent

takes an action, he/she will receive the credit (number of coupons) associated with

that action. Then the probability of winning is based on the number of coupons

that each agent possesses. We will model the lotteries as choosing a permutation of

the M agents participating in it, and picking the first K of them as winners. Then

55

different lottery schemes can be interpreted as choosing different distributions on the

symmetric group of permutations on M . In particular, we will use ideas from the

Plackett-Luce model to implement our lotteries.

Without loss of generality, we assume that the actions are ordered in decreasing

order of the costs so that θ1 ≥ · · · ≥ θA. In order to incentivize agents to take the

more costly actions we will insist that the vector of coupons obtained for each action

is also in decreasing order of the index, i.e., r1 ≥ · · · ≥ rA.

The specific lottery procedure we consider is the following: for every agent m that

takes action a[m] and receives coupons ra[m] > 0, we choose an exponential random

variable with mean 1/ra[m] and then pick the first K agents in increasing order of the

realizations of the exponentials. Note the abuse of notation only in this section to

use a[m] to refer to the action of agent m. Since we consider only one lottery, we do

not consider time k. Let the agent m = 1, . . . ,M receive ra[m] number of coupons.

The set of winners is a permutation over the agent indices, and we denote such a

permutation by σ = [σ1, σ2, · · · σM]. We then have the probability of the permutation

σ given by

P(σ|ra[1], . . . , ra[M]) =
M−1∏
n=1

ra[σn]∑M
j=n ra[σj]

. (3.4)

Essentially, after each agent is chosen as a winner, he is removed and the next lottery

is conducted just as before but with fewer agents.

We now analyze the probability of winning in our lottery. For analysis under

the mean field assumption, it suffices to consider agent 1 with the coupons it gets

by taking action a being denoted as ra[1]. Let M := {2, . . . ,M}, which is the set

of opponents of agent 1. For these agents, suppose there are υn agents that choose

action n, where
∑

n∈A υn = M − 1. We denote the vector of these actions by

56

~υ = (υ1, . . . , υA).

The conditional probability of agent 1 failing to obtain a reward is given by

pL1,~υ =
∑

κ1∈M1

· · ·
∑

κK∈MK

∏K
l=1 ra[κl]∏K

l=1(ra[1] +
∑

m∈Ml
ra[m])

,

where L refers to the fact that agent 1 “loses,” M1 = M, and for l ≥ 2 we have

Ml = Ml−1 \ {κl−1}. Essentially, the above looks at the lottery process round by

round, and is a summation of the probabilities of all permutations in which agent 1

does not appear in the first spot in any round.

The above expression considerably simplifies if the summations are instead taken

over the actions κ̃l that the lottery winner κl at round l ∈ {1, . . . , K} can take. Note

that we assume that we can distinguish the actions based on the number of coupons

given out. If this were not true, then we could further simplify the expression by

summing over the coupon space. Given a coupon/action profile ~υ, let J (~υ) denote

the actions that have non-zero entries. Additionally, by ~υ − ~1κ̃ for κ̃ ∈ J (~υ) denote

the resulting coupon profile obtained by removing one entry at location κ̃, and by r~υ

the sum of all the coupons in profile ~υ, i.e.,
∑

κ̃∈J (~υ) rκ̃υκ̃. Then

pL1,~υ =
∑

κ̃1∈J (~υ1)

· · ·
∑

κ̃K∈J (~υK)

∏K
l=1 υ

l
κ̃l
rκ̃l∏K

l=1(ra[1] + r~υl)
, (3.5)

where ~υ1 = ~υ, for l = 2, . . . , K, ~υl = ~υl−1 − ~1κ̃l and υlκ̃ is the number of entries at

location κ̃ for coupon profile ~υl. Note that pL1,~υ is a decreasing function of ra[1] for

every ~υ. Therefore, agent 1 comparing two actions i and j that have r1,i > r1,j will

find pL1,~υ(i) < pL1,~υ(j) for all ~υ. Also by taking the limit of ra[1] going to 0, having an

action with 0 coupons results in a loss probability of 1 for every ~υ.

To determine the probability of winning in the lottery we need to account for

57

the fact that the actions of the opponents are drawn from the distribution ρ (under

the mean field assumption). Hence, the probability of obtaining the coupon pro-

file (equivalently action profile) of the opponents ~υ = (υ1, . . . , υA) is given by the

multinomial formula, i.e.,

Pρ(~υ) =
(M − 1)!

∏
i∈A b

υi
i∏

i∈A υi!
. (3.6)

Using (3.5) and (3.6), we obtain the winning probability for the mean field agent

1 when taking action a as

pρ,a = 1−
∑

~υ:|J (~υ)|=M−1

pL1,~υPρ(~υ). (3.7)

By lower bounding each term in the conditional probability of not obtaining a reward

we get pρ,a ≤ 1− M−K
M

(rA
r1

)K =: pW ∈ (0, 1). If we ran the lottery without removing

the winners (and any of their coupons), we obtain a lower bound on the probability

of winning that has a simpler expression. Using this simpler expression we can obtain

the lower bound pρ,1 ≥ 1− (1− rA
rA+(M−1)r1

)K =: p
W
∈ (0, 1). Note that both bounds

are independent of ρ. If we allow an action that yields 0 coupons, then the above

bounds become trivial with pW = 1 and p
W

= 0.

An important feature of our lottery scheme is that the probability of winning

increases with the number of coupons given out. For simplicity we assumed a fixed

reward for any win. However, we can extend the lotteries to ones where different

rewards are given out at different stages, and also where the rewards are dependent

on the number of coupons of the winner. For the latter, we will insist on the rewards

being an increasing function of the number of coupons of the winner. Finally, we can

also extend to scenarios where we choose the number of stages K is an (exogenous)

58

random fashion in {1, . . . ,M − 1}. Since the analysis carries through unchanged

except with more onerous notation, we only discuss the simplest setting.

3.4 Optimal Value Function

As discussed in Section 3.2, the mean field agent must determine the optimal

action to take, given his surplus x and the assumed action distribution ρ. We follow

the usual quasi-linear combination of prospect function and cost consistent with Von

Neumann-Morgenstern utility functions, and under which the impact of winning or

losing at a lottery is on the surplus of the agent (and not simply a one-step myopic

value change). Thus, the dynamic program that the agent in prospect theory needs

to solve is

Vρ(x) = max
a(x)∈A

{u(x)− θa(x) + β[φ(pρ,a(x))V (x+ w) + φ(1− pρ,a(x))V (x− l)]}.

(3.8)

Note that pρ,a(x) is a result of a lottery that we described in detail in Section 3.3,

and φ(·) is the weighting function, which overweights small probabilities (win the

lottery) and underweights moderate an high probabilities (loss the lottery). Here we

use the weighting function defined in (3.3).

First, we need to define a set of functions as

Φ =

{
f : X→ R : sup

x∈X

∣∣∣∣ f(x)

Ω(x)

∣∣∣∣ <∞} ,
where Ω(x) = max{|u(x)|, 1}. Note that Φ is a Banach space with Ω−norm,

||f ||Ω = sup
x∈X

∣∣∣∣ f(x)

Ω(x)

∣∣∣∣ <∞.

59

Also define the Bellman operator Tρ as

Tρf(x) = max
a(x)∈A

{u(x)− θa(x) +β[φ(pρ,a(x))f(x+w),+φ(1−pρ,a(x))f(x− l)]}, (3.9)

where f ∈ Φ.

We now show that the optimal value function Vρ(x) exists and it is continuous in

ρ.

Lemma 7 1) There exists a unique f ∗ ∈ Φ, such that Tρf
∗(x) = f ∗(x) for every

x ∈ X, and given x ∈ X, for every f ∈ Φ, we have T nρ f(x)→ f ∗(x), as n→∞.

2) The fixed point f ∗ of operator Tρ is the unique solution of Equation (3.8), i.e.

f ∗ = V ∗ρ .

Lemma 8 The value function Vρ(·) is Lipschitz continuous in ρ.

3.4.1 Stationary Distributions

For a generic agent, w.l.o.g., say agent 1, we consider the state process {x1[k]}∞k=0.

It’s a Markov chain with countable state-space X, and it has an invariant transition

kernel given by a combination of the randomized policy σ(x) at each surplus x for

any a(x) ∈ A, and the lottery scheme from Section 3.3. By following this Markov

policy, we get a process {W [k]}∞k=0 that takes values in {win, lose} with probability

pρ,a(x) for the win, drawn conditionally independent of the past (given x1[k]). Then

the transition kernel conditioned on W [k] is given by

P(x1[k] ∈ B|x1[k − 1] = x,W [k]) = β1{x+w1{W [k]=win}−l1{W [k]=lose}∈B} + (1− β)Ψ(B),

(3.10)

60

where B ⊂ X and Ψ is the probability measure of the regeneration process for surplus.

The unconditioned transition kernel is then

P(x1[k] ∈ B|x1[k − 1] = x) = β
∑
a(x)∈A

σa(x)pρ,a(x)1x+w∈B

+ β
(
1−

∑
a(x)∈A

σa(x)pρ,a(x)
)
1x−l∈B + (1− β)Ψ(B).

(3.11)

Lemma 9 The Markov chain where the action policy is determined by σ(x) based on

the states of the users and the transition probabilities in (3.11) is positive recurrent

and has a unique stationary surplus distribution. We denote the unique stationary

surplus distribution as ζρ×σ. Let ζ
(k)
ρ×σ(B|x) be the surplus distribution at time k

induced by the transition kernel (3.11) conditioned on the event that X[0] = x and

there is no regeneration until time k. ζρ×σ(·) and ζ
(k)
ρ×σ(·) are related as follows:

ζρ×σ(B) =
∞∑
k=0

(1− β)βkEΨ

(
ζ

(k)
ρ×σ(B|X)

)
=
∞∑
k=0

(1− β)βk
∫
ζ

(k)
ρ×σ(B|x)dΨ(x).

(3.12)

Thus ζρ×σ(B) in terms of ζ
(k)
ρ×σ(B|x) is simply based on the properties of the con-

ditional expectation. And note that in EΨ

(
ζ

(k)
ρ×σ(B|X)

)
, the random variable X is

the initial condition of the surplus, generated by Ψ. For x ∈ X, the only possible

one-step updates are the increase of the surplus to x+ w or a decrease to x− l, i.e.

B = {x+ w, x− l}.

3.5 Mean Field Equilibrium

The action distribution ρ is a probability mass function on the action set A: let bi

be the probability of choosing action i. Note that ρ lives in the probability simplex

on R|A|, which is compact and convex, denote it as Γρ. Let ζ be the stationary

61

surplus distribution and the set of all such possible surplus distributions is denoted

as Γζ , which is compact and convex. For a given surplus x, let σ(x) be the action

distribution at x. Denote Γσ as the set of all possible distributions over the action

space for each x, which is compact and convex. We further assume that ρ ∈ Γρ,

ζ ∈ Γρ and σ(x) ∈ Γσ for each x.

Definition 3 Consider the action distribution ρ, the randomized policy σ and the

stationary surplus distribution ζρ: (i), Given the action distribution ρ, determine the

success probabilities in the lottery scheme using (3.7) and then compute the value

function in (3.8). Taking the best response given by (3.8) results in an action distri-

bution σ̃; (ii), Given action distribution ρ, following the randomized policy σ yields

transition kernels for the surplus Markov chain and stationary surplus distribution

ζ̃ρ, (with each transition kernel having a unique stationary distribution); and (iii),

Given the stationary surplus distribution ζρ, applying the randomized policy σ(x) at

each surplus x yields the distribution of actions ρ̃. Define the best response mapping

Π∗ that maps Γρ ⊗ Γ
|X|
σ ⊗ Γζ into itself. Then we say that the assumed action dis-

tribution ρ, randomized policy σ and stationary surplus distribution ζρ constitute a

mean field equilibrium (MFE) if Π∗ : ρ⊗ σ⊗ ζρ 7→ ρ̃⊗ σ̃⊗ ζ̃ρ has (ρ, σ, ζρ) as a fixed

point.

3.5.1 Existence of MFE

Theorem 8 There exists an MFE of ρ, the randomized policy σ(x) at each surplus

x and ζ, such that ρ ∈ Γρ, σ(x) ∈ Γσ and ζ ∈ Γζ, ∀a ∈ A and ∀x ∈ X.

We will be specializing to the spaces Γρ,Γσ,Γζ and define the topologies being

used in the following proofs first.

1. For the assumed action distribution ρ ∈ Γρ on the finite set A, all norms are

62

equivalent, we will consider the topology of uniform convergence, i.e., using the

l∞ norm given by ||ρ|| = maxa∈A ρ(a).

2. For the randomized policy σ ∈ Γ
|X|
σ , we enumerate the elements in X as

1, 2, · · · , and consider the topology with norm ||σ|| =
∑∞

j=1 2−j|σ(xj)|, where

|σ(x)| = maxa∈A σ(x, a). We consider any sequence {σn}∞n=1 converges to σ in

this topology space.

3. For the surplus distribution ζ on the countable set X, we consider the topology

of pointwise convergence.

Note that from the definition of Γρ, Γσ and Γζ , they are already non-empty,

convex and compact. Furthermore, they are jointly convex. Then in order to show

that the mapping Π∗ satisfies the conditions of Kakutani fixed point theorem, we

only need to verify the following three lemmas.

Lemma 10 Given ρ, by taking the best response given by (3.8), we can obtain the

action distribution σ(x) for every x, which is upper semicontinuous in ρ.

Lemma 11 Given ρ and σ(x), there exists a unique stationary surplus distribution

ζ(x), which is continuous in ρ and σ(x).

Lemma 12 Given ζ(x) and σ(x), there exists a stationary action distribution ρ,

which is continuous in ζ(x) and σ(x).

3.6 Characteristics of the Best Response Policy

In this section, we characterize the best response policy under the assumption

that Vρ in (3.8) has some properties. Then we discuss the relations between the

utility function u(x) and the optimal value function Vρ.

63

3.6.1 Existence of Threshold Policy

We assume that given the action distribution ρ, Vρ(x) is increasing and submod-

ular in x when x ≤ −l; increasing and linear in x when −l ≤ x ≤ w; and increasing

and supermodular in x, when x ≥ w.

In Section 3.3, our lotteries will be constructed such that the probability of win-

ning monotonically increases with the cost of the action. This when combined with

the monotonicity, submodularity (decreasing differences) for positive argument and

supermodularlity (increasing differences) for negative argument of Vρ yields the fol-

lowing characterization of the best response policy.

Lemma 13 For any two action, say actions a1 and a2, suppose that θa1 > θa2, so

that pρ,a1 > pρ,a2, i.e., φ(pρ,a1) > φ(pρ,a2), then there is a threshold value of the

surplus queue for user such that preference order for the actions changes from one

side of the threshold to the other.

Similarly, if we simply assume that Vρ(x) is increasing and submodular in x ∈

(−∞,∞), or increasing and supermodular in x ∈ (−∞,∞), it will also yield the

existence of threshold policy.

3.6.2 Relations Between Utility Function u(x) and the Optimal Value Function Vρ

3.6.2.1 S-shaped Prospect Utility Function

Consider the S-shaped prospect utility function u(x), which satisfied the following

conditions: (i) u(x) is a concave increasing function of x when x ≥ w; (ii) u(x) is a

linear increasing function of x when −l ≤ x ≤ w; (iii) u(x) is a convex increasing

function of x when x ≤ −l; and (iv) u(x) is continuous on (−∞,∞).

From (3.9), it’s clear that the Bellman operator will take concave functions into

concave functions. Since the limit of any sequences of functions is the value function,

64

all we need to prove is that the limit of a sequence of concave functions must be

concave because we start from our iterations with a concave function, but note that

our concave functions are defined by a weak inequality. Thus the set defining it must

be closed, so the value function is concave. However, in our case, that set is not a

closed set given x ≥ −l. It’s only closed for x ≥ 0.

Therefore, we cannot prove theoretically that Vρ(·) is increasing, convex in

(−∞,−l], linear in [−l, w] and concave in [w,∞), but intuitively Vρ(·) should also be

convex, linear and then concave as x increases from −∞ to ∞. Indeed, we observed

this property from the numerical studies in Section 3.7.

In other words, we conjecture that the optimal value function is supermodular,

linear and then submodular as x increases from−∞ to∞, which will yield an optimal

threshold policy.

3.6.2.2 Concave/Convex Utility Function

Now if we simply assume that the utility function u(x) is concave/convex and

monotone increasing in x, then we can obtain the following useful properties of the

optimal value functions, which we can use to characterize the optimal threshold

policy.

Next, we show that the value function Vρ(x) is increasing, submodular (i.e., de-

creasing differences) in x if u(x) is concave in x, and increasing, supermodular (i.e.,

increasing differences) in x if u(x) is convex in x.

Lemma 14 Given the distribution of action ρ, Vρ(x) is an increasing and submod-

ular function of x if u(x) is a concave function of x, supermodular function of x if

u(x) is a convex function of x.

65

3.7 Numerical Study

We first conduct an empirical data-based simulation in the context of electricity

usage for home air conditioning to illustrate the performance our system. Besides

the data on electricity prices available from [1], we also used a data set from [3]

containing the ambient temperature over June–August, 2013, as well as customer

electricity usage with a 15 minute resolution for 40 homes in Austin, TX. The data-

set differentiates between air conditioning and other energy consumption, and hence

is a good resource to validate usage models. Our first step is to model the usage

of electricity for air conditioning by an average home in Texas over the course of

a day. While we present the case of homogeneous homes that all have identical

parameters and an identical baseline, it is straightforward to extend our results to

the case where there are a finite set of classes of homes, and the participating homes

are drawn randomly from these classes.

3.7.1 Home Model

A standard continuous time model [17, 37] for describing the evolution of the

internal temperature τ(t) at time t of an air conditioned home is

τ̇(t) =


− 1

RC
(τ(t)− τa)−

η

C
Pm, if q(t) = 1,

− 1

RC
(τ(t)− τa), if q(t) = 0.

(3.13)

Here, τa is the ambient temperature (of the external environment), R is the thermal

resistance of the home, C is the thermal capacitance of the home, η is the efficiency,

and Pm is the rated electrical power of the AC unit. The state of the AC is described

by the binary signal q(t), where q(t) = 1 means AC is in the ON state at time t

and in the OFF state if q(t) = 0. The state is determined by the crossings of user

66

specified temperature thresholds as follows:

lim
ε→0

q(t+ ε) =


q(t), |τ(t)− τr| < ∆,

1, τ(t) > τr + ∆,

0, τ(t) < τr −∆,

(3.14)

where τr is the temperature setpoint and ∆ is the temperature deadband.

Table 3.1: Parameters for a residential AC unit

Parameter Value
C, Thermal Capacitance 10 kWh/◦C
R, Thermal Resistance 2 ◦C/kW

Pm, Rated Electrical Power 6.8 kW
η, Coefficient of Performance 2.5
τr, Temperature Setpoint 22.5 ◦C

∆, Temperature Deadband 0.3 ◦C

A number of studies investigate the thermal properties of typical homes. We

use the parameters shown in Table 3.1 for our simulations. These are based on the

derivations presented in [17] for conditioning a 250 m2 home (about 2700 square

feet), which is a common mid-size home in many Texas neighborhoods.

In order to determine the energy usage for AC in our typical home, we need to

have an estimate of how the ambient temperature varies over a day in Texas during

the summer months. These values are available in the Pecan Street data set, and we

plot the values of 3 days which are arbitrarily chosen over three months for Austin,

TX in Figure 3.3.

Next, we calculate the ON-OFF pattern of our typical air conditioner based on the

ambient temperature variation over the course of the day. We do this by simulating

67

0 4 8 12 16 20 24
20

25

30

35

40
Ambient Temperature

Time

T
e
m

p
e
ra

tu
re

 (
C

)

day 1
day 2
day 3

Figure 3.3: Ambient temperature of
3 arbitrary days from June–August,
2013 in Austin, TX. Measurements
are taken every 15 minutes from 12
AM to 12 PM.

0 4 8 12 16 20 24
21

21.5

22

22.5

23

23.5

24

24.5

25

Time

T
e

m
p

e
ra

tu
re

 (
C

)

ON−OFF Pattern for AC

day 1
day 2
day 3

Figure 3.4: Simulated ON/OFF state
of AC over a 24 hour period in a home
and the corresponding interior tem-
perature. The interior temperature
falls when the AC comes on, and rises
when it is off.

the controller in (3.14) with the appropriate ambient temperature values taken from

Figure 3.3. The pattern is presented in Figure 3.4. We see that there is higher

energy usage during the hotter times of the day, as is to be expected. This also

corresponds to the peak in wholesale electricity prices shown for the same period in

Figure 3.1. The total energy used each day corresponding to our 5 ton AC (= 6.8

kW; see Table 3.1) is 32.83 kWh.

For comparison, we use the Pecan Street data set to provide the measured daily

average energy usage for AC during the same period for 4 homes that have parameters

in the same ballpark as our typical home. These values are shown in Table 3.2. The

table shows the close match of our home model with real AC usage patterns.

3.7.2 Actions and Costs

The customer action space in our problem consists of choosing when to turn ON

and OFF the AC, and is uncountably infinitely large. We need to pick a reasonable

68

Table 3.2: Daily AC usage for four homes

ID Square feet Age AC (tons) Energy (kWh)
93 2934 20 5 28.2
545 2345 6 3.5 41.5
4767 2710 5 4 31.7
3967 2521 5 3.5 37.8

discrete subset of the action space for our study. From Figure 3.1 it is clear that the

consumption during maximum price period 5 − 6 PM has the maximum impact on

the overall energy cost of the LSE. The LSE would like to incentivize the shift of

some of this usage, without excessively affecting the internal home temperature. We

assume that the actions available to the customer involve setting different setpoints

during each period from 2−8 PM. We take the setpoint 22.5◦C as the baseline. Each

action can now be identified with a vector (y1, y2, y3, y4, y5, y6), where yj indicates the

setpoint in the period j. Hence, the vector (22.5, 22.5, 22.5, 22.5, 22.5, 22.5) would

indicate the baseline in which the customer does not change the original setpoint in

each period. This defines the action set A, and we define the action with index a = 0

to be the no-change action.

Our next step is to calculate the cost of taking each action a ∈ A, which corre-

sponds to the discomfort of having a potentially higher mean and standard deviation

in the home temperature, and higher energy consumption due to that action. We

measure the state of the home under action a ∈ A by the tuple consisting of the

mean temperature, the standard deviation and energy usage, denoted [τ̄a, σa,Ea].

The baseline state of these parameters is under action 0, denoted by [τ̄0, σ0,E0] Then

we define the cost of taking any action a as

θa = |τ̄0 − τ̄a|+ λ|σ0 − σa| − ς(E0 − Ea), (3.15)

69

where we choose λ = 10 to make the numerical values of the mean and standard

deviation comparable to each other and ς = 10 cents/kWh as the fixed energy price.

Note that the calculation of cost for each action involves simulating the home under

that action to determine [τ̄a, σa,Ea]. However, this has to be done only once to create

a look-up table, which can be used thereafter.

3.7.3 Coupons, Lottery and Surplus

We now consider the incentives provided to the customers by the LSE, which

wishes to generate an MFE that has most of its mass on actions that are benefi-

cial to it. We measure the day-ahead price of electricity experienced by the LSE

in dollars/MWh and denote the price at time period j in day i as πi,j, where

i = {1, 2, · · · , 92} and j = {1, · · · , 6}. Each action vector of a customer would

impose a net price on the LSE in proportion to the usage. We define the differen-

tial price measured in dollars imposed by an action y = (y1, y2, y3, y4, y5, y6) versus

z = (z1, z2, z3, z4, z5, z6) as

H(y, z) =
∑
j

(k(yi,j)− k(zi,j))πi,j, (3.16)

where k converts the setpoints into electricity usage in each period, which is measured

in MWh. Setting y as the baseline action (22.5, 22.5, 22.5, 22.5, 22.5, 22.5) presents a

way of measuring the reduction/increase in hazard due to the incentive scheme. We

will use this metric to quantify the value of the MFE achieved.

Now, the baseline action a = 0 corresponds to a setpoint of 22.5◦C in period 3 at

which πi,3 is highest (Figure 3.1) for any day i. Hence, the LSE should incentivize

actions that are likely to reduce the risks of peak day-ahead price borne by the LSE

by offering Energy Coupons in proportion to the usage during the corresponding

70

periods. The problem of optimally selecting these coupons is a hard one in general.

However, in the limited context of our simulation, it is intuitively clear that coupons

must be placed at periods of lower price. Our coupon choices are shown in Table 3.3,

where x1 and x6 are energy usage in the corresponding periods (measured in kWh)

and the day-ahead price shown is that of one day randomly drawn from the three

months. Note that the number of coupons are not necessarily integer, although

making them integer quantities will not have any impact on our results.

Table 3.3: Day-ahead price and energy coupons

Index Period Day-ahead Price/MWh Coupons/kWh
1 2− 3 PM $47 107 if x1 > 2.464; 1.8 otherwise
2 3− 4 PM $55 5.4
3 4− 5 PM $78 1.8
4 5− 6 PM $99.6 0
5 6− 7 PM $66.5 3.6
6 7− 8 PM $49.5 54 if x6 > 2.24; 1.8 otherwise

Given the coupon placement by the LSE, the customers need to determine the

costs and number of coupons resulting from each action, and use these values to

estimate the utility that they would attain. We identified 6 actions that appeared

to have the most promise of being used, and these shown in Table 3.4 with their

attendant costs and number of coupons received. Note that action 0 is the one in

which the customer does not participate in the system.

The LSE conducts an auction each week across clusters of M = 50 homes in each

auction. For each cluster, there is K = 1 prize for winning the lottery with a value of

$40 (we will show in the next subsection that this choice is viable). We assume that

the customers choose the same action on each day of the week, and then participate

71

Table 3.4: Actions, costs and energy coupons

Index Action Vector Cost Coupons
0 (22.5, 22.5, 22.5, 22.5, 22.5) 0 37.4
1 (21.5, 21.5, 22.25, 23.5, 23.75, 21.25) 3.68 715
2 (21.5, 21.5, 22.25, 24, 23.5, 21.75) 3.51 713
3 (21.5, 21.5, 22.25, 24, 23.5, 22) 3.50 704
4 (21.5, 21.5, 22.25, 23.5, 23.25, 22.25) 3.146 693
5 (21.5, 21.5, 22.25, 24, 23, 22.5) 2.68 577

in the lottery.

The final few parameters of our simulated system need to be determined by

experiment, but in the absence of data until we conduct user trials, we make the

following reasonable assumptions. We assume that the customer expects to win at

least $1 on average by participating. Hence, the value of decrease in surplus due to

losing is l = 1, while the value of increase in surplus by winning is w = 40− 1 = 39.

The customer expects nothing if he does not participate (action 0), and there is no

change of surplus in this case. We assume that customers are likely to remain in

the system with probability 0.98, i.e., the average customer participates for 50 time

steps, which roughly parallels the fact that many home users sign a new contract

once a year. Further, a newly entering customer has a surplus that is an integer

uniformly drawn from [10, 30]. Finally, for the customer utility, which maps surplus

(in dollars) to utility units, we use the value function of prospect model, u(x) = xγ

if x ≥ 0 or u(x) = −ϕ(−x)γ if x < 0, where ϕ = 2.25 and γ = 0.88 according to the

empirical studies conducted in [51,88].

Under this model, we expect a user who has lost a number of lotteries to stop

participating in the system, since his surplus becomes negative and he is not receiving

enough of an incentive to stay, given the cost he bears each day. Similarly, a user

72

who has won too many times would have a large surplus, and would also not be keen

on participating since the marginal utility he gets may not be high enough for him.

While we expect the latter event to occur very infrequently, the former is something

that we have to watch out for, since it would result in a poor customer response to

our system and potentially less savings to the LSE. In what follows, we will see that

our selected value of $40 reward appears to be sufficient to ensure a good level of

participation.

3.7.4 Mean Field Equilibrium

We now are ready to determine the properties of the MFE generated by our

system. We start with a uniform action distribution as the initial condition. We run

the system over 50 iterations, determining the steady state action distribution at each

step and using that as the input for the next iteration. We find that convergence

occurs quite quickly and reaches within 0.1% of the final value within 10 iterations.

4 8 12 16 20
3000

3200

3400

3600

3800

4000

Value Function

Iteration Round

V
a

lu
e

V(30)

V(50)

V(70)

V(90)

Figure 3.5: Value function

4 8 12 16 20
0

0.01

0.02

0.03

0.04

0.05
Stationary Distribution of Surplus

Iteration Round

p
.d

.f

x=30
x=50
x=70
x=90

Figure 3.6: Convergence of surplus
distribution

Figure 3.5 illustrates the convergence of the values associated with a few candidate

73

states (surplus). Each point on the graph is obtained by value iteration over the

Bellman equation describing value, keeping the action distribution of other players

fixed. The value iteration converges within about 50 steps in each case. Figure 3.6

shows the convergence of the stationary probability of having certain surplus values

for a few examples. The eventual values to which they converge is the mean field

surplus distribution. The complete mean field distribution of surplus is shown in

Figure 3.7. It indicates that customers win at a lottery between 1 and 2 times over

an average lifetime of 50 time intervals, as is to be expected with a cluster size of 50

customers at each lottery.

−200−160−120 −80 −40 0 40 80 120 160 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Mean Field Distribution of Surplus

Surplus

p
.d

.f

Figure 3.7: Mean field distribution of
surplus

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
MFE Action Distribution

Actions

p
.d

.f

Figure 3.8: Action distribution

Finally, Figure 3.8 illustrates the mean field action distribution. For example, the

best action from the LSE’s perspective is action 5, which is chosen with probability

0.68. Figure 3.9 shows the interior temperature under actions 0, 4, 5 and mean field

action in a home in an arbitrary day. Figure 3.10 shows the comparison of energy

consumption between action 0 and the mean field action. We use the mean field

74

0 4 8 12 16 20 24

Time

21

21.5

22

22.5

23

T
e
m

p
e
ra

tu
re

 (
C

)

ON-OFF Pattern for AC by Actions

action 0

action 4

action 5

MFE Temperature

Figure 3.9: Simulated ON/OFF state of AC over a 24 hour period in a home under
actions 0, 3 and the mean field action on an arbitrary day and the corresponding
interior temperature. The temperature graph is slightly offset for actions 4, 5 and
the mean field action for ease of visualization.

action distribution to find that the net reduction in price over 50 homes is $78 each

week. Thus, incentivizing customers by offering a prize of $40 each week is certainly

feasible. The MFE illustrates that even as small as 1◦C change of the setpoint of AC

each day over several homes can yield significant benefits.

3.7.5 Reward, Saving and Profit

We assumed in the above simulations that the customer expects to win at least

$1 on average by participating, and hence the decrease in surplus due to losing at

the lottery is l = 1, while the increase in surplus due to winning is w = 40− 1 = 39

(since the reward for winning the lottery is $40). We saw that the total net reduction

(savings to the LSE) over 50 homes is $78 each week, and hence $40 reward is

sustainable.

We now numerically determine the relation between the reward to customers,

savings to the LSE and profit to the LSE, shown in Figure 3.11 for l = $1 and $5.

75

1 3 5 7 9 11 13 15 17 19 21 23
0

1

2

3

4

5

6

7

Time

k
W

h

Energy Distribution

Original Energy
MFE Energy

Figure 3.10: Energy distribution

We plot the total savings to the LSE as well as its profit (savings minus reward)

as a function of the reward offered for winning the lottery. From the left figure

(l = 1), most of the savings can be achieved by giving a reward of $40. Also at this

point almost all the customers will participate in the system, i.e., the probability of

choosing action 0 is 0. The maximum profit at l = 1 is achieved when the reward is

$20. The break-even point is about $80 reward.

In the right figure (l = 5), the profit does not change much, but the savings

increases as we increase the offered reward. This is because with a large penalty

(decrease in surplus due to losing) more customers will participate in the system by

choosing actions 4 and 5 only if a large reward is offered. The break-even point is

about $70 reward. We also consider other cases like l = 3, which exhibit the same

trends and hence are omitted here. In all cases, the total rewards are bounded by

$80, and the mean field action distribution is similar to that in Figure 3.8. As we

increase the decrease in surplus due to losing l, the number of customers choosing

action 0 will increase if the reward is small, i.e., customers become less risk-seeking.

76

20 30 40 50 60 70 80

reward

-20

0

20

40

60

80

d
o

lla
r/

5
0

 h
o

m
e

s

profit

saving

20 30 40 50 60 70 80

reward

-20

0

20

40

60

80

d
o

lla
r/

5
0

 h
o

m
e

s

profit

saving

Figure 3.11: The relation between offered reward, LSE savings and LSE profit. Left:
l = 1. Right: l = 5.

We also studied the impact of changing the mapping of actions to coupons that

we showed in Tables 3.3 and 3.4, and conducted the above experiment with l = 1, 3, 5

again. We found that our results are robust to the mapping of actions to coupons.

For example, when we set l = 1, most savings can be achieved by giving a $40

reward and the break-even point is about $80, as was seen above. The total rewards

are bounded by $80 in all cases. We present details of other mappings and the

corresponding results in the Appendix B.4.

3.8 Conclusion

In this section we developed a general framework for analyzing incentive schemes

to promote desirable behavior in societal networks by posing the problem in the

form of a Mean Field Game (MFG). Our incentive scheme took the form of awarding

coupons in such that higher cost actions would correspond to more coupons, and

conducting a lottery periodically using these coupons as lottery tickets. Using this

framework, we developed results in the characteristics of the optimal policy and

showed the existence of the MFE.

We used the candidate setting of an LSE trying to promote demand-response in

77

the form of setting high setpoints in higher price time of the day in order to transfer

energy usage from a higher to a lower price time of day for an air conditioning appli-

cation. We conducted data driven simulations that accurately account for electricity

prices, ambient temperature and home air conditioning usage. We showed how the

prospect of winning at a lottery could potentially motivate customers to change their

AC usage patterns sufficiently that the LSE can more than recoup the reward cost

through a likely reduced expenditure in electricity purchase.

Our setup is general enough to capture population behavior in other societal net-

works. For example, it applies in an essentially unchanged manner to an experiment

conducted on a bus transportation system of an IT firm in India, described in [72].

Here, employees have a choice of an early morning bus that experiences low traffic

congestion or a later one that experiences more. Providing incentives to employees

in the form of lottery tickets for taking the earlier bus was shown to increase its

attractiveness, while simultaneously reducing costs to the firm by running a smaller

number of buses at higher fuel efficiency.

In the future we intend to conduct user trails of the Energy Coupon system. This

is something that we are actively working on, and such trials would both validate the

idea of using incentive schemes to promote cooperation, as well as suport our ana-

lytical prediction of being able to run a viable societal system with desired behavior

using the MFE framework.

78

4. DYNAMIC ADAPTABILITY PROPERTIES OF CACHING ALGORITHMS

4.1 Introduction

The dominant application in today’s Internet is streaming of content such as video

and music. This content is typically streamed by utilizing the services of a content

distribution network (CDN) provider such as Akamai or Amazon [48]. Streaming

applications often have stringent conditions on the acceptable latency between the

content source and the end-user, and CDNs use caching as a mean of reducing access

latency and bandwidth requirements at a central content repository. The fundamen-

tal idea behind caching is to improve performance by making information available

at a location close to the end-user. Managing a CDN requires policies to route re-

quests from end-users to near-by distributed caches, as well as algorithms to ensure

the availability of the requested content in the cache that is polled.

While the request routing policies are optimized over several economic and tech-

nical considerations, they end up creating a request arrival process at each cache.

Caching algorithms attempt to ensure content availability by trying to learn the

distribution of content requests in some manner. Typically, the requested content

is searched for in the cache, and if not available, a miss is declared, the content is

retrieved from the central repository (potentially at a high cost in terms of latency

and transit requirements), stored in the cache, and served to the requester. Since

the cache is of finite size, some content may need to be evicted in order to cache the

new content, and caching algorithms are typically described by the eviction method

employed.

Some well known content eviction policies are Least Recently Used (LRU) [34],

k-LRU [70], First In First Out (FIFO), RANDOM [25], CLIMB [25,85] and Adaptive

79

Replacement Cache (ARC) [71]; these will be described in detail later on. Perfor-

mance analysis typically consists of determining the hit probability at the cache

under either a synthetic arrival process (usually with independent draws of content

requests following a fixed Zipf popularity distribution, referred to as the Independent

Reference Model (IRM)), or using a data trace of requests observed in a real system.

It has been noted that performance of an eviction algorithm under synthetic versus

real data traces can vary quite widely [70]. For instance, 2-LRU usually does better

than LRU when faced with synthetic traffic, but LRU often outperforms it with a

real data trace. The reason for this discrepancy is usually attributed to the fact that

while the popularity distribution in a synthetic trace is fixed, real content popularity

changes with time [18,95]. Thus, it is not sufficient for a caching algorithm to learn

a fixed popularity distribution accurately, it must also learn it quickly in order to

track the changes on popularity that might happen frequently.

Since each known caching algorithm generates a Markov process over the occu-

pancy states of the cache, the typical performance analysis approach is to determine

the stationary distribution of this process, and to use it to calculate the hit prob-

ability. However, this approach loses all notion of time and does not allow us to

compare the performance of each algorithm with the best possible. A major goal of

this section is to define function that accounts for both the error due to time lag of

learning, as well as the error due to the inaccuracy of learning. Such an error func-

tion would allow us to better understand the performance of existing algorithms, as

well as decide how to develop new ones.

Our first requirement to attain this goal is a refinement of the hit probability

metric to characterize the nearness of the stationary distribution of an algorithm to

the best-possible cache occupancy. If the statistics of the cache request process are

known, the obvious approach to maximizing the hit probability is to simply cache the

80

most popular items as constrained by the cache size, creating a fixed vector of cached

content. How do we compare the stationary distribution generated by a caching

algorithm with this vector? A well known approach to comparing distributions is

to determine the Wasserstein distance between them [89]. However, since we are

dealing with distributions of permutations of vectors, we need to utilize a notion

of a cost that depends on the ordering of elements. Such a notion is provided by a

metric called the generalized Kendall’s tau [57]. Coupling these two notions together,

we define a new metric that we call the τ -distance, which correctly represents the

accuracy of learning the request distribution. The τ -distance can also be mapped

back to hit probability or any other performance measure that depends on learning

accuracy.

Our second requirement is to study the evolution of the Markov chain associated

with caching algorithm to understand its rate of convergence to stationarity. The

relevant concept here is that of mixing time, which is the time required for a Markov

process to reach within ε distance (in Total Variation (TV) norm) of the eventual

stationary distribution. To our knowledge, no existing work has characterized the

mixing time of caching algorithms. However, this metric is crucial to understanding

caching algorithm performance, as it effectively characterizes the speed of learning.

Once we have both the τ -distance and the mixing time characterized for a caching

algorithm, we can determine how well algorithm would perform after it has learned

for a certain time interval. Using a triangle inequality bound and combining the

τ -distance and mixing time with appropriate normalization, we can come up with a

metric that provides an upper bound on this tradeoff at any given time, and we call

this metric as the learning error.

81

(a) (b)

(c) (d)

cache

cache

meta

cache 1

cache 2

cache 1

cache 2

meta 1

meta 2

Figure 4.1: Different dimensions of caching paradigms.

4.1.1 Structure of Caching Paradigms

A cache is fundamentally a block of memory that can be used to store data items

that are frequently requested. Over the years, different paradigms have evolved on

how best to utilize the available memory. Most conventional caching algorithms,

such as LRU, RANDOM and FIFO, have been designed and analyzed on an simple

(isolated) cache, as shown in Figure 4.1 (a). The model here is that any time a

request arrives, the corresponding data item is fetched and cached if it is not already

in the cache. Where to place this item, and which item to evict if needed determines

the nature of the caching algorithm. New caching algorithms have been proposed in

the past few years, which have been shown to have better performance than classical

model, often through numerical studies. The different dimensions that have been

explored are two fold. One the one hand, the memory block can be divided into

two or more levels, with a hierarchical algorithm attempting to ensure that more

popular content items get cached in the higher levels. For example, a simple 2-level

cache is shown in Figure 4.1 (b), and it has been empirically observed that under an

appropriate caching algorithm, it could display a higher hit probably than that of a

82

simple cache of the same size. On the other hand, a meta-cache that simply stores

content identities an approach that can be used to better learn popularity without

wasting memory to cache the actual data item. The idea is illustrated in Figure 4.1

(c) with one level of meta caching. Meta-caches are an efficient way of ensuring

that only popular items are ever cached, and empirical observations suggest that

when coupled with an appropriate caching algorithm, they too are quite effective at

increasing the hit rate. However, in both cases, it is not clear how the multi-level

caches and meta-caches enhance the hit probability, and what impact they have

on the convergence to stationarity of the caching scheme. In this section, we first

characterize the performance of an isolated cache through τ -distance and mixing

time to study the adaptability of these algorithms. In the next section, we use this

technique to study how the number of cache levels and cache partitions impact the

performance. Finally, we use the insights gained in this process to design a new

caching paradigm algorithm that combines ideas from using multi-level cache and

meta-caches, as shown in Figure 4.1 (d). We design an algorithm to be applied to

this cache structure, and name the resulting algorithm as Adaptive-LRU (A-LRU).

4.1.2 Related Work

Caching algorithms have mostly been analytically studied under the IRM Model.

Explicit results for stationary distribution and hit probability for LRU, FIFO, RAN-

DOM, CLIMB [9,25,35,55,85] have been derived under IRM, however, these results

are only useful for small caches due to the computational complexity of solving for

the stationary distribution. Several approximations have been proposed to analyze

cache of a reasonably large size [27,82], and a notable one is the Time-To-Live (TTL)

approximation, which was first introduced for LRU under IRM [20]. It has been fur-

ther generalized to other situations [12, 30, 34, 70, 82]. Theoretical support on the

83

accuracy of TTL approximation was presented in [12]. A rich literature also studies

the performance of caching algorithms in terms of hit probability based on real trace

simulations, e.g., [63,70,71,95], and we do not attempt to provide an overview here.

4.1.3 Organization

The next section contains some technical preliminaries and representative caching

algorithms. We derive the steady state distributions of the algorithms in Section 4.3

and identify hit probabilities in Section 4.4. We consider our new notion of τ -distance

in Section 4.5 and mixing time in Section 4.6. We join the two notions and investigate

the learning error in Section 4.7. We conclude in Section 4.8.

4.2 Technical Preliminaries

4.2.1 Traffic Model

To compare various caching algorithms, it is necessary to define a model of how we

specify the reference items first. For most of our analysis, we consider the simplest

and most widely used stochastic model which is called the Independent Reference

Model (IRM) [25]. In our numerical investigations, we will also consider three more

realistic request processes: a Markov-modulated request process, a YouTube request

trace [95], and one request trace from the IRCache project [13]. In IRM, the request

process {r1, r2, · · · } is given by a sequence of independent, identically distributed

random variables with a fixed probability distribution

P(rt = i) = pi, i ∈ {1, · · · , n}, t ∈ {1, 2, · · · }, (4.1)

where rt is the item referenced by the t-th request, and there are n different items.

Without loss of generality (w.l.o.g.), we assume that the reference items are numbered

so that the probabilities are in a non-increasing order, i.e., p1 ≥ p2 ≥ · · · ≥ pn.

84

4.2.2 Popularity Law

Whereas our analytical results are not for any specific popularity law, for our

numerical investigations we will use a Zipf-like distribution as this family has been

frequently observed in real traffic measurements, and is widely used in performance

evaluation studies in the literature [19]. For a Zipf-like distribution, the probability

to request the i-th most popular item is pi = A/iα, where α is the Zipf parameter

that depends on the application considered [31], and A is the normalization constant

so that
∑n

i=1 pi = 1 if there are totally n unique items to be considered in the system.

4.2.3 Caching Algorithms

There exist a large number of caching algorithms, with the difference being in

their choice of insertion or eviction rules. In this section, we consider the following

representative algorithms.

LRU: [34] When there is a request for item i, there are two cases: (1) i is not in

the cache (cache miss), then i is inserted in the first position in the cache, all other

items move back one position, and the item that was in the last position of the cache

is evicted; (2) i is in position j of the cache (cache hit), then i moves to the first

position of the cache, and all other items that were in positions 1 to j− 1 move back

one position.

FIFO: The difference between FIFO and LRU is when a cache hit occurs on an item

that was in position j. In FIFO, this item does not change its position.

RANDOM: The difference between RANDOM and FIFO is when a cache miss

occurs, the item is inserted in a random position, and the item that was in this

randomly selected position is evicted.

CLIMB: [25,85] The difference between CLIMB and LRU is when a cache hit occurs

on an item that was in position j. In CLIMB, this item is inserted in position j + 1,

85

and the item that was in position j + 1 moves to position j.

Remark 1 LRU has been widely used due to its good performance and ease of imple-

mentation. FIFO and RANDOM have been used to replace LRU in some scenarios

since they are easier to implement with a reasonable good performance. CLIMB has

been numerically shown to have a higher hit ratio than LRU, at the expense of longer

time to reach this steady state than LRU.

4.3 Steady State Distribution

We first consider the question of determining the stationary distribution of the

contents of a cache based on the caching algorithm used. Each (known) caching

algorithm A under any Markov modulated request arrival process (including IRM)

results in a Markov process over the occupancy states of the cache. Suppose there

are a total of n content items in a library, and the cache size is m < n. Then each

state x is a vector of size m indicating the content in each cache spot; we call the

state space of all such vectors S. Then one can potentially determine the stationary

distribution of this algorithm, denoted π∗A. This procedure is well established in the

literature [25], but results for the algorithms of interest are not available in the desired

form (viewed in terms of permutations), and we first derive these as as a foundation

for novel performance metrics in the following sections.

For simplicity, we denote xj as the identity of the item at position j in the cache,

i.e., x = (x1, · · · , xm). Next we present the steady state probabilities of this Markov

chain for FIFO, RANDOM, CLIMB, and LRU.

Theorem 9 Under the IRM, the steady state probabilities π∗FIFO(x), π∗RANDOM(x),

π∗CLIMB(x), and π∗LRU(x), with x ∈ S are as follows:

π∗FIFO(x) =
Πm
i=1pxi∑

x∈S Πm
i=1pxi

,

86

π∗RANDOM(x) =
Πm
i=1pxi∑

x∈S′ Π
m
i=1pxi

,

π∗CLIMB(x) =
Πm
i=1p

m−i+1
xi∑

x∈S Πm
i=1p

m−i+1
xi

,

π∗LRU(x) =
Πm
i=1pxi

(1− px1)(1− px1 − px2) · · · (1− px1 − · · · − pxm−1)
, (4.2)

where S ′ denotes the set of all combinations of elements of {1, · · · , n} taken m at

a time. Note that elements of S ′ are subsets of {1, · · · , n}, while elements of S are

ordered subset of {1, · · · , n}, satisfying
∑
x∈S Πm

j=1pxj = m!
∑
x∈S′ Π

m
j=1pxj .

The proofs for FIFO, RANDOM and CLIMB follow directly by constructing an

auxiliary Markov chain on the set S and verifying that π∗FIFO(x), π∗RANDOM(x) and

π∗CLIMB(x) satisfy detailed balance equations (and reversibility [53]). The result for

LRU is obtained by using a probabilistic argument following [40], we present the

details of this proof in Appendix C for completeness. These are the well-known

steady state probabilities for FIFO, RANDOM, CLIMB and LRU [9,25,35,55,85].

4.4 Hit Probability

A primary performance measure in caching systems is the hit probability. One

can derive the hit probability once we have the stationary distribution. We illustrate

how to compute this standard performance measure in this section, and will present

hit probability as a special case of our new more general metrics that we will develop

in the next few sections.

Denote the hit probability of algorithm A as HA
m and let FA

m = 1 − HA
m be the

miss probability under IRM.

By the ergodic theorem, the miss probability FA
m is equal to the stationary prob-

ability of a miss,

FA
m =

∑
x

π∗A(x)
∑
x′

q(x,x′), (4.3)

87

where summation in the outer sum is with respect to all the states in S, and the inner

summation denotes a summation only over those states x′ satisfying the condition

|x′ \ x| = 1, i.e., differ from x in precisely one element, and q(·, ·) is the transition

probability.

Theorem 10 Under IRM, we have

FA
m =

∑
x∈S

(
1−

m∑
j=1

pxj

)
π∗A(x), (4.4)

where π∗A(x) is given in (4.2).

4.5 Permutation Distance

The hit probability does not immediately allow us to compare the performance

of an algorithm with the best possible. We seek a refinement that would allow

us to determine “how close” the stationary performance of an algorithm is to the

best-possible.

If we have full knowledge of the popularity distribution at any time, we could

simply cache the most popular items in the available cache spots, placing the most

popular element in first cache spot, and then proceeding onwards until the m-th spot.

This approach would maximize the hit probability, as well as any other metric that

yields better performance when more popular items are cached. We denote this ideal

occupancy vector as c∗. We first need a method of comparing the distance between

this occupancy vector and any other permutation over the possible cache occupancy

states.

4.5.1 Generalized Kendall’s Tau Distance

Let [n] = {1, · · · , n} be a library of items and [n]m be the set of m items randomly

chosen from [n]. Let Smn be the set of permutations on [n]m. Consider a permutation

88

σ ∈ Smn , we interpret σ(i) as the position of item i in σ, and we say that i is ahead

of j in σ if σ(i) < σ(j). W.l.o.g, we take σ(i) = 0 for i ∈ [n]/[n]m.

The classical Kendall’s tau distance [29] 1 is given by

K(σ1, σ2) =
∑

(i,j):σ1(i)>σ1(j)

1{σ2(i)<σ2(j)}, (4.5)

where 1A is the indicator function and 1A = 1 if the condition A holds true, otherwise

1A = 0.

However, this conventional definition does not take into account the item rele-

vance and positional information, which are crucial to evaluating the distance metric

in a permutation. Since we wish to compare with c∗, in which the most popular

items are placed in lower positions, the errors in lower positions in the permutation

need to be penalized more heavily than those in higher positions. There are several

alternative distance measures which have been proposed to address the above short-

comings of the conventional distance. In the following, we consider the generalized

Kendall’s tau distance proposed in [57] that captures the importance of each item as

well as the positions of the errors.

Let wi > 0 be the element weight for i ∈ [n]. For simplicity, we assume that

wi ∈ Z+; all the following results hold for non-integral weights as well. In addition

to the element weight, as discussed earlier, we wish to penalize inversions early in

the permutation more than inversions later in the permutations. In order to achieve

this, we define the position weights to differentiate the importances of positions in the

permutation. We first consider the cost of swapping between two adjacent positions.

1We consider p = 0 for the definition given in [29], which is an “optimistic approach” that
corresponds to the intuition that we assign a nonzero penalty to the pair {i, j} only if we have
enough information to know that i and j are in the opposite order in the two permutations σ1 and
σ2.

89

Let ζj ≥ 0 be the cost of swapping an item at position j− 1 with an item at position

j, and let p1 = 1 and pj = pj−1 + ζj for 1 < j ≤ m. Define p̄iσ1,σ2
=

pσ1(i)−pσ2(i)

σ1(i)−σ2(i)
to be

the average cost that item i encountered in moving from position σ1(i) to position

σ2(i). In particular, p̄i = 1 if σ1(i) = σ2(i). Similarly for p̄jσ1,σ2
. Now, we are ready

to define the generalized Kendall’s tau distance:

Kw,ζ(σ1, σ2) =
∑

σ1(i)<σ1(j)

wiwj p̄
i
σ1,σ2

p̄jσ1,σ2
1{σ2(i)>σ2(j)}. (4.6)

4.5.2 Wasserstein Distance

While the generalized Kendall’s tau is a way of comparing two permutations,

the algorithms that we are interested in do not converge to a single permutation,

but yield stationary distributions over permutations. Hence, we should compare

the stationary distribution π∗A of an algorithm A, with c∗ using a distance function

that accounts for the ordering of content in each state vector. A general way of

comparing distributions on permutations, given a distance function between any two

permutations is the Wasserstein distance.

Let (S, d) be a Polish space, and consider any two probability measures µ and ν

on S, then the Wasserstein distance [89] 2 between µ and ν is defined as

W (µ, ν) = inf
PX,Y (·,·)

{
E[d(X, Y)], PX(·) = µ, PY (·) = ν

}
, (4.7)

which is the minimal cost between µ and ν induced by the cost function d.

2W.l.o.g., we are interested in the L1-Wasserstein distance, which is also commonly called the
Kantorovich-Rubinstein distance [89]. For convenience, we express Wasserstein distance by means
of couplings between random variables.

90

4.5.3 τ -distance

We are now ready to define the specific form of Wasserstein distance between

distributions on permutations that is appropriate to our problem. We define the τ -

distance as the Wasserstein distance taking the generalized Kendall’s distance in (4.6)

as the cost function in (4.7).

Since the ideal occupancy vector c∗ is unique and fixed, the infimum in (4.7) over

all the couplings is trivial. Therefore, we have

|π∗A − c∗|τ =
∑
x

Kw,ζ(x, c
∗)π∗A(x), (4.8)

where Kw,ζ(·, ·) is the generalized Kendall’s tau distance defined in (4.6).

4.5.4 Model Validation and Insights

Since the τ -distance characterizes how accurately an algorithm learns the popu-

larity distribution, a smaller τ -distance should correspond to a larger hit probability.

Computation of the τ -distance is complex, since it is a function of all possible per-

mutations over the content items. But we can illustrate how different algorithms

perform using a content library size of n = 20. Figure 4.2 compares the τ -distance

and hit probabilities of various caching algorithms. The points on each curve cor-

respond to cache size of 2, 3, 4, 5 from left to right. From Figures 4.2, we can see

that the τ -distance and hit probability follow the same rule, i.e., a smaller τ -distance

corresponds to a larger hit probability, which is as expected. We also observe that

the hit probabilities of the different algorithms are consistent with established results

that indicate that the hit probability of CLIMB is superior to LRU, which in turn is

91

Figure 4.2: τ -distance vs. hit probability for various caching algorithms with IRM
arrivals.

superior to FIFO and RANDOM. In summary, in terms of hit probability

HCLIMB
m ≥ HLRU

m ≥ H(FIFO, RANDOM)
m .

Remark 2 For the parameters in (4.6), we consider a Zipf-like popularity distribu-

tion with α = 0.8. For simplicity, we set the element weights as wi = n − i + 1,

and the swapping cost ζi = log i for i > 1, and ζ1 = 0.1. Different choices of the

parameters result in different values of the τ -distance, therefore, the y-axis value in

Figure 4.2 is only used to show the relative difference between different algorithms.

4.6 Mixing Time

While identifying the τ -distance does provide some insight into the algorithm’s

accuracy of learning, it says nothing about how quickly the algorithm can respond

to changes in the request distribution—a critical shortcoming in developing and

characterizing the ideal algorithm for a given setting. How does one come up with

92

a metric that accounts for both accuracy and speed of learning? It seems clear that

one ought to study the evolution of the caching process with time to understand how

quickly the distribution evolves. The metric of relevance in this context is called

mixing time, which is the time required for a Markov process to reach within ε

distance (in Total Variation (TV) norm) of the eventual stationary distribution. If

we denote the row corresponding to state x ∈ S of the t-step transition matrix of

algorithm A by πA(x, t), then the mixing time is the smallest value of t such that

sup
x∈S
|πA(x, t)− π∗A|TV ≤ ε,

for a given ε > 0 [59]. Denote it as tmix(ε). As mentioned earlier, we will also think

of πA(x, t) and π∗A as distributions on permutations of the n objects.

Mixing time can be characterized from different perspectives. Here, we use con-

ductance to characterize rapid mixing, which also builds bounds on the mixing time

through Cheeger’s inequality. In the rest of this section, we first introduce these

techniques and then characterize the mixing time of various caching algorithms.

4.6.1 Spectral Gap and Mixing Time

Let γ∗ be the spectral gap of a Markov chain with transition matrix P , and denote

π∗P as its corresponding stationary distribution. We first define the spectral gap of a

Markov chain through Rayleigh quotient and Dirichlet form.

Definition 4 [23, 75] For f, g : S → R, let E(f, g) = EP (f, g) denote the Dirichlet

form,

E(f, g) = 〈f, (I − P)g〉π∗P =
∑
x,y

f(x)(g(x)− g(y))P (x,y)π∗P (x). (4.9)

93

If f = g, then

E(f, f) =
1

2

∑
x,y

(f(x)− f(y))2P (x,y)π∗P (x). (4.10)

The Rayleigh quotient for any f : S → R, is defined as follows [23],

R(f) =
E(f, f)∑

x |f(x)|2π∗P (x)
. (4.11)

The spectral gap of the Markov chain with transition matrix P is defined as [23]

γ∗ = inf
f∑

x f(x)π∗P (x)=0

R(f)

2
. (4.12)

Then the upper bound of mixing time in terms of spectral gap and the stationary

distribution of the chain is given as follows [59,75]:

tmix(ε) < 1 + trel ln

(
1

επmin

)
, (4.13)

where trel = 1/γ∗ is the relaxation time of the Markov chain with transition matrix

P , and πmin = minx∈S π
∗
P (x).

4.6.2 Reversibility and Mixing Time

Reversibility is a significant concept in studying the properties of Markov chains.

Many current results of mixing time are shown in the context of a reversible Markov

chain. However, a recent survey [75] shows that some of these results hold even

without reversibility. In this subsection, we discuss the difference between reversible

and non-reversible Markov chains, and then show how to bound the mixing time of

a non-reversible Markov chain through constructing a reversible Markov chain. We

will use the result later to obtain a bound on the mixing time of the LRU algorithm,

94

which is associated with a non-reversible Markov chain.

Suppose that P is the transition matrix of a non-reversible chain, and π∗P is

its corresponding stationary distribution. Consider the time-reversal P ∗, which is

defined by

π∗P (x)P ∗(x,y) = π∗P (y)P (y,x), (4.14)

where x,y ∈ S.

Then it is easy to check that the additive Markov chain with transition matrix

P+P ∗

2
is reversible [75]. From Kelly [54], we know ∀x ∈ S, π∗P (x) = π∗P ∗(x), where π∗P ∗

is the stationary distribution of Markov chain with transition matrix P ∗. Therefore,

we obtain

π∗P (x) = π∗P ∗(x) = π∗P+P∗
2

(x). (4.15)

From Equation (4.10), we immediately have

EP (f, f) = EP ∗(f, f) = EP+P∗
2

(f, f), (4.16)

Furthermore, by the definition of Rayleigh quotient in Equation (4.11) and the spec-

tral gap of a Markov chain in Equation (4.12), we have

γ∗P = γ∗P ∗ = γ∗P+P∗
2

. (4.17)

Therefore, for any non-reversible Markov chain with transition matrix P , we can

construct a reversible Markov chain with transition matrix P+P ∗

2
. Since these two

Markov chains have the same stationary distribution (4.15) and spectral gap (4.17),

by (4.13), we can equivalently use the reversible Markov chain P+P ∗

2
to bound the

mixing time of the non-reversible Markov chain P through applying the existing

95

results on reversible Markov chains. This procedure will be discussed in the following

subsections.

4.6.3 Conductance and Mixing Time

For a pair of states x,y ∈ S, we define the transition rate Q(x,y) = π(x)P (x,y).

Let Q(S1, S2) =
∑
x∈S1

∑
y∈S2

Q(x,y), for two sets S1, S2 ∈ S. Now, for a given

subset S ∈ S, we define its conductance as Φ(S) = Q(S,S̄)
π(S)

, where π(S) =
∑

i∈S πi.

Note that Q(S, S̄) represents the “ergodic flow” from S to S̄. Finally, we define the

conductance of the chain P to capture the conductance of the “worst” set as

Φ = min
S⊂S,π(S)≤ 1

2

Φ(S), (4.18)

The relationship between the conductance and the mixing time of a Markov chain

(the spectral gap) is given by the Cheeger inequality [21]:

Φ2

2
≤ γ∗ ≤ 2Φ. (4.19)

Combining (4.19) with the previous result in (4.13), we can relate the conductance

directly to the mixing time as follows:

tmix(ε) ≤ 2

Φ2

(
ln

1

πmin

+ ln
1

ε

)
. (4.20)

While the spectral gap and conductance of a Markov chain can provide close

bounds on the mixing time of the chain, these values are often difficult to calculate.

If we are more interested in proving rapid mixing3, we can provide a lower bound

3A family of ergodic, reversible Markov chain with state space of size |S| and conductance Φ|S|
is rapidly mixing if and only if Φ|S| ≥ 1

P(|S|) for some polynomial P [74]. This result is commonly

used to show rapid mixing of Markov chains.

96

on the conductance. Canonical path and congestion can be useful in this regard as

they are easier to compute, and can be used to bound the conductance from below.

For any pair x,y ∈ S, we can define a canonical path ψxy = (x = x0, · · · ,xl = y)

running from x to y through adjacent states in the state space S of the Markov

chain. Let Ψ = {ψxy} be the family of canonical paths running between all pairs of

states. The congestion of the Markov chain is then defined as

ρ = ρ(Ψ) = max
(u,v)


1

π(u)Puv

∑
x,y∈S

ψxyuses(u,v)

π(x)π(y)

 , (4.21)

where the maximum runs over all pairs of states in the state space. . Therefore, high

congestion corresponds to a lower conductance, as demonstrated in [84]

Φ ≥ 1

2ρ
. (4.22)

Note that the above result applies to all possible choices of canonical paths, for

example, no requirement was ever made that the shortest path between two states

has be chosen.

4.6.4 Analysis of Mixing Time

In this subsection, we characterize the mixing time of LRU, FIFO, RANDOM, and

CLIMB. To ease exposition of our results, all proofs are relegated to the Appendix C.

4.6.4.1 Mixing Time of LRU

We consider the IRM arrival process and denote the probability of requesting

item i by pi. It is easy to verify that the Markov chain associated with the LRU

algorithm is non-reversible, for instance using the Kolmogorov condition. Hence, as

discussed in Section 4.6.2, we first need to construct the time reversal P LRU,∗ satis-

97

fying Equation (4.14), given the transition matrix P LRU of LRU. Then the Markov

chain with transition matrix PLRU+PLRU,∗

2
is reversible. Therefore, we can adapt the

results of mixing time of reversible Markov chain to show that the Markov chain

of LRU is rapidly mixing, i.e., we can show that the congestion of PLRU+PLRU,∗

2
is

polynomial in the size of state space. We have the following result.

Theorem 11 The Markov chain of LRU is rapidly mixing.

Once we have characterized the congestion, we consider the reversible Markov

chain with transition matrix PLRU+PLRU,∗

2
and use a conductance argument to give an

upper bound on the mixing time of LRU.

Theorem 12 The mixing time of LRU satisfies

tLRU
mix (ε) = O(n4αm+2 lnn).

4.6.4.2 Mixing Time of RANDOM and FIFO

We next show that the congestion of RANDOM/FIFO are polynomial in the

size of state space, i.e., they are rapidly mixing. Since is easy to verify that these

two algorithms have reversible Markov chains, we can use the traditional approach

of using a conductance argument on the transition matrix P to bound the mixing

times.

Theorem 13 The Markov chains of RANDOM and FIFO are rapidly mixing.

We then derive a bound on the mixing time of both algorithms.

Theorem 14 The mixing times of RANDOM and FIFO satisfy

tRANDOM
mix (ε) = O(n6αm+2 lnn).

98

4.6.4.3 Mixing Time of CLIMB

We now turn to the CLIMB algorithm. It is easy to verify that it too generates

a reversible Markov chain. We show that the congestion of CLIMB is polynomial in

the size of the state space, i.e., it is rapidly mixing.

Theorem 15 The Markov chain of CLIMB is rapidly mixing.

We now have the following bound on the mixing time of CLIMB.

Theorem 16 The mixing time of CLIMB satisfies

tCLIMB
mix (ε) = O(n3αm(m+1)+2 lnn).

4.6.5 Comparison of Mixing Times

We are now in a position to compare the bounds on mixing times of all our

candidate algorithms for the simple cache system. While the results are all upper

bounds on mixing time, they should allow us to make a judgement on the worst case

behaviors of each algorithm, and are a conservative estimate on likely performance

in practice. From Theorems 12 and 14, the upper bound of the mixing time of

LRU is smaller than the upper bound of the mixing time of RANDOM. Similar

results hold for FIFO. Thus, LRU mixes faster than RANDOM or FIFO. Similarly,

by Theorems 12 and 16, the upper bound of the mixing times of LRU, FIFO and

RANDOM are all smaller than the upper bound of the mixing time of CLIMB. Thus,

they are all likely to mix faster than CLIMB. The phenomenon of LRU mixing faster

than CLIMB has been numerically observed in [41]. In summary, the expected

ordering in mixing times from smallest to largest is likely to be

tLRU
mix ≤ t

(RANDOM, FIFO)
mix ≤ tCLIMB

mix .

99

4.7 Learning Error

Although we have succeeded in deriving the mixing time of a caching algorithm,

how do we combine it with the notion of τ -distance to obtain a figure of merit for an

algorithm’s performance? What we really desire is a notion of error that accounts

for the tradeoff between accuracy and speed of learning. Clearly, a figure of merit

of this kind is the distance δ(t) = supx∈S |πA(x, t) − c∗|τ for some given time t. We

could then argue that if the time constant of the change in the request distribution is

t, the caching algorithm A would have attained some fraction of optimality by that

time.

Fortunately, since the space of all permutations on n objects is finite, it has a

finite diameter in terms of the generalized Kendall’s tau distance. Let this diameter

be denoted κ. Therefore, using the coupling definition of both the Total Variation

distance and the Wasserstein metric, the product of the diameter and the Total

Variation distance bounds the τ -distance [89]. In this context both are variants of

the Wasserstein distance [89], and are therefore equivalent ways of measuring distance

between distributions. Thus, we may use the triangle inequality to obtain

δA(t) = sup
x∈S
|πA(x, t)− c∗|τ

≤ sup
x∈S
|πA(x, t)− π∗A|τ + |π∗A − c∗|τ

≤ κ sup
x∈S
|πA(x, t)− π∗A|TV + |π∗A − c∗|τ

, eA(t). (4.23)

The first term above indicates the error due to time lag of learning, while the second

indicates the error due to (eventual) accuracy of learning. Hence, we refer to eA(t)

100

as the learning error of algorithm A at time t.

LRU
FIFO
RANDOM
CLIMB

Figure 4.3: Learning error of various
caching algorithms under the IRM ar-
rival process.

number of requests

h
it

 p
ro

b
ab

ili
ty

RANDOM

LRU
FIFO

CLIMB

Figure 4.4: Hit probability of various
caching algorithms under the IRM ar-
rival process.

4.7.1 Model Validation and Insights

We illustrate the learning error of different caching algorithms in Figure 4.3. We

use a small cache size for these simulations, since computing all permutations be-

comes prohibitively complex quickly. However, (n = 20,m = 4) serves to illustrate

the main insights. The learning error of various algorithms as a function of the num-

ber of requests received is shown in Figure 4.3, where the y-axis is shown with a

logarithmic scale. We see immediately that FIFO and RANDOM have higher learn-

ing errors than the other algorithms, regardless of the number of requests. This shows

why their performance is poor however long they are trained. LRU decreases fast

initially and then levels off, but with a larger learning error than CLIMB. CLIMB has

a good performance eventually, but it has the slowest decay rate. This corresponds

to the slowest mixing of CLIMB, which is consistent with our analysis above.

101

The same effects are visible in Figure 4.4, where the x-axis is shown with a

logarithmic scale.

4.8 Conclusion

In this section, we attempted to characterize the adaptability properties of dif-

ferent caching algorithms when confronted with non-stationary request arrivals. To

begin with, we first considered the stationary distributions of various caching algo-

rithms under a stationary request process, and computed the τ -distance between

each one and the optimal content placement in the cache. We then analyzed the

mixing time of each algorithm with stationary arrivals, to determine how long each

one takes to attain stationarity. By combining both of these metrics, we constructed

the learning error, which characterizes the tradeoff between speed and accuracy of

learning. The learning error provides insight into the likely performance of each al-

gorithm under non-stationary requests. In terms of prescriptive solutions, our result

was that LRU achieves a good tradeoff between accuracy of learning versus the speed

of learning the arrival process. However, the only parameter in all these algorithms

is the cache size m, which is a constant. Hence, none of the algorithms described can

be parametrically modified based on the application (how quickly the arrival distri-

bution changes). In the next section, we consider using the dimensions of layering

and addition of meta-caches to provide parameters that can be adjusted to obtain a

desired tradeoff between learning rate and accuracy.

102

5. ACCURACY VS. LEARNING RATE OF MULTI-LEVEL CACHING

ALGORITHMS

5.1 Introduction

In Section 4, we characterized the performance of caching algorithms on an iso-

lated cache using the τ -distance and mixing time. As discussed earlier, the ideas

of using multi-level caches have been explored to improve the performance of an

isolated cache through numerical studies. However, it is not clear how the number

of levels and the partition of total cache size across these levels will impact perfor-

mance. In this section, we first characterize the performance of multi-level caches

and then combine the insights we obtained to design new caching algorithm, which

outperforms all the conventional algorithms we have considered.

First, we focus on the particular topology of multi-level cache network: a linear

cache network. As the name suggests, such a cache network consists of a stack

of caches, potentially of different sizes and at possibly different distances from the

content requesting site. Linear stacks of caches can be used at a single node, such as

a CDN content node, where they could have a higher hit probability than a single

cache, or in a microprocessor where the delay of the cache responses increases with

increasing distance from the core. Linear cache networks are also a basic building

block of more complex cache hierarchies across a CDN [30], and hence can be thought

of as the simplest CDN graph.

In a linear cache network, a content item enters the cache network via the first

cache and is advanced to a higher index cache whenever there is a cache hit on

it. An advancement could necessitate an eviction if the target cache is full, and

a replacement algorithm determines the item to be evicted. We are particularly

103

interested in replacement algorithms that operate on a total available cache of size

m, partitioned into h levels represented by m = (m1, · · · ,mh). In particular, we

focus on well known policies such as RANDOM(m), First-in-First-Out (FIFO(m))

and Least-Recently-Used (LRU(m)); these will be described in detail later on.

Our first objective in this section is to derive a fundamental characterization of

the accuracy versus convergence tradeoff across different caching algorithms in the

case of a linear cache network. We wish to explore this tradeoff as parametrized by

(i) the number of cache levels, and (ii) the partitioning of the total cache space across

these levels. Towards this goal, we first characterize the stationary distributions of

our candidate replacement algorithms in the linear cache network under the IRM

model. Based on these stationary distributions, we derive explicit expressions for

the hit probabilities. We then use the “τ -distance” to study the accuracy of learning

the request distribution in the context of cache networks. We find that under IRM

requests, the accuracy of an algorithm increases both with the number of cache levels

and the space allocated to higher caches. Essentially, accuracy lies in favoring higher

level caches.

Next, we characterize the mixing time of cache replacement algorithms in cache

networks. We show that under IRM requests, the mixing time of an algorithm

increases both with the number of cache levels and the space allocated to higher

caches. Hence, learning accuracy and speed are exactly at odds with each other. We

provide a numerical study on how to partition the available cache space in a linear

cache network using both synthetic traces under the IRM model and trace-based

simulations using traces from YouTube. These results provide guidelines on how

to select a caching algorithm among these candidate replacement algorithms such

that a good tradeoff is obtained between the cache size, the number of caches in the

network and the request characteristics.

104

Final, motived by our analysis, we propose a novel hybrid algorithm which com-

bines the ideas from LRU and 2-LRU in such a way that the learning error is mini-

mized for a dynamic arrival process. We name the resulting algorithm as Adaptive-

LRU (A-LRU), and are able to ensure that its learning error at a given time can

be made less than either LRU or 2-LRU. We also show that it has the highest hit

probability over a class of algorithms that we compare it with using both synthetic

requests generated using a Markov-modulated process, as well as trace-based simu-

lations using traces from YouTube and the IRCache project.

5.1.1 Organization

This section is organized as follows. In Section 5.2, we study the multi-level

caching algorithms in the context of linear cache networks. Some technical prelimi-

naries and representative replacement algorithms are introduced in Section 5.2.1. We

derive the steady-state distributions of these algorithms in Section 5.2.2, and identify

hit probabilities in Section 5.2.3. We consider the τ -distance in Section 5.2.4, and

mixing time in Section 5.2.5. We provide trace-based numerical results of multi-level

caching algorithms in Section 5.2.6. Finally, we propose A-LRU and analyze its

performance in Section 5.3. We conclude in Section 5.4.

5.2 Performance of Multi-level Caching Algorithms

5.2.1 Preliminaries

Traffic Model and Popularity Law

We consider the Independent Reference model (IRM) [25] and Zipf-like law for

content popularity for most of our analysis. Details are given in Section 4.2 of

Section 4 and hence are omitted here.

Linear Cache Network

We consider a general linear cache network, as illustrated in Figure 5.1, which

105

Figure 5.1: Linear cache network: “S” and “U” stands for the server and user,
respectively.

is composed of h caches labeled as 1, · · · , h, each with size mi ∈ Z+, i = 1, · · · , h.

The total cache size is denoted as m =
∑h

i=1 mi. There are no exogenous requests at

caches 2, · · · , h. An item enters the cache network via cache 1, and will be promoted

to a higher index cache whenever there is a cache hit on it.

Replacement Algorithms

We consider a class of replacement algorithms based on the linear cache network

in Figure 5.1. We denote the members of these classes as RANDOM(m), FIFO(m),

and LRU(m), where m = (m1, · · · ,mh).

RANDOM(m): When item k is requested, there are three cases: (1) k is not in

the cache network (cache miss), then k is inserted in a random position in cache 1,

and this randomly selected item is evicted; (2) k is in position j of cache i < h (cache

hit), then k is inserted in a random position in cache i+1, while the item that was in

this randomly selected position moves to position j of cache i; and (3) k is in cache

h (cache hit), no change is made.

FIFO(m): The differences between FIFO(m) and RANDOM(m) are from two per-

spectives. First, when a cache miss happens, item k is inserted into the first position

of cache 1, items in higher position move back one position, and the last item is

evicted. Second, when there is a cache hit on item k in cache i < h, say in position

j of cache i, item k moves to the first position of cache i+ 1, all other items in cache

i+1 move back one position. The last item that was in cache i+1 moves to position

j of cache i.

106

LRU(m): The differences between LRU(m) and FIFO(m) are from two perspec-

tives. First, when there is a cache hit on item k that was in position j of cache i < h,

as before, k moves to the first position of cache i + 1, and all other items in cache

i+ 1 move back one position, with the difference that the last item that was in cache

i+ 1 moves to the first position of cache i, and all items that were in positions 1 to

j−1 of cache i move back one position. Second, when there is a cache hit in position

j of cache h, item k moves to the first position of cache h and all other items move

back one position.

Remark 3 We obtain RANDOM(m), FIFO(m), and LRU(m), described above,

by slightly modifying the algorithms introduced in [9, 71].

5.2.2 Steady State Distribution

Our first objective is to determine the stationary distributions of various replace-

ment algorithms in the linear cache network. Suppose there are a total of n content

items in a library, the total cache size is m < n, and there are h caches in the network.

Let S contain all the vectors of m distinct integers taken from the set {1, · · · , n}. It is

easy to see that each replacement algorithm A under any Markov modulated request

arrival process (which includes IRM as well) results in a Markov process on the state

space S. Denote π∗A(x) as the stationary probability of state x = (x1, · · · , xm).

For simplicity, we denote x(i, j) as the identity of the item at position j in cache i,

where i = 1, · · · , h and j = 1, · · · ,mi. Next, we present the steady state probabilities

of this Markov chain for FIFO(m) and RANDOM(m).

Theorem 17 Under the IRM, the steady state probabilities π∗FIFO(m)(x) and

107

π∗RANDOM(m)(x), with x ∈ S are as follows

π∗FIFO(m)(x) = Z(m)−1

h∏
i=1

(
mi∏
j=1

px(i,j)

)i

,

π∗RANDOM(m)(x) = G(m)−1

h∏
i=1

(
mi∏
j=1

px(i,j)

)i

,

where Z(m), and G(m) are the normalizing constants, satisfying

Z(m) =
∑
x∈S

h∏
i=1

(
mi∏
j=1

px(i,j)

)i

,

G(m) =
∑
x∈S′

h∏
i=1

(
mi∏
j=1

px(i,j)

)i

, (5.1)

where S ′ denotes the set of all combinations of the elements of {1, · · · , n} taken m

at a time. Note that the elements of S ′ are subsets of {1, · · · , n}, while elements of

S are ordered subsets of {1, · · · , n}, satisfying

∑
x∈S

h∏
i=1

(
mi∏
j=1

px(i,j)

)i

= m!
∑
x∈S′

h∏
i=1

(
mi∏
j=1

px(i,j)

)i

.

This result indicates a small inaccuracy in [33] (Theorem 1), which ignores the differ-

ence between S ′ and S. Our results contain the well-known steady state probabilities

for FIFO and RANDOM on an isolated cache (i.e. h = 1) [9, 25,35,55].

5.2.3 Hit Probability

Once we have the stationary distribution, we can easily characterize the hit prob-

ability of RANDOM(m) and FIFO(m) using Equation (4.4) in Section 4.4 of Sec-

tion 4.

We then compare the hit probability of RANDOM(m), FIFO(m) and LRU(m)

108

ratio=cache size/total number of unique items

h
it

 p
ro

b
ab

ili
ty

LRU(m):h=1
LRU(m):h=2
LRU(m):h=3
LRU(m):h=5

Figure 5.2: Hit probability of LRU(m) with mi+1 = 0.5mi for i = 1, · · · , h− 1 and∑
imi = m.

via simulations. Unless otherwise specified, we will always simulate a request ar-

rival process using the IRM with a Zipf-like popularity distribution with expo-

nent α = 0.8. We consider a large linear cache network, where the tuple (n,m)

is comparable to real cache networks. We illustrate how different algorithms per-

form using a content library size of n = 3, 000 with sufficiently long runs (i.e.,

enough number of requests to make sure that the system has reach steady state,

e.g., about 6× 106 requests). The hit probability of the algorithms are calculated as

Hit probability = Total No. of Hit Counts/Total No. of Request Counts.

We first study how hit probability varies with the total cache size and the number

of cache levels. Figure 5.2 shows the hit probabilities achieved by LRU(m), where

we assume that mi+1 = 0.5mi for i = 2, · · · , h, satisfying
∑h

i=1mi = m. The hit

probabilities increase with total cache size m, as well as the number of caches in the

linear cache network. However, the gain becomes limited when h ≥ 5. In other words,

most caching gain can be obtained by using a small number of cache levels. Similar

109

ratio=cache size/total number of unique items

h
it

 p
ro

b
ab

ili
ty

RANDOM(m):h=1
FIFO(m):h=1
LRU(m):h=1

Figure 5.3: Hit probabilities of various replacement algorithms with mi+1 = 0.5mi

for i = 1, · · · , h− 1 and
∑

imi = m: h = 1.

RANDOM(m):h=3
FIFO(m):h=3
LRU(m):h=3

ratio=cache size/total number of unique items

h
it

 p
ro

b
ab

ili
ty

Figure 5.4: Hit probabilities of various replacement algorithms with mi+1 = 0.5mi

for i = 1, · · · , h− 1 and
∑

imi = m: h = 3.

110

LRU(m):h=1
LRU(m):h=2
LRU(m):h=3
LRU(m):h=5

ratio=(m-m1)/m

h
it

 p
ro

b
ab

ili
ty

Figure 5.5: Hit probabilities of LRU(m) with mi = (m−m1)/(h−1) for i = 2, · · · , h
and

∑
imi = m.

trends hold for RANDOM(m) and FIFO(m), and we omit them here. Figures 5.3

and 5.4 compare the performance of different algorithms under the same setting; here

we omitted the cases for h = 2, 5. We note that LRU(m) outperforms FIFO(m) and

RANDOM(m). Again, the gain decreases as we further increase h.

We next consider the impact of the cache partitioning policy on performance.

In particular, we focus on the division between cache 1 and all the others. Hence,

we vary m1 and divide the remaining cache size evenly among the remaining h − 1

caches, given a fixed total cache size m = 900. Figure 5.5 shows the hit probabilities

of LRU(m) as a function of the cache partitions (decreasing value of m1). Similarly,

Figures 5.6 and 5.7 compare the performance of the different candidate algorithms.

We see that the hit probability increases as the higher level caches are assigned more

space. In summary, the hit probability of a caching policy increases by favoring more

levels and assigning more resources to higher level caches.

111

RANDOM(m):h=2
FIFO(m):h=2
LRU(m):h=2

h
it

 p
ro

b
ab

ili
ty

ratio=(m-m1)/m

Figure 5.6: Hit probabilities of various replacement algorithms with mi = (m −
m1)/(h− 1) for i = 2, · · · , h: h = 2.

RANDOM(m):h=5

FIFO(m):h=5
LRU(m):h=5

h
it

 p
ro

b
ab

ili
ty

ratio=(m-m1)/m

Figure 5.7: Hit probabilities of various replacement algorithms with mi = (m −
m1)/(h− 1) for i = 2, · · · , h and

∑
imi = m: h = 5.

112

5.2.4 Permutation Distance

While we observed above using the hit probability metric that most of the caching

gain can be obtained by using a small number of cache levels, what we really desire is

to know “how close” the stationary performance of a replacement algorithm is to the

best-possible one. In order to do this, we need to refine the hit probability metric to

a measure of distance. We utilize the τ -distance defined in Section 4.5 of Section 4

to characterize the performance of replacement algorithms in the context of linear

cache networks.

5.2.4.1 Model Validation and Insights

As the τ -distance is a metric that characterizes the accuracy of an algorithm

learning the popularity distribution, a lager hit probability is expected for an algo-

rithm with a smaller τ -distance. The computational complexity of the τ -distance is

high, due to the explosion of the state space as the cache size and number of items

increases. However, we can still shed light on how different algorithms perform using

a relatively small content library size of n = 15.

We explore the impact of the number of cache levels h on the performance when

using a small cache size m = 5 to illustrate the main insights. Since the cache size

should be an integer, we explore a range of cache partitions under each h. We compare

the lower envelope of achievable τ -distance of various replacement algorithms, shown

in Figure 5.8, while the corresponding upper envelope of achievable hit probabilities

are shown in Figure 5.9. We observe that given a total cache size, increasing the

number of caches in the linear network can improve the performance, however, most

gain can be obtained with a small number of caches in the linear cache network. This

observation can be confirmed from the synthetic request data simulations shown in

Section 5.2.3, and trace based simulations that will be presented in Section 5.2.6.

113

Figure 5.8: τ -distance vs. number of caches h for various replacement algorithms
with IRM arrivals.

Figure 5.9: Hit probability vs. cache number h for various replacement algorithms
with IRM arrivals.

114

Figure 5.10: Hit probability vs. number of requests for RANDOM(m) replacement
algorithm with IRM arrivals.

These effects become more pronounced as the cache size and the size of content

library become large. Figures 5.8 and 5.9 show that the τ -distance and hit probability

follow the same rule, i.e., a smaller τ -distance corresponds to a larger hit probability,

which is as expected.

Remark 4 The parameters that we used in (4.6) are as follows. We consider a Zipf-

like popularity distribution with exponent α = 0.8. For the ease of calculations, we

take wi = n− i+ 1 as the element weights, and ζi = log i for i > 1, and ζ1 = 0.1, as

the swapping cost. Different values of τ -distance can be obtained by different choices

of the parameters, hence, the y-axis value in Figure 5.8 only represents the relative

difference between different algorithms.

5.2.5 Mixing Time of Multi-level Caching Algorithms

While the τ -distance allowed us to obtain insights on how the number of levels

in a linear cache network impact the algorithm’s accuracy of learning, it does not

115

indicate how long it takes to reach this eventual accuracy. In this section, we wish to

understand how quickly a replacement algorithm can respond to external changes:

changes in the number of caches, as well as the change in the request distribution.

In other words, we need to study how a caching process evolves with respect to time

to understand the evolution of the distribution. The relevant metric here is called

“mixing time,” which is defined in Section 4.6 of Section 4. In this section, we utilize

the same techniques introduced in Section 4.6 of Section 4 to characterize the mixing

time of cache placement algorithms in linear cache networks.

5.2.5.1 Analysis of Mixing Time

We are now ready to characterize the mixing time of RANDOM(m) and FIFO(m).

We show that RANDOM(m) and FIFO(m) are rapid mixing by the conductance

argument, which results in an explicit form of the upper bound of the mixing time.

Details of the proof are available in Appendix D.

Rapid mixing of RANDOM(m) and FIFO(m)

We show that the congestion of RANDOM(m) and FIFO(m) are polynomial in

the size of state space, i.e., they are rapidly mixing.

Theorem 18 The Markov chains of RANDOM(m) and FIFO(m) are rapid mixing.

Theorem 19 The mixing time of RANDOM(m) satisfies

t
RANDOM(m)
mix (ε) = O(n6α(m1+2m2+···+hmh)+2 lnn), (5.2)

where m = m1 +m2 + · · ·+mh.

Similar results hold for FIFO(m).

Remark 5 For a given total cache size m, we can determine the impact of multiple

cache levels and partitions by analyzing the term in the exponent in (5.2), which we

116

define as µ(m) , m1+2m2+· · ·+hmh. Now, suppose we choose a harmonic sequence

of integers q1 = q, q2 = q/2, q3 = q/3, · · · qh = q/h, where q = m/
∑h

i=1
1
i
. Suppose

that we partition the total cache space m into levels as mA = {m1 = q1,m2 =

q2, · · ·mh = qh}, then we have a decreasing sequence of partitions, and µ(mA) = hq.

We see immediately that the mixing time bound is increasing in the number of levels

h.

Now, to determine how the cache partitions themselves impact the mixing time, we

instead choose mB = {m1 = qh,m2 = qh−1, · · ·mh = q1}. Then we have an increasing

sequence of partitions and the value of µ(mB) = q/h + 2q/(h− 1) + · · · + hq. Since

µ(mA) < µ(mB), the mixing time bound is smaller for a decreasing sequence of

cache sizes than for an increasing sequence, with the sequences identified yielding the

minimum and maximum values.

We noted in Section 5.2.4 that learning accuracy favors more cache levels with

more space allocated to higher levels. However, we have just seen that mixing time

favors exactly the complementary case. Figure 5.10 illustrates this tradeoff between

learning accuracy and speed by depicting the hit probability as a function of the num-

ber of requests, where we take (n,m) = (100, 15). Note that the x-axis is plotted in a

logarithmic scale. We see that increasing the number of caching levels promotes accu-

racy at the expense of a longer time to attain that accuracy. The results of FIFO(m)

exhibit similar trends, and hence are omitted here.

5.2.6 Trace-based Simulations Using Youtube Traces

The analytical insights that we have obtained thus far on learning rate and accu-

racy were obtained under a fixed IRM request model. We next consider arrivals that

follow a dynamic request process by conducting trace-based simulations. The trace

that we use is publicly available [95] and was extracted from a 2-week YouTube re-

117

ratio=cache size/total number of unique items

h
it

 p
ro

b
ab

ili
ty

LRU(m):h=1
LRU(m):h=2
LRU(m):h=3
LRU(m):h=5

Figure 5.11: Trace-based hit probabilities of LRU(m) with mi+1 = 0.5mi for i =
1, · · · , h− 1 and

∑
imi = m.

quest traffic dump between June 2007 and March 2008. There are a total of 611, 968

requests for 303, 331 different videos in this trace. About 75% of those videos were

requested only once during the trace. There is no information on the video sizes. We

therefore assume that the cache size is expressed as the number of videos that can

be stored in it. This assumption should have a low impact if the correlation between

video popularity and video size is low.

We first compare the performance of different replacement algorithms with the

total cache size m and the number of levels h. We make use of the ratio m/n =

5%, 10%, · · · under a different number of cache levels h in the linear cache network.

We still consider mi+1 = 0.5mi and
∑

imi = m for i = 1, · · · , h; we will explore other

partitions later in this section. Figure 5.11 reports the hit probabilities of LRU(m)

as a function of total cache size m. We observe that under the selected partitioning

scheme, increasing the number of caching levels can improve performance. This is

consistent with the observations under the synthetic simulation in IRM model. In

118

h
it

 p
ro

b
ab

ili
ty

ratio=cache size/total number of unique items

RANDOM(m):h=1

LRU(m):h=1
FIFO(m):h=1

Figure 5.12: Trace-based hit probabilities of various replacement algorithms with
mi+1 = 0.5mi for i = 1, · · · , h− 1 and

∑
imi = m: h = 1.

RANDOM(m):h=3
FIFO(m):h=3
LRU(m):h=3

h
it

 p
ro

b
ab

ili
ty

ratio=cache size/total number of unique items

Figure 5.13: Trace-based hit probabilities of various replacement algorithms with
mi+1 = 0.5mi for i = 1, · · · , h− 1 and

∑
imi = m: h = 3.

119

LRU(m):h=1
LRU(m):h=2
LRU(m):h=3
LRU(m):h=5

h
it

 p
ro

b
ab

ili
ty

ratio=(m-m1)/m

Figure 5.14: Trace-based hit probabilities of LRU(m) with mi = (m−m1)/(h− 1)
for i = 2, · · · , h.

fact, most of the gain can be obtained with a small number of caches in the linear

cache network. The performance of RANDOM(m) and FIFO(m) exhibit similar

trends to LRU(m), and are omitted here.

Figures 5.12 and 5.13 compares hit probabilities between different algorithms,

we omit the cases for h = 2, 5. We note that LRU(m) does outperform FIFO(m)

and RANDOM(m) in all cases, but the gain becomes very limited when h is large.

Furthermore, although FIFO(m) and RANDOM(m) have the same performance

under the IRM model, FIFO(m) outperforms RANDOM(m) when confronted with

a real data trace.

Next, we investigate the impact of the cache partitions on performance. We fix

the total cache size m = 2, 000, and vary m1, and evenly divide the remaining cache

size among the remaining h − 1 caches. Hence, mi = m−m1

h−1
for i = 2, · · · , h and∑h

i=1mi = m. Figure 5.14 depicts the hit probability of LRU(m) as a function

of the cache size assigned to m1, and we illustrate the cases where h = 1, 2, 3, 5.

120

h
it

 p
ro

b
ab

ili
ty

ratio=(m-m1)/m

RANDOM(m):h=3
FIFO(m):h=3

LRU(m):h=3

Figure 5.15: Trace-based hit probabilities of various replacement algorithms with
mi = (m−m1)/(h− 1) for i = 2, · · · , h: h = 3.

Figures 5.15 and 5.16 compare the performance of different algorithms. These three

figures clearly illustrate the tradeoff between accuracy and speed of learning. As we

increase the caching resources allocated to the higher levels, the hit probability first

rises due to increased accuracy of learning, and then falls due to increasing learning

time. The observation remains consistent with an increase in the number of caching

levels, as well as across the different algorithms. Secondary observations are that

LRU(m) has a better performance than the other two, and that the enhanced hit

probability obtained through using multiple levels tapers off quite quickly.

5.3 A-LRU Algorithm

From the analysis of multi-level caching algorithm in the context of linear cache

networks in Section 5.2, we find that under IRM requests, the accuracy and mixing

time of an algorithm increases with both the number of cache levels and the space

allocated to higher caches. In this section, we numerically study the functionality

121

h
it

 p
ro

b
ab

ili
ty

ratio=(m-m1)/m

RANDOM(m):h=5
FIFO(m):h=5
LRU(m):h=5

Figure 5.16: Trace-based hit probabilities of various replacement algorithms with
mi = (m−m1)/(h− 1) for i = 2, · · · , h: h = 5.

of meta-cache through the analysis of 2-LRU, we find that under IRM model, meta

cache would improve hit probability at the expense of longer time to achieve the

stationarity. Then a natural question arises: can we design a new caching algorithms

that combine the ideas from meta-cache and multi-level caches which will achieve a

better tradeoff between the accuracy of learning items’ popularity and the speed of

learning? We combine the ideas from the analysis of LRU and 2-LRU to design a

new caching algorithm, A-LRU. We characterize its performance in this section.

5.3.1 Caching Algorithms

Adaptive Replacement Cache: ARC [71] uses the history of recently evicted

items to change its recency or frequency preferences. Specifically, ARC splits the

cache into two parts, T1 and T2, which cache items that only have been accessed

once, and many times, respectively. Furthermore, ARC maintains two additional

lists, B1 and B2, to record (LRU-based) eviction history of T1 and T2, respectively.

Recency or frequency preferences are adjusted by dynamically changing target sizes

122

of T1 and T2 according to eviction histories recorded in B1 and B2. In this way, ARC

traces changes in traffic patterns and adjusts the replacement policy to emphasize

frequency or recency accordingly.

k-LRU: k-LRU [70] manages a cache of size m by making use of k−1 virtual caches,

which only store meta-data. Each cache is ordered such that the item in the j-th

position of cache l is the j-th most-recently-used item among all items in cache l.

When item i is requested, two events occur: (1) For each cache l in which item i

appears, say in position j for cache l, then item i moves to the first position of cache

l and items in positions 1 to j − 1 move back one position; (2) For each cache l in

which item i does not appear but appears in cache l − 1, item i is inserted in the

first position of cache l, all other items of cache l move back one position, and the

last item is evicted.

Adaptive-LRU (A-LRU): We define the quantities c1 = min(1, b(1− β)mc), c2 =

b(1−β)mc, c3 = b(1−β)mc+1 and c4 = max(m, b(1−β)mc+1), where β ∈ [0, 1] is

a parameter. We partition the cache into two parts with C2 defined as the positions

from c1 · · · c2 and C1 as the positions from c3 · · · c4. We also define the quantities

m1 = min(1, bβmc), m2 = bβmc, m3 = bβmc+ 1 and m4 = max(m, bβmc+ 1). We

associate positions m1 · · ·m2 with meta cache M2 and m3 · · ·m4 with meta cache

M1. Note that value m1 = m2 = 0 is an extreme point that yields behavior similar

to 2-LRU, while m3 = m4 = m + 1 yields LRU. The cache partitions are shown in

Figure 5.17.

Let us denote the meta data associated with a generic item i by M(i). The

operation of A-LRU is as follows if item i is requested. Different cases are illustrated

in Figure 5.17. There are two possibilities:

(1) Cache miss, then there are three cases to consider:

(1a) M(i) 6∈M1∪M2 : If c3 6= m+ 1, i is inserted into cache position l = c3, else

123

(extreme case similar to 2-LRU) M(i) is inserted into meta cache position l = m3.

Cache/meta cache items in positions greater than l move back one position, and the

last meta-data is evicted;

(1b) M(i) ∈ M1 : Item i is inserted into position c1, all other items in C2 move

back one position, the meta data of item in cache position c2 is placed in position

m1, all other meta-data items move back one position, and the meta data in position

m2 moves to position m3;

(1c) M(i) ∈ M2 : If c1 = 1, item i is inserted into position l = c1. All other

items in C2 move back one position, and the meta data of item in cache position c2

is placed in position m1. Note that this situation cannot occur in the extreme case

of LRU, since M2 is always empty for LRU;

(2) Cache hit, then there are two cases to consider:

(2a) i ∈ C1 (suppose in position j): If c1 = 1, then item i moves to cache position

l = c1, else (extreme case of LRU) item i moves to cache position l = c3. If l = c1, all

other items in C2 move back one position, the item in cache position c2 is placed in

position c3, all other items in C1 upto position j move back one position. If l = c3

(extreme case of LRU), all other items in C1 upto position j move back one position.

(2b) i ∈ C2 (suppose in position j): Item i moves to cache position c1, and all

other items in positions min(2, c2) to j − 1 move back one position.

Remark 6 Note that the A-LRU setup can be generalized to as many levels as desired

by simply “stacking up” sets of real and meta caches, and following the same caching

and eviction policy outlined above (where (1a) would apply to the top level, while

(1c) and (2b) would apply to the bottom level). Since most of the possible cache gain

has already been achieved by 2-level cache network, here, we focus on analysis the

two-level A-LRU algorithm, shown in Figure 5.17. These results can be generalized

124

Cache 2

Cache 1

Meta 2

Meta 1

Cache 2

Cache 1

Meta 2

Meta 1

Cache 2

Cache 1

Meta 2

Meta 1

Cache 2

Cache 1

Meta 2

Meta 1

Cache 2

Cache 1

Meta 2

Meta 1

(1a)

(1b)

(1c)

(2a)

(2b)

Cache 2

Cache 1

Meta 2

Meta 1
c1 c2

c3 c4

m1 m2
cache partitions

c1 c2

c3 c4

m1 m2

c1 c2

c3 c4

m1 m2

c1 c2

c3 c4

m1 m2

m3 m4

c1 c2

c3 c4

m1 m2

m3 m4

c1 c2

c3 c4

m1 m2

m3 m4

m3 m4

m3 m4

m3 m4

Figure 5.17: Operation of the A-LRU algorithm.

to multi-level A-LRU.

Remark 7 ARC is an online algorithm with a self-tuning parameter, which has a

good performance in some real systems but the implementation is complex. k-LRU

has a relatively low complexity, which requires just one parameter, i.e., the number

of meta caches k − 1. We will see that these meta caches will provide a significant

improvement over LRU even for small number k. In fact, most of the gain can be

achieved by k = 2. A-LRU captures advantages of LRU and 2-LRU, i.e., learns both

faster and better about the changes in the popularity.

Now we are ready to characterize the performance of A-LRU with respect to τ -

distance and mixing time. We studied the performance of LRU, RAMDOM, FIFO

and CLIMB in Section 4, where we only provided a partial comparison between these

125

Figure 5.18: τ -distance vs. hit probability for various caching algorithms with IRM
arrivals.

algorithms on a single cache. In this section, we provide a comprehensive comparison

between A-LRU and these algorithms.

5.3.2 Hit Probability and Permutation Distance

Since the τ -distance characterizes how accurately an algorithm learns the popu-

larity distribution, a smaller τ -distance should correspond to a larger hit probability.

Computation of the τ -distance is complex, since it is a function of all possible per-

mutations over the content items. But we can illustrate how different algorithms

perform using a content library size of n = 20. Figure 5.18 compares the τ -distance

and hit probabilities of various caching algorithms. The points on each curve corre-

spond to cache size of 2, 3, 4, 5 from left to right. Since the cache size should be an

integer, we partition the cache for A-LRU such that the size of cache 1 is always 1,

and the remaining cache size is allocated to cache 2. From Figure 5.18, we can see

that the τ -distance and hit probability follow the same rule, i.e., a smaller τ -distance

corresponds to a larger hit probability, which is as expected.

126

Figure 5.19: Learning error of various
caching algorithms under the IRM ar-
rival process.

number of requests

h
it

 p
ro

b
ab

ili
ty

RANDOM

LRU
FIFO

CLIMB
2-LRU
ARC
A-LRU

Figure 5.20: Hit probability of various
caching algorithms under the IRM ar-
rival process.

5.3.3 Learning Error

We use the learning error defined in Equation (4.23) of Section 4.7 in Section 4 to

compare the performance of different caching algorithms, as illustrated in Figure 5.19.

We use a small cache size for these simulations, since computing all permutations

becomes prohibitively complex quickly. However, (n = 20,m = 4) serves to illustrate

the main insights. The learning error of various algorithms as a function of the

number of requests received is shown in Figure 5.19, where the y-axis is shown with

a logarithmic scale. Note also that the result in Figure 5.19 used a version of the

A-LRU algorithm with a time-dependent selection of cache divisions that is discussed

fully under the heading “Dynamic A-LRU” below. We see that LRU decreases fast

initially and then levels off, whereas 2-LRU has a slower decay rate, but the eventual

error is lower than that of LRU. This corresponds to faster mixing of LRU but a

poorer eventual accuracy (τ -distance) as compared to 2-LRU. The ARC algorithm

has a good performance initially, but it too levels off to an error larger than 2-LRU.

The A-LRU algorithm with cache partitions (1, 3) picks a combination of accurate

127

learning and fast mixing, and is able to attain a low learning error quickly.

The effects seen in Figure 5.19 are also visible in the evolution of hit probabilities

shown in Figure 5.20, where the x-axis is on a logarithmic scale. Here, we choose

(n = 150,m = 30) in order to explore a range of cache partitions for A-LRU from

(0, 30)–(30, 0). We compare the upper envelope of achievable hit probability by A-

LRU with various other caching algorithms. We find that for any given learning

time (requests), there is a cache partition such that A-LRU will attain a higher hit

probability after learning for that time. These effects become more pronounced as

the partition space (cache size) available for A-LRU increases.

Dynamic A-LRU: Whereas in our description of A-LRU, we use a fixed parti-

tioning parameter β, the algorithm (and an implementation of it) can easily consider

time-varying β values. For the sake of argument, we consider a k levels A-LRU with

a sequence of χs such that χ1, χ2, · · · , χk becomes 0 as the number of requests go to

infinity, satisfying (i)
∑

t χi(t)→∞; (ii)
∑

t χ
2
i (t) <∞; and (iii) χi(t)/χi+1(t)→ 0.

Here, χ1 stands for the proportion of LRU to the rest, χ2 stands for the proportion

between 2-LRU and 3-LRU to the rest, etc. A typical choice of sequences will be

χi(t) = m/(m + t
i+1
2i /ci), where t counts the number of requests and ci > 0 is a pa-

rameter to be varied. Under such setting, the βs in the previous definition of A-LRU

satisfy that (i) at level i ≤ k− 1, it is (1−χ1(t))(1−χ2(t)) · · · (1−χi−1(t))χi(t), and

(ii) at level k, it is (1− χ1(t))(1− χ2(t)) · · · (1− χk(t)).

In particular, we consider the 2-level A-LRU shown in Figure 5.17. Here, the βs

are β1(t) = m/(m+ t/c) and β2(t) = 1− β1(t), where we take a common constant c

for simplicity. With such a sequence of βs, A-LRU will start at 1 (LRU) and (slowly)

decrease to 0 (2-LRU). Under the setting (n = 150,m = 30), we choose different val-

ues of the constant c = 3, 10, 15 for illustration, as shown in Figure 5.21. We observe

that the resulting algorithm will learn fast initially, and then smoothly transition

128

to learning accurately. Finally, we note that the results for A-LRU presented in

Figure 5.19 used c = 600.

If the popularity distribution changes with time (in the next section), we should

only consider constant β algorithms. These two distinctions follow from stochastic

approximation ideas where while decreasing step-size algorithms can converge to

optimal solutions in stationary settings, constant step-size algorithms provide good

tracking performance for non-stationary settings.

A-LRU-c3
LRU
2-LRU

A-LRU
A-LRU-c10
A-LRU-c15

number of requests

h
it

 p
ro

b
ab

ili
ty

Figure 5.21: Hit probability for A-
LRU with time-varying β under IRM
arrival process.

ratio=cache size/total number of unique items

Figure 5.22: Hit probabilities under
Markov-modulated arrivals with ξ =
0.1.

5.3.4 Markov Modulated Requests

While requests drawn from IRM allow us to study the accuracy of learning a

fixed popularity distribution over time, a real arrival process would have a changing

popularity distribution. Hence, we desire to construct an arrival process that contin-

ually changes the popularity distribution in order to understand how well different

caching algorithms are able to track the arrival process.

129

A simple model that possesses the desired changeability property is a Markov

modulated request process. Under this model, we have an underlying two-state

Markov chain, in which each state corresponds to one popularity distribution. Re-

quests are drawn from the distribution corresponding to the current state. Define a

Markov Chain {Bh}h≥0 with state space {0, 1}, each corresponding to one popularity

distribution. We say Bh = 0 if the system is at state 0 and the popularity follows

one Zipf-like distribution, and Bh = 1 if the system is at state 1 and follows another

Zipf-like distribution. W.l.o.g., we consider two Zipf-like distributions over n unique

items, one with increasing order of ranking, i.e., pi = A/iα, the other with decreasing

order of ranking, i.e., pj = A/(n− j + 1)α, where i, j ∈ {1, · · · , n}.

In our model, we assume that if the Markov chain is in some particular state, a

fixed number of requests, r, will be drawn according to the distribution corresponding

to that state. After that, a possible state transition can take place. For example,

if Bh = 0, then with probability ξ, the system will stay in state 0 after r requests,

otherwise, the system will switch to state 1. Similarly for Bh = 1.

Since the expected time in one state is 1
1−ξ , the expected request rate is r

1
1−ξ

=

r(1− ξ). A larger ξ means the rate of change of popularity is low, i.e., an algorithm

that has accurate learning is desirable. This situation corresponds to a higher weight

on 2-LRU-like behavior, and we choose a smaller β for A-LRU. The extreme case is

ξ = 1, which the system stays in one state and follows a fixed Zipf-like popularity

distribution. Here, we choose β = 0, i.e., A-LRU is equivalent to 2-LRU. The

complementary argument applies if ξ is small. Here, the popularity changes quickly,

and hence fast mixing is desirable at the cost of losing accuracy. Thus, LRU-like

behavior is desirable and we choose β large.

Figure 5.22 compares the hit probability of A-LRU with LRU, 2-LRU and ARC

under Markov Modulated requests, where we take n = 1000 and r = 1000. We see

130

Table 5.1: Relation between ξ and β.

ξ 0.1 0.3 0.5 0.7 0.9
Optimal β 0.4 0.3 0.2 0.1 0

LRU
FIFO

RANDOM
CLIMB
2-LRU
ARC

A-LRU-0.2

Figure 5.23: Hit probability vs. cache size, for various caching algorithms with
two-week long YouTube trace [95].

that A-LRU is able to outperform all other algorithms for an appropriate choice of

β. The relation between ξ and the optimal β for A-LRU is given in Table 5.1, which

verifies the conclusion that β should decrease with increasing ξ.

5.3.5 Trace-based Simulations

The ideas presented thus far have been based on the hypothesis that the request

distribution changes dynamically, and hence an optimal caching algorithm should

track the changes at a time scale consistent with the time scale of change.

131

LRU

FIFO

RANDOM
CLIMB
2-LRU

ARC
A-LRU-0.5

Figure 5.24: Hit probability vs. cache size, for various caching algorithms with one
particular day YouTube trace [95].

5.3.5.1 YouTube Trace

We use the same data trace [95] that was used in Section 5.2.6. We find that α =

0.605 is the best fit for a Zipf-like distribution. However, a detailed inspection shows

that this trace exhibits significant non-stationarity, i.e., the popularity distribution

is time-varying.

We compare the hit performance of different algorithms by varying cache size.

Figure 5.23 depicts the hit probability as a function of the cache size when the

total number of unique videos is n = 303, 331, and we make the use of the ratio

m/n = 0.01, · · · , 0.10. For ease of visualization, we only depict A-LRU with the

optimal β, which outperforms all the other caching algorithms.

We also conduct experiments on an one-day YouTube trace We randomly pick

one day from the two-week traces, in which the total number of uniques videos is

3×105 and the Zipf-like distribution parameter α = 0.48 (but popularity varies with

132

Table 5.2: SD network trace overview [13]

Date # Obj # Req 1-timers α
02/18 854241 3571125 68.30% 0.817
02/19 993711 4121865 68.66% 0.815
02/20 871565 3593373 69.27% 0.814
02/21 811827 3416817 67.61% 0.821

time). Figure 5.24 depicts the hit probability as a function of the cache ratio.

5.3.5.2 ICN Traces

We run similar experiments using the traces from the IRCache project [13], with

attention on data gathered from the SD Network Proxy (the most loaded proxy to

which end-users can connect) in Feb. 2013. A detailed study shows that such traces

capture regional traffic and exhibit significant non stationaries due to daily traffic

fluctuations. We only considered the traces in the 4 hours peak traffic periods in

order to measure the performance expected in the busy hour. The characteristics of

the traces are shown in Table 5.2.

We consider a basic cache network hierarchy [13], in which there is a core cache

that serves 4 edge caches, which are loaded by the real traces of the same four hours

of four consecutive days, i.e., Feb. 18 + i trace loads the i-th edge cache, where

i = 0, · · · , 3. For simplicity, we assume that the size of edge caches are identical

and equal to 1/10 of the core cache size. Figure 5.25 shows the overall cache hit

probability versus the core cache size.

5.4 Conclusion

In this section, we first investigated the performance of a class of cache replace-

ment algorithms in linear cache networks. We studied the stationary distributions of

various replacement algorithms under the IRM model, and computed the τ -distance

133

LRU
FIFO

RANDOM
CLIMB
2-LRU

ARC
A-LRU-0.2

Figure 5.25: Hit probability vs cache size for various caching algorithms with SD
network trace [13] for ICN.

between the stationary distributions and the best possible, which provided the in-

sight that multiple caching levels with a cache partition that favors the higher levels

promotes accuracy. We then analyzed the mixing time of each algorithm under a

fixed popularity distribution to determine how long it would take to converge to the

stationary distribution. We found that a larger number of caching levels and more

resources allocated to higher level caches increases the mixing time, i.e, the two ob-

jectives of learning accuracy and speed are at odds with each other. We conducted

a YouTube trace-based simulations to test the performance of these algorithms with

real-word inputs. We observed the tradeoff between accuracy and speed in this real-

istic setting, showing that cache network selection should be done with a clear idea

of the time constants in the system in order to obtain optimal performance.

We then combined the ideas of our analysis to develop a new hybrid algorithm,

A-LRU, that can be adapted to different non-stationary request processes and con-

sequently has a higher hit probability than any of the standard algorithms that we

134

compared against under both synthetic and trace-based evaluation.

135

6. CONCLUSIONS

In this thesis, we explored equilibria in large scale networked systems from two

areas: mean field games in large scale societal networks and dynamic adaptability of

replacement algorithms in cache networks. More specifically, in each of the four pre-

ceding sections, we have analyzed and designed incentives and algorithms to achieve

the desirable equilibria which benefits the system as a whole. However, several ques-

tions still remain. To conclude this thesis, we go back to each section and give a

discussion on the possible directions for future research.

Mean Field Games in societal networks :

The two problems discussed in Section 2 and Section 3 indicate the value of

the mean field game approach towards modeling and analysis of large scale societal

networks. In both problems, the desire was to steer the system towards an equi-

librium that benefits society. However, fundamental questions remain on both the

convergence to and selection of the MFE.

• Convergence to MFE : In both the results presented, we used a fixed point

approach to show the existence of an MFE. However, we have not characterized

the convergence of the state distribution of agents to the mean field equilibrium.

In our simulations, we presented an intuitive set of dynamics that appear to

have the right properties for convergence. The dynamics took the form of

providing the empirical distribution of state to each agent, which then takes a

best response assuming that distribution would apply for all future time. The

empirical distribution is updated and the cycle begins again. Such dynamics

are simple, and appear to converge quickly to an MFE. We would like to show

analytically that such dynamics would indeed possess convergence properties.

136

• Selection of MFE : In the problem of providing incentives for demand-response

in the smart grid setting, we chose to provide coupons at different times of day

to encourage customers to utilize energy at certain times of day. This selection

was done heuristically, and we showed numerically that the resulting MFE is

desirable form the perspective fo the LSE due to reduced hazard. However, the

question arises as to how to steer MFE in a given direction, and the cost of doing

so. In other words, the question is whether we can determine the difference in

overall utility at MFE as a function of the structure of the incentives provided,

hence characterizing the tradeoff between the cost of such incentives and the

value of the MFE attained.

Dynamic adaptability of caching algorithms :

For the problems discussed in Section 4 and Section 5, we observe that allowing for

multiple levels with sizes determined using a probability distribution, appropriately

projected to yield integer allocations, A-LRU yields a suite of caching algorithms

that can smoothly transition from LRU to LFU1, which is ∞-LRU. We conjecture

that given any finite number of requests t, within this suite of algorithms we can find

at least one that will yield the lowest possible learning error at t over all possible

caching algorithms; we also expect that it would be sufficient to consider a finite

number of levels, possibly O(log(t)). Furthermore, we believe that it would be pos-

sible to find a sequence of finite level algorithms going from LRU to LFU that has

performance arbitrarily close to the best possible learning error (infimum over all

possible algorithms). Establishing these conjectures will be our future goal.

1 [70] the Least Frequently Used policy statically stores the most popular m items in the cache
(assuming their popularity is known). LFU is known to be optimal under IRM.

137

REFERENCES

[1] Electric Reliability Council of Texas (ERCOT). Data Set Available at http:

//www.ercot.com/.

[2] Network Coding Utilities. Library Available at http://arni.epfl.ch/

software.

[3] Pecan Street. Data Set Available at https://dataport.pecanstreet.org/.

[4] N. Abedini, S. Sampath, R. Bhattacharyya, S. Paul, and S. Shakkottai. Realtime

Streaming with Guaranteed QoS over Wireless D2D Networks. In Proc. of ACM

MOBIHOC 2013, Bangalore, India, July 2013.

[5] M. H. Albadi and E. F. El-Saadany. A Summary of Demand Response in Elec-

tricity Markets. Electric Power Systems Research, 78(11):1989–1996, 2008.

[6] H. Allcott and J. B. Kessler. The Welfare Effects of Nudges: A Case Study of

Energy Use Social Comparisons. Technical report, National Bureau of Economic

Research, 2015.

[7] C. Aperjis and R. Johari. A Peer-to-Peer System as an Exchange Economy. In

Proc. of GameNets, Pisa, Italy, October 2006.

[8] S. Athey and I. Segal. An Efficient Dynamic Mechanism. Econometrica,

81(6):2463–2485, 2013.

[9] O. I. Aven, E. G. Coffman, and Y. A. Kogan. Stochastic Analysis of Computer

Storage. Springer Science & Business Media, 1987.

[10] M. Benäım and J.-Y. Le Boudec. A Class of Mean Field Interaction Models

for Computer and Communication Systems. Performamce Evaluation, 65(11-

12):823–838, November 2008.

138

[11] D. Bergemann and J. Välimäki. The Dynamic Pivot Mechanism. Econometrica,

78(2):771–789, 2010.

[12] D. S. Berger, P. Gland, S. Singla, and F. Ciucu. Exact Analysis of TTL Cache

Networks. Performance Evaluation, 79:2–23, 2014.

[13] G. Bianchi, A. Detti, A. Caponi, and N. Blefari Melazzi. Check Before Stor-

ing: What is the Performance Price of Content Integrity Verification in LRU

Caching? ACM SIGCOMM Computer Communication Review, 43(3):59–67,

2013.

[14] P. Billingsley. Convergence of Probability Measures. John Wiley & Sons, 2013.

[15] E. Bitar. Coordinated Aggregation of Distributed Demand-Side Resources, 2015.

http://www.news.cornell.edu.

[16] V. Borkar and R. Sundaresan. Asymptotics of the Invariant Measure in Mean

Field Models with Jumps. Stochastic Systems, 2(2):322–380, 2012.

[17] D. S. Callaway. Tapping the Energy Storage Potential in Electric Loads to De-

liver Load Following and Regulation with Application to Wind Energy. Energy

Conversion and Management, 50(5):1389–1400, 2009.

[18] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. I Tube, You Tube,

Everybody Tubes: Analyzing the World’s Largest User Generated Content

Video System. In Proc. of ACM IMC, San Diego, CA, October 2007.

[19] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. Analyzing the

Video Popularity Characteristics of Large-Scale User Generated Content Sys-

tems. IEEE/ACM Transactions on Networking (TON), 17(5):1357–1370, 2009.

139

[20] H. Che, Y. Tung, and Z. Wang. Hierarchical Web Caching Systems: Modeling,

Design and Experimental Results. Selected Areas in Communications, IEEE

Journal on, 20(7):1305–1314, 2002.

[21] J. Cheeger. A Lower Bound for the Smallest Eigenvalue of the Laplacian. Prob-

lems in analysis, 625:195–199, 1970.

[22] S. Chen and J.-S. Wang. Tax Evasion and Fraud Detection: A Theoretical

Evaluation of Taiwan’s Business Tax Policy for Internet Auctions. Asian Social

Science, 6(12):23, 2010.

[23] F. Chung. Laplacians and the Cheeger Inequality for Directed Graphs. Annals

of Combinatorics, 9(1):1–19, 2005.

[24] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden. Tussle in Cyberspace:

Defining Tomorrow’s Internet. ACM SIGCOMM Computer Communication

Review, 32(4):347–356, 2002.

[25] E. G. Coffman and P. J. Denning. Operating Systems Theory. Prentice-Hall

Englewood Cliffs, NJ, 1973.

[26] B. Cohen. Incentives Build Robustness in BitTorrent. In Proc. of WEIS, Berke-

ley, CA, June 2003.

[27] A. Dan and D. Towsley. An Approximate Analysis of the LRU and FIFO Buffer

Replacement Schemes. In Proc. of ACM Sigmetrics, Boulder, CO, May 1990.

[28] S. Deb, M. Médard, and C. Choute. Algebraic Gossip: A Network Coding

Approach to Optimal Multiple Rumor Mongering. IEEE Trans. on Information

Theory, 52(6):2486–2507, 2006.

[29] R. Fagin, R. Kumar, and D. Sivakumar. Comparing Top K Lists. SIAM Journal

on Discrete Mathematics, 17(1):134–160, 2003.

140

[30] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley. Analysis of TTL-based Cache

Networks. In Proc. of IEEE VALUETOOLS, Cargese, France, October 2012.

[31] C. Fricker, P. Robert, J. Roberts, and N. Sbihi. Impact of Traffic Mix on Caching

Performance in a Content-Centric Network. In Prof. of INFOCOM WKSHPS,

Orlando, FL, March 2012.

[32] S. Gao, E. Frejinger, and M. Ben-Akiva. Adaptive Route Choices in Risky

Traffic Networks: A Prospect Theory Approach. Transportation research part

C: emerging technologies, 18(5):727–740, 2010.

[33] N. Gast and B. Van Houdt. Transient and Steady-state Regime of a Family of

List-based Cache Replacement Algorithms. In Proc. of ACM SIGMETRICS,

Portland, OR, June 2015.

[34] N. Gast and B. Van Houdt. Asymptotically Exact TTL-approximations of

the Cache Replacement Algorithms LRU(m) and h-LRU. Preprint HAL Open

Archive hal-01292269, 2016.

[35] E. Gelenbe. A Unified Approach to the Evaluation of a Class of Replacement

Algorithms. IEEE Transactions on Computers, 100(6):611–618, 1973.

[36] C. Graham and S. Méléard. Chaos Hypothesis for a System Interacting Through

Shared Resources. Probability Theory and Related Fields, 100(2):157–174, 1994.

[37] H. Hao, B. M. Sanandaji, K. Poolla, and T. L. Vincent. Aggregate Flexibility

of Thermostatically Controlled Loads. IEEE Transactions on Power Systems,

30(1):189–198, 2015.

[38] M. Hao and L. Xie. Analysis of Coupon Incentive-Based Demand Response with

Bounded Consumer Rationality. In Proc. of NAPS, Pullman, WA, September

2014.

141

[39] G. W. Harrison and E. E. Rutström. Expected Utility Theory and Prospect The-

ory: One Wedding and a Decent Funeral. Experimental Economics, 12(2):133–

158, 2009.

[40] W. J. Hendricks. An Account of Self-Organizing Systems. SIAM Journal on

Computing, 5(4):715–723, 1976.

[41] J. H. Hester and D. S. Hirschberg. Self-Organizing Linear Search. ACM Com-

puting Surveys (CSUR), 17(3):295–311, 1985.

[42] I-H. Hou, V. Borkar, and P. R. Kumar. A Theory of QoS for Wireless. In Proc.

of IEEE INFORM, Rio de Janeiro, Brazil, April 2009.

[43] I-H. Hou, Y. Liu, and A. Sprintson. A Non-Monetary Protocol for Peer-to-Peer

Content Distribution in Wireless Broadcast Networks with Network Coding. In

Proc. of WiOpt, Tsukuba Science City, Japan, May 2013.

[44] M. Huang, R. P. Malhamé, and P. E. Caines. Large Population Stochastic

Dynamic Games: Closed-Loop Mckean-Vlasov Systems and the Nash Certainty

Equivalence Principle. Communications in Information & Systems, 6(3):221–

252, 2006.

[45] D. R. Hunter. MM Algorithms for Generalized Bradley-Terry Models. Annals

of Statistics, 32:384–406, 2004.

[46] K. Iyer, R. Johari, and M. Sundararajan. Mean Field Equilibria of Dynamic

Auctions with Learning. ACM SIGecom Exchanges, 10(3):10–14, 2011.

[47] K. Iyer, R. Johari, and M. Sundararajan. Mean Field Equilibria of Dynamic

Auctions with Learning. Management Science, 60(12):2949–2970, 2014.

[48] W. Jiang, S. Ioannidis, L. Massoulié, and F. Picconi. Orchestrating Massively

Distributed CDNs. In Proc. of ACM CoNEXT, Nice, France, December 2012.

142

[49] B. Jovanovic and R. W. Rosenthal. Anonymous Sequential Games. Journal of

Mathematical Economics, 17(1):77–87, February 1988.

[50] D. Kahneman and A. Tversky. Prospect Theory: An Analysis of Decision under

Risk. Econometrica: Journal of the Econometric Society, pages 263–291, 1979.

[51] D. Kahneman and A. Tversky. Choices, Values, and Frames. American psy-

chologist, 39(4):341, 1984.

[52] V. Kavitha, E. Altman, R. El-Azouzi, and R. Sundaresan. Fair Scheduling

in Cellular Systems in the Presence of Noncooperative Mobiles. IEEE/ACM

Transactions on Networking, 22(2):580–594, April 2014.

[53] F. P. Kelly. Reversibility and Stochastic Networks. Cambridge University Press,

2011.

[54] F. P. Kelly and E. Yudovina. Stochastic Networks. Cambridge University Press,

2014.

[55] W. F. King-III. Analysis of Demanding Paging Algorithms. In Proc. of IFIP

Congress, Ljubljana, Yugoslavia, August 1971.

[56] V. Krishna. Auction Theory. Academic Press, MA, U.S.A, 1997.

[57] R. Kumar and S. Vassilvitskii. Generalized Distances Between Rankings. In

Proc. of ACM WWW, Raleigh, NC, April 2010.

[58] J. M. Lasry and P. L. Lions. Mean Field Games. Japanese Journal of Mathe-

matics, 2(1):229–260, 2007.

[59] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov Chains and Mixing Times.

American Mathematical Soc., 2009.

143

[60] J. Li, R. Bhattacharyya, S. Paul, S. Shakkottai, and V. Subramanian. Incen-

tivizing Sharing in Realtime D2D Streaming Networks: A Mean Field Game

Perspective. In Proc. of IEEE INFOCOM, Hong Kong, 2015.

[61] J. Li, R. Bhattacharyya, S. Paul, S. Shakkottai, and V. Subramanian. Incen-

tivizing Sharing in Realtime D2D Streaming Networks: A Mean Field Game

Perspective. arXiv preprint arXiv:1604.02435, 2016.

[62] J. Li, R. Bhattacharyya, S. Paul, S. Shakkottai, and V. Subramanian. Incen-

tivizing Sharing in Realtime D2D Streaming Networks: A Mean Field Game

Perspective. IEEE/ACM Transactions on Networking, to appear in 2016.

[63] J. Li, J. Wu, G. Dan, A. Arvidsson, and M. Kihl. Performance Analysis of Local

Caching Replacement Policies for Internet Video Streaming Services. In Proc.

of SoftCOM, Split, Croatia, September 2014.

[64] J. Li, B. Xia, X. Geng, M. Hao, S. Shakkottai, V. Subramanian, and X. Le.

Energy Coupon: A Mean Field Game Perspective on Demand Response in

Smart Grids. In Proc. of ACM SIGMETRICS, Portland, OR, June 2015.

[65] T. Li and N. B. Mandayam. Prospects in a Wireless Random Access Game. In

Proc. of CISS, Princeton, NJ, March 2012.

[66] T. Lindvall. Lectures on the Coupling Method. Courier Corporation, 2002.

[67] P. Loiseau, G. A. Schwartz, J. Musacchio, S. Amin, and S. S. Sastry. Incentive

Mechanisms for Internet Congestion Management: Fixed-Budget Rebate Versus

Time-of-Day Pricing. IEEE/ACM Transactions on Networking, 22(2):647–661,

April 2014.

[68] J. A. Lozano and E. Irurozki. Probabilistic Modeling on Rankings, 2012.

available at http://www.sc.ehu.es/ccwbayes/members/ekhine/tutorial_

144

ranking/info.html.

[69] M. Manjrekar, V. Ramaswamy, and S. Shakkottai. A Mean Field Game Ap-

proach to Scheduling in Cellular Systems. In Proc. of IEEE INFOCOM, Toronto,

Canada, April 2014.

[70] V. Martina, M. Garetto, and E. Leonardi. A Unified Approach to the Perfor-

mance Analysis of Caching Systems. In Proc. of IEEE INFOCOM, Toronto,

Canada, April 2014.

[71] N. Megiddo and D. S. Modha. ARC: A Self-Tuning, Low Overhead Replacement

Cache. In Proc. of FAST, San Francisco, CA, April 2003.

[72] D. Merugu, B. S. Prabhakar, and N. S. Rama. An Incentive Mechanism for

Decongesting the Roads: A Pilot Program in Bangalore. In Proc. of NetEcon,

Stanford, CA, July 2009.

[73] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Springer

Science & Business Media, 2012.

[74] M. Mihail. Conductance and Convergence of Markov Chains-A Combinatorial

Treatment of Expanders. In Proc. of IEEE FOCS, Research Triangle Park, NC,

October 1989.

[75] R. R. Montenegro and P. Tetali. Mathematical Aspects of Mixing Times in

Markov Chains. Now Publishers Inc, 2006.

[76] J. Naritomi. Consumers as Tax Auditors. working paper, International Develop-

ment Department and Institute of Public Affairs, London School of Economics,

2013.

[77] M. Poco, C. Lopes, and A. Silva. Perception of Tax Evasion and Tax Fraud in

Portugal: A Sociological Study. working paper, 2015.

145

[78] B. Prabhakar. Designing Large-Scale Nudge Engines. In Proc. of ACM SIG-

METRICS, Pittsburgh, PA, June 2013.

[79] D. Prelec. The Probability Weighting Function. Econometrica, 66:497–527,

1998.

[80] M. L. Puterman. Markov Ddecision Processes: Discrete Stochastic Dynamic

Programming. John Wiley & Sons, Inc., 1994.

[81] T. Qin, X. Geng, and T. Liu. A New Probabilistic Model for Rank Aggregation.

In Proc. of NIPS, Vancouver, Canada, December 2010.

[82] E. J. Rosensweig, J. Kurose, and D. Towsley. Approximate Models for General

Cache Networks. In Proc. of IEEE INFOCOM, San Diego, CA, March 2010.

[83] G. A. Schwartz, H. Tembine, S. Amin, and S. S. Sastry. Electricity Demand

Shaping via Randomized Rewards: A Mean Field Game Approach. In Allerton

Conference on Communication, Control, and Computing, Allerton, IL, Septem-

ber 2012.

[84] A. Sinclair. Improved Bounds for Mixing Rates of Markov Chains and Mul-

ticommodity Flow. Combinatorics, probability and Computing, 1(04):351–370,

1992.

[85] D. Starobinski and D. Tse. Probabilistic Methods for Web Caching. Perfor-

mance evaluation, 46(2):125–137, 2001.

[86] H. Thorisson. Coupling Methods in Probability Theory. Scandinavian journal

of statistics, 22:159–182, 1995.

[87] A. Tversky and D. Kahneman. The Framing of Decisions and the Psychology

of Choice. Science, 211(4481):453–458, 1981.

146

[88] A. Tversky and D. Kahneman. Advances in Prospect Theory: Cumulative

Representation of Uncertainty. Journal of Risk and uncertainty, 5(4):297–323,

1992.

[89] C. Villani. Optimal Transport: Old and New. Springer Science & Business

Media, 2008.

[90] Y. Wang, W. Saad, N. B. Mandayam, and H. V. Poor. Integrating Energy

Storage into the Smart Grid: A Prospect Theoretic Approach. In Proc. of

ICASSP, Florence, Italy, May 2014.

[91] L. Xiao, N. B. Mandayam, and H. V. Poor. Prospect Theoretic Analysis of En-

ergy Exchange Among Microgrids. IEEE Transactions on Smart Grid, 6(1):63–

72, January 2015.

[92] J. Yu, M. H. Cheung, and J. Huang. Spectrum Investment with Uncertainty

Based on Prospect Theory. In Proc. of ICC, Sydney, Australia, June 2014.

[93] T. Yu, Z. Zhou, D. Zhang, X. Wang, Y. Liu, and S. Lu. INDAPSON: An

Incentive Data Plan Sharing System Based on Self-Organizing Network. In

Proc. of IEEE INFOCOM, Toronto, Canada, April 2014.

[94] H. Zhong, L. Xie, and Q. Xia. Coupon Incentive-Based Demand Response:

Theory and Case Study. IEEE Transactions on Power Systems, 28(2):1266–

1276, May 2013.

[95] M. Zink, K. Suh, Y. Gu, and J. Kurose. Watch Global, Cache Local: YouTube

Network Traffic at A Campus Network: Measurements and Implications. In

Electronic Imaging, 2008.

147

APPENDIX A

PROOFS FROM SECTION 2

A.1 Properties of Allocation Scheme

A.1.1 Proof of Lemma 1

Given the B2D arrivals (e1[k], ..., eM [k]), we partition the set of devices {1, ...,M}

into sets S and Sc = {1, ...,M}\S, based on whether ei[k]+T −N ≥ 0 or not. Those

agents that satisfy this condition can potentially receive enough chunks during the

D2D phase that they can decode the block, whereas the others cannot. Hence, all

members of Sc can potentially transmit their chunks in the allocation solving (2.13).

Let T1 = min{∑i∈Sc ei[k], T}. So we can devote the first T1 slots of the current

frame to transmissions from the devices in Sc.

Let the number of transmissions made by agent i in allocation a be denoted by

xi[k]. We can write down the constraints that any feasible allocation a must satisfy

as

0 ≤ xi[k] ≤ ei[k] ∀ i ∈ S∑
i∈S xi[k] = T − T1

(A.1)

Observe that each agent can transmit ei[k] + T − N chunks without affecting the

above constraints (i.e., it does not change its chances of being able to decode the

block, as there is enough time left for it to receive chunks that it requires). We call

these as “extra” chunks. Suppose that all extra chunks have been transmitted by

time T2 < T, and no device has yet reached full rank. At this point, all agents in the

system need the same number of chunks, and any agent that transmits a chunk will

148

not be able to receive enough chunks to decode the block. In other words, agents

now have to “sacrifice” themselves one at a time, and transmit all their chunks. The

question is, what is the order in which such sacrifices should take place?

Compare two agents i and j, with deficits di > dj. Also, let χ ∈ {0, 1}. Now, for

either value of χ

di − (di − χ)+ ≥ dj − (dj − χ)+.

Hence, since c(.) is convex and monotone increasing,

∫ di

(di−χ)+

c′(z)dz ≥
∫ dj

(dj−χ)+

c′(z)dz ≥ 0 (A.2)

⇒ c(di)− c((di − χ)+) ≥ c(dj)− c((dj − χ)+) ≥ 0. (A.3)

Now, consider the following problem with χi, χj ∈ {0, 1} under the constraint

χi + χj = 1 :

min
χi,χj

c(di − χi) + c(dj − χj). (A.4)

⇔ max
χi,χj

c(di)− c(di − χi) + c(dj)− c(dj − χj). (A.5)

Then, from the above discussion, the solution is to set χi = 1 and χj = 0. Thus,

comparing (A.4) and (2.13), the final stage of the allocation should be for agents to

sacrifice themselves according to a min-deficit-first type policy. Algorithm 1 describes

the final allocation rule.

149

A.2 Properties of Mechanisms

A.2.1 Proof of Theorem 1

The net-cost in frame k for agent i when reporting θi[k] versus ri[k] is given by

V (a∗(θ̂sji[k]
[k]), θi[k])− p∗(θi[k], θ̂−i[k])

= W̃ (i, (θ̂i[k], θ̂−i[k]))−H(θ̂−i[k])

≤ W̃ (i, (ri[k], θ̂−i[k]))−H(θ̂−i[k])

= V (a∗((ri[k], θ̂−i[k])), θi[k])− p∗(ri[k], θ̂−i[k]), (A.6)

where θi is the true type and ri is an arbitrary type; the equalities hold true due

to the definition of value function and transfer; the last inequality follows by the

optimality of allocation ã(θi, θ̂−i) in cluster sji[k] maximizes the system utility from

the perspective of agent i. Therefore, in every frame it is best for agent i to report

truthfully and this holds irrespective of the reports of the other agents.

A.3 Nature of Transfers

A.3.1 Proof of Lemma 2

From (2.11), we have

p∗(θ̂i[k], θ̂−i[k]) = V (a∗(θ̂[k]), θ̂i[k]) +H(θ̂−i[k])− W̃ (i, (θ̂i[k], θ̂−i[k]))

+ W̃−i(i, (θ̂i[k], θ̂−i[k]))− W̃ (i, (θ̂i[k], θ̂−i[k]))

(a)

≥ V (a∗(θ̂[k]), θ̂i[k])− V (a−i(θ̂−i[k]), θ̂i[k])

(b)

≥ 0,

150

where (a) follows from the definition of allocation ã and the inequality (b) is true by

the monotonicity argument below.

We assume that under both systems (with the allocations a−i and a∗), the deficits

are initialized with the same value. Also note that all the agents follow the same

reporting strategy in frame k, and hence, χ(a∗) and χ(a−i) can be compared. Under

allocation a−i, agent i never transmits and will pick up free chunks from other agents’

transmissions. However, agent i may have to transmit under allocation a∗. Thus,

we have

χi(a
∗(θ̂[k]), θi[k]) ≤ χi(a−i(θ̂−i[k]), θi[k]), (A.7)

as ei[k] + gi(a
∗(θ̂[k])) ≤ ei[k] + gi(a−i(θ̂−i[k])) is true for every k.

Using this we can compare the two deficits by considering the same allocation

policy. For k ≥ 0, we have

di(a
∗(θ̂[k])) =

(
di(a

∗(θ̂[k − 1])) + η − χi(a∗(θ̂[k]), θi[k])
)+
, (A.8)

di(a−i(θ̂−i[k])) =
(
di(a−i(θ̂−i[k − 1])) + η − χi(a−i(θ̂−i[k]), θi[k])

)+
,

with χi(a
∗(θ̂[k]), θi[k]) ≤ χi(a−i(θ̂−i[k]), θi[k]) for all k, which implies that di(a

∗(θ̂[k]))

≥ di(a−i(θ̂−i[k])). Since the function V (·, ·) in (2.10) can be obtained by value iter-

ation starting with v(·), then by the definition of value function v(·) and the mono-

tonicity of holding cost function c(·) in d, we have V (·, ·) being an increasing function

in d. Then it directly follows that

V (a∗(θ̂[k]), θ̂i[k]) ≥ V (a−i(θ̂−i[k]), θ̂i[k]), (A.9)

151

which completes our proof.

A.3.2 Proof of Lemma 3

The net-cost in frame k for agent i is given by

V (a∗(θ̂sji[k]
[k]), θi[k])− p∗(θi[k], θ̂−i[k]) = V (a−i(θ̂−i[k]), θi[k])

− [W̃−i(i, (θ̂i[k], θ̂−i[k]))− W̃ (i, (θ̂i[k], θ̂−i[k]))]

≤ V (a−i(θ̂−i[k]), θi[k]),

(A.10)

where we use the same logic as point (a) in (A.7).

A.4 Properties of the Optimal Value Function

A.4.1 Proof of Theorem 2

First, we consider statement 1). The proof follows by applying Theorem 6.10.4 in

Puterman [80], and verifying the Assumptions 6.10.1, 6.10.2 and Propositions 6.10.1,

6.10.3.

Define the set of functions

Φ =

{
w : (K, T)M → R+ : sup

θ∈(K,T)M

∣∣∣∣w(θ)

α(θ)

∣∣∣∣ <∞
}
, (A.11)

where α(θ) = max{∑M
i vi(a

∗(θ), θi), 1}. Note that Φ is a Banach space with α-norm,

||w||α = sup
θ∈(K,T)M

∣∣∣∣w(θ)

α(θ)

∣∣∣∣ <∞. (A.12)

Also define the operation T1 as

T1w(θ) =
M∑
i=1

vi(a
∗(θ), θi) + δE {w(Θ)} , (A.13)

152

where w ∈ Φ.

First, we need to show that for ∀w ∈ Φ, T1w ∈ Φ. From Equation (A.13) and

the definition of value functions, we know the sum of all users’ values are bounded,

say
∑M

i=1 vi(a
∗(θ), θi) ≤ A. Then we have

||T1w||α ≤ A+ δE {w(Θ)} , (A.14)

where the rightside expression is bounded by the sum of A and some multiple of

||w||α. Hence, T1w ∈ Φ.

Next, we need to verify Assumptions 6.10.1 and 6.10.2 in Puterman [80]. Our

theorem requires the verification of the following three conditions. Let Θ[k] be the

random variable denoting the current system state at frame k, where Θ[k] = (d[k−

1], e[k]). Then we must show that ∀θ ∈ (K, T)M , for some constants 0 < γ1 < ∞,

0 < γ2 <∞ and 0 < γ3 < 1,

sup
a∈A
|
M∑
i

vi(a
∗(θ), θi)| ≤ γ1α(θ), (A.15)

Eθ[1][w(θ[1])|θ[0] = θ] ≤ γ2α(θ), ∀w ∈ Φ (A.16)

βkEθ[k][α(θ[k])|θ[0] = θ] ≤ γ3α(θ), for some k (A.17)

(B.1) holds from the definition of α(θ) = max{∑M
i vi(a

∗(θ), θi), 1}.

(B.2) holds true since

Eθ[1][w(θ[1])|θ[0] = θ] ≤ ||w||α × Eθ[1][α(θ[1])|θ[0] = θ]

≤ ||w||α × γ′2α(θ), for some large enough γ′2

= γ2 × α(θ),

(A.18)

153

as we know in our mean field model, θ[1] are all drawn i.i.d. from the given distri-

bution [⊗ρM ,⊗ζM], with ρ pertaining to the deficit, and ζ pertaining to the B2D

transmissions received by that agent, so the first inequality holds in (A.18).

Finally, we have (B.3) since,

βkEθ[k][α(θ[k])|θ[0] = θ] = βkEθ[k][
M∑
i

vi(a
∗(θ[k]), θi)|θ[0] = θ]

≤ βj × γ′3α(θ)

= γ3α(θ).

(A.19)

The first equality holds from the definition of α(θ), and the first inequality holds

true is because in our mean field mode, θ[j] are all drawn i.i.d. from the given

distribution [⊗ρM ,⊗ζM], with ρ pertaining to the deficit, and ζ pertaining to the

B2D transmissions received by that agent, so it’s identical for all k.

Since we have verified all the three conditions required by Theorem 6.10.4 in

Puterman, Statement 1) holds true.

For statement 2), we can use the same argument as the above proof to show the

existence of fix point. We omit the details here. The last part of Theorem 2 follows

from the discussion before the statement of this theorem.

A.5 The Existence and Uniqueness of Stationary Surplus Distribution

A.5.1 Proof of Lemma 4

First, from (2.16), we note the Doeblin condition, namely,

P(di[k] ∈ B|di[k − 1] = d, ei[k] = e, a) ≥ (1− δ)Ψ(B), (A.20)

154

where 0 < δ < 1 and Ψ is a probability measure. Then following the results in

Chapter 12 of [73], the Markov chain with transition probabilities in (2.16) is positive

Harris recurrent and has a unique stationary distribution.

Next, let −τ be the last time before 0 that regeneration happened. We have

Πρ×ζ(B) =
∞∑
k=0

P(B, τ = k)

=
∞∑
k=0

P(B|τ = k)P(τ = k).

(A.21)

Since the regeneration happens independently of the deficit queue with inter re-

generation times geometrically distributed with parameter (1 − δ), it follows that

P(τ = k) = (1− δ)δk. Hence

Πρ×ζ(B) =
∞∑
k=0

(1− δ)δkP(D[0] ∈ B|τ = k)

=
∞∑
k=0

(1− δ)δkE(E(1{D[0]∈B}|τ = k,D−k = D,E)|τ = k)

=
∞∑
k=0

(1− δ)δkE(Υ
(k)
ρ×ζ(B|D,E)|τ = k)

=
∞∑
k=0

(1− δ)δkEΨ(Υ
(k)
ρ×ζ(B|D,E)),

(A.22)

where the last equality holds since D−k ∼ Ψ given τ = k.

A.6 Existence of MFE

A.6.1 Proof of Lemma 5

We will establish the second property first. We’re given a sequence {σn}n∈N ⊂ C

that converges point-wise to σ; it obviously follows that σ ∈ C even with point-

wise convergence so that we are, in fact, showing that C is closed in l∞ too. Since

155

limn→∞ bn = 0, given ε > 0, there exists 1 N such that for all n > N , bn ≤ ε/2 so that

supk∈N |σkn| ≤ bn ≤ ε/2 too. Since limk→∞ σ
k
n = σn for all n = 1, . . . , N , we can find

Nn such that for all k > Nn, |σkn−σn| ≤ ε. Therefore, for k > max(N,maxn=1,...,N Nn)

|σkn − σn| ≤


ε, n = 1, . . . , N

|σkn|+ |σn| ≤ ε, n > N

(A.23)

so that ‖σk − σ‖ ≤ ε.

Since we have already established that C is closed in l∞, it is sufficient to prove

that it is totally bounded as well. Here we first find N such that for all n > N , bn ≤ ε

so that supk∈N |σkn| ≤ bn ≤ ε too. Then from the compactness of
∏N

n=1[−bn, bn] ∈ RN ,

we can find a finite number of points {v1, v2, . . . , vL} ⊂ ∏N
n=1[−bn, bn] such that∏N

n=1[−bn, bn] is covered by balls of radius ε around vl, l = 1, . . . , L. Now we construct

{v̂1, . . . , v̂L} ∈ C as follows for l = 1, . . . , L

v̂ln =


vln, if n ≤ N

0, otherwise.

(A.24)

By our choice of N , {v̂1, . . . , v̂L} is a finite cover of C with balls of radius ε, proving

that C is totally bounded too.

A.6.2 Proof of Lemma 6

The proof will involve three steps. The first is to establish that Πρ×ζ is indeed

a probability distribution, which is obvious. The second is to establish that Πρ×ζ ∈

M1(K), which will be carried out using induction by analyzing the properties of the

Markov transition kernel of the deficit process without any regenerations. Finally,

1Note the abuse of notation only in this section to use N to represent a positive integer.

156

using stochastic dominance we will show that Πp×ζ ∈ P(F).

From earlier Lemma 4, we know that

Πρ×ζ(B) =
∞∑
k=0

(1− δ)δkEΨ(Υ
(k)
ρ×ζ(B|D,E)). (A.25)

Therefore, for our proof we will show that EΨ(Υ
(k)
ρ×ζ(·|D,E)) ∈M1(K). Since

EΨ(Υ
(k)
ρ×ζ(B|D,E)) =

∫
Υ

(k)
ρ×ζ(B|d, e)dΨ(d)dζ(e), (A.26)

and Ψ ∈ M1(K) and ζ ∈ M1(T), it is sufficient to show that Υ
(k)
ρ×ζ(·|d, e) ∈ M1(K)

for every (d, e) ∈ (K, T).

Since Υ
(0)
ρ×ζ(·|d, e) is a point-mass at d, the initial condition is satisfied. We now

make the induction assumption that Υ
(k)
ρ×ζ(·|d, e) ∈M1(K) and show that this implies

that Υ
(k+1)
ρ×ζ (·|d, e) ∈ M1(K). Since Υ

(k+1)
ρ×ζ (·|d, e) is a probability measure, we only

need to show that its support is K. By the definition of the Markov transition kernel

without regenerations, we have

Υ
(k+1)
ρ×ζ (B|d, e) =

∫ 1∑
j=0

1{(d′+η−j)+∈B}pj(d
′, e′)dΥ(k)(d′|d, e)dζ(e′), (A.27)

for some measurable functions {pj(d′, e′)}j=0,1 that account for the states of the other

users being chosen independently using distribution ρ × ζ and the greedy optimal

allocation function a∗(·). The assertion that Υ
(k+1)
ρ×ζ (·|d, e) ∈ M1(K) follows since

d′ ∈ K and the only possible updates are an increase of the deficit to d′ + η or a

decrease to either 0 or d′ + η − 1 (depending on value of d′).

The deficit process for any given user is stochastically dominated by the fictitious

process where the user is never allowed to decode the contents of a frame during his

157

lifetime, this is irrespective of his state or the state of the other users. Denote this

process by {D̃k}k∈N; it is easily discerned that the process takes values in K. The

transition kernel for this process is given by

P(D̃k+1 = d|D̃k = d′) = δ1{d=d′+η} + (1− δ)Ψ(d). (A.28)

Using the same proof as in Lemma 4, the invariant distribution Π̃ of the {D̃k}k∈N
process is given by

Π̃(d) =
∞∑
k=0

(1− δ)δk
∑
d′∈K

Ψ(d′)1{d′+kη=d}. (A.29)

By the stochastic ordering property, the proof follows by noting that

EΠρ×ζ [D] ≤ EΠ̃[D]

≤
∞∑
k=0

(1− δ)δk
∑
d′∈K

Ψ(d′)(d′ + kη)

< F ′ +
δη

1− δ .

(A.30)

A.6.3 Proof of Theorem 6

We will start by showing that Π∗ is continuous in the topology of point-wise con-

vergence. For this we will use the coupling from Theorem 5 to establish convergence

in total variation norm of the Markov transition kernels of the deficit process without

any regenerations. Then using Lemma 5 we can strengthen the topology to complete

the proof of the first part. The fixed point result then follows from the Schauder

fixed point theorem after noting both the convexity and compactness of P(F).

To establish the continuity of Π∗ in the topology of point-wise convergence,

we will start by proving that the Markov transition kernels without regeneration

158

{Υ(k)
ρ×ζ(·|d, e)}∞k=0 are continuous in the topology of point-wise convergence. Since

Υ
(0)
ρ×ζ(·|d, e) is a point-mass at d irrespective of ρ ∈ P(F), the continuity asser-

tion holds. In fact, for all n ≥ 1 and d′ ∈ K, Υ
(0)
ρn×ζ(d

′|d, e) = Υ
(0)
ρ×ζ(d

′|d, e). Let

{ρn}n∈N ⊂ P(F) be a sequence converging point-wise 2 to ρ ∈ P(F). We will show

that Υ
(k)
ρn×ζ(·|d, e) converges point-wise to Υ

(k)
ρ×ζ(·|d, e) for all k ∈ N. We will prove

this by induction.

We will refer to any measures and random variables corresponding to ρn as coming

from the nth system and those corresponding to ρ as coming from the limiting system.

We will prove the point-wise convergence of Υ
(k)
ρn×ζ(·|d, e) converges point-wise to

Υ
(k)
ρ×ζ(·|d, e) for all k ∈ N using the metric given by the total variation norm. Following

Lindvall [66], the total variation norm distance between two probability measures µ

and ν on a countable measurable probability space Ω is given by

dTV (µ, ν) =
1

2

∑
ω∈Ω

∣∣µ(ω)− ν(ω)
∣∣

= inf{P(X 6= Y) : r.v.s X, Y s.t. X ∼ µ and Y ∼ ν},
(A.31)

where the infimum is over all couplings or joint distributions such that the marginals

are given by µ and ν, respectively; the second definition applies more generally while

the first is restricted to countable spaces.

For ease of exposition we will denote by 1 the user whose deficit varies as per

the Markov transition kernel Υ
(k)
•×ζ(·|d, e) and the remaining users in the cluster by

indices {2, 3, . . . ,M}. For the nth system and in the limiting system, in every frame

the B2D component of the state of every user (including 1) is chosen i.i.d. with

distribution ζ. We will couple all the systems under consideration such that the

B2D component of the state is exactly the same; denote the random vector by E

2By Lemma 5, this convergence also holds in l∞.

159

with components El for l ∈ {1, 2, . . . ,M}. For users l ∈ {2, 3, . . . ,M} the deficit is

chosen independently via distribution ρn in the nth system and via distribution ρ in

the limit system. Since ρn converges to ρ point-wise, using Theorem 5 we can find

a coupling {X̃ l
n}n∈N, X̃ l and an a.s. finite random integer Ñl for l ∈ {2, 3, . . . ,M}

such that for n ≥ Ñ l, X̃ l
n = X̃ l.

Next by the induction hypothesis let Υ
(k)
ρn×ζ(·|d, e) converge point-wise to

Υ
(k)
ρ×ζ(·|d, e) for some k ∈ N, once again by Theorem 5, there exists a coupling

{Xn}n∈N, X and an a.s. finite random variable Nk ∈ N such that Xn ∼ Υ
(k)
ρn×ζ(·|d, e)

for all n ∈ N, X ∼ Υ
(k)
ρ×ζ(·|d, e) and Xn = X for all n ≥ Nk.

With these definitions in place, further define the following

Dk+1
n =

(
Xn + η − χ1

(
a∗
((

(Xn, E1), (X̃2
n, E2), . . . , (X̃M

n , EM)
))
,

((
(Xn, E1), (X̃2

n, E2), . . . , (X̃M
n , EM)

))))
+

(A.32)

Dk+1 =

(
X + η − χ1

(
a∗
((

(X,E1), (X̃2, E2), . . . , (X̃M , EM)
))
,

((
(X,E1), (X̃2, E2), . . . , (X̃M , EM)

))))
+

,

(A.33)

where we have taken care to explicitly spell out the states of all the users involved.

Then Dk+1
n is a random variable distributed as Υ

(k+1)
ρn×ζ (·|d, e) and Dk+1 is a random

variable distributed as Υ
(k+1)
ρ×ζ (·|d, e).

Furthermore, for n ≥ N̂ := max(Nk, Ñ2, . . . , ÑM), we have Xn = X, X̃ l
n = X̃ l

for l ∈ {2, 3, . . . ,M}. The last statement then implies that Dk+1
n = Dk+1 for n ≥ N̂ .

160

Therefore, it follows that

{ω : Dk+1
n 6= Dk+1} ⊂ {w : N̂ > n}, (A.34)

so that

dTV

(
Υ

(k+1)
ρn×ζ (·|d, e),Υ(k+1)

ρ×ζ (·|d, e)
)
≤ P

(
Dk+1
n 6= Dk+1

)
≤ P(N̂ > n),

(A.35)

which converges 3 to 0 as n → ∞ by the a.s. finiteness of N̂ . From the definition

of the metric dTV (·, ·), it is follows that Υ
(k+1)
ρn×ζ (·|d, e) converges to Υ

(k+1)
ρ×ζ (·|d, e) in l1,

and so both in l∞ and point-wise also.

Having established the basic convergence result, EΨ(Υ
(k)
ρn×ζ(·|D,E)) converges

point-wise to EΨ(Υ
(k)
ρ×ζ(·|D,E)) for every k ∈ {0} ∪ N by using the bounded conver-

gence theorem since we are averaging probability distributions. Additionally, again

using the bounded convergence theorem, Πρn×ζ(·) converges point-wise to Πρ×ζ(·).

A.6.4 Proof of Theorem 7

Suppose there exist two MFE, namely ρ1 and ρ2. Consider a generic agent 1.

Agent 1 has a belief that the other agents in the same cluster will draw their states

from ρ1 or ρ2 for deficits and ζ for B2D transmissions in an i.i.d. fashion. We assume

that each agent has the same realization of B2D packets received under these two

deficit distributions. Given this belief and our incentive compatible mechanism (that

determines transfers as a fucntion of the belief), all the agents in this cluster will

truthfully reveal their states, i.e., the B2D term will be the same no matter whether

the belief is ρ1 or ρ2. By Algorithm 1, this will result in the same deficit update

for agent 1. Therefore, given the truth-telling mechanism and the unique policy, we

3Note that this yields a rate of convergence result as well.

161

achieve a unique MFE, i.e., ρ1 = ρ2.

162

APPENDIX B

PROOFS FROM SECTION 3

B.1 Properties of the Optimal Value Function

B.1.1 Proof of Lemma 7

We first show that Tρf ∈ Φ for ∀f ∈ Φ. The proof then follows through a

verification of the conditions of Theorem 6.10.4 in [80]. From the definition of Tρ

in (3.9), we have

|Tρf(x)| ≤ |u(x)|+ max
a(x)∈A

θa(x) + βmax(|f(x+ w)|, |f(x− l)|).

From this it follows that

sup
x∈X

|Tρf(x)|
Ω(x)

≤ sup
x∈X

|u(x)|
Ω(x)

+ sup
x∈X

maxa(x)∈A θa(x)

Ω(x)

+ βmax

(
sup
x∈X

|f(x+ w)|
Ω(x)

, sup
x∈X

|f(x− l)|
Ω(x)

)
.

Let x+ be the unique positive surplus such that u(x+) = 1 and x− be the unique

negative surplus such that u(x−) = −1. Note that Ω(x) is non-decreasing for x ≥

x− and non-increasing for x ≤ x+. To avoid cumbersome algebra we will assume

x+ − w > 0 and x− + l > 0. Since Ω(x) ≥ |u(x)| ≥ 0 and Ω(x) ≥ 1, the first two

terms are bounded by 1 and maxa(x)∈A θa(x). For the last term we have

sup
x∈X

|f(x+ w)|
Ω(x)

≤ ‖f‖Ω sup
x∈X

Ω(x+ w)

Ω(x)
.

163

We have the following

Ω(x+ w)

Ω(x)
=



u(x+w)
max(u(x),1)

≤ u(x+w)
u(x)

, if x ≥ x+

u(x+w)
max(u(x),1)

≤ u(x+w)
u(x+)

, if x ∈ [x+ − w, x+]

1, if x ∈ [x−, x+ − w]

1
|u(x)| ≤ 1, if x ∈ [x− − w, x−]

u(x+w)
u(x)

≤ 1, if x ≤ x− − w.

For x ≥ x+, we know using monotonicity of u(·)

u(x+ w)

u(x)
= 1 +

u(x+ w)− u(w)

w

w

u(x)

≤ 1 +
u(x+ w)− u(w)

w
w.

Additionally, for x ∈ [x+ − w, x+] we have

u(x+ w)

u(x+)
= 1 +

u(x+ w)− u(x+)

x+ w − x+

(x+ w − x+)

≤ 1 +
u(x+ w)− u(x+)

x+ w − x+

w.

For the analysis we assume that u(·) is Lipschitz such that supx∈X u
′(x) < +∞.

Therefore, by the mean value theorem

u(x+ w)− u(x)

w
= u′(ξ1) ≤ sup

x≥x+

u′(x), ∀ξ1, x ∈ [x+,∞)

u(x+ w)− u(x+)

x+ w − x+

= u′(ξ2) ≤ sup
x∈[x+−w,x+]

u′(x), ∀ξ2, x ∈ [x+ − w, x+]

sup
x∈X

Ω(x+ w)

Ω(x)
≤ ‖f‖Ω(1 + w sup

x≥x+−w
u′(x)), ∀x ∈ [x+ − w,∞).

164

Similarly, we have

sup
x∈X

|f(x− l)|
Ω(x)

≤ ‖f‖Ω sup
x∈X

Ω(x− l)
Ω(x)

.

Now we have the following

Ω(x− l)
Ω(x)

=



u(x−l)
min(u(x),−1)

≤ u(x−l)
u(x)

, if x ≤ x−

u(x−l)
max(u(x),−1)

≤ u(x−l)
u(x−)

, if x ∈ [x−, x− + l]

1, if x ∈ [x− + l, x+]

1
u(x)
≤ 1, if x ∈ [x+, x+ + l]

u(x−l)
u(x)

≤ 1, if x ≤ x+l

Using the same logic as before, we get

sup
x∈X

Ω(x− l)
Ω(x)

≤ ‖f‖Ω(1 + l sup
x∈X:x≤x−

u′(x)).

Since u(·) is Lipschitz, thus, there exists an α0 ∈ (0,+∞) such that ‖Tρf‖Ω ≤ α0.

Next, we need to verify the conditions of Theorem 6.10.4 in [80]. The lemma

requires verification of the following three conditions. We set x[k] to be the state

variable denoting the surplus at time k. We need to show that ∀x ∈ X, for some

constants (independent of ρ) α1 > 0, α2 > 0 and 0 < α3 < 1,

sup
a(x)∈A

|u(x)− θa(x)| ≤ α1Ω(x), (B.1)

Ex[1],a0 [Ω(x[1])|x[0] = x] ≤ α2Ω(x), ∀a0 ∈ A, (B.2)

165

with the distribution of x[1] chosen based on action a0, and

βJEx[J],a0,a1,...,aJ−1
[Ω(x[J])|x[0] = x] ≤ α3Ω(x), (B.3)

for some J > 0 and all possible action sequences, i.e., aj ∈ A for all j = 0, 1, . . . , J−1

with the distribution of x[J] chosen based on the action sequence (a0, a1, . . . , aJ−1)

chosen.

First consider (B.1). Since Ω(x) = max(|u(x)|, 1), using the earlier analysis in

Section 3.3, (B.1) is true with α1 = 1 + maxa∈A θa. Now consider (B.2). We have

Ex[1],a0 [Ω(x[1])|x[0] = x] = Eρ[φ(pρ,a(x))Ω(x+ w) + φ(1− pρ,a(x)),Ω(x− l)]

≤ max(Ω(x+ w),Ω(x− l)),

which is bounded by α2Ω(x) using our analysis from before.

Finally, (B.3) holds true using the properties of Ω(·), the bounds on the proba-

bility of winning and losing (from Section 3.3) and our analysis from earlier in the

proof as follows:

βJEx[J],a0,a1,...,aJ−1
[Ω(x[J])|x[0] = x]

≤ βJ max(φ(pW), φ(1− p
W

))J max(Ω(x+ Jw),Ω(x− Jl))

≤ (βmax(φ(pW), φ(1− p
W

))Jα4(J)Ω(x),

for some affine α4(J) > 0 using our analysis from before. It now follows that take J

large enough we obtain an α3 < 1 that is also independent of ρ. Note that we can

get a simpler bound of

βJEx[J],a0,a1,...,aJ−1
[Ω(x[J])|x[0] = x] ≤ βJα4(J)Ω(x),

166

using just the properties of Ω(·). Again we can take J large enough to obtain a

α3 < 1 that is independent of ρ. This bound is useful when there is an action for

which the probability of winning or losing is 1. Since all the conditions of Theorem

6.10.4 of [80] are met, then the first result in the lemma holds true. The second then

follows immediately from (3.8).

B.1.2 Proof of Lemma 8

For any given ρ, from Lemma 7 we know that there is a unique Vρ(·). Furthermore,

it is the unique fixed point of operator Tρ where T Jρ is a contraction mapping with

constant α3 that is independent of ρ. From (3.9), it follows that T Jρ is a continuous

in ρ: computing derivatives using the envelope theorem and the expressions from

Section 3.3, it is easily established that T Jρ is, in fact, Lipschitz with constant (M−1)J

when the uniform norm is used for ρ.

Let ρ1 and ρ2 be two population/action profiles such that ‖ρ1−ρ2‖ ≤ ε (the choice

of norm is irrelevant as all are equivalent for finite dimensional Euclidean spaces).

As T Jρ is continuous in ρ, there exists a δ > 0 such that ‖T Jρ1
Vρ2 − T Jρ2

Vρ2‖Ω ≤ δ.

However, since T Jρ2
Vρ2 = Vρ2 , we have shown that ‖T Jρ1

Vρ2 − Vρ2‖Ω ≤ δ. Applying T Jρ1

n times and using the contraction property of T Jρ1
, we get

‖T (n+1)J
ρ1

Vρ2 − T nJρ1
Vρ2‖Ω ≤ αn3δ.

The proof then follows since limn→∞ ‖T nJρ1
Vρ2 − Vρ1‖Ω = 0 so that

‖Vρ1 − Vρ2‖Ω ≤
∞∑
n=0

‖T (n+1)J
ρ1

Vρ2 − T nJρ1
Vρ2‖Ω ≤

δ

1− α3

.

Furthermore, using the comment from above we can show that Vρ is Lipschitz con-

tinuous in ρ.

167

B.2 The Existence and Uniqueness of Stationary Surplus Distribution

B.2.1 Proof of Lemma 9

First, from the transition kernel (3.11), we satisfy the Doeblin condition as

P(x[k] ∈ B|x[k − 1] = x) ≥ (1− β)Ψ(B),

where 0 < β < 1, and Ψ is a probability measure for the regeneration process. Then

from results in [73, Chapter 12], we have a unique stationary surplus distribution.

Next, let −τ be the last time before 0 that the surplus has a regeneration. Then

we have

ζρ×σ(B) =
∞∑
k=0

P(B, τ = k)

=
∞∑
k=0

P(B|τ = k) · P(τ = k).

(B.4)

Since the regeneration process happens independently of the surplus with inter-

regeneration times geometrically distributed with parameter (1 − β), then P(τ =

k) = (1− β)βk. Also given τ = k, we have X−k ∼ Ψ. Therefore

ζρ×σ(B) =
∞∑
k=0

(1− β)βkP(B|τ = k)

=
∞∑
k=0

(1− β)βkE
(
E
(
1x[0]∈B|τ = k,X−k = X

)
|τ = k

)
=
∞∑
k=0

(1− β)βkE
(
ζ

(k)
ρ×σ(B|X)|τ = k

)
=
∞∑
k=0

(1− β)βkEΨ

(
ζ

(k)
ρ×σ(B|X)

)
=
∞∑
k=0

(1− β)βk
∫
ζ

(k)
ρ×σ(B|x)dΨ(x).

(B.5)

168

B.2.2 Existence of MFE

B.2.2.1 Proof of Lemma 10

Define the increasing and piecewise linear convex function

gρ(y) = max
a∈A

φ(pρ,a)y − θa

= max
σ∈∆(|A|)

∑
a∈A

σa
(
φ(pρ,a)y − θa

)
,

(B.6)

where ∆(A) is the probability simplex on A = |A| elements. By the properties of the

lottery and the weight function φ(·), φ(pρ,a) is continuous in ρ for all a ∈ A. Using

Berge’s maximum theorem, we have

arg max
σ∈∆(|A|)

∑
a∈A

σa (φ(pρ,a)y − θa) (B.7)

is upper semicontinuous in ρ.

Now let

A(y) := arg max g(y) = arg max
a∈A

φ(pρ,a)y − θa, (B.8)

then set-valued function above is exactly ∆(|A(y)|).

Hence, the optimal randomized policies at surplus x are a set-valued function

∆(|A(y)|) = ∆(|A(Vρ(x + w) − Vρ(x − l))|), which is upper semicontinuous due to

the Lipschitz continuity of Vρ(·) in ρ and the u.s.c. of φ(pρ,a) in ρ, i.e., for every state

x, the action distribution σ(x) is (pointwise) upper semicontinuous in ρ.

B.2.2.2 Proof of Lemma 11

The existence and uniqueness of ζ(x) for a given ρ and σ(x), and the relationship

between ζ(·) and ζ(k)(·) are shown in Lemma 9. Now, we will prove the continuity of

ζρ×σ in ρ and σ(x) for every surplus x ∈ X. For the assumed action distribution ρ on

169

the finite setA, we consider the topology of pointwise convergence which is equivalent

to the uniform convergence by the strong coupling results. For the randomized

action distribution σ(x) at each surplus x, we consider the topology with norm

||σ|| = ∑∞j=1 2−jσa(xj).

First, we will show that the surplus distribution ζ
(k)
ρ×σ is continuous in ρ and σ.

By Portmanteau theorem, we only need to show that for any sequence ρn → ρ in

uniform, σn → σ in pointwise, and any open set B ,we have lim infn→∞ ζ
(k)
ρn×σn(B|x) ≥

ζ
(k)
ρ×σ(B|x).

Lemma 15 lim infn→∞ ζ
(k)
ρn×σn(B|x) ≥ ζ

(k)
ρ×σ(B|x).

Proof of Lemma 15

We proceed the proof by induction on k. For k = 0, ζ
(0)
ρn×σn(B|x) = 1(x∈B) is

a point-mass at x irrespective of ρn × σn, and in fact, for any n ∈ N+, we have

ζ
(0)
ρn×σn(B|x) = ζ

(0)
ρ×σ(B|x). Let ρn → ρ uniform, and σn(x) → σ(x) pointwise for

every surplus x. We will show that ζ
(k)
ρn×σn(B|x) converges pointwise to ζ

(k)
ρ×σ(B|x).

We will refer to the measure and random variables corresponding to ρn × σn for

the nth system and those corresponding to ρ×σ as coming from the limiting system.

We will prove that ζ
(k)
ρn×σn(B|x) converges to ζ

(k)
ρ×σ(B|x) pointwise using the metrics

given above.

Suppose that the hypothesis holds true for k − 1 where k > 1, i.e., ζ
(k−1)
ρn×σn(B|x)

converges pointwise to ζ
(k−1)
ρ×σ (B|x). To prove this lemma, we only need to show

that the hypothesis holds for k. Let Pρ×σ,x(·) be the one-step transition probability

measure of the surplus dynamics conditioned on the initial state of the surplus being

x, and there is no regeneration. Then we have Pρn×σn,x(x + w) =
∑

a∈σn(x) pρn×σn,a,

Pρn×σn,x(x− l) = 1−∑a∈σn(x) pρn×σn,a and Pρ×σ,x(x+w) =
∑

a∈σ(x) pρ×σ,a, Pρ×σ,x(x−

l) = 1−∑a∈σ(x) pρ×σ,a. By the properties of the lottery, pρ×σ,a is continuous in ρ×σ

170

for all a ∈ A, thus we have pρn×σn,a converges to pρ×σ,a pointwise, i.e., Pρn×σn,x(·)

converges to Pρ×σ,x(·) pointwise. By the Skorokhod representation theorem [14],

there exist random variables Xn and X on common probability space and a random

integer N such that Xn ∼ Pρn×σn,x(·) for all n ∈ N, and X ∼ Pρ×σ,x(·) , and Xn = X

for n ≥ N .

Then we have,

lim inf
n→∞

ζ
(k)
ρn×σn(B|x) = lim inf

n→∞
E
(
ζ

(k−1)
ρn×σn(B|Xn)

)
≥ E

(
lim inf
n→∞

ζ
(k−1)
ρn×σn(B|Xn)

)
≥ E

(
ζ

(k−1)
ρ×σ (B|X)

)
= ζ

(k)
ρ×σ(B|x),

(B.9)

where the second and third inequality hold due to Fatou’s lemma and the induction

hypothesis. Hence, for a given ρ and randomized policies σ(x), the unique stationary

surplus distribution ζ
(k)
ρn×σn(B|x) converges pointwise to ζ

(k)
ρ×σ(B|x).

Now by Lemma 9 and Equation (3.12), we need to show that lim infn→∞ ζρn×σn(B)

≥ ζρ×σ(B). By Fatou’s lemma, we have

lim inf
n→∞

ζρn×σn(B) = lim inf
n→∞

∞∑
k=0

(1− β)βkEΨ

(
ζ

(k)
ρn×σn(B|Xn)

)
≥

∞∑
k=0

(1− β)βkEΨ

(
lim inf
n→∞

ζ
(k)
ρn×σn(B|Xn)

)
≥

∞∑
k=0

(1− β)βkEΨ

(
ζ

(k)
ρ×σ(B|X)

)
= ζρ×σ(B).

(B.10)

Thus, for a given ρ and the randomize policies σ(x), the unique stationary surplus

distribution ζρn×σn converges pointwise to ζρ×σ. Then the stationary surplus distri-

171

bution ζρ×σ is continuous in ρ and σ(x) for every surplus x ∈ X.

B.2.2.3 Proof of Lemma 12

Given the stationary surplus distribution ζ(x) and the action distribution σ(x)

at every surplus x, those will introduce a population profile based on the actions

chosen at each point x, denoted that action distribution as ρ, and we have ρa =∑
x ζ(x) · σa(x), where x ∈ X, a ∈ A, X is a countable set and A is a finite set.

To show that ρ is continuous in ζ(x) and σ(x), we only need to show that for

any sequence {ζn}∞n=1 converging to ζ in uniform norm, {σn(x)}∞n=1 converging to

σ(x) pointwise, we have {ρn}∞n=1 converges to ρ pointwise, which is equivalent to

convergence in uniform for the topology on a finite set A.

Since ζn → ζ uniformly, we have ∀ε1 > 0, ∃N1 ∈ N, so that ∀n ≥ N1, ∀x ∈ X,

|ζn(x) − ζ(x)| < ε1. Similarly, {σn(x)}∞n=1 converges to σ(x) pointwise, we have

∀x ∈ X, and ∀ε2 > 0, ∃N2 ∈ N so that ∀n ≥ N2, , |σn(x) − σ(x)| < ε2. Now

consider ∀ε = max(ε1, ε2), we can find an all but finite subset X1 of X, such that∑
x∈X1

ζ(x) < ε
2
. Let N = max(N1, N2), for ∀x ∈ X \X1, ∃n > N large enough, such

that |σn,a(x)− σa(x)| < ε
2
. Then ∀x ∈ X, ∀a ∈ A, we have

|ρn,a − ρa| =
∣∣∣∣∣∑
x

ζn(x)σn,a(x)−
∑
x

ζ(x)σa(x)

∣∣∣∣∣
=

∣∣∣∣∣∑
x

ζn(x)σn,a(x)−
∑
x

ζn(x)σa(x) +
∑
x

ζn(x)σa(x)−
∑
x

ζ(x)σa(x)

∣∣∣∣∣
≤
∣∣∣∣∣∑
x

ζn(x)σn,a(x)−
∑
x

ζn(x)σa(x)

∣∣∣∣∣+

∣∣∣∣∣∑
x

ζn(x)σa(x)−
∑
x

ζ(x)σa(x)

∣∣∣∣∣
≤
∑
x

ζn(x)|σn,a(x)− σa(x)|+
∑
x

σa(x)|ζn(x)− ζ(x)|

172

=
∑
x∈X1

ζn(x)|σn,a(x)− σa(x)|+
∑

x∈X\X1

ζn(x)|σn,a(x)− σa(x)|

+
∑
x

σa(x)|ζn(x)− ζ(x)|

(a)

≤
∑
x∈X1

ζn(x) · 1 +
∑

x∈X\X1

ζn(x) · ε
2

+
∑
x

σa(x) · ε1

(b)

≤ ε

2
· 1 + 1 · ε

2
+ ε1 · 1

≤ ε · 1 + ε · 1

= 2ε, (B.11)

where (a) follows from the fact that |σn,a(x)− σa(x)| < 1 for ∀x ∈ X, and |σn,a(x)−

σa(x)| < ε
2
, for x ∈ X \ X1 given ε > 0 and n large enough, and the convergence of

ζn. (b) follows from that
∑

x∈X1
ζ(x) < ε

2
for x ∈ X1.

Therefore, |ρn,a − ρa| < 2ε for all a ∈ A and ∀n ≥ N , hence ρn → ρ pointwise,

which is equivalent to uniform convergence for the topology on finite set A.

B.3 Characteristics of the Best Response Policy

B.3.1 Proof of Lemma 13

First, we consider x ∈ X and x ≥ 0. We have

u(x)− θa2(x) + β[pρ,a2(x)Vρ(x+ w) + (1− pρ,a2(x))Vρ(x− l)]

≷ u(x)− θa1(x) + β[pρ,a1(x)Vρ(x+ w) + (1− pρ,a1(x))Vρ(x− l)]

⇔ θa1(x) − θa2(x)

≷ β[(pρ,a1(x)− pρ,a2(x))Vρ(x+ w) + ((1− pρ,a1(x))− (1− pρ,a2(x)))Vρ(x− l)]

⇔ θa1(x) − θa2(x) ≷ β(pρ,a1(x)− pρ,a2(x))[Vρ(x+ w)− Vρ(x− l)].
(B.12)

173

As we assumed θa1(x) > θa2(x), it follows that pρ,a1(x) > pρ,a2(x). Also, since w+ l > 0

and Vρ(x) is increasing in x, so both sides of the above inequality are non-negative.

Since Vρ(x) is submodular when x ≥ −l, the RHS is a decreasing function of x.

Let x∗a1,a2
∈ X be the smallest value such that LHS ≥ RHS, then for all x > x∗a1,a2

action a2(x) is preferred to action a1(x), for all x < x∗a1,a2
action a1(x) is preferred to

action a2(x), and finally, if at x∗a1,a2
LHS=RHS, then at x∗a1,a2

the agent is indifferent

between the two actions, and if instead LHS > RHS, then action a2(x) is preferred

to action a1(x). We call x∗a1,a2
the threshold value of surplus for actions a1(x) and

a2(x).

Similarly, for x ∈ X and x ≤ 0, Vρ(x) is supermodular when x ≤ w, which implies

the existence of a threshold policy.

B.3.2 Proof of Lemma 14

First, let f ∈ Φ, suppose that f is an increasing and submodular function. First

we prove that Tρf is increasing and submodular too. Let a∗(x) be an optimal action

in the definition of Tρf(x) when the surplus is x, i.e., one of the maximizers from

(3.9). Let x1 > x2, then

Tρf(x1)− Tρf(x2) = u(x1)− u(x2)− θa∗(x1) + θa∗(x2) + β
[
pρ,a∗(x1)(x1)f(x1 + w)+

(1− pρ,a∗(x1)(x1))f(x1 − l)− pρ,a∗(x2)(x2)f(x2 + w)− (1− pρ,a∗(x2)(x2))f(x2 − l)
]

≥ u(x1)− u(x2)− θa∗(x2) + θa∗(x2) + β
[
pρ,a∗(x2)(x2)f(x1 + w)

+ (1− pρ,a∗(x2)(x2))f(x1 − l)− pρ,a∗(x2)(x2)f(x2 + w)− (1− pρ,a∗(x2)(x2))f(x2 − l)
]

= u(x1)− u(x2) + β
[
pρ,a∗(x2)(x2)(f(x1 + w + a)− f(x2 + w)

+ (1− pρ,a∗(x2)(x2))(f(x1 − l)− f(x2 − l))
]
≥ 0.

174

The first inequality holds because a∗(x2) need not be an optimal action when the

surplus is x1.

Again, let x1 > x2 and let x > 0. Since u(·) is a concave function, it follows that

it is submodular, i.e.,

u(x1 + x)− u(x1) ≤ u(x2 + x)− u(x2)⇔ u(x1 + x) + u(x2) ≤ u(x2 + x) + u(x1).

Assuming that f ∈ Φ is submodular, we will now show that Tρf is also submodular.

Consider

Tρf(x1 + x) + Tρf(x2) = u(x1 + x) + u(x2)− θa∗(x1+x) − θa∗(x2)

+ β
[
pρ,a∗(x1+x)(x1 + x)f(x1 + x+ w) + pρ,a∗(x2)(x2)f(x2 + w)

+ (1− pρ,a∗(x1+x)(x1 + x))f(x1 + x− l) + (1− pρ,a∗(x2)(x2))f(x2 − l)
]
.

We assume without loss of generality that pρ,a∗(x1+x)(x1 + x) ≥ pρ,a∗(x2)(x2) and let δ

be the difference; if pρ,a∗(x1+x)(x1 +x) ≤ pρ,a∗(x2)(x2), then a similar proof establishes

the result. Using this we have the RHS (denoted by d) being

d = u(x1 + x) + u(x2)− θa∗(x1+x) − θa∗(x2)

+ β
[
pρ,a∗(x2)(x2)(f(x1 + x+ w) + f(x2 + w))

+ (1− pρ,a∗(x1+x)(x1 + x))(f(x1 + x− l) + f(x2 − l))

+ δ(f(x1 + x+ w) + f(x2 − l))
]
.

175

By submodularity of f(·) we have

f(x1 + x+ w) + f(x2 + w) ≤ f(x2 + x+ w) + f(x1 + w),

f(x1 + x− l) + f(x2 − l) ≤ f(x2 + x− l) + f(x1 − l),

f(x1 + x+ w) + f(x2 − l) ≤ f(x2 + x+ w) + f(x1 − l).

With these and using the submodularity of u(·) we get

d ≤ u(x2 + x) + u(x1)− θa∗(x1+x) − θa∗(x2)

+ β
[
pρ,a∗(x2)(x2)(f(x2 + x+ w) + f(x1 + w))

+ (1− pρ,a∗(x1+x)(x1 + x))(f(x2 + x− l) + f(x1 − l))

+ δ(f(x2 + x+ w) + f(x1 − l))
]

= u(x2 + x)− θa∗(x1+x) + β[pρ,a∗(x2)(x2)f(x2 + x+ w)

+ (1− pρ,a∗(x2)(x2))f(x2 + x− l)] + u(x1)− θa∗(x2)

+ β[pρ,a∗(x2)(x2)f(x1 + w) + (1− pρ,a∗(x1+x)(x1 + x))f(x1 − l)]

≤ Tρf(x2 + x) + Tρf(x1),

where the last inequality holds as using the optimal actions (a∗(x2 +x), a∗(x1)) yields

a higher value as opposed to the sub-optimal actions (a∗(x1 + x), a∗(x2)) when the

surplus is x2 + x and x1.

Since both the monotonicity and submodularity properties are preserved when

taking pointwise limits, choosing f(·) ≡ 0 (or u(·)) to start the value iteration proves

that the value function Vρ(·) is increasing and submodular.

Similarly, if f ∈ Φ is an increasing and supermodular function, following the same

argument, we can prove that the value function Vρ(·) is increasing and supermodular.

176

B.4 Numerical Study: Reward, Saving and Profit

Here we present two mappings of actions to coupons that are different from that

shown in Tables 3.3 and 3.4, and conduct the experiment with l = 1, 3, 5. We find

that our results are robust to the mapping of actions to coupons. For example, when

we set l = 1, most savings can be achieved by giving a $40 reward and the break-even

point is about $80 as observed earlier. The total rewards are bounded by $80 in all

cases.

B.4.1 Case 1

Our coupon choices are shown in Table B.1, where x1 and x6 are energy usage in

the corresponding periods (measured in kWh) and the day-ahead price is of one day

randomly drawn from the three months.

Table B.1: Day-ahead price and energy coupons

Index Period Day-ahead Price/MWh Coupons/kWh
1 2− 3 PM $47 90 if x1 > 2.464; 1.8 otherwise
2 3− 4 PM $55 5.4
3 4− 5 PM $78 1.8
4 5− 6 PM $99.6 0
5 6− 7 PM $66.5 3.6
6 7− 8 PM $49.5 36 if x6 > 2.24; 1.8 otherwise

We identified 6 actions as before, and computed the number of coupons received

under the new coupon awarding policy shown in Table B.1. These values are shown

in Table B.2.

Figure B.1 indicates results quite similar to those presented earlier in Figure 3.11.

The breakeven point and maximum profit are much the same.

177

Table B.2: Actions, costs and energy coupons

Index Action Vector Cost Coupons
0 (22.5, 22.5, 22.5, 22.5, 22.5) 0 37.4
1 (21.5, 21.5, 22.25, 23.5, 23.75, 21.25) 3.68 560
2 (21.5, 21.5, 22.25, 24, 23.5, 21.75) 3.51 559
3 (21.5, 21.5, 22.25, 24, 23.5, 22) 3.50 553
4 (21.5, 21.5, 22.25, 23.5, 23.25, 22.25) 3.146 547
5 (21.5, 21.5, 22.25, 24, 23, 22.5) 2.68 471

10 20 30 40 50 60 70 80

reward

-20

0

20

40

60

80

d
o

lla
r/

5
0

 h
o

m
e

s

profit

saving

20 30 40 50 60 70

reward

-20

0

20

40

60

80

d
o

lla
r/

5
0

 h
o

m
e

s

profit

saving

Figure B.1: The relation between customer reward, LSE savings and LSE profit.
Left: l = 1. Right: l = 5.

B.4.2 Case 2

Our coupon choices are shown in Table B.3, where x1 and x6 are energy usage

in the corresponding periods (measured in kWh) and the day-ahead price is of one

day randomly drawn from the three months.

We identified 6 actions as before, and compute the number of coupons received

under the awarding policy shown in Table B.3. These values are shown in Table B.4.

Figure B.2 indicates results quite similar to those presented earlier in Figure 3.11.

The breakeven point and maximum profit are much the same.

178

Table B.3: Day-ahead price and energy coupons

Index Period Day-ahead Price/MWh Coupons/kWh
1 2− 3 PM $47 144 if x1 > 2.464; 1.8 otherwise
2 3− 4 PM $55 5.4
3 4− 5 PM $78 1.8
4 5− 6 PM $99.6 0
5 6− 7 PM $66.5 3.6
6 7− 8 PM $49.5 72 if x6 > 2.24; 1.8 otherwise

Table B.4: Actions, costs and energy coupons

Index Action Vector Cost Coupons
0 (22.5, 22.5, 22.5, 22.5, 22.5) 0 37.4
1 (21.5, 21.5, 22.25, 23.5, 23.75, 21.25) 3.68 947
2 (21.5, 21.5, 22.25, 24, 23.5, 21.75) 3.51 944
3 (21.5, 21.5, 22.25, 24, 23.5, 22) 3.50 933
4 (21.5, 21.5, 22.25, 23.5, 23.25, 22.25) 3.146 916
5 (21.5, 21.5, 22.25, 24, 23, 22.5) 2.68 760

10 20 30 40 50 60 70 80

reward

-20

0

20

40

60

80

d
o

lla
r/

5
0

 h
o

m
e

s

profit

saving

20 30 40 50 60 70

reward

-20

0

20

40

60

80

d
o

lla
r/

5
0

 h
o

m
e

s

profit

saving

Figure B.2: The relation between customer reward, LSE savings and LSE profit.
Left: l = 1. Right: l = 5.

179

APPENDIX C

PROOFS FROM SECTION 4

C.1 Steady State Distribution

C.1.1 Proof of Theorem 9

We provide the proof for the steady state probability π∗LRU(x) by using a prob-

abilistic argument, following [40]. We consider the current state x, and attempt to

reconstruct the past history by looking backwards in time. In order to achieve the

current state x = (x1, · · · , xm), the past history of requests, listed from the most

remote to the most recent, must be ordered as follows:

(2m): A last request for item xm is made;

(2m− 1): Requests for item (x1, x2, · · · , xm−1) are made;

(2m− 2): A last request for item xm−1 is made;

(2m− 3): Requests for item (x1, x2, · · · , xm−2) are made;

(2m− 4): A last request for item xm−2 is made;

(2m− 5): Requests for item (x1, x2, · · · , xm−3) are made;

. . .

(2): A last request for item x2 is made;

(1): At least one request for item x1 is made.

The probability that step 2j (2 ≤ j ≤ m) occurs with probability pxj , and the

probability steps 2j and 2j − 1 together is given by

pxj

∞∑
k=0

(
j−1∑
l=1

pxl

)k

=
pxj

1−∑j−1
l=1 pxl

. (C.1)

180

Note that the last two steps occur with probability px2

∑
k=1 p

k
x1

= px2 ·
px1

1−px1
. Comb-

ing them together, we get the steady state probability of state x as

π∗LRU(x) =
Πm
i=1pxi

(1− px1)(1− px1 − px2) · · · (1− px1 − · · · − pxm−1)
, (C.2)

which gives us the desirable result.

C.2 Characteristics of Mixing Time

C.2.1 Proof of Theorem 11

Since the transition matrix PLRU of LRU is non-reversible, we consider the con-

structive reversible Markov chain with transition matrix PLRU+PLRU,∗

2
, where PLRU,∗ is

the time reversal chain of PLRU, and π∗PLRU = π∗PLRU+PLRU,∗
2

.

In order to show that the Markov chain associated with LRU is rapid mixing, we

only need to show that the conductance is greater than some polynomial in the size

of state space. Furthermore, from the relations between conductance and congestion

in (4.22), we only need to show that the congestion is polynomial in the size of state

space.

Based on the definition of congestion in (4.21), we will focus on achieving the

maximum over the RHS. We first consider the term 1
π(u)Puv

. By the policy of LRU

and the steady state probability given in (4.2), we only need to consider the minimal

steady state probabilities with the minimum transition probability. It is obvious

that the state that achieves minimal steady state probability should be c = (n, n−

1, · · · , n−m+ 1), in other words, the least m popular items are stored in the cache

in a decreasing order from the most recently used position to the least recently used

181

position, hence we have

πLRU
min =

pnpn−1 · · · pn−m+1

(1− pn) · · · (1− pn − · · · − pn−m+1)
. (C.3)

For the Zipf-like distribution, the normalization factor is given asymptotically by

A ≈ (1−α)/n1−α, where n is the total number of unique items in the system. Since

pi = A/iα, (1 − pn)(1 − pn − pn−1) · · · (1 − pn − pn−m+1) → 1 as n becomes large,

then we have πLRU
min ' pnpn−1 · · · pn−m+1 = A

nα
A

(n−1)α
· · · A

(n−m+1)α
. For the minimal

transition probability, we can consider Puv = arg mini pi = θ(1/n). Hence, we have

1

πLRU
min Puv

=
[n(n− 1) · · · (n−m+ 1)]α · n

Am
= O(nm+1) (C.4)

Next we consider the summation part in (4.21), which can be upper bounded by

∑
i,j∈Ω,γijuses(u,v)

π(i)π(j) ≤ Γ(πLRU
max)2, (C.5)

where Γ is the number of states and πLRU
max is maximal steady state probabilities.

From the steady state probability of LRU given in (4.2), it is clear that the state that

achieves the maximal steady state probability is c = (1, 2, · · · ,m). Hence, πLRU
max =

p1···pm
(1−p1)···(1−p1−···−pm−1)

= O(1
n2(1−α)m). The number of states Γ = O(nm). Therefore, we

have

∑
i,j∈Ω,γijuses(u,v)

π(i)π(j) = O(n−2(1−α)m) ·O(nm) = O(n(2α−1)m). (C.6)

Therefore, the congestion of LRU is upper bounded by

ρLRU = O(nm+1) ·O(n(2α−1)m) = O(n2αm+1), (C.7)

182

which is polynomial in the size of the state space, i.e., the Markov chain associated

with LRU is rapidly mixing.

C.2.2 Proof of Theorem 12

By Cheeger inequality (4.19) and the relation of congestion and conductance (4.22),

we have

trel ≤
2

Φ2
ln

1

πmin

≤ 8ρ2 ln
1

πmin

. (C.8)

By Theorem 11, we have ρLRU = O(n2αm+1), and πLRU
min = Θ(n−m), then we obtain

tLRU
mix (ε) = O(n4αm+2 lnn). (C.9)

C.2.3 Proof of Theorem 13

In order to show that the Markov chain associated with RANDOM is rapid mix-

ing, we only need to show that the conductance is greater than some polynomial in

the size of state space. Furthermore, from the relations between conductance and

congestion in (4.22), we only need to show that the congestion is polynomial in the

size of state space.

Based on the definition of congestion in (4.21), we will focus on achieving the

maximum over the RHS. We first consider the term 1
π(u)Puv

, by the eviction and

insertion policies of RANDOM and the steady state probability given in (4.2), we

can take state u as the minimum state with π(u) = pnpn−1···pn−m+1∑
c∈Λ′n,m

∏
pci

, pnpn−1···pn−m+1

Υ
,

where Υ =
∑
c∈Λ′n,m

∏
pci , and consider state v as one state such that the (n−m)-th

popular item is requested when we are in state u, hence we can achieve a minimum

transition probability Puv = pn−m/m. Then, we have

1

π(u)Puv
=

[n(n− 1) · · · (n−m+ 1)]αΥ

Am
· (n−m)αm

A

183

=
m[n(n− 1) · · · (n−m)]αΥ

Am+1

(a)

≤ m[n(n− 1) · · · (n−m)]α

Am+1

· n(n− 1) · · · (n−m+ 1)

m!
· Am

[1 · 2 · · ·m]α

(b)

≤ nm(α+1)+1

(m!)α+1
= O(n(α+1)m+1), (C.10)

where (a) follows from that Υ is upper bounded by the total number of states

n(n−1)···(n−m+1)
m!

multiply the largest steady state probability Am

[1·2···m]α
, and (b) follows

from that A ≈ (1− α)/n1−α.

The summation part in (4.21) can be upper bounded by

∑
i,j∈Ω,γijuses(u,v)

π(i)π(j) ≤
(

(p1p2 · · · pm)2

Υ

)
· Γ

(c)

≤ (p1p2 · · · pm)2

n(n−1)···(n−m+1)
m!

pn · · · pn−m+1

=

(
Am

(m!)α

)2

n(n−1)···(n−m+1)
m!

Am

[n(n−1)···(n−m+1)]α

= Am[n(n− 1) · · · (n−m+ 1)]α−1(m!)1−2α

(d)
= O(n(2α−1)m), (C.11)

where (c) and (d) follow the same arguments as (a) and (b), respectively. Therefore,

the congestion of RANDOM is upper bounded as

ρRANDOM = O(n(α+1)m+1) ·O(n(2α−1)m) = O(n3αm+1). (C.12)

which is polynomial in the size of state space
(
n
m

)
·m!, then from (4.22), we know that

the mixing process of Markov chain associated with RANDOM is rapidly mixing. A

similar argument holds true for FIFO, therefore, both RANDOM and FIFO are

rapidly mixing.

184

C.2.4 Proof of Theorem 14

From Theorem 13, we have ρRANDOM = O(n3αm+1), and πRANDOM
min = Θ(n−m).

Given the relation between mixing time and congestion in (C.8), we obtain

tRANDOM
mix (ε) = O(n6αm+2 lnn). (C.13)

C.2.5 Proofs of Theorem 15 and Theorem 16

We follow the same arguments as we did in the proof of Theorem 11 and The-

orem 13 to show that CLIMB is rapidly mixing, we omit the details here and only

give a closed form of the upper bound on the congestions.

ρCLIMB = O(n
3αm(m+1)

2
+1). (C.14)

Similarly, by the relation between mixing time and congestion defined in (C.8),

we have

tCLIMB
mix (ε) = O(n3αm(m+1)+2 lnn). (C.15)

185

APPENDIX D

PROOFS FROM SECTION 5

D.1 Characteristics of Mixing Time

D.1.1 Proof of Theorem 18:

Here, we show that the Markov chain associate with RANDOM(m) is rapid

mixing. In order to achieve this, we need to show that its conductance is great than

some polynomial in the size of state space. Furthermore, from Equation (4.22), we

only need show that its congestion is polynomial in the size of state space.

From the definition of congestion in Equation (4.21), we aim to achieve the supre-

mum over the right hand side (RHS). First, we consider the term 1
π(u)Puv

. Given the

eviction and insertion rules of RANDOM(m) and stationary distribution given in

Equation (5.1), we can take the state u that achieve the minimal stationary proba-

bility, and consider state v as one state such that the last spot (the spot in cache 1)

is different from v, hence, the minimal transition probability Puv = pn−m/m1. Then

we have

1

π(u)Puv
= G(m)

(
[n(n− 1) · · · (n−mh + 1)]α

Amh

)h
·
(

[(n−mh) · · · (n−mh −mh−1 + 1)]α

Amh−1

)h−1

. . .

·
(

[(n−∑h
i=2 mi) · · · (n−m+ 1)]α

Am1

)1

=
G(m)m1

pn−mAm1+2m2+···+hmh
·
(
n(n− 1) · · · (n−mh + 1)

)αh
· ((n−mh) · · · (n−mh −mh−1 + 1))α(h−1) . . .

186

·
(

(n−
h∑
i=2

mi) · · · (n−m+ 1)

)α

= O(n(1+α)(m1+2m2+···+hmh)+1). (D.1)

Next, we give an upper bound on the summation part in (4.21)

∑
i,j∈Λ,γijuses(u,v)

π(i)π(j)
(a)

≤ [π(x∗)]2 ·Υ

=
1

G(m)
(p1 · · · pm1)2 ·

(
[pm1+1 · · · pm1+m2]2

)2 · · · ·
([
p∑h−1

j=1 mj+1 · · · pm
]h)2

·Υ

=
A2(m1+2m2+···+hmh) ·Υ

G(m)
· 1

([1 · · ·m1]α)2

· 1

([(m1 + 1) · · · (m1 +m2)]2α)2 · · ·
1(

[(
∑h−1

j=1 mj + 1) ·m]hα
)2 , (D.2)

= O(n(2α−1)(m1+2m2+···+hmh)), (D.3)

where (c) follow that π(x∗) achieves the largest stationary probability and Υ is the

number of total states, i.e., Υ = O(nm). Furthermore, for the normalization factor A,

we have A = O(1/n1−α). Therefore, plugging (D.1) and (D.2) into Equation (4.21),

we have that the congestion of RANDOM is upper bounded as

ρ = O(n3α(m1+2m2+···+hmh)+1), (D.4)

which is polynomial in the size of state space, then from (4.22), we know that the

mixing process of Markov chain associated with RANDOM(m) is rapidly mixing. A

similar argument holds true for FIFO(m). Therefore, RANDOM(m) and FIFO(m)

are rapidly mixing.

187

D.1.2 Proof of Theorem 5.2:

By Cheeger inequality (4.19) and the relation of congestion and conductance (4.22),

we have

trel ≤
2

Φ2
ln

1

πmin

≤ 8ρ2 ln
1

πmin

. (D.5)

By Theorem 18, we have

t
RANDOM(m)
mix (ε) = O(n6α(m1+2m2+···+hmh)+2 lnn), (D.6)

where m = m1 +m2 + · · ·+mh.

188

