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ABSTRACT 

 

Because extreme precipitation poses a potential threat to local water resource 

systems, this study predicts and analyzes future precipitation in the Houston area. The 

Modified Bartlett-Lewis Rectangular Pulse (MBLRP) model was utilized to generate 

stochastic precipitation based on source data. Observed precipitation of seven rainfall 

stations around the Houston area and daily precipitation data extracted from Global 

Circulation Model (GCM) were used as source data.  

With respect to the statistics of precipitation, the MBLRP model reproduced the 

mean, variance and probability of zero rainfall well, but lag-1 autocorrelation coefficient 

was not reproduced well. With low frequency events, the MBLRP model tended to 

overestimate extreme precipitation. As for the duration curve, the MBLRP model 

performed well for reproducing precipitation events at probabilities larger than 1%, but it 

had a limited ability to reproduce the low frequency events. Compared to the MBLRP 

model, the GCM exhibited more uncertainty because of a tendency to systematically 

underestimate the amount of precipitation and annual hourly extreme value for different 

accumulation levels. The usage of the statistics relationship equations of observed 

precipitation for different accumulation levels introduced more uncertainty into the 

whole process, namely overestimation of precipitation. Among the three sources of 

uncertainty: the MBLRP method, the GCM, and the statistics relationship equations, the 

GCM, which represents the source of data, introduced more uncertainty into the 

prediction results. 
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Climate change has some impact on precipitation in the future in terms of 

changes in rainfall frequency and mean amount of rainfall. The duration curves indicate 

that the amount of future daily precipitation is larger than the present under the same 

probabilities. The annual hourly extreme precipitation largely depends on the local 

precipitation pattern and the selected model rather than the effect of climate change. 

Both the duration curve analysis and the frequency analysis show that the effect of 

climate change on precipitation is relatively small in the Houston area.  

This study provides a framework for estimating the effect of climate change on 

precipitation, which can be applied to any area with historic data available. 
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NOMENCLATURE 

 

GCMs – General Circulation Models 

GEV II – Generalized Extreme Value distribution of Type II 

ISPSO – Isolated Speciation-Based Particle Swarm Optimization 

MLBRP – Modified Bartlett-Lewis Rectangular Pulse Model 

NCDC – National Climatic Data Center 

RCP – Representative Concentration Pathway 

TSHA – Texas State Historical Association 
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1. INTRODUCTION  

 

Precipitation plays an important role in hydrology and directly impacts the fields 

of agriculture and insurance, and the operation of water resources. Extremely high 

rainfall results in floods, and extremely low rainfall leads to drought. Therefore, 

prediction and analysis of precipitation are very important for water resource systems 

design. The resiliency and the vulnerability of water resource systems need to be 

evaluated in scenarios of extreme hydrologic events. However, predicting and analyzing 

extreme precipitation are not as easy as expected. Analysis of extreme precipitation 

requires historic time series data. Hence, uncertainties of both predicting methodology 

and sources of the historic data are involved in this process.  

 Rainfall prediction methods can be classified as statistical, stochastic, Artificial 

Neural Network or numerical prediction. The methodology that uses a stochastic model 

to generate rainfall time series has been applied to water management for decades 

(Fiering, 1967). They are widely used in the field of hydrology due to their capability to 

generate long-term precipitation time series. Generating long-term synthetic weather 

series is accomplished by models that can accurately simulate the observed properties of 

weather. Statistics of weather properties can be used for parameter calibration (Wilks 

and Wilby, 1999). However, several studies have pointed out that seasonality, region, 

and weather type have their own impacts on the prediction results. White, Franks, and 

McEvoy (2015) found that the forecasting of long-term extreme rainfall would benefit 

extended-range flood prediction, but the accuracy of current long-term, especially 
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subseasonal to seasonal rainfall prediction, needs improvement. Fowler, Kilsbv, and 

O’Connell (2000) developed a model that considers the regional weather type in order to 

simulate long-term hourly precipitation. However, their research illustrated that it would 

be better to take into account the variability of weather types and drought of various 

return periods. In order to take into account the effect of location and climate on 

precipitation, the parameters were calibrated by data from the 3,444 National Climate 

Data Center (NCDC) rain gauges (Kim, Olivera, and Cho, 2013). The Modified Bartlett-

Lewis Rectangular Pulse (MBLRP) model used in this study is a Poisson cluster rainfall 

model. Its successful application to different rainfall characteristics in various locations 

is well documented (Isham et al., 1990; Verhoest et al., 1997). It has been proven that 

extreme rainfall can be reproduced by the MBLRP model at an hourly scale (Kim, 

Olivera, and Cho, 2013). However, the performance of the model at a sub-hourly time 

scale is poor when compared to an hourly time scale (Samuel, 1999).  

In addition, under climate change conditions, more uncertainties are introduced, 

such as changes in precipitation patterns. Several studies have been conducted to 

evaluate the effect of climate change on precipitation. Pendergrass, Lehner, Sanderson, 

and Xu (2015) investigated the rate of change of extreme precipitation under four 

emission scenarios. The results showed that in most models extreme precipitation did not 

depend on an emissions scenario. Alexander, Scott, Mahoney and Barsugli (2013) used a 

regional climate model to simulate future summer precipitation in Colorado. They 

suggested that extreme precipitation events were difficult to detect and may not occur 

everywhere. The ecological effect of climate change in Puerto Rico was evaluated using 
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12 statistically downscaled models that were included in General Circulation Models 

(GCMs) (Khalyani et al., 2016). The results indicated that climate change would cause a 

loss of rain in a subtropical zone. Thus, the effect of climate change on precipitation 

varies by location. Mehrotra et al. (2003) pointed out that model selection causes 

uncertainty when using GCMs. They assessed future precipitation using multiple GCMs 

in India. The results showed that the outcomes of future precipitation were largely 

dependent on GCM model selection. 

The present study provides a framework for estimating the effect of climate 

change on future precipitation. This framework can be applied to any area with historic 

data available. One source of data is observed rainfall station data, and the other one is 

GCMs. Similar to the previous studies, the parameters for the MBLRP method were 

calibrated by the local precipitation data to capture the characteristics of the regional and 

seasonal weather. 15-, 30-minute, 1-, 3-, 6-, 12-, and 24-hour accumulation intervals of 

stochastic precipitation were generated in order to obtain the sub-daily and daily 

precipitation events in response to climate change. 
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2. STUDY AREA AND DATA 

 

2.1  Study Area 

The study area consists of the metropolitan Houston area in Montgomery 

County, Harris County, Fort Bend County, and Galveston County. The climate of this 

area is classified as humid subtropical. The annual precipitation in this area is about 

49.77 inches. The highest daily rainfall in the Houston area, which was recorded on 

October, 1994, was 14.35 inches (TSHA, 2016). On October 25, 1984, Houston 

Intercontinental Airport measured as much as 10 inches (USGS 1998). The Houston area 

has a total area of 601.7 square miles (1,558 km2) — 579.4 square miles (1,501 km2) of 

it is land, and 22.3 square miles (58 km2) of it is water. Surface water in the Houston 

region consists of lakes, rivers, and an extensive system of bayous and manmade canals 

that are part of the rainwater runoff management system. Approximately 25%-30% of 

Harris County lies within the 100-year flood plain (Oguz et al., 2007).  

2.2 Data 

2.2.1  Observed rainfall station  

The locations of rainfall stations were selected to be around the Houston area and 

were covered by the grid of the GCM. Seven stations that have 15-minute precipitation 

data available were selected to conduct the historic precipitation analysis (NCDC, 2014). 

The locations of each selected stations are displayed in Figure 1. The 15-minute 

precipitation data for the 1984-2009 period were obtained from these stations.  All seven 

stations were used to conduct the duration curve analysis. COOP: 417594 rainfall station 

https://en.wikipedia.org/wiki/Humid_subtropical_climate
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(95.7552 ° W, 29.5838 ° N) was selected to conduct the frequency analysis of the annual 

peak precipitations, since it had more than 30 years’ hourly rainfall data.  

 

 

Figure 1 The locations of selected rainfall stations. 

 

2.2.2  GCM  

A GCM was used as the data source of past and future precipitation. The selected 

climate scenario of the GCM was RCP6.0. “RCP6.0 is a stabilization scenario in which 

total radiative forcing is stabilized shortly after 2100, without overshoot, by the 

application of a range of technologies and strategies for reducing greenhouse gas 

emissions” (Fujino et al. 2006; Hijioka et al. 2008).  In this study, gfdl-cm3.1 model, 
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miroc-esm.1 model, and miroc-esm-chem.1 model were used to take into account the 

variance of different models. The average of annual precipitation increases as these three 

models projected in RCP6.0 scenario. However, it may be a limitation of the study that 

only three of the 13 models in scenario RCP6.0 were used.  
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3. METHODOLOGY 

 

The purpose of this study is to estimate the effect of climate change on 

precipitation in the metropolitan Houston area. To achieve this goal, several tasks were 

accomplished.  

3.1 Obtain Statistics of Precipitation Data  

3.1.1 Observed precipitation  

The 15-minute observed precipitation data in the 1984-2009 period were 

obtained from seven rainfall stations. The precipitation within one year contains the 

variability caused by seasonality. Because lumping one year of time series data into a 

single value could oversimplify the effect of seasonality, the time series were generated 

by aggregating different years’ precipitation data that correspond to the same month to 

take into account the seasonality effect. Thus, the seven rainfall stations had 84 time 

series. In order to avoid the effects of missing values on the precipitation statistics, the 

missing values in the time series were processed as follows: (1) If the percentage of 

missing values of one month was larger than 10%, then the time series of the month 

were removed and (2) The missing value was replaced with the average of the two 

existing values before and after the missing value, if the percentage of missing values of 

one month were smaller than 10%. The assumption is that the processing of the missing 

values in the observed precipitation time series would not affect the characteristics of the 

statistics of precipitation. The duration of the remaining time series for each month and 

each station was summarized in Table 1. For each time series, the mean, variance, lag-1 
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autocorrelation coefficient, and probability of zero rainfall were calculated at 15-, and 

30-minutes; 1-, 3-, 6-, 12-, and 24-hour accumulation levels. In total, there were 28 

statistics for each month.  

 

Table 1 The duration of the remaining time series for each month and each station 

Station ID Station Name Jan. Feb. Mar. Apr. May Jun. 

COOP:411956 CONROE TX US 16 12 11 12 7 13 

COOP:412206 CYPRESS TX US 5 4 6 6 5 3 

COOP:414309 
HOUSTON ADDICKS 

TX US 
8 5 9 6 8 8 

COOP:414311 
HOUSTON ALIEF TX 

US 
9 7 12 10 10 8 

COOP:414329 
HOUSTON SATSUMA 

TX US 
4 3 4 3 1 3 

COOP:417594 RICHMOND TX US 3 2 6 7 2 5 

COOP:418996 
THOMPSONS 3 WSW 

TX US 
5 6 4 10 3 4 

Station ID Station Name Jul. Aug. Sep. Oct. Nov. Dec. 

COOP:411956 CONROE TX US 16 18 16 14 10 13 

COOP:412206 CYPRESS TX US 4 3 4 5 6 4 

COOP:414309 
HOUSTON ADDICKS 

TX US 
9 8 7 10 13 8 

COOP:414311 
HOUSTON ALIEF TX 

US 
8 8 11 10 10 8 

COOP:414329 
HOUSTON SATSUMA 

TX US 
3 2 2 1 2 2 

COOP:417594 RICHMOND TX US 7 8 1 2 5 1 

COOP:418996 
THOMPSONS 3 WSW 

TX US 
8 8 4 8 6 3 

 

The equations of the precipitation statistics were  

�̅� =
1

𝑗
∑ 𝑃𝑖

𝑗
𝑖=1       (1) 

Var(𝑃) =
1

𝑗−1
∑ (𝑃𝑖 − �̅�)2𝑗

𝑖=1      (2) 
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𝑅(1) =
1

𝑗−1

∑ (𝑃𝑖−�̅�)(𝑃𝑖+1−�̅�)
𝑗−1
𝑖=1

Var(𝑃)
      (3) 

𝑃0 =
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑖=0)

𝑗
      (4) 

where 𝑗 is number of time intervals, 𝑖 represents a certain accumulation interval, and  𝑃 

is the amount of precipitation. Once the statistics of the observed precipitation at seven 

accumulation levels were calculated, the relationship equations of these four statistics of 

the observed precipitation between 15-, and 30-minutes, 1-, 3-, 6-, and 12-hour 

accumulation intervals and the observed daily precipitation statistics were established. In 

total, 24 relationship equations (Table 2) were established (6 equations × 4 statistics).   

 

Table 2 The relationship equations for the statistics of each accumulation levels based on 

daily precipitation statistics 

Accumulation 

Level 
15-Minute 30-Minute 

Mean y = 0.0104x R² = 1 y = 0.0208x R² = 1 

Variance y = 0.0009x0.7078 R² = 0.668 y = 0.0032x0.7718 R² = 0.7565 

Lag-1 
 y = -2.2952x2 + 0.5985x + 

0.5728 R² = 0.0327 

y = -2.7727x2 + 0.6306x + 

0.4912 R² = 0.0561 

Probability of 

zero rainfall 
y = 0.9042e0.1008x R² = 0.2609 y = 0.8689e0.1413x R² = 0.3142 

Accumulation 

Level 
1-Hour 3-Hour 

Mean y = 0.0417x R² = 1 y = 0.125x R² = 1 

Variance y = 0.0106x0.8397 R² = 0.8361 y = 0.0639x0.9364 R² = 0.9263 

Lag-1 
y = -0.2177x2 + 0.1262x + 

0.4054 R² = 0.0034 

y = 0.1556x2 + 0.0688x + 

0.2451 R² = 0.0054 

Probability of 

zero rainfall 
y = 0.8271e0.1913x R² = 0.3889  y = 0.728e0.3219x R² = 0.5904 
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Table 2 Continued. 

Accumulation 

Level 
6-Hour 12-Hour 

Mean y = 0.25x R² = 1 y = 0.5x R² = 1 

Variance y = 0.1707x0.9711 R² = 0.9596 y = 0.407x0.9697 R² = 0.971 

Lag-1 
y = -0.1554x2 + 0.1799x + 

0.1842 R² = 0.0168 

y = -0.1726x2 + 0.3297x + 

0.1082 R² = 0.0685 

Probability of 

zero rainfall 
y = 0.6288e0.4714x R² = 0.7641  y = 0.4933e0.7147x R² = 0.9051 

 

where x represents the value of the statistic at the 24-hour accumulation level. And y 

represents the value of the statistic at the expected accumulation levels. 

3.1.2 Current GCM precipitation 

The current precipitation data were obtained from a GCM with the climate 

scenario of RCP6.0 and the selected three models. Seven daily precipitation data from 

1950 to 2000, corresponding to each rainfall station, were extracted from the GCM 

individually. Each time series were processed by aggregating 51 years’ rainfall data that 

corresponded to the same month to take into account the effect of seasonality. Then, the 

mean, variance, lag-1 autocorrelation coefficient, and probability of zero rainfall at 24-

hour accumulation intervals were calculated. Since the time series of sub-daily past 

rainfall are not available, the statistics of the sub-daily were obtained using the statistics 

relationship equations (Table 2). Then, these four statistics of the current GCM 

precipitation at 15-, and 30-minutes, 1-, 3-, 6-, 12-, 24-hour accumulation levels were 

calculated with the assumption that the relationship for the statistics of the future 

precipitation remains the same as the observed one.  In total, among the seven rainfall 
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stations, each station has seven accumulation levels, and four statistics were calculated 

for each accumulation level under each model.  

3.1.3 Future GCM precipitation  

Future Daily Precipitation data were obtained from GCMs. The climate scenario 

and the selected three models were the same as what was used for the current GCM 

precipitation. Seven daily precipitation from 2040 to 2099, corresponding to each 

rainfall station, were extracted from the GCM individually. The principle of calculating 

the statistics of the current GCM precipitation was applied to get the statistics of future 

precipitation. Like current precipitation, 196 statistics of GCM future precipitation were 

calculated for each model (7 rainfall stations × 4 statistics × 7 accumulation levels). 

3.2  Parameter Calibration of the MLBRP Model 

In this study, the MBLRP model (Rodriguez-Iturbe et al., 1988) was selected as 

the stochastic rainfall generator. It is widely used (Onof et al., 2000; Koutsoyiannis and 

Onof, 2001) due to its robust model assumptions that are based on physical processes of 

rainfall occurrences (Olsson and Burlando, 2002). In order to generate the simulated 

precipitation time series, the MLBRP simulator needs six input parameters: λ, ν, α, μ, 

ϕ= /, and κ= /These six input parameters were obtained from solving four 

statistics equations of mean, variance, probability of zero rainfall, and lag-1 

autocorrelation coefficient (Rodriguez-Iturbe et al., 1988), at 15-, and 30-minutes, 1-, 3-, 

6-, 12-, and 24-hour accumulation levels. The equations of these four statistics at a 

certain accumulation T are: 

E[𝑌𝑡
(𝑇)

] = λμμ𝑐
ν

α−1
𝑇     (5) 
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Var[𝑌𝑡
(𝑇)

] =
2ν2−α𝑇

α−2
(k1 −

k2

ϕ
) −

2ν3−α

(α−2)(α−3)
(k1 −

k2

ϕ2
) +

2

(α−2)(α−3)
[k1(𝑇 + ν)3−α −

𝑘2

ϕ2
(ϕ𝑇 + ν)3−α]     (6) 

Cov[𝑌𝑡
(𝑇)

, 𝑌𝑡+𝑠
(𝑇)

] =
k1

(α−2)(α−3)
{[𝑇(𝑠 − 1) + ν]3−α + [𝑇(𝑠 + 1) + ν]3−α −

2(𝑇𝑠 + ν)3−α} +
k2

ϕ2(α−2)(α−3)
{2(ϕ𝑇𝑠 + ν)3−α − [ϕ𝑇(𝑠 − 1) + ν]3−α +

[ϕ𝑇(𝑠 + 1) + ν]3−α}     (7) 

P(0) = 𝑒𝑥𝑝 {−λ𝑇 −
λν

ϕ(α−1)
[1 + ϕ(ϕ + κ) −

1 

4
ϕ(ϕ + κ)(4ϕ + κ) +

ϕ(ϕ+κ)(4κ2+27ϕκ+72ϕ2)

72
] +

λν

(4ϕ+κ)(α−1)
(1 − κ − ϕ +

3

2
ϕκ + ϕ2 +

κ2

2
) +

λν

(ϕ+κ)(α−1)
[

ν

ν+(ϕ+κ)𝑇
]
α−1 κ

ϕ
(1 − κ − ϕ +

3

2
ϕκ + ϕ2 +

κ2

2
)}     (8) 

k1 = (2λμ2μ𝑐 +
λμ2μ𝑐κ

ϕ2−1
) (

να

α−1
)     (9) 

k2 = (
λμ2μ𝑐κ

ϕ2−1
) (

να

α−1
)      (10) 

μ𝑐 = 1 +
κ

ϕ
      (11) 

where 𝑌𝑡
(𝑇)

 is the time series of precipitation at a certain accumulation level T and 𝑠 is 

the lag time for an accumulation level. Given this highly non-linear equations set with 

more unknowns than the number of statistics equations, the solution cannot be found 

using the substitution method. In addition, it is difficult to get an accurate solution. The 

best solution is the one that minimizes the discrepancy between the statistics of the 

observed and simulated rainfall time series. The objective function (12) is employed to 
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help find the minimal discrepancy between the statistics of the observed and simulated 

rainfall time series: 

∑ 𝑊𝑘 [1 −
𝐹𝑘(�⃗⃗� )

𝑓𝑘
]
2

𝑛
𝑘=1      (12) 

where 𝜃  is the vector that contains the model’s parameters, n is the number of rainfall 

statistics needs to be matched, 𝐹𝑘 is the kth statistic of the MBLRP simulated rainfall 

time series, 𝑓𝑘 is the kth statistic of the observed rainfall time series, and 𝑊𝑘 is the 

weight factor of the kth statistic. An algorithm that is good at iteratively finding the 

solution and can minimize the objective function (12) is needed. The Isolated 

Speciation-Based Particle Swarm Optimization algorithm, which shows a more reliable 

capability of finding true minima through low objective function values, was used in this 

study (Cho, Kim, Olivera, and Guikema 2011). The weight of each statistic was equal 

initially but was adjusted by comparing the observed precipitation to the MBLRP 

simulation results based on these observed data. Kim, Olivera, and Cho (2013) found it 

difficult for the MLBRP model to reproduce the lag-1 autocorrelation coefficient. Thus, 

the lag-1 autocorrelation coefficient was assigned the smallest weight. They also found 

that the weight of each statistic could be determined by the interpolation of the simulated 

results. In this study, the weight was determined by minimizing the difference between 

the simulated result and the observed result. Given the importance of mean, it was 

assigned the highest weight. Increasing the weight of probability of zero rainfall would 

cause loss of fit for mean and variance. Therefore, the weights for mean, variance and 

Probability of zero were adjusted recursively by the difference of the simulated result 
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and the observed result. The weight of each statistics at different accumulation levels can 

be seen in Table 3. 

 

Table 3 The weight of four statistics  

Statistics Weight 

Mean 30.4 

Variance 16.8 

Lag-1 1 

Probability of Zero Rainfall 18 

 

The solutions were evaluated by the difference between the observed statistic 

values and the values calculated with the statistics equations (5) through (8) for the 

parameters. Mean and variance were plotted, since they were important in terms of 

determining extreme value. Each plot contains 84 paired points (7 stations × 12 months), 

which means there are 84 sets of parameters’ solutions.   

 

 

        

Figure 2 Mean and variance of the observed precipitation vs. those calculated from each 

set of parameters by precipitation statistics equations. 
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Figure 2 Continued. 
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Figure 2 Continued. 

 

From the above plots, the mismatched errors of mean and variance are relatively 

small. At each accumulation level, the slopes of the regression equation were around 1. 

Given the importance of mean and variance for the extreme precipitation, the solution of 

each set of parameters was considered acceptable. 

3.3  MBLRP Parameters Conversion  

Before each set of parameters can be used as input for the MBLRP simulator, it 

needs to be converted based on its accumulation interval (T). λ [1/T] is the expected 

number of storms that arrive in the accumulation interval. 1/ γ [T] is the expected 

duration of storm activity. μ [L/T] is the expected rain cell intensity in depth per 



 

17 

 

accumulation interval.  [1/T] is the expected number of rain cells within the storm 

duration per accumulation interval. 1/η [T] is the expected duration of the rain cells in 

the accumulation interval. t1 represents the accumulation interval used for calculating 

the parameter,  t2 represents the desired accumulation interval, parameters with subscript 

(t1) represent the parameters after calibration, and parameters with subscript (t2) 

represent the parameters after unit conversion. In order to generate simulated 

precipitation at a certain accumulation interval, the value of each parameter needs to be 

converted to: 

λ (t2) = λ (t1) × (
t2

t1
)     (13) 

α (t2) = α (t1)      (14) 

ν (t2) =
ν (t1)

t2
t1

       (15) 

μ (t2) = μ (t1) × (
t2

t1
)    (16) 

ϕ (t2) = ϕ (t1)     (17) 

κ (t2) = κ (t1)     (18) 

 

 

3.4 MBLRP Simulation Performance Evaluation  

The simulated rainfall time series were obtained using the MBLRP simulator (D 

Kim, 2009) with the six parameters. In this study, the simulation length was 200 years. 

With this length, the statistics of the MLBRP precipitation match the observed 

precipitation statistics. Once the simulated rainfall time series were obtained, the mean, 
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variance, probability of zero rainfall, and lag-1 autocorrelation coefficient at 15-, 30-

minute, 1-, 3-, 6-, 12-, and 24-hour accumulation levels could be calculated. The 

performance of the MBLRP method was evaluated by comparing the values calculated 

in equations (5) through (8) using parameters values and the values calculated from the 

MBLRP method. 

Figure 3 Mean and variance of calculated from each set of parameters vs. those 

calculated from each set of parameters by the MBLRP model. 
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Figure 3 Continued. 
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Figure 3 Continued. 

 

The plots in Figure 3 show that the MBLRP method reproduced the mean well. 

Despite some outliers in the variance, the majority of variance was reproduced well. 

Hence, the accuracy of the MBLRP stochastic precipitation time series largely depends 

on the solution of a parameters set. The MBLRP simulation results were evaluated by 

comparing the observed time series to the simulated one. The comparison of mean and 

the comparison of variance were plotted. As a reference:  

  

       

Figure 4 Mean and variance of the observed precipitation vs. those calculated from each 

set of parameters by the MBLRP model. 
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Figure 4 Continued. 
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Figure 4 Continued. 

From the above plots in Figure 4, the MBLRP method is capable of matching the 

statistics with a simulation length of 200 years. The outliers for the variance in some 

plots were in accordance with the precipitation time series, which has a low probability 

of zero rainfall and a large mean of precipitation. This reflects the limitation of the 

MBLRP method on reproducing precipitation for a relatively dry period. Even though 

there were some outliers on the plots for the variance, which lead to overestimation of 

precipitation for some months’ time series, its impact on the whole time series was 

relatively limited. To better capture the characteristics of precipitation, more efforts may 

be needed to improve the MBLRP model, which are beyond the scope of this study. 
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3.5 Duration Curve Analysis 

A duration curve was plotted to analyze the frequency of precipitation events. It 

describes the exceedance probability for a certain amount of precipitation. To calculate 

the exceedance probability, precipitation values in a time series first needed to be sorted 

in descending order. Then, the exceedance probability (P) was calculated based on the 

following equation: 

P =
𝑚

𝑛+1
     (19) 

where m is the rank of the precipitation amount, m = 1, the largest possible value, and n 

is the total number of precipitation values. Therefore, in a time series, each amount of 

precipitation has its own probability (P). A curve was plotted by pairing a value with its 

probability. Among seven accumulation intervals, each accumulation interval contains 

four time series of precipitation: (1) the observed precipitation, (2) the MBLRP 

simulated precipitation based on the observed data, (3) the MBLRP simulated 

precipitation based on GCM current data, and (4) the MBLRP simulated precipitation 

based on GCM future data. For the observed precipitation, the time series was directly 

generated from the observed data. For the MBLRP simulated precipitation, the time 

series were generated based on different sources of data. Once the time series were 

obtained, the amount of precipitation was ranked from largest to smallest. Then, the 

probability of each amount of precipitation was calculated using equation (19). After 

calculating the probability of each amount of precipitation in the time series, the amount 

of precipitation and the probability was paired to generate the curve. Then, in each plot, 
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there were four duration curves for four time series. Each curve contains all months of 

the 200-year simulated timespan. The horizontal axis was plotted in the logarithmic scale 

to better display each curve. The probability ranged from 0.1% to 10%. Figure 5 shows 

the duration curves of COOP: 414311 rainfall station for the seven accumulation 

intervals. 

 

 

 

Figure 5 Duration curves of COOP: 414311 rainfall station for 7 accumulation levels’ 

precipitation. From left to right, top to bottom, 15-, 30-minute, 1-, 3-, 6-, 12-, 24-hour 

accumulation levels. 
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Figure 5 Continued. 

 

In total, there were seven plots representing seven different accumulation 

intervals for each of the seven stations.  

3.6 Frequency Analysis of Extreme Precipitation Values 

The frequency analysis of hourly extreme rainfall was conducted to analyze the 

extreme precipitation amount for a certain return period. In this study, the return periods 

were 2, 5, 10, 25, 50, and 100 years to capture relatively high-frequency events and 

relatively low-frequency events.  
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3.6.1 Annual hourly peak precipitation value 

The annual hourly peak precipitation value is the maximum value in a one-year 

time series of hourly precipitation. In this study, there were four different time series. 

One of them was the observation data of the COOP: 417594 rainfall station. This rainfall 

station was selected because it had more than 30 years of hourly precipitation records, 

which is statistically significant. The observed time series ranged from 1968-2009. The 

remaining time series were the MBLRP simulated precipitation series based on the 

observed data, the MBLRP simulated precipitation series based on GCM current data, 

and the MBLRP simulated precipitation series based on GCM future data. The largest 

value of each year was selected from this time series to obtain annual peak values. 

Therefore, for the observed data, since the length of time series was 42 years, there were 

42 peak values. For all MBLRP stochastically generated time series, since the length of 

the time series was 200 years, there were 200 peak values.  

3.6.2 Distribution and frequency analysis 

To determine the extreme precipitation amount for a certain return period, a 

distribution that fits these peak values is needed. Koutsoyiannis (2004) suggested that 

the Generalized Extreme Value distribution of type II (GEV II) is better for describing 

the real behavior of rainfall maxima distribution than the Gumbel distribution. Thus, the 

goodness of fit test was used to verify the fitting for these two distributions. After the 

maximum value of each year was selected to consist of a time series of peak values. 

Each series of peak values was used to fit the GEV II distribution and the Gumbel 
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distribution. Then, the Chi-square test was conducted to measure how well the selected 

distribution fits the data (Table 4). 

 

Table 4 The result of Chi-square test for the GEV II distribution and the Gumbel 

distribution 

Time Series GEV Gumbel 

Observation 2.3302 6.7366 

MBLRP Observation 10.096 33.205 

MBLRP GCM Current 4.8927 32.251 

MBLRP GCM Future 9.4549 22.201 

 

The values in Table 4 represent the goodness of fit for a particular distribution. 

With the increasing value, the goodness of fit for this distribution decreased. The test 

results showed that the GEV II distribution was better than the Gumbel distribution for 

each series. Thus, the GEV II distribution was utilized to fit annual peak values series. 

After determining the best distribution to describe the peak values, the peak value for a 

certain year return period could be calculated. The probability of a T-year return period 

event happening (p) is: 

p =
1

𝑇
     (20) 

Let the upper case letter X denote rainfall amount, and the lower case letter 𝑥 denote a 

possible value of X. Fx(𝑥) is the nonexceedance probability for the value 𝑥. 

Fx(𝑥) = 1 − p    (21) 

Thus, precipitation with a return period of 2-, 5-, 10-, 25-, 50-, and 100-years is in 

accordance with the GEV II distribution with probability larger than 0.5, 0.8, 0.9, 0.96, 
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0.98, and 0.99, respectively. Four curves were plotted to make a comparison of (1) the 

observed data and the MBLRP simulated precipitation based on the observed data, (2) 

the MBLRP simulated precipitation based on the observed data and the MBLRP 

simulated precipitation based on the GCM current data, and (3) the MBLRP simulated 

precipitations based on the GCM current data and the GCM future data. 
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4. RESULTS AND DISCUSSIONS 

  

4.1 Duration Curve Analysis 

The duration curve is expected to reveal the likelihood of the precipitation 

exceeding a given value. The accuracy of the duration curve needs to be evaluated, since 

a lot of uncertainty will be generated in the process of obtaining stochastic precipitation. 

In this study, there are three sources of uncertainty: (1) the MBLRP method, (2) the 

GCM, and (3) the statistics relationship equations.  

4.1.1 Uncertainty of the MBLRP method 

In the plot, the MBLRP observed curve was obtained by using the MBLRP 

method based on the observed precipitation. Thus, the comparison of the MBLRP 

observed curve and the observation curve reflects the uncertainty of the MBLRP 

method. 

  

 
Figure 6 Duration curves of the stochastic precipitation based on the observed data and 

the observed precipitation for COOP: 414311 rainfall station at different accumulation 

levels with gfdl-cm 3.1 model. From left to right, top to bottom, 15-, 30-minute, 1-, 3-, 

6-, 12-, and 24-hour accumulation levels. 
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Figure 6 Continued. 
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Given the fact that the MBLRP method performed well in terms of reproducing 

the statistics of mean and variance, the plots of the duration curve show that the MBLRP 

method is capable of reproducing precipitation time series within the probability ranges 

from 0.1% to 10% well. For each rainfall station, it was noticed that with an increased 

accumulation level, the difference between the MBLRP observed curve and the 

observation curve decreased for probabilities larger than 1%. For 3-hour and 6-hour 

accumulation level’s precipitation, these two curves have minimal differences. However, 

for accumulation levels smaller than one hour, it was found that these two curves do not 

match well. This reflects the MBLRP method’s limitation in reproducing sub-hourly 

precipitation time series. It was found that these two curves tended to differ from each 

other when the probability was less than 1% at 7 different accumulation levels. This 

reflects the limitation of the MBLRP method to reproduce low-frequency events. This 

situation was observed from COOP: 414311 rainfall station, which was similar to the 

rest rainfall stations. 

4.1.2 Uncertainties of GCMs and the statistics relationship equations 

Uncertainty of the GCM existed in the MBLRP GCM current curve for the 24-

hour accumulation level, since the precipitation time series was generated based on the 

data extracted from the GCM.  
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Figure 7 Duration curves of the stochastic precipitation based on the observed data and 

GCMs past data for different rainfall stations with gfdl-cm 3.1 model. From the top to 

bottom and left to right, COOP: 411956, COOP: 412206, COOP: 414309, COOP: 

414311, COOP: 414329, COOP: 417594, COOP: 418996. 
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Figure 7 Continued. 

 

Figure 7 shows that the stochastic precipitation based on GCMs current data for 

gfdl-cm3.1 model was systematically lower than the precipitation based on observed 

data. It also was observed from the rest two GCM models. This shows that the three 

GCMs tend to underestimate daily precipitations in the Houston area, especially for low-

frequency precipitation events. It’s noticed that the observation data come from the 

rainfall stations. The GCM data was extracted from the downscaled model for a grid 

which has a spatial resolution is about 12 kilometers × 12kilometers. Therefore, the 

difference between the GCM data and the observed data may contain the error caused by 

spatial scale.  

Besides the uncertainty of the GCM, the MBLRP GCM current curves for the six 

sub-daily accumulation levels also contain uncertainty of statistics relationship equations 

because the time series of sub-daily precipitation was not available in GCMs. The 

duration curves of the COOP: 414311 rainfall station for 12-hour and 24-hour 

accumulation levels’ precipitation are plotted in Figure 8. 
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Figure 8 Duration curves of COOP: 414311 rainfall station for 12-hour (left) and 24-

hour (right) accumulation levels’ precipitation time series with gfdl-cm 3.1 model. 

 

With the usage of the statistics relationship equations, the comparison of duration 

curves of precipitation time series at the 12-hour accumulation level and the 24-hour 

accumulation level shows that the difference between the stochastic precipitation based 

on the observed data and the observed data decreased. Hence, the statistics relationship 

equations tend to overestimate the precipitation, especially for the low frequency 

precipitation events.  

4.1.3 Effect of climate change 

Both the MBLRP GCM current duration curve and the MBLRP GCM future 

duration curves contain the same uncertainties, since they are generated by the same 

method based on GCM precipitation data. The only difference between these two curves 

is the climate scenario of its precipitation data. Thus, the difference of these two curves 

indicates the effect of climate change on precipitation.  From the plots in Figure 9, the 

curve generated from GCM current data was almost overlapped with one generated by 
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GCM future data. It also was observed from the rest rainfall stations, which indicates the 

effect of climate on precipitation is illegible under the selected emissions scenario. The 

difference of the two curves becomes most significant at the duration of 24 hours, which 

illustrates that the effect of climate change on the precipitation events happened within 

one day. The curve for future precipitation is above the curve for past precipitation. This 

means given the same probability, the amount of future daily precipitation is larger than 

the past. Likewise, it was also observed for the rest rainfall stations. Thus, this result 

indicates that precipitation in the future becomes more frequent than past. As reference: 

 

 

Figure 9 Duration curves of COOP: 414311 rainfall station for GCM past precipitation 

and GCM future precipitation with gfdl-cm 3.1 model. From left to right, top to bottom, 

15-, 30-minute, 1-, 3-, 6-, 12-, 24-hour accumulation levels. 
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Figure 9 Continued. 

 

4.2  Frequency Analysis of Extreme Precipitation 

Each curve in the frequency analysis plots contains the same uncertainties as the 

duration curve, because the method used to generate the precipitation time series is the 

same. The uncertainties are coming from: (1) the MBLRP method, (2) the GCM, and (3) 

the statistics relationship equations. 
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Figure 10 Annual hourly extreme precipitation for the return periods of 2-, 5-, 10-, 25-, 

50-, and 100-years of Rainfall station 417594. From left to right, top to bottom, gfdl-cm 

3.1 model, miroc-esm.1 model, and miroc-esm-chem.1 model. 

 

4.2.1 Uncertainty of the MBLRP method 

Comparing the observation curve to the MBLRP curve reflects the performance 

of the MBLRP method. The extreme values of 2-year and 5-year return periods are 

similar. However, the differences of annual hourly peak values at 10-year, 25-year, 50-

year, and 100-year return periods become more significant. This shows that the MBLRP 

method tends to overestimate the extreme values, especially for low frequency extreme 

values, and confirms what has been observed in duration curve. 
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4.2.2 Uncertainties of GCMs and the statistics relationship equations 

Hourly precipitation was generated with the help of the statistics relationship 

equations. Comparing the MBLRP GCM current curve to the observation curve reflects 

the uncertainties of GCM and the statistics relationship equations. Similar to the duration 

curve, the peak value that was generated based on GCM precipitation and the statistics 

relationship equations was underestimated. Like the duration curve analysis, GCM and 

the statistics relationship equations reflect a large uncertainty caused by the MBLRP 

method and the spatial scale mismatch. The frequency analysis was only conducted on 

the hourly precipitation time series, hence the evaluation of GCMs was not reasonable. 

4.2.3 Effect of climate change 

Comparison of the GCMs current curve and the GCMs future curve shows the 

effect of climate change on extreme precipitation. The effect of climate change varies 

from model to model. Overall, the effect of climate change is relatively small in the 

Houston area. The peak values at the 2-year, 5-year, 10-year, and 25-year return periods 

in future were relatively higher than current. It could be explained by the effect of 

climate change on precipitation. At the 50-year and 100-year return period, the extreme 

value became smaller than the current extreme value, which may be explained by the 

location of the Houston area in the zone of subtropical drying, in which precipitation is 

expected to decline in future. Similar to the plots of the duration curve, the effect of 

climate is smaller than the difference resulted from the uncertainties of the MBLRP 

method and GCM.  On the one hand, it confirms that climate change does not influence 

the duration curve too much. On the other hand, it also illustrates that the factor of 
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climate change is relatively smaller than the factors of the MBLRP method and GCM, in 

terms of the accuracy of estimation results. These plots also indicates the effect of 

climate change was projected differently by models in GCMs. 
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5. CONCLUSIONS  

 

Both flooding caused by extremely high precipitation and drought resulting from 

extremely low rainfall have a huge impact on agricultural, industrial and social fields. 

The purpose of estimating the effect of climate change on precipitation is to provide the 

hydrologist, policy maker, and all citizens with the information that could help them to 

make better decisions for the potential hydrologic risk.  

The key part of estimating the effect of climate change on precipitation is to 

generate a time series of precipitation in a future climate scenario. In this study, the 

MBLRP model was used to generate stochastic precipitation time series based on source 

data. Three GCM was used as a data source to provide current and future precipitation 

data. Since all models are simplifications of reality, the use of the MBLRP model and 

GCM brings uncertainty to the prediction results. Climate change could affect 

precipitation patterns, eventually including extreme precipitation. All factors have to be 

evaluated in order to evaluate the accuracy of the estimation results.  

Comparison of the statistics shows that for a 200-year time series, mean and 

variance were reproduced well by the MBLRP model. The accuracy of the MBLRP 

model largely depends on the solution of six parameters. The duration curve shows that 

the MBLRP method is limited in its ability to reproduce precipitation with frequency 

lower than 1% or for accumulation levels shorter than one hour. As accumulation levels 

increase, especially for 3-hour and 6-hour accumulation levels, the MBLRP model 

would have a better performance of generating stochastic precipitation. The study of an 
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algorithm for solving six parameters and improving the MBLRP model is beyond the 

scope of this study and could be future work.  

Compared with the observed data, the GCM largely and systematically 

underestimated the precipitation, which shows a large source of uncertainty from the 

MBLRP method. It is noticed that this source of uncertainty also caused by the 

difference on spatial resolution. Further, only three model out of 13 models in RCP6.0 

were selected from the GCMs, it is difficult and unreasonable to use this study to 

evaluate the uncertainty of all GCMs. In order to evaluate GCMs as a whole, all models 

must be taken into account. Also, the statistics relationship equations tend to 

overestimate the precipitation. Climate change did have some impact on precipitation in 

terms of changing frequency of rainfall and the mean amount of rainfall. However, both 

the duration curve analysis and the frequency analysis indicate that the effect of climate 

change on future precipitation is relatively small in the Houston area. The duration curve 

of future precipitation tends to be above the current one, which means that for the same 

probability, the amount of future daily precipitation is larger than the current 

precipitation. The predicted annual hourly extreme precipitation tends to be lower than 

the present due to the climate of the Houston area.  

The methodology presented in this study provides a framework for estimating the 

effect of climate change on precipitation. Among the three uncertainties, the uncertainty 

of the MBLRP model has a smaller impact on the results. The source of GCM data and 

the mismatched spatial resolution introduced more uncertainty into the estimation 
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results. From the result of the selected three models in RCP6.0, the effect of climate 

change on precipitation is limited in the Houston area. 



 

43 

 

REFERENCES 

  

Alexander, M. A., Scott, J. D., Mahoney, K., and Barsugli, J. 2013. "Greenhouse gas-

induced changes in summer precipitation over Colorado in NARCCAP regional 

climate models." Journal of Climate 26, no. 21: 8690-8697.  

Cho, H., Kim, D., Olivera, F., and Guikema. S. D. 2011. "Discrete Optimization: 

Enhanced speciation in particle swarm optimization for multi-modal 

problems." European Journal of Operational Research 213, 15-23. 

Fiering, M. B. 1967. Streamflow Synthesis. Harvard University Press, Cambridge, 

Massachussets. 

Fowler, H. J., Kilsby, C. G., O’Connell, P. E. 2000. "A stochastic rainfall model for the 

assessment of regional water resource systems under changed climatic condition." 

Hydrology and Earth System Sciences 4, no.2: 263-281. 

Fujino, J., Nair, R., Kainuma, M., Masui, T., and Matsuoka, Y. 2006. "Multigas 

mitigation analysis on stabilization scenarios using aim global model." The Energy 

Journal, no.3:343–354.  

Hijioka, Y., Matsuoka, Y., Nishimoto, H., Masui, T., and Kainuma, M. 2008. "Global 

GHG emission scenarios under GHG concentration stabilization targets." Journal of 

Global Environmental Engineering 13, 97–108. 

Isham, S., D. Entekhabi, and R. L. Bras. 1990. "Parameter estimation and sensitivity 

analysis for the modified Bartlett-Lewis rectangular pulses model of rainfall." 

Journal of Geophysical Research 95, no.3: 2093-2100. 

http://www.sciencedirect.com.ezproxy.library.tamu.edu/science/article/pii/S0022169412006609#b0065


 

44 

 

Khalyani, A. H., Gould, W. A., Harmsen, E., Terando, A., Quinones, M. and Collazo, J. 

A. 2016. "Climate change implications for tropical islands: interpolating and 

interpreting statistically downscaled GCM projections for management and 

planning." Journal of Applied Meteorology & Climatology 55, no. 2: 265-282.  

Kim, D., Olivera, F., Cho, H., and Socolofsky, S. A. 2013. "Regionalization of the 

modified Bartlett-Lewis rectangular pulse stochastic rainfall model." Terrestrial, 

Atmospheric & Oceanic Sciences 24, no. 3: 421-436.  

Koutsoyiannis, D. 2004. "Statistics of extremes and estimation of extreme rainfall: I. 

Theoretical investigation." Hydrological Sciences Journal 49, no. 4: 575-590.  

Mehrotra, R., Sharma, A., Nagesh Kumar, D., and Reshmidevi, T. V. 2013. "Assessing 

future rainfall projections using multiple GCMs and a multi-site stochastic 

downscaling model." Journal of Hydrology 488, 84-100.  

Oguz, H., Klein, A.G. and Srinivasan, R., 2007. "Using the SLEUTH urban growth 

model to simulate the impacts of future policy scenarios on urban land use in the 

Houston-Galveston-Brazoria CMSA." Research Journal of Social Sciences 2, no.1: 

72-82. 

Onof, C., Chandler, R. E., Kakou, A., Northrop, P., Wheater, H. S., and Isham, V. 2000. 

"Rainfall modelling using Poisson-cluster processes: a review of 

developments." Stochastic Environmental Research & Risk Assessment 14, no. 6: 

384. 



 

45 

 

Pendergrass, A.G., Lehner, F., Sanderson, B. M., and Xu, Y. 2015. "Does extreme 

precipitation intensity depend on the emissions scenario?" Geophysical Research 

Letters 42, no. 20: 8767-8774.  

Samuel, C. 1999. Stochastic rainfall modelling of convective storms in Walnut Gulch, 

Arizona. PhD Thesis, Imperial College London. 

Smithers, J., Schulze, R., and Pegram, G. 1999. "Predicting short duration design storms 

in South Africa using inadequate data, hydrological extremes: understanding, 

predicting, mitigating." Proceedings of the IUGG 99, Symposium HS1, 

Birmingham, UK. 

Texas State Historical Association. (2016) "Texas Temperature, Freeze, Growing Season 

and Precipitation Records by County." Retrieved 02/01/2016, from 

https://texasalmanac.com/sites/default/files/images/almanac-

feature/countyweatherA.pdf.  

United States Geological Survey. (1998) "Extreme Precipitation Depth for Texas, Excluding 

the Trans-Pecos Region" Retrieved 02/02/2016, from 

http://pubs.usgs.gov/wri/wri984099/pdf/wri98-4099.pdf. 

Verhoest, N., P. A. Troch, and F. P. De Troch. 1997. "On the applicability of Bartlett- 

Lewis rectangular pulses models in the modeling of design storms at a point." 

Journal of Hydrology 202, no.1: 108-120. 

White, C. J., Franks, S. W., and McEvoy, D. 2015. "Using subseasonal-to-seasonal 

(S2S) extreme rainfall forecasts for extended-range flood prediction in 

https://texasalmanac.com/sites/default/files/images/almanac-feature/countyweatherA.pdf
https://texasalmanac.com/sites/default/files/images/almanac-feature/countyweatherA.pdf


 

46 

 

Australia." Proceedings of the International Association of Hydrological Sciences 

(PIAHS) 370, 229-234.  

Wilks, D., and Wilby, R. (1999). "The weather generation game: a review of stochastic 

weather models." Progress in Physical Geography 23, no.3: 329-357. 



 

47 

 

APPENDIX A. DURATION CURVE 

 

Gfdl-cm-3.1 model 

         

                                                         

 

 

Duration curves of COOP: 411956 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 15-, 30-minute, 1-, and 3-hour 

levels. 
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Duration curves of COOP: 411956 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 6-, 12-, and 24-hour levels. 
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Duration curves of COOP: 412206 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 15-, 30-minute, 1-, and 3-hour 

levels. 
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Duration curves of COOP: 412206 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 6-, 12-, and 24-hour levels. 
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Duration curves of COOP: 414309 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 15-, 30-, 1-, and 3-hour levels. 
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Duration curves of COOP: 414309 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 6-, 12-, and 24-hour levels. 
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Duration curves of COOP: 414311 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 15-, 30-, 1-, and 3-hour levels. 
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Duration curves of COOP: 414311 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 6-, 12-, and 24-hour levels. 
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Duration curves of COOP: 414329 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 15-, 30-, 1-, and 3-hour levels. 
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Duration curves of COOP: 414329 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 6-, 12-, and 24-hour levels. 
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Duration curves of COOP: 417594 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 15-, 30-minute, 1-, and 3-hour 

levels. 
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Duration curves of COOP: 417594 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 6-, 12-, and 24-hour levels. 
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Duration curves of COOP: 418996 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 15-, 30-minute, 1-, and 3-hour 

levels. 
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Duration curves of COOP: 418996 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 6-, 12-, and 24-hour levels. 
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Miroc-esm.1 model: 

 

 

 

 

Duration curves of COOP: 411956 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 15-, 30-minute, 1-, and 3-hour 

levels. 
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Duration curves of COOP: 411956 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 6-, 12-, and 24-hour levels. 
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Duration curves of COOP: 412206 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 15-, 30-minute, 1-, and 3-hour 

levels. 
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Duration curves of COOP: 412206 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 6-, 12-, and 24-hour levels. 
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Duration curves of COOP: 414309 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 15-, 30-, 1-, and 3-hour levels. 
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Duration curves of COOP: 414309 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 6-, 12-, and 24-hour levels. 
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Duration curves of COOP: 414311 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 15-, 30-, 1-, and 3-hour levels. 
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Duration curves of COOP: 414311 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 6-, 12-, and 24-hour levels. 
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Duration curves of COOP: 414329 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 15-, 30-minute, 1-, and 3-hour 

levels. 
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Duration curves of COOP: 414329 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 6-, 12-, and 24-hour levels. 
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Duration curves of COOP: 417594 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 15-, 30-minute, 1-, and 3-hour 

levels. 

 

 

 

 



 

72 

 

 

 

 

 

 

Duration curves of COOP: 417594 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 6-, 12-, and 24-hour levels. 
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Duration curves of COOP: 418996 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 15-, 30-minute, 1-, and 3-hour 

levels. 
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Duration curves of COOP: 418996 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 6-, 12-, and 24-hour levels. 
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Miroc-esm-chem.1 model: 

 

 

 

 

Duration curves of COOP: 411956 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 15-, 30-minute, 1-, and 3-hour 

levels. 
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Duration curves of COOP: 411956 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 6-, 12-, and 24-hour levels. 
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Duration curves of COOP: 412206 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 15-, 30-minute, 1-, and 3-hour 

levels. 
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Duration curves of COOP: 412206 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 6-, 12-, and 24-hour levels. 
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Duration curves of COOP: 414309 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 15-, 30-, 1-, and 3-hour levels. 
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Duration curves of COOP: 414309 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 6-, 12-, and 24-hour levels. 
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Duration curves of COOP: 414311 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 15-, 30-, 1-, and 3-hour levels. 
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Duration curves of COOP: 414311 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 6-, 12-, and 24-hour levels. 
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Duration curves of COOP: 414329 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 15-, 30-minute, 1-, and 3-hour 

levels. 
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Duration curves of COOP: 414329 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 6-, 12-, and 24-hour levels. 
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Duration curves of COOP: 417594 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 15-, 30-minute, 1-, and 3-hour 

levels. 
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Duration curves of COOP: 417594 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 6-, 12-, and 24-hour levels. 
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Duration curves of COOP: 418996 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 15-, 30-minute, 1-, and 3-hour 

levels. 
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Duration curves of COOP: 418996 rainfall station for different accumulation levels’ 

precipitation. From the top to bottom and left to right, 6-, 12-, and 24-hour levels. 
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APPENDIX B. FREQUENCY ANALYSIS OF ANNUAL PEAK PRECIPITATION 

 

 

 

 

Annual hourly extreme precipitation for the return periods of 2-, 5-, 10-, 25-, 50-, and 

100-years of Rainfall station 417594. From left to right, top to bottom, gfdl-cm 3.1 

model, miroc-esm.1 model, and miroc-esm-chem.1 model. 
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APPENDIX C. USER INTERFACE OF MBLRP SIMULATOR 

 

A user interface was developed in MATLAB code that allows users to generate a 

stochastic precipitation time series using the MBLRP method.  

 

This interface allows users to calculate the statistics of a precipitation time series 

with a certain accumulation level. The input file must contain a precipitation time series. 

Users could input the expect accumulation level in the unit of hour to specify a certain 

accumulation level for the statistics. The output results are the mean, variance, 

probability of zero, and lag-1 autocorrelation coefficient of the input precipitation time 

series at a certain accumulation level specified by the user. By clicking “Run”, the 

statistics of the input precipitation time series for the expected accumulation level will be 

calculated and save as an Excel file at the same path as the input file. 
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This user interface allows users to convert the MBLRP parameters to a certain 

accumulation level. In order to generate the stochastic precipitation time series at another 

accumulation level using the MBLRP method, the parameters need to be convert to the 

expected accumulation level. The “Input File” button allows users to input the 

parameters λ, ν, α, μ, ϕ, and κ.  The old time step should equal the accumulation level of 

the input parameters. The new time step should equal the expected accumulation level. 

By clicking “Run”, the parameters for the expected accumulation level will be calculated 

and saved as an Excel file at the same path as the input file. 
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This user interface allows users to generate a stochastic precipitation time series using 

the MBLRP model. With the “Input File” button, users can specify the file that contains 

a matrix of parameters required by the MBLRP model. In this matrix of parameters, each 

low represents a certain month. Each low contains six parameters in the following 

sequence: λ, ν, α, μ, ϕ, and κ. Time step allows users to set an accumulation level in the 

unit of hour for the output time series.  By clicking “Run”, the mean, variance, 

probability of zero, and lag-1 autocorrelation coefficient of the stochastic precipitation 

will be generated and saved as an Excel file at the same path as the input file. By default, 

the length of time series is 200 years. With this length, the statistics of the MLBRP 

precipitation have a good match with the observed precipitation.  

 

 

 




