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ABSTRACT 

Lyme Disease is caused by the bacterial pathogen Borrelia burgdorferi, and is 

transmitted by the tick-vector Ixodes scapularis. It is the most prevalent arthropod-borne 

disease in the United States. To determine the seroprevalence of B. burgdorferi 

antibodies in white-tailed deer (Odocoileus virginianus) from Texas, we analyzed serum 

samples (n=1493) collected during the 2001-2015 hunting seasons, using indirect 

ELISA. Samples with higher sero-reactivity (0.803 and above) than the negative control 

group (0.662) were further tested using a more specific standardized western 

immunoblot assay to rule out false positives. Using ELISA, 4.7% of the samples were 

sero-reactive against B. burgdorferi, and these originated in two eco-regions in Texas 

(Edwards Plateau and South Texas Plains). However, only 0.5% of the total samples 

were positive by standardized western immunoblot assay. Additionally, both ELISA and 

standardized western immunoblot assay results correlated with an increased incidence in 

human Lyme Disease cases reported in Texas. This is the first study to demonstrate a 

seroprevalence of anti-B. burgdorferi antibodies in Texas white-tailed deer. Future 

ecological and geographical studies are needed to assess the environmental factors 

governing the prevalence of Lyme Disease in non-endemic areas of the southern United 

States. 
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1. INTRODUCTION 

 

Lyme Disease (LD) is caused by the bacterial pathogen Borrelia burgdorferi and 

transmitted by the tick vector Ixodes scapularis. This disease is considered the most 

prevalent arthropod-borne disease in the United States (US). In recent years, there has 

been an increase in the number of human LD cases confirmed by the Centers for Disease 

Control and Prevention (CDC, 2015) across its geographic distribution, and more 

prevalent than expected with over 300,000 infected individuals estimated annually 

(Kuehn, 2013). In 1975, a significant number of juvenile arthritis cases were identified 

in the towns of Lyme and Old Lyme, Connecticut, US. Further investigations revealed 

that these children were not suffering from arthritis, but rather, an infectious clinical 

disease (Steere et al., 1977). The bacterium responsible for this disease was thereafter 

identified by the medical entomologist Dr. Willy Burgdorfer in 1981 (Burgdorfer et al., 

1982), and later named B. burgdorferi in his honor. 

To date, most studies investigating LD prevalence in the US have focused on the 

endemic northeastern and midwestern states (Gill et al., 1994; Lane and Burgdorfer, 

1986; Ostfeld and Keesing, 2000; Pepin et al., 2012) with few studies carried out in 

nonendemic southern US. Several recent studies focused on LD in the Texas-Mexico 

transboundary southern US region (Clark et al., 2014; Feria-Arroyo et al., 2014; 

Rudenko et al., 2014; Szonyi et al., 2015). In addition, there are several studies reporting 

B. burgdorferi spirochetes isolation from humans, as well as from I. scapularis ticks 

removed from animals in Texas (Burgdorfer and Keirans, 1983; Piesman and Sinsky, 
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1988; Rawlings, 1987; Rawlings and Teltow, 1994; Rawlings et al., 1987; Teltow et al., 

1991).  

LD is a multisystem infectious bacterial disease caused by several of the 18 

genospecies in the B. burgdorferi sensu lato complex. In North America, B. burgdorferi 

sensu stricto causes LD while B. afzelii and B. garinii are considered the cause of most 

European cases. Other Borrelia genospecies possibly associated with human clinical 

cases are B. valaisiana, B. bissettii, B. americana, and B. mayonii (Ryffel et al., 1999; 

Stanek and Reiter, 2011; Pritt et al., 2016). Natural vertebrate hosts of B. burgdorferi 

include white-footed mice, shrews, raccoons, squirrels and birds etc., and these can serve 

as sources of infection when parasitized by infected ticks (Anderson, 1989).  

LD manifests in three clinical stages, including acute, subacute and chronic 

clinical stages. The acute clinical stage, which manifests as a characteristic circular 

reddened skin lesion called Erythema migrans (EM), is usually accompanied by 

headache, fever, arthralgia, myalgia and lymphadenitis. The subacute clinical stage 

occurs about few weeks after the acute stage, and includes cardiac and neurologic 

involvement. The chronic clinical stage involves sporadic arthritic and nervous 

complications (Steere et al., 1983; Steere et al., 1986).  

Antibiotics such as doxycycline and amoxicillin have proved effective in treating 

the acute and chronic stages of LD (Adelson et al., 2004). Currently, there is no LD 

vaccine for human use, the only formulation available is approved for veterinary use, 

and labeled for dogs only (Embers and Narasimhan, 2013). Therefore, one of the 
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preventive methods of LD in humans is the use of insect repellents, light-color clothing 

when outdoors, and prompt checking of attached ticks after outdoor activities.  

In the US, the ticks responsible for the transmission of this pathogen are I. 

scapularis and I. pacificus. Other Ixodes species known to participate in the enzootic 

cycle of this bacterial pathogen in the US are I. dentatus and I. affinis (Brownstein et al., 

2003).  

Ixodes are three-host ticks with a lifecycle spanning two to four years during 

which they undergo four developmental stages including egg, larva, nymph and adult. 

The larval and nymphal stages of these ticks feed on a wide host range including small 

mammals such as the white-footed mouse (Peromyscus leucopus; a natural reservoir of 

B. burgdorferi), chipmunks and squirrels, and also birds and reptiles (Frank et al., 1998; 

Ostfeld et al., 2006). Adult stages of Ixodes prefer to feed on large mammals, such as the 

white-tailed deer (WTD), Odocoileus virginianus. Other stages of I. scapularis 

especially nymphs are also known to feed on WTD (Ostfeld et al., 2006). 

In the northeastern and midwestern areas of the US where LD has been 

extensively studied, the risk of LD is considered greater for humans in summer when 

their activities occur in tick-infested habitats (Pepin et al., 2012), and when nymphs are 

more numerous. In contrast, adult ticks are active in fall, but because human outdoor 

activities decrease in this climatic season, infection is less likely (Ostfeld et al., 2006). 

The literature has emphasized the importance of WTD as hosts for Ixodes. The 

adult ticks feed on WTD and mate, which maintain their populations (Main et al., 1981; 

Wilson et al., 1985). Studies in the endemic areas of northeastern and midwestern US 
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have showed that WTD densities and Ixodes abundance correlated positively with 

human cases of LD. A lower density of WTD and number of ticks in these areas is 

correlated with lower numbers of reported cases of LD in humans (Daniels et al., 1993; 

Kilpatrick et al., 2014; Wilson et al., 1985). However, other studies have reported that 

the removal of WTD in certain geographic areas did not necessarily eliminate the 

circulation of I. scapularis (Perkins et al., 2006). To date, very limited information is 

known about LD ecology in the southern US.  

Serological tests including ELISA, immunofluorescence and immunoblot assay, 

have revealed the presence of antibodies to B. burgdorferi in various animal species. 

These include WTD as well as other wild mammals (white-footed mouse, raccoon), and 

domestic animals (dog, cat, horse, cattle) in northeastern and midwestern regions of the 

US (Brownstein et al., 2003; Magnarelli et al., 1984; Main et al., 1981). The application 

of serologic surveillance in WTD has been used to establish geographic locations where 

B. burgdorferi circulates (Gill et al., 1993; Gill et al., 1994; Lane et al., 1986; Magnarelli 

et al., 1984; Magnarelli et al., 1986; Martinez et al., 1999). 

With little being known about LD ecology in the southern US (Esteve-Gassent et 

al., 2015; Szonyi et al., 2015), the expansion of Ixodes tick population in the US (Eisen 

et al., 2016), the detection of I. scapularis ticks infected with B. burgdorferi in Texas 

(Feria-Arroyo et al., 2014), and the growing population of WTD nationwide (McShea, 

2012; Raizman et al., 2013; Rawinski and Square, 2008), the objective of the current 

study was to determine the sero-reactivity of Texas WTD to B. burgdorferi during a 15-

year longitudinal study (2001-2015).  
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2. MATERIALS AND METHODS 

 

2.1. White-Tailed Deer Serum Sample Collection 

From October 2001 to February 2015, a total of 1493 male and female WTD 

ranging from 0.5-6.5 years of age were sampled during the Texas hunting season from 

14 counties of the state. About 56.9% of the WTD population sampled were adults (two 

years and older), 23% were yearlings (one to two years old), and 20.1% fawns (less than 

one year of age). The counties from which samples were collected included Bee, Bell, 

Brazos, Gonzales, Guadalupe, Hamilton, Karnes, Kerr, Medina, Real, Travis, Uvalde, 

Webb, and Williamson (Fig. 1).  

All blood samples were collected, centrifuged, sera separated and stored in a -

20°C freezer until used. Dr. J. Morrill from the University of Texas Medical Branch 

(UTMB) (Galveston, Texas), and the Orion Research and Management Services, Inc. 

Belton, Texas provided samples. Additional WTD serum samples, which were obtained 

at the Texas A&M University Winnie Carter Wildlife Center, served as negative 

controls. These were collected from 2003-2013 from pen-raised WTD with no known 

exposure to ticks or B. burgdorferi. These animals received ivermectin injections (for its 

acaricidal properties) triple the recommended dose annually in the fall, and repeated 

every 10-14 days. In addition, a second group of negative controls were obtained in 2015 

from WTD on deer ranches that implemented tick control measures, and where Ixodes is 

less prevalent. 
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2.2. Serological Analyses 

Indirect ELISA was used to detect antibodies to B. burgdorferi in the sera of 

WTD following previously described protocols (Small et al., 2014), and modified for 

WTD. This modification used B. burgdorferi B31 strain A3 grown in (Barbour-

Stoenner-Kelly II) BSK-II medium (pH 7.6), and supplemented with 1% inactivated 

rabbit serum, at 32°C and 1% CO2. ELISA plates were blocked with 3% bovine serum 

albumin (BSA) to reduce nonspecific reactivity. The primary antibody dilution used was 

1:200 (WTD serum samples) and 1:2000 was used for the secondary antibody dilution 

(Horseradish peroxidase-conjugated Rabbit anti-deer Immunoglobin G, Rockland 

Immunochemicals, Inc., Limerick, PA, USA). Both primary and secondary dilutions 

were carried out in 0.1M phosphate-buffered saline (pH 7.4) with 0.1% Tween 20. The 

substrate used for the enzyme included both o-phenylene diamine dihydrochloride 

(OPD) (Thermo Fisher Scientific, Life Technologies, Carlsbad CA, USA) and hydrogen 

peroxide. Optical density values were read at 450nm. Samples were considered sero-

reactive when the optical density 450nm (OD) values were three standard deviations 

(SD) above the mean for the negative controls (OD = 0.662).  

Commercially developed standardized western immunoblot assays for the 

analyses of WTD sera are not available. Therefore, the samples with a high sero-

reactivity (high optical density above the cut off value) when compared to the negative 

controls, were tested further with a standardized western immunoblot assay. This assay 

was used to determine the specificity of the immune reaction to B. burgdorferi specific 

antigens, and to rule out false positives. The standardized western immunoblot assay 
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used in this study was modified using previous studies (Gill et al., 1994). B. burgdorferi 

B31 strain A3 was the test antigen used. This modification used B. burgdorferi pure cell 

lysates, which were separated in 12% SDS-PAGE gels following standardized 

electrophoresis protocols at 100 volts for 90 minutes (Maruskova et al., 2008). After 

Borrelia proteins were separated, gels were transferred to nitrocellulose membranes (GE 

HealthCare) using the RTA transfer blot kit (Bio-Rad Laboratories, Inc. Hercules, CA, 

USA) following manufacturer’s recommendations. The membranes were blocked using 

1% nonfat skimmed milk in Tris Buffer Saline (TBS) containing 0.2% Tween 20. 

Primary antibody (WTD serum samples) was utilized at 1:1500 dilution and incubated 

overnight at 4°C, while secondary antibody (Peroxidase conjugated Rabbit anti-deer 

IgG, Rockland Immunochemicals, Inc., Limerick, PA, USA) dilution at 1:5000 was 

incubated for one hour at room temperature. All blots were visualized using 

Chemiluminescence (Bio-Rad Chemiluminescence and Colorimetric detection kit, Bio-

Rad Laboratories, Inc., Hercules, CA, USA) and imaged using a ChemiDoc ™ Touch 

(Bio-Rad Laboratories, Inc., Hercules, CA, USA). All blots were imaged every 10 

seconds for a maximum of 10 minutes. Samples with five or more bands (excluding 

cross-reactive bands that were also present on the immunoblots of the negative control 

samples) were considered positive, partly in line with the LD diagnostic standards 

established by the CDC, while samples with four or less bands were considered negative. 
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2.3. Statistical Analysis 

The statistical analysis used to determine the cut-off value for the indirect ELISA 

was STATA 12.0 statistical software (STATA 2011, StataCorp LP, College Station, 

Texas 77845 USA). The cut-off value (Fig. 2) was calculated as three standard 

deviations plus the average of negative controls. The graphs were plotted using Prism 

6.0. 

 

 

 

 

 

 

 

 

 

 

 



 

 9 

3. RESULTS 

 

Serum samples of 1493 WTD were collected and evaluated for sero-reactivity 

against B. burgdorferi. Of these samples, 1384 were categorized as the study samples 

while 109 were the negative controls. The indirect ELISA results were read at the optical 

density of 450nm (OD) and ranged from 0-1.395 for the test samples, and 0-0.662 for 

the negative control samples. The cut off value (0.803) used to detect the highly sero-

reactive samples was calculated by adding the average of the negative controls to three 

times their standard deviation. Therefore, test samples above 0.803 were considered 

sero-reactive and thereafter further analyzed with standardized western immunoblot 

assay (Fig. 2). 

A total of 65/1384 (4.7%) WTD had a high sero-reactivity to B. burgdorferi by 

indirect ELISA and 7/1384 (0.5%) by standardized western immunoblot assay (Table 1). 

Control samples (109) were utilized to evaluate cross-reactivity of WTD negative serum 

to B. burgdorferi antigens. In this experiment we observed that a number of bands 

(45kDa, 50kDa, 70kDa) appeared cross-reactive because they were also found in the 

negative control samples. Consequently, those three bands were removed from analyses 

of the test samples, and not considered when marking the highly sero-reactive WTD 

samples (Table 2). The samples marked as highly sero-reactive were those that had five 

or more reactive bands by the standardized western immunoblot assay (Fig. 3B). 

Consequently, from the sero-reactive group, 10.8% (7 out of 65) of the highly sero-

reactive samples were positive by standardized western immunoblot assay, which 
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represented approximately 0.5% (7 out of 1384) of the total samples studied. The gender 

distribution of the sero-reactive samples by standardized western immunoblot assay was 

as follows; 42.9% (3/7) were males (two fawns and a yearling) while 57.1% (4/7) were 

adult females. There is no apparent age or sex trend observed with respect to the positive 

samples. In addition, the positive samples by standardized western immunoblot assay 

were further tested using the standardized Marblot western blot assay (Fig. 3B). This 

assay is designed for qualitative in vitro detection of human immunoglobulin G (IgG) 

antibody to individual proteins of B. burgdorferi (B31) in human serum 

(http://www.trinitybiotech.com). As shown in Fig. 3, four of the seven sero-reactive 

WTD samples also provided a positive result using the commercially available Marblot 

test. The remaining three samples provided a very weak immunoreactivity to the 

different Borrelia antigens presented in this test.  

Overall, the counties with the highest prevalence of sero-reactive samples were 

Travis and Williamson, located in central region of Texas (Fig. 1). Interestingly, those 

sero-reactive WTD samples were detected in years 2002 (6 samples) and 2009 (1 

sample), which correlate with the years in which Texas reported to CDC their highest 

numbers of human LD (Fig. 4). In addition, since WTD are not competent reservoirs of 

B. burgdorferi, even a low seroprevalence may be suggestive of the activities of Ixodes 

in these areas. Moreover, when looking at the density of WTD in the counties with the 

sero-reactive samples, we observed that they are located in the eco-regions with the 

highest WTD densities in the state of Texas. Furthermore, those densities were above 

state average, with a continuous increase since 2007 (Fig. 5). 



 

 11 

4. DISCUSSION 

 

The current study was designed to evaluate the sero-reactivity of WTD to LD 

pathogen (B. burgdorferi) in central and south Texas, and we showed a sero-reactivity of 

only 4.7% (65/1384) by indirect ELISA and 0.5% (7/1384) by standardized western 

immunoblot assay, with distribution across different eco-regions of Texas, in particular, 

the central region of the state (Texas Parks and Wildlife Department, 2015; 

https://tpwd.texas.gov/education/hunter-education/online-course/wildlife-

conservation/texas-ecoregions). Additionally, the years of high WTD sero-reactivity 

correlate with the years during which there was a peak of reported LD cases in Texas 

(Fig. 4).  

We evaluated 1493 WTD serum samples (1384 test samples and 109 negative 

control samples), obtained across 14 counties in Texas. The test samples were obtained 

from several locations across central and south Texas, including areas where there have 

recently been a high number of reported LD cases in the past decade (TickChek, 2015; 

https://www.tickchek.com/stats/state/texas/lyme). The negative control samples were 

obtained from pen-raised WTD at the Texas A&M University Winnie Carter Wildlife 

Center, with no known exposure to B. burgdorferi; deer ranches where ectoparasites and 

acarid control measures were implemented; and areas where there was a lower 

possibility of Ixodes tick survival. Due to the fact that WTD are free roaming animals, 

the objective was to obtain a large pool of negative samples, including those with known 

lack of tick exposure, as well as those that could have been exposed to ticks but not to 
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the bacterial pathogen, to account for a more realistic background reactivity of WTD 

serum samples in the different serological tests performed.  

Upon further analysis of the 65 samples that were positive by ELISA with 

standardized western Immunoblot assay, samples with five or more bands were 

considered highly sero-reactive, while samples with four or less bands were marked 

negative. There is a lack of standardized tests for WTD and any information on their 

reactivity to specific B. burgdorferi antigens. Therefore, the decision of high sero-

reactivity was partly based on the LD diagnostic standards of the CDC and the 

immunoblot results obtained in this study (Fig. 3). Some of the reactive bands seen with 

the samples positive by standardized western immunoblot assay (31kDa, 34kDa, and 

41kDa) were consistent with the bands seen on western immunoblots of samples from 

humans with LD (Craft et al., 1986; Gill et al., 1993; Grodzicki and Steere, 1988). In the 

study conducted by Gill et al., (1993), the mean number of bands in their immunoblot 

assay for WTD samples collected from established I. scapularis areas, and positive by 

ELISA were 8.2. In contrast, our data showed the mean number of bands in the 

immunoblot study to be 5.6. A possible explanation for this lower number might be the 

nonendemicity of our study areas, in addition to the fact that these samples were not 

tested with antigens from a local B. burgdorferi isolate, due to the lack of it. Also, Gill et 

al., (1993) reported that the Borrelia antigen at 19.5kDa reacted with 94% of their 

ELISA-positive samples. In contrast, none of our ELISA positive samples reacted with 

Borrelia antigen at 19.5kDa.  In the current study, the 45kDa, 50kDa and 70kDa 

Borrelia antigens may be nonspecific as these were found in most of the WTD serum 
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samples negative by ELISA, as well as the negative control samples (Fig. 5). 

Furthermore, only one of the seven positive samples showed a response to one of the 

two major outer surface proteins, OspB (Table 2). However, animals immunized with 

killed LD spirochetes have been shown to respond to the outer surface proteins OspA 

and OspB (Gill et al., 1993). Previous studies have also reported a lack of response to the 

outer surface proteins of B. burgdorferi in humans infected in the early stage of LD 

(Craft et al., 1986; Grodzicki and Steere, 1988; Guy, 1993). Therefore we could 

hypothesize that the sero-reactive animals had a recent exposure to B. burgdorferi, 

because our sampling period (fall and winter months in Texas) correlates with the 

activity of I. scapularis adult stage. 

Three of the seven sero-reactive WTD samples did not give a positive result 

when the Marbot test was used, but these samples showed a number of reactive bands in 

the developed in-house immunoblot test, and high ELISA readings. This discrepancy 

could be due to the fact that other Borrelia species such as B. lonestari, the causative 

agent of Southern Tick Associated Rash Illness (STARI), could also be present in the 

state of Texas. In this respect, B. lonestari is known to be transmitted by Amblyomma 

americanum (Lone Star tick), which also feeds on WTD, and co-infections could be 

present.  

Even though there was neither a positive control for our study, nor a previous 

study in Texas to compare our WTD data, we evaluated the high sero-reactivity based on 

a comparison with our negative controls. These WTD negative controls were obtained 

from three sources; 1) pen-raised and kept in captivity at the Texas A&M University 
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Winnie Carter Wildlife Center, with no known exposure to ticks and B. burgdorferi; 2) 

ranches where ectoparasite and acaricide control measures were implemented, and 3) 

areas where there is a lower distribution of Ixodes tick geographically. Taken together, it 

is therefore likely that, the generally low sero-reactivity recorded in this serological 

analysis of WTD in Texas, may be an indication of a low incidence of LD in this non-

endemic southern region of the US. 

In reviewing the literature, no data was found on the correlation of a high 

population density of WTD with LD incidence in Texas, but there have been reports of a 

positive correlation between WTD population and LD cases in endemic regions of the 

US (Kilpatrick et al., 2014; Wilson et al., 1985). Nonetheless, there has been an increase 

in population density of WTD from 14,000 to 3.8 million across Texas over the past 

decade (Alan, 2013). In the current study, the highly sero-reactive WTD were reported 

in one of the Texas eco-regions in which WTD population density has significantly 

increased (Alan, 2013) over the past decade (Fig. 5). Therefore, we hypothesize that the 

increased populations of WTD may be a contributing factor to the increased LD cases in 

these two counties.  

From our data, the overall seroprevalence for B. burgdorferi in WTD in Texas is 

low, but two counties in the central part of the state in which we recorded higher levels 

of antibodies correlate with the years during which a peak of human LD cases occurred. 

Additionally, we have demonstrated, for the first time, the distribution of anti-B. 

burgdorferi antibodies in WTD in Texas. Future research is aimed at Geographical 

Information System (GIS) mapping methods and spatio-temporal analyses to evaluate 
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land use changes over the period of time during which these serum samples were 

obtained, in order to understand the link between WTD sero-reactivity to B. burgdorferi, 

land use changes in Texas, the observed increase in WTD populations in the central 

region of the state, and their impact on LD risk in non-endemic areas. 
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APPENDIX 1 

 

Figures 

                                   

 

 

 

 

 

 

Fig. 1. Texas map showing 14 counties in which white-tailed deer (WTD) were sampled for anti-
Borrelia burgdorferi antibodies from 2001-2015. Counties in blue are where samples, which were 
negative by ELISA and standardized western immunoblot assay were obtained. Counties in gray are 
where negative control samples were obtained. Counties in yellow are where samples sero-reactive by 
standardized western immunoblot assay (Travis and Williamson counties) were obtained. 
. 
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A        B  

Fig. 2. Optical density values of the white-tailed deer (WTD) serum samples analyzed with indirect 
ELISA for anti-Borrelia burgdorferi.  (A.) ELISA data from 109 WTD serum samples used as negative 
controls, collected from 2003-2015. (B.) ELISA data from 1384 WTD serum samples collected from 
2001-2013. The overall range of values is 0-1.395 and 0-0.662 for the study samples and negative 
controls, respectively. The red line denotes the cut off value (0.803) used in this study (average optical 
density 450nm, OD, of negative controls plus three times their standard deviation). The samples above this 
line were analyzed with standardized western immunoblot assay to validate the ELISA results and to rule 
out false positives. 
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Fig. 3. Assays used to demonstrate reactivity to Borrelia burgdorferi antigens in white-tailed deer serum 
samples. (A) The molecular weight marker (Mk) showing estimated molecular weights of Borrelia 
antigens (Bb). (B) From left to right, negative control samples (1-5) and samples highly sero-reactive (6-
12). The three immunoassays used were ELISA, standardized western Immunoblot and Marblot assays. 
This figure shows that negative control samples were negative for the three immunoassays. Sample 6 was 
positive by both ELISA and WB but negative by MB. Samples 7 and 8 were positive by both ELISA and 
WB but weakly reactive by MB. Samples 9 to 12 were positive by the three immunoassays.  
MB: Marblot standardized western immunoblot assay. WB: Laboratory standardized western immunoblot 
assay. ELISA: Enzyme-linked Immunosorbent Assay. 
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Fig. 4. Confirmed human Lyme Disease cases in Texas from 2000-2013 reported to the CDC 
(www.cdc.com). 
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Fig. 5. White-tailed deer (WTD) population density in Texas eco-regions from 2005-2013. This graph is 
a representation of WTD population density statewide in Texas; in two counties (Travis and Williamson) 
where sero-reactive samples, and negative control samples for Borrelia burgdorferi antibodies were found. 
Statewide: WTD population density in Texas. 
Positive: WTD population density in Texas eco-region in which the highly sero-reactive samples were 
found. 
Negative: WTD population density in Texas eco-regions where the negative control samples were 
collected. 
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APPENDIX 2 

 

Tables 

Table 1 
Summary of the white-tailed deer serum samples, including year, age, sex and the counties from which 
they were obtained.  
  Fawns Yearlings Adults  
Year County Does Bucks Does Bucks Does Bucks Total 
2001 Travis 10 10 4 10 32 22 88 
2002 Travis 16 23 9 11 78 25 162 
2003 Travis 5 8 7 19 20 13 72 
2004 Travis 9 8 2 9 11 3 42 
2005 Travis, Webb 9 7 3 7 26 16 68 
2006 Travis, Bell 20 19 14 22 88 32 195 
2007 Uvalde, Travis 

Webb, Bell 
7 5 4 16 34 13 79 

2008 Williamson, 
Travis, Real 

6 2 4 4 21 9 46 

2009 Travis, 
Williamson, 
Hamilton 

10 8 4 14 29 17 82 

2010 Travis, 
Williamson 

16 14 12 17 38 17 114 

2011 Williamson, 
Travis, Bell 

3 8 11 28 39 28 117 

2012 Travis, 
Williamson, 
Hamilton 

9 15 17 23 52 33 149 

2013 Travis, 
Williamson, 
Hamilton 

10 22 8 39 59 32 170 

Total by sex (%)  130 
(9.4) 

149 
(10.7) 

99 
(7.2) 

219 
(15.8) 

527 
(38.1) 

260 
(18.8) 

1384 
(100%) 

Total (%) 279 (20.2) 318 (22.9) 787 (56.9)  
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Table 2 
White-tailed deer serum samples positive by ELISA and standardized western  
immunoblot assay, with their respective years and location. 
Year County No of samples 

positive by 
ELISA 

No of samples positive by 
standardized western 
immunoblot assay 

    
2001 Travis 3 0 
2002 Travis 29 6 
2005 Travis 3 0 
2007 Travis, Uvalde 7 0 
2008 Travis 3 0 
2009 Travis, 

Williamson 
4 1 

2010 Travis 10 0 

2013 Travis, 
Williamson 

6 0 

Total     65       7 

Only seven of the samples highly sero-reactive by ELISA were positive by standardized western 
immunoblot assay, indicating a potential cross-reactivity with proteins similar to Borrelia burgdorferi. 
 

 


