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ABSTRACT 

The goal of this thesis is to demonstrate that linear-based data-driven models are innovative 

and robust. They have the potential to forecast well bottom-hole pressure and identify 

interference effects between wells. 

Permanent Downhole Gauges (PDGs) provide a continuous real-time record of pressure and 

temperature in the downhole environment.  These real-time downhole measurements of 

pressure contain information about the reservoir properties and interactions with offset wells.  

This work presents a methodology to reproduce well bottom-hole pressure behavior quickly 

and to forecast future behavior using those measurements. It also identifies the influence of 

offset wells based on flowrate-pressure measurements using linear data analysis methods.  

In this methodology, we chose linear-based machine learning methods as they are much faster, 

more robust, and more easily interpreted. Furthermore, we formulate the functional relationship 

between flowrate and bottom-hole pressure into linear relationships using superposition 

techniques and physical flow behavior assumptions. Then, without making any further physical 

assumptions, we regulate process into two stages — training and testing. Training is the 

regression phase where the flowrates and pressures are correlated using linear machine learning 

algorithms. Testing is the extrapolation, or forecasting, of the training model to predict well 

pressure behavior based on a flowrate history.  

First, to identify offset well interference effects for a selected well, we reproduce the well’s 

bottom-hole pressure response using only flowrate and time data for that well. Subsequently, 

we test the influence of offset wells on the selected well’s bottom-hole pressure response by 

considering the selected well and offset well’s flowrate history one at a time, until we have 

examined all possible offset wells. By systematically studying the effects of offset wells on the 

selected well's bottom-hole pressure, we are able to determine the interference of offset wells 

using only flowrate histories for the considered wells.  

We validate the methodology by using a synthetic reservoir model whose behavior 

(connectivity) is known. We reproduce and forecast the pressure behavior of a selected well 

and determine the influence of offset wells. Then, we compare the identified interference wells 
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with known answers. We note that there is an agreement between the algorithm’s results and 

synthetic model. Also, we test the methodology on the actual field cases. We observe agreement 

between identified interference effects from offset wells using linear-based data analytics 

method and those determined from the interpretation of multi-well tests and dynamic 

observations. 
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INTRODUCTION 

Real-time downhole pressure and temperature acquisition is vitally crucial for well 

management and reservoir characterization. It enables the reservoir engineer to monitor both 

the behavior of offshore wells, where operations are costly, and onshore wells in 

unconventional reservoirs, where it is complicated to assess/evaluate reservoir performance 

without reservoir pressure data. In particular, long-term downhole measurements of pressures 

and temperatures contain information about reservoir properties, architecture, and pressure 

interactions between individual and groups of wells. 

A permanent downhole gauge (PDG) is a pressure and temperature measurement device 

permanently installed in a well to provide a continuous record of pressures and temperatures in 

real-time.  PDGs began to be installed in wells as early as 1963 (Nestlerode 1963). The 

installation of PDGs in the North Sea and Saudi Arabia during the 1990s significantly increased 

their worldwide usage (Kuchuk et al. 2010).  Baker et al. (1995) also noted that the reliability, 

longevity, and accuracy of the pressure gauges were the main reasons for a rapid increase in 

their installations in the oil industry.  In addition to downhole pressure and temperature 

measurement systems, there are also PDG systems that record downhole flowrate. However, 

these systems are quite expensive, and therefore most production flowrates continue to be 

measured only at the surface facilities. 

Data from PDGs are generally used to monitor the well performance and to optimize production 

rates of wells with gas lift or with electrical submersible pump (ESP) systems.  Various 

applications of PDGs in the upstream oil and gas industry are listed below (Frota and Destro 

2006), (Oliveira and Kato 2004), (Zheng and Li 2007), (Kuchuk et al. 2010): 

● Reservoir Pressure Monitoring — Continuous monitoring of the reservoir pressure can 

help minimize subsidence and sand production, delay gas or water break-through, and 

contribute to avoiding producing below a bubble point (or dew point) in a reservoir. 

● Well Production Optimization — Real-time downhole measurements can help to 

evaluate well completion performance, analyze and optimize gas lift behavior, and 

monitor and optimize electrical submersible pump (ESP) behavior.  In addition, 
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hydraulic fracturing operations can be monitored to evaluate and optimize the treatment 

process. 

● Reservoir Performance — Continuous high-frequency pressure measurements coupled 

with flow-rate and temperature data can be used to estimate the depletion performance 

of a given well at any time.  This analysis process is known as "Rate Transient 

Analysis" (RTA) and uses the entire production history acquired by the gauge.  

Accurate measurement of pressure at bottom-hole conditions provides a mechanism for 

analysis and interpretation of reservoir performance behavior and can yield reservoir 

properties, completion properties, and estimated ultimate recovery (EUR). 

● Pressure Transient Analysis — A pressure transient "event" is generally defined by an 

intentional or unintentional shut-in of production at a given well. The corresponding 

analysis/interpretation of these data can yield reservoir properties, as well as evidence 

of offset well interference.  There are also specialized scenarios where production from 

one or more offset wells is systematically turned off or turned on in order to observe 

the effect of these actions at offset wells, which is known as a well interference test. 

Many PDG systems are set to acquire pressure and temperature measurements every second, 

but this sampling is often reduced to a point every 5-10 seconds or even every minute for data 

archiving and retrieval.  In short, the data volume captured by PDG systems can be enormous 

(e.g., 10s of millions of data points per year) (Horne 2007).  Such large amounts of data 

represent challenges in storage capacity and data retrieval infrastructure. Another challenge 

with data captured by PDG systems is the minor fluctuations, which can create noise and reduce 

the accuracy of data analysis. 

In addition, PDG systems are just like any other measurement device, and can experience 

system malfunctions such as gauge failures, broken connections or interfaces, manifold 

failures, and umbilical failures.  Frota and Destro (2006) evaluated five years of reliability data 

for a given PDG system and concluded that the reliability of PDGs in each case could vary 

between 50% and 70% depending on the type of gauges.   

As a final comment, data processing issues with so many data points are not trivial — as an 

example, the workflow proposed by Athichanagorn et al. (2002) provides guidance on 
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preprocessing of PDG data so that analyses and interpretations can be effectively performed on 

a reasonable and representative dataset. 

1.1 Problem Statement 

Data-Driven Pressure Forecast 

In the petroleum industry, it is vitally essential to forecast future behavior of a reservoir and its 

penetrating wells to be able to make timely management decisions. The traditional approach 

for forecasting reservoir or well pressure behaviors is first to construct a static geological 

model, then subsequently create a dynamic reservoir model that can be used to perform history-

matching comply with the production and pressure histories. After history-matching, a forecast 

of future reservoir and well performance can be generated.   

It is important to note that the generated reservoir model is an approximation of reality and may 

not capture reality in its full extent. There are inevitable errors and wrong approximations 

during the constructing of the model. So, there are high uncertainties in model parameters, and 

those uncertainties are almost always underestimated. Besides, during history-matching, many 

uncertain parameters of a numerical reservoir model are calibrated to obtain an acceptable 

match between simulated and historically measured production data (Oliver et al. 2008). As 

history-matching is an inverse problem, the calibration of a model suffers from non-uniqueness. 

Another disadvantage of the traditional approach is that it is time consuming and in cases where 

fast decision making is required, traditional methods are not suitable. 

One of the targets of this research is to create a data-driven model which will accurately and 

quickly reproduce and forecast the well pressure performance based on pressure-rate 

measurements.  This model is useful in the cases where fast pressure forecast is needed to make 

decisions about reservoir and well management. This approach does not require a conventional 

numerical reservoir simulation model or analytical reservoir model(s).  Instead it relies on a 

data driven approach, whereby the model will be trained with a historical dataset and the 

algorithm will try to capture or "learn" reservoir/well behavior for a selected well. During the 

testing process, the algorithm will forecast bottom-hole pressure from the obtained relationship. 
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We observe that the trained data-driven model can accurately predict the bottom-hole pressure 

for an arbitrary sequence of future flowrates. 

First, we reproduce bottom-hole pressure response using only the flowrate history of the 

selected well. By doing so, we exclude the interference effects from offset wells. In order to 

add interference effects and accurately reproduce bottom-pressure responses, we systematically 

add the offset wells to the linear based machine learning algorithm, which leads us to the next 

phase of this study. 

 

Multi-Well Tests — Estimation of Inter-Well Communication/Well Interference Effects 

From the reservoir engineering point of view, pressure communication between wells provides 

essential information about reservoir characteristics and heterogeneities.  Identifying offset 

well interference effects is particularly significant in areas where high geological uncertainties 

exist.  As such, reservoir pressure data can be useful in determining the conductivity of faults, 

the conductivity of the natural fractures, barriers to flow, and heterogeneities — all of which 

improve our understanding of reservoir performance behavior and can aid in determining the 

well spacing and the placement of future wells. 

Historically, interference and pulse tests have been used to establish and evaluate 

communication between wells.  Interference and pulse tests are conducted by production or 

injection from an active well while monitoring pressure response from an observation well 

which is generally shut-in.  

Interpretation of interference tests can be challenging as the magnitude of the pressure response 

in the observation well(s) may be quite small (Kamal 1983). Besides, different wells can 

potentially communicate with a single observation well during multi-well tests, leading to 

significant challenges in determining which offset well dominates the pressure response at the 

observation well. Moreover, performing interference and pulse tests can be expensive because 

the tests require shutting in the observation well for the duration of the test. 

This research also seeks to determine the influence of offset wells on an observation well using 

data-driven linear models without performing traditional interference or pulse tests. This 
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methodology requires continuous flowrate and bottom-hole pressure measurements at the well 

of interest and the possible offset wells.  

First, the data-driven linear model reproduces the selected well’s bottom-hole pressure behavior 

by using its flowrate history. If one or more offset wells influence the well's response, some of 

the pressure trends will come from flowrate histories of offset wells. These pressure trends will 

not be reproduced by the algorithm when we did not consider the influence of interference wells 

to predict pressure behavior. Then, we add flowrate histories of possible offset wells one by 

one to more accurately reproduce bottom-hole pressure measurements. Communicating offset 

wells are then determined by the quality of the match of the pressure trend that results from 

taking in to account the offset wells. 

1.2 Primary Objectives 

The primary objectives of this work are: 

● To create a practical and robust workflow to process pressure and flowrate data from 

Permanent Downhole Gauges (PDGs).  This workflow will include: data cleaning, data pre-

processing, addressing missing data, and applying the concepts of linearity (i.e., 

superposition). 

● To forecast future bottom-hole pressure response of a well, in a time efficient way, based 

on pressure-rate measurements using linear machine learning algorithms. First, the 

algorithm will accurately reproduce the existing bottom-hole pressure data by learning 

reservoir/well behavior using flowrate and bottom-hole pressure measurements. Then, it 

will forecast bottom-hole pressure responses for given flowrates.   

● To create a methodology using the linear machine learning techniques to identify 

interference effects of offset wells using the flowrate and bottom-hole pressure histories at 

the well of interest, as well as the production and injection histories of the offset wells. 
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1.3 Organization of Thesis 

In the second chapter, we present the literature review about used techniques for this study. 

First, we present multi-well tests which are used to estimate well connectivity among wells. 

After, we explain data analytics methods which we use for this work. 

The third chapter demonstrates steps of the methodology to identify interference effects from 

offset wells and forecast bottom-hole pressure behavior with linear based machine learning 

algorithms using only flowrate and bottom-hole pressure measurements. 

Forth chapter describes two fields which we use to evaluate the proposed methodology in this 

work. First, we describe the Guler field which is the synthetic field. We use synthetic case to 

validate the results of the methodology as we know connectivity between wells from the 

simulation model. Then, Yusif field is described which is used to evaluate the applicability of 

the methodology to the field data.  

In the fifth chapter, we show applications of the methodology to synthetic and field data. In this 

chapter, we explain how interference effects from offset wells can be identified based on 

flowrate and pressure measurements. After we compare identified interference effects by the 

methodology to known interferences. 

The six chapter provides summary, conclusions and recommendations for this work. 
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LITERATURE REVIEW 

In this chapter, we present a survey of approaches to the estimation of well interference effects 

in the petroleum engineering literature and an introduction to data analytic methods. 

To start with, we will summarize traditional and novel multi-well tests approaches. Next, we 

will explain statistical methods which have been examined in this study. 

2.1 Multi-Well Tests 

A multi-well transient test has been used to establish and evaluate communication between 

wells.  In a multi-well test, flowrate is changed in at least one active (producing or injecting) 

well, and the pressure response is measured in an observation well. The traditional examples 

of multi-well tests are interference and pulse tests (Earlougher 1977).  

Interference tests are conducted by long-duration production or injection from an active well 

while monitoring pressure from an observation well. The observation well is generally shut-in 

because of practical considerations. Figure 1 shows a schematic illustration of flowrate at the 

active well and bottom-hole pressure responses at the active and observation wells. During the 

interference test, the active well is producing until t1 time after which flow rate set to zero. 

From the pressure responses, we see that after the shut-in of active well, the observation well’s 

bottom-hole pressure increases. There is a time lag between the end flowrate at the active well 

and the pressure response observed at the observation well. One can conclude that there is 

pressure communication between observation and active wells using interference tests. 
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Figure 1 — Schematic illustration of rate at the active well and bottom-hole 
pressure responses at the active and observation wells for an 
interference test (Earlougher 1977). 

 
Pulse tests are a special form of multi-well testing, which was introduced in 1966 by Johnson, 

Greenkorn, and Woods (Kamal 1983). They have the same objectives as interference tests — 

establishing pressure communication between wells and estimating reservoir properties. For 

pulse tests, a controlled sequence of short-term production or injection pulses is used at the 

active (production) well. Generally, pulses are periods of production and shut-in at the active 

well. If communication exists between wells, then these "pulses" will yield cyclical patterns in 

the pressure response at the observation well.  Because of the tight control required for pulse 

tests, data noise is generally less than for interference tests. However, short duration rates lead 

to smaller pressure responses, sometimes less than 0.01 psi (Earlougher 1977).   
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Figure 2 illustrates rate history at the active well and bottom-hole pressure response at the 

observation well for "pulses". The lower portion of the figure illustrates pressure pulse 

responses at the observation well. 

 
Figure 2 — Schematic illustration of rate (pulse) history at the active well and 

bottom-hole pressure responses at the observation well for a pulse test 
(Earlougher 1977). 

 
Besides traditional interference and pulse tests, Tian (2015) performed a multi-well test using 

machine learning techniques. Tian (2015) used a feature-coefficient target model with 

mathematically transformed flowrate histories. Eq. 1 shows the features to which every 

flowrate history of all wells was converted. q(i)  and t(i) are the flowrate and time values at the 

time i-th data point, and n is the number of observations. The goal was to reproduce pressure 

response using these features with linear-based algorithms. Eq. 2 represents linear-coefficient 

target model where x(i) is features, y(i) is pressure response and w is selected well. The 

coefficients (𝜃"# ) were calculated by minimizing the mean-square error which will be explained 
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in the following parts of this chapter. It was assumed that computed coefficients would contain 

the information about reservoir behavior and well interferences.  
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The Tian (2015) case examined a homogeneous reservoir with two wells. The flowrate histories 

of both wells added as an input to the algorithm. The intuition was that as model coefficients 

contain information about the well interactions, statistical parameters of coefficients should 

reveal interference wells during the algorithm training. Tian illustrated an example, which 

showed that the algorithm predictions became more accurate by including the interference 

well’s flowrate history.  

 

2.2 Data Analytics and Machine Learning Techniques 

Data analytics methodologies seek to extract patterns or signatures in a dataset as well as to 

capture the relationship between input and output. The input, which can also be named as 

predictors, features, variables or independent variables, are denoted using the symbol X. The 

output can be called response or dependent variables which in this study are indicated by 

symbol Y. It is assumed that there is some unknown relationship (	𝑓	) between quantitative 

response and predictors, which can be generalized in Eq. 3. 

  𝒀 = 𝒇 𝑿 + 𝝐, (  3  )      
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where 𝑓 is a true relationship between response and predictor and 𝜖 is a random error term with 

zero mean. In statistical learning, we are seeking to determine	𝑓, true and unknown 

relationships between predictor and response. To do that, data analytics tries to estimate the 

true relationship using different data analytics techniques. In Eq. 4, 𝑓 is the estimated 

relationship or data analytics technique and 𝑌 is the estimated response: 

  𝒀 = 𝒇 𝑿 . (  4  )      
    

Machine learning is a small portion of the rich area of the data analytics. Over the last four 

decades, machine learning has grown from rule-based coding, which was part of computer 

science, to the discipline of algorithms which can learn without being explicitly programmed. 

Combining computer science and statistics gives an opportunity to create self-programed 

algorithms. Statistics focus on finding patterns from data, and the computer science discipline 

tries to find optimal computational algorithms to most effectively capture, store, index, retrieve 

and merge these data (Mitchell 1997). In machine learning, computer program learns from 

experience ‘E’ to perform a particular task ‘T’ with performance ‘P’. The system reliability 

improves its performance ‘P’ at task ‘T’ with following experience ‘E’ (Mitchell 1997).  

There are four types of machine learning techniques as illustrated in Figure 3 and the ones used 

most frequently are supervised and unsupervised learning methods. 

 
Figure 3 — Different machine learning techniques. 

 

Learning	Techniques

Supervised	
learning

Unsupervised	
learning
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Reinforcement	
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In supervised learning, for each observation of the predictor measurements, there is an 

associated response measurement (James  2013).  By contrast, in unsupervised learning for 

each observation, there is no measured response for measured predictors. Cases which fall 

between supervised learning and unsupervised learning are called semi-supervised learning 

where not all measured predictors have measured responses. 

There are two types of statistical learning methods: parametric methods and non-parametric 

methods. Parametric methods make assumptions about the structure of the model or the 

functional form of f which is a true relationship between response and predictor. Non-

parametric methods do not make any explicit assumptions about the functional form of f. 

Although non-parametric methods have more flexibility and no bias included to force a model 

structure, they require a significant amount of data and have less interpretability. In comparison, 

parametric methods introduce bias by making assumptions about the model structure but do not 

need a large number of observations and have higher interpretability.  

Variables can be characterized as quantitative or qualitative variables. Quantitative variables 

are taking numerical values while qualitative variables are taking categorical values. If a 

response is qualitative, it is called a regression problem; if a response is quantitative, it is called 

a classification problem. The focus of this study is regression problems. 

The primary purpose of the data analytics model is not to find the best fit for all data points 

with which models are trained, but rather to forecast outputs for unseen and untrained data 

correctly. To validate model accuracy, the data is divided into two parts: training and testing.  

First, the model is run with training data to best capture the relationship between inputs and 

output. During the training process, the average error that results from using a data analytic 

method to make predictions is called training error.  

After the training process, the captured relationship in data is tested with the testing data set to 

validate the prediction accuracy. The testing error is the error which is computed using data 

analytics methods to forecast unseen data.  

There are two primary approaches to estimating testing and training errors. The first approach 

is the validation set approach where we divide each data set into training and testing data sets 
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and then calculate error for each set. Another approach is k-fold cross-validation. In k-fold 

cross validation, the original data sample is partitioned into k equal size subsamples. From the 

k samples, a single subsample is chosen as the testing set and then k  1 subsamples become the 

training set. The train and testing errors are calculated for each data set. This process is repeated 

k times, each time with a different testing set. Final training and testing errors are estimated by 

averaging k number of training and testing errors respectively. 

As mentioned, the primary interest is to find the best approximation for the unseen data. The 

question is how one can find a data analytics method which approximates the real relationship 

between data and predicts the best fit for a testing data set. The following chapters attempt 

attempts to address this question. 

In Figure 4.a, the black dots are the real observations and the black line is the true relationship 

between x and Y. Orange, blue and green curves illustrate three different data analytical 

methods with an increasing flexibility level. The flexibility of the model is the ability of the 

model to capture complex relationships in data. The higher the flexibility of the model, the 

more complex relationship it can capture.  

The orange line is a linear regression fit, which has the least amount of flexibility. If true 

relationships between x and Y are not linear, the linear regression is not able to approximate 

the true relationship well. The green curve has the highest flexibility and matches observed 

points well. However, the green line also poorly captures the true relationship of the black curve 

as it is too wiggly. The closest to the true relationship is the blue curve which has an 

intermediate level of flexibility for the given data.  

Figure 4.b demonstrates training and testing error changes with flexibility. The orange, blue 

and green dots are representations of the curves in Figure 4.a so the orange dot has the lowest 

amount of flexibility and the green dot has the highest flexibility. The training error always 

decreases with increasing flexibility as the training data better fits the model. But the increase 

in flexibility of the model does not guarantee a rise in the prediction of accuracy of the testing 

data. The highly flexible models can cause the overfitting of data. The overfitting is observed 

when the training error decreases while the testing error increases. Therefore, the highly flexible 

models are able to capture more complex boundary relationships and fit training data more 
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accurately. However, it does not mean that the higher the flexibility of the model the better it 

will perform.  The nature of the data needs to be considered for choosing the flexibility of the 

model (James 2013).  

 

Figure 4 — Testing and training error change with flexibility (James 2013). 
  

It is a known fact that as the flexibility of the model increases, its interpretability decreases, so 

the inverse relationship between flexibility and interpretability needs to be considered as well 

while choosing the model. Figure 5 demonstrates the tradeoff between interpretability and 

flexibility for different statistical learning methods. 

 
Figure 5 — Tradeoff between interpretability and flexibility for different statistical 

learning methods (James 2013). 
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After choosing the data analytics method, next step is to calculate accuracy of the model. The 

difference between predicted response (𝑌) and real response (𝑌) defines the accuracy of the 

model. 𝑌 is never equal to 𝑌 because of two quantities: reducible error and irreducible error.  

𝐸 	 𝑌 − 𝑌 F = 𝐸 	 𝑓 𝑋 + 𝜖 − 𝑓 𝑋 		
F

= 𝑣𝑎𝑟 𝑓 𝑋 + 𝐵𝑖𝑎𝑠 𝑓
F
+ 𝑣𝑎𝑟 𝜖 .	 

(  5  )      
    

  

In Eq. 5, 𝑣𝑎𝑟 𝑓 𝑋   represents the variance error which is a change in prediction accuracy by 

changing the training set. 𝐵𝑖𝑎𝑠 𝑓
F
shows bias error which measures the deviation of the 

predicted values from the real data. 𝑣𝑎𝑟(𝜖) is the irreducible error from pure noise which cannot 

be reduced. Bias and variance are called reducible errors as they can be changed by changing 

the flexibility of the model. With increasing flexibility of the model, bias decreases while 

variance increases. So, the tradeoff between bias and variance needs to be considered to 

decrease the overall error and improve the model’s accuracy. 

There are some standardized measurements to assess the accuracy of a model. All those 

measurements can be done for both training and testing data. It is worth noting that the objective 

of data analytical methods is to increase the accuracy of testing predictions rather than with 

overfitting data and getting a perfect fit for training data. In regression setting, the most 

commonly used measurement is mean square error (MSE): 

  
𝑀𝑆𝐸 =

1
𝑛	 𝑦& − 𝑓 𝑥&

F
	 ,

O

&/.

	

 
(  6  )      
    

 

where 𝑦& is measured data, 𝑓 𝑥&  is a prediction for the i-th observation. If true response is close 

to predictive response, then MSE is going to be small. If the responses are substantially different 

from each other, MSE is going to be high. As model complexity and flexibility increase, MSE 

for training data tends to decrease but testing MSE may not. As mentioned above, the overfitting 

is taking place when with increased flexibility of model training MSE decreases but testing 

MSE increases.  
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Residual sum square (RSS) measures the amount of variability that is left unexplained after 

performing the data analytical methods. A total sum of square (TSS) identifies the total variance 

in the response before the model was implemented: 

  
𝑅𝑆𝑆 = 	 𝑦& − 𝑓 𝑥&

F
O

&/.
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where n is number of observations and  𝑦 is average value of responses. 

R2 is another alternative measurement of fitting:  

  𝑅F = 	1 −
𝑅𝑆𝑆
𝑇𝑆𝑆. 

 

(  9  )      
    

R2 measures proportion of variability in response which can be explained by predictors. It is in 

the form of a fraction which makes it easy to interpret compare to MSE. R2 equal to 1 indicates 

that the variation in response is fully explained by predictors with the used technique. 

In data analysis, there are three main steps which are illustrated in Figure 6: 

● Preparing Data 

● Conducting Data Analysis 

● Making Decisions 

 
Figure 6 — Steps for data analytical methods. First step is gathering data after 

which data needs to be cleaned and reprocessed. Next step require 
conducing the data analysis using algorithms. After analysis, decisions 
can be takes. 

 



17 

 

2.3 Linear Regression 

Linear regression is a simple approach which is widely used in statistical methods for predicting 

a quantitative response. As can be understood from the name, linear regression assumes that 

the real relationship between predictors and response is linear as shown in Eq. 10. 

  𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏𝒙𝟏 + 𝜷𝟐𝒙𝟐 +	⋯	+ 𝜷𝒑𝒙𝒑 + 𝝐. 
 

(  10  )      
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then a mathematical representation of linear regression model is: 

  𝑌 = 𝑋𝛽. 
 

(  12  )      
    

In Eq. 11 n is the number of observations while p is the number of features in a linear regression 

model. 𝑦		 indicates a response on the bases of 𝑥..	 , 𝑥.F	 	⋯ 	𝑥.[	 which are predictors. 𝛽], 𝛽., 𝛽F,

𝛽_ 	⋯	𝛽[ are called coefficients or parameters. e is called residual which is the difference 

between real observation and response from the model.  

In linear regression, parameters are estimated using ordinary least square (OLS) approach 

which chooses a coefficient to minimize the sum of squared residuals (RSS), subject to having 

at least ‘s’ non-zero coefficients as shown in Eq. 13. Linear regression is the linear model, but 

non-linearity can be added by adding non-linear and interaction terms as features. 

  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	 𝑦& − 𝛽] − 𝛽&𝑥&+

[

+/.

O

&/.

F 	

	 , 𝐼(𝛽+ ≠ 0) ≤ 𝑠
[

+/.

 

(  13  )      
    

   
   

𝛽 = 𝑋#𝑋 -.𝑋#𝑌 

 

 
(  14  )      
    

There are statistical parameters (standard error, t-statistics, and p-value) which quantify both 

the extent to which the model fits data and the importance of features. The standard error is the 

average amount that the response deviates from the true regression line (James 2013). James 

goes on to state that T-statistics and a p-value provide information about whether each feature 
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is related to the response. He declares that there is a relationship between every feature and 

every response if the p-value is small enough and t-statistics are larger than 1. Typical p-value 

cutoffs are between 5% and 1%. 

The question is if p-values are sufficient  to determine an association between features and 

response. James (2013) considered a case where there are hundreds of features (𝑋) and none of 

them has an association with response (Y). James noted that in this situation, about 5% of the 

p-values will be below 0.05 by chance. Therefore, he concluded that there is a 5% chance that 

a p-value will incorrectly determine that there is a relationship.   
  

2.4 Shrinkage Methods 

There two main criteria to evaluate the quality of the model: 

● Accuracy of prediction of the testing data 

● Interpretability of the model 

It is well known that ordinary least square (OLS) method can perform poorly for both of these 

criteria. Penalizing techniques have been proposed to improve OLS. Shrinkage methods 

introduced new approaches to OLS to increase accuracy and interpretability of regression 

models. Ridge regression, lasso, and elastic net are the best-known shrinkage techniques for 

linear regression. These methods improve the accuracy of linear regression by significantly 

reducing the variance. Instead of using the OLS approach, ridge regression and lasso are 

introduced penalty term to OLS for estimating coefficients in linear regression. 

Ridge regression minimizing Eq. 15 in order to estimate coefficients 
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The coefficients are calculated using criteria in Eq. 16 for lasso method 
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In Eq. 15 and Eq. 16, 𝜆 is a tuning parameter.		𝜆 𝛽+F

[
+/. 	and 𝜆 |𝛽+	 |

[
+/.  are called the shrinkage 

penalty terms and they have ability to shrink the estimates of coefficients towards or to zero. 

For the ridge regression and lasso fit, two criterion are considered to determine coefficients. As 

with ordinary least square, the first criterion is to the fit data well by finding the smallest RSS. 

The second criterion is minimizing the shrinkage penalty parameter.  

Lambda (𝜆) serves to control coefficient values. When 𝜆 equals to zero, the penalty term has 

no effect and the ridge regression and lasso methods perform as the linear regression model. 

Hence, the model coefficients are estimated with OLS (James 2013). When 𝜆 → ∞,	the 

influence of tuning parameter increases which causes estimated coefficients to approach zero. 

For each value of  𝜆, ridge regression and lasso estimate different coefficient values. So, 

selecting a good lambda value is essential. 

Generally, lambda value is computed using k-fold cross-validation. The k-fold cross-validation 

error is calculated for each value of lambda. The selected lambda value is the one which gives 

the smallest cross-validation error value. Figure 7 shows cross-validation error (left) and 

estimated coefficient (right) changes for different lambda values (James 2013).  The left part 

of Figure 7 displays the vertical dash line which indicates the selected lambda values for the 

smallest cross-validation error. The right part of the figure provides the illustration of 

coefficients for the selected lambda value. 

For the case presented by James, the selected lambda value is less than 5x10-1 which is a 

relatively small value. This indicates that the fit involves a small amount of shrinkage relative 

to the least square solution (James 2013). As lambda values approach zero, the lasso method 

performs similarly to the linear regression method. In these types of cases, the lasso model is 

going to perform as the linear regression model using the simple OLS approach. 
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Figure 7 — Cross-validation error and estimated coefficients for different values of 
lambda. The vertical dashed line indicates the lambda value which 
gives smallest cross-validation error (James 2013). In the right graph, 
colored lines indicate features which are statistically important. The 
gray color represents features which are statistically unimportant so the 
algorithms force their coefficients toward zero. 

 

When we compare the ridge regression method with the lasso method, ridge regression has one 

disadvantage. Even if ridge regression approximates coefficients that are close to zero, they are 

never equal to zero exactly. The lasso method overcomes this problem. Because of its penalty 

term, the lasso method can force coefficients to zero. The lasso method is used to identify 

important predictors, reduce the number of predictors in linear regression, and introduce an 

alternative method to estimate coefficients with increased accuracy and interpretability of the 

model.  

Although the lasso method is a successful method, it has some limitations:  

● Presence of group of variables with very high pairwise correlation (Hui Zou and Trevor 

Hastie 2003) 

● Presence of high correlation between predictors when n>p (Tibshirani 1996).  

Empirical studies have shown that elastic net can over-perform lasso when the limitations stated 

above are present in data (https://www.mathworks.com/help/stats/lasso-and-elastic-net.html). 

Elastic net is a hybrid of ridge regression and lasso.  Like lasso method, the elastic net can also 

reduce coefficients to be precisely zero. Eq. 17 and 18 demonstrate criteria for the elastic net 

to estimate coefficients.  
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When	𝛼 = 1, the elastic net method is the same as lasso method. When 𝛼 reduces towards zero, 

the elastic net method approaches the ridge regression method. 

 

2.5 Tree Based Model 

A decision tree is a machine learning technique which learns by a partition of predictor space. 

The decision tree can be both a regression tree and a classification tree. Building decision tree 

requires two steps: 

● Dividing the predictor space into distinct and non-overlapping regions.  

● Assigning the response into each region. 

The first step is dividing predictor space into different distinct boxes such that the lost function 

will be minimized. A recursive binary splitting approach is believed to find the best split. First, 

one of the predictors is considered (like X1) and the cut-point (s1) is chosen to achieve highest 

possible reduction in lost function. In the same manner, repeatedly all the predictors and the 

cut-points are considered until the stopping criteria is met.  

After regions are created, value is assigned from the training observations for each region. 

Assigned values are the mean values of observation inside of each region for regression tree 

model. Regression tree assumes a model form as: 

 
𝑓 𝑋 = 𝑐o ∗ 1q∈st,

u

o/.
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where m is the number of partitioned.  
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The decision tree has high interpretability; it is both easy to explain, and it can be displayed 

graphically (Figure 8). It requires little data preparation. Decision trees perform better than 

linear regression when a relationship between predictors and response are highly nonlinear. 

However, decision trees suffer from high variance, and they over-fit data. Decision trees are 

not robust and not as accurate as some advanced data analytical methods. 

 
Figure 8 — Division of predictor space for decision tree 

 

These limitations are met with the random forest method. The random forest is an ensemble 

learning method that constructs multiple decision trees from training data and then outputting 

mean of responses from individual trees for regression models. The random forest uses bagging 

which is a combination of bootstrap and aggregating. Bootstrapping is the resampling of the 

observed dataset with random sampling with replacement. Aggregation is the averaging of the 

set of observations which reduces variance. The random forest splits each tree with a different 

number of predictors as illustrated in Figure 9. By using the subset of predictors, random forest 

avoids using the same strong predictors in every tree, and this decreases variance even more. 

Hence, random forest builds numerous decision trees from bootstrapping training samples and 

uses a subset of predictors for split candidates. 

Random forest is also used to rank the importance of predictors both in regression and 

classification problems. The first step in measuring the importance of a variable is to fit random 

forest mode with training data. For the individual feature to calculate the importance, each 

feature is excluded and new error is calculated without that feature. The importance of the 
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feature is calculated from the difference of error with and without of that features. The features 

which have a large increase in error value when they are excluded from predictor space, ranked 

as the more important predictors. 

 

 
Figure 9 — Random Forest Model. 
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METHODOLOGY 

In this section, we explain the methodology and steps to reproduce bottom-hole pressure 

responses and identify interference effects from offsets wells using linear machine learning 

techniques. In this work, we examine linear machine learning techniques such as linear 

regression, ridge regression, lasso, and elastic net. Among all examined linear machine learning 

techniques, lasso performs better to reproduce the bottom-hole pressure responses and to 

identify interference effects. Figure 10 demonstrates steps of the methodology which will be 

explained in more detail in this chapter. 

 

Figure 10 — Steps of the methodology to forecast bottom-hole pressure and identify 
interference wells using the lasso algorithm. 

3.1 Data Processing 

Long-term data from the permanent downhole gauges (PDGs) contains noise and outliers. 

Noise or outliers in downhole measurements can be caused by the permanent gauge data-

acquisition system which operates in an uncontrolled and extreme subsurface environment 

(Veneruso 1992). Another challenging aspect of PDG record comes from dynamic changes in 

reservoir properties and gauge mechanical deterioration (Horne 2007). As a result, one of the 

important parts of analyzing PDG data is data cleaning and preparation. 

The workflow proposed by Athichanagorn et al. (2002) provides guidance to process PDG data. 

In the workflow, Athichanagorn et al. pointed out three steps to clean data: 

●  Data reduction 

●  Outlier removal 
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● Behavioral filtering 

First, we reduce the number of data to a representative set by taking mean pressure value per 

day. The next step is outlier removal with threshold approach for which we use Ecrin software 

by Kappa (Ecrin 2013). First, we remove obvious outliers, and then we remove the less obvious 

ones by iteratively setting a threshold of delta signal to 20psi, 15psia, 10psia and 5 psi 

respectively. Figure 11.a presents results after eliminating outliers from bottom-hole pressure 

data. Although the de-noising step was included in the Athichanagorn et al. (2002) workflow, 

we skip that step as we assume that de-noising can lead to information loss regarding 

interference effects. In the behavioral filtering step, aberrant transients are removed as 

suggested in Athichanagorn et al. (2002) methodology. 

Missing data poses challenges in accurately determination of the functional relationship 

between flowrates and bottom-ole pressure. In particular, missing bottom-hole pressure values 

were common in field data for this work. We use the random forest algorithm to provide 

estimates for missing bottom-hole pressure data points. Input for estimating pressure data is 

liquid flowrate history. Figure 11.b illustrates predicted bottom-hole pressure values for 

missing pressure values using the random forest algorithm. The random forest algorithm is 

found to be effective in predicting short-term missing bottom-hole pressure values, but it is not 

able to forecast bottom-hole pressure values which are outside of training range. 
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Figure 11 — (a) outlier removed data, (b) missing data filled with Random Forest 

algorithm, (c) acceptable data for analysis.  
 

3.2 Relationship between Flowrate and Pressure 

The focus of this research is to reproduce and forecast bottom-hole pressure behavior and 

identify the influence of offset wells using linear based data analytics methods. Before 

performing such analysis, it is vital to understand the physical relationship between flow rate 



27 

 

and pressure. Therefore, in this section, we present equations showing relationships between 

flowrate and pressure.  

Darcy’s empirical flow law describes the fluid flow through a porous medium under the 

influence of a pressure gradient. For a given permeability (k), cross-sectional area (A), length 

of a core (L) and viscosity (µ) of the fluid, flowrate (q) and delta pressure (Δp) are linearly 

related:  

 
𝑞 =

𝑘𝐴
𝜇
∆𝑝
𝐿 		 

(  20  )      

    

Mass conservation principle and Darcy law need to be considered in order to derive the basic 

differential equation for radial flow in a porous medium, as shown in Eq. 21 (Dake 1978). 

Derivation assumptions are stated below:  

● Reservoir is a homogeneous reservoir in all rock properties and isotropic with respect 

to permeability 

● Producing well is completed in the entire formation thickness 

● Formation is saturated with only one fluid 

● Total compressibility of the system is small and constant, permeability and viscosity 

are constant, |[
|}

F
 can be ignored. 

 

Eq. 22 presents the line-source solution for the differential equation: 
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Eq. 24 presents infinity acting radial flow behavior for vertical well: 

 
𝑝& − 𝑝"~ =

162.6	𝑞	𝐵	𝜇
𝑘	ℎ log

𝑘	𝑡
𝜙𝜇𝑐�𝑟"F

− 3.23 + 0.869𝑠 . 
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Eq. 25 presents the wellbore storage effect for constant flowrate: 

 𝑝& − 𝑝"~ =
𝑞	𝐵	∆𝑡
24	𝐶 	, 𝐶 = 𝑐"�𝑉"�.	 

(  25  )      

    

We will use the physical relationship presented in Eq. 22, 24 and 25 to mathematically linearize 

relationship between flowrate and pressure, which will be presented in the next section. 

 

3.3 Creating a Linear Relationship between Pressure and Flowrate  

Liu (2013) and Tian (2014) used data mining and data analytics methods for reservoir analysis. 

Their research showed that nonlinear relationships between flow rate and pressure could be 

formulated as linear relationships between features corresponding reservoir behavior and 

pressure. Then, those features can effectively be used as inputs for linear machine learning 

techniques.  

Liu (2013) tried to match the reservoir model using the convolution kernel method (Laskov et 

al. 2012, Collins et al. 2002) which is a data mining method. Liu (2013) used discrete data as a 

basis, rather than the traditional approach of a numerical or analytical model.  Two deliverables 

were generated in this study: 

● Detection of the reservoir pressure signature from noisy PDG data. 

● Forecasting of downhole pressure behavior for arbitrary flowrate based on a cor-

relation of time, flowrate, and pressure data (i.e., a training set). 

To achieve these deliverables, Liu (2013) used a non-parametric data mining method that does 

not require an a priori model, and the algorithm learns from the given data during the training 
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process. Features of the convolution kernel base algorithm were constructed considering the 

use of superposition. As can be seen in Figure 12 (left) (after Liu 2013), if we have two 

independent cases of flowrates q1 and q2, then we will have the corresponding pressure 

behaviors shown by p1 and p2 respectively.  In this schematic example, q1 represents a constant 

production rate, and q2 represents a constant injection rate. When flowrate is positive, pressure 

decreases — and when flowrate is negative, pressure increases.  Assuming a linear combination 

of q1 and q2 as shown in Figure 12 (right), then the pressure response also will be combined 

(or "convolved") — specifically, the pressure will first decrease as this represents production 

and will be followed by an increase in pressure as this represents injection. For this case, we 

have the particular case where the injection cancels the production and we have a zero flowrate 

(shut-in). 

To use convolution as part of the convolution kernel algorithm, Liu (2013) presents the input 

variables as shown in Table 1.  These variables represent the control functions for the 

superposition relationship to be used to "convolve" or "superimpose" the pressure and flowrate 

histories.  Liu describes the terms in his approach as follows: (1) ∆q represents the pressure 

signal as a function of the flowrate changes, (2) ∆q log ∆t is the dominant term during infinite-

acting radial flow, (3) ∆q x ∆t can describe both reservoir boundary and wellbore storage 

effects, and (4) ∆q/∆t is the primary function for the second order approximation of the 

exponential integral function and captures reservoir behavior which decay with time. 

Tian (2014) proposed linear regression models to interpret flowrate and pressure data that 

should use significantly less computational time and human intervention compared to the 

convolution kernel method (Liu 2013).  Tian showed that the proposed linear regression models 

have equal learning quality as compared to the convolution kernel model and that these linear 

models are less computationally expensive.  
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Figure 12 — Schematic illustration of superposition (Liu 2013). q1 represents a 
constant production rate where pressure decreases, and q2 represents a 
constant injection rate where pressure increases. Assuming a linear 
combination of q1 and q2, shown in right, the pressure response is 
combined. Therefore, the pressure first decreases as this represents 
production and is followed by an increase in pressure as this represents 
injection or zero flowrate 

 

Table 1 — Reservoir behavior and corresponding input features. 

Relationships for Different Regimes 

Superposition: ∆q 

Infinite-acting radial flow: ∆q log[∆t] 

Closed boundary: ∆q x ∆t 

Constant pressure boundary: ∆q x ∆t 

Wellbore storage effect: ∆q x ∆t 

Decay effect: ∆q/∆t 
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3.4 Superposition in Pressure 

In this research, we use superposition principles in pressure to identify interference effects of 

the offset wells. Superposition is a mathematical technique based on the property that solutions 

to linear partial equations can be added to provide another solution (e.g., a variable-rate or 

variable pressure drop solution).  Recall that in the case of a linear partial differential equation, 

the coefficients of the partial differential equation are not functions of the dependent variable. 

In our case, this would be pressure.  As such, superposition is only strictly valid for "slightly 

compressible liquid" cases. Adjustments can be made for compressible liquids and gases, but 

such cases are beyond the scope of this study. 

The principle of superposition indicates that total pressure drop at any point in the reservoir is 

the sum of the pressure drops from the flow of all wells in the reservoir (Lee 1982).  We assume 

that we have a homogeneous, infinite-acting reservoir with four wells (Well A, B, C, and D) as 

shown in Figure 13.  Wells start production at different times: tA, tB, tC, tD. 

 
Figure 13 — Schematic illustration of multiple well locations in an infinite reservoir. 

All wells are connected with each other (after Lee 1982). 
 



32 

 

The superposition principle suggests that the pressure drop at Well A is a function of pressure 

drops caused by flow at Well A, Well B, Well C and Well D.  Eq. 26 is a mathematical 

representation of the overall pressure drop at Well A which has pressure connectivity with Well 

B, Well C and Well D. In Eq.26, pi is initial pressure, pwf is bottom-hole pressure and p is 

current pressure at a specified location in the reservoir.   

 
For the infinite-acting reservoir case, the solution of pressure drop includes logarithmic 

approximations for Ei (Exponential integral) function as well as the Ei function itself for the 

offset wells.  This result is given by Eq. 27: 
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where qA, qB, qC, and qD are the flowrates at which Wells A, B, C, and D are producing, 

respectively, and pi and pwf represent the initial and bottom-hole pressure values.  

In Eq. 27, rwA is the wellbore radius of Well A, while rAB, rAC, and rAD are distances 

(respectively) for the offset wells surrounding Well A. B is formation volume factor, µ is 

viscosity, k is permeability, h is formation thickness, f is porosity, ct is total compressibility, 

and t is elapsed time.  sA is the skin factor in Well A which indicates permeability change near 

the wellbore due to foreign-fluid invasion into the reservoir rock.  The skin factors for the other 

wells are not included as these parameters do not affect the pressure measurements for Well A. 

Considering the terms in Eq. 27, it can be seen that pressure drop depends on the production 

behavior of the wells, as well as the reservoir and fluid properties.  

 𝑝& − 𝑝"~ #����	∆[		��	"���	�
= 𝑝& − 𝑝 ���	��	����	� + 𝑝& − 𝑝 ���	��	����	�	 

+ 𝑝& − 𝑝 ���	��	����	� + 𝑝& − 𝑝 ���	��	����	�	

(  26  )      
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One of the most important applications of superposition is to model variable-rate production in 

a given well.  Figure 14 (after Lee 1982) illustrates variable flowrate history for Well A.  Well 

A is producing with flowrate of q1 between time 0 and t1 and at t1 the flowrate increases to q2; 

and time from t1 to t2 flowrate stays q2, then at time t2 the flowrate decreases to q3. To find 

sandface pressure at time t > t2, the superposition principles are used.  Well A’s flowrate history 

will be divided into three fictitious "wells" with different flowrate histories and different 

starting times.  It is assumed that the fictitious Wells 1, 2 and 3 are producing from the same 

"location" as Well A.  The first contribution to the total drawdown is Well 1 which produces 

from t=0 with q1 flowrate. Starting at t2, Well 2 will produce with a production rate of q2-q1.  

Well 3 will behave as an injector (as q3 is smaller than q2) and Well 3 will start "injection" at 

time t3. The total pressure drop for Well A, is going to be the sum of pressure changes at Wells 

1, 2, and 3 caused by production or injection. 

 
Figure 14 — Variable-rate production schedule for Well A (after Lee 1982). The 

well is producing with flowrate of q1 between time 0 and t1 and at t1 the 
flowrate increases to q2; and time from t1 to t2 flowrate stays q2, then at 
time t2 the flowrate decreases to q3. For the superposition principles 
Well A’s flowrate history is divided into three fictitious "wells" with 
different flowrate histories of and different starting times 
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3.5 Data-Driven Pressure Forecast 

We present the workflow to correlate and forecast bottom-hole pressure behavior and determine 

interference influence of offset wells. First, we present how single wells tests are conducted, 

and then we show steps for multi-well tests. 

3.5.1 Single Well Tests — Pressure Forecast without Including Offset Well Interference 

Effects  

The lasso method is applied to both flowrate and bottom-hole pressure data to establish the 

correlation model and to predict future bottom-hole pressure behavior for an arbitrary flowrate 

history. We apply 5-fold cross-validation to the lasso fit to estimate lambda value which gives 

lowest cross-validation error. In 5-fold cross-validation, we divide data into 5 equal size 

subsamples. From the 5 subsamples, a single subsample is chosen as a testing set and 4 

subsamples became a training set. The train and testing errors are calculated for each data set. 

This process is repeated 5 times, each time we select different testing subset. Final training and 

testing error are estimated by averaging 5 training and testing errors. The cross-validation error 

is calculated for different values of lambda. We chose the lambda which gives the smallest 

cross-validation error to use in lasso algorithm. 

The workflow procedure is given as follows: 

● Data Processing: We visually examine flowrate and bottom-hole pressure data and 

apply "cleaning" to these data.  The flowrate and pressure data are then processed using 

the Athichanagorn et al. (2002) methodology.  First, we reduce permanent downhole 

gauge (PDG) data by averaging daily, and then identify and eliminate outliers.  Next, 

we apply behavioral filtering to the bottom-hole pressure and flowrate data and remove 

nonphysical behaviors, such as negative or zero pressure values, or negative production 

rates, or positive injection rates. We use the random forest algorithm to provide 

estimates for missing pressure data point by generating a pressure estimate where a null 

value exists. After cleaning the data, we mathematically transformed flowrate history 

into features which are discussed in Chapter 3.3. 

● Training: We use 80% of flowrate and pressure data as training data.  The mathe-

matically transformed flowrate and time history (features), and bottom-hole pressure 
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data are then input into the lasso correlation method to learn or correlate relationship 

between features and bottom-hole pressure. 

● Testing: After the training process, we use the remaining 20% of flowrate and pressure 

data as testing data.  In the testing stage, we forecast the bottom-hole pressure behavior 

using only the time and flowrate data from learned relationship during training stage.  

Then we compare the forecasted pressures to the actual bottom-hole pressure data to 

examine accuracy of forecast using the lasso algorithm. 

 

 

3.5.2. Multi-Well Tests — Estimation of Inter-Well Communication/Well Interference 

Effects 

We include offset well interference effects to accurately reproduce the observed bottom-hole 

pressure history and estimate well interference effects. We examine the rate histories of the 

possible offset wells. We systematically include the rate histories of the offset wells, one by 

one to identify the influence of each offset well. We follow a similar workflow for a single well 

case as we consider the rate histories of the offset wells. 

● Training: We train the lasso algorithm with mathematically transformed flowrates for the 

well of interest and all possible combinations of interference wells. 

● Testing: As before, during the testing period, the lasso algorithm forecasts the future 

bottom-hole pressure behavior for the well of interest.  Any improvements in the predictions 

of bottom-hole pressure we attribute to the use of the flowrates for the offset wells. The 

intuition is that these flowrates capture the influence of the offset well interference effects.  

As a practical consideration, the lasso algorithm could be said to have learned the impact 

of interference from the offset wells based on the flowrates for these offset wells. 
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 FIELD DESCRIPTION 

In this section, we describe the Guler field which is the synthetic simulated reservoir and the 

Yusif field which is the real field. We apply the methodology to the wells from both fields. 

The application and results of the methodology explained in the Chapter 3 are presented in 

the Chapter 5. We use the Guler field to validate the methodology as it is a synthetic example 

and connectivity between wells is known. We use the Yusif field to show the applicability of 

the methodology to real field examples as purpose of the study is create methodology for the 

petroleum industry which can identify interference effects without using traditional multi-

well tests.  

4.1 Guler Field Description 

The synthetic data of the Guler field was generated using an Eclipse 100 simulation module.  

This Eclipse module was set up as a 3-phase (black oil, dissolved gas, and water) case in a 3D 

reservoir model consisting of five layers in the vertical (z) direction. The model has three 

producers and two injectors.  Figure 15 and Figure 16 illustrate the oil saturation and 

permeability maps with the labeled well locations.  Injection wells are designated with "I" and 

production wells designated with "P".  For reference, the production and injection wells were 

constrained to the liquid rate for history-matching.  As shown in Figure 17, a sealing fault 

divides the reservoir into two separate compartments. Wells P1 and I2 are located in the first 

compartment, and Wells P2, P3, and I1 are located in the second compartment. There is poor 

connectivity between Wells P2, P3 and I1, and Wells P1 and I2, which is indicated by the red 

arrows in Figure 17. Wells have good connectivity within each compartment, which is 

indicated by the green arrows.  

Figure 18 shows the vertical placement of the wells and the location of oil-water contact 

(OWC) in the Guler field’s cross-section.  The production wells (Wells P1, P2, and P3) were 

completed in the oil column; the first injection well (Well I1) was completed in the aquifer 

zone, and the second injection well (Well I2) was completed in both the oil and water columns. 
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Figure 15 — 3D reservoir model of oil saturation with well locations. Producers are 
indicated with P, and injectors are indicated with I. 

 

 

Figure 16 — Map of the permeability to the x direction of the field with well 
locations. Producers are indicated with P, and injectors are indicated 
with I. 
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Figure 17 — Guler field connections schematics. The sealed fault illustrated by black 
line divides the reservoir into two separate compartments. Injectors are 
designated with blue color and producers designated with green color. 
The red arrows indicate the poor connectivity between wells. The green 
arrows indicate the good connectivity between wells. 

 

 

Figure 18 — Perforation layers for all wells in Guler field.  The blue color represents 
water zone. 
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Figure 19 shows oil and water relative permeability curves which we use in the 

construction of the synthetic Guler field case. In Figure 20, we present average reservoir 

pressure change with time. Also, we present production rates and bottom-hole pressures for 

producer wells (Wells P1, P2 and P3), and injection rates and bottom-hole pressures for 

injectors (Wells I1 and I2) in Figure 21, Figure 22,Figure 23, Figure 24 and Figure 25. 

 

Figure 19 — Oil and water relative permeability curves used for the synthetic Guler 
field case. 
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Figure 20 — Reservoir pressure change with time for the synthetic Guler field. 
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Figure 21 — Upper - Oil, water, gas and liquid rate of Well P1, Bottom-hole pressure 

change with time of Well P1. 
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Figure 22 — Upper - Oil, water, gas and liquid rate of Well P2, Bottom-hole pressure 
change with time of Well P2. 
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Figure 23 — Upper - Oil, water, gas and liquid rate of Well P3, Bottom-hole pressure 
change with time of Well P3. 
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Figure 24 — Injection rate and bottom-hole pressure versus time for Well I1.  
 

 

Figure 25 — Injection rate and bottom-hole pressure versus time for Well I2. 
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4.2 Yusif Field Description 

The Yusif is an offshore oil field, which was discovered in 1991 and put into production after 

six years. The wells were drilled horizontally and drained two reservoir layers. All wells have 

electrical submersible pump (ESP) systems installed.  

The Yusif field covers an area of 210 km2. It is a carbonate reservoir with a monocline 

stratigraphic closure. The oil is trapped in the upper part of a relatively float monocline. The 

structure of the field is a gentle dipping to southeast where it is eroded and capped by overlaying 

shales. The Yusif reservoir has a shallow water marine depositional environment. The reservoir 

facies range from lagoonal muddy deposits to rudist shoal facies.  It is almost 100% limestone.  

Two main diagenetic processes were observed in the field: 

●  Early diagenesis due to meteoric waters or transient paleosols occurrences 

●  Strong erosion and karstification during eustatic fall of the sea level and regional uplift 

Wellbore image logs and formation pressure measurements showed the presence of fractures 

in the Yusif field. The reservoir consists of thin reservoir beds which resulted in a succession 

of high (100mD to a few Darcy) and low permeability (0.1 to 50mD) layers. Among the 20 

layers defined within the reservoir, the six layers are main produced layers which are L7, L5, 

L3, L0b1, L0a2, and L0a4. The reservoir lies within the capillary transition zone and consists 

of a succession of high and low conductive oil-bearing layers.  

The burial depth of the Yusif field is approximately 1100 m. It produces a 28 ˚API oil and the 

maximum oil column thickness is 60 to 70 m, which is mostly located in the transition zone. A 

50-m aquifer underlies the field. The free-water-level (FWL) is considered to be at 1225m; 

however, detailed studies confirm that a varying fluid level exists through the field.  
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APPLICATION OF THE METHODOLOGY 

We present applications of the methodology to correlate and forecast bottom-hole pressure 

behavior and determine interference influence of offset wells for both the synthetic Guler field 

and the real Yusif field cases. We validate the methodology by testing the synthetic Guler field. 

Then, we show applications of methodology with the real field examples. Three of the real field 

cases are illustrated in this chapter, and one of the real well cases is presented in Appendix.  

The purpose of these cases is to demonstrate: 

● How the reservoir and well behavior are learned using the statistical algorithm. 

● How accurately the bottom-hole pressure can be forecasted. 

● How we can detect pressure communication between offset wells and the well of interest. 

 

5.1 Single Well Test 

In this section of study, we perform single well tests to reproduce a selected well’s bottom-hole 

pressure responses using only its flowrate history.  In single well test, we exclude offset wells 

interference effects. The importance of this section is to identify which bottom-hole pressure 

responses are not caused by selected well’s flowrate history. 

 

5.1.1 Synthetic Field — Guler field  

In this section, we present synthetic demonstration examples that are generated using the 

reservoir model for the Guler field, the fictitious field case.  We believe it is best to demonstrate 

the methodology for a synthetic case where all inputs and outputs are known and deemed as 

accurate.   

 

Case 1 —Guler Well P3  

In case 1, our well of interest is Well P3 from the Guler field which is located in the second 

compartment. Well P3 has been producing for 7.5 years.  
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Figure 26 presents the flowrate history and pressure response versus time for Well P3. We note 

that the vertical dashed line at approximately 5x104 hours denotes the boundary between the 

training and testing data — the data to the left of this line are used for training and data to the 

right of this line are used for testing. 

 
Figure 26 — Flowrate and bottom-hole pressure history for Well P3.  The data to the 

left side of the dashed lines are training data, and the data to the right 
side of the dashed line are testing data. 

 

Figure 27 presents the bottom-hole pressure prediction using the lasso method. The blue data 

trend is the actual bottom-hole pressure values. The red and green trends are produced by the 

lasso algorithm. The red data trend is the pressure prediction achieved during the training 

process. Lastly, the green data trend is the pressure forecast for a given flowrate during the 

testing period. 

 As can be seen from Figure 27, the lasso algorithm generally captures pressure behavior from 

the flowrate history during both the training and the testing periods. R2
train is equal to 0.9720 

and R2
test is equal to 0.6929, which are calculated with Eq. 9. There are some discrepancies 

between predicted and true pressure values which are indicated by the black circles. 

From Figure 26 it can be seen that these discrepancies occur when flowrates of the selected 

well are relatively constant, but pressure behavior is changing — two pressure increase trends 
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occur at approximately 1.5 x104 and 6 x104 hours when the flowrate of Well P3 is fairly 

constant.  Besides, there is a visible decline in real pressure values (blue curve) during a shut-

in which occurs at about 3.3 x104 hours, indicated by the black-dashed circle. That decline in 

the pressure buildup trend coupled with pressure changes while flowrates are constant suggest 

that these data might be affected by offset wells.   

As the Guler field is synthetic case, we know that Well P3 has communication with offset wells 

(Wells P2 and I1). 

 

Figure 27 — Pressure prediction with using the lasso technique for Well P3. The blue 
curve represents the true bottom-hole pressure history. The red curve 
indicates pressure predictions for the training data while the green curve 
indicates pressure predictions for the testing data.  Only rates from Well 
P3 were used for training and prediction.  Black circles indicate pressure 
trends that were not captured by linear machine learning algorithm when 
only Well P3’s flowrates were considered. R2

train is equal to 0.9720 and 
R2

test is equal to 0.6929. 
 
  

Eq. 28 presents a linear model for reproducing the bottom-hole pressure history of Well P3 

using Well P3’s flowrate history only. As explained in Figure 7 (Chapter 2.3), the lambda value 

Likely evidence of influence 
of offset well interference. 

R2
train =0.9720 R2

test = 0.6926 
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is estimated as 0.0026 with 5-fold cross-validation. The coefficients are calculated using criteria 

in Eq. 16 for the selected lambda value.  

As mentioned, the lasso algorithm forces the coefficients of statistically unimportant features 

to zero. So, by examining the lasso coefficient we can understand the statistical importance of 

each feature. From the coefficients in Eq. 28, it can be seen that ∆𝑞	∆𝑡 term has less statistical 

significance for predicting the bottom-hole pressure of Well P3. 
  

 𝑃��	�����_ = 393.0370 + 0.0116	∆𝑞����	�_ 	− 0.0076	∆𝑞	𝑙𝑜𝑔∆𝑡����	�_

+ 5.21𝑥10-]¤		∆𝑞	∆𝑡����	�_ − 0.0490	∆𝑞/∆𝑡����	�_. 

 

(  28  )      
    

For case 1, the estimated lambda value is 2.6x10-3 which is a relatively small value. A small 

lambda value indicates that the fit involves a small amount of shrinkage relative to the least 

square solution (James 2013). So, the lasso regression estimates coefficients as the linear 

regression model. This means we can use the linear regression model to analyze the statistical 

parameters. 

In Table 2 we present the statistical parameters of the least square approach for linear 

regression model when relationships of different flow regimes (features) are used to predict 

bottom-hole pressure (response). We use the linear regression model to analyze the statistical 

parameters (standard error, t-statistics, and p-value). These statistical parameters quantify to 

what the extent the model fits the data and the importance of features. The standard error 

indicates if there is relationship between feature and target — a relatively small value may 

provide evidence that there is a relationship. The t-statistics and p-value provide information 

about whether each feature is related to the response. If the p-value is smaller than 1%, we 

assume that there is an association between feature and target. It is worth recalling that there is 

a 5% chance that a p-value will incorrectly identify a relationship between features and 

response. 

As shown in Table 2, small p-values indicate that there is an association between the features 

and the bottom-hole pressure. Therefore, all flow regime features are statistically important in 

predicting bottom-hole pressure when we interpret p-values. 



50 

 

We will not discuss statistical parameters in detail for following cases. However, statistical 

parameter tables are shown in order to indicate which feature has statistical association with 

bottom-hole pressures. 

Table 2 — The statistical parameters of the least square model for predicting Well 
P3’s bottom-hole pressure. The small p-values indicate that all flow 
regimes (features) are statistically significant to forecast bottom-hole 
pressure. 

 Coefficient Std. error t-statistic p-value 

Intercept 393.1 0.34842 1128.2 <0.01 

q 0.011818 0.00061533 19.206 <0.01 

qlogt -0.0076364 0.00021304 -35.845 <0.01 

qt -6.012e-07 6.7886e-09 -88.56 <0.01 

q/t -0.052307 0.012558 -4.1653 <0.01 

 

 

Case 2 — Guler Well P1 

In case 2, we selected Well P1 to demonstrate the accuracy of the pressure prediction without 

including the interference effects of the offset wells.  

In Figure 28, we present flowrate and bottom-hole pressure history of Well P1 for more than 

7 years of production. The vertical dashed line at 5x104 hours divides data into training and 

testing datasets. 
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Figure 28 — Flowrate and bottom-hole pressure history for Well P1.  The data to the 

left side of the dashed lines are training data, and the data to the right 
side of the dashed line are testing data. 

 

Figure 29 presents bottom-hole pressure prediction for Well P1 using the lasso method. There 

is general agreement between pressure prediction by the lasso algorithm and real pressure 

values. R2
train is equal to 0.8307 and R2

test is equal to -0.5188. The negative testing R2 value 

indicates that mean values of testing data are closer to the testing dataset than forecasted values 

with the algorithm. However, there is an obvious pressure discrepancy, indicated by the black 

oval.  

Figure 28 makes it clear that despite the reasonably constant flowrate between 2.3x104 and 

3x104 hours, we observe a continuous increase in real pressure data. This can be a signature of 

offset well interference effects on bottom-hole pressure measurements. As Guler Well P1 is a 

synthetic well, we know that there is communication between nearby well (Well P1). 
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Figure 29 — Pressure prediction for Well P1 using the lasso algorithm. The blue 
curve represents the true bottom-hole pressure history.  The red curve 
indicates pressure predictions for the training data while the green curve 
indicates pressure predictions for the testing data.  Only rates from Well 
P1 were used for training and prediction.  Black oval indicates pressure 
trends that were not captured by linear machine learning algorithm. 
R2

train is equal to 0.8307 and R2
test is equal to -0.5188. 

 

Eq. 29 presents a linear model for reproducing the bottom-hole pressure history of Well P1, 

using only its flowrate history using the lasso fit where the lambda value is 0.0032. From the 

coefficients of the lasso algorithm, it can be seen that ∆𝑞	∆𝑡 term has less statistical significance 

for predicting the bottom-hole pressure of Well P1. 
  

 𝑃��	�����_ = 418.7138 + 0.0376	∆𝑞����	�. 	− 0.0272	∆𝑞	𝑙𝑜𝑔∆𝑡����	�.

+ 3.28𝑥10-]¤		∆𝑞	∆𝑡����	�. − 0.2583	∆𝑞/∆𝑡����	�.. 

 

(  29  )      
    

As the estimated lambda value is 3.2x10-3 which is a relatively small value, the linear regression 

model is going give similar results as the lasso method.  

We present the statistical parameters of the least square model for regression in Table 3. The 

p-values, which are smaller than 0.01, indicate that there is a relationship between different 

flow regime features and bottom-hole pressure predictions.  

R2
train =0.8307 R2

test = -0.5188 
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Table 3 — Statistical parameters of the least square model for predicting Well 
P1’s bottom-hole pressure. The small p-values indicate that all flow 
regimes (features) are statistically significant to forecast bottom-hole 
pressure. 

 Coefficient Std. error t-statistic p-value 

Intercept 418.73 0.58551 715.15 <0.01 

∆q 0.037805 0.0017702 21.357 <0.01 

∆qlog∆t -0.027304 0.0005402 -50.545 <0.01 

∆q∆t 4.56e-07 1.7211e-08 26.494 <0.01 

∆q/∆t -0.26197 0.041177 -6.3621 <0.01 

 

 

5.1.2 Field Example — Yusif Field 

In this section, we present the bottom-hole pressure correlation and forecast for real field 

examples. We believe that the applicability of the methodology in real field data is essential as 

the purpose of this work is to make the methodology which can be used by the oil industry. In 

this section, we chose three wells (Wells 12, 10, 110) to demonstrate the applications of the 

methodology to the real field data. One real well results are presented in Appendix. 

In the Yusif field, daily liquid flowrates were reported. Bottom-hole pressure data was acquired 

from PDG measurements. After visualizing the data, we cleaned and preprocessed pressure 

data to facilitate the correlation captured by the lasso algorithm. 

 

Case 3 — Yusif Well 12  

In case 3, our well of interest is Well 12. Well 12 has been in production for 7 years.  

In Figure 30, we present flowrate and bottom-hole pressure data versus time for Well 12. 

Figure 31 shows pressure predictions using the lasso correlation algorithm. There is not any 

obvious pressure discrepancy when we are reproducing bottom-hole pressure response of Well 

12 using only its flowrate history. R2
train is equal to 0.8996 and R2

test is equal to -2.6256. The 
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negative testing R2 value indicates that mean values of the testing data are closer to the testing 

dataset than forecasted values with the algorithm. 

 
Figure 30 — Flowrate and bottom-hole pressure history for Well 12.  The data to the 

left side of the dashed lines are training data, and the data to the right 
side of the dashed line are testing data.  
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Figure 31 — Pressure prediction with using the lasso algorithm for Well 12. The blue 
curve represents the true bottom-hole pressure history.  The red trend 
indicates pressure predictions for the training data while the green trend 
indicates pressure predictions for the testing data.  Only rates from Well 
12 were used for training and prediction process. Pressure trends were 
accurately captured by the lasso algorithm. R2

train is equal to 0.8996 and 
R2

test is equal to -2.6256. 
 

Eq. 30 presents a linear model for reproducing the bottom-hole pressure response of Well 12 

using its flowrate history only. The coefficients are calculated using the lasso algorithm when 

lambda is 0.009. From the coefficients, it can be seen that ∆𝑞	∆𝑡 term has less statistical 

significance for predicting the bottom-hole pressure of Well 12. 

 𝑃��	�����_ = 2085.442 + 0.051	∆𝑞����	.F 	− 0.0472	∆𝑞	𝑙𝑜𝑔∆𝑡����	.F

+ 8.28𝑥10-]¤	∆𝑞	∆𝑡	����	.F − 0.7238	∆𝑞/∆𝑡����	.F. 

 

(  30  )      
    

The estimated lambda value is 0.9x10-2 which is a relatively small value. Hence, the linear 

regression model is going give similar results as the lasso method. We use the linear regression 

model, to present the statistical parameters. 

R2
train =0.8996 R2

test = -2.6256 
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Table 4 provides information about the statistical importance of features to predict and forecast 

pressure behavior (target) for Well 12 using the least square approach. All the p-values are 

smaller than 0.01 meaning that all flow regimes are statistically significant.  
  

Table 4 — The statistical parameters of the least square model for predicting Well 
12’s bottom-hole pressure. The small p-values indicate that all flow 
regimes (features) are statistically significant to forecast bottom-hole 
pressure. 

 Coefficient Std. error t-statistic p-value 

Intercept 2086.3 15.693 132.94 <0.01 

∆q 0.05131 0.0024508 20.936 <0.01 

∆qlog∆t -0.047359 0.00093075 -50.883 <0.01 

∆q∆t 8.3013e-07 1.5244e-08 54.455 <0.01 

∆q/∆t -0.72795 0.038434 -18.94 <0.01 

 

 

Case 4 — Yusif Well 10 

In case 4, we selected Well 10 to demonstrate the accuracy of the pressure prediction with 

excluding the interference effects of the offset wells. Well 10 is a laterally drilled horizontal 

well which has been in production for more than 6.5 years.  

In Figure 32, we demonstrate flowrate and pressure history of Well 10.  

Figure 33 presents bottom-hole pressure predictions for Well 10 for training and testing 

datasets. As can be seen from Figure 33, the lasso algorithm is capable of capturing general 

pressure behavior. However, we note that there are obvious discrepancies between pressure 

predictions and real measurements, indicated by black ovals. R2
train is equal to 0.8000 and R2

test 

is equal to 0.3982. 

Figure 32 makes it clear that these discrepancies occur between 1.03x105 and 1.04x105 hours, 

when the flowrates of Well 10 are relatively constant but pressure trend changes. We observe 

the same behavior from time 1.23x105 hours to 1.3x105 hours, where the flowrate fairly 



57 

 

constant while the pressure responses increase. These discrepancies suggest that the pressure 

responses might be dominated by offset wells.  

In general, we note for this particular case, flowrate history of Well 10 can-not accurately 

reproduce its bottom-hole pressure responses. 

 
Figure 32 — Flowrate and bottom-hole pressure history for Well 10.  The data to the 

left side of the dashed lines are training data, and the data to the right 
side of the dashed line are the testing data.  
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Figure 33 — Pressure prediction using the lasso algorithm for Well 10. The blue trend 

represents the true bottom-hole pressure history.  The red trend indicates 
pressure predictions for the training data while the green trend indicates 
pressure predictions for the testing data.  Only rates from Well 10 were 
used for training and prediction.  Black circles indicate pressure trends 
that were not captured by linear machine learning algorithm. R2

train is 
equal to 0.8000 and R2

test is equal to 0.3982. 
 

Eq. 31 presents a linear model for reproducing bottom-hole pressure history of Well 10 using 

the lasso algorithm when the lambda value is 0.03.  From the coefficients, it can be seen that 

∆𝑞	∆𝑡 term has less statistical significance for predicting the bottom-hole pressure of Well 10. 

 𝑃��	�����_ = 1732.86 − 0.023	∆𝑞����	.] 	− 0.0004	∆𝑞	𝑙𝑜𝑔∆𝑡����	.]

− 3.827𝑥10-]¤	∆𝑞	∆𝑡	����	.] + 0.3057	∆𝑞/∆𝑡����	.]. 

 

(  31  )      
    

The estimated lambda value is 0.3x10-1 which is a relatively small value. Hence, the linear 

regression model is going give similar results as the lasso model. We use the linear regression 

model to present the statistical parameters. 

As shown in Table 5, we present the statistical parameters of the least square model. The high 

p-value (0.617) infers that there is not a strong association between infinite-acting radial flow 

feature and Well 10’s bottom-hole pressure measurements. We note that Well 10 is close to the 

R2
train =0.8000 R2

test =0.3982 
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boundary of the field, so it exhibits infinite-acting flow for a short period. This can explain why 

infinite-acting radial flow is statistically unimportant. 

Table 5 — The statistical parameters of the least square model for predicting Well 
10’s bottom-hole pressure. The small p-values indicate that all flow 
regimes (features) are statistically significant to forecast bottom-hole 
pressure except infinite-acting radial flow feature. 

 Coefficient Std. error t-statistic p-value 

Intercept 1732.5 8.8986 194.7 <0.01 

∆q -0.023364 0.0016454 -14.199 <0.01 

∆qlog∆t -0.00028789 0.00057562 -0.50014 0.617>0.01 

∆q∆t -3.8405e-07 7.1716e-09 -53.552 <0.01 

∆q/∆t 0.31148 0.024783 12.568 <0.01 

 

  

Case 5 — Yusif Well 110 

In case 5, we selected Well 110 to demonstrate the accuracy of the pressure prediction without 

including the interference effects from the offset wells. Well 110 has been in production for 

more than 7 years. We note that, dynamic observation indicate that Well 110 has strong 

interference effects with nearby injector. 

Figure 34 presents the flowrate and pressure history of Well 110. The data at the left part of 

the vertical dash line (at approximately 1.44 x105 hours) is the training dataset, and right part 

of this line is the testing dataset.  

In Figure 35, we present the bottom-hole pressure prediction for training and forecast for 

testing datasets using the lasso algorithm. We acknowledge that in case 5, the results are similar 

to previous cases but this case differs because there are significant discrepancies between real 

measurements and pressure predictions. For this specific case, the lasso algorithm does not 

accurately reproduce pressure behavior using only Well 110’s flowrate history. R2
train is equal 

to 0.3872 and R2
test is equal to -6.1772. 
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 As can be seen from Figure 34, despite the approximately the constant flowrate history of Well 

110, there are noticeable variations in pressure responses. For example, drastic pressure 

decrease between 1.05x105 hours and 1.18x105 hours accompany by flowrate decrease. This 

might be indication of strong interference effects from offset wells. 

 
Figure 34 — Flowrate and bottom-hole pressure history for Well 110.  The data to 

the left side of the dashed lines are training data, and the data to the right 
side of the dashed line are the testing data. 
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Figure 35 — Pressure prediction using the lasso algorithm without considering 
interference effects for Well 110. The blue trend represents the true 
bottom-hole pressure history.  The red trend indicates pressure 
predictions for the training data while the green trend indicates pressure 
predictions for the testing data.  Only rates from Well 110 were used for 
training and prediction. The lasso algorithm is not able to capture 
pressure trends using only well’s flowrate history for Well 110. R2

train is 
equal to 0.3872 and R2

test is equal to -6.1772. 
 

Eq. 32 presents linear model for reproducing bottom-hole pressure history of Well 110 using 

its flowrate history only. The coefficients are calculated using the lasso algorithm when the 

estimated lambda is 0.037. As for the other well cases, from the coefficients, it is obvious that 

∆𝑞	∆𝑡 term has less statistical significance for predicting the bottom-hole pressure of Well 110. 

 𝑃��	�����_ = 2085.442 + 0.051	∆𝑞����	..] 	− 0.0472	∆𝑞	𝑙𝑜𝑔∆𝑡����	..]

+ 8.28𝑥10-]¤	∆𝑞	∆𝑡	����	..] − 0.7238	∆𝑞/∆𝑡����	..]. 

 

(  32  )      
    

The estimated lambda value is 0.37x10-1 which is a relatively small value. Hence, the linear 

regression model is going give similar results as the lasso method. We use the linear regression 

model, to present the statistical parameters. 

R2
train =0.3872 R2

test = -6.1772 
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We present the statistical parameters of the least square regression model in Table 6. All the p-

values are smaller than 0.01, therefore, all flow regimes are statistically significant. 
 

 

Table 6 — The statistical parameters of the least square model for predicting Well 
110’s bottom-hole pressure. The small p-values indicate that all flow 
regimes (features) are statistically significant to forecast bottom-hole 
pressure. 

 Coefficient Std. error t-statistic p-value 

Intercept 1815.7 53.829 33.731 <0.01 

∆q 0.064775 0.01173 5.5222 <0.01 

∆qlog∆t -0.026643 0.0044553 -5.98 <0.01 

∆q∆t -1.0974e-06 3.7568e-08 -29.212 <0.01 

∆q/∆t -0.90044 0.16355 -5.5055 <0.01 

 

 

5.1.3. Discussion of Results  

The objective of predicting the pressure without including offset well interference effects is to 

determine which pressure signals are not caused by the selected well’s flowrate. By using only 

the selected well’s flowrate, we excluded the influence of offset wells. We note that wells 

having strong interference effects, do not reproduce accurate the pressure responses. This 

evidence leads us to the next phase of this study where we systematically add the offset wells 

to the lasso algorithm to detect from which well interference effects are coming.   
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5.2 Pressure Prediction Including Offset Well Interference Effects 

The goal of this section is to explain how we identify the interference effects of offset wells 

using the lasso algorithm.  As mentioned in the discussion of the results of the previous section, 

there are cases where the interference effects must be included to accurately reproduce the 

observed bottom-hole pressure history. In this section, we systematically include the rate 

histories of the offset wells one by one to capture the influence effects from the offset wells. 

We use the mathematically transformed flowrate histories systematically for all offset wells, 

identifying which wells provide responses. If there is more than one identified interference 

effects from offset wells, then we create a new scenario with combination of those offset well. 

The idea is that by doing this, we visualize and identify the influence of each offset well on the 

bottom-hole pressure.  We establish the "most likely" well interference scenarios using the R2 

value and the visual fit.  While doing it, we compare results of base cases or single-well tests 

with multi-well tests. 

 
  

5.2.1 Synthetic Field —Guler field  

As mentioned in Chapter 3, the Guler field is a synthetic field which has three producers (Wells 

P1, P2, and P3) and two injectors (Wells I1 and I2). A sealing fault divides reservoir into two 

compartments. We note that there is no horizontal pressure barrier between layers; however 

vertical permeability is lower than horizontal permeability. With the Guler field, we validate 

the methodology to identify interference wells by comparing the results with a known reservoir 

model.  

 

Case 1 — Guler Well P3 

For case 1, we demonstrated pressure predictions for Well P3 and in this part we include offset 

wells interference effects. From the synthetic reservoir model, we know that there is 

communication between Wells P2 and I1 and Well P3. Moreover, the sealed fault disconnects 

communication between Well P3 and Wells P1 and I2. 
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This section presents a detailed explanation of how we identify interference effects from offset 

wells using the lasso algorithm. We present the scenarios or realizations generated by the lasso 

algorithm by considering the combinations of Well P3 and its offsets one by one. We compare 

the improvements in pressure predictions for different scenarios with the base case where 

pressure history is reproduced using only Well P3’s flowrate history.  As mentioned, we 

compare the visual fit and the R2 values for different scenarios to identify interference effects. 

In general, we consider the visual fit more critical than the R2 value. 

Figure 36 presents pressure predictions for the Well P3/Well I1 configuration. The R2
train is 

equal to 0.9935 and R2
test is equal to 0.8564.  

Compared with the base case, there are visual improvements gained in pressure prediction 

trends between 1.8x104 and 3x104 hours by adding Well I1. The R2 values for both training and 

testing increase when we add Well I1 flowrate history. Therefore, we assume that there might 

be interference effects between these wells.   

 

Figure 36 — Pressure predictions for the Wells P3 and I1 configuration using the 
lasso algorithm. Compare to the base case, there are visual 
improvements in pressure prediction trends between 1.8x104 and 3x104 
hours. R2

train is equal to 0.9935 and R2
test is equal to 0.8564. 

 

R2
train =0.9935 R2

test = 0.8564 
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Eq. 33 presents the linear model for this configuration. Coefficients are calculated using the 

lasso algorithm.  

 𝑃��	����	�_ = 396.4172 − 0.0059	∆𝑞����	�_ 	− 0.0018	∆𝑞	𝑙𝑜𝑔∆𝑡����	�_

− 1.339x10-]§∆𝑞	∆𝑡����	�_ + 0.1899	∆𝑞/∆𝑡����	�_

+ 	0.0004∆𝑞����	¨. 	+ 0.0001	∆𝑞	𝑙𝑜𝑔∆𝑡����	¨.

+ 4.5333𝑥10-]¤	∆𝑞	∆𝑡����	¨. − 0.0145	∆𝑞/∆𝑡����	¨.	. 

 

(  33  )      
    

Figure 37 presents pressure predictions for the Well P3/Well P2 configuration. The R2
train is 

equal to 0.9819 and R2
test is equal to 0.653.  

Although the Well P3/Well P2 configuration has a slightly low R2
test value compared to the 

base case, the pressure increase and decrease trends between 1.5x104 and 1.8x104 hours and 

6x104 and 6.2x104 hours are captured in pressure predictions by adding Well P2 flowrate 

history. The configuration does not have the highest R2 value but has the best visual fit. 

Therefore, we assume that there might be interference effects between these wells.   

 

Figure 37 — Pressure prediction for the Wells P3 and P2 configuration using the 
lasso algorithm. The pressure increase and decrease between 1.5 x104 
and 1.8x104 hours and 6 x104 and 6.2x104 hours in real bottom-hole 
pressure values are captured in pressure predictions by adding Well P2 
flowrate history. R2

train is equal to 0.9819 and R2
test is equal to 0.653. 

  

R2
test = 0.653  R2

train = 0.9819  
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Eq. 34 presents the linear model for the Well P3/Well P2 configuration. Coefficients are 

calculated using the lasso algorithm. 

 𝑃��	����	�_ = 395.791 + 0.0014	∆𝑞����	�_ 	− 0.0039	∆𝑞	𝑙𝑜𝑔∆𝑡����	�_

− 1.185𝑥10-]§	∆𝑞	∆𝑡����	�_ + 0.0767∆𝑞/∆𝑡����	�_

+ 	0.0191∆𝑞����	�F 	− 0.0068	∆𝑞	𝑙𝑜𝑔∆𝑡�����	F

+ 7.205𝑥10-]¤	∆𝑞	∆𝑡����	�F − 0.2477∆𝑞∆𝑡����	�F	 

(  34  )      
    

  

Figure 38 presents pressure predictions for the Well P3/Well P1 configuration. R2
train is equal 

to 0.9875 and R2
test is equal to -0.2108.  

The Well P3/Well P1 configuration has a low R2
test value and no pressure prediction trends are 

captured by adding Well P1 compare to base case. On the contrary, the lasso algorithm 

reproduces a pressure increase and a decrease between 0.5x104 and 0.8x104 hours and a 

pressure increase at 5.1x104 hours by adding Well P1 flowrate history which is not observed in 

real pressure values. Therefore, we cannot assume that there are interference effects between 

these wells.  
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Figure 38 — Pressure prediction for the Wells P3 and P1 configuration using the 

lasso algorithm. Compare to the base case, there are not pressure trends 
which are captured by adding Well P1. The lasso algorithm accurately 
reproduce pressure increase and decrease trend between 0.5x104 and 
0.8x104 hours and pressure increase at 5.1 x104 hours by adding Well 
P1 flowrate history. R2

train is equal to 0.9875 and R2
test is equal to -

0.2108. 
 

Eq. 35 presents the linear model for the Well P3/Well P1 configuration. Coefficients are 

calculated using the lasso algorithm. 

 𝑃��	����	�_ = 398.6474 − 0.0004	∆𝑞����	�_ 	− 0.0036	∆𝑞	𝑙𝑜𝑔∆𝑡����	�_

− 8.074𝑥10-]§	∆𝑞	∆𝑡����	�_ + 0.1092	∆𝑞/∆𝑡����	�_

+ 	0.0219	∆𝑞����	�. 	− 0.0087	∆𝑞	𝑙𝑜𝑔∆𝑡����	�.

+ 3.35𝑥10-]¤	∆𝑞	∆𝑡����	�. − 0.2890	∆𝑞/∆𝑡����	�.	. 

 

(  35  )      
    

Figure 39 presents pressure predictions for the Well P3/Well I2 configuration. R2
train is equal 

to 0.9864 and R2
test is equal to 0.5924.  

The Well P3/Well I2 configuration has a low R2
test value and no visual improvements in 

pressure prediction trends are captured by adding Well I2 compare to base case. Therefore, 

there is no obvious evidence of interference effects between these wells.   

R2
test = -0.2108  R2

train = 0.9875 
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Figure 39 — Pressure prediction for the Wells P3 and I2 configuration using the lasso 
algorithm. R2

train is equal to 0.9864 and R2
test is equal to 0.5924. 

Compare to the base case, there are not visual improvements in pressure 
trend predictions and in R2 values by adding Well I2.  

 

Eq. 36 presents the linear model for the Well P3/Well I2 configuration. Coefficients are 

calculated using the lasso algorithm. 

 𝑃��	����	�_ = 394.9968 + 0.0004	∆𝑞����	�_ 	− 0.004	∆𝑞	𝑙𝑜𝑔∆𝑡����	�_

− 9.679𝑥10-]¤	∆𝑞	∆𝑡����	�_ + 0.1047	∆𝑞/∆𝑡����	�_

+ 	0.0063	∆𝑞����	¨F 	− 0.0019	∆𝑞	𝑙𝑜𝑔∆𝑡����	¨F

+ 3.899𝑥10-]¤	∆𝑞	∆𝑡����	¨F − 0.1056	∆𝑞/∆𝑡����	¨F	. 

 

(  36  )      
    

During the generated scenarios, we assume that Wells P2 and I1 might interfere with Well P3. 

Therefore, we generate the Well P3/Well I1/Well P2 configuration scenario to examine 

pressure predictions. For this scenario, R2
train is equal to 0.9988 and R2

test is equal to 0.953.  

Figure 40 presents pressure predictions for this scenario.  The Well P3/Well I1/Well P2 

configuration has the highest training and testing R2 values relative to the other scenarios and 

provides an almost perfect visual fit. Therefore, we assume that the flowrate histories for Wells 

P3, P2, and I1 are required to accurately reproduce the bottom-hole pressure of Well P3.  

R2
train = 0.9864 R2

test = 0.5924 
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Figure 40 — Pressure predictions for Wells P3, P2 and I1 configuration using the 
lasso algorithm. R2

train is equal to 0.9988 and R2
test is equal to 0.953.  

There is almost perfect match between real bottom-hole pressure values 
and pressure predictions for Wells P3, P2 and I1 configuration. This 
configuration has highest R2 values compare to other scenarios.  

 

Eq. 37 presents the linear model for the Well P3/Well P2/ Well I1 configuration using the lasso 

algorithm. 

 𝑃��	����	�_ = 399.1643 − 0.0065	∆𝑞����	�_ 	− 0.0015	∆𝑞	𝑙𝑜𝑔∆𝑡����	�_

− 0.7485𝑥10-]§	∆𝑞	∆𝑡����	�_ + 0.1969	∆𝑞/∆𝑡����	�_

− 0.0017	∆𝑞����	¨. 	− 0.0007	∆𝑞	𝑙𝑜𝑔∆𝑡����	¨. 							

+ 0.4417𝑥10-]§	∆𝑞	∆𝑡����	¨. + 0.0218	∆𝑞/∆𝑡����	¨.	

+ 	0.0064	∆𝑞����	�F 	− 0.0025	∆𝑞	𝑙𝑜𝑔∆𝑡����	�F 														

− 0.6403𝑥10-]§	∆𝑞	∆𝑡����	�F − 0.0742	∆𝑞/∆𝑡����	�F	. 

 

(  37  )      
    

In Figure 41.a, we present an enlarged view of Well P3, where we have reproduced and 

forecasted pressure responses using only the flowrates for Well P3. In Figure 41.b we repeat 

it for the Well P3/Well I1/Well P2 configuration. Visually and statistically, the Well P3/Well 

I1/Well P2 configuration is substantially better than the Well P3 configuration. 

R2
train = 0.9988 R2

test = 0.953 
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Figure 41 — Figure 41.a illustrates the pressure prediction obtained using only the 
flowrate history for Well P3. Figure 41.b illustrates the improved 
pressure prediction obtained using the flowrate histories for Wells P3, 
I1, and P2 configuration. 

 

Well P3/Well I1/Well P2 
configuration. 

Well P3 only. 

R2
train =0.9720 

R2
train =0.9988 R2

test =0.953 

R2
test =0.5926 
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Table 7 presents the coefficients of lasso model for predicting Well P3’s bottom-hole pressure 

when all possible interference wells are considered. The estimated lambda value for the lasso 

algorithm is 1.6x10-3. As mentioned, the coefficients are calculated using criteria in Eq. 16 

which is the OLS approach with penalty term. Because of its penalty term, the lasso can assign 

coefficients of statistically unimportant features to zero. By doing so, the lasso can identify 

statistically important features.  

In Table 7, features whose coefficients are smaller value than 0.0001 are considered as 

statistically unimportant. 

It can be seen that ∆𝑞	∆𝑡 terms for all wells have less statistical significance for predicting the 

bottom-hole pressure of Well P3. The lasso coefficients indicate that only Well I2’s flowrate 

features are not statistically important when reproducing Well P3’s bottom-hole pressure 

history. For Well P1, two features out of four are statistically unimportant.  

From the synthetic model, we know that there is no communication between Well P3 and Well 

P1. As two features of Well P1 are considered statistically important, we cannot conclude that 

lasso coefficients are fully able to determine which flowrate features have importance in 

reproducing the bottom-hole pressure response of Well P3.  
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Table 7 — The coefficients of the lasso model for predicting Well P3’s bottom-
hole pressure when all possible interference wells are considered. The 
features having coefficients less than 0.0001 are considered as 
statistically unimportant, indicated by red color.  

 Coefficient Statistical Importance 

Intercept 398.892  

∆q P3 -0.007  

∆qlog∆t P3 -0.001  

∆q∆t P3 -8.193e-07  

∆q/∆t P3 0.204  

∆q I1 -0.0011  

∆qlog∆t I1 0.0004  

∆q∆t I1 4.7647e-07  

∆q/∆t I1 0.014  

∆q P2 0.006  

∆qlog∆t P2 -0.0025  

∆q∆t P2 -6.332e-07  

∆q/∆t P2 -0.076  

∆q P1 0.00029  

∆qlog∆t P1 -1.381e-05  

∆q∆t P1 8.389e-08  

∆q/∆t P1 -0.0068  

∆q I2 4.893e-05  

∆qlog∆t I2 0  

∆q∆t I2 -2.132e-08  

∆q/∆t I2 0  
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Recall that in Case 1 when we include all possible offset wells, the estimated lambda value for 

lasso algorithm is 1.6x10-3 which is a small value. As mentioned in Chapter 2.4, a small lambda 

value indicates that the lasso model performs like the linear regression model. Therefore, we 

can ignore the penalty term in Eq. 16 and use only the OLS approach.  

We use the linear regression model to analyze the statistical parameters and to see if we can 

determine interference effects using statistical parameters such as standard error, t-statistics, 

and p-value. First, we remove all statistically unimportant parameters which are identified by 

the lasso algorithm in Table 7. Then we input the remaining features into the linear regression 

model to determine if p-values can identify which flowrate features do not affect the bottom-

hole pressure response of Well P3. 

Figure 8 presents statistical parameters of the least squares regression model. The statistical 

parameters such as standard error, t-statistics, and p-value are explained in Chapter 2.3. As all 

the p-values are smaller than 0.01, all flowrate features have association with Well P3’s bottom-

hole pressure.  

However, we know from the synthetic model that Well P1’s flowrate history does not affect 

Well P3’s bottom-hole pressure response. Therefore, the p-values are not able to fully 

determine which well’s flowrate history does not impact the bottom-hole pressure response of 

Well P3. 

We note that there is a 5% chance that a p-value will incorrectly determine that there is a 

relationship (James 2013).   
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Table 8 — The statistical parameters of the least square model for predicting Well 
P3’s bottom-hole pressure when all statistical important features are 
included. The small p-values indicate that flowrate features of Wells 
P3, I1, P2 and P1 are statistically significant to forecast bottom-hole 
pressure. 

 Coefficient Std. error t-statistic p-value 

Intercept 404.06 0.71345 566.35 <0.01 

∆q P3 0.016784 0.016784 19.35 <0.01 

∆qlog∆t P3 -0.010381 0.00028851 -35.983 <0.01 

∆q/∆t P3 -0.11768 -0.11768 -6.8157 <0.01 

∆q I1 0.011116 0.00042781 25.984 <0.01 

∆qlog∆t I1 -0.003845 0.00011893 -32.33 <0.01 

∆q/∆t I1 -0.23435 0.014301 0.014301 <0.01 

∆q P2 0.013265 0.0009288 14.281 <0.01 

∆qlog∆t P2 -0.0045304 0.00032113 -14.108 <0.01 

∆q/∆t P2 -0.1922 0.0018874 12.183 <0.01 

∆q P1 -0.0056011 0.00049933 -14.349 <0.01 

∆q/∆t P1 -0.24054 0.0249469 -9.8624 <0.01 

 

Case 2 — Guler Well P1 

In case 2, we know from the simulated reservoir model that Well P1 and Well I2 are pressure 

communicating wells. We note that there is no communication between Well P1 and Wells P2, 

P3, and I1 because of the sealing fault. 

This this case, we present the scenarios or realizations generated by the lasso algorithm by 

considering the combinations of Well P1 and its offsets. As in Case 1, we compare the 

improvements in pressure predictions for different scenarios with the base case using the R2 

values and visual fit. 
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Figure 42 presents pressure predictions for the Well P1/Well I2 configuration. The R2
train is 

equal to 0.9655 and R2
test is equal to 0.8857.  

Visually and statistically, the Well P1/Well I2 configuration performs noticeably better than 

the Well P1 configuration.  We note that the Well P1/Well I2 configuration captures particularly 

well the start of the pressure increase, which occurs at approximately 2.4x104 hours. Also, there 

are visual improvements in pressure prediction trends between 2x104 and 3x104 hours. The R2 

values for both training and testing increase significantly by adding Well I2’s flowrate history. 

Therefore, we assume that there might be interference effects between these wells.  

 
Figure 42 — Pressure predictions for the Well P1/Well I2 configuration using the 

lasso algorithm. R2
train is equal to 0.9655 and R2

test is equal to 0.8857.  
Compare to the base case, there are visual improvements in pressure 
prediction trends between 1.8 x104 and 3x104 hours.  New configuration 
captures particularly well the start of the pressure increase, which occurs 
at approximately 2.4x104 hours. 

 

Eq. 38 presents linear model for this configuration using the lasso algorithm  

R2
train =0.9655 R2

test = 0.8857 
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 𝑃��	����	�. = 407.7766 − 0.0281	∆𝑞����	�. 	− 0.0006	∆𝑞	𝑙𝑜𝑔∆𝑡����	�.

− 1.852𝑥10-]§	∆𝑞	∆𝑡����	�. + 0.6088	∆𝑞/∆𝑡����	�.

+ 	0.0019∆𝑞����	¨F 	+ 0.0004	∆𝑞	𝑙𝑜𝑔∆𝑡����	¨F 													

+ 1.2117𝑥10-]§	∆𝑞	∆𝑡����	¨F − 0.0350	∆𝑞/∆𝑡����	¨F	. 

 

(  38  )      
    

Figure 43 presents pressure predictions for the Well P1/Well P3 configuration. The  R2
train is 

equal to 0.8451 and R2
test is equal to -1.7832.  

The Well P1/Well P3 configuration has decrease in testing and training R2 values compare to 

base case.  Besides, there are not any visual improvements on pressure trends by adding Well 

P1’s flowrate history. Therefore, we do not have evidence to conclude that Well P3’s flowrate 

history affect Well P1’s bottom-hole pressure response.  
  

 

Figure 43 — Pressure prediction for the Well P1/Well P3 configuration using the 
lasso algorithm. R2

train is equal to 0.8451 and R2
test is equal to -1.7832. 

There is not improvements in match and R2
test by adding Well P3’s 

flowrate history. 
 

Eq. 39 presents linear model for the Well P1/Well P3 configuration. Coefficients are calculated 

using the lasso algorithm 

R2
train = 0.8451 R2

test = -1.7832 



77 

 

 𝑃��	����	�. = 422.4716 + 0.0229	∆𝑞����	�. 	− 0.0220	∆𝑞	𝑙𝑜𝑔∆𝑡����	�.

+ 0	∆𝑞	∆𝑡����	�. − 0.0661	∆𝑞/∆𝑡����	�.

+ 	0.0223∆𝑞����	�_ 	− 0.0079	∆𝑞	𝑙𝑜𝑔∆𝑡����	�_ 											

+ 4.1286𝑥10-]¤	∆𝑞	∆𝑡����	�_ − 0.3155	∆𝑞/∆𝑡����	�_	. 

 

(  39  )      
    

Figure 44 presents pressure predictions for the Well P1/Well P2 configuration. R2
train is equal 

to 0.8463 and  R2
test is equal to -5.8755.  

The Well P1/Well P2 configuration has significantly low R2
train and R2

test values compare to base 

case. Moreover, there are no improvements in the visual fit. Therefore, we assume that there 

we do not have evidence of interference effects between these wells.   

 

Figure 44 — Pressure prediction for the Well P1/Well P2 configuration using the 
lasso algorithm. R2

train is equal to 0.8463 and R2
test is equal to -5.8755. 

There are not improvements on R2 values and in visual fit of pressure 
predictions by adding Well P2’s flowrate history. 

 

Eq. 40 presents the linear model for the P1/Well P2 configuration. Coefficients are calculated 

using the lasso algorithm. 

R2
train = 0.8463 R2

test = -5.8755 
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 𝑃��	����	�. = 407.7766 − 0.0281	∆𝑞����	�. 	− 0.0006	∆𝑞	𝑙𝑜𝑔∆𝑡����	�.

− 1.623𝑥10-]§	∆𝑞	∆𝑡����	�. + 0.6088	∆𝑞/∆𝑡����	�.

+ 	0.0019∆𝑞����	�F 	+ 0.0004	∆𝑞	𝑙𝑜𝑔∆𝑡����	�F 											

+ 1.5237𝑥10-]§	∆𝑞	∆𝑡����	�F − 0.0350	∆𝑞/∆𝑡����	�F	. 

(  40  )      
    

  

Figure 45 presents pressure predictions for the Well P1/Well I1 configuration. R2
train is equal 

to 0.9329 and R2
test is equal to -3.7455. 

The Well P3/Well I1 configuration has a low R2
test value and no visual improvements in 

pressure prediction trends are captured by adding Well I1. Therefore, there is not obvious 

evidence of interference effects between these wells.   
 

 

Figure 45 — Pressure prediction for the Well P1/Well I1 configuration using the 
lasso algorithm. R2

train is equal to 0.9329 and R2
test is equal to -3.7455. 

Compare to the base case, there are not visual and R2
test value 

improvements in pressure trend predictions by adding Well I1.  
 

Eq. 41 presents the linear model for the Well P3/Well I2 configuration. Coefficients are 

calculated using the lasso algorithm. 

R2
train = 0.9329 R2

test = -3.7455 
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 𝑃��	����	�. = 407.7766 − 0.0281	∆𝑞����	�. 	− 0.0006	∆𝑞	𝑙𝑜𝑔∆𝑡����	�.

− 2.38𝑥10-]§	∆𝑞	∆𝑡����	�. + 0.6088	∆𝑞/∆𝑡����	�.

+ 	0.0019∆𝑞����	¨. 	+ 0.0004	∆𝑞	𝑙𝑜𝑔∆𝑡����	¨. 														

+ 	1.351𝑥10-]§	∆𝑞	∆𝑡����	.F − 0.0350	∆𝑞/∆𝑡����	¨.	. 

 
 

(  41  )      
    

As mentioned, the lasso algorithm forces statistically unimportant features to zero. We assume 

the features whose coefficients are smaller value than 0.0001 are statistically unimportant to 

reproduce the bottom-hole pressure of Well P1.  

From Table 9, it can be seen that ∆𝑞	∆𝑡 terms for all wells are statistical insignificance for 

predicting the bottom-hole pressure of Well P1. The lasso coefficients indicate that three 

flowrate features of Well I1 are statistically unimportant when reproducing Well P1’s bottom-

hole pressure history. While, the three flowrate features of Wells P2 and P3 are found to be 

statistically important.  

From simulated model we know that Well P1 does not have connectivity with Wells P2, P3 

and I1. Well P1 has connectivity only with Well I2. 

Therefore, the lasso coefficients we can-not accurately identify which flowrate history affects 

the bottom-hole pressure of Well P1 when all wells are examined at the same time. Hence, the 

coefficient are not fully reliable to identify interference effects.  
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Table 9 — The coefficients of the lasso model for predicting Well P1’s bottom-
hole pressure when all possible interference wells are considered. The 
features having coefficients less than 0.0001 are considered as 
statistically unimportant, indicated by red color.  

 Coefficient Statistical 
Importance 

Intercept 410.852  

∆q P1 -0.047  

∆qlog∆t P1 0.0069  

∆q∆t P1 -2.342e-06  

∆q/∆t P1 0.858  

∆q I2 -0.0003  

∆qlog∆t I2 0.0002  

∆q∆t I2 8.650e-07  

∆q/∆t I2 0.0041  

∆q P2 0.0065  

∆qlog∆t P2 -0.0024  

∆q∆t P2 1.9594e-07  

∆q/∆t P2 -0.0838  

∆q P3 0.0060  

∆qlog∆t P3 -0.0023  

∆q∆t P3 -1.8994e-07  

∆q/∆t P3 -0.0787  

∆q I1 -3.924e-05  

∆qlog∆t I1 0  

∆q∆t I1 5.3527e-07  

∆q/∆t I1 0.0079  
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Recall that in Case 2, for the lasso algorithm, the estimated lambda value is 4.7x10-3 which is 

relatively a small value. As mentioned in Chapter 2.4, a small lambda value indicates that we 

can ignore penalty term in Eq. 16 and use only the OLS approach.  

Therefore, we use the linear regression model to analyze the statistical parameters and to see if 

we can determine interference effects using these parameters. As in case 1, first, we remove all 

statistically unimportant parameters which are identified by lasso algorithm in Table 9. Then 

we input the remaining features into the linear regression model to determine if p-values can 

identify flowrate features which do not affect bottom-hole pressure response. 

Table 10 presents statistical parameters of the least squares regression model. When p-values 

are smaller than 0.01, we assume that there is an association with Well P1’s bottom-hole 

pressure and features.  

According to p-values in Table 10, three flowrate features of Well P2 and two flowrate features 

of Well P3 are statistically important to reproduce bottom-hole pressure of Well P1. 

However, we know from the synthetic model that flowrate histories for Wells P3, P1 and I1 do 

not affect Well P1’s bottom-hole pressure response. Therefore, for Case 2, the p-values are not 

fully able to determine which well’s flowrate features do not impact the bottom-hole pressure 

response of Well P1. 

As can be seen from results and discussion of Case 1 and Case 2, the lasso coefficients and the 

statistical parameters, particularly p-values, are unreliable for identifying interference effects. 

Therefore, we will not rely on statistical parameters for the other cases. 



82 

 

Table 10 — The statistical parameters of the least square model for predicting Well 
P1’s bottom-hole pressure when all possible interference wells are 
included. The small p-values indicate that almost all flow regimes 
(features) for different wells are statistically significant to forecast 
bottom-hole pressure. 

 Coefficient Std. error t-statistic p-value 

Intercept 411.03 0.77165 544.5 <0.01 

∆q P1 0.022435 0.001526 14.702 <0.01 

∆qlog∆t P1 -0.021133 0.00048962 -43.163 <0.01 

∆q/∆t P1 -0.049772 0.032902 -1.5128 0.13> 0.01 

∆q I2 -0.009332 0.00047816 -40.323 <0.01 

∆qlog∆t I2 0.29037681 0.00014772 44.41 <0.01 

∆q/∆t I2 0.023592 0.013275 13.02 <0.01 

∆q P2 0.0085376 0.00086194 7.34 <0.01 

∆qlog∆t P2 -0.0032415 0.00031135 -8.411 <0.01 

∆q/∆t P2 -0.13883 0.013846 -5.8602 <0.01 

∆q P3 0.0049963 0.00078115 3.6762 <0.01 

∆qlog∆t P3 -0.00083476 0.00027648 -2.4913 0.13> 0.01 

∆q/∆t P3 -0.078535 0.012537 -4.2643 <0.01 

∆q/∆t I1 -0.025524 0.011494 -1.62088 0.07 > 0.01 

 

5.2.2 Field Example — Yusif Field 

The Yusif field is the large and geologically complex field as stated in Chapter 4. The Yusif 

field consists of an alternative sequence of thin impermeable and permeable layers. In this 

section, we show the application of the methodology to real field data. We compare identified 

interference effects from offset wells using the methodology with observed results from the 
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field. Among all wells in the field, we test only possible interference wells which are selected 

considering well locations and perforation layers. 

 

Case 3 — Yusif Well 12 

In case 3, we chose Wells 38I, 24, and 33 as possible interference wells for Well 12 and 

analyzed their impact to bottom-hole pressure measurements. Wells 12 and 24 were completed 

in L5 layer while Well 38I was completed in L3 and L5; Well 33 was completed in L5, L7 and 

L8. From the dynamic field observations, we know that there are no interference effects from 

Wells 24 and 33. 

From the dynamic observations of field, there are not reported interference effects from offset 

wells for Well 12. In fact, from the field reports it is indicated that there is not communication 

between Well 12 and Wells 24 and 33.  

Although only flowrate history of Well 12 can accurately reproduce its bottom-hole pressure 

response using the lasso algorithm and no discrepancy is observed, in this section we add 

possible offset wells systematically to examine the algorithm behavior.  

In Figure 46 we present the bottom-hole pressure response for Well 12 and flowrate histories 

for Wells 12, 38I, 24, and 33. 
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Figure 46 — Flowrate and bottom-hole pressure history for Well 12 and flowrate 

histories for Wells 38I, 24, and 33. 
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Figure 47 presents pressure predictions for the Well 12/Well 38I configuration. R2
train is equal 

to 0.9036 and R2
test is equal to -3.2595.  

The Well 12/Well 38I configuration has a lower R2
test value compare to base case where only 

Well 12 flowrate’s is used to predict its bottom-hole pressure response.  Besides, there are not 

any improvements in capturing pressure trends by adding Well 38I’s flowrate history. 

Therefore, we do not have evidence to conclude that Well 38I’s flowrate history affect Well 

12’s bottom-hole pressure response.  

 

 

Figure 47 — Pressure predictions for the Well 12/Well 38I configuration using the 
lasso algorithm. R2

train is equal to 0.9036 and R2
test is equal to -3.2595. 

Compare to the base case, there are not visual improvements in pressure 
predictions. 

 

Eq. 42 presents linear model for the Well 12/Well 38I configuration. Coefficients are calculated 

using the lasso algorithm.  

 𝑃��	�����_ = 2647.546 − 0.0448	∆𝑞����	.F 	− 0.0455	∆𝑞	𝑙𝑜𝑔∆𝑡����	.F

+ 2.1720𝑥10-]§	∆𝑞	∆𝑡����	.F − 0.63496	∆𝑞/∆𝑡����	.F

+ 0.0097∆𝑞����	_©¨ 	− 0.0032	∆𝑞	𝑙𝑜𝑔∆𝑡����	_©¨

− 5.2468𝑥10-]¤	∆𝑞	∆𝑡����	_©¨ − 0.1231∆𝑞/∆𝑡����	_©¨	. 

(  42  )      
    

R2
train =0.9036 R2

test = -3.2595 
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Figure 48 presents pressure predictions for the Well 12/Well 24 configuration. R2

train is equal 

to 0.9053 and R2
test is equal to -3.3079.  

The Well 12/Well 24 configuration has a decrease in testing R2 value compare to base case. 

Also there are not any improvements in capturing the pressure trends by adding Well 24’s 

flowrate history. Therefore, we do not have evidence to conclude that Well 24’s flowrate 

history affect Well 12’s bottom-hole pressure response.  

 

Figure 48 — Pressure prediction for the Well 12/Well 24 configuration using the 
lasso algorithm. R2

train is equal to 0.9053 and R2
test is equal to -3.3079. 

There is not improvements in pressure prediction by adding Well 24’s 
flowrate history. 

 

Eq. 43 presents linear model for the Well 12/Well 24 configuration using the lasso algorithm.  

 𝑃��	�����_ = 2776.5770 + 0.0542	∆𝑞����.F 	− 0.04901	∆𝑞	𝑙𝑜𝑔∆𝑡����	.F

+ 1.9479𝑥10-]§	∆𝑞	∆𝑡����	.F − 0.7365	∆𝑞/∆𝑡����	.F

− 0.0023	∆𝑞����	Fª + 0.0019∆𝑞	𝑙𝑜𝑔∆𝑡����	Fª

− 9.351𝑥10-]¤	∆𝑞	∆𝑡����	Fª − 0.0169	∆𝑞/∆𝑡����	Fª	. 

 

(  43  )      
    

 

R2
train = 0.9053 R2

test = -3.3079 
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Figure 49 presents pressure predictions for the Well 12/Well 33 configuration. R2
train is equal 

to 0.9053 and R2
test is equal to -3.3079.  

The Well 12/Well 33 configuration has a slightly low R2
test value when we are comparing with 

base case. Moreover, there are no improvements in visual fit. Therefore, we would not assume 

that there are not interference effects between these wells.  

  

Figure 49 — Pressure prediction for the Well 12/Well 33 configuration using the 
lasso algorithm. R2

train is equal to 0.9053 and R2
test is equal to -3.3079. 

There are not improvements in visual fit of pressure predictions by 
adding Well 33’s flowrate history. 

 

Eq. 44 presents linear model for the P1/Well P2 configuration. Coefficients are calculated using 

the lasso algorithm. 

 𝑃��	����	�_ = 2376.6503 − 0.0009	∆𝑞����	.F 	− 0.0271	∆𝑞	𝑙𝑜𝑔∆𝑡����	.F

− 1.732𝑥10-]¤	∆𝑞	∆𝑡����	.F − 0.1224∆𝑞/∆𝑡����	.F

+ 	0.0395	∆𝑞����	__ 	− 0.0125	∆𝑞	𝑙𝑜𝑔∆𝑡����	__

+ 1.3274𝑥10-]§	∆𝑞	∆𝑡����	__ − 0.5018∆𝑞/∆𝑡����	__	. 

(  44  )      
    

  

In general, there are slight increase in the R2
train values and decrease in the R2

test values with 

additional well. The coefficients of the models gives statistical importance of flowrate histories 

R2
train = 0.9229 R2

test = -2.8674 
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of nearby wells even if most probably there is no interference effects between wells. The most 

importantly, there are not any visual improvements in pressure prediction trends by adding 

possible offset wells. So, we assume that only Well 12’s flowrate history is needed to accurately 

reproduce bottom-hole pressure behavior. 

 

Case 4 — Yusif Well 10 

In case 4, we chose Wells 22, 11, and 23 as possible interference wells for Well 10 and analyzed 

their impact to bottom-hole pressure measurements. Well 10 and Well 11 were completed in 

L5 layer while Well 22 was completed in L5 and L3 layers; Well 23 was completed in L7, L6, 

and L5 layers.  

From dynamic field observation, we known that there are strong interference effects between 

Well 10 and Wells 22 and 11. 

In Figure 50 we illustrate the bottom-hole pressure responses for Well 10 and flowrate histories 

for Wells 10, 22, 11 and 23.  
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Figure 50 — Flowrate and bottom-hole pressure history for Well 10 and flowrate 
histories for Wells 22, 11, and 23. 
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Figure 51 presents pressure predictions for the Well 10/Well 22 configuration. R2
train is equal 

to 0.9376 and R2
test is equal to -0.3459.  

With adding Well 22 flowrate history to predict bottom-hole pressure of Well 10, the R2
train 

value increase significantly while the R2
test value slightly decrease compare to base case.  We 

observe significant improvement in visual fit when we add Well 22 flowrate history. Therefore, 

we assume that both Well 10 and Well 22 flowrate histories might affect bottom-hole pressure 

of Well 10. In another word, both wells flowrate history is required to accurately reproduce 

bottom-hole pressure behavior. 

 

Figure 51 — Pressure predictions for the Well 10/Well 22 configuration using the 
lasso algorithm. R2

train is equal to 0.9376 and R2
test is equal to -0.3459. 

Compare to the base case, there are visual improvements in pressure 
prediction trends between 1x104 and 1.3x104 hours. This configuration 
captures particularly well increase in bottom-hole pressure at 1.01 x104 

and 1.2 x104 hours. 
 

Eq. 45 presents linear model for the Well 10/Well 22 configuration using the lasso algorithm.  

R2
train =0.9376 R2

test = -0.3459 
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𝑃��	�����_ = 2647.546 − 0.0448	∆𝑞����	.F 	− 0.0455	∆𝑞	𝑙𝑜𝑔∆𝑡����	.F

+ 2.1720𝑥10-]§	∆𝑞	∆𝑡����	.F − 0.63496	∆𝑞/∆𝑡����	.F

+ 0.0097	∆𝑞����	_©¨ 	− 0.0032	∆𝑞	𝑙𝑜𝑔∆𝑡����	_©¨

− 5.2468𝑥10-]¤	∆𝑞	∆𝑡����	_©¨ − 0.1231∆𝑞/∆𝑡����	_©¨	. 

(  45  )      
    

 

In Figure 52, we present pressure predictions for the Well 10/Well 11 configuration. R2
train is 

equal to 0.8437 and R2
test is equal to -2.7581.  

The Well P1/Well P3 configuration has low R2
test and slightly high R2

train values compare to 

base case.  We are not observing any improvements pressure prediction trends by adding Well 

11’s flowrate history. Although it is reported from the field observations that there is 

communication between wells, we do not observe that Well 11’s flowrate history affects Well 

10’s bottom-hole pressure responses using the lasso algorithm.   

 

Figure 52 — Pressure prediction for the Well 10/Well 11 configuration using the 
lasso algorithm. R2

train is equal to 0.8437 and R2
test is equal to -2.7581. 

There is not improvements in match by adding Well P3’s flowrate 
history. 

 

Eq. 46 presents linear model for the Well 10/Well 11 configuration. Coefficients are calculated 

using the lasso algorithm.  

R2
train = 0.8437 R2

test = -2.7581 
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 𝑃��	�����_ = 2776.5770 + 0.0542	∆𝑞����.F 	− 0.04901	∆𝑞	𝑙𝑜𝑔∆𝑡����	.F

+ 1.9479𝑥10-]§	∆𝑞	∆𝑡����	.F − 0.7365	∆𝑞/∆𝑡����	.F

− 0.0023	∆𝑞����	Fª + 0.0019∆𝑞	𝑙𝑜𝑔∆𝑡����	Fª

− 9.351𝑥10-]¤	∆𝑞	∆𝑡����	Fª − 0.0169	∆𝑞/∆𝑡����	Fª	.	 

 

(  46  )      
    

Figure 53 presents pressure predictions for the Well 10/Well 23 configuration. R2
train is equal 

to 0.8419 and R2
test is equal to -14.3543.  

This configuration has a low R2
test value and decrease in prediction accuracy with adding Well 

23 flowrate history. Therefore, we do not have enough evidence to assume that there are 

interference effects between these wells.   

 

Figure 53 — Pressure prediction for the Well 10/Well 23 configuration using the 
lasso algorithm. R2

train is equal to 0.8419 and R2
test is equal to -14.3543. 

There are significant mismatch between forecasted pressure and real 
measurements during 1.31x105 and 1.39x105 hours by adding Well 23 
flowrate history. Overall, there are not improvements in visual fit of 
pressure predictions by adding Well 23’s flowrate history. 

 

Eq. 47 presents linear model for the Well 10/Well 23 configuration using the lasso algorithm. 

 

R2
train = 0.8419 R2

test = -14.3543 
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 𝑃��	����	.F = 1833.788 − 0.0024	∆𝑞����	.F 	− 0.0093	∆𝑞	𝑙𝑜𝑔∆𝑡����	.F

+ 1.6233𝑥10-]§	∆𝑞	∆𝑡����	.F + 0.0554	∆𝑞/∆𝑡����	.F

− 0.0371	∆𝑞����	__ 	+ 0.0180	∆𝑞	𝑙𝑜𝑔∆𝑡����	__ 					

− 2.523	𝑥10-]§∆𝑞	∆𝑡����	__ + 0.4033	∆𝑞/∆𝑡����	__	. 

(  47  )      
    

  

Although the algorithm detect that there are interference effects between Well 10 and Well 22, 

it does not identify that the flowrate of Well 11 has impact on Well 10’s bottom-hole pressure. 

From the dynamic observation of field, we know that both Wells 22 and 11 have 

communication with Well 10. Hence, in this part, we examine the Well 10/Well 11/Well 22 

configuration. 

In Figure 54.a, we present an enlarged view of Well 10 pressure prediction using only the 

flowrates for Well 10 and in Figure 54.b, we have reproduced and forecasted pressure 

responses for the Well 10/Well 11/Well 22 configuration.  Visually and statistically, the Well 

10/Well 11/Well 22 configuration performs noticeably better than the Well 10 configuration or 

any other presented scenarios.  
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Figure 54 — Pressure prediction for Well 10 using the influence of Wells 11 and 22.  
Figure 54.a illustrates the pressure prediction obtained using only the 
flowrate history for Well P3. R2

train is equal to 0.8000 and R2
test is equal 

to 0.3982. Figure 54.b illustrates the improved pressure prediction 
obtained using the flowrate histories for Wells 10, 11, and 22. R2

train is 
equal to 0.9473 and R2

test is equal to 0.38208. Statistically and visually, 
this configuration gives the best match compare to other scenarios. 

Well 10/Well 11/Well 22 
configuration. 

Well 10 only. 

R2
train =0.8000 R2

test =0.3982 

R2
train =0.9473 R2

test =0.8208 
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Case 5 — Yusif Well 110 

In case 5, we demonstrate pressure predictions for Well 110 with including offset wells 

interference effects. We chose Wells 16I, 02, and 13 as possible interference wells for Well 110 

and analyzed their impact to bottom-hole pressure measurements. Well 110 and Well 13 were 

completed in L5 and L3 layers while Well 16I was completed in L5, L4, L3, Lob1 and Loa2 

layers; Well 02 was completed in L3 layer. From the dynamic field observation, we know that 

there is strong pressure communication between Well 110 and Well 16I. 

From the dynamic observations of field, it was reported that Well 110 has strong interference 

effects with nearby injector well which is Well 16I.   

In Figure 55 we present bottom-hole pressure history for Well 110 and flowrates for Well 110, 

16I, 02, and 13. 
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Figure 55 — Flowrate and bottom-hole pressure history for Well 110 and flowrate 

histories for Wells 16I, 02, and 13. 
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Figure 56 presents pressure predictions for the Well 110/ Well 16I configuration. R2
train is equal 

to 0.7655 and R2
test is equal to -3.9949.  

The R2 value and visual fit improve dramatically by adding Well 16I’s flowrate history as a 

feature. The Well 110/ Well 16I configuration captures all pressure increase and decrease times 

for Well 110’s bottom-hole pressure response.  Therefore, we can conclude that the lasso 

algorithm requires both Well110 and Well 16I’s flowrate histories to accurately reproduce the 

bottom-hole pressure response of Well 110.  
  

 

Figure 56 — Pressure predictions for the Well 110/ Well 16I configuration using the 
lasso algorithm. R2

train is equal to 0.7655 and R2
test is equal to -3.9949. 

By adding flowrate of Well 16I, the algorithm captures pressure trend 
variations, pressure decrease and increate times accurately.  

 

Eq. 48 presents linear model for the Well 110/ Well 16I configuration using the lasso algorithm.  

 𝑃��	�����_ = 1950.9957 + 0.0575	∆𝑞����	.F 	

− 0.0293	∆𝑞	𝑙𝑜𝑔∆𝑡����	.F−1.434𝑥10-]§	∆𝑞	∆𝑡����	.F

− 0.7196	∆𝑞/∆𝑡����	.F − 0.02746	∆𝑞����	_©¨

+ 0.01137	∆𝑞	𝑙𝑜𝑔∆𝑡����	_©¨−1.2203𝑥10-]¤	∆𝑞	∆𝑡����	_©¨

+ 0.2855	∆𝑞/∆𝑡����	_©¨	. 

(  48  )      
    

R2
train =0.7655 R2

test = -3.9949 
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Figure 57 presents pressure predictions for the Well 110/ Well 13 configuration. R2

train is equal 

to 0.9053 and R2
test is equal to -3.3079.  

The R2
train and R2

test values increase with adding Well 13 flowrate history.  But, there are not 

obvious improvements in pressure trends by adding Well 13’s flowrate history as we observe 

by adding Well 16I. Therefore, we do not have evidence to conclude that Well 13’s flowrate 

history affect Well 110’s bottom-hole pressure response.  

 
Figure 57 — Pressure prediction for the Well 110/ Well 13 configuration using the 

lasso algorithm. R2
train is equal to 0.9053 and R2

test is equal to -3.3079. 
Pressure trend changes are not captured accurately by adding Well 13’s 
flowrate as they are captured by adding Well 16I’s flowrate history. 

 

Eq. 49 presents linear model for the Well 110/ Well 13 configuration. Coefficients are 

calculated using the lasso algorithm.  

 𝑃��	�����_ = 2776.5770 + 0.0542	∆𝑞����.F 	− 0.04901	∆𝑞	𝑙𝑜𝑔∆𝑡����	.F

+ 1.9479𝑥10-]§	∆𝑞	∆𝑡����	.F − 0.7365	∆𝑞/∆𝑡����	.F

− 0.0023	∆𝑞����	Fª + 0.0019∆𝑞	𝑙𝑜𝑔∆𝑡����	Fª

− 9.351𝑥10-]¤	∆𝑞	∆𝑡����	Fª − 0.0169	∆𝑞/∆𝑡����	Fª	. 

 

(  49  )      
    

R2
train = 0.9053 R2

test = -3.3079 
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Figure 58 presents pressure predictions for the Well 110/Well 23 configuration. R2
train is equal 

to 0.9229 and R2
test is equal to -2.8674.  

Although R2
train and R2

test values increase by adding Well 23 flowrate history, visually there are 

not improvements in pressure trends. The algorithm is not able to capture bottom-hole pressure 

variations. Therefore, we assume that most probably there are not interference effects between 

these wells.   

 

Figure 58 — Pressure prediction for the Well 110/Well 23 configuration using the 
lasso algorithm. R2

train is equal to 0.9229 and R2
test is equal to -2.8674. 

There are not visual improvements in pressure predictions by adding 
Well 23’s flowrate history. 

 

Eq. 50 presents linear model for the Well 110/Well 23 configuration using the lasso algorithm. 

 𝑃��	����	�_ = 2376.6503 − 0.0009	∆𝑞����	.F 	− 0.0271	∆𝑞	𝑙𝑜𝑔∆𝑡����	.F

− 1.732𝑥10-]¤	∆𝑞	∆𝑡����	.F − 0.1224∆𝑞/∆𝑡����	.F

+ 	0.0395	∆𝑞����	__ 	− 0.0125	∆𝑞	𝑙𝑜𝑔∆𝑡����	__

+ 1.3274𝑥10-]§	∆𝑞	∆𝑡����	__ − 0.5018∆𝑞/∆𝑡����	__	.	 

(  50  )      
    

 

 

R2
train = 0.9229 R2

test = -2.8674 
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5.2.3. Validation of Results  

Our analysis shows that by including the offset wells interference effects, we increase the 

accuracy of the bottom-hole pressure predictions. Those improvements in accuracy can be 

examined visually and with R2 values. However, the statistical parameters are not reliable to 

identify interference effects.  

From the applications of the methodology, we prepared tables for the synthetic (the Guler field) 

and the field (the Yusif field) cases to validate the results. 

Table 11 presents identified interference effects for the Guler field using the methodology — 

the dark green color indicates strong interference effects and the light green color indicates 

medium interference effects captured by the algorithm. Known well interference effects from 

the synthetic model are indicated with as "yes." In Table 11, we observe good agreement 

between identified interference and known interference effects. 
  

Table 11 — Interference table for the Guler field. The dark green color indicates 
strong interference effects and the light green color indicates medium to 
interference effects identified using the lasso algorithm. "Yes" 
designates proven connectivity between wells. 

 P1 P2 P3 

P1    

P2   yes 

P3  yes  

I1  yes yes 

I2 yes   

 

Table 12 presents pressure communicating offset wells identified by the lasso algorithm and 

dynamically observed ones for the Yusif field. The dark green color indicates a strong 

interference effects identified by lasso algorithm. The white color indicates the absence of 

interference effects identified by lasso algorithm. The gray color indicate well configurations 
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which we do not test. The pressure interference effects dynamically observed in the field are 

designated as "Seen interference" and dynamically observed non-communicating wells are 

designated as "Not seen." In Table 12, we observe good agreement between identified 

interference and known interference effects 

Table 12 — Interference table for Yusif field. The dark green color indicates good 
connectivity between wells. The gray color indicate well configuration 
which we did not test. "Seen interference" indicates observed 
interference effects in the field and "Not seen" indicates unobserved 
interference effects. 

 Well 12 Well 10 Well 110 

Well 38I    

Well 24 Not seen   

Well 33 Not seen   

Well 22  Seen interference  

Well 11  Seen interference  

Well 23    

Well 16I   Seen interference 

Well 02    

Well 13    
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SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR FUTURE WORK 

 

6.1 Summary 

In this thesis, our primary goals are to reproduce and forecast pressure behavior of a well and 

to create a methodology to identify the interference influence of offset wells using linear-based 

machine-learning techniques. Both synthetic and field cases data are used to evaluate the 

proposed methodology.  An E&P company provided the data for the field case on the provision 

that the data remain anonymous (as a requirement of confidentiality).   

Specifically, the work in this thesis is conducted using commercial software such as Eclipse 

100 (Schaumberg 2008), Kappa Workstation (Kappa 2018), and MATLAB (MATLAB 2018).  

As a preliminary scenario, we evaluate a single well case using only the performance data for 

that well (i.e., time, flowrate, and bottom-hole pressure data).  In subsequent applications, we 

use multi-well cases where we systematically test the interference influence of offset wells by 

adding one well at a time until all well are considered. 

The purpose of this work is to establish that the interference influence of offset wells can be 

qualified and quantified using statistical methods (i.e., machine learning), but more 

importantly, to demonstrate that offset well interference influence can be detected without 

using a numerical or analytical reservoir model. 

6.2 Conclusions 

● It is essential to linearize relationships between flowrate and pressure data by introducing 

physically-based features prior to data analysis using linear machine-learning algorithms.  

● Linear machine learning algorithms are capable of identifying/capturing the reservoir and 

well behavior for a selected well without any explicit or prior physical assumptions. 

● Once trained (i.e., calibrated), linear machine learning algorithms can provide forecasts of 

bottom-hole pressure or a given well (or set of wells) using only time and flowrate data.  

● Influence of interference from offset wells can be detected using the lasso algorithm 

(dominant interference effects are captured more easily).  
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● As a caveat, artifacts in flowrate histories can be incorrectly interpreted as an offset well 

interference effects.  

 

6.3 Limitations 

● Lasso algorithm needs a relatively long and accurate bottom-hole pressure and flowrate 

training data to learn pressure behavior. 

● Human intervention (opening the new perforation layers), changes in a reservoir and well 

performance (change from infinite-acting flow to boundary dominated flow, in well skin, 

etc.) affect prediction accuracy. 

● Similar flowrate histories among different wells could lead to wrong interpretations.  

 

6.4 Recommendations for Future Work: 

●  Introducing pseudo-pressure concept as feature to be able to include gas flow. 

●  Introducing a pressure propagation time lag from offset wells should improve interference 

effects detection for more distant wells. It should also help to prevent spurious correlations 

due to platform maintenance operations where several wells are shut down at the same time.   

● Dividing trained flowrate and bottom-hole pressure history into two parts — early times 

(infinite-acting flow) and late times (boundary dominated flow) — should increase pressure 

prediction accuracy. 
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NOMENCLATURE 

 
pi = Initial reservoir pressure, psia 

pwf = Flowing bottom-hole pressure, psia 

p = Pressure, psia 

t = Time, hours 

s = Skin factor, dimensionless 

rw = Wellbore radius, ft 

B = Formation volume factor, reservoir vol./surface vol. 

µ = Viscosity, cp 

k = Permeability, md 

h  = Formation thickness, ft 

f  = Porosity 

ct = Total compressibility, psia-1 
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APPENDIX A. 

This appendix presents further application of the methodology to identify interference effects 

from offset wells using the lasso algorithm. One extra synthetic well example and one real well 

cases are presented. 

 

Well P2 

Well P2 section presents the scenarios generated by the lasso algorithm considering the flowrate 

history for Well P2, as well as all of the combinations of Well P2 and its possible offsets.   

Figure A. 1 presents the flowrate history and pressure response versus time for Well P2. We 

note that the vertical dashed line at approximately 5x104 hours denotes the boundary between 

the training and testing data — the data to the left of this line are used for training and data to 

the right of this line are used for testing. 

 
Figure A. 1 — Flowrate and (bottom) bottom-hole pressure history for Well P2.  

The data to the left side of the dashed lines are training data, and the 
data to the right side of the dashed line are the testing data. 

 



109 

 

Figure A. 2 presents the bottom-hole pressure prediction of Well P2 using the lasso method. 

The lasso algorithm generally captures pressure behavior from the flowrate history during both 

the training and the testing periods with noted discrepancies, indicated by the black circles. 

From Figure A. 1 it can be seen that these discrepancies occur when flowrates of selected well 

are relatively constant, but pressure behavior is changing — two pressure increase trends occur 

at approximately 3.1x104 and 5.5x104 hours when the flowrates of Well P3 slightly increase. 

This pressure increase with flowrate increase, might indicate interference effects from offset 

wells. As the Guler field is synthetic case, we know that Well P2 have connectivity with Wells 

P3 and I1. 

Eq. A. 1 presents linear model for reproducing bottom-hole pressure history of Well P2 using 

Well P2’s flowrate history only. The coefficients are calculated using the lasso algorithm. From 

the coefficients, it can be seen that ∆𝑞	∆𝑡 term has less statistical significance for predicting the 

bottom-hole pressure of Well P2. 
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Figure A. 2 — Pressure prediction with using linear machine learning techniques 

for Well P2. The blue trend represents the true bottom-hole pressure 
history; the red trend indicates training pressure predictions; the green 
trend indicates testing pressure predictions. Only rates from Well P2 
were used for training and prediction.  Black circles indicate pressure 
trends that were not captured by the lasso algorithm. 

 

 𝑃��	����	�F = 389.9052 + 0.0071	∆𝑞����	�F 	− 0.006	∆𝑞	𝑙𝑜𝑔∆𝑡����	�F

− 7.645𝑥10-]¤	∆𝑞	∆𝑡����	�F − 0.0004	∆𝑞/∆𝑡����	�F	. 

(  A. 1  )      
    

Figure A. 3 presents pressure predictions for the Well P2/Well I1 configuration. The Well 

P2/Well I1 configuration has high R2
train and R2

test values and there are visual improvements in 

pressure prediction trends which are captured by adding Well I1. Improvement in visual fit can 

be particularly well observed between 1.5x104 and 2.5x104 hours. Therefore, there might be 

interference effects between these wells.   

Eq. A. 2 presents linear model for the Well P3/Well I2 configuration. Coefficients are 

calculated using the lasso algorithm. From the coefficients, it can be seen that ∆𝑞	∆𝑡 terms for 

Well P2 and I1 have less statistical significance for predicting the bottom-hole pressure of Well 

P2.  

R2
train = 0.9629 R2

test = 0.5629 
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Figure A. 3 — Pressure prediction for the Wells P2 and I1 configuration using the 
lasso algorithm. Compare to the base case, there are visual 
improvements in pressure trend predictions between 1.5x104 and 
2.5x104 hours by adding Well I2. 

 

 𝑃��	����	�F = 395.2071 − 0.0087	∆𝑞����	�F 	− 0.0007	∆𝑞	𝑙𝑜𝑔∆𝑡����	�F

− 1.675𝑥10-]§	∆𝑞	∆𝑡����	�F + 0.2214	∆𝑞	𝑙𝑜𝑔∆𝑡����	�F

− 0.0033	∆𝑞����	¨. 	+ 0.0011	∆𝑞	𝑙𝑜𝑔∆𝑡����	¨. 												

+ 4.999𝑥10-]¤	∆𝑞	∆𝑡����	¨. + 0.0581	∆𝑞/∆𝑡����	¨.	.	 

(  51  )      
    

 

Figure A. 4 presents pressure predictions for the Well P2/Well P3 configuration. Compare with 

Error! Reference source not found., the lasso algorithm captures the pressure increase 

etween 3x104 and 3.5x104, the start of pressure increase at 5.5x104 hours, and start of pressure 

decrease at 5.8x104 hours by adding Well I1. Although R2 testing value decrease compare to 

base case, there are visual improvements in pressure prediction trends. Therefore, we assume 

that there might be interference effects between these wells.  

R2
train = 0.9941 R2

test = 0.8069 
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Eq. A. 3 presents linear model for this configuration. Coefficients are calculated using the lasso 

algorithm.  From the coefficients, it can be seen that ∆𝑞	∆𝑡 terms for Well P2 and P3 have less 

statistical significance for predicting the bottom-hole pressure of Well P2. 

 

Figure A. 4 — Pressure predictions for the Wells P2 and P3 configuration using the 
lasso algorithm. Compare to the base case, the lasso algorithm captures 
time of the pressure increase between 3x104 and 3.5x104, the start of 
pressure increase at 5.5x104 hours, and start of pressure decrease at 
5.8x104 hours. 

 

 𝑃��	����	�F = 396.0083 + 0.0048	∆𝑞����	�F 	− 0.0055	∆𝑞	𝑙𝑜𝑔∆𝑡����	�F

+ 4.99𝑥10-]¤	∆𝑞	∆𝑡����	�F + 0.0429	∆𝑞/∆𝑡����	�F

+ 	0.0147	∆𝑞����	�_ 	− 0.0052	∆𝑞	𝑙𝑜𝑔∆𝑡����	�_

− 9.927810-]¤∆𝑞	∆𝑡����	�_ − 0.1914	∆𝑞/∆𝑡����	�_	. 

(  52  )      
    

  

Figure A. 5 presents pressure predictions for the Well P2/Well P1 configuration. The R2
test 

value decreases by adding Well P1 flowrate history. Moreover, there are pressure prediction 

increase trends approximately at 0.5x104 and 5x104 hours which we do not observe in real 

R2
train =0.9826 R2

test = 0.5490 
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pressure data. Therefore, we can-not assume that there is interference effects between these 

wells.   

Eq. A. 4 presents linear model for the Well P3/Well P2 configuration using the lasso algorithm. 

∆𝑞	∆𝑡 terms for Well P2 and P1 have less statistical significance for predicting the bottom-hole 

pressure of Well P2. 

 

Figure A. 5 — Pressure prediction for the Well P2/Well P1 configuration using the 
lasso algorithm. There are pressure prediction increase trends 
approximately at 0.5x104 and 5x104 hours which we do not observe in 
real pressure data when we add Well P2 flowrate history. 

 

 

 𝑃��	����	�F = 397.9619 − 0.0083	∆𝑞����	�F 	− 0.0006	∆𝑞	𝑙𝑜𝑔∆𝑡����	�F

− 1.669𝑥10-]§	∆𝑞	∆𝑡����	�F + 0.2009∆𝑞/∆𝑡����	�F

+ 	0.0313∆𝑞����	�. 	− 0.01246	∆𝑞	𝑙𝑜𝑔∆𝑡����	�. 						

+ 1.322𝑥10-]§	∆𝑞	∆𝑡����	�. − 0.4088	∆𝑞∆𝑡����	�.	 

(  A. 4  )      
    

  

Figure A. 6 presents pressure predictions for the Well P2/Well I2 configuration. Although the 

Well P2/Well I2 configuration has a slightly high R2
test value, there are not any visual 

R2
train = 0.9854 R2

test = 0.2807  
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improvements in pressure prediction trends. Therefore, there is not obvious evidence of 

interference effects between these wells.   

Eq. A. 5 presents linear model for the Well P3/Well P1 configuration. Coefficients are 

calculated using the lasso algorithm. ∆𝑞	∆𝑡 terms for both wells have less statistical significance 

for predicting the bottom-hole pressure of Well P2. 

 
Figure A. 6 — Pressure prediction for the Wells P2 and I2 configuration using the 

lasso algorithm. Compare to the base case, there are not visual 
improvements in pressure trend predictions by adding Well I2. 

 

 𝑃��	����	�F = 392.4923 − 0.0045	∆𝑞����	�F 	− 0.00184	∆𝑞	𝑙𝑜𝑔∆𝑡����	�F

− 1.341𝑥10-]§	∆𝑞	∆𝑡����	�F + 0.162	∆𝑞/∆𝑡����	�F

+ 	0.00236	∆𝑞����	¨F 	− 0.0005	∆𝑞	𝑙𝑜𝑔∆𝑡����	¨F

+ 4.493𝑥10-]¤	∆𝑞	∆𝑡����	¨F − 0.0151	∆𝑞/∆𝑡����	¨F	. 

 

(  53  )      
    

When we add Wells P3 and I1 as possible offset wells to predict the bottom-hole pressure, the 

visual fit improves considerable. So, we assume that Wells P3 and I1 might interfere with Well 

P2. Now, we generate the Well P2/Well I1/Well P3 configuration scenario to examine pressure 

predictions. Figure A. 7 presents pressure predictions for this scenario.  The Well P2/Well 

R2
train = 0.9879 R2

test = 0.7768  
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I1/Well P3 configuration has a highest training and testing R2 values relative to the other 

scenarios and an almost perfect visual fit. As can be seen, Wells P3, P2, and I1’s flowrate 

history are required to accurately reproduce the bottom-hole pressure of Well P3.  

Eq. A. 6 presents linear model for the Well P2/Well P3/ Well I1 configuration using the lasso 

algorithm.	∆𝑞	∆𝑡 terms for both wells have less statistical significance for predicting the 

bottom-hole pressure of Well P2. 

 

Figure A. 7 — Pressure predictions for Wells P2, P3 and I1 configuration using the 
lasso algorithm. There is almost perfect match between real bottom-hole 
pressure values and pressure predictions for Wells P3, P2 and I1 
configuration. 

 

 𝑃��	����	�F = 399.239 − 0.0069	∆𝑞����	�F 	− 0.0015	∆𝑞	𝑙𝑜𝑔∆𝑡����	�F

− 7.606𝑥10-]¤	∆𝑞	∆𝑡����	�F + 0.2020∆𝑞/∆𝑡����	�F	

− 0.0019	∆𝑞����	¨. + 0.0007	∆𝑞	𝑙𝑜𝑔∆𝑡����	¨.

+ 4.222𝑥10-]¤	∆𝑞	∆𝑡����	¨. + 0.0250∆𝑞/∆𝑡����	¨.	

+ 	0.0066	∆𝑞����	�_ 	− 0.0027	∆𝑞	𝑙𝑜𝑔∆𝑡����	�_ 				

− 6.2037𝑥10-]¤	∆𝑞	∆𝑡����	�_ − 0.06943	∆𝑞/∆𝑡����	�_	. 

(  54  )      
    

 

 

R2
train = 0.9988 R2

test = 0.9321 
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Well 34 

Well 34 section presents the scenarios generated by the lasso algorithm considering the flowrate 

history just for Well 34, as well as all of the combinations of Well 34 and its possible offsets.  

When we add Well 39 as possible offset wells to predict the bottom-hole pressure, the visual 

fit improves considerable. 

Figure A. 8 presents the flowrate history and pressure response versus time for Well 34. We 

note that the vertical dashed line at approximately 11.3x104 hours denotes the boundary 

between the training and testing data — the data to the left of this line are used for training and 

data to the right of this line are used for testing. 

 
Figure A. 8 — Flowrate and (bottom) bottom-hole pressure history for Well 34.  

The data to the left side of the dashed lines are training data, and the 
data to the right side of the dashed line are the testing data. 

 

Figure A. 9 presents the bottom-hole pressure prediction of Well 34 using the lasso method. 

The lasso algorithm generally captures pressure behavior from the flowrate history during both 

the training and the testing periods with noted discrepancies, indicated by the black circles. 

From Figure A. 8 it can be seen that one of the discrepancies occur when flowrates and pressure 

of selected well slightly increase at 6.9x104 hours. Another discrepancy occurs from time 

9.1x104 to 10x104 hours where flowrate of Well 34 is fairly constant but pressure response is 



117 

 

increasing and then decreasing. This discrepancies might indicate interference effects from 

offset wells.  

Eq. A. 7 presents linear model for reproducing bottom-hole pressure history of Well 34 using 

its flowrate history only.    

  

Figure A. 9 — Pressure prediction with using linear machine learning techniques 
for Well 34. The blue trend represents the true bottom-hole pressure 
history; the red trend indicates training pressure predictions; the green 
trend indicates testing pressure predictions. Only rates from Well 34 are 
used for training and prediction.  Black circles indicate pressure trends 
that were not captured by linear machine learning algorithm. 

 

 

 𝑃��	����	_ª = 1702.5296 + 0.0180	∆𝑞����	_ª 	− 0.0133	∆𝑞	𝑙𝑜𝑔∆𝑡����	_ª

− 4.219𝑥10-]¤	∆𝑞	∆𝑡����	_ª − 0.2056	∆𝑞/∆𝑡����	_ª	. 

(  55  )      
    

R2
train = 0.8141 R2

test = 0.4271 
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Figure A. 10 — Flowrate and bottom-hole pressure history for Well 34 and flowrate 

histories for Wells 31, 39, and 7I. 
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Figure A. 11 presents pressure predictions for the Well 34/Well 31 configuration. There are 

not increase in R2 values by adding Well 31 flowrate history. Also, there is no visual 

improvements. Therefore, we do not have evidence that Well 31’s flowrate history affect the 

bottom-hole pressure response of Well 34 by using the lasso algorithm.   

Eq. A. 8 presents linear model for the Well P3/Well I2 configuration. Coefficients are 

calculated using the lasso algorithm. From the coefficients, it can be seen that ∆𝑞	∆𝑡 terms for 

Well P2 and I1 have less statistical significance for predicting the bottom-hole pressure of Well 

P2.  

 

Figure A. 11 — Pressure prediction for the Wells 34 and 31 configuration using the 
lasso algorithm. Compare to the base case, there are not visual 
improvements in pressure trend predictions by adding Well 31. 

 

 𝑃��	����	_ª = 1701.339 + 0.0182	∆𝑞����	_ª 	− 0.0133	∆𝑞	𝑙𝑜𝑔∆𝑡����	_ª

− 4.2623𝑥10-]¤	∆𝑞	∆𝑡����	_ª − 0.2316∆𝑞	𝑙𝑜𝑔∆𝑡����	_ª

+ 0	∆𝑞����	_. 	− 0.0008	∆𝑞	𝑙𝑜𝑔∆𝑡����	_. 																			

+ 4.1738𝑥10-]¤	∆𝑞	∆𝑡����	_. + 0.1278	∆𝑞/∆𝑡����	_.	. 

(  56  )      
    

R2
train = 0.8159 R2

test = 0.4238 
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Figure A. 12 presents pressure predictions for the Well 34/Well 39 configuration. Compare 

with base case, the lasso algorithm captures the pressure increase between 6.4x104 and 7.2x104, 

the start of pressure increase at 9x104 hours, and start of pressure decrease at 9.2x104 hours by 

adding Well 39’s flowrate history. Although R2 testing value decrease compare to base case, 

there are visual improvements in pressure prediction trends. Therefore, we assume that there 

might be interference effects between these wells.  

Eq. A. 9 presents linear model for this configuration. Coefficients are calculated using the lasso 

algorithm.  . 

 

Figure A. 12 — Pressure predictions for the Wells 34 and 39 configuration using the 
lasso algorithm. Compare with base case, the lasso algorithm captures 
the pressure increase between 6.4x104 and 7.2x104, the start of pressure 
increase at 9x104 hours, and start of pressure decrease at 9.2x104 hours 
by adding Well 39’s flowrate history. 

 

 

R2
train =0.9261 R2

test = -2.2433 
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 𝑃��	����	_ª = 1848.025 − 0.0138	∆𝑞����	_ª 	

− 0.0055	∆𝑞	𝑙𝑜𝑔∆𝑡����	_ª−1.511𝑥10-]§	∆𝑞	∆𝑡����	_ª

+ 0.2534	∆𝑞/∆𝑡����	_ª + 	0.0272	∆𝑞����	_« 	

− 0.0124	∆𝑞	𝑙𝑜𝑔∆𝑡����	_« − 1.807𝑥10-]§∆𝑞	∆𝑡����	_«

− 0.2147	∆𝑞/∆𝑡����	_«	. 

(  57  )      
    

  

Figure A. 13 presents pressure predictions for the Well 34/Well 7I configuration. The R2
train 

and R2
test values increase by adding Well 7I flowrate history. However, there are not 

improvements visually in pressure predictions. There is pressure increase at 6.1x104 in pressure 

predictions which is not observed in real measurements. Therefore, we can not assume that 

there is interference effects between these wells.   

Eq. A. 10 presents linear model for the Well 34/Well 7I configuration using the lasso algorithm.  

 

Figure A. 13 — Pressure prediction for the Wells 34 and 7I configuration using the 
lasso algorithm. There are not any improvements in pressure prediction 
trends visually by adding Well 7I’s flowrate. 

 

R2
train = 0.8953 R2

test = 0.4102  
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 𝑃��	����	_ª = 1811.709 − 0.0157	∆𝑞����	_ª 	− 0.0031	∆𝑞	𝑙𝑜𝑔∆𝑡����	_ª

− 1.928𝑥10-]§	∆𝑞	∆𝑡����	_ª + 0.2413∆𝑞/∆𝑡����	_ª

− 0.0184∆𝑞����	¤¨ 	+ 0.0071	∆𝑞	𝑙𝑜𝑔∆𝑡����	¤¨ 										

+ 6.387𝑥10-]¤	∆𝑞	∆𝑡����	¤¨ + 0.2422	∆𝑞∆𝑡����	¤¨	 

(  58  )      
    

  


