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ABSTRACT 

 

 Increasing demand for poultry meat has encouraged production of the maximum 

possible yield from chicken, which resulted in broiler chickens being subjected to intense selection 

for increased Pectoralis major (P. major) breast muscle yield and growth rate. That is presumed to 

contribute to development of new myopathies, which mainly impairs the nutritional value of the 

meat and meat quality, and in turn, affects consumer acceptance. A recent and prominent example 

is woody breast (WB) myopathy characterized by palpably tough breast muscle, which imposes 

an additional economic burden on the poultry industry. The basis of WB myopathy is not known 

yet but is suspected to be genetic due to its association with growth rate. Development of the WB 

myopathy is tightly linked to growth rate, which is under intense selection. On the other hand, 

growth rate and body mass are complex traits, and WB myopathy is associated with growth rate, 

which suggests that WB myopathy is more likely a complex trait. Genome-wide association 

studies (GWAS), which have become more feasible with recent improvements in high-throughput 

genotyping technologies, were exploited with the aim of the investigating the underlying etiology 

and genetic mechanism of woody breast myopathy. Using 600 K HD Affymetrix Axiom Array, 

10 affected broilers and 10 healthy White Plymouth Rocks (WPR) were genotyped. SNPs and 

constructed haplotype blocks were examined whether they exhibited statistically significant 

association with woody breast myopathy. The current study conducted by SNPs and haplotypes 

suggested that several biological pathways and genes associated with oxidative stress, Ca2+ 

binding, microtubule motor activity and cellular repair could be contributing factors regarding the 

onset of woody breast myopathy. However, analysis of results clearly showed that the sample  
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introduced biases related to selection of study participants into the association analysis. Due to 

small sample size, after correcting for population stratification, it was not possible to detect true 

disease variants or genes genuinely affecting woody breast myopathy. 
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NOMENCLATURE 

 

P. major  Pectoralis major 

kg   Kilogram  

%   Percentage  

WB    Woody breast 

USDA   United States Department of Agriculture 

WS   White striping 

QTL   Quantitative trait locus 

RH   Radiation hybrid 

BACs   Bacterial artificial chromosomes 

FISH   Fluorescence in situ hybridization 

Gb   Gigabyte  

Mbp   Million base pair 

DNA   Deoxyribonucleic acid  

GWAS   Genome-wide association studies 

SNP   Single nucleotide polymorphism 

K   Thousand      

HD   High Density 

UTR 3I   Three prime untranslated region 

UTR 5I    Five prime untranslated region 

ncRNA  Non-coding RNA 

WPR   White Plymouth Rock 
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Ross 708  Broiler chickens 

IACUC  Institutional Animal Care and Use Committee 

NE   Nebraska  

χ2   Chi-squared 

FDR   False discovery rate 

FDR-BH  False discovery rate -Benjamini and Hochberg 

CMplot  Circle Manhattan Plot 

NCBI   National Center for Biotechnology Information 

GO   Gene Ontology 

IPA   Ingenuity Pathway Analysis 

LD   Linkage disequilibrium 

EM   Expectation Maximization 

IBS   Identity by state 

CMH   Cochran Mantel-Haenszel 

MDS   Multidimensional scaling 

dbSNP   The Single Nucleotide Polymorphism Database  

Nov   Novel 

e   Euler’s number 

n   number of SNPs 

log   Logarithm 

LGE64   Linkage group E64 

Q-Q plot  Quantile-quantile plot 

W   WPR 
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R   Ross 

IDs   Identifiers 

Ca2+    Calsium 

bp   Base pair 

Chr   Chromosome 

G   Guanine 

T   Thymine 

A   Adenine  

C   Cytosine  

ATP   Adenosine Tri-Phosphate 

GTP   Guanosine-5'-triphosphate 
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1. INTRODUCTION 

 

1.1 General Information 

Poultry production plays a key role in the economies of developed and developing countries. 

Chicken is one of the most important agricultural species and a popular source of animal protein 

around the world. Economical production of poultry products (both eggs and meat), affordability, 

and nutritional profile have helped chicken consumption increase over the past few decades (Li et 

al., 2017). In many of the European countries, chicken-based poultry production is a major part of 

meat marketed, which is more than 60% in Belgium (Xiang et al., 2017), and in the United States 

consumption of chicken is at an all-time high (over 44 kg/per person/year).  

The rising need for animal products is not surprising considering the increase in population 

and standard of living, especially in developing and underdeveloped countries. Of the total 1,200 

million tons of animal production in 2011, 60% was milk and milk products (Szűcs, 2013). The 

remaining 40% consisted of pork (8.8%), poultry meat (6.7%), sheep and beef meat (6.4), eggs 

(5.6%), and fish (12.4%). The increases in production have made nutritious sources of animal 

protein more affordable around the world.  Poultry meat and eggs are promoted as healthier 

alternatives to sheep and beef meat due to their nutritive properties and low-fat content (Szűcs, 

2013). Due to the favorable feed conversion ratio, and lower environmental footprint, poultry 

production is claimed as a sustainable source of animal protein. Additionally, because water 

availability constitutes a significant concern for the future, the total amount of water that livestock 

require to produce meat would be a critical factor for this industry. Comparing chicken with other 
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livestock, like cattle and pigs, they require a significantly lower amount of water for the production 

of 1 kg meat (AVEC, 2012). Rapid return on investment, no specific need for agricultural land, 

low feeding cost, and generation of income any time of the year are among the advantages of 

poultry production compared to other livestock animals (Szűcs, 2013).  

Chickens are also a well-studied model organism for vertebrate developmental biology due 

to their similarity to mammalian embryology and providing a suitable model of human genetic 

diseases. Chickens have a history of a variety of debilitating diseases, including muscular 

dystrophy, epileptic seizures, and viral infection (Schmutz & Grimwood, 2004), which are 

important sources of human morbidity. 

 

1.2 Emergent Muscle Myopathies 

Increasing demand for poultry meat has encouraged production of the maximum possible 

yield from chicken, which resulted in broiler chickens being subjected to intense selection to gain 

more body weight in the shortest time possible. In 1925, the commercial poultry industry raised 

broiler chickens to attain 1.1 kg average body live weight for 112 days, and in 2015, broiler 

chickens can reach 2.8 kg average live body weight in 48 days (National Chicken Council, 2015). 

Chickens reared for meat production, commonly known as broilers, have undergone intensive 

genetic selection, which brings particular advantages to the poultry industry like a decrease in 

generation interval, more body weight gain and increased feed conversion. Some detrimental 

effects accompany this intense selection, including problems with the quality of meat, like flavor 

and appearance (Anthony, 1998). Also, greater body size has brought about enhanced metabolic 
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requirements related to fast growth rate, which constitutes an increased hazard regarding morbidity 

and commercial profit (Julian, 2005). 

  One of the major concerns of the poultry meat producer is the increasing incidence of 

myopathies. It has been shown previously that the amount of muscle fibers is subject to change 

with growth rate. As such, farm animals with rapid growth rates produce more muscle fibers 

compared to their counterparts that are growing more slowly (Stickland, 1995). In chicken, a breast 

muscle, the pectoralis major, is the predominant contributor to the body mass and size; thus, it is 

of the greatest significance in the broiler industry (USDA, 2016). Broiler chickens have a well-

documented record of myopathies, particularly those affecting the pectoralis major muscle (breast 

fillet).  

One recent and prominent example is woody breast (WB) condition in the pectoralis major 

muscle in commercial broilers. The emerging issue of WB condition is on a global scale, reported 

in the United States (Bilgili, 2013), Finland (Sihvo et al., 2014) and many other countries. This 

emergent myopathy is characterized by degenerating muscle fibers, immune cell infiltration, 

necrosis, and severe fibrosis. In some cases, WB is seen together with another inflammatory 

myopathy, called white striping (WS), which presents as white stripes across the surface of the 

breast fillet. Previous studies have characterized other myopathies that resemble WB and WS, such 

as deep pectoral myopathy, and nutritional myopathy. These studies demonstrated how these 

myopathies impair the integrity of the pectoralis muscle as well. Deep pectoral myopathy is 

associated with a condition developing in the deep pectoral muscles – the supracoracoideus muscle 

or pectoralis minor muscle, in fast-growing chickens and turkeys. The location of these muscles 

surrounded by the sternum and tough fascia does not provide enough room for the muscles to 
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expand fully. The muscles induced by exercise get inflated leading to restraint of the blood supply 

and subsequently to ischemia (Jordan & Pattison, 1998). Deep pectoral myopathy exerts some 

common microscopic damage on the pectoral muscles (Wight & Siller, 1980) that are similar to 

those observed in the WB condition. 

Another category of myopathies affecting the pectoralis muscle, WS, is characterized by 

the observation of white lines seen in the same direction as the muscle fibers accompanying the 

hardness and out-bulging of the breast and thigh muscles (Kuttappan et al., 2013). Histological 

studies conducted with the WB and the WS condition in chickens have shown that these two 

myopathies share similar lesions like regenerative alterations, an influx of lymphocytes and 

macrophages, fibrosis, lipidosis, and necrosis, but fibrosis occurs more severely in the WB 

condition (Trocino et al., 2015). In many cases, the WB condition is accompanied by the WS 

condition, and they show similar histopathological lesions, therefore, the WB and the WS 

conditions together could exhibit a disease spectrum, with the WB condition constituting a more 

severe mode of the myopathy. However, the etiology and factors initiating the onset of the WS 

and WB conditions are not clear.  

Nutritional myopathy is mainly correlated with a diet that is deficient for selenium and 

vitamin E (Guetchom et al., 2012). Vitamin E, together with different enzymes including the 

selenium dependent-glutathione peroxidase, provides protection against the anticipated damages 

stemmed from free radicals that are leading to degenerative myopathy as well as contributing to 

many diseases progress (Herrera & Barbas, 2001). Although some typical features of the WS 

condition and nutritional myopathy are found in in the WB condition, the WB condition is 
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distinguished by abnormal hardness and rigidity upon palpation, and in contrast to the nutritional 

myopathy, it does not impair other muscles. 

 

 

 

 

Figure 1. Comparison of fillets with the woody breast (WB) myopathy (I) and normal fillets (II) 

(Reprinted from Kuttappan et al., 2016). There is no visual effect of compression on the severe 

WB fillets while the weight compresses the surface of the normal fillet. 

 

 

 

According to a Wall Street Journal report, approximately 5-10 % of commercially 

produced boneless, skinless breast meat shows WB myopathy (Gee, 2016). The occurrence of the 

WB condition is associated with high growth rate and increased meat muscle yield (Mutryn et al., 

2015) in commercial broilers. Prevalence of WB is likely to increase with age and weight of the 

chicken, with high nutrition diets, and within the male population. The alteration in the muscle 

causes a lower level of muscle protein, a higher amount of connective tissue and fat content as 

well as an enhanced water holding capacity (Soglia et al., 2016). Even though the WB myopathy 

does not constitute a food safety risk, consumers do not prefer to purchase meats with WB because 



 

 

 

6 

affected meats do not appeal to taste and have an unsightly visual appearance that is considered 

unhealthy. 

 Although the fast growth rate of broiler chickens is associated with WB myopathy, the 

etiology of WB myopathy remains unclear. The occurrence of the disease is likely affected by 

many factors (Kuttappan et al., 2016). The basis of WB myopathy is not known yet but is suspected 

to be genetic due to its association with growth rate. Development of the WB myopathy is tightly 

linked to growth rate, which is under intense selection. The incidence of WB myopathy in 

commercial broiler populations is frequently over 50% and as high as 89% (Cruz et al., 2017), 

which is observed in dominant Mendelian traits. However, dominant inheritance of a disease trait 

is not a common phenomenon, and furthermore, the four-way crosses that are used in modern 

broiler production (Bondoc, 2008) make it difficult to answer this question. On the other hand, 

growth rate and body mass are complex traits, and WB myopathy is associated with growth rate, 

which suggests that WB myopathy is more likely a complex trait. A recent study by Pampouille et 

al. (2018, BMC Genomics) reported the identification of QTL for white striping, and suggest that 

WB and WS are polygenic. Therefore, the genetic basis of WB is one of the leading hypotheses to 

explain this condition. Differential gene expression analysis has shown that alteration in muscle 

fiber types, oxidative stress, a higher level of intracellular calcium and localized hypoxia are 

important indicators of the WB myopathy (Mutryn et al., 2015). 

 

1.3 Background on the Chicken Genome  

Recent molecular biology techniques including bacterial artificial chromosomes (BACs) 

physical mapping, fluorescence in situ hybridization (FISH), fosmid, plasmid paired-end reads, 
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and radiation hybrid (RH) mapping enhance our comprehension of the avian genome.  Analysis of 

large numbers of partial sequences through the whole genome sequence has dramatically increased 

our understanding and knowledge of chicken developmental biology and the genetic basis of 

disease mechanisms over the last decade. The first chicken draft genome sequenced from a female 

inbred Jungle Fowl (Gallus gallus), the ancestor of domesticated chickens, was assembled and 

released in 2004 utilizing a genome-wide sequencing strategy that provided a high-quality 

assembly. The assembled chicken genome sequence (1.2 Gb in size) is relatively smaller in size 

than a typical mammal genome, like humans (Hillier et al., 2004). A further comparison between 

the chicken and mammalian genome indicates the model bird genome has a relatively low 

repetitive DNA content that facilitated the more accurate final assembly. 

Genome-wide sequencing in chicken has contributed to the understanding of vertebrate 

evolution because birds shared a common ancestor with mammals ~310 million years ago (Burt, 

2005).  Sequencing of the chicken genome plays a crucial role in facilitating agricultural studies, 

especially in poultry science with relation to breeding tools, animal health studies, identification 

of mammalian and non-mammalian vertebrate diseases, and developing stages of the vertebrate. 

In the chicken genome, there are approximately 1200 million base pairs (Mbp) of DNA on 

their single set of chromosomes. Chicken has a diploid genome with 38 autosomes including 28 

micro-chromosomes, five intermediate chromosomes, and five macro-chromosomes, and 1 pair of 

sex chromosomes denoted by Z and W with females being heterogametic (ZW) and males being 

homogametic (ZZ). The micro-chromosomes have been shown to be gene rich but have also been 

more challenging to characterize compared to the macro-chromosomes. Micro-chromosomes 

contain 26% higher identical substitutions in coding DNA regions and 18% higher DNA sequence 
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differences in non-coding regions compared to macro-chromosomes (Meunier & Duret, 2004). A 

mutation mechanism stimulated by recombination and biased gene conversion in favor of one 

allele over another may explain this discrepancy in mutation rates. 

 

 

 

 

Figure 2. Chicken chromosomes. They are categorized into macro, intermediate, micro, 

and sex chromosomes with the gene desert regions that are lack of protein-coding genes 

(plotted as red lines) (Reprinted from Ovcharenko et al., 2005).  

 

 

 

The relatively small size of the chicken genome - approximately 45% size of the mouse 

genome and 39 % of the human genome- can be attributed to the paucity of repetitive DNA 

elements.  The amount of repetitive DNA is approximately 15% (Schmid et al., 2000). Along with 

the reduced number of repetitive regions, there are explanatory factors for the discrepancy in 
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genome sizes like reduced number of gene duplications, pseudogenes, and segmental duplications 

(Hillier et al., 2004), which are responsible for around 25% of the differences. The frequency of 

repetitive regions in chicken is very low in comparison to those in the human genome but these 

repeats complicate the assembly of the genome since being arranged as tandem repeats (Wicker et 

al., 2004). A study based on the comparison between orthologous sequences of chicken and turkey 

indicates that chromosomes varying in size are exposed to different evolutionary pressure 

(Axelsson et al., 2005). 

 

1.4 Genome-wide Association Study 

Genome-wide association studies (GWAS) have become more feasible with recent 

improvements in high-throughput genotyping technologies.  Investigating associations across the 

whole genome is a powerful approach to examine the genetic architecture of diseases and 

underlying genetic mechanisms of quantitative traits. The basis of GWAS is the common disease, 

common variant approach. According to this approach, the effects of genetic differences on many 

common diseases will be at least partly attributed to a limited number of allelic variants occurring 

in more than 1-5% of the population (Collins et al., 1997). Many significant disease-related 

variants would be less frequent than this and, thus, the likelihood of determination of these variants 

is low with this approach. That is why exploiting sufficient density of markers is essential for 

detection of the majority of the trait or disease-related variants. On the other hand, the assessment 

of a sufficient number of individuals' genomes is essential to identify variations with modest effect 

on the phenotype. These two factors mainly affect the power of GWAS.  
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In GWAS, hundreds of thousands of genetic variants are independently tested for statistical 

association with a disease or a complex trait whose occurrence depends on environmental and 

genetic factors with small contributions to the related phenotype. The power to deal with a complex 

disease by analyzing the interaction among genetic variants makes it an ideal tool to enlighten 

mechanisms of polygenic traits or diseases (Hardy and Singleton, 2009).  Preferably, single 

nucleotide polymorphisms (SNP) are used as genetic variants due to their abundance and 

distribution throughout the genome, and genome-wide high-density SNP arrays are often available 

for GWAS. A genetic variant or SNP that is detected as associated with a disease or located in the 

same haplotype as the associated SNP should have a higher frequency in the affected group 

compared to the control group. Since a haplotype comprises SNPs that are inherited together, other 

SNPs sharing the same haplotype with a disease-associated SNP can also be related to the disease. 

Likewise, GWAS are also conducted based on haplotypes as well as independent SNPs that 

enhances the robustness of association studies (Calus et al., 2009).  

There are many genome-wide high-density SNP arrays available for many organisms. For 

chicken, the 600 K HD Affymetrix Axiom chicken array (Affymetrix, Inc., Santa Clara, CA) was 

developed by sequencing 24 different chicken breeds consisting of egg laying breeds and broiler 

breeds exploited for both research and commercial purposes. Identification of single nucleotide 

polymorphisms (SNP) was achieved by the alignment of the reads to Gallus gallus version 4.0 

genome assembly. In the final array, SNPs are of high-quality score and evenly distributed 

regarding genetic distance among different breeds. Approximately two-thirds of SNPs show 

polymorphism with more than 98% high call rates. Other criteria taken into account while selecting 
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SNPs for the array were stable Mendelian inheritance and reasonable deviation from Hardy-

Weinberg equilibrium (Kranis et al., 2013).   

 

 

 

Table 1. Summary of annotation of SNPs in the 600 K panel to predict the genomic effect 

(Reprinted from Kranis et al., 2013). 

 Count Percent 

Total Number of SNPs in the Panel 580,954  

Annotation Possible 492,572 84.79 

Annotation Result   

  Intergenic 266,636 54.13 

  Intronic 189,128 38.40 

  Exonic 

 

       Non-Synonymous 

 

       Synonymous 

 

       Stopgain/Stoploss 

 

 

9,345 

 

12,069 

 

120 

 

 

1.90 

 

2..45 

 

0.02 

  1 Kb Upstream 5,892 1.20 

  1 Kb Downstream 6,456 1.31 

  UTR 3 2,497 0.51 

  UTR 5 302 0.06 

  Splicing 83 0.02 

  Non-Coding RNA (ncRNA) 44 0.01 
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Power calculations of GWAS were considered among genetic models, tag SNP selection, 

and the required population to select the proper sample size and genotyping platform. The power 

of a study depends on sample size along with the selected tag SNPs. The tagged and genotyped 

SNPs can be used to predict the power of GWAS (Klein, 2007).  According to these parameters, a 

sample size of twenty (10 each of cases and controls) genotyped with the 600 K Affymetrix array 

has approximately 30% power to identify trait associated loci.  Due to the limited understanding 

of the genetic mechanisms underlying WB, this study with small sample sizes will serve as an 

exploratory analysis to identify genes or genomic regions that can be a risk factor for the 

commercial broiler chickens to develop woody breast myopathy by using individual SNPs and 

haplotypes exhibiting statistical association. 
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2. MATERIALS AND METHODS 

 

2.1 Sample Collection 

Ten commercial broiler chickens (Ross 708 line) affected with the woody breast myopathy 

were selected as a case group, and ten White Plymouth Rocks (a heritage chicken breed) were 

chosen as the negative control group. Affected broiler chickens were diagnosed by manual 

palpation of the breast muscle while they were alive. There were 14 males and 6 females (all in 

the control group) in the sample The White Plymouth Rock (WPR) breed was selected as it is the 

progenitor breeds of modern broilers (Cornish x Rock crosses), and it is also one of the most 

closely related breeds to this commercial line that does not exhibit woody breast. Therefore, the 

White Plymouth Rock was expected to function as a control group in this analysis. All the samples 

for this study were collected as part of a study focusing on woody breast incidence in commercial 

broilers (IACUC 2016-0065). This project focuses on the generation and analysis of genomic data 

from DNA samples that were made available from this study.  

 

2.2 DNA Isolation 

Blood was sampled from all individuals after euthanasia at 42 days of age by puncturing the 

brachial vein and stored in Longmire Buffer until further processing. Genomic DNA was isolated 

from whole blood using the DNeasy Blood and Tissue kit (Qiagen Inc, Valencia, CA) using 

standard protocols. 
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2.3 Genotyping 

Equimolar DNA isolates (10 cases and 10 controls) were submitted to the molecular genetics 

lab at Geneseek (Lincoln, NE) for genotyping on the 600K Affymetrix High-Density Genotyping 

array (Kranis et al., 2013).  

 

2.4 SNP Analysis 

2.4.1 Quality Control 

Before statistical analysis, evaluation of the data quality and pre-processing of the data are 

essential to avoid introducing bias into the analysis (Anderson et al., 2010). Raw SNP data first 

were subjected to quality control by removing loci without a known chromosomal location. Further 

filtering of the SNP data was conducted using PLINK v1.9 

(http://pngu.mgh.harvard.edu/purcell/plink/). SNP variants having less than 0.05 minor allele 

frequency and more than 0.1 missing genotype frequency and showing a significant deviation from 

Hardy-Weinberg equilibrium (p-value < 0.001) were removed.  

 

2.4.2 SNP Association 

Following quality control steps, the remaining SNPs were analyzed to detect loci that were 

associated with the woody breast myopathy as the case status. Basic case-control association 

analysis was implemented with PLINK v1.9 (Purcell et al., 2007), giving asymptotic p-values 

according to the basic allelic χ2 test.  Adjusted p-values for each SNP also were obtained as an 

extension of the basic case-control analysis. The false discovery rate (FDR) was controlled at a 

level of 0.05 per the step-up method of Benjamini and Hochberg (1995) becouse it adjusts p-values 

http://pngu.mgh.harvard.edu/purcell/plink/
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by compensating the elevation in the likelihood of incorrectly rejecting a null hypothesis which is 

called type I error. The association test was repeated with permutation, and empirical p-values of 

each SNP were also obtained. To visualize the significant SNPs identified from association tests, 

Manhattan plots were generated based on both FDR-BH adjusted p-values and empirical p-values. 

The results were plotting using CMplot R package (Yin LiLin, 2018; https://CRAN.R-

project.org/package=CMplot). 

 

2.4.3 Analysis of Significant SNPs 

SNPs that were found to be associated with the disease based on statistical significance 

were classified functionally according to genic locations, including 5’ untranslated region (5’ 

UTR), introns, and exons. The effects of variants on the coding sequence regions, like 

synonymous, missense, and nonsynonymous changes were queried using the Ensembl Variant 

Effect Predictor (McLaren et al., 2016). To be able to incorporate all SNPs into the analysis 

regardless of whether they were assigned a reference SNP (rs) number or not, the chromosomal 

coordinates of SNPs were used as an identifier instead of rs numbers. This analysis conducted by 

the Ensembl Variant Effect Predictor has also provided genes that harboring the SNPs found 

significant at 1.0e-6 level according to the FDR adjusted association test, whose chromosomal 

coordinates were used as input. Among 268 significant SNPs, 18 SNPs are located on unplaced 

contigs; therefore, 250 SNPs were included in the analysis. 

The DNA sequences of the relevant genes to the significant SNPs were retrieved from 

Ensemble to exploit them for the annotation analysis using the Blast2GO software (Conesa et al., 
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2005). The input file of sequences first was analyzed with blast function against NCBI database to 

obtain the homologous sequences, and then InterPro and mapping functions were used to retrieve 

relevant gene ontology (GO) terms. The results were used for annotation step to select reliable 

functions for query sequences. The annotation result was compiled with GOSlim function. This 

Blast2GO analysis was performed by the genes obtained from the Ensembl Variant Effect 

Predictor. 

The significant SNPs identified by association testing with permutation were further 

investigated through the use of Ingenuity Pathway Analysis (IPA, QIAGEN Inc., Redwood, CA). 

The number of significant SNPs below the genome-wide threshold of 1.0e-6 is 10,742. However, 

a more stringent threshold of 1.79e-9 was used to narrow down the significant SNPs, which 

eliminates false positive results to a certain extent. At 1.79e-9 significance level, 762 SNPs were 

obtained, but of these only 336 SNPs included pathway analysis because the rest of the SNPs have 

not yet been assigned rs numbers. Analysis of IPA compiles the information regarding correlations 

among proteins and genes from prior research and articles. It does not solely focus on associations, 

but instead investigates the consequences of the variants on biological pathways and functions. 

The logic behind IPA is causal analysis approaches that identify upstream regulators related to the 

input data and investigate any connection among them that play a role in the same causal 

mechanism as well as the analysis of downstream effects (Krämer et al., 2014). By the use of IPA, 

it is aimed to determine the most related pathways to the genes in which the significant SNPs are 

located. 
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2.5 Construction of Haplotype Blocks 

To identify the combination of SNPs that were located on the same chromosome and that are 

inherited together from a single parent, construction of haplotype blocks was carried out in PLINK 

v1.9, and pairwise linkage disequilibrium (LD) was calculated for SNPs within 200 kb.  While 

estimating haplotype blocks, PLINK uses an accelerated Expectation Maximization (EM) 

algorithm. To perform this analysis, all SNP loci with missing genotypes were discarded to 

minimize the computational burden and error rate that stemmed from missing genotypes.  

 

2.6 Haplotype Association 

A basic case-control χ2 test was conducted with haplotype blocks to identify haplotypes with 

a statistically significant association to the WB myopathy. Haplotypes were visualized as an LD 

heatmap using the r2 metric for pairs of SNPs with the R package “snp.plotter” (Luna & 

Nicodemus, 2007). For only coding sequence variants, haplotypes and LD heatmaps were plotted 

within 50 kb window size with the relevant genes.  

 

2.7 Population Stratification Analysis 

 

Population stratification analysis was based on identity by state (IBS) that is calculated by the 

proportion of identical alleles that two individuals share. First, for the 20 birds, a 20 x 20 matrix 

was generated to obtain pairwise IBS distances of the sample based on the autosomal genome-

wide SNP data by the use of Plink 1.9. IBS ranges from 1 to 0; 1 indicates that two individuals are 

completely identical (a duplication of sample or maternal twin); 0 indicates two completely 
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genetically different individuals with respect to the dataset. The multidimensional scaling (MDS) 

plot was generated based on the IBS distances (1-IBS) between individuals.   

In stratified analyses by Plink 1.9, the Cochran Mantel-Haenszel (CMH) χ2 test was applied 

to eliminate false positive associations and increase the power of the association analysis. CMH 

tests whether a SNP is associated with a disease conditional on population stratification (Cochran, 

1954; Mantel & Haenszel, 1959). SNPs were examined though the CMH test by using 2x2xK table 

in which K represents two clusters (WPR and broiler) and IxJxK table in which the roles of clusters 

and phenotypes (cases and controls) are switched.  

As an alternative way to control population stratification, logistic regression was performed 

by using clusters and sex status as covariates with Plink 1.9. By this approach, another issue 

regarding the sample was being addressed. Our sample consists of 6 females in the control group, 

and differences stemmed from sex are needed to be controlled. Logistic regression analysis allows 

for different covariates while investigating whether a SNP is associated with a disease trait. Along 

with the cluster numbers (WPR=0, broiler=1), the MDS components calculated to generate MDS 

plot were used as covariates in two logistic regression analyses separately. Each analysis was 

performed with and without the sex covariate. 
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3. RESULTS 

 

 

3. 1 Pre-processing and Quality Control Results 

Of the 580,961 SNPs genotyped by 600K Affymetrix array, 450 SNPs were discarded due to 

being assigned to unmapped contigs, and 62 duplicate SNPs were deleted from the data. Four 

regions assigned to unmapped contigs were retained as they harbored a considerable number of 

SNPs, which were given chromosome identifiers (ID) 42, 43, 44 and 45. In the data set, 

approximately half of the SNPs have not yet been issued with a dbSNP number (281,354). Those 

without dbSNP numbers were given identification values comprising the chromosome number and 

the location of SNP of interest respectively with the addition of "Nov" at the beginning, which 

refers to “novel”. 

The retained 580,449 SNPs were subject to quality control. There were 6,479 SNPs 

removed due to having more than 10% genotype data missing, and 101,217 SNPs could not pass 

the filter that requires more than 0.05 minor allele frequency (Anderson et al., 2010).  No SNPs 

showed a severe violation of Hardy Weinberg equilibrium test at 1.0e-3 level. Finally, 472,753 

SNPs for the total data set (20 individual chickens) passed filters and quality control, with 0.99 

total genotyping rate, and were used for the further analysis.  

The estimated average heterozygosity for the total dataset was 29.45. When separated by 

breed, the WPR had average heterozygosity of 26.48 with standard deviation equal to 1.28, and 

the Ross 708 line had average heterozygosity of 32.43 with standard deviation of 0.28 (Figure 3). 

Analysis of SNP density (using 1 Mb window sizes) showed a higher density of SNPs with 

decreasing chromosome size (Figure 4). 
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Figure 3. Average heterozygosity rates observed in WPR and Ross 708  
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Figure 4. SNP density (n = 472,753 that passed quality editing) across the chicken genome. The legend represents the number of SNPs 

within one megabase (Mb) windows. The dark red regions on the chromosomes indicate the highest SNP density that is more than 1,503 

SNPs located within 1 Mb window. The gray regions that are mainly located on chromosome 39 (Z) indicated the absence of SNP.  
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3.2 Genome-Wide Association Study Results 

Basic allelic association tests were conducted with and without permutation. The 

association test with adaptive permutation resulted in 10,742 significant SNPs with empirical P-

values under the genome-wide threshold of 1.0e-6. The adaptive permutation test was used to 

improve the precision of the estimate of the significant SNPs. Of those significant SNP, 143 were 

located on the unplaced contigs, 2,053 SNPs on the sex chromosome Z (SNPs on the chromosome 

W were removed during quality control process), and 8,546 SNPs on the autosomes. On the other 

hand, the association test without permutation was used to generate adjusted P-values to provide 

better control for false positive associations. In this case, we used the FDR-BH adjusted P-values, 

which revealed 268 significant SNPs at 1.0e-6 genome-wide significance level. Among 268 

significant SNPs, none were detected on the sex chromosome Z. There were 250 significant SNPs 

are located on the autosomes, but 18 SNP with detected association were on the unplaced contigs. 

These 268 SNPs obtained from the FDR-BH adjusted association test were a full subset of the 

10,742 significant SNPs identified through the permutation-based empirical P-value filtering.   
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Figure 5. Manhattan plot from the GWAS for the WB myopathy with FDR-BH adjusted P-values. 1.0e-6 is considered as a 

significant P-value threshold that is indicated by the black horizontal line. A SNP density plot is incorporated into the plot 

underneath the SNPs with the color scale legend.   
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Figure 6. Manhattan plot from the GWAS for the WB myopathy with empirical P-values. The gray dotted line is the genome-wide P-

value threshold, and the black line is more stringent P-value threshold, which is set to 1.0e-6 and 1.79e-9 respectively. 
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A Manhattan plot is a scatter plot, which facilitates the representation of the SNPs across 

the whole genome chromosome by chromosome. Lower P-values of tested loci are associated with 

stronger statistical significance of association tests because the P-value is the likelihood of the 

surveyed SNP distribution by chance. The use of -log10 P-values means that significant 

association tests are observed as high values in the Manhattan plot.  

The first Manhattan plot (Figure 5) shows the FDR-BH adjusted P-values of SNPs obtained 

from the association test. A total of 268 SNPs had P-values smaller than 1.0e-6. In the second 

Manhattan plot (Figure 6) with the empirical P-values, a genome-wide threshold of 1.79e-9 (solid 

black line) was chosen to increase the stringency of the significant SNPs identified based on 

empirical P-values. In total, 762 significant SNPs were detected below the threshold. These 762 

also comprise all SNPs (268) found to be significant from the FDR-BH adjusted association test, 

which is depicted in Figure 6 above the P-value threshold. 

Overall, many significant SNPs above the threshold were detected along the whole length 

of all chicken autosomes except LGE64 and three unmapped regions indicated as chromosome 

number 42, 43, 44 in the Manhattan plots. The significant SNP show an equal distribution pattern 

along all chromosomes that could be an indicator of confounding factors stemming from 

differences in DNA sampling and genotyping between case and control groups, that is, from 

population structure.  
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A quantile-quantile (Q-Q) plot of –log10 P values was generated to compare association 

test results with the theoretical distribution of χ2 tests of no association. 

 

 

 

 
 

Figure 7. The Q-Q plot of WB association test P-values 
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The generation of the Q-Q plot in Figure 7 was based on two steps, observed P-values of 

the thousands association test are sorted into ascending order and then the distribution of the 

observed values is plotted against the known χ2 distribution of the expected values. Deviations 

from the diagonal line can be an indicator of a true association of SNPs with the WB myopathy, 

however, reaching out a final decision regarding the detection of true associations is not 

straightforward. Genomic inflation factor (λgc based on median χ2) = 7.11238, which allows for 

quantification of the excess of false positive association in our analysis. The λgc value is much 

bigger than the expected value of 1 and indicates an enormous systematic bias.  

 

3.3 Results of Significant SNPs  

 

Out of 472,753 SNPs, 268 were detected as a result of the FDR adjusted association test, 

but 18 were discarded due to absence of chromosomal coordinate information. The results of the 

analysis conducted with the 250 significant SNPs by the ENSEMBL Variant Effect Predictor are 

summarized in Figure 8 and Table 2. This tool permits investigation genomic location and kind of 

variation by using dbSNP number or chromosomal coordinates as identifiers. In this study, 

chromosomal coordinates of the SNPs were used.  As indicated in the Figure 8, only 2% of the 

significant SNPs are located on the exons of the genes, which is corresponding to five SNPs; 

Nov1_11278152, Nov10_10081846, Nov10_19760216, Nov20_497735, rs315521303. Table 2 

displays genes having those 5 coding sequence variants, gene descriptions, and details about the 

SNPs. The allele column refers to the alternate alleles corresponding coding sequence variants. 

Only one SNP is a nonsynonymous variant that leads to a change in amino acid from isoleucine to 

valine.  
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Figure 8. Distribution of the significant SNPs according to the consequence of the variants 
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Table 2. SNPs categorized as coding sequence variant with their corresponding genes.  
Gene Symbol Description Location 

SNP ID 
Allele Ensemble ID Consequence Effect 

GNAT3 Guanine nucleotide-binding 
protein G(t) subunit alpha-4 

1:11278152 
Nov1_11278152 

A ENSGALG000000
08427 

Coding sequence 
variant 

Synonymous 
variant 

SLC12A1 Solute carrier family 12 member 1 10:10081846 
Nov10_10081846 

C ENSGALG000000
04945 

Coding sequence 
variant 

Synonymous 
variant 

SPG11 Spatacsin 10:19760216 
Nov10_19760216 

T ENSGALG000000
08180 

Coding sequence 
variant 

Missense 
variant 

C20H20ORF24 Uncharacterized protein 20:497735 
Nov20_497735 

C ENSGALG000000
01054 

Coding sequence 
variant 

Synonymous 
variant 

MYO1D Unconventional myosin-Id 27:1606640 
rs315521303 

G ENSGALG000000
00674 

Coding sequence 
variant 

Synonymous 
variant 
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Table 3. Genotypes of the most significant SNPs located on the GNAT3, SLC12A, SPG11, C20H20ORF24 and MYO1D genes 
SNP ID GENE W W W W W W W W W W R R R R R R R R R R 

Nov1_11273473 GNAT3 GG GG GG GG GG GG GG GG GG GG AA AA AA AA AA AA AA AA AA AA 

Nov1_11278152 GNAT3 CC CC CC CC CC CC CC CC CC CC AA AA AA AA AA AA AA AA AA AA 

Nov1_11283000 GNAT3 CC CC CC CC CC CC CC CC CC CC TT TT TT TT TT TT TT TT TT TT 

Nov1_11293049 GNAT3 GG GG GG GG GG GG GG GG GG GG AA AA AA AA AA AA AA AA AA AA 

Nov10_10081846 SLC12A1 TT TT TT TT TT TT TT TT TT TT CC CC CC CC CC CC CC CC CC CC 

Nov10_19760216 SPG11 GG GG GG GG GG GG GG GG GG GG TT TT TT TT TT TT TT TT TT TT 

Nov20_497735 C20H20ORF24 AA AA AA AA AA AA AA AA AA AA CC CC CC CC CC CC CC CC CC CC 

rs315880270 MYO1D CC CC CC CC CC CC CC CC CC CC TT TT TT TT TT TT TT TT TT TT 

rs316269099 MYO1D AA AA AA AA AA AA AA AA AA AA GG GG GG GG GG GG GG GG GG GG 

rs317270020 MYO1D GG GG GG GG GG GG GG GG GG GG AA AA AA AA AA AA AA AA AA AA 

rs316887638 MYO1D GG GG GG GG GG GG GG GG GG GG CC CC CC CC CC CC CC CC CC CC 

rs315521303 MYO1D AA AA AA AA AA AA AA AA AA AA GG GG GG GG GG GG GG GG GG GG 

rs315181886 MYO1D AA AA AA AA AA AA AA AA AA AA GG GG GG GG GG GG GG GG GG GG 

rs314212462 MYO1D TT TT TT TT TT TT TT TT TT TT CC CC CC CC CC CC CC CC CC CC 

rs16206894 MYO1D CC CC CC CC CC CC CC CC CC CC TT TT TT TT TT TT TT TT TT TT 

rs313313466 MYO1D AA AA AA AA AA AA AA AA AA AA GG GG GG GG GG GG GG GG GG GG 
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Table 3 shows the opposite homozygosity of Ross 708 (R) and WPR (W) individuals for 

the most significant SNP of this work. The genotypes of the SNPs indicated above were retrieved 

from the raw SNP data. The other most significant SNPs located on the same genes with the coding 

sequence variants are included in this table. A number of significant SNPs are positioned on 

MYO1D gene and GNAT3 gene with completely different genotypes between cases and controls.  

 

3.3.1 GO Annotation 

 

Annotation of the genes associated with significant SNP were indicated in Table 4 with 

corresponding Ensembl IDs of the genes, the significant SNPs and their positions within the genes. 

Many SNPs have not yet been assigned dbSNP identifiers, and therefore could not be used for 

Ingenuity Pathway Analysis (IPA) analysis. The objective of the GO analysis was to expand the 

number of candidate genes with potential responsibility for WB myopathy, or given systematic 

bias identified, the differences between the two lines of chickens. Among the annotated genes, the 

prevalence of the genes exerting oxidoreductase activity, related to Ca2+ binding, cellular repair, 

and fiber type switching is particularly noteworthy. These chicken genes investigated by the GO 

analysis could contribute the onset of the WB myopathy.
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Table 4. Annotation of the genes harboring significant SNPs 
Gene Molecular Function Biological Process Cellular Description SNP ID Ensemble ID Position of SNP 

AACS Catalytic activity 
Acetoacetate-CoA ligase 
activity 

Lipid metabolic process 
Metabolic process 

 
Acetoacetyl-CoA synthetase Nov15_4474884 ENSGALG000000

02899 
Downstream 

ACOX3 Acyl-CoA oxidase activity 
Oxidoreductase activity 

acting on the CH-CH 
group of donors   
FAD binding 

Fatty acid metabolic process  
Fatty acid beta-oxidation 

Oxidation-reduction process 

 Peroxisome Peroxisomal acyl-coenzyme A 
oxidase 3 isoform X1 

rs317697112 ENSGALG000000
15591 

Intron  

ACTR6 
 

Chromatin remodeling Nucleus Actin-related protein 6 Nov1_47207134 ENSGALG000000
40976 

Intron  

AIG1 
   

Androgen-induced gene 1 protein 
isoform X1 

Nov3_52780143 ENSGALG000000
13780 

Upstream 

ALYREF Nucleic acid binding 
  

THO complex subunit 4 Nov18_1002891
6 

ENSGALG000000
07237 

Downstream 

AMN 
   

Protein amnionless rs316881096 ENSGALG000000
11391 

Upstream 

ANGPT4 Receptor tyrosine kinase 
binding 

Angiogenesis 
 

Angiopoietin-4 Nov20_1010311
0 

ENSGALG000000
40755 

Downstream 

AP1S2 
 

Protein transport 
 

AP-1 complex subunit sigma-2 
isoform X1 

Nov1_12187887
7 

ENSGALG000000
16551 

Intron  

ARHGAP31 
 

Signal transduction 
 

Rho GTPase-activating protein 31 Nov1_80732748 ENSGALG000000
15077 

Intron  

ARHGDIA Rho GDP-dissociation 
inhibitor activity 

 
Cytoplasm Rho GDP-dissociation inhibitor 1 Nov18_1002891

6 
ENSGALG000000
08443 

Intron  

ATPAF1 
 

Protein-containing complex 
assembly 

Mitochondrion ATP synthase mitochondrial F1 
complex assembly factor 1 

Nov8_21919591 ENSGALG000000
10444 

Intron  

BRI3BP 
  

Mitochondrion BRI3-binding protein Nov15_4514099 ENSGALG000000
02913 

Upstream 

BRSK2 Protein kinase activity   
ATP binding 

Protein phosphorylation 
 

Serine/threonine-protein kinase 
BRSK2 isoform X4 

rs316707833 ENSGALG000000
06681 

Intron  

C12ORF43 
   

Predicted: 
Uncharacterized protein C12orf43 
homolog 

Nov15_9145634 ENSGALG000000
06965 

Intron  

C1H11ORF54 
  

Nucleus Ester hydrolase C11orf54 homolog 
isoform X1 

Nov1_18587434
6 

ENSGALG000000
17220 

Downstream 

C20H20ORF24 
   

Uncharacterized protein C20orf24 
homolog 

Nov20_497735 ENSGALG000000
01054 

Coding 
sequence 
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Table 4. Continued  
Gene Molecular Function Biological Process Cellular Description SNP ID Ensemble ID Position of 

SNP 

CAPZB  Barbed-end actin filament 
capping 

F-actin capping 
protein 
complex 

F-actin-capping protein 
subunit beta isoform X1 

rs313715793 ENSGALG0000000
4034 

Intron  

CCDC88A Actin-binding  
Protein binding 

Cell migration   
Regulation of actin cytoskeleton 
organization 

 
Girdin isoform X14 Nov3_97197 

Nov3_107605 
rs315666869 
Nov3_125412 
Nov3_128311 

ENSGALG0000004
3587 

Intron  
Intron 
Intron  
Intron  
Downstream 

CD276 
   

CD276 antigen Nov10_2182652 ENSGALG0000000
1729 

Intron  

CDK19 Protein kinase activity ATP binding Protein phosphorylation 
 

Cyclin-dependent kinase 
19 isoform X2 

Nov3_66637424 ENSGALG0000001
5051 

Intron  

CDK6 Protein kinase activity Cyclin-
dependent protein 
serine/threonine kinase activity 
ATP binding 

Protein phosphorylation   
Cell cycle   
Regulation of cell proliferation  
Cell dedifferentiation 

 
Cyclin-dependent kinase 
6 

Nov2_22815766 ENSGALG0000000
9476 

Intron  

CETN2 Calcium ion binding 
  

Centrin-2 rs15494233 ENSGALG0000000
7510 

Intron  

CHERP Nucleic acid binding   
RNA binding 

 RNA processing 
 

Calcium homeostasis 
endoplasmic reticulum 
protein isoform X1 

rs313429355 
rs318170209 
rs14307755 

ENSGALG0000000
3824 

Upstream  
Intron 
Intron  

COL18A1 Structural molecule activity  Cell adhesion Extracellular 
matrix 

Collagen alpha-1(XVIII) 
chain isoform X2 

Nov7_6666747 ENSGALG0000003
8311 

Downstream 

COL6A1 
   

collagen alpha-1(VI) 
chain 

Nov7_6743219 ENSGALG0000000
5974 

3’ UTR  

COQ5 Methyltransferase activity 
  

2-methoxy-6-polyprenyl-
1,4-benzoquinol 
methylase 

Nov15_9334468 ENSGALG0000000
7185 

Downstream 

CRMP1 Hydrolase activity 
Hydrolase activity, acting on 
carbon-nitrogen (but not peptide) 
bonds 

Microtubule cytoskeleton 
organization  
Nervous system development 
Axon guidance 

 Cytoplasm Dihydropyrimidinase-
related protein 1 isoform 
X1 

rs315239587 ENSGALG0000004
1203 

Upstream 

CYP4A22 Iron ion binding 
Oxidoreductase activity, acting on 
paired donors Heme binding 

Oxidation-reduction process 
 

Cytochrome P450 4B1-
like 

Nov8_21937348 ENSGALG0000002
0688 

Upstream 

CYP4B7 Iron ion binding Oxidoreductase 
activity, acting on paired donors 
Heme binding 

 Oxidation-reduction process 
 

Cytochrome P450 4B1-
like 

Nov8_21950413 ENSGALG0000001
0469 

Upstream 
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Table 4. Continued  
Gene Molecular Function Biological Process Cellular Description SNP ID Ensemble ID Position of SNP 

DCPS  Hydrolase activity Deadenylation-dependent 
decapping of nuclear-transcribed 
mRNA 

 M7GpppX diphosphatase rs314257517 
rs314803280 

ENSGALG00000031
143 

Intron  
Intron  

DHRS7C    Dehydrogenase/reductas
e SDR family member 7C 

rs312875825 ENSGALG00000039
712 

Upstream 

DHX37 Nucleic acid binding 
Helicase activity  
ATP binding 

  Probable ATP-dependent 
RNA helicase DHX37 

Nov15_4520607 ENSGALG00000002
964 

Upstream 

DLGAP4  Signaling  Disks large-associated 
protein 4 

Nov4_344630 
Nov20_351099 

ENSGALG00000001
046 

Intron  
Intron  

DOCK9 Guanyl-nucleotide exchange 
factor activity 
Binding 

Small GTPase mediated signal 
transduction 

 
Dedicator of cytokinesis 
protein 9 isoform X12 

Nov1_144728718
Nov1_144743920 

ENSGALG00000016
883 

Splice region and 
Intron 
Intron  

DYNLL1 
 

Microtubule-based process Dynein complex Dynein light chain 1, 
cytoplasmic 

Nov15_9334468 ENSGALG00000020
999 

Upstream 

EFCAB14 
   

EF-hand calcium-binding 
domain-containing 
protein 14 isoform X1 

rs316613723 ENSGALG00000010
446 

Downstream 

ERLIN1 Ubiquitin-protein ligase 
binding 

Ubiquitin-dependent ERAD 
pathway 

Endoplasmic 
reticulum 

Erlin-1 isoform X1 rs317432965 ENSGALG00000003
308 

Downstream 

F2RL3 G-protein coupled receptor 
activity Thrombin-activated 
receptor activity 

G-protein coupled receptor 
signaling pathway   
Thrombin-activated receptor 
signaling pathway 
Blood coagulation 

Integral 
component of 
membrane 

Proteinase-activated 
receptor 4 

rs14307705 ENSGALG00000044
485 

Upstream 

FAM110A 
   

Protein FAM110A Nov20_10103110 ENSGALG00000046
425 

Downstream 

FAM96A 
   

MIP18 family protein 
FAM96A isoform X2 

Nov10_19760216 ENSGALG00000026
448 

Upstream 

FBLN1 Calcium ion binding 
Peptidase activator activity 

Extracellular matrix organization Extracellular 
region 

Fibulin-1 isoform X1 Nov1_70565519 
Nov1_70569407 
Nov1_70571806 
Nov1_70574070 

ENSGALG00000014
233 

Intron 
Intron  
Intron 
Intron  

FREM2 
 

Cell communication Integral 
component of 
membrane 

FRAS1-related 
extracellular matrix 
protein 2 

rs314056895 
Nov1_185874346 

ENSGALG00000033
671ENSGALG00000
017219 

Intron  
Upstream 
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Table 4. Continued  
Gene Molecular Function Biological Process Cellular Description SNP ID Ensemble ID Position of 

SNP 

FTCD Catalytic activity  
Folic acid binding 
Transferase activity 

Metabolic process 
Cellular metabolic process 

 Formimidoyltransferase-
cyclodeaminase isoform X1 

Nov7_6811648 
Nov7_6814900 

ENSGALG0000000
6131 

Intron  
Upstream 

GALNT9    Polypeptide N-
acetylgalactosaminyltransfer
ase 9 

rs316182209 ENSGALG0000000
2242 

Intron  

GCGR Transmembrane signaling 
receptor activity G-protein 
coupled receptor activity 
Glucagon receptor activity 

Cell surface receptor signaling 
pathway 
G-protein coupled receptor 
signaling pathway 
G-protein coupled receptor 
signaling pathway 

Membrane 
Integral component 
of membrane 

Glucagon receptor Nov18_10005222 ENSGALG0000001
1219 

Downstream 

GFAP Structural molecule 
activity 

 Intermediate 
filament 

Glial fibrillary acidic protein rs316143928 ENSGALG0000000
0909 

Intron  

 
 
GNAT3 

 
 
GTPase activity 
GTP binding 
Guanyl nucleotide binding 
G-protein beta/gamma-
subunit complex binding 

 
 
Signal transduction 
G-protein coupled receptor 
signaling pathway  
Adenylate cyclase-modulating G-
protein coupled receptor 
signaling pathway 

 
 
Guanine nucleotide-binding 
protein G(t) subunit alpha-3 

 
Nov1_11273473 
Nov1_11278152 
Nov1_11283000 
Nov1_11293049 

 
ENSGALG0000000
8427 

 
 
Intron  
Coding 
sequence  
Intron 
Downstream 

GPM6B 
  

Integral component 
of membrane 

Neuronal membrane 
glycoprotein M6-b isoform X1 

rs313845658 ENSGALG0000001
6575 

Intron  

HDAC4  Histone deacetylase 
activity 

Chromatin organization Histone 
deacetylation 

Histone deacetylase 
complex 

histone deacetylase 4 
isoform X3 

rs313845658 ENSGALG0000001
6575 

Intron  

HDGFL3 
   

hepatoma-derived growth 
factor 

rs312523275 ENSGALG0000000
6036 

Intron  

HNF1A DNA binding Positive regulation of 
transcription, DNA-templated 

 Nucleus Hepatocyte nuclear factor 1-
alpha 

Nov15_9145634 ENSGALG0000000
6968 

Downstream 

ITPKB Kinase activity Inositol phosphate biosynthetic 
process 

 
Inositol-trisphosphate 3-
kinase B 

rs313697635 ENSGALG0000000
9068 

Intron  

KIF18B Microtubule motor activity 
ATP binding   
Microtubule binding 

Microtubule-based movement 
 

Kinesin-like protein KIF18B rs316143928 ENSGALG0000003
1553 

Downstream 

LDB3 Protein binding 
  

LIM domain-binding protein 3 
isoform X6 

rs314384737 ENSGALG0000000
1977 

Intron  
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Table 4. Continued  
Gene Molecular Function Biological Process Cellular Description SNP ID Ensemble ID Position of SNP 

LEO1 Transcription elongation from 
RNA polymerase II promoter 

Histone modification Cdc73/Paf1 
complex 

RNA polymerase-associated protein 
LEO1 isoform X1 

Nov10_8997707 ENSGALG0000000
4696 

Intron  

MAP3K4 Protein kinase activity 
ATP binding 

Protein 
phosphorylation 

 Mitogen-activated protein kinase 
kinase kinase 4 isoform X3 

Nov3_45390506 ENSGALG0000002
0003 

Intron  

MCRIP1    MAPK-regulated corepressor-

interacting protein 1 

Nov18_10005222 ENSGALG0000004

2814 

Intron  

MDM1 Microtubule binding Negative regulation of 
centriole replication 

 Nuclear protein MDM1 isoform X1 rs315517349 ENSGALG0000000
9905 

Intron  

MEOX2 DNA binding   Homeobox protein MOX-2 Nov2_28143942 ENSGALG0000001
0794 

Intron  

MRPL13 Structural constituent of 
ribosome 

Translation  Ribosome 39S ribosomal protein L13, 
mitochondrial 

Nov2_137044165 ENSGALG0000004
1863 

Intron  

MSRA Peptide-methionine (S)-S-oxide 
reductase activity 

 Oxidation-reduction 
process 

 
Mitochondrial peptide methionine 
sulfoxide reductase isoform X2 

rs14410460 ENSGALG0000002
8032 

Intron  

MTBP 
   

mdm2-binding protein Nov2_137044165 ENSGALG0000003
1524 

Upstream 

MTCL1 
 

Regulation of 
autophagy 

Extracellular 
space 

Microtubule cross-linking factor 1 Nov2_99052416 ENSGALG0000003
8316 

Intron  

MYEF2 RNA polymerase II 
transcription factor activity, 
sequence-specific DNA binding 
Nucleic acid binding 
Single-stranded DNA binding 

  
Myelin expression factor 2 isoform X11 Nov10_10045281 ENSGALG0000003

2546 
Downstream 

MYH1A Motor activity 
Microtubule motor activity 
ATP binding;   
Microtubule binding 
Actin filament binding 

Microtubule-based 
movement 

Myosin 
complex 

Myosin heavy chain, skeletal muscle, 
adult-like 

rs315592041 
rs315562653 
rs313992131 

ENSGALG0000003
7864 

Upstream 
Upstream 
Upstream 

MYL9 Calcium ion binding 
  

Myosin regulatory light polypeptide 9 Nov20_497735 ENSGALG0000002
8567 

Upstream 

MYO1D Motor activity  
Microtubule motor activity 
Protein binding 
ATP binding 
Microtubule binding 

Microtubule-based 
movement 

Myosin 
complex 

Unconventional myosin-Id isoform X2 rs315880270  
rs316269099 
rs317270020 
rs316887638  
rs315521303 
rs315181886  
rs314212462  
rs16206894 
rs313313466 

ENSGALG0000000
0674 

Intron  
Intron 
Intron  
Splice region  
Coding sequence  
Intron  
Intron 
Intron 
Intron  
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Table 4. Continued  
Gene Molecular Function Biological Process Cellular Description SNP ID Ensemble ID Position of 

SNP 

MYO9B Motor activity  
Microtubule motor activity 
GTPase activator activity 
Protein binding 
ATP binding 
Microtubule binding   

Microtubule-based movement 
Intracellular signal 
transduction 
Positive regulation of GTPase 
activity 
Signal transduction 

Myosin 
complex 

unconventional myosin-IXb 
isoform X4 

rs315203294 
rs314198057 

ENSGALG00000003717 Intron  
Intron  

NBL1    Neuroblastoma suppressor 
of tumorigenicity 1 

rs317872657 ENSGALG00000040297 Upstream 

NSDHL 3-beta-hydroxy-delta5-steroid 
dehydrogenase activity 
Oxidoreductase activity 

Steroid biosynthetic process 
Oxidation-reduction process 

 Sterol-4-alpha-carboxylate 
3-dehydrogenase, 
decarboxylating 

rs15494233 ENSGALG00000007493 Upstream 

NTRK3 Protein kinase activity Protein 
tyrosine kinase activity 
Transmembrane receptor 
protein tyrosine kinase activity 
Neurotrophin receptor activity 
Protein binding 
ATP binding 

Protein phosphorylation 
Transmembrane receptor 
protein tyrosine kinase 
signaling pathway 

Integral 
component 
of plasma 
membrane 

NT-3 growth factor receptor 
isoform X1 

rs317446438 
rs317668397 
rs315506468 
rs13789459 
rs14949764 

ENSGALG00000040241 Intron 
Intron  
Intron 
Intron  
Intron 

NUAK1 Protein kinase activity 
ATP binding 

Protein phosphorylation 
 

NUAK family SNF1-like 
kinase 1 isoform X1 

Nov1_54014429 ENSGALG00000012662 Intron  

OSBPL1A Protein binding 
  

Oxysterol-binding protein-
related protein 1 isoform X1 

rs13707291 ENSGALG00000015086 Intron  

P4HB  Isomerase activity  Cell redox homeostasis Endoplasmic 
reticulum 

Protein disulfide-isomerase Nov18_10015927 ENSGALG00000038290 Intron  

PAPPA Metalloendopeptidase activity  Proteolysis 
 

pappalysin-1 isoform X1 rs317226714 ENSGALG00000007079 Intron  

PCBP3 Nucleic acid binding 
RNA binding 

  
Poly(rC)-binding protein 3 
isoform X1 

Nov7_6692577 
Nov7_6692745 
Nov7_6694367 

ENSGALG00000004394 Upstream 
Upstream 
Intron  

PDS5A Binding 
  

Sister chromatid cohesion 
protein PDS5 homolog A 
isoform X1 

Nov4_69516300 ENSGALG00000014286 Intron  

PHACTR2 
   

phosphatase and actin 
regulator 2 

Nov3_52491675 ENSGALG00000013768 Intron  

POLR3A DNA binding 
DNA-directed 5'-3' RNA 
polymerase activity 

Transcription, DNA-templated 
 

DNA-directed RNA 
polymerase III subunit RPC1 
isoform X2 

rs314789197 ENSGALG00000004947 Upstream 

PPP1R27 Protein binding 
  

Protein phosphatase 1 
regulatory subunit 27 

Nov18_10005222 ENSGALG00000035913 Downstream 
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Table 4. Continued  
Gene Molecular Function Biological Process Cellular Description SNP ID Ensemble ID Position of 

SNP 

PUM1 RNA binding 
Binding 

  Pumilio homolog 1 
isoform X1 

rs15192209 ENSGALG00000042598 Intron  

RANBP10 Protein binding   Ran-binding protein 10 
isoform X1 

rs15599960 ENSGALG00000001439 Upstream 

RIMS2 Protein binding Regulation of exocytosis 
Calcium ion-regulated 
exocytosis of neurotransmitter 

Presynaptic active 
zone 

Regulating synaptic 
membrane exocytosis 
protein 2 isoform X2 

Nov2_130514583 ENSGALG00000040256 Intron  

RLBP1 Visual perception 
Retinal binding 

  Retinaldehyde-binding 
protein 1 

rs317366770 ENSGALG00000006676 Downstream 

RNF185    E3 ubiquitin-protein 
ligase RNF185 isoform X1 

Nov15_9145634 ENSGALG00000006960 Upstream 

ROCK1 Protein kinase activity 
Protein 
serine/threonine kinase 
activity 
ATP binding 
Rho GTPase binding 
GTP-Rho binding;  

Protein phosphorylation 
Rho protein signal transduction 
Actin cytoskeleton organization 
Intracellular signal transduction 
Regulation of stress fiber 
assembly 
Regulation of cytoskeleton 
Regulation of establishment of 
cell polarity organization  

 
Rho-associated protein 
kinase 1 

rs314226715 ENSGALG00000014922 Intron  

ROR1 Protein kinase activity 
Protein binding 
ATP binding 

Protein phosphorylation  
Transmembrane receptor 
protein tyrosine kinase signaling 
pathway 

 Tyrosine-protein kinase 
transmembrane receptor 
ROR1 

rs317593555 
Nov8_28008722 
Nov9_17536551 

ENSGALG0000001101 
ENSGALG00000008983 

Intron 
Intron 
Intron  

RPS24 Structural constituent 
of ribosome 

Translation Ribosome 
Intracellular 

40S ribosomal protein 
S24 isoform X1 

rs314789197 ENSGALG00000004871 Intron  

SCO1 
   

protein SCO1 homolog, 
mitochondrial 

rs315279672 ENSGALG00000030475 Intron  

SH3GL1 Protein binding  Endocytosis Cytoplasm Endophilin-A2 isoform X2 Nov28_2502832 ENSGALG00000001121 Downstream 

SIN3B 
 

Regulation of transcription, 
DNA-templated 

 
Paired amphipathic helix 
protein Sin3b 

rs14307705 ENSGALG00000003771 Downstream 

SLC12A1 Transporter activity 
Cation: chloride 
symporter activity 

Ion transport 
Transmembrane transport 

Membrane Integral 
component of 
membrane 

Solute carrier family 12 
member 1 isoform X1 

Nov10_10081846 ENSGALG00000004945 Coding 
sequence  
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Table 4. Continued  
Gene Molecular Function Biological Process Cellular Description SNP ID Ensemble ID Position of 

SNP 

SLC19A1 Folate: anion antiporter 
activity 
Methotrexate transmembrane 
transporter activity 
Vitamin transmembrane 
transporter activity 

Folic acid transport 
Vitamin transport 
Methotrexate transport 

Integral component of 
membrane Integral 
component of plasma 
membrane 

Folate transporter 1 Nov7_6666747 
Nov7_6667828 
Nov7_6672285 

ENSGALG0000003
0511 

Intron  
Intron 
Upstream 

SLC24A5 Calcium, potassium: sodium 
antiporter activity 

Ion transport 
Regulation of melanin 
biosynthetic process 
Transmembrane transport 

Integral component of 
membrane 
Trans-Golgi network 

Sodium/potassium/calciu
m exchanger 5 

Nov10_10045281 ENSGALG0000000
4885 

Intron  

SLC35E1    Solute carrier family 35 
member E1 

rs313429355 ENSGALG0000000
3794 

Downstream 

SNTG1 Structural molecule activity 
Protein binding 

  
Gamma-1-syntrophin 
isoform X1 

rs14232568 ENSGALG0000001
5248 

Intron  

SP8 Nucleic acid binding 
  

Transcription factor Sp8 Nov2_30245399 ENSGALG0000003
5725 

Downstream 

SPG11 
   

Spatacsin isoform X2 Nov10_19760216 ENSGALG0000000
8180 

Coding 
sequence  

SPPL2A Aspartic-type endopeptidase 
activity 
Aspartic endopeptidase 
activity, intramembrane 
cleaving 

Membrane protein 
intracellular domain 
proteolysis 
Regulation of immune 
response 

Integral component of 
membrane 

Signal peptide peptidase-
like 2A isoform X4 

rs314300039 ENSGALG0000003
1348 

Downstream 

SYNPO2 Protein binding 
  

Synaptopodin-2 isoform 
X1 

Nov4_55204789 ENSGALG0000001
1994 

Intron  

TIRAP Protein binding  Signal transduction 
 

Toll/interleukin-1 
receptor domain-
containing adapter 
protein isoform X1 

rs314257517 ENSGALG0000004
0224 

Downstream 

TMEM132B 
   

Transmembrane protein 
132B isoform X1 

Nov15_4376122 
Nov15_4422532 
Nov15_4474884 

ENSGALG0000000
2742 

Intron 
Intron 
Upstream 

TMEM220 
   

Transmembrane protein 
220 

rs315279672 ENSGALG0000003
3996 

Downstream 

TRIAP1 
   

TP53-regulated inhibitor 
of apoptosis 1 

Nov15_9334468 ENSGALG0000000
7199 

Upstream 
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Table 4. Continued  
Gene Molecular Function Biological Process Cellular Description SNP ID Ensemble ID Position of 

SNP 

TRPM5 Ion channel activity 
Calcium activated cation 
channel activity  

Ion transport 
Cation transport 
Ion transmembrane transport 
Sensory perception of taste 
Transmembrane transport 

Membrane 
Integral 
component of 
membrane 

Transient receptor potential 
cation channel subfamily M 
member 5 

rs14517355 ENSGALG00000006
521 

Intron  

TSNAXIP1    Translin-associated factor X-
interacting protein 1 isoform X1 

rs15599960 ENSGALG00000001
533 

Intron  

TSSC4    protein TSSC4 rs14517355 ENSGALG00000006
530 

Downstream 

TTC39C Protein binding   Tetratricopeptide repeat protein 
39C 

rs312882159 ENSGALG00000015
064 

Downstream 

TXNRD1 Thioredoxin-disulfide 
reductase activity 
Electron transfer activity 
Oxidoreductase activity 
Flavin adenine dinucleotide 
binding 

Cell redox homeostasis 
Oxidation-reduction process 

 Thioredoxin reductase 1, 
cytoplasmic 

Nov1_54634855 ENSGALG00000035
345 

Intron  

UHRF1BP1L    UHRF1-binding protein 1-like 
isoform X2 

Nov1_47207134 ENSGALG00000011
557 

Intron  

WDFY2 Protein binding 
Metal ion binding 

  
WD repeat and FYVE domain-
containing protein 2 

Nov1_170160732 ENSGALG00000017
019 

Intron  

ZMIZ1 Zinc ion binding 
  

Zinc finger MIZ domain-
containing protein 1 isoform X7 

rs13566721 ENSGALG00000004
850 

Intron  
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3.3.2 Pathway Analysis 

 

For ingenuity pathway analysis (IPA), the significant SNPs according to the empirical P-

values of the association test were exploited to expand the number of SNPs for the efficiency of 

the analysis. SNPs issued by a dbSNP identifier can only be used for the recognition of the analysis. 

That is why among 762 SNPs, 336 SNPs were used for IPA.  

 

Ingenuity pathway analysis indicated that several genes with associated SNP might play 

important roles in the control the molecular mechanisms of muscle development. These significant 

genes involved in 5 major canonical pathways identified in human:  1) signaling by Rho Family 

GTPases, 2) semaphorin signaling in neurons, 3) axonal guidance signaling, 4) 1D-myo-inositol 

hexakisphosphate biosynthesis, and 5) D-myo-inositol (1,3,4)-triphosphate biosynthesis. The 

molecular and cellular functions of these pathways influence the assembly, organization, 

maintenance, movement, morphology, and development of the cells in higher organisms. These 

pathways are considered to have important physiological roles of the hematological system, 

nervous system, and in organismal, tissue, and immune cell trafficking (Krämer et al., 2014). 

 Signaling by Rho Family GTPases mediates multiple biological processes. Earlier work 

suggested that Rho plays a role in cytoskeletal remodeling, but recent studies also contributed to 

decipher the biological functions of the Rho GTPases. It is a key molecule to regulate various other 

cellular processes such as membrane trafficking, transcriptional activation, cell growth control, 

and development (Van Aelst et al., 1997). 
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Figure 9. Overlapping canonical pathways 

 

 

 

Semaphoring signaling in neurons is responsible for regulating many organs and tissue 

development, and maintenance processes in higher organisms. The alternation to the cytoskeletal 

and adhesive machinery cause semaphoring signaling to regulate the morphology and motility in 

diversified cell types by activating Plexin receptors (Alto & Terman, 2017). 
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Axonal guidance signaling is mainly engaged in the extension of neuronal, embryogenesis, 

cell proliferation, cell migration, adhesion, apoptosis biological processes (Tang et al., 2014). 

Activation of the axon guidance signaling pathway triggered by growth cone collapse can trigger 

repulsion and attraction. The activation also affects the rate of axon extension, which adjusts the 

dynamics of cytoskeletal rearrangement in the growth cone (Bashaw, & Klein, 2010).  

1D-myo-inositol hexakisphosphate (phytate) is one of the most common intermediates of 

phosphorylated inositols in the cell of higher organisms and have many signaling roles. The 

cellular distributions of phytate still are not known. The function of phytate in cell might increase 

the binding affinity of cationic proteins. The molecular roles of phytate might be the regulating 

nuclear mRNA export, inhibition of clathrin cage assembly, chromatin remodeling, exocytosis of 

insulin, and changing Ca2+ channel activation (Chang et al., 2002).   

 

 

3.4 Haplotype Analysis Results 

In total, 18,539 haplotype blocks were constructed from the whole chicken genome within 

200 kb windows. The size of the haplotype blocks differed considerably.  The smallest haplotype 

contains just six bp, the largest spans 199.851 bp. The largest number of SNP comprising a 

haplotype is 80. As shown in Figure 10, the number of haplotypes located on a chromosome was 

proportional to the size of the chromosome. The average number of SNP existing in a haplotype 

and the average haplotype length in kb per chromosome is depicted in Figure 11. 
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Figure 10. Distribution of the constructed haplotypes per chromosome 
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Figure 11. Average number of SNPs per haplotype and the average haplotype length 
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After the haplotype association tests were performed for each haplotype, a global P-value 

and individual P-values of different combinations of SNP showing variation on the haplotype were 

recorded. Among the most significant SNPs, only coding sequence variants were visualized with 

their haplotype blocks. 50 kb regions harboring the most significant SNPs and their related genes 

were analyzed for linkage disequilibrium which represents nonrandom associations of alleles that 

are located across a chromosome.  
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Figure 12. Associations in the MYO1D gene region with the corresponding LD heatmap based on 

r2 metric. Marker number rs315521303, located within this gene, is circled; this was one of the 

most significant coding sequence variants. Haplotypes and SNP portrayed are in the region within 

50 kb of this gene. Each point represents one SNP; solid lines connecting SNP represent 

haplotypes. The individual P-value of the haplotypes and FDR adjusted P-values of the SNP are 

shown as blue points. In the LD heatmap, the triangle region indicated by the dotted dark blue line 

shows the pairwise r2 values of SNP located on the haplotype. 
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Figure 13. Associations in the GNAT3 gene region with the corresponding LD heatmap. 

Haplotypes and SNP within 50 kb of the significant coding sequence variant Nov1_11278152 are 

shown.  This leading marker is located within GNAT3. The triangle area indicates the pairwise r2 

values of SNPs existing in the haplotype.  
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Figure 14. Associations in the C20H20ORF24, SLC12A1, SPG11 gene regions, respectively, with their corresponding LD heatmaps. 

The coding sequence variants are inside the red circles. As observed in the LD heatmap patterns, SNPs in the flanking regions do not 

exhibit high correlation. Even though there are a few small haplotype blocks observed, Nov20_497735, Nov10_10081846, 

Nov10_19760216 do not exist in these haplotypes. 
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In Figures 12, 13, and 14, the LD heatmap and haplotypes were plotted with SNP that 

corresponded to the most significant SNP associations with WB that were located within known 

genes. The metric used in LD heatmap is called r2 ranging from 0 to 1 to exhibit the relatedness of 

each SNP pair in a genomic region of interest. As shown in Figures 12, 13, and 14, 1 indicates 

complete correlation with the intensely shaded red area in the LD heatmap. The decrease in the 

correlation between SNPs is proportional to the reduction in the intensity of the shaded area to 

yellow or white, and 0 indicates no correlation between SNPs of interest.  

The plots show the association test results as the –log10(P-values). Nov1_11278152 located 

on GNAT3 gene and rs315521303 located on MYO1D gene is involved in the haplotype blocks 

seen in the Figure 12 and Figure 13. In the LD heatmaps, the triangle-shaped areas surrounded by 

the dotted dark blue line represent the pairwise r2 values of the SNPs that are inherited together as 

a haplotype block. However, Nov20_497735 located within the gene C20H20ORF24, 

Nov10_10081846 located within the SLC12A1 gene and Nov10_19760216 located on SPG11 

gene do not exist in a haplotype block. 

The individual P-values indicated on the plot are haplotype association test statistics 

instead of global P-values to assure that the haplotypes contain the correct variant found in 

significant association with the WB condition. The haplotype harboring Marker rs315521303 has 

six different combinations of the same SNP, and three of them include the correct variant of 

rs315521303 that is guanine (G) nucleotide.  Among three, the most frequent combination is taken 

into account to use its P-value. Table 5 shows two haplotypes having the coding sequence variants, 

genes that these haplotypes are positioned, number of SNPs, coordinates of haplotypes, haplotype 

length, frequency and P-values obtained from haplotype association test.  
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Table 5. Haplotypes harboring the significant coding sequence variants 
Haplotype SNP ID Gene Number of 

SNPs 

Coordinates Haplotype Length 

(Kb) 

Frequency P-value 

H192 Nov1_11278152  GNAT3 16 1:11242819-11283640   40.822 0.35 0.000003468 

H17264 rs315521303 MYO1D 28 27:1582173-1622086 39.914 0.375 9.634E-07 
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3.5 Population Stratification Results  

 The pairwise clustering performed with respect to IBS is favorable to identify pairs of 

individuals that exhibit more differences from one another than expected in a homogeneous 

sample. Figure 15 shows the substructure of the population, and there is a strong separation 

observed in the sample based on the values of the first two dimensions (C1 and C2).  Each point 

represents an individual, and the individuals circled are the females existing in the control group. 

The case and control groups are positioned away from each other as expected. While broiler 

chickens cluster on the right hand, WPRs form a cluster on the left hand. Broiler chickens gather 

close to each other, which indicates differences within broilers are lower compared to those in 

WPRs because they are positioned apart. 

 

 

 

 
 

Figure 15. Multidimensional scaling plot. 
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As the Manhattan plots and the Q-Q plot suggested, the analysis was tremendously affected 

by population stratification. MDS plot demonstrates that clearly. In order to account for population 

stratification and sex, CMH test and logistic regression analysis were conducted. CMH test was 

replicated after removing females from the sample, and logistic regression analysis was performed 

with sex covariate alone, with cluster covariate alone and with sex and cluster covariates together. 

However, the result did not change, and there were no significant SNP detected after controlling 

the population stratification and sex. 
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4. DISCUSSION 

 

 

In these analyses, population structure in the form of breed type apparently introduced a 

bias that is more likely responsible for the many observed significant associations of SNPs along 

the whole chicken genome.   The Q-Q plot (Figure 7) indicates considerable deviation of P values 

of tests of association from expectation across the whole genome. One of the main confounding 

factors that affects the accuracy of genome-wide association studies is population structure 

(Thomas & Witte, 2002). In this case, the two breeds used for association testing are potentially 

highly diverged due to different rates of selection and show inherent differences in underlying 

allele frequencies. On the one hand, such differences in the genetic background could lead to a 

higher probability of false positives compared to associations that are indicative of WB myopathy. 

On the other hand, up to 89% of commercial broilers (including Ross 708 variety) are observed to 

express WB (Cruz et al., 2017), which makes it difficult to select a control group from the same 

genetic background. Although observing deviations from expected P-values is an anticipated result 

of any GWAS, the predominant part of SNPs included in association test are not supposed to be 

in association with the disease. Optimally, expected and observed P-values would correspond more 

or less to the red diagonal line in Figure 7 until the end in which it forms a curve towards the 

shaded area. Points showing deviation in the shaded area would be most likely to be a true disease 

variant (Figure 7). Strict adherence to this shows that only a handful of associated loci could be 

considered to be not false positives. A second consideration is the sample size in this present study, 

which is not ideal for a thorough association mapping study. As this study was exploratory, the 

uncertainty surrounding the validity of the association tests is not surprising. Detection of strong 
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deviations of observed P-values from expected P-values under the null hypothesis that assumes no 

association between SNPs and the WB condition, cannot be attributed to the strong association of 

SNP with the disease. Further analysis conducted using only the most significant SNP may 

eliminate, in part, spurious associations. 

Results from haplotype analyses indicate GNAT3 and MYO1D genes have many significant 

SNP as well as the coding sequence variants that are inherited as haplotype blocks. GNAT3 is a 

guanyl nucleotide binding protein with GTPase activity and a key molecule for signal transduction 

involving several pathways. MYO1D is a microtubule and ATP binding protein in myosin 

complex with the molecular function of catalysis of the force generation leading to movement 

across a microtubule or a microfilament or torque leading to membrane scission. 

Several pathways were identified by using the genes harboring the significant SNPs, which are 

associated with cellular repair, tissue development, and Ca2+ transportation by IPA. These results 

seem correlated to the symptoms of the WB myopathy identified in the previous studies. According 

to the result of IPA analysis, one of the top canonical pathways is signaling by Rho Family 

GTPases contributing to the cellular repair, which is consistent with the differential gene 

expression analysis of the chicken affected by the WB and WS myopathies (Mutryn et al., 2015). 

However, at the gene level, differences occurring in cellular repair could be the reason for muscle 

degradation observed in the affected chicken, rather than results. The result of the GO annotation 

analysis performed with the genes in which 250 significant SNP identified genes that are part of 

the Signaling by Rho Family GTPases, including Rho GTPase-activating protein 31 

(ARHGAP31), Rho-associated protein kinase (ROCK1), and Rho guanine nucleotide exchange 

factor 18 isoform.  Other significant genes related to cellular repair and fiber type switching that 



 

 

 

56 

could contribute to the onset of the WB myopathy are synaptopodin-2 isoform X1 (stress fiber) 

(SYNPO2), myosin heavy chain skeletal muscle (MYH1A), myosin regulatory light polypeptide 

9 (stress fiber) (MYL9), unconventional myosin-Id isoform X2 (MYO1D), unconventional 

myosin-IXb isoform X4 (MYO9B), and phosphatase and actin regulator 2 (PHACTR2). Another 

significant pathway, 1D-myo-inositol hexakisphosphate (phytate), is presumed to be involved in 

the alternation of Ca2+ channel activation as well as a number of signaling roles, which may be 

associated with the WB myopathy. Likewise, various chicken genes were identified in the GO 

analysis related to Ca2+ binding including sodium/potassium/calcium exchanger 5 (SLC24A5), 

EF-hand calcium-binding domain-containing protein 14 isoform X1 (EFCAB14), calcium ion 

binding (FBLN1): calcium ion binding (CETN2:). Zambonelli et al. (2016) in their microarray-

based differential gene expression analysis, demonstrated increased levels of calcium in affected 

WB fillets and found the differentially expressed genes associated with the calcium signaling 

pathway. 

Among the annotated significant genes based on GO analyses, the prevalence of the genes 

exerting oxidoreductase activity is particularly noteworthy; those include peroxisomal acyl-

coenzyme A oxidase 3 isoform X1 (ACOX3), dehydrogenase /reductase SDR family member 7C 

(DHRS7C), cytochrome P450 4B1-like (CYP4A22), cytochrome P450 4B1-like (CYP4B7), 

sterol-4-alpha-carboxylate 3-dehydrogenase (NSDHL), and thioredoxin reductase 1 (TXNRD1) 

as detected genes involved in oxidoreductase activity. Oxidative stress is considered as a 

biomarker of the chicken with the WB myopathy (Abasht et al., 2016), and it is speculated that 

oxidative stress stimulates changes occurring in the muscles of the affected chickens as a result of 

intense selection towards high breast yield (Zambonelli et al., 2006). 
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Several genes and pathways obtained as a result of the SNP and haplotype association analysis 

seem relevant to WB myopathy but the likelihood of these results being related to differences 

between two breeds is higher. Therefore, before the population stratification is corrected, the 

results are not valid.  
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5. CONCLUSION 

 

The present study is focused on the investigation of the genetic basis that predisposes the 

commercial broiler chickens to develop the WB myopathy at gene and SNP level by exploiting 

GWAS. Considering small sample size and structure, this study serves as an exploratory 

association study. The population structure exhibits a stratification that dramatically influenced 

the association results. The use of stringent empirical P-value threshold and FDR-BH adjusted 

association test statistics was employed in effort to mitigate the limitations as much as possible. 

The haplotype analysis incorporated into the SNP association analysis for MYO1D, GNAT3, 

SLC12A1, SPG11 and C20H20ORF24 genes may enhance the robustness of the association study. 

The GO annotation analysis and the pathway analysis conducted with a small set of genes with 

FDR-BH adjusted P-values, and very small empirical P-values respectively are deemed 

informative, and the results are consistent with the previous functional studies published by other 

researchers. 

Even though, using P-values corrected for multiple tests and the FDR adjusted P-values 

may decrease the number of false positive associations, it is hard to draw a conclusion about 

disease association from the data unless corrected for stratification. After correcting for population 

stratification no significant SNPs were identified, likely due to a lack of power in the experimental 

design.  
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