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ABSTRACT

Many first and second generation products from oxidation of volatile organic compounds

are water soluble, allowing for participation in aqueous phase chemistry. Secondary organic

aerosol formation in the aqueous phase can have a substantial contribution to the overall

tropospheric aerosol concentration. This work describes results from the Multiphase Aging

and Production of Particles (MAPP) chamber, a new chamber designed to allow for both

gas phase and cloud chemistry research. Clouds are generated within the chamber as to

mimic the adiabatic expansion of a rising air parcel in the atmosphere. The adiabatic expan-

sion cloud formation capabilities of MAPP allows for realistic studies of secondary organic

aerosol production within cloud water droplets. MAPP’s FEP Teflon design is unique to

current cloud chambers used to studying secondary organic aerosol growth and will help re-

duce wall interactions that are normally present in stainless steel chambers. Studies using the

MAPP chamber were done with oxidation of acetylene by hydroxyl radicals to produce gly-

oxal. Glyoxal, a water soluble organic species, was found to produced significant secondary

organic aerosol growth in the presence of cloud droplets.
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NOMENCLATURE

MAPP Multiphase Aging and Production of Particles

SOA Secondary Organic Aerosol

OH Hydroxyl Radical

PM Particulate Matter

VOCs Volatile Organic Compounds

aqSOA Aqueous Secondary Organic Compound

HONO Nitrous Acid

C2H2 Acetylene

PTFE Polytetrafluoroethylene

FEP Fluorinated Ethylene Propylene

RH Relative Humidity

DMA Differential Mobility Analyzer

CPC Condensation Particle Counter

APS Aerodynamic Particle Sizer

SMPS Scanning Mobility Particle Sizer

LCL Lifting Condensation Level

DRH Deliquescent Relative Humidity

LWC Liquid Water Content

AS Ammonium Sulfate

PS Potassium Sulfate

CLOUD Cosmics Leaving OUtdoor Droplets chamber
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CESAM Experimental Multiphasic Atmospheric Simulation
Chamber
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1. INTRODUCTION AND LITERATURE REVIEW

This thesis describes the design of the Multiphase Aging and Production of Particles

(MAPP) chamber and the first experiments resulting from its use. MAPP is a new cloud

chamber designed and built by our research group in the Atmospheric Sciences Department

at Texas A&M University. The MAPP chamber is designed for gas phase photochemical

reaction processes and production of droplets during cloud processing cycles. The purpose of

MAPP, in this study, is to provide the capability for realistic controlled studies of secondary

organic aerosol yields within cloud droplets.

The experiments performed and analyzed in this work use acetylene as an organic gas

precursor. Oxidation of acetylene is initiated by hydroxyl radicals within the chamber to

produce glyoxal. The hydroxyl radicals is created within the chamber by photolysis of ni-

trous acid. The purpose of the study is to calculate aqueous secondary organic aerosol yield

measurements in cloud droplets from oxidation of acetylene.

1.1 Importance of Study

Particles that are suspended in Earth’s atmosphere are known as aerosols. The concen-

tration, size, chemical composition, and origin of aerosols in the atmosphere have become

properties of great interest over the last several decades. Understanding these aerosol char-

acteristics is of vital importance due to their impact on air quality and Earth’s climate.

Ambient exposure to particle matter (PM) has been linked with many different signifi-

cant public health problems. Nawrot et al. (2007) found a strong linear correlation between

PM exposure and mortality in Berlin, Germany, especially in the summer months. Thurston

et al. (2015) also found significant association between PM exposure and mortality within

the United States. PM has been associated with health impacts on infants through prena-

tal exposure (Teng et al., 2016). Several studies have linked childhood asthma, congenital
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anomalies, and low birth weight to infants who have had heavy prenatal exposure to PM

(van den Hooven et al., 2012; Hsu et al., 2015; Tanner et al., 2015).

PM can have both a direct and an indirect impact on climate. Direct impacts are due to

the radiative scattering and absorbing properties of particles. Indirect impacts are due to the

role an aerosol has as a cloud condensation nucleus or an ice nucleus. The uncertainty of

aerosol-cloud and aerosol-radiation impacts on radiative forcing is a cause of considerable

error in many climate models (IPCC, 2013; Zhang et al., 2013; Kodros et al., 2015).

There are many different anthropogenic and biogenic sources that contribute to the over-

all chemical composition and concentration of PM within the troposphere. PM are generally

categorized by their source production as either primary or secondary aerosol. Primary par-

ticles are emitted directly from their source, these types of PM include dust, sea salt, or par-

ticles given off from biomass burning. Secondary particles are typically fine mode aerosol

formed in part by gas phase precursors.

Secondary organic aerosol (SOA) can make up a large portion of the total atmospheric

fine particle concentration. It is formed by volatile organic compounds (VOCs) whose oxida-

tion yields products of lower volatility, which can then undergo gas-to-particle partitioning.

Gas phase production alone cannot account for the total SOA concentration in the atmo-

sphere. Blando & Turpin (2000) explored the possibility that SOA could be formed from the

oxidation of organic compounds in the aqueous phase and that these products would remain

in the particle phase after evaporation of the water. Since this publication, many studies have

found that the additional SOA formation in aqueous phase solutions such as aerosol water,

fog, and cloud droplets can lead to a considerable amount of the total SOA production, how-

ever there is still a large uncertainty in aerosol magnitude in the atmosphere especially within

the SOA contribution (Ervens et al., 2011; Spracklen et al., 2011). On average, over 70%

of the earth’s surface is covered by clouds (Stubenrauch et al., 2013) making the evaluation

of aqueous SOA (aqSOA) yields, especially in cloud droplets, an increasingly relevant topic
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for further assessment (Shrivastava et al., 2017; Ervens et al., 2014).

1.2 Oxidant: Hydroxal Radical Production

Many organic compounds, such as alkenes and aromatics, form highly water-soluble

products during their oxidation. The production of these water-soluble species can be an im-

portant intermediate step for aqSOA formation. There are many atmospheric species capable

of initializing oxidation of VOCs. Hydroxyl radical (OH ) is a gas phase constituent that is

responsible for much of the oxidation processes of organic compounds.

The production of OH in the atmosphere can occur through many different reactions

such as photolysis of ozone, nitrous acid, and formaldehyde and reactions between alkenes

and ozone (Gligorovski et al., 2015). The photolysis of nitrous acid (HONO) at wavelengths

between 300 nm and 400 nm (Stutz J. et al., 2000) creates OH as shown in Reaction 1 (R1).

HONO + hv → NO + OH (R1)

The concentration of HONO is typically higher in urban areas, but still present in subur-

ban and remote places. The average HONO concentration on cloud-free days, around noon,

in a forested area was found by Sörgel et al. (2011) to be 30 ppt with a lifetime of around

15 minutes, whereas Volkamer et al. (2010) found a campaign average of 58 pptv in Mexico

City.

Though photolysis of HONO is a dominant source of OH in the early morning, it can

contribute significantly to the overall daytime production of OH . Volkamer et al. (2010)

found HONO to be responsible for about 12% of the total daytime average OH production

within Mexico City. Kleffmann Jörg (2007) evaluated HONO in a laboratory setting and

calculated the contribution of HONO to provide up to 56% of the primary OH production.
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1.3 Organic Precursors

Acetylene (C2H2), a low-molecular-weight alkyne, is an organic compound commonly

found in the atmosphere. Relatively high concentrations of C2H2, up to 17 ppb, can be found

in urban areas due to its anthropogenic sources (Calvert et al., 2000). Yaping et al. (2007)

found a global combustion source of 6.6 Tg yr−1 for C2H2, with biofuel, fossil fuel, and

biomass burning being responsible for 3.3 Tg yr−1, 1.7 Tg yr−1, and 1.6 Tg yr−1 respectively.

A major sink for C2H2 in the atmosphere is its oxidation by OH . Several theoretically

possible pathways exist for the reaction of C2H2 and OH . Galano et al. (2008) modeled

reaction pathways for C2H2 oxidation as shown in Figure 1.1. During the study, glyoxal was

found to be the only significant product formed from the reaction. Though Figure 1.1 shows

several possible pathways for glyoxal formation, it was found that pathway A is the main

path for the reaction. In pathway A, the oxidation of C2H2 by OH in the presence of oxygen

produces glyoxal while regenerating OH .
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Figure 1.1: Possible reaction channels of acetylene oxidation reprinted from Galano et al.,
2008

Hatakeyama et al. (1986) found oxidation of C2H2 to produce glyoxal with a 0.7 branch-

ing ratio. Using the branching ratio given by Hatakeyama et al. (1986), Yeung et al. (2005)

found that the oxidation reaction of C2H2 by OH can lead to a glyoxal production rate of

0.05 ppb hr−1 and is likely to be a notable source of the daytime glyoxal production in an

urban atmosphere. During a study done in Mexico City, Volkamer et al. (2007) found this

reaction to be responsible for approximately 8% of the total glyoxal formation within the

city.

Glyoxal has a very high Henry’s law constant of 2.6x10−7 M atm−1 (Volkamer et al.,

2009) and readily partitions into the aqueous phase. Once in the aqueous phase, glyoxal

can undergo further OH oxidation; Ervens & Volkamer (2010) listed this aqueous phase
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oxidation of glyoxal by OH to have a reaction rate constant on the order of 109 M−1s−1.

Studies suggest that products of glyoxal aqueous phase chemistry can differ depending

on the water media type (e.g., aerosol water, fog, cloud). This is due largely to differences

in concentration of dissolved species in aerosol water and cloud droplets (Ip et al., 2009).

Production of organic acids by glyoxal oxidation is found to be favored within cloud droplets

while oligomerization is found to be favored within aerosol water (Lim et al., 2010; Tan et

al., 2009).

Oxalic acid is one of the major organic acids produced in droplets during glyoxal oxida-

tion by OH . In the presence of ammonia during glyoxal oxidation within droplets, ammo-

nium oxalate is most likely formed from oxalic acid, decreasing the resulting volatility and

increasing SOA production (Ortiz-Montalvo et al., 2014).

1.4 aqSOA Yield Parameters

Several factors are thought to influence the aqSOA production within cloud droplets.

Liquid water content (LWC), initial VOC to NOx concentration ratio, time of droplet inter-

action, and total carbon loss rate are among the suggested influential factors. Total carbon

loss rate represents the production rate of gas phase water-soluble organic compounds. The

correlation between these factors and aqSOA yield in cloud droplets has been previously

explored in a variety of studies.

Using a cloud parcel model, Ervens et al. (2008) performed a study to analyze the impact

several different factors had on the aqSOA production from isoprene in cloud droplets. This

study showed the largest yield correlation (r2 = 0.72) with the initial ratio of VOC and NOx,

whereas weaker yield correlated values were associated with cloud droplet interaction time

(r2 = 0.69) and LWC (r2 = 0.55).

He et al. (2013) used a global coupled chemistry-climate model developed by the Geo-

physical Fluid Dynamics Laboratory to analyze the aqSOA production factors. This study
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found the strongest correlation with LWC (r2 = 0.32) and total carbon loss (r2 = 0.26).

Unlike the study by Ervens et al. (2008), He et al. (2013) found VOC to NOx ratio to have a

negative correlation coefficient (r2 = −0.006).

In a study of aqSOA formation from OH initiated oxidation, Ervens et al. (2014) looked

at parameters controlling both wet aerosol and cloud droplet SOA production using a chem-

ical multiphase box model. Through these simulations, it was found that formation in cloud

droplets is better characterized by drop size distributions than by LWC; Ervens et al. (2014)

suggests that laboratory studies should further explore the sensitivity of aqSOA yields to

such parameters.

1.5 aqSOA Study Methods

Field campaigns, wet chemistry laboratory studies, models, and chamber studies are

among the different methods currently used to research aqSOA production pathways and

yields. Field campaigns, such as the Southern Oxidant and Aerosol Study (Sareen et al.,

2016), are advantageous in that they allow for ambient studies of aqSOA pathways; however,

they have difficulty isolating specific parameters of interest and are often limited in time and

location accessibility. Laboratory methods, such as bulk solution experiments and exper-

iments using vibrating orifice aerosol generators, are useful in suggesting reaction mecha-

nisms and quantifying some variables but often lack realistic atmospheric concentrations and

conditions. Models, while they have parametric control of variables, are prone to error and

need to be validated by other study methods. Chambers are another commonly used tool to

study aerosol formation and are helpful in filling the gaps from the other study methods due

to their ability to isolate certain variables and their ability to reproduce relevant atmospheric

conditions.

There are numerous environmental chambers currently in operation that are used to study

SOA formation in the gas phase (Ng et al., 2007) and smog chambers that study aqueous
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phase SOA only in aerosol water (Volkamer et al., 2009). The Experimental Multiphasic

Atmospheric Simulation Chamber (CESAM) (Wang et al., 2011) and the Cosmics Leaving

OUtdoor Droplets chamber (CLOUD) (Schnitzhofer et al., 2014) are two chambers currently

equipped to study cloud droplet aqSOA growth.

The CESAM simulation chamber is located in the Interuniversitary Laboratory of At-

mospheric Systems in France. The chamber design and purpose was initially described in

Wang et al. (2011). Since the initial chamber description, there have been several publi-

cations describing results obtained with use of the chamber. Bregonzio-Rozier et al. (2016)

used CESAM to study SOA production in cloud droplets from isoprene photooxidation. This

study found significantly larger SOA yields in the presence of clouds than under photooxi-

dation of isoprene during dry experiments. Giorio et al. (2017) used CESAM to study SOA

formation during cloud production from photooxidation of both isoprene and methacrolein.

This study found rapid SOA production in the presence of clouds, followed by slow aqSOA

evaporation once the cloud had dissipated.

MAPP is different from CLOUD and CESAM in material, size, and cloud production

approaches giving it a unique contribution to the field of research; Table 1.1 compares the

primary attributes of these chambers.
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Table 1.1: Comparison of cloud production chambers

Chamber Volume Wall Material Cloud Formation

CESAM
4.2 m3 vertically ori-

ented cylinder
Stainless steel

Quick expansion of

synthetic water and

air mixture addition of

water vapor

CLOUD
26 m3 vertically ori-

ented cylinder

Electropolished

stainless steel
Expansion

MAPP
1.2 m3 horizontally

oriented cylinder
FEP Teflon Adiabatic expansion

9



2. MAPP CHAMBER DETAILS

2.1 Design

The MAPP chamber is designed for indoor studies of aerosol growth in both the gas and

aqueous phases. The chamber has a unique three-layer, cylindrical design. Figure 2.1a shows

the chamber rendering design; the chamber consists of an outer vessel, a middle enclosure,

and an inner reaction chamber.

The outermost layer is a vacuum resilient, stainless steel vessel with an approximate

volume of 3.5 m3. The middle enclosure is a three-fold shell constructed of perforated plas-

tic, aluminum foil, and polytetrafluoroethylene (PTFE) gasket. The lightweight, perforated

plastic gives shape to the cylindrical middle layer, the aluminum foil helps to prevent UV

from escaping and degrading outer materials, and the PTFE gasket acts as a highly reflective

barrier increasing the light intensity inside the reaction chamber. The inner cylindrical reac-

tion chamber has an approximate volume of 1.2 m3 and is constructed of nearly transparent

fluorinated ethylene propylene (FEP) Teflon. The inner enclosure and reaction chamber, il-

luminated by a LED, can be seen in Figure 2.1b which was taken by a camera mounted on

the enclosure end sheet.

The reaction chamber is oriented horizontally and supported by a port on each end. Each

port rests in a bearing to allow for rotation. A sprocket is attached to one of the chamber

ports and chained to a motor to produce rotation of the reaction chamber along its longi-

tudinal axis. The motorized rotation of the chamber has a rate of approximately 7 RPM.

The rotation of the chamber is performed in order to assist in particle retention within the

chamber. Goldberg (1971) gives mathematical expressions and experimental evidence for

longer particle retention in a rotating cylindrical drum. The acting gravitational and rota-

tional forces on each particle provides a slow outward, orbital motion for the particles within

10



the chamber, aiding in their retention.

(a) Solid Works three layer design

(b) Camera image of inside the enclosure

Figure 2.1: MAPP Design
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2.2 Temperature Control

Temperature is controlled by circulating air through the space between the enclosure and

reaction chamber. Inside one end of the stainless-steel vessel is housed a heat exchange

box. Copper tubes, which are attached to an outside reservoir of ethylene glycol and water

mixture, are coiled inside of the box alongside a resistive heater. Two variable speed blowers

pull warm or cool air from the box and push it through ducts to either end of the enclosure.

The ethylene glycol/water mixture in the reservoir is cooled to approximately -16 oC by two

chillers and pumped through the copper tubing to decrease the temperature in the chamber

when needed. When warming is required, the temperature is increased by the resistive heater.

Several thermistors are located between the enclosure and reaction chamber to record the

temperature at different locations within the system. This system allows for temperature

control of the outer walls of the reaction chamber.

2.3 Air Flow

Compressed air is initially pushed through a series of particle filters and gas filter media

(activated carbon, Purafil Puracarb AM, and Purafil Chemisorbant) to inhibit contaminants

from entering the chamber. The relative humidity (RH) for each experiment is regulated by

controlling the amount of water vapor entering the chamber. Before entering the chamber, the

chamber inlet flow is pushed through a heated container of 18.2 Milli Q (M Ω cm at 25oC)

water. The amount of air bubbling through the water container is managed by a bypass

control valve to reach the prescribed RH set-point. The pressures inside the vessel and

reaction chamber are regulated by control valves within the airflow system. A simplified

diagram of the airflows to and from MAPP are shown in Figure 2.3. Polonium strips are

attached inside the enclosure air ports so that the air circulating around the outside of the

Teflon walls helps reduce static charge buildup.
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2.4 Photolysis

A Luxtel 300 W xenon-arc lamp is mounted on the chamber enclosure. The lamp is ori-

ented so as to radiate through a small hole in the enclosure end sheet and onto the reaction

chamber. The radiation spectrum within the chamber, produced by the xenon-arc lamp, is

measured using an Ocean Optics Flame Spectrometer. A fiber optic cable is attached to the

enclosure and runs to the outside of the vessel where it is then attached to the spectrome-

ter. The actinic flux is calculated from the cosine weighted irradiance measurement. The

calculated actinic flux in the chamber produced by the xenon-arc lamp is shown in Figure

2.2 along with that of the solar spectrum. The two spectra taken within the chamber show

two different glass filters placed over the xenon-arc lamp. Though the B270 filter resembles

the solar spectrum more closely, the pyrex filter has a higher magnitude near 300 nm. As

discussed in Section 1.2, the 300 nm through 400 nm wavelength range is important for the

production of OH from HONO. For the experiments in this work, the pyrex filter was used.

It should be noted that the spectra in the chamber were taken while two xenon-arc lamps

were being used. For the experiments in this work, only one xenon-arc lamp was functional.

The chamber spectra shown in Figure 2.2 are reduced by 50% of the actual spectra measured

in order to account for the loss of one xenon-arc lamp.
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Figure 2.2: Xenon-arc lamp spectrum
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2.5 Instrumentation

Aerosol seeds are injected into the chamber before each experiment and sampled through-

out the duration of the experiment. The injected seed aerosols are formed from solution by

an atomizer and dried through silica gel. The two seed aerosol types used are potassium

sulfate (PS) and ammonium sulfate (AS). The particles for injection are neutralized by soft

X-ray sources and dried further by a Nafion tube. A Differential Mobility Analyzer (DMA)

sizes the particles for injection. A monodispersed distribution of seed particles is injected

into one end of the reaction chamber through a port.

The particle mode is tracked before and after cloud formation. Samples are pulled from

a chamber port through stainless steel tubing and sized by the DMA. The sized particles are

detected by the Condensation Particle Counter (CPC). The DMA and CPC are operated as a

Scanning Mobility Particle Sizer (SMPS). The SMPS set up is shown in Figure 2.3.

Sampling of the seed particles by the SMPS occurs leading up to cloud formation and for

a time period after cloud dissipation. The sampling process is paused during cloud process-

ing cycles due to low pressures within the chamber during cloud formation. For each sample,

the DMA scan lasts approximately 6 minutes. Data gathered from the SMPS is initially re-

trieved as a number concentration distribution. In order to perform necessary calculations

for aqSOA yields, integrated volume concentration is needed. The steps for converting from

the retrieved number distribution to volume distribution are shown in equations 2.1 through

2.3.

dV
d logDp

=
dN

d logDp

× π

6
×D3

p (2.1)

Vi =
dV

d logDp

× log

(
Di+1

Di

)
(2.2)

Vtotal = ΣVi (2.3)
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Figure 2.4 shows the pre- and post-cloud sampled particle measurements for both number

and the corresponding calculated volume distribution for experiment 03091. In this figure,

a significant change in number and volume concentration distributions can be seen between

the pre- and post-cloud measurements.

(a) Number

(b) Volume

Figure 2.4: Sample number and volume distributions showing before and after cloud sampled
particle modes on March 9, 2018
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Information on droplet size during cloud formation is gathered using a Model 3321 Aero-

dynamic Particle Sizer (APS). A time-of-flight particle sizing technology is used by the APS

to measure the aerodynamic diameter of the droplets. The APS is situated inside of the

stainless-steel vacuum vessel close to the sample port so that the length of the line leading

to the APS is minimized to avoid droplet loss. The APS has a sample intake flow of about 1

liter per minute and samples continuously throughout the cloud cycle, recording 20-second

averages.

2.6 Particle Retention

The loss rate of particles was measured by injecting two particle modes into the cham-

ber and sampling the particles periodically during the experiment. The particles were held

under normal experimental conditions (i.e., air circulating with blowers, chamber rotating,

temperature controlled, xenon-arc lamp on). The two particle modes were sampled approxi-

mately every 30 minutes throughout a nearly 7 hour period. The peak number concentration

densities for each mode during the particle retention experiment are shown in Figures 2.5a

and 2.5b which denote the change in peak number concentration over the duration of the

experiment. The lifetimes of a 0.05 µm and 0.15 µm particle mode were found to be 5.2

hours and 10.4 hours, respectively.

McMurry & Rader (1985) studied the loss rates for particles of different diameters and

the possible influences on behavior. For particles smaller than 0.05 µm in diameter, the loss

rate is heavily influenced by Brownian diffusion, the process by which fast-moving particles

within a fluid cause the movement of other particles. Particles whose diameter is between

0.05 µm and 1.0 µm have a loss rate affected by electrostatic deposition, and larger particles

with diameters greater than 1.0 µm are lost primarily due to gravitational sedimentation.

Here, the lifetime found for a 0.05 µm injected particle mode was much less than a 0.15 µm

injected mode. The more rapid loss rate of the smaller diameter mode is due to the effect that
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Brownian motion has on the retention rate of the smaller diameter particles. The lifetime of

the 0.15 µm injected mode is much higher than that of the smaller diameter mode and falls

within the range where electrostatic deposition should be dominant. The longer lifetime of

the 0.15 µm injected mode indicates that their is little, if any, electrostatic charge buildup on

the walls of the FEP Teflon reaction chamber.

(a) 0.05 µm mode injection

(b) 0.15 µm mode injection

Figure 2.5: Loss rate graphs of two injected particle modes
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2.7 Cloud Formation

Within the reaction chamber, cloud droplets are formed through adiabatic expansion. A

predetermined updraft velocity, set in the control program, determines the rate of change

for the chamber pressure and temperature during a cloud cycle to realistically mimic an air

parcel rising in the atmosphere. The temperature and pressure control during an experiment

on March 9, 2018, with a set updraft velocity of 2.50 m s−1 and cloud depth of 500 meters

is shown in Figure 2.6. The two lines on each of the graphs represent the program setpoint

(solid line) and the measured variable (dashed line). A rotary vane vacuum pump is used to

extract air, decreasing the absolute pressure within the chamber as shown in Figure 2.6a. For

Figure 2.6b, the measured temperature change is an average of four temperature measure-

ments taken at different locations on the inside of the enclosure.
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(a) Pressure profile

(b) Temperature profile

Figure 2.6: The measured and set point temperature and pressure profiles during a cloud
cycle for experiment 03091
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During the rise of an air parcel, the temperature change first follows the dry adiabatic

lapse rate reaching the lifting condensation level (LCL). Cloud formation begins within the

chamber when the parcel has reached the LCL. The temperature rate of change shifts at the

LCL so that the parcel continues to ascend at the moist adiabatic lapse rate. This change

in lapse rate can be seen experimentally in Figure 2.6b (around 17.5 oC) as the temperature

slope decreases during the parcels accent.

A 540 nm sheet laser is mounted on the far end of the enclosure and pointed towards a

camera on the opposite side of the chamber. During an experiment, the sheet laser illuminates

the cloud droplets formed and the camera allows for sight confirmation of water droplets

during predicted times within the cloud cycle. Figure 2.7 shows two pictures taken inside

the reaction chamber during an experiment. The forward scattering of green light by droplets

is seen only in Figure 2.7b.
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(a) Laser on before expected cloud formation

(b) laser on during expected cloud formation

Figure 2.7: Images taken inside the reaction chamber during an experiment
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3. METHODS

All experiments were conducted with the MAPP reaction chamber. The chamber and

enclosure were flushed overnight and before each experiment with air purified through the

gas filter media and particle filters.

Ammonia, HONO, and C2H2 were the gas phase constituents used in each of the experi-

ments. These gas phase species were added to the chamber through the chamber inlet flow.

For the C2H2 injection, a pulse of gaseous C2H2 was added approximately one hour before

cloud formation. The HONO injection was started at the same time as the C2H2 injection and

was added continuously through the gas phase period and during cloud production. As men-

tioned in Section 1.3, the presence of ammonia during glyoxal oxidation in cloud droplets

has been found to increase aqSOA yield. For this reason, ammonia was added to the cham-

ber approximately twenty minutes before the cloud formation begins. The experimental time

line for injections and sampling is depicted in Figure 3.1. In the figure, NH4OH represents

the injection of ammonium hydroxide.

Atomic absorption C2H2 (Brazos Valley Welding, 2.6 grade) was added into the chamber

from a compressed cylinder. The compressed cylinder was connected to the chamber inlet

flow line with Teflon tubing. The amount of injected C2H2 was monitored with a 100 SCCM

Alicat Scientific mass flow controller. The mass flow controller was programmed to account

for C2H2 as the measured gaseous flow.

Using a syringe, 1.5 µ L of ammonium hydroxide (EMD, 28%) was injected into a glass

tube. The tube was heated to produce gaseous ammonia. A 2 liter per minute flow rate was

allowed through the tube to carry the ammonia from the glass tube and into the chamber inlet

flow.

HONO was produced by pumping a sodium nitrite (Alfa Aesar, 99.999%) solution drop-
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wise into sulfuric acid (BDH Chemicals, 0.05M). A 250 mL Pyrex round bottom flask with

three top ports houses the reaction between the sulfuric acid and sodium nitrite solution. The

flask was filled with approximately 150 mL of sulfuric acid. The sodium nitrite solution was

pumped slowly from a syringe through one of the ports in the round bottom flask and into the

sulfuric acid solution. The addition rate of the sodium nitrite solution was controlled using

a Cole-Parmer programmable syringe pump. The other two ports on the round bottom flask

were used to allow air to flow over the reacting solutions and into the chamber. The sulfuric

acid solution was kept chilled using an ice bath to limit the amount of gaseous sulfuric acid

entering the chamber.

Figure 3.1: Time line for a typical experimental procedure

As discussed in Section 2.5, a seed aerosol mode was injected before each cloud cycle.

The seed particles acted as cloud condensation nuclei for cloud droplet activation and pro-

vided trackable modes for aqSOA growth. PS (VWR) and AS (Mallinchrodt Chemicals)
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were the two seed aerosol types used in the experiments.

PS was used for the majority of the experiments due to its high deliquescent relative

humidity (DRH) of 96% (Freney et al., 2009). By using a seed aerosol with a relatively

high DRH, the particles should have begun to deliquesce only immediately before cloud

formation, inhibiting early wet aerosol aqSOA growth. AS is a commonly used seed aerosol

type in many similar studies, but due to its lower DRH of 81.7% (Brooks et al., 2002), it was

not the main seed aerosol used in this study.

Before the start of each cloud cycle, the prescribed updraft velocity and cloud depth were

set within the control program. For each of the experiments, the prescribed updraft velocity

was set to 2.5 m s−1, and the desired cloud depth was set to 500 m. The initial temperature

of the chamber at the beginning of the cloud cycle ranged from 22 oC to 25 oC, and the initial

RH ranged from 66% to 78%.
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4. DATA ANALYSIS

4.1 APS Data

The APS data taken during experiment 04161 is shown in Figure 4.1, along with the pres-

sure and temperature set point profiles during the cloud processing cycle. The cloud droplets

appear immediately after the set point temperature profile shifts to the moist adiabatic lapse

rate. The APS data shows the duration of the cloud during an experiment based on the mea-

surement droplets over time. The droplets, in Figure 4.1, are present in the chamber for

approximately 6.7 minutes.

Figure 4.1: APS droplet diameter data from experiment 04161 is shown in the shaded contour
plot. The pressure and temperature set points during the cloud formation are shown by the
blue and red dotted lines overlaid on the contour plot.

A panel of APS data is shown for each experiment in Figures 4.2a though 4.2q. The

cloud droplet size distribution during each of the experiments does show a slight variation in

droplet size and distribution between each experiment. The cloud duration for each experi-
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ment was determined by the time length that droplet were present, provided by the APS data;

each cloud duration is listed in Table 3.1. The average cloud duration for all experiments was

found be 5.8 minutes. The peak droplet diameter that each non-blank experiment reached

ranged from approximately 8 µm to 10 µm. It should be noted that the blank areas within

the APS contour plots in some of the figures within the panel are time periods of missed data

collection by the APS during the cloud cycle.

(a) Exp.03151 (b) Exp.03141 (c) Exp.03071

(d) Exp. 04201 (e) Exp. 03081 (f) Exp.03091

(g) Exp. 04191 (h) Exp.03061 (i) Exp.03062

Figure 4.2: APS cloud diameter data for each experiment
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(j) Exp.04121 (k) Exp. 04131 (l) Exp. 04181

(m) Exp. 04171 (n) Exp. 03072 (o) Exp.03221

(p) Exp.03261 (q) Exp.03231
Figure 4.2: Continued

4.2 Blank Experiments

Experiments 03151, 03141, and 03071, shown in Table 3.1, were performed with some

or all of the gas phase precursors absent from the experiments. These blank experiments

allowed for the importance of each precursor added into the chamber to be tested. Though

some of the initial gaseous precursors were missing, the xenon-arc lamp was still on at full

intensity during all blank experiments.

Experiment 03151 was performed with all of the gas phase precursors absent from the

experiment. Only the seed aerosol was injected before cloud formation. The small change in
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particle volume (0.26 µm3 cm−3) may have been due to some existing contamination within

the chamber. This small change was much lower than all other experiments performed; the

small amounts of growth due to contamination was relatively insignificant compared to the

change in volume of non-blank experiments.

Experiment 03141 was performed without the HONO injection, the main source of OH ,

but included a C2H2 injection. Experiment 03071 was performed without the C2H2 injection

but included the HONO injection during the entire experiment. Experiment 03071 had a

change in particle volume of 1.1 µm3 cm−3 and 03141 had a change in particle volume of

0.66 µm3 cm−3. Both experiments showed very small volume changes during the cloud

cycle. The combination of these experiments has allowed for greater confidence that growth

seen in non-blank experiments was due to the expected oxidation reaction of C2H2 by OH .

4.3 Ammonia Addition

Experiments 03061 and 03062 had similar initial conditions as shown in Table 3.1. The

main difference between these two experiments was the addition of ammonium hydroxide.

In experiment 03061, the introduction of ammonium hydroxide before the cloud processing

cycle was absent. The aqSOA formation results between the two experiments were consid-

erably different. The pre- and post-cloud particle volume change found after the cloud pro-

cessing cycle was much greater in experiment 03062 than 03061. The 03062 had a change

in particle volume of 28 µm3 cm−3 and a yield of 8.2% while 03061 only had a change in

particle volume of 3.4 µm3 cm−3 and an SOA yield of 1.2%.

This finding was consistent with other aqSOA production measurements. Ortiz-Montalvo

et al. (2014) studied the particle mass to droplet organic mass ratio after droplet evaporation.

The study by Ortiz-Montalvo et al. (2014) found a significant increase of aqSOA retention

in the presence of ammonium and that aqSOA retention after cloud droplet evaporation most

nearly matched that of pure ammonium oxalate.
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Chamber aerosol samples after cloud evaporation reveal slow particle shrinkage when

samples continue for a period after cloud formation. This evaporation of particles has been

observed in other aqSOA studies. Both Giorio et al. (2017) and Bregonzio-Rozier et al.

(2016) attributed the slow evaporative losses to partitioning of the metastable aqSOA to the

chamber wall. Shrinkage of the aqSOA particles can be calculated by equation 4.1.

Growth Rate =
∆peak particle diameter

∆time
(4.1)

A solution of ammonium oxalate monohydrate (Alfa Aesar, 99.0-101.0%) was created to

inject ammonium oxalate particles into the chamber. The solution was atomized, and the par-

ticles were sized by the DMA and injected into the chamber. The ammonium oxalate particle

mode was held in the chamber and continuously sampled by the SMPS system for approxi-

mately an hour after injection. A graph of the number distribution for the ammonium oxalate

mode over the sampling period is shown in Figure 4.3a. The ammonium oxalate particles

show a considerable evaporation rate similar to that observed during after cloud sampling of

experiments as shown in Figure 4.3. The calculated growth rates of the ammonium oxalate

mode and experiment 04121 are −38 nm hr−1 and −42 nm hr−1 respectively.
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(a) Ammonium Oxalate

(b) Exp. 04131

Figure 4.3: After cloud sampling of evaporation rate

4.4 SOA Yield

Table 3.1 shows the change in organic mass due to aqSOA growth for each experiment;

the organic mass change is calculated using the density of ammonium oxalate (1.58 g cm−3).

The SOA yield is calculated using the organic mass change and the mass of reacted C2H2.

The formula for SOA yield is shown in Equation 4.2.

SOA yield % = 100× aqSOA mass
mass of reacted C2H2

(4.2)

To determine the mass of reacted C2H2 during the gas phase period of each experiment,

a series of gas phase reactions are taken into consideration. Table 4.1 shows the gas phase

reactions expected to be taking place within the chamber. The corresponding rate constants
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or photolysis rates of each reaction are also listed within Table 4.1; these values are taken

from previously published studies as cited within the table.

Table 4.1: Gas Phase reactions

Reaction Reaction rate Citation

HONO +hv→ OH + NO
JHONO=8.4 × 10−4

(s−1)
Alicke et al. (2003)

C2H2 + OH → CHOCHO + OH
kC2H2=1.03 × 10−12

(cm3molecule−1s−1)
Galano et al. (2008)

CHOCHO+ OH↔ OCHCO +

H2O

kgly = 9.15 × 10−12

(cm3molecule−1s−1)
Feierabend et al. (2008)

CHOCHO +hv Jgly = 1× 10−4 (s−1) Tadić et al. (2006)
*reactions at temperatures 296 K

*CHOCHO is glyoxal

Rate equations are derived for each of the reactions listed in Table 4.1. The rate of change

for C2H2 is shown in Equation 4.3.

d[C2H2]

dt
= −[C2H2][OH ]kC2H2 (4.3)

In Equation 4.4, the total rate of change for glyoxal (CHOCHO) is shown. The multiplier

A represents the branching ratio of glyoxal production from the oxidation of C2H2. The
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branching ratio used within these calculations is 0.7, as found in Hatakeyama et al. (1986).

d[CHOCHO]

dt
= A[C2H2][OH ]kC2H2 − [CHOCHO][OH ]kgly−

[CHOCHO]Jgly

(4.4)

The rate of change of HONO is shown in Equation 4.5. In the equation, the constant HONO

injection source throughout the entire experiment, [HONO]inj , is considered and depends

on the drop wise addition rate used for the sodium nitrite solution.

d[HONO]

dt
= [HONO]inj − [HONO]JHONO (4.5)

In Equation 4.6 the rate change of OH is described. The multiplier B within the equation

represents the OH yield from the oxidation of C2H2, which is 0.71 taken from Lockhart et

al. (2013).

d[OH ]

dt
= [HONO]JHONO +B[C2H2][OH ]kC2H2−

[CHOCHO][OH ]kgly − [C2H2][OH ]kC2H2

(4.6)

Figure 4.4 shows an example of the chemical profiles for C2H2, HONO, glyoxal, and

OH calculated from the above rate equations for Experiment 04191. These profiles are

calculated using finite differences with a time step of 0.001 seconds. The final amount of

C2H2 reacted after the gas phase period is found by solving for the difference in initial and

final C2H2 concentrations.
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(a) C2H2 (b) Glyoxal

(c) HONO (d) OH

Figure 4.4: Experiment 04191 chemical profile, calculated during the gas phase period

At the end of the gas phase reaction period, the available gases may undergo aqueous

phase reactions during the cloud processing cycle. The predicted aqueous phase reactions

within the cloud droplets are listed in Table 4.2. These predicted reactions are taken from

previously published studies as cited within the table.
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Table 4.2: Aqueous Phase reactions

Reaction Reaction rate Citation

CHOCHO + OH→ C2H2O3 + products 1.1× 109 M−1s−1 Tan et al. 2009

C2H2O3 + OH → C2H2O4 + products 2.6 ×109 M−1s−1
Carlton et al.

2007
*C2H2O3 is glyoxylic acid

*C2H2O4 is oxalic acid

The calculated aqSOA yields are plotted against the initial C2H2 injected concentration

in Figure 4.5. The plot shows both the AS and PS experiments with each set of seed experi-

ments fitted to a linear function, as shown by the dotted lines.

Figure 4.5: Aqueous SOA yield as a function of injected C2H2 concentrations. PS seed
experiments (red circles) and AS seed experiments (blue squares).

The PS seed experiments show an increasing aqSOA yield with increasing initial C2H2

37



concentrations. The correlation factor for PS seed experiments is r2 = 0.71. The AS seed ex-

periments also show an increasing aqSOA yield with increasing initial C2H2 concentrations.

The correlation factor for AS seed experiments is r2 = 0.94.

The AS experiments resulted in much lower yields than the PS experiments. The lower

AS aqSOA yield is consistent with the findings from Volkamer et al. (2009). Volkamer et al.

(2009) compared several aqSOA yield results in aerosol water after C2H2 oxidation by OH

using different types of seed aerosol, including AS seeds. They observed that AS had the

lowest aqSOA yield of all the seed types.
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5. SUMMARY AND CONCLUSIONS

5.1 Summary

The contribution of aqSOA formation to the overall SOA concentration in the atmosphere

has been a topic of significant interest over the last few decades. A variety of studies have

been conducted to find the reaction pathways, chemical composition, and concentration of

aqSOA. Using chambers as a tool to study aqSOA is advantageous due to their ability to

mimic atmospheric conditions and allow for control of specific variables. However, few

chambers currently exist that are used to study aqSOA during cloud formation.

In response to the under-utilization of chambers in cloud aqSOA studies, the MAPP

chamber was designed and built at Texas A&M University, and used perform studies that

help contribute to the understanding of aqSOA production. MAPP has a multiphase func-

tionality that allows for photooxidation of VOCs in the gas phase and produces cloud droplets

for aqueous phase reactions. Using the MAPP chamber, cloud processing cycle experiments

have been conducted to study aqSOA yields from oxidation of C2H2, an anthropologically

produced organic compound.

The oxidation reaction of C2H2 by OH has been found to produce glyoxal as its only sig-

nificant product, and can contribute substantially to the overall glyoxal production in a given

area, especially urban environments. Glyoxal, due to its high Henry’s law constant, parti-

tions effectively into the aqueous phase and plays an important role in atmospheric aqSOA

formation. A series of experiments have been performed in this work in order to quantify the

aqSOA yield in cloud droplets from the oxidation of C2H2 by OH .

For each experiment, precursor gases and a seed particle mode were injected and allotted

a period of time for gas phase reactions followed by a cloud processing cycle. Sampling

of the particle mode took place continuously leading up to the cloud processing cycle, was
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paused during the cycle, and continued immediately following the cloud cycle. During the

cloud processing cycle, the APS ran continuously to gather data on cloud droplet diameter

distribution.

The pre- and post-cloud particle number distribution was measured by the SMPS, and

the corresponding change in volume distribution was calculated. The organic mass addition

during a cloud cycle was found from the change in volume using the density of ammo-

nium oxalate. The amount of C2H2 reacted during the experiment was calculated based on

expected reactions. The aqSOA yield of each experiment was found from the change in

organic mass during the cloud cycle and the mass reacted C2H2 during the gas phase.

5.2 Conclusions

The production of glyoxal from the oxidation of C2H2 by OH can lead to aqSOA forma-

tion in cloud droplets. Significant aqSOA growth during cloud processing cycles was found

for each non-blank experiment performed within the MAPP chamber.

The addition of ammonia during the gas phase reaction period was found to have a signif-

icant impact on the formation of aqSOA. The SOA yield increased drastically in experiments

with ammonium hydroxide injections. The oxidation of glyoxal within cloud droplets is pre-

dicted to form oxalic acid as its primary product. Oxalic acid is not expected to remain in

the particle phase for an extended length of time due to its vapor pressure. In the presence

of ammonia during the oxidation of glyoxal within cloud droplets, ammonium oxalate is

predicted to form from oxalic acid. Ammonium oxalate is less volatile than oxalic acid and

therefor more likely to remain in the particle phase, increasing aqSOA production.

A variety of initial C2H2 concentrations were used in the experiments. The blank experi-

ments, with some of the gas phase precursors missing, showed little aqSOA growth. The lack

of growth during blank experiments gives confidence that the expected gas phase reactions

are responsible for the aqSOA growth seen in non-blank experiments. The non-blank exper-
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iments performed with higher initial C2H2 concentrations experienced higher aqSOA yields

during cloud formation. A strong positive linear correlation between initial C2H2 concentra-

tion and aqSOA yield was found for both AS (r2 = 0.94) and PS (r2 = 0.71) experiments.

The difference in seed aerosol type has a considerable impact on aqSOA yield. Three AS

seed particle experiments were performed using 10 ppm, 14 ppm, and 23 ppm as the initial

C2H2 concentrations with yields of 0.12%, 1.5%, and 2.9%, respectively. The correspond-

ing PS seed experiments with initial C2H2 concentrations of 10 ppm, 14 ppm, and 21 ppm

experienced yields of 2.1%, 11%, and 14%, respectively. The experiments that used PS as

the seed aerosol experienced much higher aqSOA yields than the experiments that used AS.

The considerable aqSOA differences between PS and AS seed experiments reveals a possi-

ble large seed aerosol effect on aqSOA yields. The effect that seed aerosol has on aqSOA

production should be further studied.
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