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ABSTRACT

Support Vector Machines are a class of machine learning algorithms with applications ranging

from classification to regression and categorization. With the exponential increase in edge comput-

ing devices, there is a growing demand to adapt SVM-based techniques for edge analytics. How-

ever, training SVM is computationally challenging due to a quadratic complexity in the number of

training samples. Consequently, SVM training is performed off-line on back-end servers, which

possess the computing power to train SVM models. Creating efficient frameworks for SVM-based

edge analytics requires a scalable, distributed training algorithm. Alongside, the computational ca-

pabilities of edge nodes must be augmented through energy-efficient hardware accelerators. In this

research, we present a scalable FPGA-based accelerator for a distributed SVM training algorithm.

The accelerator exploits both data and task parallelism to create efficient, pipelined implementa-

tions of computing modules in hardware. We evaluate the training performance of our proposed

accelerator for five SVM benchmarks, and compare with a high performance CPU cluster and an

embedded SoC server deploying equal number of computing units. The proposed FPGA-based

accelerator performs SVM training up to 25x and 1.75x faster than the CPU and SoC counter-

part respectively. Alongside, the accelerator provides 9x and 6x reduction in energy consumption,

relative to the SoC and CPU clusters respectively.
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1. INTRODUCTION AND LITERATURE REVIEW

Support Vector Machine (SVM) is a type of supervised machine learning technique, which

relies on the geometrical properties of the input data to classify it into various disjoint classes.

SVM-based models have been successfully deployed for a variety of classification, regression

and prediction tasks in numerous applications such as recognizing objects, categorizing activities,

understanding semantics, and interpreting content from unstructured data [1][2][3][4][5][6]. SVM

consists of two stages; a training stage which creates a classifier/ regression model based on a given

input dataset, and a prediction stage, which refers to classifying or predicting on an unseen sample.

The focus of this work is accelerating the training stage.

Given the explosion of powerful smart devices and the popularity of data-driven analytics, there

has been increasing interest in offloading some or all of the server’s tasks onto edge devices. These

edge computing units are more efficient in managing the vast amounts of data being generated,

help reduce latency for critical applications and lower dependencies on back-end systems. Con-

sequently, there is an imminent need to develop robust frameworks that would enable edge-layer

devices to train models without the interplay of back-end systems. Such frameworks should lever-

age the availability of multiple edge devices connected over a distributed network. Since edge

devices lack the compute capabilities of a high performance server, hardware accelerators are an

efficient solution to enable capacity augmentation, with a potential to reduce energy costs.

Training an SVM model is computationally expensive as runtime scales quadratically with

the number of input samples. Due to the sequential nature of popular SVM solvers, their direct

applicability for classifying large data sets is limited, as they scale poorly with growing sample

size. Hence, it is imperative to devise efficient algorithms and accelerators to train SVM models

in computing devices. For this, the design must meet strict power constraints, while providing

efficient implementations in terms of training time. In recent years, there has been a growing

trend to utilize Field Programmable Gate Arrays (FPGA) as dedicated co-processors to accelerate

computations [7] [8].
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There has been limited research towards developing FPGA-based SVM accelerators in litera-

ture [9] [10]. The authors in [11] designed an FPGA-based co-processor for the Sequential Mini-

mal Optimization (SMO) algorithm. As with any sequential solver, its scalability to large datasets

is limited. Work has also been carried out to devise novel training algorithms in [12] and [13], with

the idea that the algorithms themselves be amenable for designing their respective FPGA-based

hardware implementations. However, these algorithms do not provide a distributed framework for

multi- FPGA implementations. Consequently, they are not suitable for edge analytics frameworks.

In light of the above, authors in [14] propose QRSVM, a distributed framework for training

SVM classifiers. The algorithm is based on applying QR decomposition on the approximated

kernel matrix. QRSVM trains a single SVM classifier in parallel over multiple nodes, with negli-

gible communication overhead. The proposed work builds upon the QRSVM algorithm to offer a

scalable, distributed solution for SVM training.

This research makes the following contributions:

1. We propose an FGPA-based accelerator for distributed SVM training. To the best of our

knowledge, this is the first implementation of a distributed SVM training algorithm on FP-

GAs.

2. We evaluate the training performance of our proposed accelerator for five SVM benchmarks,

and compare with implementations on two other platforms, a high performance CPU cluster

and an SoC cluster. The proposed accelerator performs up to 1.81x and 24x faster than the

CPU and SoC platforms respectively. Additionally, we achieve a 6.4x and 8.4x reduction in

energy consumption, compared to the CPU and SoC platforms respectively .

3. We demonstrate the scalability of the proposed accelerator across a varying number of

cores. The proposed design scales linearly with increasing number of cores. Our accelerator

achieves the lowest time per training iteration amongst the platforms.

The remainder of this thesis is organized as follows. Chapter 2 presents an overview of non-linear

SVM formulation and reviews the distributed QRSVM framework proposed in [14]. In Chapter

2



3, we design an FPGA-based hardware accelerator for distributed QRSVM training. Chapter 4

describes the workflow to convert hardware designs into FPGA logic. We perform experiments

and evaluate the performance of our FPGA-based implementation of the algorithm in Chapter 5.

Finally we conclude in Chapter 6.
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2. PRELIMINARIES

2.1 Non Linear SVM

For most real-world applications, the input data points aren’t directly separable in the input

space. Instead of learning a linear classifier, we learn non-linear or kernel SVM classifier on the

dataset. The original, non-separable data can be separated by transforming the data into a higher

dimensional space. In this space, the SVM hyperplane can easily learn a classifier boundary. Figure

2.1 shows such a mapping from the input space to higher dimensional space.

Figure 2.1: Mapping input data to higher dimensional space

Using a function φ, the input training sample x is transformed to a higher dimensional space.

Often, it isn’t possible (or necessary) to know φ(x) explicitly; instead, we require some mea-

sure of "distance" between two samples x and y. The inner product in the transformed space,

κ() = 〈φ(x), φ(y)〉 provides a measure of distance. For certain spaces, we can compute κ() with-

out knowing φ. The inner product can be computed quickly, avoiding any explicit coordinate

calculation using φ(). Such an approach is referred to as the kernel trick. Popular kernels are

the sigmoid kernel, polynomial kernel and the Gaussian Radial Basis function (RBF) kernel. For

linear SVM, κ() is the inner product in the original input space.
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For the classification task, we are provided with a set of input training samples, each of whom is

associated with a class label.The training dataset is denoted as D = {(xi, yi), i = 1, ...., n} where

xi is the ith data sample, and yi ∈ {−1, 1} is the corresponding class label. The training dataset

size is n samples, with each sample being a d-dimensional vector.

Equation 2.1 outlines the optimization problem formulated for Kernel SVM, which avoids the

explicit formulation of φ [14].

min
α

1

2
αTZα+ eTα (2.1)

subject to L ≤ αi ≤ U

Z = (G +D) ∈ Rn×n is a dense, positive symmetric definite matrix. Here, G = {yiyjκ(xi, xj)}

is derived from the kernel matrix K = {κ(xi, xj),∀i, j = 1...n}, and D is a diagonal matrix.

L and U are the bounds imposed on each Lagrangian multiplier (αi). αi > 0 indicates that the

corresponding point is a support vector. For `2 − loss SVM, D = (1/2C)In, L = 0 and U = ∞.

The parameter C imposes a penalty for each incorrectly classified sample, and therefore controls

the misclassification that can be tolerated by the SVM optimization.

It can be seen that the matrix Z ∈ Rn×n grows quadratically with the training samples. For

large datasets, working with Z in its native form is computationally expensive. Consequently,

efforts are made to obtain a compressed representation of the kernel matrix. Using low-rank opti-

mization methods, one can approximate K to a low rank; i.e. K ≈ AAT , with A ∈ Rn×k (k � n).

Low-rank approximation has the added advantage of making the kernel matrix separable, similar

to the case of linear SVM where K = XXT , X = {xi ∈ Rd, i = 1...n}.

2.2 QRSVM - A Distributed SVM framework

Authors in [14] have proposed QRSVM, which is a scalable, distributed framework for training

SVM by applying the QR decomposition method to the kernel matrix. The framework demon-

strates a linear runtime dependency on the input samples, and also shows a high scaling efficiency

as the number of cores are increased.

5



2.2.1 Formulation

The QRSVM framework [14] decomposes the approximated kernel matrix into an orthogonal

factorQ, and an upper triangular factorR. In light of the above, Equation 2.1 reformulates to [14]:

min
α̂

1

2
α̂T
(
RRT +

1

2C
In

)
α̂ + (ê)T α̂ (2.2)

subject to −Qα̂ ≤ 0n

Here, α̂ = QTα, ê = QT e.

The Hessian Z is composed of the following two diagonal blocks:

• a k × k submatrix, (RRT )k + (1/2C)Ik

• a diagonal term (1/2C)In−k.

These blocks can be solved independently across multiple computing nodes, thereby parallelizing

the SVM training.

2.3 Distributed QRSVM Framework

Distributing the SVM training can be interpreted in two ways, based on the underlying appli-

cation:

1. One interpretation would be to deploy multiple worker nodes to solve a single, large SVM

training problem. In this scenario, we assume that the SVM training is initially present at

a single node. The parallelization is achieved by partitioning the dataset into smaller sub-

sets, then distributing the subsets among the working nodes.We then formulate independent

sub-problems for these subsets, and subsequently solve them locally with intermittent syn-

chronization.

2. A second interpretation, which is particularly relevant for edge computing scenarios, per-

tains to a multi-device environment. Multiple devices, connected with each other over some

6



network, gather data independently. The objective here is to train an overall SVM classifier,

combining the data contained in all edge devices.

Each of the above scenarios present a slightly different challenge for the SVM algorithm. In

the first scenario, scalability and load balance is of utmost significance. This stems from the

need to engage maximum possible nodes without losing out on efficiency. In the second scenario,

each devices would like to operate on its local data, minimizing the transmission of data over the

network. Distributed QRSVM framework [14] aims to provide fast, scalable, memory-efficient

and communication-efficient approach to tackle the above scenarios.

As discussed in Section 2.2, QRSVM framework motivates towards distributing the SVM training

by solving the sub-blocks of the Hessian Z in parallel. To create an end to end distributed QRSVM

framework, authors in [14] devised the following two stages: Distributed QR Decomposition and

Parallel Dual Ascent. The following sections examine these stages in greater detail.

2.3.1 Distributed QR Decomposition

The Q and R factors of the entire training dataset can be calculated by combining the Q and R

factors of the partitioned training dataset. Authors in [14] show that

Q = diag(Q1, Q2, ..Qi.., Qp)×Qg (2.3)

and

R = Rg (2.4)

where, [R1
T , .., Rp

T ]T = QgRg.

where Âi = QiRi. The authors also ensure that within each computing device, k � n
p

=⇒ p�
n
k

.

Q, Q′is and Qg are orthogonal and R, Ri’s and Rg are upper triangular matrices. The House-

holder matrix are stored as a set of Householder reflectors, denoted as {q}. Algorithm 1 [14]

explains the distributed QR decomposition process in pseudo-code.

7



Algorithm 1 Distributed QR decomposition of Â

1: Â← [Â1; Â2; · · · Âp] . Partition Dataset among p cores
2: for core i do
3: Âi → {qi}, Ri . In parallel across all nodes
4: (Rgather)pk×k ← [R1;R2; · · ·Rp] . Master node
5: end for
6: Rgather → {qg}, Rg . Master node

2.3.2 Parallel Dual Ascent

Authors in [14] formulate the parallel version of the Dual Ascent method for the distributed

QRSVM framework as follows.

Step 1: At compute node i,

α̂i
t+1 = F−1i (−β̂i

t
+ êi) (2.5)

where, β̂t = QTβt and

Fi
−1 =


F1
−1 if i = 1

−2C if i = 2..p

Here,

F = −
(
RgRg

T +
1

2C
× In

)
is block-partitioned as F = F1⊕F2⊕ ...⊕Fp. Here,⊕ is an operator that combines the sub-blocks

to generate the entire diagonal matrix.

Step 2: At node i,

β̂i
t+1

= β̂i
t
+ η?(−α̂it+1) (2.6)

Here, the optimal step size η? defined in [14] is used for faster convergence.

These iterations continue until the dual error (‖β̂i
t+1
− β̂i

t
‖1) reduces below a predefined threshold.

Algorithm 2 [14] outlines the Dual Ascent stage through pseudocode.

Figure 2.2 describes the process flow for Distributed QRSVM. The framework can be summa-
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Algorithm 2 Parallel Dual Ascent
1: for core i do . Repeat until convergence
2: Update α̂i

t+1 . In parallel
3: Update β̂i

t+1
. In parallel

4: Compute βi ← Qβ̂
5: Compute βi ← max{0, βi} . In parallel
6: Compute β̂i ← QTβ

7: Compute error ||β̂i
t+1
− β̂i

t
||1

8: end for

rized into following stages:

Figure 2.2: Process flow for Distributed QRSVM

9



• Initialization: To initiate the computation, we use an approximation technique to compute

[15] to compute a low-rank approximation A of the kernel matrix. Subsequently, we dis-

tribute A into p equal parts, with each partition associated with a different core. Finally,

Âi = diag(y)i × Ai is used as the training dataset.

• Distributed QR Decomposition: The various steps within this stage are given in Algorithm 1.

The local QR decomposition on partitioned data Âi produces a set of Householder reflectors

{qi}, and an upper triangular matrix Ri. The first k elements of each R′is are then gathered

at the master node. The resulting matrix (Rgather) at the master is further decomposed into

qg and Rg.

• Parallel Dual Ascent: As formulated in Algorithm 2, the parallel dual ascent steps (Equation

2.5 and Equation 2.6) are performed at each core i. To impose non-negativity constraint

on the dual variable β, β̂ → β conversion (Algorithm ??) is performed. Upon zeroing

the negative entries (Step 7, Algorithm 2), β → β̂ (Algorithm ??) is re-transformed before

moving to next iteration. The iterations continue until convergence.
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3. ACCELERATOR DESIGN

In this chapter, we discuss the design of the proposed FPGA-based accelerator. To motivate

a design strategy, we categorize all operations undertaken as part of QRSVM training into two

categories: (1) Computation, which refers to all operations of high arithmetic intensity, such as

matrix multiplication and vector addition among others; and (2) Communication, which consist of

all operations involving the movement of data among the participating nodes. The authors in [14]

argue that QRSVM is a communication-efficient algorithm i.e. the time required for inter-node

communication is significantly lesser than per-node computation.

Table 3.1: Communication and Computation Complexity

QRSVM Stage Computation Communication
Distributed QR Decomposition O

(
nk2

p

)
O(k2)

Parallel Dual Ascent O
(
nk
p

)
O(k)

Table 3.1 lists the computation and communication complexity for Distributed QR Decompo-

sition and Parallel Dual Ascent stages of QRSVM. Here, k denotes the rank of the approximated

kernel matrix, p denotes the number of processing nodes, and n denotes the total number of train-

ing samples. The authors in [14] choose k � n
p
, which makes the communication complexity far

lesser than computational complexity.

Hence, we accelerate QRSVM by offloading all computation onto the accelerator. By creating

efficient hardware architectures for the computations involved, we aim to optimize a large chunk

of the algorithm.

For the sake of clarity and simplicity of the design, we assume that the hardware accelerator

(FPGA) connects to a CPU. The following discussion shall refer to this CPU as the host. The

host is responsible for control and coordination of the FPGA device. Figure 3.1 shows the system
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Figure 3.1: System configuration for multiple host-accelerator nodes

configuration for our distributed QRSVM implementation. As seen from the figure, we connect

multiple hosts over a network. Each host is paired with an accelerator (FPGA in our case), with

the accelerator carrying out computation and the host carrying out communication.

The following sections illustrate the design of hardware modules that accelerate computations

involved in the Distributed QR Decomposition and Parallel Dual Ascent stages. Subsequent de-

scriptions will refer to each independent computing node (host CPU-FPGA pair) as a worker node.

One among these nodes is designated as the master node.

3.1 Distributed QR Decomposition

Figure 3.2 illustrates the Distributed QR Decomposition process for an 8 × 3 matrix A across

2 nodes. A brief explanation of each sub-task is given below:

• Initially, the matrix A is partitioned as A = [A1;A2]. The partitioned dataset is distributed

to the two processing nodes. Here, we designate Node 1 as the master, and Node 2 as the

worker node.

• QR Decomposition of the partitioned dataset is carried out in parallel across all nodes (local

QR step in Figure 2.2)

• The local upper triangular Ri’s are gathered at the master node to form Rgather.

• Finally, a QR decomposition of Rgather is carried out at the master.
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Figure 3.2: Distributed QR Decomposition of A8×3 over 2 nodes

From Figure 3.2, it can be noted that each node (worker or master) performs an identical

operation. The additional task at the master is another QR decomposition. This eliminates the

need to create separate designs for the master and worker nodes.

3.1.1 Kernel Architecture

Algorithm 3 outlines QR decomposition via householder reflectors, which is a modified version

from [16]. Here, < x, y > denotes the inner product/dot product of x and y.

Algorithm 3 QR Decomposition

1: Qn̂×k, (Âi)n̂×k . n̂ : samples per node
2: for t← 1 to k do
3: q ← Â(t : n̂, t)
4: q(t)← q(t) + sign(q(t))× < q, q >
5: q ← q

<q,q>

6: Q(t : n̂, t)← q
7: Âi(t : n̂, t : k)← Âi(t : n̂, t : k)− 2q < q, Âi(t : n̂, t : k) >
8: end for

In Algorithm 3, candidates for hardware acceleration are:
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Figure 3.3: Modules for computing (a) Dot product, sum =< ~x, ~y > (b) saxpy, ~x = ~x + α~y. The
modules process 4 samples in each pass

• Computing the inner product < q, q >.

• Update of Âi (Step 7). This can be modeled as a vector-matrix product < q, Âi >, followed

by a rank-1 update: Âi ← Âi − 2q < q, Âi >.

It can be observed that all arithmetic operations can be composed from two BLAS Level - 1

functions:

1. Computing the dot product of vectors ~x and ~y, sum =< ~x, ~y >

2. Scaled addition of two vectors ~x = ~x + α~y. This operation is referred to as saxpy in the

subsequent text.

The high degree of data parallelism inherent to these operations can be exploited to develop

vectorized hardware implementations for the same. FPGA’s are amenable to Single Instruction

Multiple Data (SIMD) style implementations, given their reconfigurable nature and high internal

memory bandwidths. Figure 3.3 shows the architectures for computing dot product and saxpy.

The module to compute dot product is a binary reduction tree as shown in Figure 3.3(a). At the

tree’s leaf nodes, respective entries from x and y are multiplied. Products are pairwise summed

along the tree branches, and the result is stored in a register (denoted by sum).
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Figure 3.4: Illustrating batching for vectors of length 16

For longer vectors, we group x and y into batches. Figure 3.4 illustrates the batching operation

when x and y have length 16. In this case, sum serves as an accumulator for the partial product.

The module for computing the saxpy operation is illustrated in Figure 3.3(b). The architecture

consists of a multiplier that computes αy, followed by an adder that overwrites x with x + αy.

Similar to the dot product, longer vectors can be processed through the batching technique shown

in Figure 3.4.

3.1.2 Pipelined Kernel Design

The kernel modules proposed above can be pipelined in order to increase throughput. To

pipeline the design, we combine all arithmetic units at the same depth into one pipeline stage.

This allows a given stage to process new samples without waiting for completion of all succeeding

stages. Figure 3.5 shows the pipelined architectures for dot product and saxpy.

Figure 3.5: Pipelining architectures for (a) Dot Product and (b) saxpy
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For the dot product module, each level of the reduction tree can be treated as an independent

pipeline stage. Similarly, for the saxpy operation, the adders are grouped in one stage, with the

multipliers in the second stage.

To determine the maximum number of pipeline stages that can be deployed, we examine the

interface between the accelerator and external memory. Figure ref shows an N -bit wide data

bus connecting the FPGA and DDR memory. Let B denote the bit width of a single entry (32 for

single precision floating point, 64 for double precision). For the dot product module, the maximum

number of leaf nodes, W = bN
B
c. Consequently, the number of pipeline stages D = log2W . For

the saxpy operation, we can deploy a maximum of W adders and multipliers in parallel. The

pipeline depth remains constant at 2.

Figure 3.6: Illustrating the memory layout

Since the BLAS operations in Algorithm 3 operate on columns of the partitioned dataset Âi,

the dataset is stored in column major form i.e. Âi(:, 1) is stored first, followed by Âi(:, 2), and so

on. Storing data in column major format makes the memory access pattern contiguous, reducing

the memory access time. Since the hardware modules executed in a pipelined manner, they access

W column elements in each clock cycle. Consequently, while storing data in memory, the column

length must be an integral multiple of W . Otherwise, data points from two different columns may
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end up getting processed in the same batch. To ensure this, we pad columns with requisite number

of zeros.

Pipelining the functional modules changes the frequency and nature of memory accesses,

which may lead to subtle performance bugs. For example, in the saxpy operation (x = x + αy),

consider the operation of the adder that performs the addition x + αy . In each pass, the adder

performs the following three operations:

1. Reading x from memory;

2. Adding x with αy;

3. Writing updated x to memory

Since the kernel execution is pipelined, each of these operations occur in a single clock cycle.

Figure 3.7 illustrates the timing diagram for pipelined operation of one such adder (highlighted in

blue).

Figure 3.7: Pipelining the saxpy operation

In the first two passes, the adder performs the read/add/write operations without any stalls. In

the third pass, however, the adder attempts to write to x0 while simultaneously reading from x8.
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x is stored in off-chip DDR memory, which is configured as half-duplex, hence the concurrent

reads/writes are serialized. This leads to frequent pipeline stalls, reducing kernel throughput.

To overcome this limitation, we turn our attention to Block Random Access Memory(BRAM),

which refers to reconfigurable memory available in the FPGA fabric. On most modern FPGA’s,

Block RAM ranges from a few Kilobytes (KB) to a few Megabytes (MB) in size. Compared to

off-chip DDR memory, Block RAM offers lower memory access times. Moreover, BRAM can

be configured in full-duplex mode, supporting concurrent reads and writes to the memory. Figure

3.8 shows a hardware module (referred here as IP module) connected to two different kinds of

memory: half-duplex DDR and full-duplex Block RAM.

Figure 3.8: Memory interface for Block RAM (Full-duplex) and DDR (Half-duplex)

In the saxpy operation, ~x is read and written simultaneously, while ~y is only read. Hence, we

store ~x in full-duplex BRAM while ~y is allocated to half-duplex DDR. Since Block RAM is of

limited size, we must use BRAM to cache data structures. Algorithm 4 illustrates the caching

strategy for the rank-1 update of Âi (Step 7 in Algorithm 3). The data subscript represents memory

allocation.
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Algorithm 4 Rank-1 update of Âi (at step t)

1: Qn̂×k, (Âi)n̂×k
2: q← Q(t : n̂, t)
3: for i← t to k do
4: aBRAM ← A(t : n̂, i) . Load into BRAM
5: Compute sum = qTaBRAM
6: aBRAM ← aBRAM − 2× sum× q
7: A(t : n̂, i)← aBRAM . Write to DDR
8: end for

3.2 Parallel Dual Ascent

As shown in Figure 2.2, each iteration of the parallel dual ascent (DA) stage comprises of the

following steps:

1. Updating variables α̂ and β̂

2. Transforming β̂ to β

3. Ensuring non-negativity on β

4. Converting β to β̂

5. Estimating the dual error for convergence check

The rule for updating α̂ is defined in Equation 2.5. It can be seen that the update requires a

vector subtraction, followed by pre-multiplication by F−1.

Figure 3.9 shows the structure of F−1. Based on the figure, the following can be observed

about the structure of F−1 at each node:

• At the master node, F−11 consists of a dense k× k block, followed by a diagonal sub-matrix

• At all other nodes, F−1i is a diagonal matrix

Thus, at the master node, the top k elements of α̂ can be obtained by solving

LLT α̂(1 : k) = (ê− β̂)(1 : k)
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Figure 3.9: Structure of F−11 . The red boxes represent non-zero entries

where L is the Cholesky factor of F1 (F1 = LLT ) [16]. Elsewhere, the matrix multiply can be

computed by scaling (ê− β̂) by (−2C).

The update rule of β̂, described in Equation 2.6, indicates it being a saxpy operation. As

discussed before, β̂ must be stored in full-duplex Block RAMs to prevent pipeline stalls.

Each Dual Ascent iteration requires converting between β̂ and β. From Equation 2.2, β = Qβ̂

and β̂ = QTβ. We store Q as a set of Householder reflectors {qi}. Therefore, multiplying Q with

β̂ is detailed in Algorithm 5. By reversing the start and end indices, we can compute β̂ = QTβ

[16]

Algorithm 5 Computing β = Qβ̂

1: Qn×k, (β̂)n×1
2: for t← k to 1 do
3: q ← Q(:, t)
4: β̂ ← β̂ − 2q < q, β̂ >
5: end for
6: β ← β̂

It can be seen that converting between β̂ and β is similar to the update of Âi in QR Decompo-
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sition (Algorithm 3, Step 7). Each iteration of the for loop comprises of an inner product, followed

by a saxpy operation.

We observe that the dual ascent computations comprise calls to the same BLAS Level-1 kernels

designed previously. This provides the opportunity to reuse the synthesized modules for dual

ascent operations. For this to correctly work, we must adhere to the memory layout proposed

earlier. This can easily achieved through column major storage of α̂, β̂ and ê .

At the end of each iteration, we compute the iteration error
∥∥∥(β̂k+1 − β̂k)

∥∥∥
1
=
∑n

i=0 |(β̂k+1(i)−

β̂k(i)|. The architecture to compute iteration error is shown in Figure 3.10. The design is similar

to the module for computing dot product, with the leaf nodes configured to compute the difference

of absolute values.

Figure 3.10: Computing the iteration error
∥∥∥(β̂k+1 − β̂k)

∥∥∥
1
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4. IMPLEMENTATION

In this chapter, we detail the work flow to implement a desired hardware module onto an FPGA.

The process of implementing a desired design on to the FPGA can be broken up into three different

stages.

• First, the hardware modules must be described through through special purpose hardware-

description code called Register Transfer Level (RTL) code.

• After creation of RTL, the hardware modules must be encapsulated into an IP core. The IP

core should include appropriate interfaces, in order to connect with the host CPU and various

memory elements.

• Finally, software routines must be written to control the IP core’s functions.

For FPGA synthesis and implementation, we use Amazon Web Services’ EC2 F1 instances [8]

for. F1 instances are cloud-based, compute optimized instances containing Field Programmable

Gate Arrays (FPGAs). The instances come equipped with all requisite development tools to create

custom hardware accelerators. Each F1 instance features [8]:

• High frequency Intel Xeon E5-2686 v4 (Broadwell) processors

• 16 nm Xilinx UltraScale Plus XVU9P FPGAs

• Local 64 GiB DDR4 ECC protected memory per FPGA

• Dedicated PCI-Express x16 interface between FPGA and host CPU

The instances are available in two categories:

1. f1.2xlarge : This instance provides the user with 8 Intel Xeon CPUs and 1 Xilinx FPGA.

2. f1.16xlarge : This instance provides 64 CPUs and 8 FPGAs

The remainder of this chapter presents a brief overview of the workflow described above.
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4.1 Creating Register Transfer Logic (RTL)

To synthesize Register Transfer Level (RTL) code for our design, we use the Xilinx Vivado

High Level Synthesis (HLS) [17] tool. HLS automatically converts high level language (C, C++

and System C) specifications into RTL code. This eliminates the need to manually write RTL,

thereby reducing the time for IP creation.

We illustrate the creation of RTL using High Level Synthesis by taking an example C function

mult. The mult function takes its input as two arrays A and B, each of size N . The function

computes the element-wise product of A and B, and stores it back in A; i.e.

A[i]← A[i]×B[i] i ∈ {0, . . . , N − 1}

The C code for mult is provided below:

void mul t ( f l o a t A[N] , f l o a t B[N] )

{

i n t i ;

f o r ( i =0 ; i < N; i ++)

A[ i ] = A[ i ] ∗ B[ i ] ;

}

The function for which the RTL code needs to be generated is called the top function. The

Vivado HLS compiler accepts a single top function to generate RTL code. Here, we set the top

function as mult. For more complex functions, the top-level function can make calls to other

functions. In such cases, HLS generates RTL code for all functions called from top.

Every input argument of the top function is synthesized as an independent input port. In our

case, the argumentsA andB are synthesized as array interfaces. In addition to all input arguments,

HLS auto-generates a return port for the hardware module. This port connects the IP to the host

CPU. The host can monitor IP status and control information, as well as exchange parameters with

the IP over this port.
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4.1.1 Design Optimizations

The RTL, synthesized through high level (C/C++/System C) code, can be optimized to reduce

operation latency, increase kernel throughput or augment memory bandwidth. To achieve these

optimizations, HLS specifies in-built directives and pragmas [18], which are compiler options

applied to specific portions of the input code. These are applied to data structures, loops or function

arguments to optimize the generated RTL code. A few such directives and their corresponding

optimizations are listed below [19]:

• HLS PIPELINE: This directive helps pipeline the execution of loop-based iterative code.

For the example mult function, this directive can be applied to the for loop. Applying this

directive pipelines the computation A[i] × B[i]. As a result, the hardware module begins

computing A[i+ 1]×B[i+ 1], as soon as A[i]×B[i] is done computing.

• HLS UNROLL: This directive unrolls an iterative loop by a specified factor. Here, loop

unrolling refers to the process of executing multiple loop iterations concurrently. As a result

of unrolling, the number of loop iterations are reduced by a factor equal to the degree of

unrolling. For example, unrolling the for loop in mult by a factor of two, would synthesize

RTL for two floating point multipliers. These multipliers would simultaneously operate on

elements from A and B. Doing so cuts the for loop iterations by half.

• ARRAY RESHAPE: This directive groups together multiple array elements as a single ele-

ment. As the IP now operates on an element of a larger bit width each clock cycle, the IP

core’s memory bandwidth is increased. Vectorized implementations of loop operations can

be obtainedby applying this directive in conjunction with HLS UNROLL.

4.1.2 Vivado HLS Workflow

While describing the modules through high level code, a robust test suite must also be created

to ensure the correctness of the synthesized hardware. In light of this, the workflow for creation of

RTL code from C/C++ code involves the following four stages:
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1. C Simulation :- At this stage, the design is specified through C/C++ code. Alongside, a test

program is created to validate the code that specifies the design. This test program compares

the desired output (output of the design code) against a golden reference. If the design code

generates the correct output, the test passes and the test program returns a 0. To indicate test

failure, the test program returns any other integer value.

2. C synthesis :- In this stage, the RTL code describing the hardware modules is created from

the C/C++ design code. As described before, we apply directives to optimize the generated

RTL. The RTL creation is done for a target FPGA, which is specified at synthesis time. The

outcome of this stage is the RTL code, along with an estimate of the chip area utilization.

The area estimate is specified by the number of chip elements (LUT, FF, BRAM and DSP)

utilized to synthesize the design.

3. Cosimulation :- In the cosimulation stage, HLS auto-generates an RTL test bench from the

C/C++ test program. This test bench is used to verify the functionality of the RTL code

created during the previous stage. Cosimulation eliminates the need to manually write an

RTL test bench, generating it from high level code instead.

4. Export IP :- Once the RTL is verified in through cosimulation, it is packaged into an IP core.

This IP core can be directly included as a pre-built block in third party applications.

4.1.3 Creating QRSVM IP

We described the hardware kernels for QRSVM computations in Chapter 3. We use the work-

flow detailed in the previous section to synthesize RTL code for the hardware modules. These

modules are packaged into a single IP core, denoted as QRSVM IP. Figure 4.1 shows the QRSVM

IP block.

The QRSVM IP must connect with the host CPU, on-chip Block RAM and off-chip mem-

ory (i.e. DDR). For the same, we use the Advanced eXtensible Interface (AXI) [20] protocol to

create IP interfaces. Vivado HLS natively supports AXI-based interfaces for interfacing IP cores.

Interfaces for the QRSVM IP are described below:
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Figure 4.1: QRSVM IP Block

• The IP interfaces with the host CPU through an AXIlite port. In this configuration, the host

is Master while the IP runs in slave mode. The host and IP core exchange control and status

information over this interface port. Additionally, the port allows the host to read/write

parameters (such as pointers to input data, return values etc.) to/from the IP respectively.

• The on-chip BRAM caches are synthesized with a bram interface. The maximum bus width

supported by this interface is 1024 bits. As we use double precision floating point numbers,

maximum parallel compute units W = bN
B
c = 16.

• All references to off-chip memory (DDR) are made over an AXI Master port. With this inter-

face, the IP assumes the role of the bus controller and can directly issue memory references

without host mediation. For uniformity, we set the data bus width to 1024 bits.

4.1.4 Increasing Memory Bandwidth

As illustrated in Figure 3.6, the throughput of the kernel modules is largely governed by the

data bus width, N . The bus width directly determines the number of parallel functional units W

(W = bN
B
c). Doubling N would double W , which in turn would increase throughput.

However, there are limitations to the maximum bus width for a given interface. For exam-

ple, the bram interface supports a maximum data bus width of 1024 bits, while the AXI interface

supports up to 2048 bits.
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To overcome these limitations, we create multiple independent interfaces to increase memory

bandwidth. Subsequently, the computations can be split into smaller, independent sub-problems

to utilize these interfaces. For instance, computing the dot product of vectors x and y can be

regrouped into smaller sub-problems, as shown below:

< x, y >= xTy =

[
x1 x2

]y1
y2

 = xT1 y1 + xT2 y2

Thus, we can parallelize the computation of dot product by splitting x and y into two equal halves,

and computing each partial product in parallel.

Figure 4.2: (a) Computing < x, y > with 2 memory interfaces (b) Computing < x, y > with 4
memory interfaces

In Figure 4.2(a), we illustrate computing < x, y > with 2 memory interfaces. Since N = 16

and W = 4, we would require 4 passes to arrive at the final result. In Figure 4.2(b), we utilize

additional memory interfaces to parallelize the problem. We begin by splitting x and y between

the available memories, with the first half stored in one location and the second half in the other

location. Alongside, we synthesize an additional IP module, and connect it with the appropriate

memories. With this arrangement, each IP module works on its respective sub-problem. Therefore,
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both modules can operate in parallel, and only require 2 passes to arrive at the solution.

Thus, as long as the read/write requests are satisfied simultaneously, i.e. no two memory refer-

ences direct to the same interface, the memory bandwidth or throughput can be effectively doubled.

In our design, we create two independent AXI Master and bram interfaces for accessing memory.

As all QRSVM arithmetic occurs on matrix columns, we split each column vector into two halves,

namely top and bottom. As seen in Figure 4.1, each memory interface is also split into top and bot-

tom halves. The interfaces access their respective halves in parallel, thereby doubling the effective

memory bandwidth.

4.2 FPGA Synthesis and Implementation

Upon creation of the QRSVM IP core, it must be synthesized and implemented onto a target

FPGA chip. The IP contains appropriate interfaces for the host CPU, on-chip Block RAM and off-

chip DDR. Consequently, appropriate connections must be made to connect the IP core and other

components. This section illustrates the process of synthesizing and implementing the QRSVM IP

onto the Xilinx Virtex FPGA, available as part of the EC2 F1 instance.

4.2.1 FPGA Block Design

The F1 environment supports the Xilinx Vivado suite for synthesis and implementation of

FPGA designs. The IP is integrated with other components to form the FPGA block design. The

block design can be assembled through a GUI interface or Tcl-based command arguments. All

block designs for F1 instances are divided into two parts, namely:

• Custom Logic (CL), which denotes the user-defined hardware blocks. In our case, CL refers

to the QRSVM IP.

• AWS Shell (SH), which is a pre-built, parameterizable IP block that connects the user logic,

i.e. CL, with the host CPU and off-chip DDR. The type and number of these interfaces

can be configured through the SH. Additionally, the SH provides the CL with a configurable

input clock.
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Figure 4.3 shows the FPGA block design with CL and SH. As seen in the figure, the SH is connects

with the CL’s AXIlite port. Thus, all communications with the CL are handled by the SH. Addition-

ally, the SH provides two AXI-based DDR interfaces, namely S_AXI_DDRA and S_AXI_DDRB.

Figure 4.3: AWS Shell with QRSVM IP (CL)

Upon configuring the CL and SH, we must add the Block RAM modules. As discussed in

Chapter 3, the Block RAM is configured in full-duplex mode to achieve high throughput with

pipelined kernels. Block RAM can also be added (and configured) through the GUI interface.

Figure 4.4 shows the QRSVM IP, connected with two Block RAMs. The Block RAMs are con-

nected with the QRSVM IP in full-duplex mode. This is indicated by the two ports on the BRAM,

PORTA and PORTB, connecting with the IP. These two ports can be independently accessed,

thereby enabling simultaneous reads/writes to the BRAM.

Upon adding the Block RAMs, the QRSVM IP must be interfaced with the off-chip DDR. As

discussed above, the Shell (SH) provides access to the DDR via an AXI interface. The QRSVM

IP is synthesized with AXI Master ports, which enable direct memory access from the IP. The

completed block design is shown in Figure 4.5.

Upon validation of input parameters, the block design is synthesized and implemented onto a

target FPGA chip. For the F1 instances, the target FPGA is the Xilinx Virtex Ultrascale FPGA

xcvu9p-flgb2104-2-i. The output from a synthesis is a bitstream, which can be downloaded onto

the FPGA to program the block design.
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Figure 4.4: Interfacing QRSVM IP with Block RAM

4.3 Controlling the QRSVM IP

Upon synthesizing and implementing the FPGA block design, we must create a host program

which exploits the FPGA for training an SVM classifier using QRSVM algorithm. The FPGA

is attached with the host CPU through a PCIe slot. Therefore, the host program must direct all

status/control information over the PCIe bus. In addition, the FPGA off-chip memory (DDR) is

also accessible to the host through the PCIe slot.

The F1 instance provides a Software Development Kit (SDK) [21], which provides the req-

uisite helper functions for all PCIe communications. For the same, the SDK provides header files

encapsulating PCI library functions. These functions can be invoked in the host routines to com-

municate with the FPGA.

The salient steps for distributed QRSVM with multiple FPGA-CPU nodes, can be summarized

as follows:

1. The hosts recognize and register their corresponding FPGA as a PCI device, using the library

functions provided in the SDK. At this stage, the hosts load their respective partition of the

training dataset into the FPGA DDR memory. It is to be noted that column major storage

must be adhered to while loading the dataset.
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Figure 4.5: FPGA Block Design for QRSVM IP

2. The hosts initialize their respective FPGAs by sending control parameters such as pointers

to dataset locations, learning rate etc. These communications occur over the QRSVM IP’s

AXIlite port.

3. Through appropriate control commands, the hosts direct the FPGAs to perform required

computations (dot product, saxpy etc.). The operation status is monitored by polling the

AXIlite port’s status register.

4. Whenever a communication requirement arises, the hosts read the appropriate data from their

respective FPGAs. Subsequently, the hosts transfer data through MPI Gather and Scatter

calls.
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5. EXPERIMENTS

To illustrate the benefits of the proposed FPGA accelerator, we compare the accelerator against

two other experimental setups: (1)A high performance CPU cluster, and (2) An embedded SoC

cluster, typically marketed as an edge computing solution. For all three platforms, we evaluate and

compare the time taken to train an SVM classifier using QRSVM method. Following is a brief

description of the platforms and their salient features:

• FPGA Accelerator: Amazon EC2 F1 [8] instance was used to synthesize the FPGA ac-

celerator. As outlined in Chapter 4, the f1.16xlarge instance features eight Xilinx Virtex

UltraScale+ VU9P FPGAs . The FPGAs connect to the host CPUs through a PCIe slot. To

elicit the benefits of FPGA acceleration, we offload all computation to the FPGA. The host

processors are responsible for program flow control, and handling communication through a

message passing protocol such as MPI.

• CPU Cluster: The CPU cluster is comprised of Intel Xeon E5-2686 v4 high performance

processors. These processors are also available as part of the F1 instances. It is to be noted

that these processors act as the host for the FPGA-based accelerator described above. In

subsequent experiments, we use CPUs available in a single f1.16xlarge instance.

• SoC Cluster: The SoC platform is a commercially available HPE ProLiant m800 1 server

cartridge. Each cartridge contains four TI KeyStone II 66AK2H SoCs operating at 1.0 GHz.

Each SoC contains four ARM A15 processors alongside eight TI C66x DSP cores. How-

ever, we only utilize the ARM processors, in order to maintain a homogeneous computing

environment across all hardware platforms.

In our experiments, the notion of a node is unique to each platform. For the FPGA accelerator,

a node refers to a CPU-FPGA pair; i.e. one core of the Intel Xeon processors, attached to one

1https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c04500667
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Xilinx FPGA. As stated previously, we offload all computation to the FPGA. Ideally, we wouldn’t

require a high performance, Intel Xeon-like CPU as the FPGA host, since the CPU performs no

arithmetic. For the CPU cluster, we define a single core of the Intel Xeon processors as a node. In

the case of the SoC cluster, a single core of the ARM A15 is referred to as a computing core.

For the CPU and SoC clusters, we run an MPI-based C++ implementation of QRSVM, using

the Armadillo library [22] integrated with LAPACK/BLAS for linear algebra calculations.

Table 5.1 lists the binary classification datasets chosen to evaluate QRSVM. These datasets

were taken from the LIBSVM repository 2. We choose the first 4 datasets in their entirety. SUSY

is a treated as a special case, wherein we choose 2M random samples from the original 5M for

weak scalability tests. We use Memory Efficient Kernel Approximation (MEKA) [15] to obtain

the k-rank approximation of the kernel matrix.

Table 5.1: Dataset Description

Benchmark Application #samples (n) #features (d) k-rank
MNIST Image 60,000 780 128

Skin Health 200,000 3 64
Webspam Email 350,000 254 128
Covtype Geography 464,810 54 64
SUSY Physics 2,000,000 18 128

5.1 FPGA Synthesis

We use Vivado High Level Synthesis [17] to synthesize our FPGA design. The HLS synthesis

estimates indicate that the QRSVM IP can operate up to clock speeds of ∼ 200 MHz. However, we

adopt a conservative clock of 125 MHz for the sake of obtaining timing closure. Table 5.2 lists the

post-implementation area utilization.

The post-implementation results indicate the disproportionate utilization of Block RAM, as

opposed to other resources on chip. Block RAM’s are vital for the proposed design, as they help

2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Table 5.2: Utilization for FPGA Xilinx Virtex xcvu9p-flgb2104-2-i

Resource BRAM DSP FF LUT
Total 1405 1221 545248 449113

Available 2160 6840 2363536 1181768
Utilization(%) 65 18 23 38

create full-duplex, high bandwidth memory to serve vectorized, pipelined kernels. Consequently,

the availability of Block RAM constraints the maximum number of data points that can be pro-

cessed at each node. The xcvu9p-flgb2104-2-i FPGA (FPGA in the EC2 F1 instance) contains ∼7

MB of Block RAM. Out of the available 7 MB, we use 4 MB to synthesize two BRAM blocks

of 2 MB each. These blocks cache the dual variables α̂ and β̂ at each node. Owing to this size

limitation, each FPGA node can process a maximum of 256K data points.

5.2 Performance Analysis

In this section, we compare the performance of the three platforms with regards to training

time, scalability and energy consumption while executing the QRSVM algorithm. We evaluate the

platforms for a varying number of cores. The maximum cores are limited by the availability of

FPGA units in a single Amazon f1.16xlarge instance. Therefore, we restrict the evaluation of our

platform upto 8 FPGA nodes. It is to be noted that permitting availability, the framework can be

easily evaluated for a higher number of cores.

5.2.1 Training Time Analysis

Table 5.3 shows the distributed QRSVM training times for the given benchmarks on all three

hardware platforms. The training time for QRSVM can be calculated as the sum of the times

taken for Distributed QR Decomposition and Parallel Dual Ascent. Since the parallel dual ascent

is iterative in nature, it accounts for a larger share of training time among the two stages [14].

Additionally, the algorithm design ensures that for a given step size η∗, the number of parallel

dual ascent iterations (t) remains constant for a given number of cores p across all platforms.

Therefore, training time is largely governed by the time taken for each dual ascent iteration, i.e.
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the per-iteration time achieved on a given platform.

We observe that for almost all the datasets, the proposed FPGA design trains faster than both the

CPU-based and SoC-based clusters. By creating efficient hardware designs for the computationally

dominant steps of QRSVM, the FPGA accelerator achieves the lowest per-iteration time among

the three platforms. Consequently, the training time for the FPGA accelerator is the lowest.

It is worth noting that for the MNIST dataset, the training time for the FPGA accelerator at

p = 8 is higher than that of the CPU-based cluster. MNIST is a small dataset with n = 60K

samples. As we go beyond p = 2 cores, the per-node computation reduces to an extent where

inter-node communication begins affecting the overall runtime. Consequently, it can be argued

that deploying cores beyond p = 2 for a small dataset like MNIST is overkill.

Our FPGA design possesses the limitation that each node can handle a maximum of 256K

samples. Hence, for the benchmarks Webspam (n = 350K) and Covtype (n = 464K), we leave

the FPGA entry for p = 1 blank, and report training times for p = 2 onwards. A similar issue arises

while running n = 2M SUSY samples for p = 8 on the SoC server. Spawning two MPI processes

in a single SoC, with n = 250K samples per process leads to a memory overrun. However, going

by the FPGA speedup trend relative to SoC, one can safely argue that the training time for p = 8

would be ∼24x longer than that of FPGA.

5.2.2 FPGA speedup relative to SoC and CPU

Let us denote training time for a given benchmark on p cores of CPU cluster, SoC server and

FPGA cluster as T cpup , T socp and T fpgap respectively. For a given number of cores p, we compute the

accelerator speedup with respect to the SoC cluster as

Ssocp =
T socp

T fpgap

Similarly, Scpup =
T cpu
p

T fpga
p

denotes the speedup relative to the CPU cluster. Table 5.3 tabulates these

speedup values for all benchmarks. We observe that the FPGA-based accelerator outperforms both

SoC server and CPU cluster, for both sequential (p = 1) and distributed (p = {2, 4, 8}) implemen-
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tation. The proposed design achieves a maximum sequential speedup of 25x over the SoC cluster,

with a maximum of 1.72x relative to the CPU cluster. For the distributed implementation, the

proposed accelerator achieves a maximum speedup of 24x and 1.81x relative to the SoC and CPU

clusters respectively. These results establish the FPGA-based accelerator to be the most efficient

among the competing platforms.

5.2.3 Parallel Scalability

To determine the scalability of the proposed design, we measure the algorithm’s performance

upon doubling the number of cores. We demonstrate two flavors of scalability: strong scaling and

weak scaling.

• To evaluate the strong scaling property, we measure the training times as we double the

number of participating nodes to solve the same problem. For a perfectly parallelizable

algorithm, the training time should halve as we double the number of nodes.

• The weak scaling property is evaluated by doubling the participating nodes, while keeping

the workload per node constant. The SUSY dataset is used exclusively to evaluate this

property. We fix the per-node samples to be n = 250K, and evaluate the per-iteration time

as we double the number of nodes.

It can be observed in Figure 5.1 that for relatively larger datasets, namely Skin, Webspam and

covType, the speedup for the proposed accelerator (blue line) is close to the ideal speedup (orange

line). In other words, as we double the number of cores, the training becomes faster by a factor of

nearly two. This trend can be attributed to the communication-efficient design of QRSVM [14].

As the communication overhead is significantly lower than the computational load, the training

time decreases by a factor equal to the number of nodes.

The trend line for MNIST quickly falls below ideal efficiency. As discussed before, this can

be attributed to reduced computation per node, as we go beyond p = 2 nodes. It should also be

noted that baseline implementation for Webspam and covType benchmarks on FPGA accelerator
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(a) MNIST

(b) Skin

(c) Webspam

(d) covType

Figure 5.1: Strong Scaling Analysis: FPGA accelerator scales linearly with increasing nodes

37



Figure 5.2: Weak scaling analysis: FPGA accelerator achieves least iteration time

is taken as p = 2. In the absence of a sequential (p = 1) implementation, it is a fair baseline, given

that we see a speedup of 2 at p = 2 for the other datasets.

To evaluate the weak scaling efficiency of the algorithm, we turn to Figure 5.2, which presents

the per-iteration time for all three platforms for an increasing number of nodes. It can be observed

that for any given p, the FPGA-based accelerator has the lowest per-iteration time amongst all

three platforms. It was discussed earlier that parallel dual ascent accounts for a lion’s share of the

training time. Therefore, by achieving the lowest per-iteration time, the FPGA accelerator proves

to be the platform of choice for training QRSVM.

5.2.4 Energy Efficiency

To determine the viability of the proposed FPGA accelerator as an edge-computing solution,

we evaluate the energy consumption of the three platforms for a given training task.

• We calculate the approximate energy consumption by multiplying the QRSVM training time

with the power rating of the device.

• Additionally, we measure how energy consumption of the FPGA accelerator changes, as we

increase the number of computing nodes.

Table 5.4 shows the power rating for each platform. For the FPGA platform, we ignore the host
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Figure 5.3: Energy comparison between FPGA, CPU and SoC platform

power consumption and only consider the power consumed by the FPGA, since the algorithm’s

computations are carried out on the FPGA. For the CPU cluster, we take the Thermal Design

Power (TDP) [23] of the Intel Xeon CPU as the power consumed by a single core. By all angles,

this value is a pessimistic estimate of the actual power consumed. However, studies based on Intel

architectures [24] have shown that "uncore" power, i.e. power consumed by units peripheral to the

cores, accounts for ∼75% of the total chip power. Therefore, the energy estimations are accurate

to a fair degree. In a similar vein, The SoC rating is the power consumed by a single KeyStone II

SoC [25].

Figure 5.3 shows the normalized energy consumption of the CPU and SoC platforms, relative

to the FPGA accelerator. For datasets MNIST and Skin, we compute the energy consumption for

the p = 1 case. For Webspam and covType, we plot the consumption for p = 2. From the figure, we

can gauge that the FPGA accelerator achieves a 6x− 8x reduction in energy consumption over the

CPU and SoC platforms. This reduction is achieved through a combination of decreased training

times and lower power consumption of the FPGA architecture.

Figure 5.4 illustrates the increase in FPGA energy consumption with an increasing number of
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(a) MNIST (b) Skin

(c) Webspam (d) covType

Figure 5.4: Energy Consumption for the FPGA accelerator

cores. We observe that for Skin, Webspam and covType, the energy consumption increases by less

than 10% as we add more processing nodes. For the MNIST dataset, we see an increasing trend

for the energy consumption. This can be attributed to the poor scaling efficiency for MNIST (ref.

Figure 5.1a).

In conclusion, the FPGA based accelerator is the most energy efficient platform for QRSVM

training, consuming 6x − 8x lesser energy than its CPU and SoC counterparts. Moreover, the

FPGA energy consumption is more or less constant for a given task, and is independent of the

number of computing nodes.
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Table 5.3: QRSVM Training time (s). Speedup of FPGA with respect to SoC and CPU are
denoted as Ssocp and Scpup

#cores #iterations MNIST (C = 1, γ = 2−6, η∗ = 0.9)
p t CPU SoC FPGA Ssocp Scpup

1 181 18.78 179.12 10.92 16x 1.72x
2 181 8.25 61.27 5.84 10x 1.41x
4 182 4.35 31.06 3.58 9x 1.27x
8 182 2.55 20.12 2.61 8x 0.97x

#cores #iterations Skin (C = 1, γ = 2−8, η∗ = 0.9)
p t CPU SoC FPGA Ssocp Scpup

1 67441 7167 115189 4536 25x 1.58x
2 64424 3093 48335 2228 22x 1.39x
4 59761 1607 21773 1108 20x 1.45x
8 54744 759 6121 626 10x 1.21x

#cores #iterations Webspam (C = 1, γ = 1, η∗ = 0.9)
p t CPU SoC FPGA Ssocp Scpup

1 559 236.54 2848 - - -
2 566 133.99 1809 76.14 24x 1.76x
4 564 65.92 895 39.36 23x 1.67x
8 569 34.58 477 20.59 23x 1.68x

#cores #iterations Covtype (C = 1, γ = 23, η∗ = 0.9)
p t CPU SoC FPGA Ssocp Scpup

1 1132 292.63 3192 - - -
2 1125 160.08 2229 91.45 24x 1.75x
4 1080 77.19 1079 45.36 24x 1.70x
8 1068 37.86 520 24.75 21x 1.53x

#cores #samples SUSY (C = 1, γ = 2−3, η∗ = 0.9)
p n CPU SoC FPGA Ssocp Scpup

1 250K 171.29 2452 108.08 23x 1.58x
2 500K 232.01 3131 131.02 24x 1.77x
4 1M 319.03 4189 176.18 24x 1.81x
8 2M 497.45 - 299.63 - 1.66x
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Table 5.4: Power rating for different platforms

Platform Rating (W) Operating Frequency Source
FPGA 39 125 MHz Synthesis
CPU 145 3 GHz TDP
SoC 14 1 GHz Datasheet

42



6. CONCLUSION

In this research, we propose an FPGA-based accelerator for a distributed SVM algorithm. The

accelerator was assembled by designing vectorized, pipelined hardware modules for the underlying

SVM computations. The accelerator was implemented on a cloud-based, multi-FPGA platform

provided by Amazon Web Services. We evaluate the accelerator by comparing against two other

computing platforms, an Intel Xeon-based high performance computing cluster and a commercial

ARM A15-based SoC server. On a per-node basis, the accelerator delivers up to 1.81x and 24x

faster training than the CPU and SoC platform respectively. In addition, the design demonstrates

a high degree of scalability, adapting to both growing data sizes and increasing compute nodes in

a distributed framework. Alongside, the FPGA-based accelerator consumes up to 6.4x and 8.4x

less energy, in comparison to the CPU cluster and the SoC server. In light of the above result, the

FPGA accelerator is a high performance, energy efficient alternative for applications that involve

training and analytics at the edge.
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