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ABSTRACT

A new methodology to solve the capacitated facility location problem (CFLP) is
presented. This optimization problem can be explicitly formulated and solved as a mixed integer
program (MIP); however, because binary variables are used, obtaining exact solutions can be
computationally intensive. This issue is apparent for solving large-scale problems, where the
problem complexity is known to increase exponentially in the number of location variables. The
proposed approach will instead solve the problem in a heuristic manner, returning an
approximate solution rather than an exact one. A linear program (LP) relaxation to the problem is
solved, while iteratively fixing select binary location variables to 0 or 1 until a feasible solution
is obtained. Experimental results show that the proposed methodology can be effective in
obtaining solutions in a fraction of CPU (central processing unit) time compared to exact
methods. The quality of the solution is also shown to be extremely close to optimal for problems
with relatively high fixed cost parameters. An application to a real-life problem is also explored
to validate the practicality of the proposed methodology.

Not only does the algorithm offer a new approach to solving the CFLP, but it also
presents a fast approximation method which can be applied to solve MIP models in general.

Additional ideas for improving the algorithm are also presented.
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1. INTRODUCTION

The facility location problem is an optimization problem seeking to find an optimal
placement of facilities in order to minimize the total costs of the network. This paper specifically
considers the Capacitated Facility Location Problem (CFLP). In this problem we are given a set |
of customers, with each customer i € | having demand d; to be served. We are also given a set J
of potential locations where a facility j € J can be opened. These facilities each have fixed cost f;
and capacity q; components associated with them. Assigning demand to be served from facility
to customer i costs ¢;; per unit. The CFLP objective is to select the best combination of facilities
to be located which minimizes the sum of fixed and variable (e.g., transportation) costs. Each
customer demand must be fully met while facility capacities may not be violated.

The following decision variables are introduced.

xXj =

{1, if facility j is selected to operate
j

0, otherwise

yij = volume of demand served to customer i from facility j
The problem is formulated as follows.
Minimize Z fixj + Z 2 cijyij (1)

j€J i€l jeJ

Subject to Zyij <q;xj, Vj€] (2)

L€l

Zyij >d,;, viel (3)

Jjej
Vij qule VielLVje] (4)
x; €{01}, VielVje] (5)
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yij =0, VielLVje] (6)

Objective function (1) minimizes the global cost, which is the sum of the fixed cost
component (first term) of opening the facilities and the variable cost component (second term) of
serving all customer demand point-facility location combinations. Constraints (2) ensure the total
volume handled at each facility does not exceed its capacity. Constraints (3) force all demand at
each customer to be met. Constraints (4) are redundant constraints of (2), but give tighter bounds
to the feasible region. The “strong” problem formulation enabled by constraints (4) is preferred
over the “weak” formulation (e.g., no redundant constraints) in many previous works because it
reduces the gap of the LP (linear program) relaxation relative to the optimum integer solution
(Teixeira et al. (2006)). Finally, constraints (5) and (6) define the decision variables. It is also
assumed that all parameters, including unit costs, demands, and capacities take nonzero values.

The CFLP can be solved to optimality as a mixed-integer program (MIP) as modeled
above. Commercial software such as AMPL, Gurobi, and CPLEX is capable of solving these
problems effectively. However, solving MIPs is computationally intensive in contrast to solving
LPs; this is especially an issue for larger problem instances, as computation times can increase
exponentially with the addition of more variables and constraints to the problem. Indeed, these
problems have been proven to be NP-hard and the worst-case runtime is O(2™), where n is the
number of binary (i.e., 0-1) location variables (Francis et al. (1983)). The non-deterministic
nature of solving CFLPs and MIPs is limiting in practice, and therefore justifies the development
of heuristics or approximation methods as alternative solving methods.

The literature offers several approaches to overcoming this obstacle in an attempt to
speed up problem solve times. The complicating element is the fixed cost component, because

this requires the need for the binary variables to indicate whether a facility will be opened or not
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in the optimal network topology. Nagurney (2010) formulates the supply chain optimization
problem strictly as a flow problem, by making the assumption that facility capacities can be
freely “bought” or “sold” in the open market. Lu et al. (2014) offers an approach that reflects
“economies of scale” within the objective function — specifically, an S-shaped cost function is
used to approximate a step function to capture the fixed cost component. These techniques allow
for the elimination of the complicating binary variables from the formulation altogether.
However, this type of approach can be limiting: in the former, not explicitly considering the
effects of fixed cost could result in solutions failing to reflect the realities of business
expenditures such as warehouse rent and other startup costs. In the latter method, the problem
formulation may result in a nontrivial objective function (e.g., nonlinear and nonconvex),
potentially leading to solving issues.

There also exist procedures that keep the MIP problem formulation intact, but apply
heuristics to limit problem size and speed up computation times. Marmolejo et al. (2015) applies
a Benders decomposition technique to solve a distribution network optimization problem. Other
work such as that of Angelelli et al. (2012) and Gustaroba and Speranza (2014) implements a
Kernel search framework to solve the MIP by only considering “promising” locations, which are
determined to have high chances of being open in the optimal network topology. Incorporating
LP relaxation approximations are also well-explored alternatives. Methods developed by Murray
and Shanbhag (2006) and Melo et al. (2014) solve the LP relaxation to the problem to obtain an
initial feasible solution, which is improved upon by local neighborhood searching. Thanh et al.
(2010) uses LP relaxation and rounding of key decision variables to fix as many binary variables
as possible, until the problem is reduced to a small enough MIP that can be solved using exact
methods. Although these methodologies are shown to yield quality solutions (i.e., small

3



optimality gap) while reducing problem complexity, invoking the use of MIP solvers eliminates
the hope for any further savings in computational time.

In this paper, new heuristic technique to solve the CFLP model is introduced. The
proposed algorithm will iteratively solve the LP relaxation to the problem — at each step, hard
variable fixing is implemented to set “promising” and “unpromising” binary location variables to
1 and 0, respectively. The “promising” and “unpromising” variables are determined based on the
location variable values in the most recent solution. The other variables are kept relaxed until
subsequent iterations take place. The procedure is repeated until a valid binary solution vector is
obtained. A feasibility recovery process is implemented in the case that an infeasible solution is
encountered. To limit problem runtimes, the algorithm will invoke a timeout protocol in the case
that too many infeasible iterations are observed.

Two contributions of the proposed work are that it offers: (1) a new approach to solving
the CFLP, and (2) a fast approximation method to solve MIP problems in general. Because MIP
solvers are not utilized in the proposed technique, it is expected that computation times are
substantially improved, especially for large-scale instances. Performed experiments demonstrate
three takeaways: (1) runtimes do not grow exponentially with increases in problem complexity,
allowing for larger problems to be solved effectively, (2) the obtained solutions are of good
quality for certain scenarios, and (3) the approach is capable of solving real-life problems.

The paper is structured as follows. Section 2 is devoted to outlining a detailed description
of the proposed algorithm. The framework and results of the experimentation process are
provided in Section 3. Section 4 explores an application of the technique to solving a warehouse
network optimization exercise based on a real-life problem. To conclude, Section 5 addresses
final remarks and some areas for future research.
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2. THE HEURISTIC ALGORITHM

The detailed procedure of the proposed methodology (referred to as heuristic algorithm
or simply algorithm throughout this paper), as well as its runtime complexity, is described in
Section 2.1 and 2.2, respectively.

2.1. Heuristic algorithm steps

The problem is first formulated as a standard CFLP model as presented in Section 1. The
binary constraints are then removed, converting the problem into a LP relaxation problem. This
problem is then solved, which yields an initial solution. A check is conducted to see if all
candidate location variables in the solution are binary — this is the first of two termination
conditions. If there are non-binary values in the solution vector, the algorithm must continue;
otherwise, the algorithm terminates. The second termination condition, where the number of
encountered infeasible iterations is evaluated, is explained at the end of this subsection.

In the “variable fixing” sequence, there are three procedures: (1) permanently fixing
variables to 1, (2) tentatively fixing variables to 0, and (3) permanently fixing variables to 0. The
algorithm will first search through all location variables (e.g., candidate facility location) not
equaling 0. The algorithm will choose one “most promising” variable and set this to
be permanently opened (fixed to 1) for the rest of the algorithm. This location is identified as the
non-binary variable x; (which has not yet been fixed by the algorithm) having the highest value.
If there is a tie, the tiebreaker will be the fixed cost — the location with the lower fixed cost is
chosen. If there still is a tie, the selection will be arbitrary (to be precise, the location with the

smallest index value j is selected).



Similar to the “most promising” variable fixing process, the algorithm also looks for one
“least promising” variable. The non-binary location variable (also which has not yet been fixed)
having the lowest value will be tentatively set to be closed (fixed to 0) for the rest of the
algorithm. Tiebreaker rules also apply — in the case of a tie, the location with the higher fixed
cost will be set to 0.

The last component is the “permanent” fixing of variables to 0. For all facilities where the
LP relaxation solution equals 0, they will be permanently closed (set to 0) for the rest of the
algorithm. Unlike the other two variable fixing processes, more than a single facility variable can
be fixed in one iteration.

Once the applicable variable values are all set, the modified LP relaxation problem is
solved. The solver returns either a “feasible” or “infeasible” solution status. If feasible, the
algorithm repeats iterations as necessary with the remaining “unfixed” location variables until a
termination condition is met. However, if the result is “infeasible,” we must backtrack. The
location which was tentatively fixed to be closed in component (2) of the variable fixing stage
will be opened (i.e., set to 1) for the rest of the algorithm. This modified LP relaxation problem
will then be solved, and the resulting feasible solution will be further evaluated by the algorithm.

When an infeasible iteration is encountered, this means the problem has encountered a
capacity limitation. As the algorithm artificially forces certain location variables to be closed,
this could remove too much available capacity from the network and potentially lead to
constraint violations. To resolve this issue, the location that was tentatively selected to be closed
in that particular iteration is “re-opened,” thus adding the previously removed capacity back into
the problem. Because infeasible iterations can only be caused by capacity violations, the
algorithm is guaranteed to recover feasibility once the re-modified problem is solved.
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The number of these “backtracking” occurrences are tracked in order to cap the
maximum number of infeasible iterations allowed by the algorithm. The rationale is that if
infeasible iterations are being observed, the gap between total demand and total available
network capacity should be diminishing, and thus the algorithm is approaching termination. To
avoid exploring through too many infeasible solutions and thereby reducing computation times, a

threshold T is set at
_ VU
T = [—2 ,

where ]| is the total number of candidate locations in the problem. Threshold T is a heuristic
parameter, and the value specified above is a default value to be used for the experiments
discussed in Sections 3.2 and 3.3. The algorithm’s behavior under other levels of T will be
examined in Section 3.4.

If the cumulative number of infeasible iterations exceeds T, then the algorithm will
automatically timeout, and all remaining nonzero variables are fixed to 1. This modified LP
relaxation will then be solved for a final time, leading to the termination of the algorithm. Figure

1 provides a visual overview of the algorithm steps, discussed in detail above.



Solve initial LP relaxation of problem

Are all solution ] ] ]
Terminate algorithm. Output solution

Solve modified LP relaxation of problem

Timeout of algorithm. Fix all remaining

variables binary?

Too many infeasible

iterations? .
nonzero variables to =1

Conduct tentative variable fixing to =0

Conduct permanent variable fixing to =0

Solve modified LP relaxation of problem

Is the solution Re-fix the variable tentatively fixed to =0

Yes

feasible? as =1 permanently

Resolve LP relaxation of problem

Figure 1. The detailed steps of the heuristic algorithm.



2.2. Algorithm complexity

The worst-case runtime of the proposed algorithm is estimated to be polynomial. The
three-step sequence of variable fixing occurs in 0(n) + 0(n) + 0(n) = 0(3n) = 0(n) time,
where n is the number of variables to the LP problem. Linear programming is known to run in
polynomial time O(Lv/m + n), where m is the number of constraints to the LP problem, and L is
defined by the number of bits required to store all entries of the problem (Renegar (1988)). In
case the iteration encounters an infeasible solution, the re-fixing of one location variable of
complexity 0(1) and an additional solve of the LP model taking O (Lv/m + n) time is

implemented. Thus, each algorithm iteration has a worst-case bound of 0(n) + O(Lvm +n) +

01 +0(Lvm+n)=0(n+1+2Lym+n) =0(n+ LVm +n).

Because a minimum of two location variables are fixed to 0 and 1 within each iteration,
this procedure can be repeated a maximum of 0(n/2), or O(n) times. Hence, the algorithm
complexity is 0(n)0(n + Lvm + n) = 0(n? + nLym + n), which is indeed polynomial in n.
This result implies that the developed heuristic is predicted to outperform exact solving methods
in terms of worst-case algorithm complexity, where solving to optimality results in exponentially
growing worst-case solve times as discussed in Section 1. Experimental results explored in the

next section will validate this prediction.



3. EXPERIMENTAL ANALYSIS

This section is devoted to presentation and discussion of computational experiments. The
tests were run on a PC Intel CORE i5 with 2.40 gigahertz 64-bit processor, 8.0 gigabytes of
RAM, and Windows 10 64-bit as the Operating System. The algorithms were implemented in
C++. Problems were solved with CPLEX 12.7, with all parameters set to their default values.
Test cases were generated using R.

In Section 3.1 the testing environment of the general test cases is discussed. Section 3.2
summarizes computational findings of the test cases defined in Section 3.1. Findings from
additional problem instances that test for various fixed cost levels, which was found to be a
significant control parameter from the initial computational results, are presented in Section 3.3.
To conclude the section, Section 3.4 discusses results from additional experiments testing for
various levels of the infeasibility threshold T.

3.1. Testing environment

The heuristic algorithm was tested on 162 instances, ranging from small-scale (e.g., 10
candidate facilities and 21 customers) to large-scale (e.g., 124 facilities and 111 customers). The
test cases were randomly generated as follows.

The random test case generator first determines the numbers of candidate facility and
customer locations for each instance (|/| and |I| respectively), both random variables of a
uniform distribution according to ~U(10,130). Each facility and customer point is assigned to a
Cartesian coordinate location within a 2-dimension [-1,1] by [-1,1] field. It is assumed that each

facility is identical with respect to capacity restrictions and fixed cost amounts, and each
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customer point uniformly has one unit of demand. The total available capacity (summed over all

facilities) is defined by a uniformly distributed random variable as follows:

Z g, ~U(5 x |11,15 x [I]).

JjEj
Lastly, transportation unit costs are determined based on the Euclidean distance between each
customer-facility location combination.

Motivated to analyze the algorithm’s performance under various real-world
circumstances, two variants were implemented to the test case design. The first is coordinate
location distribution. In practical applications, customer demand and facility location availability
may vary across areas considered. Taking the region of North Texas, for example, population
distribution patterns vary based on the geographical scale considered — within the Dallas-Fort
Worth area, the population is spread out uniformly across the sprawling metropolitan region,
whereas at the region-level, there is one significant “center of gravity” (e.g., the Metroplex) that
the population centers around. To compare the effects of this parameter, three scenarios are
evaluated: (1) “uniform” distribution, (2) “1-centroid” distribution, and (3) “2-centroid”
distribution. In the “uniform” case, all coordinate locations are generated randomly within the
Cartesian field according to (x, y)~(U(—1,1), U(—l,l)). In the “1-centroid” scenario, one
center of gravity point (x%y°) is generated according to the same uniform distribution above. The
rest are generated around this point following a normal distribution as follows:

oK)

0 0
(x, y)~ <N <x°, — Y

2 2
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In the case that the point falls outside the defined coordinate field, the coordinate values are
truncated to either -1 or 1. The “2-centroid” scenario follows the same distribution, except half of
the points are generated around the first center of gravity, and the other half around a second.

Fixed cost is the second input parameter implemented. The CFLP solution can be
significantly impacted by the fixed cost levels, influencing the optimal network topology to have
more or less opened facilities based on overhead cost considerations. Three scenarios are
evaluated: (1) “low,” (2) “medium,” and (3) “high” fixed cost levels. In each of the scenarios, all
facilities will have fixed cost set to f; = |J|%, where a is set to -0.5, 0.5, and 1.5 for the “low,”
“medium,” and “high” cases, respectively.

Overviews of instances tested in this paper are shown in Tables 1 and 2: Table 1
aggregates the 162 test cases by the input scenario parameters (total of 32 = 9), whereas Table 2
summarizes them by test case problem size (total of 18). The column “Problem Size” is defined
as the total number of both binary (i.e., location) and non-binary (i.e., flow) variables considered
in the problem, equal to [J| x (|I| + 1). This will be the metric evaluated when quantifying a

particular test case’s problem size.

Table 1. Overview of test cases summarized by input parameter.

Location distribution Fixed cost level ~ Number of test cases

scenario scenario evaluated
Uniform Low 18
Uniform Medium 18
Uniform High 18
1-centroid Low 18
1-centroid Medium 18
1-centroid High 18
2-centroid Low 18
2-centroid Medium 18
2-centroid High 18
Total 162

12



Table 2. Overview of test cases summarized by problem size.

|1 1| Problem Size Number of test
(J1 x (Il + 1))  cases evaluated
21 10 220 9
15 17 272 9
13 24 336 9
14 23 345 9
13 26 364 9
38 39 1,170 9
36 50 1,850 9
59 35 2,100 9
44 58 2,610 9
65 55 3,630 9
63 63 4,032 9
77 77 6,006 9
71 99 7,128 9
70 112 7,952 9
89 89 8,010 9
77 121 9,438 9
106 107 11,449 9
111 124 13,888 9
Total 162

3.2. Computational results
This section summarizes and comments on the computational results. All test cases are
solved using two methods: the heuristic algorithm presented in this paper, and the CPLEX-MIP
solver. The optimal solutions computed by CPLEX-MIP provide a benchmark to evaluate the
heuristic algorithm performance in regards to two metrics: CPU runtime (measured in seconds)
and solution quality (quantified as the optimality gap between the best found solutions from both
methods). The optimality gap is reported as a percent (%) based on the following calculation:

) ) Heuristic Algorithm objective — CPLEXMIP objective
Optimality gap = CPLEXMIP objective x 100.

Because CPLEX may take very long to solve test cases to optimality, runtimes are capped at
3,600 seconds (i.e., 1 hour). If this threshold is exceeded, the best found solution is assumed to

be the optimal solution for the particular test instance.
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Results are summarized in Table 3. One clear takeaway is the significant savings in CPU
times offered by the heuristic algorithm. Figure 2 displays a scatterplot of solving runtimes using
both methods (note the vertical axis is in logarithmic scale). As expected, it is apparent that using
the CPLEX-MIP solver results in exponentially increasing CPU times as the problem size
increases. Additionally, the results using the heuristic algorithm offer support to the proposition
presented in Section 2.2 — the runtimes of the developed algorithm only appear to grow in a
polynomial (perhaps even quasi-linear) fashion. Appendix A.1 offers results of all 162 test cases

examined for this analysis.

CPU (seconds)

10,000.00
1,000.00
100.00
10.00
1.00

0.10

0.01
0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000

Runtime-Heuristic Runtime-MIP

Figure 2. Computation time of heuristic and CPLEX-MIP plotted against problem size.

It is important to note that solve times using CPLEX-MIP was capped at 1 hour. This

gives rise to two points: the first is that because an upper bound on allowed computation time is
15



set, CPU times for “timeout” test cases are artificially truncated. If this restriction was not
implemented, we can expect to see longer upper bounds on problem solve times using CPLEX-
MIP, further amplifying the benefits of the algorithm as a fast approximation method. The
second point is that as Figure 3 illustrates below, it is intuitively expected that the frequency of
instances that “timeout” increases as the problem size gets larger. However, a strong relationship
from the test cases cannot be derived — this depicts the “non-deterministic” nature of solving
these types of problems to optimality. Being able to estimate problem solve time bounds is

another aspect that the heuristic offers that exact methods cannot.

"Timeout" test case count

L B = = ¥ = R =

[=2]

L

(=1 (ol [2%] L =

Figure 3. Number of “timeout” cases when using CPLEX-MIP to solve, plotted against problem size.

The second metric, solution quality, is also observed. Overall solution qualities of test
cases vary significantly — Figure 4 displays a scatterplot showing the relationship between
solution accuracy and problem size. Based on the results, the optimality gaps are not small

enough to claim that the heuristic algorithm offers satisfactory solutions at a reliable rate. From

16



these results, we can conclude that the benefit of the algorithm is producing a feasible solution
(which can potentially offer “adequate” solutions) in a fraction of computation time. This benefit
may be marginal when solving smaller instances, because in these cases CPLEX can provide
optimal solutions while maintaining feasible CPU runtimes. Rather, the benefit is most reflected
in the larger test cases, where instances that “timeout” using the CPLEX-MIP solver can be

solved by the heuristic in seconds.

Optimality Gap (%) vs. Problem Size

250% @
L ]
200% ®
L ]
150%
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e ® ® ‘
L ]
® ®
, ® o ® .
50% e o . 4 . s
L ]
®
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Figure 4. Optimality gap of test cases plotted against problem size.

To determine heuristic performance under various scenarios, results are now analyzed
with respect to the input parameters. The optimality gap metric will be the primary focus of the

subsequent analyses. The summary statistics offered in Table 4 point to the location distribution
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parameter having no significant effect in respect to solution quality. However, Table 5 shows
that test cases with “high” fixed cost parameters perform well, offering optimality gaps within a
range of 0% (i.e., optimal) to 4.9%. It is conjectured that the algorithm performs better for this
scenario because higher fixed costs will influence the optimal solution to have less opened
facilities in the final network topology. This minimizes the set of potentially “promising”
locations that the algorithm must consider to opened, thus increasing the likelihood of arriving at
a near-optimal solution within the heuristic search tree. Another reason could be in the algorithm
framework. Because the heuristic greedily focuses on the binary location variable values when
determining which locations to be opened or closed, the objective function value becomes
significantly influenced by the fixed cost component (f;x; in the model formulation). Hence, the
solution accuracy performance becomes dependent on the fixed cost test case parameter — as the
results indicate, this appears beneficial when solving problems with “high” fixed costs but
problematic for the “medium” and “low” cases. Additional experiments will be conducted in
Section 3.3 for further evaluation.
3.3. Additional test cases controlling for the fixed cost parameter

In order to validate the results observed in Section 3.2, 60 additional test cases are
examined. As we assume the location distribution parameter has no effect on solution outcomes,
the additional cases take on the “uniformly distributed” scenario. Table 6 offers summary
statistics of these additional test cases. The results further validate the explored conjecture:
excluding the outlier test case having a 91.2% optimality gap, the remaining 19 cases of the
“High” fixed cost level have minimum, average, and maximum optimality gaps of 0.0%, 0.4%,
and 2.7%, respectively. (The full results are available in Appendix A.2.) The algorithm may be

an effective alternative to using a commercial MIP solver when solving large-scale problems
18
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with relatively high facility fixed costs. Problems where facility consolidation is expected to be
the optimal strategy could be an area of effective application.
3.4. Modifying the infeasibility threshold

The conducted experiments show the heuristic performs well for problems of the “high”
fixed cost parameter. In an effort to improve solution accuracy for the other test cases,
specifically the “low” and “medium” fixed cost problems, modification of the infeasibility
threshold T is explored. Relaxing T to a higher value enables the algorithm to explore more
solutions and potentially leading to better solutions. For the 60 additional test cases generated for
Section 3.3, four values of T were implemented as follows.

(VU] .
> [default setting]

- ]
2/U71

klé—l [i.e., nothreshold]

It was found that in 4 out of the 60 cases, the revised T values led to solution accuracy
improvements. Tradeoff curves showing runtime performance and optimality gap for test cases
A, B, and C (of the “low” fixed cost parameter) and test case D (of the “medium” fixed cost
parameter) are depicted in Figures 5 through 8 below. Whether modifying the T value (resulting
in longer computation times) being worth the solution accuracy improvement is up to
interpretation. However, because runtime performance is still very fast (at less than a few
seconds for all cases) and only seems to be growing linearly, this modification can be an easy

way to marginally improve the algorithm’s solution accuracies with minimal effort.
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Figure 5. Runtime vs. optimality gap tradeoff
curve for test case A.
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Figure 6. Runtime vs. optimality gap tradeoff
curve for test case B.
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Figure 7. Runtime vs. optimality gap tradeoff
curve for test case C.
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4. APPLICATION TO A REAL-WORLD PROBLEM

The results from Section 3 illustrate the algorithm’s potential as an effective method to
solve CFLPs. However, because simplifying assumptions were made for the test cases
considered thus far (such as using uniform fixed costs and capacities for all candidate facilities),
the heuristic still has not proven its effectiveness for solving more realistic problems observed in
industry. To examine whether the developed algorithm has practical applicability, a business
problem was modeled to perform additional computational tests on. The considered problem is a
CFLP adapted from a 2017 study of a warehouse network optimization project, conducted for an
industrial materials distributor in the United States. The instance was slightly modified to fit the

scope of the considered problem type for this paper, and the data altered for confidentiality.

AL

Figure 9. Map of all candidate warehouse locations (black triangles) and customer demand (magenta circles).
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In this problem, the distributor is looking to optimize its warehouse network across the
continental United States. There are 28 potential warehouse locations to select from, each with
varying facility capacities and fixed costs. The optimal set of warehouses must satisfy all
customer demand points, which are aggregated by the first 2-digit prefixes of US postal
zipcodes. Figure 9 visualizes the customer and demand nodes geographically.

Two types of costs are considered: fixed and transportation. The distributor seeks to find
the optimal network topology of warehouse placement and customer assignment in order to
minimize total annual expenditures. For simplicity, all products that the distributor handles are
considered to be of one type, with tons being the universal measure of volume. Distances are
computed using the great circle method between geocoordinates of zipcodes. Similar to the
experiments conducted in Section 3, three different cases of fixed cost levels were examined:
“Standard,” “High,” and “Low.” In the “High” scenario, the fixed costs were amplified by a
factor of 1.5 relative to the “Standard” case, and for the “Low” scenario, scaled down by a factor
of 1.5. Refer to Appendix B.1 for all problem parameters.

Results from the three runs are summarized in Table 7. As expected from the findings in
Section 3, the heuristic algorithm indeed reduces the problem solving runtimes. Additionally, the
solution accuracy is best for the “High” test case at an optimality gap of 5.6%, followed by the

“Standard” (24.9%) and “Low” (47.1%) instances.

Table 7. Summary of warehouse problem solutions.

Problem Algorithm CPLEX-MIP Optimality
Type Total cost (§) CPU (seconds) Total cost (§) CPU (seconds) Gap (%)

Standard  $4,349,580 0.93 $3,483,260 3.43 24.9%
High $4,770,720 0.53 $4,516,170 5.11 5.6%
Low $4,044,090 0.11 $2,749,920 12.82 47.1%
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Furthermore, detailed results of opened warehouse locations and their handled volumes

for the “High” problem are summarized in Table 8 (results from the other two scenarios are

available in Appendix B.2). It is observed that the solutions produced by both the algorithm and

CPLEX-MIP are very similar, as validated by the maps of Figures 10 and 11. These results

provide a promising outlook for the practicality of the developed heuristic, showing the

algorithm is indeed capable of selecting “promising” candidate facility sites that are also selected

in the true optimal solution set.

Table 8. Opened warehouses in Algorithm and CPLEX-MIP solutions for the “High” problem scenario.

Warehouse Fixed

location cost ($)
Atlanta, GA $750,000
Cincinnati, OH $750,000
Cleveland, OH  $450,000
Dallas, TX $600,000
Detroit, Ml $300,000
Houston, TX  $600,000
Tucson, AZ $450,000

Capacity

(tons)
15,000
15,000
9,000
10,000
7,000
10,000
8,000
Total

Volume handled in Volume handled in CPLEX-

Algorithm solution (tons) MIP solution (tons)
8,248 13,896
13,506 15,000
9,000
10,000
7,000 7,000
8,142
8,000 8,000
53,896 53,896
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!‘\ Detroit, MI

Figure 10. Optimal network topology given by algorithm solution for the “High” problem scenario.
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Figure 11. Optimal network topology given by CPLEX-MIP solution for the “High” problem scenario.
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5. CONCLUSIONS AND FUTURE WORK

The algorithm presented in this paper is a straightforward and applicable heuristic
incorporating greedy-based variable fixing and iterative LP relaxation solving to solve CFLPs.
The methodology offers an alternative to solving the MIP to optimality — which can take
exponential CPU time due to the existence of binary location variables in the formulation — by
providing a heuristic solution in a fraction of required CPU time while attaining acceptable
solution accuracy in certain scenarios. The experiments offer validation of the computational
benefits, with additional insight that the heuristic performs best for problem instances involving
facilities having relatively high fixed cost levels. The promising results from solving the
warehouse network problem in Section 4 also boost confidence in the algorithm being a viable
method for solving similar problems in an industry setting.

The savings in computation times are apparent from the experiments run for this paper,
but there is significant room for improvement in the solution accuracy aspect. Though not
explored in this paper, combining the heuristic and CPLEX-MIP solving techniques could be a
promising idea. Because the proposed algorithm returns a solution in minimal CPU time,
problems may be first solved using the algorithm, and the resulting solution could be provided as
a “warm start” input to the CPLEX-MIP solver, which will then solve the problem to optimality.

Currently the algorithm only considers the binary location variable values in the variable
fixing process. In future work, the algorithm could be revisited so that other elements are also
considered when making greedy-based branching decisions. As discussed in Section 3.2, the
current algorithm framework presumably leads to the over-prioritization of the fixed cost

component when deciding which locations are “promising” or not. It is conjectured that a more
26



sophisticated heuristic rule, such as one that considers the tradeoffs between both fixed and
variable cost influences, may be more appropriate. For instance, shadow prices, reduced costs,
and non-binary (i.e., flow) variable values could be additional metrics to consider. Evaluating
additional information hopefully will result in obtaining better solutions for problems of various
types.

Although the paper only explores a limited scope of the applicability of our method, we
predict that this framework can be applied to solve not only just CFLPs, but to a broader scope of
MIPs as well. The algorithm’s main benefit is being able to produce heuristic solutions very
quickly, so applications requiring the fast and scalable reproduction of solutions are potential use
cases. Some examples could be determining optimal power grid usage that can reflect
instantaneous changes in load demand, or enabling efficient computation of service patterns in
the sharing economy (such as with ridesharing in Uber). Cloud manufacturing could also be
another use case for the methodology. As introduced by Wu et al. (2013) and Wu et al. (2015),
this paradigm enables system models to access a shared collection of various manufacturing
resources. The developed heuristic enables the required scalability in solving manufacturing-
related MIP models that is required to efficiently reflect tremendous amount of input information
being updated instantaneously.

Due to the straightforward framework and flexibility of the algorithm, we believe the

developed heuristic has a strong potential for further exploration in both theory and practice.
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APPENDIX A.

DETAILED COMPUTATIONAL RESULTS FOR TEST CASES CONSIDERED

Location
distribution
scenario

2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform

IN SECTION 3

A.1. Full results of experiments run for Section 3.2

Table 9. Results for all 162 test case experiments conducted.

Fixed
cost
level

scenario
Medium
Medium
Medium
Medium
Medium
Low
Low
Low
Low
Low
High
High
High
High
High
Medium
Medium
Medium
Medium
Medium
Low
Low
Low
Low
Low
High
High
High
High
High
Medium
Medium
Medium
Medium
Medium
Low

1]

36
59
38
44
65
36
59
38
44
65
36
59
38
44
65
36
59
38
44
65
36
59
38
44
65
36
59
38
44
65
36
59
38
44
65
36

1

50
35
30
58
55
50
35
30
58
55
50
35
30
58
55
50
35
30
58
55
50
35
30
58
55
50
35
30
58
55
50
35
30
58
55
50

Problem
size

1,850
2,100
1,170
2,610
3,630
1,850
2,100
1,170
2,610
3,630
1,850
2,100
1,170
2,610
3,630
1,850
2,100
1,170
2,610
3,630
1,850
2,100
1,170
2,610
3,630
1,850
2,100
1,170
2,610
3,630
1,850
2,100
1,170
2,610
3,630
1,850

(seconds)
Algorithm

30

CPU

0.087
0.074
0.044
0.104
0.247
0.049
0.103
0.063
0.052
0.537
0.096
0.055
0.026
0.095
0.140
0.081
0.054
0.031
0.097
0.126
0.046
0.109
0.066
0.052
0.501
0.087
0.054
0.025
0.100
0.149
0.081
0.067
0.050
0.105
0.216
0.036

CPU
(seconds)
CPLEX-

MIP

6.347

1.827

0.925

9.499

4.487
3610.090

0.346

0.752
3615.920

1.486

0.822

1.327

1.327
3609.140

5.125

1.881

3.577

1.200

13.170

8.686
1451.840

0.614

0.535
3610.400

2.614

0.306

4.074

0.986
3615.200

31.416
19.221
1.697
0.681
14.172

9.126
3565.780

Optimality
Gap (%)

1.9%
2.6%
41.9%
4.0%
30.2%
20.3%
18.1%
77.5%
16.2%
18.4%
0.0%
0.1%
0.2%
0.1%
0.2%
1.0%
1.9%
22.2%
3.5%
3.6%
59.7%
29.3%
33.9%
21.4%
21.3%
0.0%
0.1%
0.2%
0.1%
0.1%
2.7%
17.1%
184.6%
2.5%
29.1%
16.8%

“Timeout”
occurrence

*)



Location
distribution
scenario

Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform

Fixed
cost
level

scenario
Low
Low
Low
Low
High
High
High
High
High
Medium
Medium
Medium
Medium
Medium
Low
Low
Low
Low
Low
High
High
High
High
High
Medium
Medium
Medium
Medium
Medium
Low
Low
Low
Low
Low
High
High
High
High
High
Medium
Medium
Medium
Medium
Medium
Low
Low
Low
Low

1]

59
38
44
65
36
59
38
44
65
14
21
13
13
15
14
21
13
13
15
14
21
13
13
15
14
21
13
13
15
14
21
13
13
15
14
21
13
13
15
14
21
13
13
15
14
21
13
13

Il

35
30
58
55
50
35
30
58
55
23
10
26
24
17
23
10
26
24
17
23
10
26
24
17
23
10
26
24
17
23
10
26
24
17
23
10
26
24
17
23
10
26
24
17
23
10
26
24

Table 9. (Continued)

Problem
size

2,100
1,170
2,610
3,630
1,850
2,100
1,170
2,610
3,630
345
220
364
336
272
345
220
364
336
272
345
220
364
336
272
345
220
364
336
272
345
220
364
336
272
345
220
364
336
272
345
220
364
336
272
345
220
364
336

(seconds)
Algorithm

31

CPU

0.092
0.067
0.056
0.600
0.079
0.061
0.026
0.106
0.135
0.030
0.054
0.032
0.027
0.032
0.026
0.023
0.025
0.025
0.024
0.060
0.016
0.024
0.024
0.019
0.025
0.030
0.028
0.028
0.023
0.023
0.033
0.027
0.026
0.022
0.023
0.015
0.023
0.022
0.017
0.024
0.022
0.029
0.026
0.025
0.023
0.028
0.023
0.022

CPU
(seconds)
CPLEX-

MIP

0.150

0.108
3613.710

0.367

4.930

1.047

0.743
3613.200

12.764

0.263

0.099

0.615

0.379

0.259

0.267

0.052

0.173

0.229

0.150

0.253

0.087

1.146

0.283

0.256

0.282

0.103

0.288

0.340

0.208

0.323

0.139

0.433

0.265

0.204

0.354

0.108

1.071

0.295

0.257

0.254

0.090

0.215

0.327

0.262

0.329

0.074

0.312

0.316

Optimality
Gap (%)

10.1%
20.1%
11.2%
27.5%
0.1%
0.1%
0.9%
0.0%
0.2%
230.8%
56.5%
136.3%
25.8%
83.4%
46.7%
15.1%
19.6%
15.0%
61.0%
2.9%
4.9%
0.7%
0.4%
4.8%
32.2%
60.6%
20.9%
23.5%
140.1%
59.6%
23.5%
60.4%
18.4%
29.6%
2.2%
1.0%
0.9%
0.4%
3.0%
201.0%
23.0%
23.3%
90.5%
252.7%
0.0%
4.6%
4.1%
25.1%

“Timeout”
occurrence

)



Location
distribution
scenario

Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
2-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
1-centroid
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform

Fixed
cost
level

scenario
Low
High
High
High
High
High
Medium
Medium
Medium
Medium
Medium
Low
Low
Low
Low
Low
High
High
High
High
High
Medium
Medium
Medium
Medium
Medium
Low
Low
Low
Low
Low
High
High
High
High
High
Medium
Medium
Medium
Medium
Medium
Low
Low
Low
Low
Low
High
High

1]

15
14
21
13
13
15
71
70
77
106
111
71
70
77
106
111
71
70
77
106
111
71
70
77
106
111
71
70
77
106
111
71
70
77
106
111
71
70
77
106
111
71
70
77
106
111
71
70

Il

17
23
10
26
24
17
99
112
121
107
124
99
112
121
107
124
99
112
121
107
124
99
112
121
107
124
99
112
121
107
124
99
112
121
107
124
99
112
121
107
124
99
112
121
107
124
99
112

Table 9. (Continued)

Problem
size

272
345
220
364
336
272
7,128
7,952
9,438
11,449
13,888
7,128
7,952
9,438
11,449
13,888
7,128
7,952
9,438
11,449
13,888
7,128
7,952
9,438
11,449
13,888
7,128
7,952
9,438
11,449
13,888
7,128
7,952
9,438
11,449
13,888
7,128
7,952
9,438
11,449
13,888
7,128
7,952
9,438
11,449
13,888
7,128
7,952

(seconds)
Algorithm
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CPU

0.024
0.024
0.015
0.025
0.020
0.022
0.402
0.403
1.231
0.614
0.738
0.291
0.399
0.412
0.527
1.102
0.475
0.470
1.115
0.558
0.765
0.477
0.485
1.005
0.637
0.825
0.308
0.368
0.421
0.512
0.621
0.458
0.501
1.061
0.580
0.756
0.398
0.443
1.006
0.501
0.701
0.286
0.389
0.449
0.543
0.623
0.395
0.509

CPU
(seconds)
CPLEX-

MIP

0.103

0.244

0.103

1.363

0.338

0.233
3601.570

29.125
3606.700
189.689
3600.110
3671.130
3620.290
3611.790
3618.210
3636.430
248.827
20.748
3606.470
56.401
3500.070
582.388
221.062
3613.730
654.941
3600.090
3611.140
3638.090
3615.780
1619.040
3611.710
30.828
89.887
3608.270
3600.160
329.536
309.137
2583.050
3615.010
52.175
1421.270
3616.180
3652.280
3631.530

2.158
3605.580

374.560
812.137

Optimality
Gap (%)

5.7%
0.4%
2.1%
0.2%
0.3%
2.2%
5.6%
1.3%
0.7%
6.7%
1.2%
23.5%
18.0%
71.1%
51.7%
62.2%
0.1%
0.0%
0.0%
0.0%
0.0%
10.1%
3.3%
1.0%
13.5%
9.1%
67.2%
20.2%
42.3%
45.3%
88.7%
0.0%
0.0%
0.0%
0.1%
0.0%
1.7%
3.4%
0.6%
6.0%
5.2%
6.8%
6.7%
6.4%
11.9%
15.3%
0.0%
0.0%

“Timeout”
occurrence

)
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Location
distribution
scenario

Uniform
Uniform
Uniform
2-centroid
2-centroid
1-centroid
1-centroid
1-centroid
2-centroid
2-centroid
Uniform
2-centroid
Uniform
2-centroid
Uniform
2-centroid
1-centroid
Uniform
1-centroid
1-centroid
Uniform
2-centroid
1-centroid
Uniform
2-centroid
1-centroid
Uniform
1-centroid
Uniform
Uniform

Fixed
cost
level

scenario
High

High

High
Medium
Low
Medium
Medium
Low
Medium
Medium
Medium

High
High
High
High
High
High
High
High
Low

Medium
Low
Medium
Medium
Low
Low
Low

High
Low
Low

1]

77
106
111

63

89

77

89

89

89

77

89
63
89
89
63
77
89
77
63
77
77
77
63
63
63
63
89
77
77
63

Il

121
107
124
63
89
77
89
89
89
77
89
63
89
89
63
77
89
77
63
77
7
77
63
63
63
63
89
77
7
63

Table 9. (Continued)

Problem

size

9,438
11,449
13,888
4,032
8,010
6,006
8,010
8,010
8,010
6,006
8,010
4,032
8,010
8,010
4,032
6,006
8,010
6,006
4,032
6,006
6,006
6,006
4,032
4,032
4,032
4,032
8,010
6,006
6,006
4,032

(seconds)
Algorithm
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CPU

0.994
0.606
0.778
0.235
0.450
0.454
0.539
0.323
0.449
0.397
0.490
0.216
0.509
0.465
0.258
0.377
0.489
0.407
0.271
0.267
0.388
0.355
0.266
0.252
0.293
0.161
0.319
0.454
0.300
0.172

CPU
(seconds)
CPLEX-

MIP
3607.260

78.216
3601.470
1934.830
1085.340
1000.470

845.571
328.750
273.362
224.272
223.278
117.606

37.189

25.268

24.642

22471

22.205

22.091

12.131

11.085

9.071

7.632

7.138

6.949

4.257

2.829

1.291

1.127

0.766

0.527

Optimality “Timeout”
Gap (%) occurrence

)

0.0% S
0.1%
0.1% S
1.6%
49.7%
1.4%
7.8%
57.0%
3.2%
3.5%
1.4%
0.0%
0.0%
0.0%
0.1%
0.0%
0.1%
0.0%
0.0%
126.0%
2.9%
77.2%
2.3%
3.4%
66.5%
43.9%
14.4%
0.0%
13.8%
15.0%



Location
distribution
scenario

Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform

A.2. Full results of experiments run for Section 3.3

Table 10. Results for all 60 test cases conducted for additional experiments.

Fixed
cost
level

scenario

High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low

Medium
Medium
Medium

1]

55
34
16
73
32
64
71
23
84
20
88
80
37
61
36
47
64
99
51
29
55
34
16
73
32
64
71
23
84
20
88
80
37
61
36
47
64
99
51
29
55
34
16

Ul

37
10
83
32
67
27
31
97
73
53
79
32
52
30
30
72
94
45
28
12
37
10
83
32
67
27
31
97
73
53
79
32
52
30
30
72
94
45
28
12
37
10
83

Problem
size

2,072
350
1,411
2,368
2,211
1,755
2,232
2,328
6,205
1,113
7,031
2,592
1,976
1,860
1,110
3,456
6,110
4,500
1,456
360
2,072
350
1,411
2,368
2,211
1,755
2,232
2,328
6,205
1,113
7,031
2,592
1,976
1,860
1,110
3,456
6,110
4,500
1,456
360
2,072
350
1,411

(seconds)
Algorithm
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CPU

0.034
0.022
0.068
0.047
0.070
0.028
0.048
0.150
0.247
0.037
0.471
0.034
0.042
0.031
0.021
0.290
0.541
0.214
0.026
0.012
0.094
0.025
0.033
0.098
0.054
0.067
0.094
0.042
1.149
0.030
0.992
0.088
0.035
0.132
0.073
0.190
0.279
0.597
0.074
0.021
0.075
0.018
0.050

CPU
(seconds)
CPLEX-

MIP

12.177

0.161

1.786

3.308

3.215

0.926

2.815

0.287
3601.490

0.954

42.268

2112

3.359

0.899

0.565

0.419

27.983

3.089

0.680

0.536

0.212

0.069

0.586

0.135
3603.950

0.217

0.309

2.694

0.646

4.109

0.748

0.323
3617.030

0.160

0.183
3617.020
3665.820

0.388

0.111

0.087

1.782

0.150

0.927

Optimality
Gap (%)

0.5%
91.2%
0.0%
0.6%
0.1%
2.7%
0.3%
0.0%
0.2%
0.1%
0.0%
0.9%
0.2%
0.5%
0.6%
0.0%
0.0%
0.2%
0.3%
0.8%
12.3%
2.9%
6.7%
8.7%
4.4%
12.0%
4.9%
0.6%
15.6%
5.6%
15.7%
8.6%
14.3%
14.9%
20.2%
7.5%
11.3%
15.5%
12.1%
31.3%
68.1%
8.6%
0.8%

“Timeout”
occurrence

()



Location
distribution
scenario

Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform
Uniform

Fixed
cost
level

scenario
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

1]

73
32
64
71
23
84
20
88
80
37
61
36
47
64
99
51
29

I

32
67
27
31
97
73
53
79
32
52
30
30
72
94
45
28
12

Table 10. (Continued)

Problem

size

2,368
2,211
1,755
2,232
2,328
6,205
1,113
7,031
2,592
1,976
1,860
1,110
3,456
6,110
4,500
1,456
360

(seconds)
Algorithm
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CPU

0.071
0.060
0.072
0.085
0.121
0.389
0.056
0.433
0.093
0.059
0.061
0.041
0.315
0.550
0.427
0.084
0.022

CPU
(seconds)
CPLEX-

MIP

1.332

2.861

1.016

1.310

15.738
24.032
1.203
79.057

2.005

4.380

1.601

0.691

16.959
156.280

4.825

0.883

0.176

Optimality
Gap (%)

70.1%
3.7%
107.1%
85.0%
0.2%
52.9%
3.2%
1.2%
73.7%
110.5%
55.3%
151.9%
1.0%
1.1%
38.1%
107.3%
20.5%

“Timeout”
occurrence

(*)



APPENDIX B.

PARAMETERS AND RESULTS OF REAL-LIFE PROBLEM CONSIDERED IN SECTION 4

B.1. Input parameters

Table 11. Warehouse location input parameters.

Warehouse location  Zipcode 2-  Capacity  Fixed cost ($)  Fixed cost ($)  Fixed cost ($)

digit prefix (tons) Standard High Low
Boston, MA 01 10,000 $1,000,000 $1,500,000 $666,666
Phoenix, AZ 85 6,000 $300,000 $450,000 $200,000
Atlanta, GA 30 15,000 $500,000 $750,000 $333,333
Philadelphia, PA 19 10,000 $500,000 $750,000 $333,333
Los Angeles, CA 91 10,000 $1,200,000 $1,800,000 $800,000
Chicago, IL 60 8,000 $500,000 $750,000 $333,333
Cincinnati, OH 45 15,000 $500,000 $750,000 $333,333
Houston, TX 77 10,000 $400,000 $600,000 $266,666
Dallas, TX 75 10,000 $400,000 $600,000 $266,666
Denver, CO 80 14,000 $700,000 $1,050,000 $466,666
Miami, FL 33 12,000 $800,000 $1,200,000 $533,333
Detroit, Ml 48 7,000 $200,000 $300,000 $133,333
Minneapolis, MN 55 12,000 $500,000 $750,000 $333,333
St. Louis, MO 63 10,000 $400,000 $600,000 $266,666
Charlotte, NC 28 10,000 $500,000 $750,000 $333,333
Portland, OR 97 5,000 $400,000 $600,000 $266,666
Seattle, WA 98 8,000 $700,000 $1,050,000 $466,666
Salt Lake City, UT 84 7,000 $500,000 $750,000 $333,333
Cleveland, OH 44 9,000 $300,000 $450,000 $200,000
Kansas City, MO 64 14,000 $600,000 $900,000 $400,000
San Antonio, TX 78 9,000 $400,000 $600,000 $266,666
Austin, TX 78 7,000 $400,000 $600,000 $266,666
Tucson, AZ 85 8,000 $300,000 $450,000 $200,000
Las Vegas, NV 89 15,000 $700,000 $1,050,000 $466,666
Oklahoma City, OK 73 11,000 $600,000 $900,000 $400,000
San Francisco, CA 94 7,000 $1,300,000 $1,950,000 $866,666
Albuguerque, NM 87 15,000 $400,000 $600,000 $266,666
San Diego, CA 92 8,000 $600,000 $900,000 $400,000
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Table 12. Customer demand location input parameters.

Customer Customer Customer
Zipcode Zipcode Zipcode

2-digit Demand 2-digit Demand 2-digit Demand

Prefix (tons) Prefix (tons) Prefix (tons)
01 988 35 213 68 44
02 773 36 135 69 1
03 253 37 1,010 70 238
04 71 38 123 71 235
05 76 39 112 72 587
06 582 40 404 73 459
07 1,042 41 139 74 493
08 921 42 93 75 582
10 294 43 681 76 405
11 450 44 2,144 77 2,956
12 260 45 3,931 78 502
13 210 46 277 79 186
14 796 47 723 80 209
15 377 48 861 81 53
16 381 49 1,216 82 16
17 150 50 422 83 262
18 600 51 127 84 148
19 893 52 21 85 3,238
20 46 53 381 86 70
21 764 54 291 87 79
22 886 55 1,190 88 8
23 177 56 82 89 279
24 545 57 14 90 590
25 168 58 6 91 756
26 43 59 11 92 1,040
27 360 60 2,160 93 215
28 938 61 232 94 449
29 1,384 62 91 95 374
30 1,758 63 1,382 96 12
31 283 64 749 97 285
32 833 65 88 98 772
33 883 66 561 99 13
34 216 67 69
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