A Thesis
by
HIROMICHI YAMAMOTO

Submitted to the Office of Graduate and Professional Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of
 MASTER OF SCIENCE

Chair of Committee, V. Jorge Leon
Committee Members, Andrew L. Johnson
Senthil Gunasekaran
Head of Department, Mark Lawley

August 2018

Major Subject: Industrial Engineering

Abstract

A new methodology to solve the capacitated facility location problem (CFLP) is presented. This optimization problem can be explicitly formulated and solved as a mixed integer program (MIP); however, because binary variables are used, obtaining exact solutions can be computationally intensive. This issue is apparent for solving large-scale problems, where the problem complexity is known to increase exponentially in the number of location variables. The proposed approach will instead solve the problem in a heuristic manner, returning an approximate solution rather than an exact one. A linear program (LP) relaxation to the problem is solved, while iteratively fixing select binary location variables to 0 or 1 until a feasible solution is obtained. Experimental results show that the proposed methodology can be effective in obtaining solutions in a fraction of CPU (central processing unit) time compared to exact methods. The quality of the solution is also shown to be extremely close to optimal for problems with relatively high fixed cost parameters. An application to a real-life problem is also explored to validate the practicality of the proposed methodology.

Not only does the algorithm offer a new approach to solving the CFLP, but it also presents a fast approximation method which can be applied to solve MIP models in general. Additional ideas for improving the algorithm are also presented.

CONTRIBUTORS AND FUNDING SOURCES

This work was supervised by a thesis committee consisting of Professor V. Jorge Leon (advisor) of the Departments of Engineering Technology \& Industrial Distribution and Industrial Engineering, Professor Andrew L. Johnson of the Department of Industrial Engineering, and Professor Senthil Gunasekaran of the Department of Engineering Technology \& Industrial Distribution. All work conducted for the thesis was completed by the student independently.

Graduate study at Texas A\&M University was partially supported by a research assistantship position from the Department of Engineering Technology \& Industrial Distribution.

TABLE OF CONTENTS

Page
ABSTRACT ii
CONTRIBUTORS AND FUNDING SOURCES iii
TABLE OF CONTENTS iv
LIST OF FIGURES v
LIST OF TABLES vi

1. INTRODUCTION 1
2. THE HEURISTIC ALGORITHM 5
2.1. Heuristic algorithm steps 5
2.2. Algorithm complexity 9
3. EXPERIMENTAL ANALYSIS 10
3.1. Testing environment 10
3.2. Computational results 13
3.3. Additional test cases controlling for the fixed cost parameter 18
3.4. Modifying the infeasibility threshold. 20
4. APPLICATION TO A REAL-WORLD PROBLEM 22
5. CONCLUSIONS AND FUTURE WORK 26
REFERENCES 28
APPENDIX A. DETAILED COMPUTATIONAL RESULTS FOR TEST CASES CONSIDERED IN SECTION 3 30
A.1. Full results of experiments run for Section 3.2 30
A.2. Full results of experiments run for Section 3.3 34
APPENDIX B. PARAMETERS AND RESULTS OF REAL-LIFE PROBLEM CONSIDERED IN SECTION 4 36
B.1. Input parameters 36
B.2. Full results 41

LIST OF FIGURES

Page
Figure 1. The detailed steps of the heuristic algorithm. 8
Figure 2. Computation time of heuristic and CPLEX-MIP plotted against problem size. 15
Figure 3. Number of "timeout" cases when using CPLEX-MIP to solve, plotted against problem size 16
Figure 4. Optimality gap of test cases plotted against problem size. 17
Figure 5. Runtime vs. optimality gap tradeoff curve for test case A. 21
Figure 6. Runtime vs. optimality gap tradeoff curve for test case B. 21
Figure 7. Runtime vs. optimality gap tradeoff curve for test case C. 21
Figure 8. Runtime vs. optimality gap tradeoff curve for test case D 21
Figure 9. Map of all candidate warehouse locations (black triangles) and customer demand (magenta circles). 22
Figure 10. Optimal network topology given by algorithm solution for the "High" problem scenario 25
Figure 11. Optimal network topology given by CPLEX-MIP solution for the "High" problem scenario 25

LIST OF TABLES

Page
Table 1. Overview of test cases summarized by input parameter. 12
Table 2. Overview of test cases summarized by problem size. 13
Table 3. Overview of experiment results summarized by problem size. 14
Table 4. Overview of experiment results summarized by the location distribution parameter 19
Table 5. Overview of experiment results summarized by the fixed cost level parameter. 19
Table 6. Overview of additional experiment results summarized by the fixed cost level parameter 19
Table 7. Summary of warehouse problem solutions. 23
Table 8. Opened warehouses in Algorithm and CPLEX-MIP solutions for the "High" problem scenario 24
Table 9. Results for all 162 test case experiments conducted. 30
Table 10. Results for all 60 test cases conducted for additional experiments. 34
Table 11. Warehouse location input parameters. 36
Table 12. Customer demand location input parameters 37
Table 13. Transportation cost matrix for all warehouse-customer combinations (\$/ton).. 38
Table 14. Opened warehouse and handled volumes for each solution. 41

1. INTRODUCTION

The facility location problem is an optimization problem seeking to find an optimal placement of facilities in order to minimize the total costs of the network. This paper specifically considers the Capacitated Facility Location Problem (CFLP). In this problem we are given a set I of customers, with each customer $i \in I$ having demand d_{i} to be served. We are also given a set J of potential locations where a facility $j \in J$ can be opened. These facilities each have fixed cost f_{j} and capacity q_{j} components associated with them. Assigning demand to be served from facility j to customer i costs $c_{i j}$ per unit. The CFLP objective is to select the best combination of facilities to be located which minimizes the sum of fixed and variable (e.g., transportation) costs. Each customer demand must be fully met while facility capacities may not be violated.

The following decision variables are introduced.

$$
\begin{gathered}
x_{j}= \begin{cases}1, & \text { if facility } j \text { is selected to operate } \\
0, & \text { otherwise }\end{cases} \\
y_{i j}=\text { volume of demand served to customer } i \text { from facility } j
\end{gathered}
$$

The problem is formulated as follows.

$$
\begin{array}{ll}
\text { Minimize } & \sum_{j \in J} f_{j} x_{j}+\sum_{i \in I} \sum_{j \in J} c_{i j} y_{i j} \\
\text { Subject to } & \sum_{i \in I} y_{i j} \leq q_{j} x_{j}, \quad \forall j \in J \\
& \sum_{j \in J} y_{i j} \geq d_{i}, \quad \forall i \in I \quad \text { (3) } \\
& y_{i j} \leq q_{j} x_{j}, \quad \forall i \in I, \forall j \in J \\
& x_{j} \in\{0,1\}, \quad \forall i \in I, \forall j \in J \tag{5}
\end{array}
$$

$$
\begin{equation*}
y_{i j} \geq 0, \quad \forall i \in I, \forall j \in J \tag{6}
\end{equation*}
$$

Objective function (1) minimizes the global cost, which is the sum of the fixed cost component (first term) of opening the facilities and the variable cost component (second term) of serving all customer demand point-facility location combinations. Constraints (2) ensure the total volume handled at each facility does not exceed its capacity. Constraints (3) force all demand at each customer to be met. Constraints (4) are redundant constraints of (2), but give tighter bounds to the feasible region. The "strong" problem formulation enabled by constraints (4) is preferred over the "weak" formulation (e.g., no redundant constraints) in many previous works because it reduces the gap of the LP (linear program) relaxation relative to the optimum integer solution (Teixeira et al. (2006)). Finally, constraints (5) and (6) define the decision variables. It is also assumed that all parameters, including unit costs, demands, and capacities take nonzero values.

The CFLP can be solved to optimality as a mixed-integer program (MIP) as modeled above. Commercial software such as AMPL, Gurobi, and CPLEX is capable of solving these problems effectively. However, solving MIPs is computationally intensive in contrast to solving LPs; this is especially an issue for larger problem instances, as computation times can increase exponentially with the addition of more variables and constraints to the problem. Indeed, these problems have been proven to be NP-hard and the worst-case runtime is $O\left(2^{n}\right)$, where n is the number of binary (i.e., 0-1) location variables (Francis et al. (1983)). The non-deterministic nature of solving CFLPs and MIPs is limiting in practice, and therefore justifies the development of heuristics or approximation methods as alternative solving methods.

The literature offers several approaches to overcoming this obstacle in an attempt to speed up problem solve times. The complicating element is the fixed cost component, because this requires the need for the binary variables to indicate whether a facility will be opened or not
in the optimal network topology. Nagurney (2010) formulates the supply chain optimization problem strictly as a flow problem, by making the assumption that facility capacities can be freely "bought" or "sold" in the open market. Lu et al. (2014) offers an approach that reflects "economies of scale" within the objective function - specifically, an S-shaped cost function is used to approximate a step function to capture the fixed cost component. These techniques allow for the elimination of the complicating binary variables from the formulation altogether. However, this type of approach can be limiting: in the former, not explicitly considering the effects of fixed cost could result in solutions failing to reflect the realities of business expenditures such as warehouse rent and other startup costs. In the latter method, the problem formulation may result in a nontrivial objective function (e.g., nonlinear and nonconvex), potentially leading to solving issues.

There also exist procedures that keep the MIP problem formulation intact, but apply heuristics to limit problem size and speed up computation times. Marmolejo et al. (2015) applies a Benders decomposition technique to solve a distribution network optimization problem. Other work such as that of Angelelli et al. (2012) and Gustaroba and Speranza (2014) implements a Kernel search framework to solve the MIP by only considering "promising" locations, which are determined to have high chances of being open in the optimal network topology. Incorporating LP relaxation approximations are also well-explored alternatives. Methods developed by Murray and Shanbhag (2006) and Melo et al. (2014) solve the LP relaxation to the problem to obtain an initial feasible solution, which is improved upon by local neighborhood searching. Thanh et al. (2010) uses LP relaxation and rounding of key decision variables to fix as many binary variables as possible, until the problem is reduced to a small enough MIP that can be solved using exact methods. Although these methodologies are shown to yield quality solutions (i.e., small
optimality gap) while reducing problem complexity, invoking the use of MIP solvers eliminates the hope for any further savings in computational time.

In this paper, new heuristic technique to solve the CFLP model is introduced. The proposed algorithm will iteratively solve the LP relaxation to the problem - at each step, hard variable fixing is implemented to set "promising" and "unpromising" binary location variables to 1 and 0 , respectively. The "promising" and "unpromising" variables are determined based on the location variable values in the most recent solution. The other variables are kept relaxed until subsequent iterations take place. The procedure is repeated until a valid binary solution vector is obtained. A feasibility recovery process is implemented in the case that an infeasible solution is encountered. To limit problem runtimes, the algorithm will invoke a timeout protocol in the case that too many infeasible iterations are observed.

Two contributions of the proposed work are that it offers: (1) a new approach to solving the CFLP, and (2) a fast approximation method to solve MIP problems in general. Because MIP solvers are not utilized in the proposed technique, it is expected that computation times are substantially improved, especially for large-scale instances. Performed experiments demonstrate three takeaways: (1) runtimes do not grow exponentially with increases in problem complexity, allowing for larger problems to be solved effectively, (2) the obtained solutions are of good quality for certain scenarios, and (3) the approach is capable of solving real-life problems.

The paper is structured as follows. Section 2 is devoted to outlining a detailed description of the proposed algorithm. The framework and results of the experimentation process are provided in Section 3. Section 4 explores an application of the technique to solving a warehouse network optimization exercise based on a real-life problem. To conclude, Section 5 addresses final remarks and some areas for future research.

2. THE HEURISTIC ALGORITHM

The detailed procedure of the proposed methodology (referred to as heuristic algorithm or simply algorithm throughout this paper), as well as its runtime complexity, is described in Section 2.1 and 2.2, respectively.

2.1. Heuristic algorithm steps

The problem is first formulated as a standard CFLP model as presented in Section 1. The binary constraints are then removed, converting the problem into a LP relaxation problem. This problem is then solved, which yields an initial solution. A check is conducted to see if all candidate location variables in the solution are binary - this is the first of two termination conditions. If there are non-binary values in the solution vector, the algorithm must continue; otherwise, the algorithm terminates. The second termination condition, where the number of encountered infeasible iterations is evaluated, is explained at the end of this subsection.

In the "variable fixing" sequence, there are three procedures: (1) permanently fixing variables to 1 , (2) tentatively fixing variables to 0 , and (3) permanently fixing variables to 0 . The algorithm will first search through all location variables (e.g., candidate facility location) not equaling 0 . The algorithm will choose one "most promising" variable and set this to be permanently opened (fixed to 1) for the rest of the algorithm. This location is identified as the non-binary variable x_{j} (which has not yet been fixed by the algorithm) having the highest value. If there is a tie, the tiebreaker will be the fixed cost - the location with the lower fixed cost is chosen. If there still is a tie, the selection will be arbitrary (to be precise, the location with the smallest index value j is selected).

Similar to the "most promising" variable fixing process, the algorithm also looks for one "least promising" variable. The non-binary location variable (also which has not yet been fixed) having the lowest value will be tentatively set to be closed (fixed to 0) for the rest of the algorithm. Tiebreaker rules also apply - in the case of a tie, the location with the higher fixed cost will be set to 0 .

The last component is the "permanent" fixing of variables to 0 . For all facilities where the LP relaxation solution equals 0 , they will be permanently closed (set to 0) for the rest of the algorithm. Unlike the other two variable fixing processes, more than a single facility variable can be fixed in one iteration.

Once the applicable variable values are all set, the modified LP relaxation problem is solved. The solver returns either a "feasible" or "infeasible" solution status. If feasible, the algorithm repeats iterations as necessary with the remaining "unfixed" location variables until a termination condition is met. However, if the result is "infeasible," we must backtrack. The location which was tentatively fixed to be closed in component (2) of the variable fixing stage will be opened (i.e., set to 1) for the rest of the algorithm. This modified LP relaxation problem will then be solved, and the resulting feasible solution will be further evaluated by the algorithm.

When an infeasible iteration is encountered, this means the problem has encountered a capacity limitation. As the algorithm artificially forces certain location variables to be closed, this could remove too much available capacity from the network and potentially lead to constraint violations. To resolve this issue, the location that was tentatively selected to be closed in that particular iteration is "re-opened," thus adding the previously removed capacity back into the problem. Because infeasible iterations can only be caused by capacity violations, the algorithm is guaranteed to recover feasibility once the re-modified problem is solved.

The number of these "backtracking" occurrences are tracked in order to cap the maximum number of infeasible iterations allowed by the algorithm. The rationale is that if infeasible iterations are being observed, the gap between total demand and total available network capacity should be diminishing, and thus the algorithm is approaching termination. To avoid exploring through too many infeasible solutions and thereby reducing computation times, a threshold T is set at

$$
T=\left\lceil\frac{\sqrt{|J|}}{2}\right\rceil
$$

where $|J|$ is the total number of candidate locations in the problem. Threshold T is a heuristic parameter, and the value specified above is a default value to be used for the experiments discussed in Sections 3.2 and 3.3. The algorithm's behavior under other levels of T will be examined in Section 3.4.

If the cumulative number of infeasible iterations exceeds T, then the algorithm will automatically timeout, and all remaining nonzero variables are fixed to 1 . This modified LP relaxation will then be solved for a final time, leading to the termination of the algorithm. Figure 1 provides a visual overview of the algorithm steps, discussed in detail above.

Figure 1. The detailed steps of the heuristic algorithm.

2.2. Algorithm complexity

The worst-case runtime of the proposed algorithm is estimated to be polynomial. The three-step sequence of variable fixing occurs in $O(n)+O(n)+O(n)=O(3 n)=O(n)$ time, where n is the number of variables to the LP problem. Linear programming is known to run in polynomial time $O(L \sqrt{m+n})$, where m is the number of constraints to the LP problem, and L is defined by the number of bits required to store all entries of the problem (Renegar (1988)). In case the iteration encounters an infeasible solution, the re-fixing of one location variable of complexity $O(1)$ and an additional solve of the LP model taking $O(L \sqrt{m+n})$ time is implemented. Thus, each algorithm iteration has a worst-case bound of $O(n)+O(L \sqrt{m+n})+$ $O(1)+O(L \sqrt{m+n})=O(n+1+2 L \sqrt{m+n})=O(n+L \sqrt{m+n})$.

Because a minimum of two location variables are fixed to 0 and 1 within each iteration, this procedure can be repeated a maximum of $O(n / 2)$, or $O(n)$ times. Hence, the algorithm complexity is $O(n) O(n+L \sqrt{m+n})=O\left(n^{2}+n L \sqrt{m+n}\right)$, which is indeed polynomial in n. This result implies that the developed heuristic is predicted to outperform exact solving methods in terms of worst-case algorithm complexity, where solving to optimality results in exponentially growing worst-case solve times as discussed in Section 1. Experimental results explored in the next section will validate this prediction.

3. EXPERIMENTAL ANALYSIS

This section is devoted to presentation and discussion of computational experiments. The tests were run on a PC Intel CORE i5 with 2.40 gigahertz 64-bit processor, 8.0 gigabytes of RAM, and Windows 10 64-bit as the Operating System. The algorithms were implemented in C++. Problems were solved with CPLEX 12.7, with all parameters set to their default values. Test cases were generated using R.

In Section 3.1 the testing environment of the general test cases is discussed. Section 3.2 summarizes computational findings of the test cases defined in Section 3.1. Findings from additional problem instances that test for various fixed cost levels, which was found to be a significant control parameter from the initial computational results, are presented in Section 3.3. To conclude the section, Section 3.4 discusses results from additional experiments testing for various levels of the infeasibility threshold T.

3.1. Testing environment

The heuristic algorithm was tested on 162 instances, ranging from small-scale (e.g., 10 candidate facilities and 21 customers) to large-scale (e.g., 124 facilities and 111 customers). The test cases were randomly generated as follows.

The random test case generator first determines the numbers of candidate facility and customer locations for each instance ($|J|$ and $|I|$ respectively), both random variables of a uniform distribution according to $\sim U(10,130)$. Each facility and customer point is assigned to a Cartesian coordinate location within a 2 -dimension [-1,1] by [-1,1] field. It is assumed that each facility is identical with respect to capacity restrictions and fixed cost amounts, and each
customer point uniformly has one unit of demand. The total available capacity (summed over all facilities) is defined by a uniformly distributed random variable as follows:

$$
\sum_{j \in J} q_{j} \sim U(5 \times|I|, 15 \times|I|)
$$

Lastly, transportation unit costs are determined based on the Euclidean distance between each customer-facility location combination.

Motivated to analyze the algorithm's performance under various real-world circumstances, two variants were implemented to the test case design. The first is coordinate location distribution. In practical applications, customer demand and facility location availability may vary across areas considered. Taking the region of North Texas, for example, population distribution patterns vary based on the geographical scale considered - within the Dallas-Fort Worth area, the population is spread out uniformly across the sprawling metropolitan region, whereas at the region-level, there is one significant "center of gravity" (e.g., the Metroplex) that the population centers around. To compare the effects of this parameter, three scenarios are evaluated: (1) "uniform" distribution, (2) "1-centroid" distribution, and (3) "2-centroid" distribution. In the "uniform" case, all coordinate locations are generated randomly within the Cartesian field according to $(x, y) \sim(U(-1,1), U(-1,1))$. In the " 1 -centroid" scenario, one center of gravity point $\left(x^{0}, y^{0}\right)$ is generated according to the same uniform distribution above. The rest are generated around this point following a normal distribution as follows:

$$
(x, y) \sim\left(N\left(x^{0},\left|\frac{x^{0}}{2}\right|\right), N\left(y^{0},\left|\frac{y^{0}}{2}\right|\right)\right) .
$$

In the case that the point falls outside the defined coordinate field, the coordinate values are truncated to either -1 or 1 . The "2-centroid" scenario follows the same distribution, except half of the points are generated around the first center of gravity, and the other half around a second.

Fixed cost is the second input parameter implemented. The CFLP solution can be significantly impacted by the fixed cost levels, influencing the optimal network topology to have more or less opened facilities based on overhead cost considerations. Three scenarios are evaluated: (1) "low," (2) "medium," and (3) "high" fixed cost levels. In each of the scenarios, all facilities will have fixed cost set to $f_{j}=|J|^{\alpha}$, where α is set to $-0.5,0.5$, and 1.5 for the "low," "medium," and "high" cases, respectively.

Overviews of instances tested in this paper are shown in Tables 1 and 2: Table 1 aggregates the 162 test cases by the input scenario parameters (total of $3^{2}=9$), whereas Table 2 summarizes them by test case problem size (total of 18). The column "Problem Size" is defined as the total number of both binary (i.e., location) and non-binary (i.e., flow) variables considered in the problem, equal to $|J| \times(|I|+1)$. This will be the metric evaluated when quantifying a particular test case's problem size.

Table 1. Overview of test cases summarized by input parameter.

Location distribution scenario	Fixed cost level scenario	Number of test cases evaluated
Uniform	Low	18
Uniform	Medium	18
Uniform	High	18
1-centroid	Low	18
1-centroid	Medium	18
1-centroid	High	18
2-centroid	Low	18
2-centroid	Medium	18
2-centroid	High	18
	Total	$\mathbf{1 6 2}$

Table 2. Overview of test cases summarized by problem size.

$\|\boldsymbol{I}\|$	$\|\boldsymbol{J}\|$	Problem Size $(\|\boldsymbol{J}\| \times(\|\boldsymbol{I}\|+\mathbf{1}))$	Number of test cases evaluated
21	10	220	9
15	17	272	9
13	24	336	9
14	23	345	9
13	26	364	9
38	39	1,170	9
36	50	1,850	9
59	35	2,100	9
44	58	2,610	9
65	55	3,630	9
63	63	4,032	9
77	77	6,006	9
71	99	7,128	9
70	112	7,952	9
89	89	8,010	9
77	121	9,438	9
106	107	11,449	9
11	124	13,888	9
		Total	$\mathbf{1 6 2}$

3.2. Computational results

This section summarizes and comments on the computational results. All test cases are solved using two methods: the heuristic algorithm presented in this paper, and the CPLEX-MIP solver. The optimal solutions computed by CPLEX-MIP provide a benchmark to evaluate the heuristic algorithm performance in regards to two metrics: CPU runtime (measured in seconds) and solution quality (quantified as the optimality gap between the best found solutions from both methods). The optimality gap is reported as a percent (\%) based on the following calculation:

$$
\text { Optimality gap }=\frac{\text { Heuristic Algorithm objective }- \text { CPLEXMIP objective }}{\text { CPLEXMIP objective }} \times 100 \text {. }
$$

Because CPLEX may take very long to solve test cases to optimality, runtimes are capped at 3,600 seconds (i.e., 1 hour). If this threshold is exceeded, the best found solution is assumed to be the optimal solution for the particular test instance.
"Timeout"
test cases
0
0
0
0
0
0
1
0
6
0
0
0
4
3
0
9
2
6
Table 3. Overview of experiment results summarized by problem size.

CPU (seconds)
CPLEX-MIP
Avg.
0.095
0.215
0.308
0.285
0.624
0.806
962.357
1.629
2412.712
8.452
234.545
144.332
1782.862
1629.630
315.806
3612.949
1096.777
2989.585

CPU (seconds)
Algorithm
Optimality Gap (\%)

Test cases
considered

Results are summarized in Table 3. One clear takeaway is the significant savings in CPU times offered by the heuristic algorithm. Figure 2 displays a scatterplot of solving runtimes using both methods (note the vertical axis is in logarithmic scale). As expected, it is apparent that using the CPLEX-MIP solver results in exponentially increasing CPU times as the problem size increases. Additionally, the results using the heuristic algorithm offer support to the proposition presented in Section 2.2 - the runtimes of the developed algorithm only appear to grow in a polynomial (perhaps even quasi-linear) fashion. Appendix A. 1 offers results of all 162 test cases examined for this analysis.

Figure 2. Computation time of heuristic and CPLEX-MIP plotted against problem size.

It is important to note that solve times using CPLEX-MIP was capped at 1 hour. This gives rise to two points: the first is that because an upper bound on allowed computation time is
set, CPU times for "timeout" test cases are artificially truncated. If this restriction was not implemented, we can expect to see longer upper bounds on problem solve times using CPLEXMIP, further amplifying the benefits of the algorithm as a fast approximation method. The second point is that as Figure 3 illustrates below, it is intuitively expected that the frequency of instances that "timeout" increases as the problem size gets larger. However, a strong relationship from the test cases cannot be derived - this depicts the "non-deterministic" nature of solving these types of problems to optimality. Being able to estimate problem solve time bounds is another aspect that the heuristic offers that exact methods cannot.

Figure 3. Number of "timeout" cases when using CPLEX-MIP to solve, plotted against problem size.

The second metric, solution quality, is also observed. Overall solution qualities of test cases vary significantly - Figure 4 displays a scatterplot showing the relationship between solution accuracy and problem size. Based on the results, the optimality gaps are not small enough to claim that the heuristic algorithm offers satisfactory solutions at a reliable rate. From
these results, we can conclude that the benefit of the algorithm is producing a feasible solution (which can potentially offer "adequate" solutions) in a fraction of computation time. This benefit may be marginal when solving smaller instances, because in these cases CPLEX can provide optimal solutions while maintaining feasible CPU runtimes. Rather, the benefit is most reflected in the larger test cases, where instances that "timeout" using the CPLEX-MIP solver can be solved by the heuristic in seconds.

Figure 4. Optimality gap of test cases plotted against problem size.

To determine heuristic performance under various scenarios, results are now analyzed with respect to the input parameters. The optimality gap metric will be the primary focus of the subsequent analyses. The summary statistics offered in Table 4 point to the location distribution
parameter having no significant effect in respect to solution quality. However, Table 5 shows that test cases with "high" fixed cost parameters perform well, offering optimality gaps within a range of 0% (i.e., optimal) to 4.9%. It is conjectured that the algorithm performs better for this scenario because higher fixed costs will influence the optimal solution to have less opened facilities in the final network topology. This minimizes the set of potentially "promising" locations that the algorithm must consider to opened, thus increasing the likelihood of arriving at a near-optimal solution within the heuristic search tree. Another reason could be in the algorithm framework. Because the heuristic greedily focuses on the binary location variable values when determining which locations to be opened or closed, the objective function value becomes significantly influenced by the fixed cost component ($f_{j} x_{j}$ in the model formulation). Hence, the solution accuracy performance becomes dependent on the fixed cost test case parameter - as the results indicate, this appears beneficial when solving problems with "high" fixed costs but problematic for the "medium" and "low" cases. Additional experiments will be conducted in Section 3.3 for further evaluation.

3.3. Additional test cases controlling for the fixed cost parameter

In order to validate the results observed in Section 3.2, 60 additional test cases are examined. As we assume the location distribution parameter has no effect on solution outcomes, the additional cases take on the "uniformly distributed" scenario. Table 6 offers summary statistics of these additional test cases. The results further validate the explored conjecture: excluding the outlier test case having a 91.2% optimality gap, the remaining 19 cases of the "High" fixed cost level have minimum, average, and maximum optimality gaps of $0.0 \%, 0.4 \%$, and 2.7%, respectively. (The full results are available in Appendix A.2.) The algorithm may be an effective alternative to using a commercial MIP solver when solving large-scale problems

with relatively high facility fixed costs. Problems where facility consolidation is expected to be the optimal strategy could be an area of effective application.

3.4. Modifying the infeasibility threshold

The conducted experiments show the heuristic performs well for problems of the "high" fixed cost parameter. In an effort to improve solution accuracy for the other test cases, specifically the "low" and "medium" fixed cost problems, modification of the infeasibility threshold T is explored. Relaxing T to a higher value enables the algorithm to explore more solutions and potentially leading to better solutions. For the 60 additional test cases generated for Section 3.3, four values of T were implemented as follows.

$$
T=\left\{\begin{array}{c}
\frac{\sqrt{|J|}}{2}[\text { default setting }] \\
\sqrt{|J|} \\
2 \sqrt{|J|} \\
\frac{|J|}{2}[\text { i.e., no threshold }]
\end{array}\right.
$$

It was found that in 4 out of the 60 cases, the revised T values led to solution accuracy improvements. Tradeoff curves showing runtime performance and optimality gap for test cases A, B, and C (of the "low" fixed cost parameter) and test case D (of the "medium" fixed cost parameter) are depicted in Figures 5 through 8 below. Whether modifying the T value (resulting in longer computation times) being worth the solution accuracy improvement is up to interpretation. However, because runtime performance is still very fast (at less than a few seconds for all cases) and only seems to be growing linearly, this modification can be an easy way to marginally improve the algorithm's solution accuracies with minimal effort.

Figure 5. Runtime vs. optimality gap tradeoff curve for test case A.

Figure 6. Runtime vs. optimality gap tradeoff curve for test case B.

Figure 7. Runtime vs. optimality gap tradeoff curve for test case C.

Figure 8. Runtime vs. optimality gap tradeoff curve for test case D.

4. APPLICATION TO A REAL-WORLD PROBLEM

The results from Section 3 illustrate the algorithm's potential as an effective method to solve CFLPs. However, because simplifying assumptions were made for the test cases considered thus far (such as using uniform fixed costs and capacities for all candidate facilities), the heuristic still has not proven its effectiveness for solving more realistic problems observed in industry. To examine whether the developed algorithm has practical applicability, a business problem was modeled to perform additional computational tests on. The considered problem is a CFLP adapted from a 2017 study of a warehouse network optimization project, conducted for an industrial materials distributor in the United States. The instance was slightly modified to fit the scope of the considered problem type for this paper, and the data altered for confidentiality.

Figure 9. Map of all candidate warehouse locations (black triangles) and customer demand (magenta circles).

In this problem, the distributor is looking to optimize its warehouse network across the continental United States. There are 28 potential warehouse locations to select from, each with varying facility capacities and fixed costs. The optimal set of warehouses must satisfy all customer demand points, which are aggregated by the first 2-digit prefixes of US postal zipcodes. Figure 9 visualizes the customer and demand nodes geographically.

Two types of costs are considered: fixed and transportation. The distributor seeks to find the optimal network topology of warehouse placement and customer assignment in order to minimize total annual expenditures. For simplicity, all products that the distributor handles are considered to be of one type, with tons being the universal measure of volume. Distances are computed using the great circle method between geocoordinates of zipcodes. Similar to the experiments conducted in Section 3, three different cases of fixed cost levels were examined: "Standard," "High," and "Low." In the "High" scenario, the fixed costs were amplified by a factor of 1.5 relative to the "Standard" case, and for the "Low" scenario, scaled down by a factor of 1.5. Refer to Appendix B. 1 for all problem parameters.

Results from the three runs are summarized in Table 7. As expected from the findings in Section 3, the heuristic algorithm indeed reduces the problem solving runtimes. Additionally, the solution accuracy is best for the "High" test case at an optimality gap of 5.6%, followed by the "Standard" (24.9\%) and "Low" (47.1\%) instances.

Table 7. Summary of warehouse problem solutions.

Problem	Algorithm		CPLEX-MIP		Optimality
Type	Total cost (\$)	$\boldsymbol{C P U}$ (seconds)	Total cost (\$)	$\boldsymbol{C P U}$ (seconds)	Gap (\%)
Standard	$\$ 4,349,580$	0.93	$\$ 3,483,260$	3.43	24.9%
High	$\$ 4,770,720$	0.53	$\$ 4,516,170$	5.11	5.6%
Low	$\$ 4,044,090$	0.11	$\$ 2,749,920$	12.82	47.1%

Furthermore, detailed results of opened warehouse locations and their handled volumes for the "High" problem are summarized in Table 8 (results from the other two scenarios are available in Appendix B.2). It is observed that the solutions produced by both the algorithm and CPLEX-MIP are very similar, as validated by the maps of Figures 10 and 11. These results provide a promising outlook for the practicality of the developed heuristic, showing the algorithm is indeed capable of selecting "promising" candidate facility sites that are also selected in the true optimal solution set.

Table 8. Opened warehouses in Algorithm and CPLEX-MIP solutions for the "High" problem scenario.

Warehouse location	Fixed cost $\mathbf{(\$)}$	Capacity (tons)	Volume handled in Algorithm solution (tons)	Volume handled in CPLEX- MIP solution (tons)
Atlanta, GA	$\$ 750,000$	15,000	8,248	13,896
Cincinnati, OH	$\$ 750,000$	15,000	13,506	15,000
Cleveland, OH	$\$ 450,000$	9,000	9,000	
Dallas, TX	$\$ 600,000$	10,000		10,000
Detroit, MI	$\$ 300,000$	7,000	7,000	7,000
Houston, TX	$\$ 600,000$	10,000	8,142	8,000
Tucson, AZ	$\$ 450,000$	8,000	8,000	$\mathbf{5 3 , 8 9 6}$

Figure 10. Optimal network topology given by algorithm solution for the "High" problem scenario.

Figure 11. Optimal network topology given by CPLEX-MIP solution for the "High" problem scenario.

5. CONCLUSIONS AND FUTURE WORK

The algorithm presented in this paper is a straightforward and applicable heuristic incorporating greedy-based variable fixing and iterative LP relaxation solving to solve CFLPs. The methodology offers an alternative to solving the MIP to optimality - which can take exponential CPU time due to the existence of binary location variables in the formulation - by providing a heuristic solution in a fraction of required CPU time while attaining acceptable solution accuracy in certain scenarios. The experiments offer validation of the computational benefits, with additional insight that the heuristic performs best for problem instances involving facilities having relatively high fixed cost levels. The promising results from solving the warehouse network problem in Section 4 also boost confidence in the algorithm being a viable method for solving similar problems in an industry setting.

The savings in computation times are apparent from the experiments run for this paper, but there is significant room for improvement in the solution accuracy aspect. Though not explored in this paper, combining the heuristic and CPLEX-MIP solving techniques could be a promising idea. Because the proposed algorithm returns a solution in minimal CPU time, problems may be first solved using the algorithm, and the resulting solution could be provided as a "warm start" input to the CPLEX-MIP solver, which will then solve the problem to optimality.

Currently the algorithm only considers the binary location variable values in the variable fixing process. In future work, the algorithm could be revisited so that other elements are also considered when making greedy-based branching decisions. As discussed in Section 3.2, the current algorithm framework presumably leads to the over-prioritization of the fixed cost component when deciding which locations are "promising" or not. It is conjectured that a more
sophisticated heuristic rule, such as one that considers the tradeoffs between both fixed and variable cost influences, may be more appropriate. For instance, shadow prices, reduced costs, and non-binary (i.e., flow) variable values could be additional metrics to consider. Evaluating additional information hopefully will result in obtaining better solutions for problems of various types.

Although the paper only explores a limited scope of the applicability of our method, we predict that this framework can be applied to solve not only just CFLPs, but to a broader scope of MIPs as well. The algorithm's main benefit is being able to produce heuristic solutions very quickly, so applications requiring the fast and scalable reproduction of solutions are potential use cases. Some examples could be determining optimal power grid usage that can reflect instantaneous changes in load demand, or enabling efficient computation of service patterns in the sharing economy (such as with ridesharing in Uber). Cloud manufacturing could also be another use case for the methodology. As introduced by Wu et al. (2013) and Wu et al. (2015), this paradigm enables system models to access a shared collection of various manufacturing resources. The developed heuristic enables the required scalability in solving manufacturingrelated MIP models that is required to efficiently reflect tremendous amount of input information being updated instantaneously.

Due to the straightforward framework and flexibility of the algorithm, we believe the developed heuristic has a strong potential for further exploration in both theory and practice.

REFERENCES

Angelelli, E., Mansini, R., \& Speranza, M. G. (2012). Kernel Search: a new heuristic framework for portfolio selection. Computational Optimization and Applications, 51, 345-361.

Francis, R.L., McGinnis, L. F., \& White, J.A. (1983). Locational analysis. European Journal of Operations Research, 12(3), 220-252.

Gustaroba, G. \& Speranza, M. G. (2014). A heuristic for BILP problems: The Single Source Capacitated Facility Location Problem. European Journal of Operational Research, 238, 438-450.

Lu, D., Gzara, F., \& Elhedhli, S. (2013). Facility Location with economies and diseconomies of scale: models and column generation heuristics. IIE Transactions, 46(6), 585-600.

Marmolejo, J. A., Soria, I., \& Perez, H. A. (2015). A Decomposition Strategy for Optimal Design of a Soda Company Distribution System. Mathematical Problems in Engineering, 2015, 7 pages.

Melo, M.T., Nickel, S., \& Saldanha-da-Gama, F. (2014). An efficient heuristic approach for a multi-period logistics network redesign problem. TOP, 22(1), 80-108.

Murray W. \& Shanbhag U. V. (2006). A Local Relaxation Method for Nonlinear Facility Location Problems. In: Hager W.W., Huang SJ., Pardalos P.M., Prokopyev O.A. (eds) Multiscale Optimization Methods and Applications. Nonconvex Optimization and Its Applications, vol 82. Springer, Boston, MA.

Naguney, A. (2010). Optimal supply chain network design and redesign at minimal total cost and with demand satisfaction. Int. J. Production Economics, 128, 200-208.

Renegar, J. (1988). A polynomial-time algorithm, based on Newton's method, for linear programming. Mathematical Programming, 40, 59-63.

Teixeira, J. C., Antunes, A. P., Júdice, J. J. \& Martins, P.C. (2006). Solving facility location models with modern optimization software: the weak and strong formulations revisited. Retrieved from [https://www.semanticscholar.org/paper/Solving-facility-location-models-with-modern-\%3A-the-TeixeiraAntunes/ce1f0fa41a069d23a0c71f7289a491d462214705?tab=abstract](https://www.semanticscholar.org/paper/Solving-facility-location-models-with-modern-%5C%3A-the-TeixeiraAntunes/ce1f0fa41a069d23a0c71f7289a491d462214705?tab=abstract).

Thanh, P. N., Péton, O., \& Bostel, N. (2010). A linear relaxation-based approach for logistics network design. Computers \& Industrial Engineering, 59, 964-975.

Wu, D., Greer, M. J., Rosen, D. W., \& Schaefer, D. (2013). Cloud manufacturing: Strategic vision and state-of-the-art. Journal of Manufacturing Systems, 32, 564-579.

Wu, D., Rosen, D. W., Wang, L., \& Schaefer, D. (2015). Cloud-based design and manufacturing: A new paradigm in digital manufacturing and design innovation. Computer-Aided Design, 59, 1-14.

APPENDIX A

DETAILED COMPUTATIONAL RESULTS FOR TEST CASES CONSIDERED

IN SECTION 3

A.1. Full results of experiments run for Section 3.2

Table 9. Results for all 162 test case experiments conducted.

Location distribution scenario	Fixed cost level scenario	$\|\boldsymbol{I}\|$	$\|J\|$	Problem size	CPU (seconds) Algorithm	$\begin{gathered} \text { CPU } \\ \text { (seconds) } \\ \text { CPLEX- } \\ \text { MIP } \end{gathered}$	Optimality Gap (\%)	"Timeout" occurrence (*)
2-centroid	Medium	36	50	1,850	0.087	6.347	1.9\%	
2-centroid	Medium	59	35	2,100	0.074	1.827	2.6\%	
2-centroid	Medium	38	30	1,170	0.044	0.925	41.9\%	
2 -centroid	Medium	44	58	2,610	0.104	9.499	4.0\%	
2-centroid	Medium	65	55	3,630	0.247	4.487	30.2\%	
2-centroid	Low	36	50	1,850	0.049	3610.090	20.3\%	*
2-centroid	Low	59	35	2,100	0.103	0.346	18.1\%	
2-centroid	Low	38	30	1,170	0.063	0.752	77.5\%	
2-centroid	Low	44	58	2,610	0.052	3615.920	16.2\%	*
2-centroid	Low	65	55	3,630	0.537	1.486	18.4\%	
2-centroid	High	36	50	1,850	0.096	0.822	0.0\%	
2-centroid	High	59	35	2,100	0.055	1.327	0.1\%	
2-centroid	High	38	30	1,170	0.026	1.327	0.2\%	
2-centroid	High	44	58	2,610	0.095	3609.140	0.1\%	*
2-centroid	High	65	55	3,630	0.140	5.125	0.2\%	
1-centroid	Medium	36	50	1,850	0.081	1.881	1.0\%	
1-centroid	Medium	59	35	2,100	0.054	3.577	1.9\%	
1-centroid	Medium	38	30	1,170	0.031	1.200	22.2\%	
1-centroid	Medium	44	58	2,610	0.097	13.170	3.5\%	
1-centroid	Medium	65	55	3,630	0.126	8.686	3.6\%	
1-centroid	Low	36	50	1,850	0.046	1451.840	59.7\%	
1-centroid	Low	59	35	2,100	0.109	0.614	29.3\%	
1 -centroid	Low	38	30	1,170	0.066	0.535	33.9\%	
1-centroid	Low	44	58	2,610	0.052	3610.400	21.4\%	*
1-centroid	Low	65	55	3,630	0.501	2.614	21.3\%	
1-centroid	High	36	50	1,850	0.087	0.306	0.0\%	
1-centroid	High	59	35	2,100	0.054	4.074	0.1\%	
1-centroid	High	38	30	1,170	0.025	0.986	0.2\%	
1-centroid	High	44	58	2,610	0.100	3615.200	0.1\%	*
1-centroid	High	65	55	3,630	0.149	31.416	0.1\%	
Uniform	Medium	36	50	1,850	0.081	19.221	2.7\%	
Uniform	Medium	59	35	2,100	0.067	1.697	17.1\%	
Uniform	Medium	38	30	1,170	0.050	0.681	184.6\%	
Uniform	Medium	44	58	2,610	0.105	14.172	2.5\%	
Uniform	Medium	65	55	3,630	0.216	9.126	29.1\%	
Uniform	Low	36	50	1,850	0.036	3565.780	16.8\%	*

Table 9. (Continued)

| Location distribution scenario | Fixed cost level scenario | \|I| | $\|J\|$ | Problem size | CPU
 (seconds)
 Algorithm | $\begin{aligned} & \text { CPU } \\ & \text { (seconds) } \\ & \text { CPLEX- } \\ & \text { MIP } \end{aligned}$ | Optimality Gap (\%) | "Timeout" occurrence (*) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Uniform | Low | 59 | 35 | 2,100 | 0.092 | 0.150 | 10.1\% | |
| Uniform | Low | 38 | 30 | 1,170 | 0.067 | 0.108 | 20.1\% | |
| Uniform | Low | 44 | 58 | 2,610 | 0.056 | 3613.710 | 11.2\% | * |
| Uniform | Low | 65 | 55 | 3,630 | 0.600 | 0.367 | 27.5\% | |
| Uniform | High | 36 | 50 | 1,850 | 0.079 | 4.930 | 0.1\% | |
| Uniform | High | 59 | 35 | 2,100 | 0.061 | 1.047 | 0.1\% | |
| Uniform | High | 38 | 30 | 1,170 | 0.026 | 0.743 | 0.9\% | |
| Uniform | High | 44 | 58 | 2,610 | 0.106 | 3613.200 | 0.0\% | * |
| Uniform | High | 65 | 55 | 3,630 | 0.135 | 12.764 | 0.2\% | |
| 2-centroid | Medium | 14 | 23 | 345 | 0.030 | 0.263 | 230.8\% | |
| 2-centroid | Medium | 21 | 10 | 220 | 0.054 | 0.099 | 56.5\% | |
| 2-centroid | Medium | 13 | 26 | 364 | 0.032 | 0.615 | 136.3\% | |
| 2-centroid | Medium | 13 | 24 | 336 | 0.027 | 0.379 | 25.8\% | |
| 2-centroid | Medium | 15 | 17 | 272 | 0.032 | 0.259 | 83.4\% | |
| 2-centroid | Low | 14 | 23 | 345 | 0.026 | 0.267 | 46.7\% | |
| 2-centroid | Low | 21 | 10 | 220 | 0.023 | 0.052 | 15.1\% | |
| 2-centroid | Low | 13 | 26 | 364 | 0.025 | 0.173 | 19.6\% | |
| 2-centroid | Low | 13 | 24 | 336 | 0.025 | 0.229 | 15.0\% | |
| 2-centroid | Low | 15 | 17 | 272 | 0.024 | 0.150 | 61.0\% | |
| 2-centroid | High | 14 | 23 | 345 | 0.060 | 0.253 | 2.9\% | |
| 2-centroid | High | 21 | 10 | 220 | 0.016 | 0.087 | 4.9\% | |
| 2-centroid | High | 13 | 26 | 364 | 0.024 | 1.146 | 0.7\% | |
| 2-centroid | High | 13 | 24 | 336 | 0.024 | 0.283 | 0.4\% | |
| 2-centroid | High | 15 | 17 | 272 | 0.019 | 0.256 | 4.8\% | |
| 1-centroid | Medium | 14 | 23 | 345 | 0.025 | 0.282 | 32.2\% | |
| 1-centroid | Medium | 21 | 10 | 220 | 0.030 | 0.103 | 60.6\% | |
| 1-centroid | Medium | 13 | 26 | 364 | 0.028 | 0.288 | 20.9\% | |
| 1-centroid | Medium | 13 | 24 | 336 | 0.028 | 0.340 | 23.5\% | |
| 1-centroid | Medium | 15 | 17 | 272 | 0.023 | 0.208 | 140.1\% | |
| 1-centroid | Low | 14 | 23 | 345 | 0.023 | 0.323 | 59.6\% | |
| 1-centroid | Low | 21 | 10 | 220 | 0.033 | 0.139 | 23.5\% | |
| 1-centroid | Low | 13 | 26 | 364 | 0.027 | 0.433 | 60.4\% | |
| 1-centroid | Low | 13 | 24 | 336 | 0.026 | 0.265 | 18.4\% | |
| 1-centroid | Low | 15 | 17 | 272 | 0.022 | 0.204 | 29.6\% | |
| 1-centroid | High | 14 | 23 | 345 | 0.023 | 0.354 | 2.2\% | |
| 1-centroid | High | 21 | 10 | 220 | 0.015 | 0.108 | 1.0\% | |
| 1-centroid | High | 13 | 26 | 364 | 0.023 | 1.071 | 0.9\% | |
| 1-centroid | High | 13 | 24 | 336 | 0.022 | 0.295 | 0.4\% | |
| 1-centroid | High | 15 | 17 | 272 | 0.017 | 0.257 | 3.0\% | |
| Uniform | Medium | 14 | 23 | 345 | 0.024 | 0.254 | 201.0\% | |
| Uniform | Medium | 21 | 10 | 220 | 0.022 | 0.090 | 23.0\% | |
| Uniform | Medium | 13 | 26 | 364 | 0.029 | 0.215 | 23.3\% | |
| Uniform | Medium | 13 | 24 | 336 | 0.026 | 0.327 | 90.5\% | |
| Uniform | Medium | 15 | 17 | 272 | 0.025 | 0.262 | 252.7\% | |
| Uniform | Low | 14 | 23 | 345 | 0.023 | 0.329 | 0.0\% | |
| Uniform | Low | 21 | 10 | 220 | 0.028 | 0.074 | 4.6\% | |
| Uniform | Low | 13 | 26 | 364 | 0.023 | 0.312 | 4.1\% | |
| Uniform | Low | 13 | 24 | 336 | 0.022 | 0.316 | 25.1\% | |

Table 9. (Continued)
$\left.\begin{array}{ccccccccc}\begin{array}{c}\text { Location } \\ \text { distribution } \\ \text { scenario }\end{array} & \begin{array}{c}\text { Fixed } \\ \text { cost } \\ \text { level }\end{array} & |\boldsymbol{I I}| & |\boldsymbol{J}| & \begin{array}{c}\text { Problem } \\ \text { size }\end{array} & \begin{array}{c}\text { CPU } \\ \text { (seconds) } \\ \text { Algorithm }\end{array} & \begin{array}{c}\text { CPU } \\ \text { (seconds) } \\ \text { CPLEX- }\end{array} & \begin{array}{c}\text { Optimality } \\ \text { Gap (\%) }\end{array} & \begin{array}{c}\text { "Timeout" } \\ \text { occurrence }\end{array} \\ & & & & & & \text { MIP }\end{array}\right]$

Table 9. (Continued)

| Location distribution scenario | Fixed cost level scenario | \|I| | $\|J\|$ | Problem size | CPU
 (seconds)
 Algorithm | $\begin{gathered} \text { CPU } \\ \text { (seconds) } \\ \text { CPLEX- } \\ \text { MIP } \end{gathered}$ | Optimality Gap (\%) | "Timeout" occurrence (*) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Uniform | High | 77 | 121 | 9,438 | 0.994 | 3607.260 | 0.0\% | * |
| Uniform | High | 106 | 107 | 11,449 | 0.606 | 78.216 | 0.1\% | |
| Uniform | High | 111 | 124 | 13,888 | 0.778 | 3601.470 | 0.1\% | * |
| 2-centroid | Medium | 63 | 63 | 4,032 | 0.235 | 1934.830 | 1.6\% | |
| 2-centroid | Low | 89 | 89 | 8,010 | 0.450 | 1085.340 | 49.7\% | |
| 1-centroid | Medium | 77 | 77 | 6,006 | 0.454 | 1000.470 | 1.4\% | |
| 1-centroid | Medium | 89 | 89 | 8,010 | 0.539 | 845.571 | 7.8\% | |
| 1-centroid | Low | 89 | 89 | 8,010 | 0.323 | 328.750 | 57.0\% | |
| 2-centroid | Medium | 89 | 89 | 8,010 | 0.449 | 273.362 | 3.2\% | |
| 2-centroid | Medium | 77 | 77 | 6,006 | 0.397 | 224.272 | 3.5\% | |
| Uniform | Medium | 89 | 89 | 8,010 | 0.490 | 223.278 | 1.4\% | |
| 2-centroid | High | 63 | 63 | 4,032 | 0.216 | 117.606 | 0.0\% | |
| Uniform | High | 89 | 89 | 8,010 | 0.509 | 37.189 | 0.0\% | |
| 2-centroid | High | 89 | 89 | 8,010 | 0.465 | 25.268 | 0.0\% | |
| Uniform | High | 63 | 63 | 4,032 | 0.258 | 24.642 | 0.1\% | |
| 2-centroid | High | 77 | 77 | 6,006 | 0.377 | 22.471 | 0.0\% | |
| 1-centroid | High | 89 | 89 | 8,010 | 0.489 | 22.205 | 0.1\% | |
| Uniform | High | 77 | 77 | 6,006 | 0.407 | 22.091 | 0.0\% | |
| 1-centroid | High | 63 | 63 | 4,032 | 0.271 | 12.131 | 0.0\% | |
| 1-centroid | Low | 77 | 77 | 6,006 | 0.267 | 11.085 | 126.0\% | |
| Uniform | Medium | 77 | 77 | 6,006 | 0.388 | 9.071 | 2.9\% | |
| 2-centroid | Low | 77 | 77 | 6,006 | 0.355 | 7.632 | 77.2\% | |
| 1-centroid | Medium | 63 | 63 | 4,032 | 0.266 | 7.138 | 2.3\% | |
| Uniform | Medium | 63 | 63 | 4,032 | 0.252 | 6.949 | 3.4\% | |
| 2-centroid | Low | 63 | 63 | 4,032 | 0.293 | 4.257 | 66.5\% | |
| 1-centroid | Low | 63 | 63 | 4,032 | 0.161 | 2.829 | 43.9\% | |
| Uniform | Low | 89 | 89 | 8,010 | 0.319 | 1.291 | 14.4\% | |
| 1-centroid | High | 77 | 77 | 6,006 | 0.454 | 1.127 | 0.0\% | |
| Uniform | Low | 77 | 77 | 6,006 | 0.300 | 0.766 | 13.8\% | |
| Uniform | Low | 63 | 63 | 4,032 | 0.172 | 0.527 | 15.0\% | |

A.2. Full results of experiments run for Section 3.3

Table 10. Results for all 60 test cases conducted for additional experiments.

Location distribution scenario	Fixed cost level scenario	\| $\boldsymbol{I} \mid$	$\|J\|$	Problem size	CPU (seconds) Algorithm	$\begin{gathered} \text { CPU } \\ \text { (seconds) } \\ \text { CPLEX- } \\ \text { MIP } \end{gathered}$	Optimality Gap (\%)	"Timeout" occurrence (*)
Uniform	High	55	37	2,072	0.034	12.177	0.5\%	
Uniform	High	34	10	350	0.022	0.161	91.2\%	
Uniform	High	16	83	1,411	0.068	1.786	0.0\%	
Uniform	High	73	32	2,368	0.047	3.308	0.6\%	
Uniform	High	32	67	2,211	0.070	3.215	0.1\%	
Uniform	High	64	27	1,755	0.028	0.926	2.7\%	
Uniform	High	71	31	2,232	0.048	2.815	0.3\%	
Uniform	High	23	97	2,328	0.150	0.287	0.0\%	
Uniform	High	84	73	6,205	0.247	3601.490	0.2\%	*
Uniform	High	20	53	1,113	0.037	0.954	0.1\%	
Uniform	High	88	79	7,031	0.471	42.268	0.0\%	
Uniform	High	80	32	2,592	0.034	2.112	0.9\%	
Uniform	High	37	52	1,976	0.042	3.359	0.2\%	
Uniform	High	61	30	1,860	0.031	0.899	0.5\%	
Uniform	High	36	30	1,110	0.021	0.565	0.6\%	
Uniform	High	47	72	3,456	0.290	0.419	0.0\%	
Uniform	High	64	94	6,110	0.541	27.983	0.0\%	
Uniform	High	99	45	4,500	0.214	3.089	0.2\%	
Uniform	High	51	28	1,456	0.026	0.680	0.3\%	
Uniform	High	29	12	360	0.012	0.536	0.8\%	
Uniform	Low	55	37	2,072	0.094	0.212	12.3\%	
Uniform	Low	34	10	350	0.025	0.069	2.9\%	
Uniform	Low	16	83	1,411	0.033	0.586	6.7\%	
Uniform	Low	73	32	2,368	0.098	0.135	8.7\%	
Uniform	Low	32	67	2,211	0.054	3603.950	4.4\%	*
Uniform	Low	64	27	1,755	0.067	0.217	12.0\%	
Uniform	Low	71	31	2,232	0.094	0.309	4.9\%	
Uniform	Low	23	97	2,328	0.042	2.694	0.6\%	
Uniform	Low	84	73	6,205	1.149	0.646	15.6\%	
Uniform	Low	20	53	1,113	0.030	4.109	5.6\%	
Uniform	Low	88	79	7,031	0.992	0.748	15.7\%	
Uniform	Low	80	32	2,592	0.088	0.323	8.6\%	
Uniform	Low	37	52	1,976	0.035	3617.030	14.3\%	*
Uniform	Low	61	30	1,860	0.132	0.160	14.9\%	
Uniform	Low	36	30	1,110	0.073	0.183	20.2\%	
Uniform	Low	47	72	3,456	0.190	3617.020	7.5\%	*
Uniform	Low	64	94	6,110	0.279	3665.820	11.3\%	*
Uniform	Low	99	45	4,500	0.597	0.388	15.5\%	
Uniform	Low	51	28	1,456	0.074	0.111	12.1\%	
Uniform	Low	29	12	360	0.021	0.087	31.3\%	
Uniform	Medium	55	37	2,072	0.075	1.782	68.1\%	
Uniform	Medium	34	10	350	0.018	0.150	8.6\%	
Uniform	Medium	16	83	1,411	0.050	0.927	0.8\%	

Table 10. (Continued)

| Location distribution scenario | Fixed
 cost level scenario | \|I| | $\|J\|$ | Problem size | CPU (seconds) Algorithm | $\begin{gathered} \text { CPU } \\ \text { (seconds) } \\ \text { CPLEX- } \\ \text { MIP } \end{gathered}$ | Optimality Gap (\%) | "Timeout" occurrence (*) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Uniform | Medium | 73 | 32 | 2,368 | 0.071 | 1.332 | 70.1\% | |
| Uniform | Medium | 32 | 67 | 2,211 | 0.060 | 2.861 | 3.7\% | |
| Uniform | Medium | 64 | 27 | 1,755 | 0.072 | 1.016 | 107.1\% | |
| Uniform | Medium | 71 | 31 | 2,232 | 0.085 | 1.310 | 85.0\% | |
| Uniform | Medium | 23 | 97 | 2,328 | 0.121 | 15.738 | 0.2\% | |
| Uniform | Medium | 84 | 73 | 6,205 | 0.389 | 24.032 | 52.9\% | |
| Uniform | Medium | 20 | 53 | 1,113 | 0.056 | 1.203 | 3.2\% | |
| Uniform | Medium | 88 | 79 | 7,031 | 0.433 | 79.057 | 1.2\% | |
| Uniform | Medium | 80 | 32 | 2,592 | 0.093 | 2.005 | 73.7\% | |
| Uniform | Medium | 37 | 52 | 1,976 | 0.059 | 4.380 | 110.5\% | |
| Uniform | Medium | 61 | 30 | 1,860 | 0.061 | 1.601 | 55.3\% | |
| Uniform | Medium | 36 | 30 | 1,110 | 0.041 | 0.691 | 151.9\% | |
| Uniform | Medium | 47 | 72 | 3,456 | 0.315 | 16.959 | 1.0\% | |
| Uniform | Medium | 64 | 94 | 6,110 | 0.550 | 156.280 | 1.1\% | |
| Uniform | Medium | 99 | 45 | 4,500 | 0.427 | 4.825 | 38.1\% | |
| Uniform | Medium | 51 | 28 | 1,456 | 0.084 | 0.883 | 107.3\% | |
| Uniform | Medium | 29 | 12 | 360 | 0.022 | 0.176 | 20.5\% | |

APPENDIX B.

B.1. Input parameters

Table 11. Warehouse location input parameters.

Warehouse location	Zipcode 2- digit prefix	Capacity (tons)	Fixed cost (\$) Standard	Fixed cost (\$) High	Fixed cost (\$) Low
Boston, MA	01	10,000	$\$ 1,000,000$	$\$ 1,500,000$	$\$ 666,666$
Phoenix, AZ	85	6,000	$\$ 300,000$	$\$ 450,000$	$\$ 200,000$
Atlanta, GA	30	15,000	$\$ 500,000$	$\$ 750,000$	$\$ 333,333$
Philadelphia, PA	19	10,000	$\$ 500,000$	$\$ 750,000$	$\$ 333,333$
Los Angeles, CA	91	10,000	$\$ 1,200,000$	$\$ 1,800,000$	$\$ 800,000$
Chicago, IL	60	8,000	$\$ 500,000$	$\$ 750,000$	$\$ 333,333$
Cincinnati, OH	45	15,000	$\$ 500,000$	$\$ 750,000$	$\$ 333,333$
Houston, TX	77	10,000	$\$ 400,000$	$\$ 600,000$	$\$ 266,666$
Dallas, TX	75	10,000	$\$ 400,000$	$\$ 600,000$	$\$ 266,666$
Denver, CO	80	14,000	$\$ 700,000$	$\$ 1,050,000$	$\$ 466,666$
Miami, FL	33	12,000	$\$ 800,000$	$\$ 1,200,000$	$\$ 533,333$
Detroit, MI	48	7,000	$\$ 200,000$	$\$ 300,000$	$\$ 133,333$
Minneapolis, MN	55	12,000	$\$ 500,000$	$\$ 750,000$	$\$ 333,333$
St. Louis, MO	63	10,000	$\$ 400,000$	$\$ 600,000$	$\$ 266,666$
Charlotte, NC	28	10,000	$\$ 500,000$	$\$ 750,000$	$\$ 333,333$
Portland, OR	97	5,000	$\$ 400,000$	$\$ 600,000$	$\$ 266,666$
Seattle, WA	98	8,000	$\$ 700,000$	$\$ 1,050,000$	$\$ 466,666$
Salt Lake City, UT	84	7,000	$\$ 500,000$	$\$ 750,000$	$\$ 333,333$
Cleveland, OH	44	9,000	$\$ 300,000$	$\$ 450,000$	$\$ 200,000$
Kansas City, MO	64	14,000	$\$ 600,000$	$\$ 900,000$	$\$ 400,000$
San Antonio, TX	78	9,000	$\$ 400,000$	$\$ 600,000$	$\$ 266,666$
Austin, TX	78	7,000	$\$ 400,000$	$\$ 600,000$	$\$ 266,666$
Tucson, AZ	85	8,000	$\$ 300,000$	$\$ 450,000$	$\$ 200,000$
Las Vegas, NV	89	15,000	$\$ 700,000$	$\$ 1,050,000$	$\$ 466,666$
Oklahoma City, OK	73	11,000	$\$ 600,000$	$\$ 900,000$	$\$ 400,000$
San Francisco, CA	94	7,000	$\$ 1,300,000$	$\$ 1,950,000$	$\$ 866,666$
Albuquerque, NM	87	15,000	$\$ 400,000$	$\$ 600,000$	$\$ 266,666$
San Diego, CA	92	8,000	$\$ 600,000$	$\$ 900,000$	$\$ 400,000$

Table 12. Customer demand location input parameters.

Customer Zipcode		Customer Zipcode		Customer Zipcode	
2-digit Prefix	Demand (tons)	2-digit Prefix	Demand (tons)	2-digit Prefix	Demand (tons)
01	988	35	213	68	44
02	773	36	135	69	1
03	253	37	1,010	70	238
04	71	38	123	71	235
05	76	39	112	72	587
06	582	40	404	73	459
07	1,042	41	139	74	493
08	921	42	93	75	582
10	294	43	681	76	405
11	450	44	2,144	77	2,956
12	260	45	3,931	78	502
13	210	46	277	79	186
14	796	47	723	80	209
15	377	48	861	81	53
16	381	49	1,216	82	16
17	150	50	422	83	262
18	600	51	127	84	148
19	893	52	21	85	3,238
20	46	53	381	86	70
21	764	54	291	87	79
22	886	55	1,190	88	8
23	177	56	82	89	279
24	545	57	14	90	590
25	168	58	6	91	756
26	43	59	11	92	1,040
27	360	60	2,160	93	215
28	938	61	232	94	449
29	1,384	62	91	95	374
30	1,758	63	1,382	96	12
31	283	64	749	97	285
32	833	65	88	98	772
33	883	66	561	99	13
34	216	67	69		

Albuquerque,	
San Francisco, CA	
Oklahoma City, ок	

Las Vegas, NV

Tucson, AZ
Austin, TX

UT
Seattle, WA

Albuquerque，
NM
San Francisco，
CA
 City，OK

Austin，TX

TX
Kansas City，
MO
Cleveland， $\mathbf{O H}$

Salt Lake City， UT

Seattle，WA

Portland，OR

Charlotte，NC
St．Louis，MO

Minneapolis

MN
Detroit，MI

Miami，FL

Denver，CO

Cincinnati，
OH
Chicago，IL
Los Angeles，
CA
Philadelphia，
PA
Atlanta，GA

Phoenix，AZ

Boston，MA
 ニ～べニ

	San Diego，CA	
	Albuquerque， NM	すべスがかんのこの
	San Francisco， CA	
	Oklahoma City，OK	
	Las Vegas，NV	
	Tucson，AZ	
	Austin，TX	べヨ
	San Antonio， TX	
	$\begin{aligned} & \text { Kansas City, } \\ & \text { MO } \end{aligned}$	
	Cleveland，OH	
	Salt Lake City， UT	
	Seattle，WA	
\％	Portland，OR	NNタ寸标へへへ
是	Charlotte，NC	
U	St．Louis，MO	ぞ
关	Minneapolis， MN	
$[$	Detroit，MI	
	Miami，FL	
	Denver，CO	
	Dallas，TX	
	Houston，TX	
	Cincinnati， OH	
	Chicago，IL	
	Los Angeles， CA	○ーッにべチলすす
	Philadelphia， PA	
	Atlanta，GA	
	Phoenix，AZ	
	Boston，MA	ベへへべべべへ

stlnsaı lln ${ }^{\circ}{ }^{\prime} Z \cdot G$

