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ABSTRACT 

 

A new methodology to solve the capacitated facility location problem (CFLP) is 

presented. This optimization problem can be explicitly formulated and solved as a mixed integer 

program (MIP); however, because binary variables are used, obtaining exact solutions can be 

computationally intensive. This issue is apparent for solving large-scale problems, where the 

problem complexity is known to increase exponentially in the number of location variables. The 

proposed approach will instead solve the problem in a heuristic manner, returning an 

approximate solution rather than an exact one. A linear program (LP) relaxation to the problem is 

solved, while iteratively fixing select binary location variables to 0 or 1 until a feasible solution 

is obtained. Experimental results show that the proposed methodology can be effective in 

obtaining solutions in a fraction of CPU (central processing unit) time compared to exact 

methods. The quality of the solution is also shown to be extremely close to optimal for problems 

with relatively high fixed cost parameters. An application to a real-life problem is also explored 

to validate the practicality of the proposed methodology. 

Not only does the algorithm offer a new approach to solving the CFLP, but it also 

presents a fast approximation method which can be applied to solve MIP models in general. 

Additional ideas for improving the algorithm are also presented. 
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1. INTRODUCTION  

 

The facility location problem is an optimization problem seeking to find an optimal 

placement of facilities in order to minimize the total costs of the network. This paper specifically 

considers the Capacitated Facility Location Problem (CFLP). In this problem we are given a set I 

of customers, with each customer i ∈ I having demand 𝑑𝑖 to be served. We are also given a set J 

of potential locations where a facility j ∈ J can be opened. These facilities each have fixed cost 𝑓𝑗 

and capacity 𝑞𝑗 components associated with them. Assigning demand to be served from facility j 

to customer i costs 𝑐𝑖𝑗 per unit. The CFLP objective is to select the best combination of facilities 

to be located which minimizes the sum of fixed and variable (e.g., transportation) costs. Each 

customer demand must be fully met while facility capacities may not be violated. 

The following decision variables are introduced. 

𝑥𝑗 = {
1,  if facility 𝑗 is selected to operate
0, otherwise

 

𝑦𝑖𝑗 = volume of demand served to customer 𝑖 from facility 𝑗 

The problem is formulated as follows. 

Minimize ∑𝑓𝑗𝑥𝑗 +

𝑗∈𝐽

∑∑𝑐𝑖𝑗𝑦𝑖𝑗
𝑗∈𝐽𝑖∈𝐼

   (1) 

Subject to ∑𝑦𝑖𝑗 ≤

𝑖∈𝐼

𝑞𝑗𝑥𝑗 ,      ∀𝑗 ∈ 𝐽   (2) 

                      ∑𝑦𝑖𝑗 ≥

𝑗∈𝐽

𝑑𝑖 ,          ∀𝑖 ∈ 𝐼   (3) 

                                  𝑦𝑖𝑗 ≤ 𝑞𝑗𝑥𝑗 , ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽   (4) 

                                 𝑥𝑗 ∈ {0,1}, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽  (5) 
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                             𝑦𝑖𝑗 ≥ 0,         ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽   (6) 

Objective function (1) minimizes the global cost, which is the sum of the fixed cost 

component (first term) of opening the facilities and the variable cost component (second term) of 

serving all customer demand point-facility location combinations. Constraints (2) ensure the total 

volume handled at each facility does not exceed its capacity. Constraints (3) force all demand at 

each customer to be met. Constraints (4) are redundant constraints of (2), but give tighter bounds 

to the feasible region. The “strong” problem formulation enabled by constraints (4) is preferred 

over the “weak” formulation (e.g., no redundant constraints) in many previous works because it 

reduces the gap of the LP (linear program) relaxation relative to the optimum integer solution 

(Teixeira et al. (2006)). Finally, constraints (5) and (6) define the decision variables. It is also 

assumed that all parameters, including unit costs, demands, and capacities take nonzero values. 

The CFLP can be solved to optimality as a mixed-integer program (MIP) as modeled 

above. Commercial software such as AMPL, Gurobi, and CPLEX is capable of solving these 

problems effectively. However, solving MIPs is computationally intensive in contrast to solving 

LPs; this is especially an issue for larger problem instances, as computation times can increase 

exponentially with the addition of more variables and constraints to the problem. Indeed, these 

problems have been proven to be NP-hard and the worst-case runtime is 𝑂(2𝑛), where n is the 

number of binary (i.e., 0-1) location variables (Francis et al. (1983)). The non-deterministic 

nature of solving CFLPs and MIPs is limiting in practice, and therefore justifies the development 

of heuristics or approximation methods as alternative solving methods. 

The literature offers several approaches to overcoming this obstacle in an attempt to 

speed up problem solve times. The complicating element is the fixed cost component, because 

this requires the need for the binary variables to indicate whether a facility will be opened or not 
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in the optimal network topology. Nagurney (2010) formulates the supply chain optimization 

problem strictly as a flow problem, by making the assumption that facility capacities can be 

freely “bought” or “sold” in the open market. Lu et al. (2014) offers an approach that reflects 

“economies of scale” within the objective function – specifically, an S-shaped cost function is 

used to approximate a step function to capture the fixed cost component. These techniques allow 

for the elimination of the complicating binary variables from the formulation altogether. 

However, this type of approach can be limiting: in the former, not explicitly considering the 

effects of fixed cost could result in solutions failing to reflect the realities of business 

expenditures such as warehouse rent and other startup costs. In the latter method, the problem 

formulation may result in a nontrivial objective function (e.g., nonlinear and nonconvex), 

potentially leading to solving issues. 

There also exist procedures that keep the MIP problem formulation intact, but apply 

heuristics to limit problem size and speed up computation times. Marmolejo et al. (2015) applies 

a Benders decomposition technique to solve a distribution network optimization problem. Other 

work such as that of Angelelli et al. (2012) and Gustaroba and Speranza (2014) implements a 

Kernel search framework to solve the MIP by only considering “promising” locations, which are 

determined to have high chances of being open in the optimal network topology. Incorporating 

LP relaxation approximations are also well-explored alternatives. Methods developed by Murray 

and Shanbhag (2006) and Melo et al. (2014) solve the LP relaxation to the problem to obtain an 

initial feasible solution, which is improved upon by local neighborhood searching. Thanh et al. 

(2010) uses LP relaxation and rounding of key decision variables to fix as many binary variables 

as possible, until the problem is reduced to a small enough MIP that can be solved using exact 

methods. Although these methodologies are shown to yield quality solutions (i.e., small 
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optimality gap) while reducing problem complexity, invoking the use of MIP solvers eliminates 

the hope for any further savings in computational time. 

In this paper, new heuristic technique to solve the CFLP model is introduced. The 

proposed algorithm will iteratively solve the LP relaxation to the problem – at each step, hard 

variable fixing is implemented to set “promising” and “unpromising” binary location variables to 

1 and 0, respectively. The “promising” and “unpromising” variables are determined based on the 

location variable values in the most recent solution. The other variables are kept relaxed until 

subsequent iterations take place. The procedure is repeated until a valid binary solution vector is 

obtained. A feasibility recovery process is implemented in the case that an infeasible solution is 

encountered. To limit problem runtimes, the algorithm will invoke a timeout protocol in the case 

that too many infeasible iterations are observed. 

Two contributions of the proposed work are that it offers: (1) a new approach to solving 

the CFLP, and (2) a fast approximation method to solve MIP problems in general. Because MIP 

solvers are not utilized in the proposed technique, it is expected that computation times are 

substantially improved, especially for large-scale instances. Performed experiments demonstrate 

three takeaways: (1) runtimes do not grow exponentially with increases in problem complexity, 

allowing for larger problems to be solved effectively, (2) the obtained solutions are of good 

quality for certain scenarios, and (3) the approach is capable of solving real-life problems. 

The paper is structured as follows. Section 2 is devoted to outlining a detailed description 

of the proposed algorithm. The framework and results of the experimentation process are 

provided in Section 3. Section 4 explores an application of the technique to solving a warehouse 

network optimization exercise based on a real-life problem. To conclude, Section 5 addresses 

final remarks and some areas for future research. 
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2. THE HEURISTIC ALGORITHM  

 

The detailed procedure of the proposed methodology (referred to as heuristic algorithm 

or simply algorithm throughout this paper), as well as its runtime complexity, is described in 

Section 2.1 and 2.2, respectively. 

2.1. Heuristic algorithm steps 

The problem is first formulated as a standard CFLP model as presented in Section 1. The 

binary constraints are then removed, converting the problem into a LP relaxation problem. This 

problem is then solved, which yields an initial solution. A check is conducted to see if all 

candidate location variables in the solution are binary – this is the first of two termination 

conditions. If there are non-binary values in the solution vector, the algorithm must continue; 

otherwise, the algorithm terminates. The second termination condition, where the number of 

encountered infeasible iterations is evaluated, is explained at the end of this subsection. 

In the “variable fixing” sequence, there are three procedures: (1) permanently fixing 

variables to 1, (2) tentatively fixing variables to 0, and (3) permanently fixing variables to 0. The 

algorithm will first search through all location variables (e.g., candidate facility location) not 

equaling 0. The algorithm will choose one “most promising” variable and set this to 

be permanently opened (fixed to 1) for the rest of the algorithm. This location is identified as the 

non-binary variable xj (which has not yet been fixed by the algorithm) having the highest value. 

If there is a tie, the tiebreaker will be the fixed cost – the location with the lower fixed cost is 

chosen. If there still is a tie, the selection will be arbitrary (to be precise, the location with the 

smallest index value j is selected). 
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Similar to the “most promising” variable fixing process, the algorithm also looks for one 

“least promising” variable. The non-binary location variable (also which has not yet been fixed) 

having the lowest value will be tentatively set to be closed (fixed to 0) for the rest of the 

algorithm. Tiebreaker rules also apply – in the case of a tie, the location with the higher fixed 

cost will be set to 0. 

The last component is the “permanent” fixing of variables to 0. For all facilities where the 

LP relaxation solution equals 0, they will be permanently closed (set to 0) for the rest of the 

algorithm. Unlike the other two variable fixing processes, more than a single facility variable can 

be fixed in one iteration.  

Once the applicable variable values are all set, the modified LP relaxation problem is 

solved. The solver returns either a “feasible” or “infeasible” solution status. If feasible, the 

algorithm repeats iterations as necessary with the remaining “unfixed” location variables until a 

termination condition is met. However, if the result is “infeasible,” we must backtrack. The 

location which was tentatively fixed to be closed in component (2) of the variable fixing stage 

will be opened (i.e., set to 1) for the rest of the algorithm. This modified LP relaxation problem 

will then be solved, and the resulting feasible solution will be further evaluated by the algorithm. 

When an infeasible iteration is encountered, this means the problem has encountered a 

capacity limitation. As the algorithm artificially forces certain location variables to be closed, 

this could remove too much available capacity from the network and potentially lead to 

constraint violations. To resolve this issue, the location that was tentatively selected to be closed 

in that particular iteration is “re-opened,” thus adding the previously removed capacity back into 

the problem. Because infeasible iterations can only be caused by capacity violations, the 

algorithm is guaranteed to recover feasibility once the re-modified problem is solved. 
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The number of these “backtracking” occurrences are tracked in order to cap the 

maximum number of infeasible iterations allowed by the algorithm. The rationale is that if 

infeasible iterations are being observed, the gap between total demand and total available 

network capacity should be diminishing, and thus the algorithm is approaching termination. To 

avoid exploring through too many infeasible solutions and thereby reducing computation times, a 

threshold T is set at 

𝑇 =  ⌈
√|𝐽|

2
⌉, 

where |𝐽| is the total number of candidate locations in the problem. Threshold T is a heuristic 

parameter, and the value specified above is a default value to be used for the experiments 

discussed in Sections 3.2 and 3.3. The algorithm’s behavior under other levels of T will be 

examined in Section 3.4. 

If the cumulative number of infeasible iterations exceeds T, then the algorithm will 

automatically timeout, and all remaining nonzero variables are fixed to 1. This modified LP 

relaxation will then be solved for a final time, leading to the termination of the algorithm. Figure 

1 provides a visual overview of the algorithm steps, discussed in detail above.  
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Figure 1. The detailed steps of the heuristic algorithm. 
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2.2. Algorithm complexity 

The worst-case runtime of the proposed algorithm is estimated to be polynomial. The 

three-step sequence of variable fixing occurs in 𝑂(𝑛) + 𝑂(𝑛) + 𝑂(𝑛) = 𝑂(3𝑛) = 𝑂(𝑛) time, 

where n is the number of variables to the LP problem. Linear programming is known to run in 

polynomial time 𝑂(𝐿√𝑚 + 𝑛), where m is the number of constraints to the LP problem, and L is 

defined by the number of bits required to store all entries of the problem (Renegar (1988)). In 

case the iteration encounters an infeasible solution, the re-fixing of one location variable of 

complexity 𝑂(1) and an additional solve of the LP model taking 𝑂(𝐿√𝑚 + 𝑛) time is 

implemented. Thus, each algorithm iteration has a worst-case bound of 𝑂(𝑛) + 𝑂(𝐿√𝑚 + 𝑛) +

𝑂(1) + 𝑂(𝐿√𝑚 + 𝑛) = 𝑂(𝑛 + 1 + 2𝐿√𝑚 + 𝑛) = 𝑂(𝑛 + 𝐿√𝑚 + 𝑛). 

Because a minimum of two location variables are fixed to 0 and 1 within each iteration, 

this procedure can be repeated a maximum of 𝑂(𝑛/2), or 𝑂(𝑛) times. Hence, the algorithm 

complexity is 𝑂(𝑛)𝑂(𝑛 + 𝐿√𝑚 + 𝑛) = 𝑂(𝑛2 + 𝑛𝐿√𝑚 + 𝑛), which is indeed polynomial in n. 

This result implies that the developed heuristic is predicted to outperform exact solving methods 

in terms of worst-case algorithm complexity, where solving to optimality results in exponentially 

growing worst-case solve times as discussed in Section 1. Experimental results explored in the 

next section will validate this prediction. 
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3. EXPERIMENTAL ANALYSIS 

 

This section is devoted to presentation and discussion of computational experiments. The 

tests were run on a PC Intel CORE i5 with 2.40 gigahertz 64-bit processor, 8.0 gigabytes of 

RAM, and Windows 10 64-bit as the Operating System. The algorithms were implemented in 

C++. Problems were solved with CPLEX 12.7, with all parameters set to their default values. 

Test cases were generated using R. 

In Section 3.1 the testing environment of the general test cases is discussed. Section 3.2 

summarizes computational findings of the test cases defined in Section 3.1. Findings from 

additional problem instances that test for various fixed cost levels, which was found to be a 

significant control parameter from the initial computational results, are presented in Section 3.3. 

To conclude the section, Section 3.4 discusses results from additional experiments testing for 

various levels of the infeasibility threshold T. 

3.1. Testing environment 

The heuristic algorithm was tested on 162 instances, ranging from small-scale (e.g., 10 

candidate facilities and 21 customers) to large-scale (e.g., 124 facilities and 111 customers). The 

test cases were randomly generated as follows. 

The random test case generator first determines the numbers of candidate facility and 

customer locations for each instance (|𝐽| and |𝐼| respectively), both random variables of a 

uniform distribution according to ~𝑈(10,130). Each facility and customer point is assigned to a 

Cartesian coordinate location within a 2-dimension [-1,1] by [-1,1] field. It is assumed that each 

facility is identical with respect to capacity restrictions and fixed cost amounts, and each 
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customer point uniformly has one unit of demand. The total available capacity (summed over all 

facilities) is defined by a uniformly distributed random variable as follows: 

∑𝑞𝑗
𝑗∈𝐽

~𝑈(5 × |𝐼|, 15 × |𝐼|). 

Lastly, transportation unit costs are determined based on the Euclidean distance between each 

customer-facility location combination. 

Motivated to analyze the algorithm’s performance under various real-world 

circumstances, two variants were implemented to the test case design. The first is coordinate 

location distribution. In practical applications, customer demand and facility location availability 

may vary across areas considered. Taking the region of North Texas, for example, population 

distribution patterns vary based on the geographical scale considered – within the Dallas-Fort 

Worth area, the population is spread out uniformly across the sprawling metropolitan region, 

whereas at the region-level, there is one significant “center of gravity” (e.g., the Metroplex) that 

the population centers around. To compare the effects of this parameter, three scenarios are 

evaluated: (1) “uniform” distribution, (2) “1-centroid” distribution, and (3) “2-centroid” 

distribution. In the “uniform” case, all coordinate locations are generated randomly within the 

Cartesian field according to (𝑥, 𝑦)~(𝑈(−1,1), 𝑈(−1,1)). In the “1-centroid” scenario, one 

center of gravity point (x0,y0) is generated according to the same uniform distribution above. The 

rest are generated around this point following a normal distribution as follows: 

(𝑥, 𝑦)~(𝑁 (𝑥0, |
𝑥0

2
|) , 𝑁 (𝑦0, |

𝑦0

2
|)). 
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In the case that the point falls outside the defined coordinate field, the coordinate values are 

truncated to either -1 or 1. The “2-centroid” scenario follows the same distribution, except half of 

the points are generated around the first center of gravity, and the other half around a second. 

Fixed cost is the second input parameter implemented. The CFLP solution can be 

significantly impacted by the fixed cost levels, influencing the optimal network topology to have 

more or less opened facilities based on overhead cost considerations. Three scenarios are 

evaluated: (1) “low,” (2) “medium,” and (3) “high” fixed cost levels. In each of the scenarios, all 

facilities will have fixed cost set to 𝑓𝑗 = |𝐽|
𝛼, where α is set to -0.5, 0.5, and 1.5 for the “low,” 

“medium,” and “high” cases, respectively. 

Overviews of instances tested in this paper are shown in Tables 1 and 2: Table 1 

aggregates the 162 test cases by the input scenario parameters (total of 32 = 9), whereas Table 2 

summarizes them by test case problem size (total of 18). The column “Problem Size” is defined 

as the total number of both binary (i.e., location) and non-binary (i.e., flow) variables considered 

in the problem, equal to |𝐽| × (|𝐼| + 1). This will be the metric evaluated when quantifying a 

particular test case’s problem size. 

 

 
Table 1. Overview of test cases summarized by input parameter. 

Location distribution 

scenario 

Fixed cost level 

scenario 

Number of test cases 

evaluated 

Uniform Low 18 

Uniform Medium 18 

Uniform High 18 

1-centroid Low 18 

1-centroid Medium 18 

1-centroid High 18 

2-centroid Low 18 

2-centroid Medium 18 

2-centroid High 18 

 Total 162 
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Table 2. Overview of test cases summarized by problem size. 

|𝑰| |𝑱| Problem Size 

(|𝑱| × (|𝑰| + 𝟏)) 
Number of test 

cases evaluated 

21 10 220 9 

15 17 272 9 

13 24 336 9 

14 23 345 9 

13 26 364 9 

38 39 1,170 9 

36 50 1,850 9 

59 35 2,100 9 

44 58 2,610 9 

65 55 3,630 9 

63 63 4,032 9 

77 77 6,006 9 

71 99 7,128 9 

70 112 7,952 9 

89 89 8,010 9 

77 121 9,438 9 

106 107 11,449 9 

111 124 13,888 9 

  Total 162 

 

 

 

3.2. Computational results 

This section summarizes and comments on the computational results. All test cases are 

solved using two methods: the heuristic algorithm presented in this paper, and the CPLEX-MIP 

solver. The optimal solutions computed by CPLEX-MIP provide a benchmark to evaluate the 

heuristic algorithm performance in regards to two metrics: CPU runtime (measured in seconds) 

and solution quality (quantified as the optimality gap between the best found solutions from both 

methods). The optimality gap is reported as a percent (%) based on the following calculation: 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 𝑔𝑎𝑝 =
𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 − 𝐶𝑃𝐿𝐸𝑋𝑀𝐼𝑃 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒

𝐶𝑃𝐿𝐸𝑋𝑀𝐼𝑃 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒
× 100. 

Because CPLEX may take very long to solve test cases to optimality, runtimes are capped at 

3,600 seconds (i.e., 1 hour). If this threshold is exceeded, the best found solution is assumed to 

be the optimal solution for the particular test instance. 
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Results are summarized in Table 3. One clear takeaway is the significant savings in CPU 

times offered by the heuristic algorithm. Figure 2 displays a scatterplot of solving runtimes using 

both methods (note the vertical axis is in logarithmic scale). As expected, it is apparent that using 

the CPLEX-MIP solver results in exponentially increasing CPU times as the problem size 

increases. Additionally, the results using the heuristic algorithm offer support to the proposition 

presented in Section 2.2 – the runtimes of the developed algorithm only appear to grow in a 

polynomial (perhaps even quasi-linear) fashion. Appendix A.1 offers results of all 162 test cases 

examined for this analysis. 

 

 

 

Figure 2. Computation time of heuristic and CPLEX-MIP plotted against problem size. 

 

 

 

It is important to note that solve times using CPLEX-MIP was capped at 1 hour. This 

gives rise to two points: the first is that because an upper bound on allowed computation time is 
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set, CPU times for “timeout” test cases are artificially truncated. If this restriction was not 

implemented, we can expect to see longer upper bounds on problem solve times using CPLEX-

MIP, further amplifying the benefits of the algorithm as a fast approximation method. The 

second point is that as Figure 3 illustrates below, it is intuitively expected that the frequency of 

instances that “timeout” increases as the problem size gets larger. However, a strong relationship 

from the test cases cannot be derived – this depicts the “non-deterministic” nature of solving 

these types of problems to optimality. Being able to estimate problem solve time bounds is 

another aspect that the heuristic offers that exact methods cannot. 

 

 

 

Figure 3. Number of “timeout” cases when using CPLEX-MIP to solve, plotted against problem size. 

 

 

 

The second metric, solution quality, is also observed. Overall solution qualities of test 

cases vary significantly – Figure 4 displays a scatterplot showing the relationship between 

solution accuracy and problem size. Based on the results, the optimality gaps are not small 

enough to claim that the heuristic algorithm offers satisfactory solutions at a reliable rate. From 
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these results, we can conclude that the benefit of the algorithm is producing a feasible solution 

(which can potentially offer “adequate” solutions) in a fraction of computation time. This benefit 

may be marginal when solving smaller instances, because in these cases CPLEX can provide 

optimal solutions while maintaining feasible CPU runtimes. Rather, the benefit is most reflected 

in the larger test cases, where instances that “timeout” using the CPLEX-MIP solver can be 

solved by the heuristic in seconds. 

 

 

 

Figure 4. Optimality gap of test cases plotted against problem size. 

 

 

 

To determine heuristic performance under various scenarios, results are now analyzed 

with respect to the input parameters. The optimality gap metric will be the primary focus of the 

subsequent analyses. The summary statistics offered in Table 4 point to the location distribution 
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parameter having no significant effect in respect to solution quality. However, Table 5 shows 

that test cases with “high” fixed cost parameters perform well, offering optimality gaps within a 

range of 0% (i.e., optimal) to 4.9%. It is conjectured that the algorithm performs better for this 

scenario because higher fixed costs will influence the optimal solution to have less opened 

facilities in the final network topology. This minimizes the set of potentially “promising” 

locations that the algorithm must consider to opened, thus increasing the likelihood of arriving at 

a near-optimal solution within the heuristic search tree. Another reason could be in the algorithm 

framework. Because the heuristic greedily focuses on the binary location variable values when 

determining which locations to be opened or closed, the objective function value becomes 

significantly influenced by the fixed cost component (𝑓𝑗𝑥𝑗 in the model formulation). Hence, the 

solution accuracy performance becomes dependent on the fixed cost test case parameter – as the 

results indicate, this appears beneficial when solving problems with “high” fixed costs but 

problematic for the “medium” and “low” cases. Additional experiments will be conducted in 

Section 3.3 for further evaluation. 

3.3. Additional test cases controlling for the fixed cost parameter 

In order to validate the results observed in Section 3.2, 60 additional test cases are 

examined. As we assume the location distribution parameter has no effect on solution outcomes, 

the additional cases take on the “uniformly distributed” scenario. Table 6 offers summary 

statistics of these additional test cases. The results further validate the explored conjecture: 

excluding the outlier test case having a 91.2% optimality gap, the remaining 19 cases of the 

“High” fixed cost level have minimum, average, and maximum optimality gaps of 0.0%, 0.4%, 

and 2.7%, respectively. (The full results are available in Appendix A.2.) The algorithm may be 

an effective alternative to using a commercial MIP solver when solving large-scale problems  
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with relatively high facility fixed costs. Problems where facility consolidation is expected to be 

the optimal strategy could be an area of effective application. 

3.4. Modifying the infeasibility threshold 

 The conducted experiments show the heuristic performs well for problems of the “high” 

fixed cost parameter. In an effort to improve solution accuracy for the other test cases, 

specifically the “low” and “medium” fixed cost problems, modification of the infeasibility 

threshold T is explored. Relaxing T to a higher value enables the algorithm to explore more 

solutions and potentially leading to better solutions. For the 60 additional test cases generated for 

Section 3.3, four values of T were implemented as follows. 

𝑇 =

{
  
 

  
 √|𝐽|

2
 [𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑠𝑒𝑡𝑡𝑖𝑛𝑔]

√|𝐽|

2√|𝐽|

|𝐽|

2
 [𝑖. 𝑒. ,  𝑛𝑜 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑]

 

It was found that in 4 out of the 60 cases, the revised T values led to solution accuracy 

improvements. Tradeoff curves showing runtime performance and optimality gap for test cases 

A, B, and C (of the “low” fixed cost parameter) and test case D (of the “medium” fixed cost 

parameter) are depicted in Figures 5 through 8 below. Whether modifying the T value (resulting 

in longer computation times) being worth the solution accuracy improvement is up to 

interpretation. However, because runtime performance is still very fast (at less than a few 

seconds for all cases) and only seems to be growing linearly, this modification can be an easy 

way to marginally improve the algorithm’s solution accuracies with minimal effort. 
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Figure 5. Runtime vs. optimality gap tradeoff 

curve for test case A. 

 

 

 

Figure 6. Runtime vs. optimality gap tradeoff 

curve for test case B. 

 

 

Figure 7. Runtime vs. optimality gap tradeoff 

curve for test case C. 

 

 

 

Figure 8. Runtime vs. optimality gap tradeoff 

curve for test case D.
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4. APPLICATION TO A REAL-WORLD PROBLEM  

 

The results from Section 3 illustrate the algorithm’s potential as an effective method to 

solve CFLPs. However, because simplifying assumptions were made for the test cases 

considered thus far (such as using uniform fixed costs and capacities for all candidate facilities), 

the heuristic still has not proven its effectiveness for solving more realistic problems observed in 

industry. To examine whether the developed algorithm has practical applicability, a business 

problem was modeled to perform additional computational tests on. The considered problem is a 

CFLP adapted from a 2017 study of a warehouse network optimization project, conducted for an 

industrial materials distributor in the United States. The instance was slightly modified to fit the 

scope of the considered problem type for this paper, and the data altered for confidentiality. 

 

 

 

Figure 9. Map of all candidate warehouse locations (black triangles) and customer demand (magenta circles). 
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In this problem, the distributor is looking to optimize its warehouse network across the 

continental United States. There are 28 potential warehouse locations to select from, each with 

varying facility capacities and fixed costs. The optimal set of warehouses must satisfy all 

customer demand points, which are aggregated by the first 2-digit prefixes of US postal 

zipcodes. Figure 9 visualizes the customer and demand nodes geographically. 

Two types of costs are considered: fixed and transportation. The distributor seeks to find 

the optimal network topology of warehouse placement and customer assignment in order to 

minimize total annual expenditures. For simplicity, all products that the distributor handles are 

considered to be of one type, with tons being the universal measure of volume. Distances are 

computed using the great circle method between geocoordinates of zipcodes. Similar to the 

experiments conducted in Section 3, three different cases of fixed cost levels were examined: 

“Standard,” “High,” and “Low.” In the “High” scenario, the fixed costs were amplified by a 

factor of 1.5 relative to the “Standard” case, and for the “Low” scenario, scaled down by a factor 

of 1.5. Refer to Appendix B.1 for all problem parameters. 

Results from the three runs are summarized in Table 7. As expected from the findings in 

Section 3, the heuristic algorithm indeed reduces the problem solving runtimes. Additionally, the 

solution accuracy is best for the “High” test case at an optimality gap of 5.6%, followed by the 

“Standard” (24.9%) and “Low” (47.1%) instances. 

 

 
Table 7. Summary of warehouse problem solutions. 

Problem 

Type 

Algorithm CPLEX-MIP Optimality 

Gap (%) Total cost ($) CPU (seconds) Total cost ($) CPU (seconds) 

Standard $4,349,580 0.93 $3,483,260 3.43 24.9% 

High $4,770,720 0.53 $4,516,170 5.11 5.6% 

Low $4,044,090 0.11 $2,749,920 12.82 47.1% 
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Furthermore, detailed results of opened warehouse locations and their handled volumes 

for the “High” problem are summarized in Table 8 (results from the other two scenarios are 

available in Appendix B.2). It is observed that the solutions produced by both the algorithm and 

CPLEX-MIP are very similar, as validated by the maps of Figures 10 and 11. These results 

provide a promising outlook for the practicality of the developed heuristic, showing the 

algorithm is indeed capable of selecting “promising” candidate facility sites that are also selected 

in the true optimal solution set. 

 

 
Table 8. Opened warehouses in Algorithm and CPLEX-MIP solutions for the “High” problem scenario. 

Warehouse 

location 

Fixed 

cost ($) 

Capacity 

(tons) 

Volume handled in 

Algorithm solution (tons) 

Volume handled in CPLEX-

MIP solution (tons) 

Atlanta, GA $750,000 15,000 8,248 13,896 

Cincinnati, OH $750,000 15,000 13,506 15,000 

Cleveland, OH $450,000 9,000 9,000  

Dallas, TX $600,000 10,000  10,000 

Detroit, MI $300,000 7,000 7,000 7,000 

Houston, TX $600,000 10,000 8,142  

Tucson, AZ $450,000 8,000 8,000 8,000 

  Total 53,896 53,896 
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Figure 10. Optimal network topology given by algorithm solution for the “High” problem scenario. 

 

 

 

 

Figure 11. Optimal network topology given by CPLEX-MIP solution for the “High” problem scenario. 
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5. CONCLUSIONS AND FUTURE WORK  

 

The algorithm presented in this paper is a straightforward and applicable heuristic 

incorporating greedy-based variable fixing and iterative LP relaxation solving to solve CFLPs. 

The methodology offers an alternative to solving the MIP to optimality – which can take 

exponential CPU time due to the existence of binary location variables in the formulation – by 

providing a heuristic solution in a fraction of required CPU time while attaining acceptable 

solution accuracy in certain scenarios. The experiments offer validation of the computational 

benefits, with additional insight that the heuristic performs best for problem instances involving 

facilities having relatively high fixed cost levels. The promising results from solving the 

warehouse network problem in Section 4 also boost confidence in the algorithm being a viable 

method for solving similar problems in an industry setting. 

The savings in computation times are apparent from the experiments run for this paper, 

but there is significant room for improvement in the solution accuracy aspect. Though not 

explored in this paper, combining the heuristic and CPLEX-MIP solving techniques could be a 

promising idea. Because the proposed algorithm returns a solution in minimal CPU time, 

problems may be first solved using the algorithm, and the resulting solution could be provided as 

a “warm start” input to the CPLEX-MIP solver, which will then solve the problem to optimality. 

Currently the algorithm only considers the binary location variable values in the variable 

fixing process. In future work, the algorithm could be revisited so that other elements are also 

considered when making greedy-based branching decisions. As discussed in Section 3.2, the 

current algorithm framework presumably leads to the over-prioritization of the fixed cost 

component when deciding which locations are “promising” or not. It is conjectured that a more 
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sophisticated heuristic rule, such as one that considers the tradeoffs between both fixed and 

variable cost influences, may be more appropriate. For instance, shadow prices, reduced costs, 

and non-binary (i.e., flow) variable values could be additional metrics to consider. Evaluating 

additional information hopefully will result in obtaining better solutions for problems of various 

types. 

Although the paper only explores a limited scope of the applicability of our method, we 

predict that this framework can be applied to solve not only just CFLPs, but to a broader scope of 

MIPs as well. The algorithm’s main benefit is being able to produce heuristic solutions very 

quickly, so applications requiring the fast and scalable reproduction of solutions are potential use 

cases. Some examples could be determining optimal power grid usage that can reflect 

instantaneous changes in load demand, or enabling efficient computation of service patterns in 

the sharing economy (such as with ridesharing in Uber). Cloud manufacturing could also be 

another use case for the methodology. As introduced by Wu et al. (2013) and Wu et al. (2015), 

this paradigm enables system models to access a shared collection of various manufacturing 

resources. The developed heuristic enables the required scalability in solving manufacturing-

related MIP models that is required to efficiently reflect tremendous amount of input information 

being updated instantaneously. 

Due to the straightforward framework and flexibility of the algorithm, we believe the 

developed heuristic has a strong potential for further exploration in both theory and practice. 
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APPENDIX A.                                                                                                                 

DETAILED COMPUTATIONAL RESULTS FOR TEST CASES CONSIDERED                    

IN SECTION 3 

 

A.1. Full results of experiments run for Section 3.2 

Table 9. Results for all 162 test case experiments conducted. 

Location 

distribution 

scenario 

Fixed 

cost 

level 

scenario 

|𝑰| |𝑱| Problem 

size 

CPU 

(seconds) 

Algorithm 

CPU 

(seconds) 

CPLEX-

MIP 

Optimality 

Gap (%) 

“Timeout” 

occurrence 

(*) 

2-centroid Medium 36 50 1,850 0.087 6.347 1.9%  

2-centroid Medium 59 35 2,100 0.074 1.827 2.6%  

2-centroid Medium 38 30 1,170 0.044 0.925 41.9%  

2-centroid Medium 44 58 2,610 0.104 9.499 4.0%  

2-centroid Medium 65 55 3,630 0.247 4.487 30.2%  

2-centroid Low 36 50 1,850 0.049 3610.090 20.3% * 

2-centroid Low 59 35 2,100 0.103 0.346 18.1%  

2-centroid Low 38 30 1,170 0.063 0.752 77.5%  

2-centroid Low 44 58 2,610 0.052 3615.920 16.2% * 

2-centroid Low 65 55 3,630 0.537 1.486 18.4%  

2-centroid High 36 50 1,850 0.096 0.822 0.0%  

2-centroid High 59 35 2,100 0.055 1.327 0.1%  

2-centroid High 38 30 1,170 0.026 1.327 0.2%  

2-centroid High 44 58 2,610 0.095 3609.140 0.1% * 

2-centroid High 65 55 3,630 0.140 5.125 0.2%  

1-centroid Medium 36 50 1,850 0.081 1.881 1.0%  

1-centroid Medium 59 35 2,100 0.054 3.577 1.9%  

1-centroid Medium 38 30 1,170 0.031 1.200 22.2%  

1-centroid Medium 44 58 2,610 0.097 13.170 3.5%  

1-centroid Medium 65 55 3,630 0.126 8.686 3.6%  

1-centroid Low 36 50 1,850 0.046 1451.840 59.7%  

1-centroid Low 59 35 2,100 0.109 0.614 29.3%  

1-centroid Low 38 30 1,170 0.066 0.535 33.9%  

1-centroid Low 44 58 2,610 0.052 3610.400 21.4% * 

1-centroid Low 65 55 3,630 0.501 2.614 21.3%  

1-centroid High 36 50 1,850 0.087 0.306 0.0%  

1-centroid High 59 35 2,100 0.054 4.074 0.1%  

1-centroid High 38 30 1,170 0.025 0.986 0.2%  

1-centroid High 44 58 2,610 0.100 3615.200 0.1% * 

1-centroid High 65 55 3,630 0.149 31.416 0.1%  

Uniform Medium 36 50 1,850 0.081 19.221 2.7%  

Uniform Medium 59 35 2,100 0.067 1.697 17.1%  

Uniform Medium 38 30 1,170 0.050 0.681 184.6%  

Uniform Medium 44 58 2,610 0.105 14.172 2.5%  

Uniform Medium 65 55 3,630 0.216 9.126 29.1%  

Uniform Low 36 50 1,850 0.036 3565.780 16.8% * 
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Table 9. (Continued) 

Location 

distribution 

scenario 

Fixed 

cost 

level 

scenario 

|𝑰| |𝑱| Problem 

size 

CPU 

(seconds) 

Algorithm 

CPU 

(seconds) 

CPLEX-

MIP 

Optimality 

Gap (%) 

“Timeout” 

occurrence 

(*) 

Uniform Low 59 35 2,100 0.092 0.150 10.1%  

Uniform Low 38 30 1,170 0.067 0.108 20.1%  

Uniform Low 44 58 2,610 0.056 3613.710 11.2% * 

Uniform Low 65 55 3,630 0.600 0.367 27.5%  

Uniform High 36 50 1,850 0.079 4.930 0.1%  

Uniform High 59 35 2,100 0.061 1.047 0.1%  

Uniform High 38 30 1,170 0.026 0.743 0.9%  

Uniform High 44 58 2,610 0.106 3613.200 0.0% * 

Uniform High 65 55 3,630 0.135 12.764 0.2%  

2-centroid Medium 14 23 345 0.030 0.263 230.8%  

2-centroid Medium 21 10 220 0.054 0.099 56.5%  

2-centroid Medium 13 26 364 0.032 0.615 136.3%  

2-centroid Medium 13 24 336 0.027 0.379 25.8%  

2-centroid Medium 15 17 272 0.032 0.259 83.4%  

2-centroid Low 14 23 345 0.026 0.267 46.7%  

2-centroid Low 21 10 220 0.023 0.052 15.1%  

2-centroid Low 13 26 364 0.025 0.173 19.6%  

2-centroid Low 13 24 336 0.025 0.229 15.0%  

2-centroid Low 15 17 272 0.024 0.150 61.0%  

2-centroid High 14 23 345 0.060 0.253 2.9%  

2-centroid High 21 10 220 0.016 0.087 4.9%  

2-centroid High 13 26 364 0.024 1.146 0.7%  

2-centroid High 13 24 336 0.024 0.283 0.4%  

2-centroid High 15 17 272 0.019 0.256 4.8%  

1-centroid Medium 14 23 345 0.025 0.282 32.2%  

1-centroid Medium 21 10 220 0.030 0.103 60.6%  

1-centroid Medium 13 26 364 0.028 0.288 20.9%  

1-centroid Medium 13 24 336 0.028 0.340 23.5%  

1-centroid Medium 15 17 272 0.023 0.208 140.1%  

1-centroid Low 14 23 345 0.023 0.323 59.6%  

1-centroid Low 21 10 220 0.033 0.139 23.5%  

1-centroid Low 13 26 364 0.027 0.433 60.4%  

1-centroid Low 13 24 336 0.026 0.265 18.4%  

1-centroid Low 15 17 272 0.022 0.204 29.6%  

1-centroid High 14 23 345 0.023 0.354 2.2%  

1-centroid High 21 10 220 0.015 0.108 1.0%  

1-centroid High 13 26 364 0.023 1.071 0.9%  

1-centroid High 13 24 336 0.022 0.295 0.4%  

1-centroid High 15 17 272 0.017 0.257 3.0%  

Uniform Medium 14 23 345 0.024 0.254 201.0%  

Uniform Medium 21 10 220 0.022 0.090 23.0%  

Uniform Medium 13 26 364 0.029 0.215 23.3%  

Uniform Medium 13 24 336 0.026 0.327 90.5%  

Uniform Medium 15 17 272 0.025 0.262 252.7%  

Uniform Low 14 23 345 0.023 0.329 0.0%  

Uniform Low 21 10 220 0.028 0.074 4.6%  

Uniform Low 13 26 364 0.023 0.312 4.1%  

Uniform Low 13 24 336 0.022 0.316 25.1%  



 

32 

 

Table 9. (Continued) 

Location 

distribution 

scenario 

Fixed 

cost 

level 

scenario 

|𝑰| |𝑱| Problem 

size 

CPU 

(seconds) 

Algorithm 

CPU 

(seconds) 

CPLEX-

MIP 

Optimality 

Gap (%) 

“Timeout” 

occurrence 

(*) 

Uniform Low 15 17 272 0.024 0.103 5.7%  

Uniform High 14 23 345 0.024 0.244 0.4%  

Uniform High 21 10 220 0.015 0.103 2.1%  

Uniform High 13 26 364 0.025 1.363 0.2%  

Uniform High 13 24 336 0.020 0.338 0.3%  

Uniform High 15 17 272 0.022 0.233 2.2%  

2-centroid Medium 71 99 7,128 0.402 3601.570 5.6% * 

2-centroid Medium 70 112 7,952 0.403 29.125 1.3%  

2-centroid Medium 77 121 9,438 1.231 3606.700 0.7% * 

2-centroid Medium 106 107 11,449 0.614 189.689 6.7%  

2-centroid Medium 111 124 13,888 0.738 3600.110 1.2% * 

2-centroid Low 71 99 7,128 0.291 3671.130 23.5% * 

2-centroid Low 70 112 7,952 0.399 3620.290 18.0% * 

2-centroid Low 77 121 9,438 0.412 3611.790 71.1% * 

2-centroid Low 106 107 11,449 0.527 3618.210 51.7% * 

2-centroid Low 111 124 13,888 1.102 3636.430 62.2% * 

2-centroid High 71 99 7,128 0.475 248.827 0.1%  

2-centroid High 70 112 7,952 0.470 20.748 0.0%  

2-centroid High 77 121 9,438 1.115 3606.470 0.0% * 

2-centroid High 106 107 11,449 0.558 56.401 0.0%  

2-centroid High 111 124 13,888 0.765 3500.070 0.0% * 

1-centroid Medium 71 99 7,128 0.477 582.388 10.1%  

1-centroid Medium 70 112 7,952 0.485 221.062 3.3%  

1-centroid Medium 77 121 9,438 1.005 3613.730 1.0% * 

1-centroid Medium 106 107 11,449 0.637 654.941 13.5%  

1-centroid Medium 111 124 13,888 0.825 3600.090 9.1% * 

1-centroid Low 71 99 7,128 0.308 3611.140 67.2% * 

1-centroid Low 70 112 7,952 0.368 3638.090 20.2% * 

1-centroid Low 77 121 9,438 0.421 3615.780 42.3% * 

1-centroid Low 106 107 11,449 0.512 1619.040 45.3%  

1-centroid Low 111 124 13,888 0.621 3611.710 88.7% * 

1-centroid High 71 99 7,128 0.458 30.828 0.0%  

1-centroid High 70 112 7,952 0.501 89.887 0.0%  

1-centroid High 77 121 9,438 1.061 3608.270 0.0% * 

1-centroid High 106 107 11,449 0.580 3600.160 0.1% * 

1-centroid High 111 124 13,888 0.756 329.536 0.0%  

Uniform Medium 71 99 7,128 0.398 309.137 1.7%  

Uniform Medium 70 112 7,952 0.443 2583.050 3.4%  

Uniform Medium 77 121 9,438 1.006 3615.010 0.6% * 

Uniform Medium 106 107 11,449 0.501 52.175 6.0%  

Uniform Medium 111 124 13,888 0.701 1421.270 5.2%  

Uniform Low 71 99 7,128 0.286 3616.180 6.8% * 

Uniform Low 70 112 7,952 0.389 3652.280 6.7% * 

Uniform Low 77 121 9,438 0.449 3631.530 6.4% * 

Uniform Low 106 107 11,449 0.543 2.158 11.9%  

Uniform Low 111 124 13,888 0.623 3605.580 15.3% * 

Uniform High 71 99 7,128 0.395 374.560 0.0%  

Uniform High 70 112 7,952 0.509 812.137 0.0%  
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Table 9. (Continued) 

Location 

distribution 

scenario 

Fixed 

cost 

level 

scenario 

|𝑰| |𝑱| Problem 

size 

CPU 

(seconds) 

Algorithm 

CPU 

(seconds) 

CPLEX-

MIP 

Optimality 

Gap (%) 

“Timeout” 

occurrence 

(*) 

Uniform High 77 121 9,438 0.994 3607.260 0.0% * 

Uniform High 106 107 11,449 0.606 78.216 0.1%  

Uniform High 111 124 13,888 0.778 3601.470 0.1% * 

2-centroid Medium 63 63 4,032 0.235 1934.830 1.6%  

2-centroid Low 89 89 8,010 0.450 1085.340 49.7%  

1-centroid Medium 77 77 6,006 0.454 1000.470 1.4%  

1-centroid Medium 89 89 8,010 0.539 845.571 7.8%  

1-centroid Low 89 89 8,010 0.323 328.750 57.0%  

2-centroid Medium 89 89 8,010 0.449 273.362 3.2%  

2-centroid Medium 77 77 6,006 0.397 224.272 3.5%  

Uniform Medium 89 89 8,010 0.490 223.278 1.4%  

2-centroid High 63 63 4,032 0.216 117.606 0.0%  

Uniform High 89 89 8,010 0.509 37.189 0.0%  

2-centroid High 89 89 8,010 0.465 25.268 0.0%  

Uniform High 63 63 4,032 0.258 24.642 0.1%  

2-centroid High 77 77 6,006 0.377 22.471 0.0%  

1-centroid High 89 89 8,010 0.489 22.205 0.1%  

Uniform High 77 77 6,006 0.407 22.091 0.0%  

1-centroid High 63 63 4,032 0.271 12.131 0.0%  

1-centroid Low 77 77 6,006 0.267 11.085 126.0%  

Uniform Medium 77 77 6,006 0.388 9.071 2.9%  

2-centroid Low 77 77 6,006 0.355 7.632 77.2%  

1-centroid Medium 63 63 4,032 0.266 7.138 2.3%  

Uniform Medium 63 63 4,032 0.252 6.949 3.4%  

2-centroid Low 63 63 4,032 0.293 4.257 66.5%  

1-centroid Low 63 63 4,032 0.161 2.829 43.9%  

Uniform Low 89 89 8,010 0.319 1.291 14.4%  

1-centroid High 77 77 6,006 0.454 1.127 0.0%  

Uniform Low 77 77 6,006 0.300 0.766 13.8%  

Uniform Low 63 63 4,032 0.172 0.527 15.0%  
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A.2. Full results of experiments run for Section 3.3 

Table 10. Results for all 60 test cases conducted for additional experiments. 

Location 

distribution 

scenario 

Fixed 

cost 

level 

scenario 

|𝑰| |𝑱| Problem 

size 

CPU 

(seconds) 

Algorithm 

CPU 

(seconds) 

CPLEX-

MIP 

Optimality 

Gap (%) 

“Timeout” 

occurrence 

(*) 

Uniform High 55 37 2,072 0.034 12.177 0.5%  

Uniform High 34 10 350 0.022 0.161 91.2%  

Uniform High 16 83 1,411 0.068 1.786 0.0%  

Uniform High 73 32 2,368 0.047 3.308 0.6%  

Uniform High 32 67 2,211 0.070 3.215 0.1%  

Uniform High 64 27 1,755 0.028 0.926 2.7%  

Uniform High 71 31 2,232 0.048 2.815 0.3%  

Uniform High 23 97 2,328 0.150 0.287 0.0%  

Uniform High 84 73 6,205 0.247 3601.490 0.2% * 

Uniform High 20 53 1,113 0.037 0.954 0.1%  

Uniform High 88 79 7,031 0.471 42.268 0.0%  

Uniform High 80 32 2,592 0.034 2.112 0.9%  

Uniform High 37 52 1,976 0.042 3.359 0.2%  

Uniform High 61 30 1,860 0.031 0.899 0.5%  

Uniform High 36 30 1,110 0.021 0.565 0.6%  

Uniform High 47 72 3,456 0.290 0.419 0.0%  

Uniform High 64 94 6,110 0.541 27.983 0.0%  

Uniform High 99 45 4,500 0.214 3.089 0.2%  

Uniform High 51 28 1,456 0.026 0.680 0.3%  

Uniform High 29 12 360 0.012 0.536 0.8%  

Uniform Low 55 37 2,072 0.094 0.212 12.3%  

Uniform Low 34 10 350 0.025 0.069 2.9%  

Uniform Low 16 83 1,411 0.033 0.586 6.7%  

Uniform Low 73 32 2,368 0.098 0.135 8.7%  

Uniform Low 32 67 2,211 0.054 3603.950 4.4% * 

Uniform Low 64 27 1,755 0.067 0.217 12.0%  

Uniform Low 71 31 2,232 0.094 0.309 4.9%  

Uniform Low 23 97 2,328 0.042 2.694 0.6%  

Uniform Low 84 73 6,205 1.149 0.646 15.6%  

Uniform Low 20 53 1,113 0.030 4.109 5.6%  

Uniform Low 88 79 7,031 0.992 0.748 15.7%  

Uniform Low 80 32 2,592 0.088 0.323 8.6%  

Uniform Low 37 52 1,976 0.035 3617.030 14.3% * 

Uniform Low 61 30 1,860 0.132 0.160 14.9%  

Uniform Low 36 30 1,110 0.073 0.183 20.2%  

Uniform Low 47 72 3,456 0.190 3617.020 7.5% * 

Uniform Low 64 94 6,110 0.279 3665.820 11.3% * 

Uniform Low 99 45 4,500 0.597 0.388 15.5%  

Uniform Low 51 28 1,456 0.074 0.111 12.1%  

Uniform Low 29 12 360 0.021 0.087 31.3%  

Uniform Medium 55 37 2,072 0.075 1.782 68.1%  

Uniform Medium 34 10 350 0.018 0.150 8.6%  

Uniform Medium 16 83 1,411 0.050 0.927 0.8%  
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Table 10. (Continued) 

Location 

distribution 

scenario 

Fixed 

cost 

level 

scenario 

|𝑰| |𝑱| Problem 

size 

CPU 

(seconds) 

Algorithm 

CPU 

(seconds) 

CPLEX-

MIP 

Optimality 

Gap (%) 

“Timeout” 

occurrence 

(*) 

Uniform Medium 73 32 2,368 0.071 1.332 70.1%  

Uniform Medium 32 67 2,211 0.060 2.861 3.7%  

Uniform Medium 64 27 1,755 0.072 1.016 107.1%  

Uniform Medium 71 31 2,232 0.085 1.310 85.0%  

Uniform Medium 23 97 2,328 0.121 15.738 0.2%  

Uniform Medium 84 73 6,205 0.389 24.032 52.9%  

Uniform Medium 20 53 1,113 0.056 1.203 3.2%  

Uniform Medium 88 79 7,031 0.433 79.057 1.2%  

Uniform Medium 80 32 2,592 0.093 2.005 73.7%  

Uniform Medium 37 52 1,976 0.059 4.380 110.5%  

Uniform Medium 61 30 1,860 0.061 1.601 55.3%  

Uniform Medium 36 30 1,110 0.041 0.691 151.9%  

Uniform Medium 47 72 3,456 0.315 16.959 1.0%  

Uniform Medium 64 94 6,110 0.550 156.280 1.1%  

Uniform Medium 99 45 4,500 0.427 4.825 38.1%  

Uniform Medium 51 28 1,456 0.084 0.883 107.3%  

Uniform Medium 29 12 360 0.022 0.176 20.5%  
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APPENDIX B.                                                                                                             

PARAMETERS AND RESULTS OF REAL-LIFE PROBLEM CONSIDERED IN SECTION 4 

 

B.1. Input parameters 

Table 11. Warehouse location input parameters. 

Warehouse location Zipcode 2-

digit prefix 

Capacity 

(tons) 

Fixed cost ($) 

Standard 

Fixed cost ($) 

High 

Fixed cost ($) 

Low 

Boston, MA 01 10,000 $1,000,000 $1,500,000 $666,666 

Phoenix, AZ 85 6,000 $300,000 $450,000 $200,000 

Atlanta, GA 30 15,000 $500,000 $750,000 $333,333 

Philadelphia, PA 19 10,000 $500,000 $750,000 $333,333 

Los Angeles, CA 91 10,000 $1,200,000 $1,800,000 $800,000 

Chicago, IL 60 8,000 $500,000 $750,000 $333,333 

Cincinnati, OH 45 15,000 $500,000 $750,000 $333,333 

Houston, TX 77 10,000 $400,000 $600,000 $266,666 

Dallas, TX 75 10,000 $400,000 $600,000 $266,666 

Denver, CO 80 14,000 $700,000 $1,050,000 $466,666 

Miami, FL 33 12,000 $800,000 $1,200,000 $533,333 

Detroit, MI 48 7,000 $200,000 $300,000 $133,333 

Minneapolis, MN 55 12,000 $500,000 $750,000 $333,333 

St. Louis, MO 63 10,000 $400,000 $600,000 $266,666 

Charlotte, NC 28 10,000 $500,000 $750,000 $333,333 

Portland, OR 97 5,000 $400,000 $600,000 $266,666 

Seattle, WA 98 8,000 $700,000 $1,050,000 $466,666 

Salt Lake City, UT 84 7,000 $500,000 $750,000 $333,333 

Cleveland, OH 44 9,000 $300,000 $450,000 $200,000 

Kansas City, MO 64 14,000 $600,000 $900,000 $400,000 

San Antonio, TX 78 9,000 $400,000 $600,000 $266,666 

Austin, TX 78 7,000 $400,000 $600,000 $266,666 

Tucson, AZ 85 8,000 $300,000 $450,000 $200,000 

Las Vegas, NV 89 15,000 $700,000 $1,050,000 $466,666 

Oklahoma City, OK 73 11,000 $600,000 $900,000 $400,000 

San Francisco, CA 94 7,000 $1,300,000 $1,950,000 $866,666 

Albuquerque, NM 87 15,000 $400,000 $600,000 $266,666 

San Diego, CA 92 8,000 $600,000 $900,000 $400,000 
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Table 12. Customer demand location input parameters.

Customer 

Zipcode 

2-digit 

Prefix 

Demand 

(tons) 

01 988 

02 773 

03 253 

04 71 

05 76 

06 582 

07 1,042 

08 921 

10 294 

11 450 

12 260 

13 210 

14 796 

15 377 

16 381 

17 150 

18 600 

19 893 

20 46 

21 764 

22 886 

23 177 

24 545 

25 168 

26 43 

27 360 

28 938 

29 1,384 

30 1,758 

31 283 

32 833 

33 883 

34 216 

Customer 

Zipcode 

2-digit 

Prefix 

Demand 

(tons) 

35 213 

36 135 

37 1,010 

38 123 

39 112 

40 404 

41 139 

42 93 

43 681 

44 2,144 

45 3,931 

46 277 

47 723 

48 861 

49 1,216 

50 422 

51 127 

52 21 

53 381 

54 291 

55 1,190 

56 82 

57 14 

58 6 

59 11 

60 2,160 

61 232 

62 91 

63 1,382 

64 749 

65 88 

66 561 

67 69 

Customer 

Zipcode 

2-digit 

Prefix 

Demand 

(tons) 

68 44 

69 1 

70 238 

71 235 

72 587 

73 459 

74 493 

75 582 

76 405 

77 2,956 

78 502 

79 186 

80 209 

81 53 

82 16 

83 262 

84 148 

85 3,238 

86 70 

87 79 

88 8 

89 279 

90 590 

91 756 

92 1,040 

93 215 

94 449 

95 374 

96 12 

97 285 

98 772 

99 13 
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