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ABSTRACT 

 

Plants are sessile organisms and are unable to relocate to favorable locations under 

extreme environmental conditions, and hence they have no choice but to acclimate and 

eventually adapt to the severe conditions to ensure their survival. With climate change 

affecting the environment adversely, it is of utmost importance to make plants and crops 

robust enough to withstand harsh conditions and safeguard global food production. As 

traditional methods of bolstering plant defense against stressful conditions come to their 

biological limit, we require newer methods that can allow us to strengthen the plant’s 

internal defense mechanism. This motivated us to look into the genetic networks of plants.  

In this thesis, we lay out a method to analyze genetic networks in plants that are activated 

under abiotic stress, specifically drought conditions. This method is based on the analysis 

of Bayesian networks and should ultimately help in finding genes in the genetic networks 

of the plant that play a key role in its defense response against drought.  

The WRKY transcription factor is well known for its role in plant defense against 

biotic stresses, but recent studies have shed light on its activity against abiotic stresses 

such as drought.  Therefore, it is logical to study the various components of the WRKY 

gene network in order to maximize a plant’s defense mechanism. The data used to learn 

the parameters of the Bayesian network consisted of both real world and synthetic data. 

The synthetic data was generated using the dependencies in the Bayesian network 

model. The network parameters were learned using a Bayesian approach and the 

frequentist approach. The estimated parameters are then used to build a Bayesian 
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decision network, where nodes are selected one at a time for intervention and the utility 

(score) for the upregulation of a downstream abiotic stress response gene is computed. 

The node that maximizes this utility is recommended for biological intervention.  
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1. INTRODUCTION  

 

The global population is set to rise by 35% by the year 2050 and increasing crop 

yields to ensure food security has become a grand challenge [1]. The rise in temperature 

worldwide due to global warming has increased the risk of drought affecting crop yields 

and has further complicated this challenge. It is estimated that by the year 2100, the 

global drought affected area will rise from 15.4% to 44%, and the global crop yield will 

reduce by more than 50% by 2050 and by 90% in 2100 [2]. The unprecedented rise in 

worldwide population accompanied by a rise in demand for crop supply comes at a time 

when traditional approaches of maximizing crop production are coming to their 

biological limits. Hence, developing drought resistant crops has become a global priority 

to ensure food security. Fortunately, plants have multiple innate stress sensing 

mechanisms that are able to detect unfavorable changes in the environment and deploy 

appropriate defense responses. Therefore, it is of great interest to understand the genetic 

networks behind a plant’s defense mechanism in order to augment its genetic yield 

potential while reducing its susceptibility to harsh conditions.   

Abscisic acid (ABA) is a well-known plant hormone that is induced under 

drought stress conditions and regulates a plant’s gene expression through the action of 

transcription factors [3,4]. The family of WRKY transcription factors is traditionally 

associated with plant defense mechanisms against pathogens; however, many recent 

studies have highlighted WRKY’s role in abiotic stress responses [5,6,7].  Since WRKY 

is one of the largest families of transcription factors in plants with such diverse roles in 
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plant defense mechanisms, it will be practical to model the interaction among various 

components of the WRKY’s signaling pathway to gain valuable insights into these 

interactions [8]. In this paper, we use Bayesian networks (BN) to model the ABA-

induced WRKY transcription factor network. We then apply a utility based inference 

technique to determine the significant regulators of drought stress response genes in the 

BN. This approach allows us to integrate existing biological knowledge into our model. 

 



 

3 

 

2. BIOLOGICAL BACKGROUND & WRKY SIGNALING PATHWAY 

 

Similar to the way adrenaline functions as a stress hormone in animals, plants 

respond to harsh environmental changes, pathogen attacks or wounding by secreting 

plant hormones such as Abscisic Acid, Cytokinins, Salicylic Acid and Ethylene to 

trigger its own defense mechanisms. In the context of plants, drought is characterized by 

the unavailability of water which can prevent plants from performing basic survival 

processes such as photosynthesis. When a plant faces water deficit conditions, it can 

defend itself either by the process of avoidance or tolerance.  In the case of avoidance, a 

plant may complete its life cycle in the wet season. Whereas in the case of tolerance, the 

plant may initially acclimate to the change in conditions by introducing reversible 

changes into its physiology through altering its gene expression; however, if the drought 

conditions still persist, then the plant passes its altered genes to its next generation so 

that these new generations of plants are already adapted to the drought conditions [9]. 

To adopt either of these defense mechanisms the plant must undergo a process of 

signal transduction when it gets the initial cue of droughts such as a drop in the water 

potential in the apoplast and a rise in the ion concentration [9]. All these signals along 

with many others cause a rapid rise in the level of the plant hormone ABA which acts as 

a stress sensor and it subsequently activates secondary messengers such as Ca2+, 

Reactive Oxygen Species (ROS) and Cyclic Adenosine Monophosphate (cAMP). These 

secondary messengers turn on their own respective signaling pathways (e.g. MAPK, 

CDPK, etc.) where protein phosphorylation (addition of phosphate (PO4)
3-) and 
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dephosphorylation may take place via the actions of kinases (enzymes) and phosphatases 

(enzymes) respectively [10].  Following the signaling actions of kinases and 

phosphatases, transcription factors are either activated or deactivated to regulate 

downstream gene expression [10]. Transcription factors are proteins that bind to a 

specific DNA sequence of the gene(s) in order to activate or deactivate them. Finally, 

transcription factors are directly responsible for turning on the stress response genes and 

turning off any other nonessential genes.  

Each family of transcription factors such as WRKY, bZIP, and NAC regulates a 

large number of genes. Hence, learning their activities is critical for understanding plant 

stress response mechanisms. WRKY is a large family of transcription factors and has 

roles in plant defense mechanisms against both abiotic and biotic stress. Until recently, 

the role of WRKY in dealing with abiotic stresses was not as extensively explored as in 

the case of biotic stresses, because of which there is a lack of available experimental data 

[3]. In this paper, we are interested in studying the interaction among various members 

of the WRKY transcription factor signaling pathway (figure 1) which are rapidly 

induced by ABA under drought stress. Learning these interactions will give us deeper 

insights into the functioning of this pathway which will further aid us in developing 

intervention strategies for breeding drought-resistant plants.  

It has been shown that the transcription factors WRKY18, WRKY40, and 

WRKY60 are induced by ABA under water deficit and salt stress conditions (Chen et 

al.) [11]. Furthermore, it has also been reported that WRKY18 and WRKY60 have 

positive sensitivity for ABA in inhibition of seed germination, root growth and 
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enhancing plant sensitivity to water deficit stress; in contrast, WRK40 antagonizes 

WRKY18 and WRKY60 to affect a plant’s ABA sensitivity and abiotic stress responses 

(Chen et al.). Experiments were carried out with WRKY18 and WRKY40 deficient 

mutants which showed that the expression of WRKY60 was negligible and indicated 

that WRKY18 and WRKY40 directly induced WRKY 60 by recognizing a cluster of W-

BOX sequences in the promoter of WRKY60 (Chen et al.). In addition to the various 

regulatory behaviors of these three WRKY transcription factors, it has been noted that 

these three transcription factors not only interact with themselves to form three 

homocomplexes; but also, interact amongst each other to form heterocomplexes [12]. 

 

 

 

 

Figure 1: The induction of WRKY transcription factor signaling pathway by 

ABA.  



 

6 

 

3.WRKY BAYESIAN NETWORK MODELING 

 

Biological networks are inherently tortuous and stochastic in nature. It is often 

difficult to interpret the multivariate interaction among different components of the 

network. A BN is a directed acyclic graph that determines the conditional decomposition 

of the joint probability distributions of a set of random variables in the network and thus 

simplifies the computation of their joint probability distribution (Sinoquet and Mourad) 

[13]. Therefore, we are interested in using BNs to model the interactions in a biological 

network as they provide a clean and compact framework for representing the joint 

probability distributions and for drawing inferences from these networks [14]. Inspection 

of BNs can help enhance our beliefs about relationships among different elements in the 

network and provide insights into the causality of the network.   

In this thesis, we will be modeling the WRKY signaling pathway (figure 1) 

involved in the drought stress responses of the model plant, Arabidopsis. Based on the 

signal transduction pathway outlined in figure 1, we have constructed a BN as shown 

figure 2. Each circular node (A,B,C,..., H) represents a gene, transcription factor or 

protein complex and every directed edge between the nodes represents a causal 

relationship that exists in the WRKY signaling pathway. Attached to every node is a 

rectangle which represents the parameter or local probability model associated with that 

node. For instance, for node C the θC|A, B represents the conditional probability density of 

node C given its parent nodes A and B. These parameters can be learned from data and 

are important in the understanding the overall graph structure.  
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Figure 2: BN model of WRKY signaling pathway with conditional probabilities 

depicted in rectangles. 
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4. PARAMETER ESTIMATION IN BAYESIAN NETWORKS 

 

Depending on the availability of prior knowledge in a given application, one may 

use a frequentist approach or the Bayesian approach for learning the parameters of a BN. 

Frequentist approaches such as Maximum Likelihood Estimation (MLE) assume that the 

parameter being learned is fixed and produce a point estimate without taking into 

account prior information. On the other hand, Bayesian Estimation treats the parameter 

as a random variable and uses the data and prior distribution of the parameter to obtain 

the parameter’s posterior distribution. Furthermore, the Bayesian approach takes into 

account the problem of zero probability estimates which may affect the learning 

algorithm. Bayesian methods provide a non-zero probability estimate even when the 

prior information follows a uniform distribution (non-informative prior). This is because 

the posterior belief is being governed both by data and prior knowledge and hence zero 

estimates of probability will only be associated with nonoccurrence of an event. 

However, the Bayesian estimation process is computationally challenging as it requires 

performing integration in order to obtain the probability of the evidence (data). Due to 

this reason, we will exploit the concept of conjugate priors for a given likelihood 

function in the process of Bayesian estimation [15]. 

In the BN in figure 2, we assume that each of the nodes X in the BN can attain 

only binary values, X= 0 or X= 1. When X=1 for a node, it indicates that the gene, 

transcription factor or protein complex represented by that node is activated whereas if 

X=0, it indicates just the opposite (gene, transcription factor or protein complex is 
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inhibited). This formulation allows us to model the state of each node in the network, 

given the state of its parent nodes, using a Bernoulli distribution. 

Suppose that there are N nodes in the BN and let θX be the probability that X=1 

(success) and 1-θX be the probability that X=0 (failure). Assume that we make n (> 0) 

observations regarding the state of each node and let k be the number of times the state 

of a node is 1. We further assume that the sequence of random variables X1, X2,…, Xn 

obtained after n observations for each node to be independent and identically distributed. 

So, the probability distribution of a node given its parent nodes (Pa(X)) follows a 

Binomial distribution and is given by: 

 

                   P(X|Pa(X), θX)~ Binomial(n, θX)                                         (1.a) 

               Binomial(n, θX) =
n!

(n−k)! k!
∗ θX

k ∗  (1 − θX)n−k
                                 (1.b) 

 

To estimate the posterior distribution, we need to define the prior over the 

parameter θX for our model. Since the likelihood function associated with our model is 

binomial, we choose the prior distribution to follow a Beta distribution with some shape 

parameters (αX, βX) and this results in the representation:                        

 

                                          θX~Beta(αX,  βX)                                                (2)      

                        

Due to the modeling of the priors as a beta distribution under Binomial 

likelihood, it follows from the properties of conjugate families that the posteriors will 
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also follow a beta distribution with shape parameter (α'X, β′X) [15]. In our model, the 

posterior distribution of the parameter θX is given by: 

 

                   P(θX|X)~Beta( αX
′ , βX

′ )                                            (3) 

 

where α'X = (αX + k) and β′X= (βX + n – k). The expected value of this 

distribution is given by: 

 

                                          E(θX|X) =
αX

′

(αX
′ +βX

′ )
                                               (4)    

                       

We can use experimental data to iteratively update αX and βX to obtain the 

posterior distribution. With more data, the posterior distribution will converge towards 

the actual posterior distribution. We modeled the prior as a Beta under Binomial 

likelihood and, this allowed us to obtain a closed form solution for the posterior. Other 

non-conjugate priors may be used; but, a closed form solution may not be guaranteed.  

Note that this approach gives us the marginal and conditional posterior distribution 

associated with every node and not their probabilities (θX or θY|X). In this thesis for the 

purpose of learning these probabilities, we approximate the probabilities by the expected 

value (equation (4)) of the posterior distribution for their respective nodes. Furthermore, 

we also learn the probabilities using the frequentist approach of MLE, in order to 

compare the final results, we get by using both the approaches. Ideally, when data is 

abundant the Bayesian approach and MLE estimate converge to the same point[16]. The 

marginal probabilities and the conditional probabilities for binary random variables can 

be estimated using MLE by equation (5) and (6) respectively. 
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     θX1
=

M[X1]

M[X1]+M[X0]
                                                                   (5) 

                                 θY1|X0
=

M[Y1,X0]

M[Y1,X0]+M[Y0,X0]
                                                              (6) 

 

Where M[X1] is number of times the random variable X is 1, M[X0] is the 

number of time X is 0, M [Y1, X0] is the number of times X is 0 and Y is 1 and M[Y0, 

X0] is the number of times X is 0 and Y is 0. 

A key assumption we make in the BN modeling is that the joint distribution for 

the set of nodes factorizes according to the BN in figure 2. This assumption basically 

implies that dependencies in the biological structure are reflected in the data from which 

we are learning the network parameters. One can employ constraint-based or score-

based learning techniques to derive the graph structure from data and then subsequently 

learn the network parameters[17]. However, in the context of this thesis, we avoid 

learning the graph structure as publicly available experimental data is highly limited for 

the WRKY transcription factor under abiotic stress and also our network contains 

protein complexes (nodes C, D, E, and G) for which expression data doesn’t exist 

alongside with gene expression data (nodes A, B, F, and H). Generally, datasets that 

contain gene expression data do not contain expression data for protein complexes and 

vice versa. Hence synthetic data were generated for the protein complexes using the 

dependencies in the BN and the experimental data for other non-protein complex nodes 

in the network for which data were available.  
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5. UTILITY BASED INFERENCE IN BAYESIAN NETWORKS 

 

After the network parameters or the local probabilities associated with every 

node are inferred from the data the BN has sufficient information for carrying out 

inference. Our objective is to find a single node in the WRKY BN that maximizes the 

upregulation of the downstream expression of the drought resistant gene. In other words, 

we are interested in finding a single node (nodes A-G) in BN which when up or 

downregulated will maximize the chances of our stress response gene (node H) being 

upregulated.  

 There are multiple ways to perform inference in a BN. Pearl’s message passing 

algorithm is favored whenever we have a singly connected graph as it allows us to 

perform exact inference [18]. However, the BN in consideration here is not singly 

connected and also has loops which cannot be handled using Pearl’s algorithm. There 

are other non-exact sampling-based techniques that require a large amount of data to 

provide reliable inference. Hence in this thesis, we have considered another type of 

approximate inference technique that computes a score, commonly known as an 

expected utility, based on an action taken at a specific node. Utility measures the 

efficacy of that action. To implement utilities into our BN, we first need to understand 

the concept of Bayesian decision networks and how we can create one from a BN.  

In order to illustrate these concepts, consider the following example involving a 

simple BN as shown in figure 3.  
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Figure 3: Example BN, with marginal probabilities of parent nodes. 

 

 

 

 The BN in figure 3 has three nodes gene A, gene B and gene C and we assume 

each can take on a binary value of 0 (inhibited) or 1 (activated). Gene A and gene B are 

parents nodes of gene C and have marginal probabilities associated with them as shown 

in figure 3. Also, let us assume that when gene A is active it activates gene C and when 

gene B is active it inhibits gene C. Based on this BN we construct a Bayesian decision 

network as shown in figure 4. The rectangular node acts as decision (action) node, the 

diamond-shaped node serves as a utility node and the circular nodes represent chance 

(nature or probabilistic) nodes. In this example we are interested in having gene C to 

take on the value of 1, this what the utility will measure.  In this case we have the option 

to take action at either of the chance nodes gene A or gene B. Once we decide to either 

activate or inhibit the chance node, it no longer remains a chance node but becomes a 

deterministic node. 
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Figure 4: Bayesian Decision networks for intervention at gene A and at gene B. 

 

 

 

  Depending on the action taken the expected utility can be calculated by equation (7). 

 

                                        EU(A) = ∑ P(Oi |A)  ∗ U(Oi)𝑖                                           (7) 

 

where P(Oi |A) represents the probabilities of the outcomes (Oi)  that are 

consistent with action A, and U(Oi) represents the utility value for that outcome under 

action A. The utility table is defined in table 1, where the first row represents the best-

case scenario when gene A is active and gene B is inhibited and the last row represents 

the worst-case scenario when gene A is inhibited and gene B is active. The rest of the 

rows represent the other possible scenarios.  The utility scores assigned are relative to 

best (highest utility) and worst (lowest utility) case scenarios, these values are not unique 

and can be redefined differently, however, the scores must reflect the scenario depicted 

in the decision network.  
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Table 1: Utilities for example Bayesian decision network 

GENE A GENE B UTILITY GENE C  

1 0 100 

1 1 50 

0 0 50 

0 1 0 

 

 
 

 Using equation (7) we first calculate the expected utility for taking action at 

gene A as follows: 

 Case 1: Action taken: gene A is activated (A= 1).  

             EU (Gene A=1) = P(A=1,B=1│A=1)*U(A=1, B=1) +P(A=1, 

B=0│A=1)*U(A=1, B=0) 

       = P(B=1)*U(A=1, B=1) +P(B=0)*U(A=1, B=0) 

                                        = 0.2 * 50 + 0.8 * 100= 90 

           Case 2: Action taken: gene A is inhibited (A= 0).  

             EU (Gene A=0) = P(A=0,B=1│A=0)*U(A=0, B=1)+P(A=0,B=0│A=0) * 

U(A=0,B=0) 

      = P(B=1) * U(A=0, B=1)+P(B=0) * U(A=0,B=0) 

                                       = 0.2 * 0 + 0.8 * 50 = 40 

So, when gene A=1 or activated the expected utility is greater.  Similarly, let us 

calculate the expected utilities for taking action at gene B.  

            Case 1: Action taken: gene B is activated (B= 1).  
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             EU (Gene B=1) =P(A=1,B=1│B=1)*U(A=1, B=1) +P(A=0,B=1│B=1) * 

U(A=0, B=1) 

                                      = P(A=1)*U(A=1, B=1) +P(A=0) * U(A=0, B=1) 

       =  0.7 * 50 + 0.3 * 0= 35 

 

           Case 2: Action taken: gene B is inhibited (B= 0).  

             EU (Gene B=0) = P(A=1,B=0│B=0)*U(A=1, B=0) +P(A=0,B=0│B=0) * 

U(A=0,B=0) 

                                         = P(A=1)*U(A=1, B=0) +P(A=0) *U(A=0,B=0) 

       =  0.7 *100 + 0.3 * 50 = 85 

Hence when gene B is inhibited the expected utility is larger. However, the utility 

of gene A being activated is larger than gene B being inhibited. So, we must select 

activating gene A over inhibiting gene B to maximize the chances of gene C being 

activated.   
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 6. DATASET AND SIMULATION 

                                                                                                                 

 To estimate the parameters and carry out utility calculation in the BN, we need 

to obtain data for WRKY transcription factor under drought stress condition. Since the 

WRKY transcription factor has only recently been implicated for its role in abiotic stress 

response, it is difficult to obtain large scale data that is publicly available. However, we 

were able to obtain real world microarray gene expression data for all the genes and 

transcription factors (Nodes A, B, F, and H) in the BN from the datasets GSE46365, 

GSE65046, and GSE76827 which are publicly available from the NCBI GEO database 

[19,20,21]. These datasets were individually normalized and binarized and aggregated 

into one composite dataset which contained 116 data points for each of the non protein 

complex nodes (genes and transcription factors). Once the real world data were 

binarized, they were used along with the dependencies in the BN to generate data for the 

protein complexes denoted by nodes C, D, E, and G. For example, in order to generate 

the dataset for node D the expression values for node A and node H were observed, i.e. 

all the parents and children of node D. If both node A and H were observed to be 

upregulated (state =1) node D was assigned deterministically to be upregulated (state 

=1), if both the nodes A and H were both observed to be downregulated (state =0) then 

node D was assigned deterministically to be downregulated (state =0). This is because 

we know from the biological literature (Chen et. al) that node A upregulates node D, and 

node D in turn upregulates Node H. If the expression status of node A was upregulated 

(state=1) and that of node H was downregulated (state=0) then node D was assigned a 

value of 1 (upregulated) with a probability larger than 0.5. This is because if node A is 
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upregulated it is highly likely that node D is also upregulated but not enough to counter 

the downregulatory effect of node E on node H which might have caused node H to be 

downregulated. The probability with which node D was upregulated was randomly 

selected from a set of discrete probability values of [0.6,0.7,0.8 0.9 and 1] where each 

value had an equally likely chance of being selected. Similarly, when node A=0 and 

node H=1 node D was probabilistically assigned a value of 0 (downregulated). In this 

fashion the data for nodes C, G, and E were also generated, so that these synthetic data 

reflected the network dependencies and the real data for the nonprotein complex nodes. 

Tables 2-5, pseudocode 1, given below along with the R code attached in the 

supplemental section further explain the data generation for nodes D, E, G and C.  

Generally, gene expression datasets do not contain protein-protein interaction data which 

is needed for avoiding generating synthetic data for protein complexes in our network. 

Though we can find protein-protein interaction datasets, however those datasets will not 

contain gene expression data, so in order to circumvent this issue, we considered 

generating synthetic data for the protein complexes in our BN. 

 Once synthetic data for all the protein complex nodes were generated, they 

were aggregated along with real world data in a single dataset. This dataset was used for 

the purpose of estimating the network parameters using the Bayesian approach and the 

maximum likelihood approach as outlined in section 4.  For the Bayesian approach, the 

prior for every node was first initialized to a beta (1,1) distribution which is a uniform 

distribution over the interval [0,1]. Using the data and equations (3) the posterior 

distribution for every node was updated and the expected values, computed using 
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equation (4). The expected values were approximated to be the conditional probability 

for the nodes. A separate set of parameters were learned using the MLE approach as well 

using equations (5) and (6).  

Then, the utilities for single point intervention were computed. The utility node 

was set at node H, and the utility analysis was carried out to find single intervention 

points that upregulated node H. A utility table (table 6) was defined based on the 

Bayesian decision network. The utility at node H depended directly on nodes D, G and 

E. The best case scenario was when nodes D and G were upregulated and node E was 

downregulated, whereas the worst case scenario was when nodes D and G were 

downregulated and node E was upregulated. These scenarios were representative of the 

actual biological processes in the network and the utility scores were defined relative to 

these scenarios, with a high utility score being favorable. Simulations were carried out 

using R software [22] and the utility calculations were done using Netica [23].  

 

 

 

Table 2: Synthetic Data generation for Node D 

NODE A NODE H NODE D 

1 1 1 

1 0 Assign (Value=1) 

0 1 Assign (Value=0) 

0 0 0 
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Table 3: Synthetic Data generation for Node E 

NODE B NODE H NODE E 

1 1 Assign (Value =1) 

1 0 1 

0 1 0 

0 0 Assign (Value =0) 

 

 
 

Table 4: Synthetic Data generation for Node G 

NODE F NODE H NODE G 

1 1 1 

1 0 Assign (Value=1) 

0 1 Assign(Value =0 ) 

0 0 0 
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Table 5: Synthetic Data generation for Node C 

NODE A NODE B NODE F NODE C 

0 0 0 0 

0 0 1 Assign(Value =0) 

0 1 0 Assign(Value =0) 

0 1 1 Assign(Value =1) 

1 0 0 Assign(Value =0) 

1 1 0 Assign(Value =1) 

1 0 1 Assign(Value =1) 

1 1 1 1 

 

 

 

Pseudocode1: To assign a node a value of 0 or 1.  

1.Function = Assign(Value) 

2. Define a set of probabilities = {0.6,0.7,0.8,0.9,1}  

3.  Probability (P) = sample one value randomly from Probability Set, with every 

element of the set having an equally likely chance of being picked 

4. If Value is 0 

5.  Assign the Node a Value of 0 with the Probability “P” selected in step 4, 

a value of 1 is assigned with probability 1-P.  

6. Else if the Value is 1 

7.  Assign the Node a Value of 1 with the Probability “P” selected in step 4, 

a value of 0 is assigned with probability 1-P. 
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Table 6: Utility values used to calculate the maximum expected utilities in figure 6 and 

figure 7.  

Node G (Status) Node D (Status) Node E(Status) Utility at Node H 

1  1 1 50 

1 1 0 100 

1 0 1 10 

1 0 0 50 

0 1 1 10 

0 1 0 50 

0 0 1 0 

0 0 0 10 
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7. RESULTS 

 

The divided bar plot in figure 5 represents the activation and inhibition status for 

every gene in the BN, after the data have been preprocessed. Table 7 displays the 

conditional probabilities estimated using the Bayesian and MLE approaches. The 

maximum expected utilities using the parameters obtained from the Bayesian and MLE 

approaches are displayed in figures 6 and in 7 respectively. 

 
 

 

 

 
Figure 5: Node activation vs inhibition plot. Red region in the plot shows the counts for 

which a particular node was activated and the black region in the plot shows the counts 

for which the node was inhibited. The dataset contained 116 data points per node. 
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Table 7: Marginal and Conditional Probabilities using the Bayesian and MLE 

approaches.  

Local Probabilities   Bayesian Approach MLE Approach 

P(A1) 0.50 0.50 

P(B1) 0.466 0.465 

P(C1|A1 , B1)  0.905 0.925 

P(C1|A0 , B1) 0.625 0.645 

P(C1|A1 , B0) 0.60 0.611 

P(C1|A0 , B0) 0.13 0.113 

P(D1|A1) 0.983 1 

P(D1|A0) 0.10 0.086 

P(E1|B1) 0.857 0.870 

P(E1|B0) 0.093 0.080 

P(F1|C1) 0.766 0.774 

P(F1|C0) 0.196 0.185 

P(G1|F1) 0.867 0.879 

P(G1|F0) 0.117 0.103 
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Figure 6: Maximum expected utility values when using parameters from the 

Bayesian approach. Red bar plot shows utility for activating that node and black bar plot 

shows the utility for inhibiting that node. 

 

 

 

 

Figure 7: Maximum expected utility values when parameters are estimated using 

MLE. Red bar plot shows utility for activating that node and black bar plot shows the 

utility for inhibiting that node. 
 

 

 

From the utility analysis using both the Bayesian and MLE approaches, we find 

that WRKY18 has the highest utility score for its activation. This means that the 
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upregulation of WRKY18 is the most effective single-gene intervention in bringing 

about the upregulation of the downstream drought stress response gene. This result is 

consistent with the biological literature which suggests that WRKY18 has a positive 

sensitivity to ABA under drought stress conditions and plays a critical role in the 

upregulation of downstream gene expression. We can also see from the bar plots in 

figures 6 and 7 that the second-best point for intervention is at the protein complex 

WRKY60-60 which also upregulates the expression of the downstream drought stress 

response genes. Also, consistent with the literature we see that both WRKY40 and 

WRKY40-40 have high utilities for inhibition, as they are responsible for 

downregulating the downstream drought stress response gene. We also see that our 

utility scores in both the Bayesian and MLE approaches are comparable which is due to 

the fact that the estimated probabilities (table 7) using both the approaches are very 

similar.  
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8. SUMMARY AND CONCLUSION 

                

               In this thesis, we presented the WRKY signaling pathway, which is 

traditionally associated with plant defense response against biotic stresses, but recently it 

has been shown to play a significant role in plant defense response against abiotic 

stresses such as drought. Due to its diverse role in plant defense, it was an interesting 

pathway choice to investigate. We modeled the WRKY pathway using a BN, where 

every node in the network represented a gene, transcription factor or protein complex 

from the pathway and every edge between the nodes represents a causal relationship that 

exists in the pathway. Associated with each node is a conditional or marginal probability 

which represents the probability with which the node is activated or inhibited. For our 

analysis, we assumed that nodes in the network can only assume binary values of 1 

(activation) or 0 (inhibition). Since a BN can capture both the causal biological 

relationships and the probabilistic nature of biological pathways, it was an ideal choice 

for modeling purposes.  

In order to learn the parameters in the network, we used real world gene 

expression data and generated synthetic data which reflected the network dependencies. 

To estimate the local conditional and marginal probabilities both a Bayesian approach 

and a frequentist approach were used. In the Bayesian approach, we assumed every node 

to have a prior distribution of Beta (1,1) (uniform distribution in the range [0,1]) which 

signified we had no prior knowledge about our model. Since our likelihood followed a 

binomial distribution, we were able to use a closed form formula through the properties 
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of conjugate families to arrive at a posterior distribution for each node. The expected 

value of the posterior distribution was used as an estimate for the local probabilities. We 

selected conjugate families in order to simplify our calculations and arrive at a closed 

form solution, however, it may not always be the best choice to select a conjugate prior. 

If sufficient information is available the prior can be modeled using non-conjugate 

family distributions and the posterior can be estimated using (Markov-Chain-Monte-

Carlo) MCMC techniques, although, this may be computationally expensive. In the 

frequentist approach, we simply employed the maximum likelihood estimate to obtain 

the local probabilities. The probabilities obtained using both the methods were found to 

be very similar to each other. 

Once the parameters from each method were learned, the task of inferring the 

best node for intervention was carried out using the concept of utilities. We used a non-

exact inference technique in our model as we could not employ exact techniques such as 

Pearl’s message passing algorithm in our Bayesian network as the former works only for 

singly connected and loopless networks. Also, the number of data points was quite 

limited which made the choice of utility for the purpose of inference quite sensible as 

opposed to data intensive sampling-based inference techniques. The utility analysis 

carried out using parameters from the Bayesian and MLE approaches revealed that 

WRKY18 served as the most potent node for intervention, and upregulating WRKY18 

would further upregulate the downstream stress response genes in the WRKY signaling 

pathway. This result was consistent with the biological literature which says that 

WRKY18 actively upregulates the gene expression of drought response genes under 
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drought conditions. Our next step in this research will be to explore and implement more 

informative priors in the Bayesian parameter estimation approach rather than the Beta 

(1,1) prior that we have used here. We would also like to investigate other signaling 

pathways that are implicated in plant defense response against drought and find the key 

the regulators in those networks and compare their efficacy to that of WRKY18. We are 

also interested in expanding our research to networks consisting of multiple stress 

response regulators and intervention nodes.  
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APPENDIX 

Supplemental File Name  Content Access 

PlotofUtilities.R R code for plotting utilities. This file can be accessed using the 

programming software RStudio. 

 Parameter_Estimation.R  R code for estimating 

parameters. Also serves as 

the main execution file. 

This file can be accessed using the 

programming software RStudio. 

 MLE_Estimates.R  R code for finding MLE. This file can be accessed using the 

programming software RStudio. 

 minmax_normalize.R  R code to normalize the 

data. 

This file can be accessed using the 

programming software RStudio. 

 calc_shape_param.R  R code to calculate shape 

parameters of Beta 

distribution.  

This file can be accessed using the 

programming software RStudio. 

 binarize_mean_median.R R code to binarize the data 

using mean or median 

This file can be accessed using the 

programming software RStudio. 

 assign_value.R R code to generate 

synthetic data 

This file can be accessed using the 

programming software RStudio. 

 

https://etd.tamu.edu/submit/20723/file/158503/PlotofUtilities.R
https://etd.tamu.edu/submit/20723/file/158502/Parameter_Estimation.R
https://etd.tamu.edu/submit/20723/file/158500/MLE_Estimates.R
https://etd.tamu.edu/submit/20723/file/158499/minmax_normalize.R
https://etd.tamu.edu/submit/20723/file/158498/calc_shape_param.R
https://etd.tamu.edu/submit/20723/file/158497/binarize_mean_median.R
https://etd.tamu.edu/submit/20723/file/158496/assign_value.R

