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ABSTRACT 

 

 A novel hierarchical heuristic engineering design method is developed that is 

based on levels of abstraction. This was created in response to the dearth of engineering 

design methods geared for nuclear engineering and the inability of existing engineering 

design methodologies to address the complexity of the nuclear system. Constraint 

selection is regarded as a more critical decision in nuclear system design than optimization 

of the design problem. The nuclear system is defined as a nested hierarchy of systems that 

is decomposed from the most abstract to the most concrete. Objectives and constraints for 

each level are created that bring further specificity to the objectives and constraints of the 

preceding (more abstract) level. The design or solution of the more abstract level is the 

basis for the more concrete level of abstraction. A sequence of levels of abstraction is 

presented that should be sufficient for the majority of nuclear systems but this sequence 

is not mandated. The engineer is encouraged to adapt his levels of abstraction to his 

problem’s design space. A comprehensive set of heuristics is provided for the method. 

The developed hierarchical design method is agnostic to the optimization method within 

the level of abstraction although heuristics are provided to select the one best suited to the 

problem. The method is illustrated in the design of a materials testing fast spectrum 

reactor. It is used to optimize both global reactor systems and smaller problems dealing 

with a specific aspect of the system. The method was compared against Axiomatic Design 

using the materials testing reactor and nuclear system example problems. The method 

possessed greater flexibility than Axiomatic Design. Traditional engineering design 
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methodologies and their variants do not provide enough emphasis on constraint 

development and were not examined as in-depth.  
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1. INTRODUCTION  

 

 This dissertation develops a novel method, called the progressive definition of 

constraints, which will guide the design of nuclear reactors. No engineering design method 

tuned for nuclear systems exists nor is there one that could be readily adapted for nuclear 

systems. This dissertation is meant to provide such a method. The method emphasizes the 

correct choice of constraints and objectives over the correct choice of design parameters. 

Selecting appropriate constraints is a more critical decision in nuclear systems than 

choosing the optimal design. Even though it is more properly an engineering design 

method rather than an optimization algorithm, much of the terminology used in this 

dissertation comes from the field of optimization algorithms. The constraints and 

objectives are gradually developed through a hierarchical nesting of design features into 

levels of abstraction. The levels of abstraction are evolved as the design progresses, 

although many nuclear system will follow specific paths outlined later in the document. 

The method can be used at any level of the design process and its basic form is presented 

later in this document. Each level’s constraint and objective functions are determined by 

reference to heuristic processes which will be defined as part of this dissertation. The 

method can be used in two ways; first as a consistent method used from the outset of the 

design process; or second, as a corrective method after some work on a project has been 

completed and difficulties have emerged. The method explored in this dissertation can be 

used to guide the engineer or manager from a general set of constraints and objective 

functions to a more specific set of constraints and objective functions that can be used to 
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provide a more detailed design. Abstract constraints and objectives are decomposed into 

concrete constraints and objectives as the design progresses, necessitating that the design 

parameters become progressively more concrete. These more concrete constraints and 

objective functions are based on the optimal design parameters of the previous level of 

abstraction and are additive to the preexisting constraints. This dissertation will contain 

heuristics to guide the choice of objective function and constraints. Essential to the 

heuristics is understanding the design process of a series of smaller problems at different 

levels of conceptualization. Decisions about the concepts and how to solve them play a 

large role in the heuristics.  

 The method consists of two parts, a simple two-step process and a set of heuristics 

which guide the process. The first step is to define the function of the system; the second 

step is to define the components necessary to fulfill the stated function. This process is 

repeated until the entire system is defined. The rationale behind this process is provided 

in Chapter 2, along with optional methodologies for defining the systems. The method can 

only be understood through the decomposition of the system into levels of abstraction. 

Engineering design is not performed with respect to the physical system, but with respect 

to a concept about how the system should perform. Example heuristics include: each level 

of abstraction should be as narrow as possible; constraints must address the system inputs, 

outputs, environment, and operation; constraints are often related to cost, safety, or 

materials availability; and safety constraints are often related to temperature. The 

translation of a physical system to a conceptual one introduces a great deal of systemic 

error. Naturally this error is reduced when the engineer fully understands the system, but 
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two techniques are available. The first is to revert back to a previous level of abstraction 

when a difficulty is encountered. A more detailed analysis could expose certain flaws not 

immediately noted in the preceding levels. Analysis can be reused when the design is 

reverted. The second is to fork the design whenever a future difficulties are foreseen. 

Difficulties need not be technical, but could be derived from changing political and 

economic concerns. Literature reviews are encouraged for every aspect of design, but 

especially in foreseeing future technical issues. An example literature review is provided 

in the appendix.   

 This dissertation is composed of six sections. The first section, Introduction, 

introduces previous engineering design methods, PIRT, evolutionary algorithms, and 

nuclear system design space. The most promising design method, Axiomatic Design, is 

discussed in greater detail in the appendix. Robust Design is more closely examined in the 

appendix where it is contrasted with High Reliability Organizations. The second section, 

Method, states the design method, provides some background theory, and uses simple 

examples to illustrate the concepts. The third section, Heuristics, lists the heuristics 

necessary to implement the method. The heuristics are quite numerous and vary in 

importance; some are merely advice while others are essential. The fourth section, 

Demonstration of the Method, uses the method to design a SFR for materials irradiation. 

The reactor is not described. The fifth section, Advantages of the Method, details the 

benefits of the method over the other engineering design methods outlined in the 

dissertation. The sixth section, Conclusion, summarizes the method and outlines main 

finding of the dissertation. The seventh section, Appendix, provides some of the 
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background literature for the heuristics, analyzes an engineering design method for nuclear 

systems, and provides a historical example of nuclear system design.  

1.1 Description of PIRT 

 Essentially, PIRT is a process that organizes expert opinion. The traditional use of 

PIRT is to define relevant thermal hydraulic and system phenomena involved in nuclear 

accidents but it can be expanded beyond its traditional use. PIRT begins by querying a 

group of experts for a problem statement and a list of PIRT objectives. It then asks them 

to classify accident scenarios, parameters, partitions, and system designs. Based on their 

answers to the previous steps, the group of experts then identifies the phenomena of 

interest. After identifying the phenomena, the experts then classify the knowledge base of 

the phenomena and classify the degree to the phenomena affect the problem. The PIRT 

can be expanded to include more quantitative information like scaling information based 

on Π-groups. Π-groups can be used to estimate the effect of thermal hydraulic 

phenomenon on a given situation by comparing the characteristic phenomena time to the 

residence time in the system [Luo, 2012]. A scheme applicable to this original purpose is 

outlined in [Wilson, 1998] while noting that various researchers have expanded the topic 

to include other situations. The scheme is powerful enough to be used as a design 

algorithm, but would be cumbersome. Certain steps could be discarded as they are not 

general enough, but the algorithm still requires too many steps. It would be more powerful 

if the scope of the design could be more focused on constraints. Constraints of the design 

are hidden within each step and are not explicitly stated. PIRT processes assume a design 
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and discuss phenomena. Reactor design algorithms must assume phenomena and discuss 

designs. For this reason, the PIRT algorithm can be rewritten. PIRT, as originally 

conceived, relies only on expert opinion. The incorporation of Π-groups into the PIRT 

process can be likened to the performance of the scoping studies in a design process. The 

proposed method does not strictly follow this PIRT process but uses it as inspiration. The 

PIRT process as originally described can be used to find constraints or conduct scoping 

studies within a broader method, a use described later in this document. Heuristics 4.3 and 

6.3 as well as section 6.6 discuss the use of PIRT.  

1.2 Evolutionary Algorithms 

 Evolutionary algorithms are a heuristic optimization technique that is based off the 

biological process of evolution [Lee and El-Sharkawi, 2008]. Heuristic is an ancient Greek 

word but in the modern context means rule or guideline. Broadly speaking, all 

optimization techniques are heuristic in that they make use of some rules. Heuristic 

optimization methods make use of heuristics to eliminate the need for the computation of 

derivatives of the objective function. As such, heuristic algorithms do not place any limits 

of the properties of the objective function or constraints. Heuristics are used to guide the 

choice of the next generation while only taking into account the function evaluations of 

the current and previous generations. Evolutionary algorithms use a very small sample of 

the design space and replace underperforming solutions with better performing solutions 

as the algorithm progresses. The process of replacing the poorer performing solutions with 

better performing solutions happens in generations. The algorithm begins by randomly 
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sampling the solution space which creates 20 potential solutions. The number of solutions 

analyzed per generation has been shown through scoping studies to be approximately 20 

but can vary depending on the problem. These 20 solutions are evaluated and ranked. The 

ranked solutions are then paired off and the sample’s characteristics are shared between 

the paired solutions to create a new set of samples. This represents the division of 

chromosomes and mating in biology. Usually the characteristics of the solutions are then 

randomly mutated by some operator with variable strength and frequency. This represents 

mutation within biology. The mutation may happen before the recombination operator. 

Mutation may be thought of as an operator which enables more of the search space to be 

explored while the recombination operator may be thought of as an operator which keeps 

certain desirable characteristics within the generations. They are many variations on this 

theme. The most basic concerns the number of solutions in each generation which can also 

be thought of as the size of the sample as the algorithm samples the design space. The best 

sample may also be mated with the best sample of the current generation. The sample can 

either directly represent the function or be encoded. Suppose that enrichment was a 

characteristic and that 5%, 7.5%, 10%, 15%, and 19.75% enrichments were possible. The 

enrichment options could be directly represented or encoded in binary. Binary is not 

necessary but is a common choice for encoding the characteristics. 5% could become 001, 

7.5% 010, etc. The encoding process is based on the use of genes to describe biological 

creatures.  
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1.3 Previous use of EA in Nuclear Applications 

 Pereira and Lapa demonstrated the effectiveness of genetic algorithms to solve 

core design problems [Pereira and Lapa, 2003]. They solved a three region LWR system 

with variable clad type, fuel type, fuel dimensions, and fuel enrichment to flatten the power 

profile while ensuring an under moderated system and a minimum criticality. In the course 

of Pereira and Lapa’s investigation of the issues described in their journal article, the 

authors proposed an island genetic algorithm, wherein the solution population is divided 

into separate populations. These smaller populations are ranked, paired, and mutated 

separately with limited sharing of the design information between the groups of 

populations. This enables the exploration of multiple local optima at once, helping to 

prevent premature convergence to a suboptimal solution.  As each population had limited 

contact with each other and function evaluations are time consuming, communication 

between nodes is unimportant and a LAN network is sufficient even though 

communication between nodes is slow. The island approach maintains genetic diversity 

while still allowing a gradual convergence to an optimal. Pereira and Sacco propose a 

modification to the island genetic algorithm to enhance niching [Pereira and Sacco, 2008].  

 Sacco et al propose a particle collision algorithm and compare it to a great deluge 

algorithm [Sacco et al, 2006]. Both algorithms are variations of simulated annealing, 

where the algorithm is allowed to seek out less favorable populations than the current with 

a certain probability. This probability decreases with the number of generations, forcing 

the algorithm to converge after many iterations but allowing it to investigate the search 

space early in the study. Sacco et al present a modification of the particle collision 
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algorithm in which high fitness regions are explored with the Nelder-Mead Simplex 

algorithm and low fitness regions are not [Sacco et al, 2008]. The algorithm is found to 

perform better that the original particle collision algorithm, a genetic algorithm, a particle 

swarm algorithm, and the great deluge algorithm. de Lima et al propose a modification to 

the ant colony algorithm for use in a PWR core reload [de Lima et al, 2008]. A 1/8th core 

symmetry of Angra-1 is used to demonstrate the benefits of an island model, wherein 

multiple populations with limited communication between the populations. Jiang, S et al 

consider an estimation of distribution algorithm enhanced with a set of heuristics to solve 

a fuel loading problem [Jian et al, 2006]. The problem is question is substantially easier 

than the others, only requiring that keff be maximized with 5 different types of assemblies 

in 24 locations. There are constraints about the number of placement of the assemblies. A 

neural network is generated for function evaluations to speed up computational time. The 

estimation of distribution algorithm is an evolutionary algorithm that builds a probability 

distribution model from which samples are pulled. This model may be likened to a simple 

model of the design space as is updated with more information at each generation. The 

variables are assumed to be independent of each other, implying that the assemblies do 

not communicate. The authors recognize the non-physicality of this assumption, but 

incorporating dependencies increases the number of simulations required to build the 

model. As such, they develop a set of heuristics based on the worth of each assembly type 

in each location surrounded by a single assembly with medium reactivity worth to account 

for neutron communication. The problem being solved is quite simple and characterized 

by multiple local optima and a single large global optimal. Essentially, the optimal design 
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is to place the highest worth assemblies in the center of the core, followed by the next 

lowest worth, etc. It would be interesting to revisit this idea with a more complex problem. 

Kumar and Tsvetkov propose a multivariate regression analysis and modules to accelerate 

fitness evaluations [Kumar and Tsvetkov, 2015]. The design space is broken up into 

various modules characterized by a few inputs and outputs. Higher fidelity tools are used 

to generate regression models for each module, with the genetic algorithm being applied 

to the regression models. Four modules are used: fuel pin cell, whole core, hot channel, 

and Brayton cycle. This scheme can be used with other types of evolutionary algorithm. 

It should also be noted that Kumar and Tsvetkov mention the use of genetic algorithms 

for plant availability and maintenance scheduling, problems noted in [Lee and El-

Sharkawi, 2008] as well. Mishra et al uses an estimation of distribution algorithm to load 

an Indian pressurized heavy water reactor [Mishra et al, 2011]. This reactor uses natural 

uranium and is a variant of the CANDU using heavy water as both moderator and coolant. 

The fresh core exhibits power peaking in the center of the core due to the use of NU and 

the lack of burnable absorbers, so certain positions are to be loaded with depleted uranium 

to reduce power peaking and enable higher total core powers. An estimation of distribution 

algorithm uses the fitness’s of the ranked population within the generation of an 

evolutionary algorithm to estimate the probability a given location is occupied by a 

depleted uranium assembly. The next generation uses the probability density function 

estimated by the previous generation to generate a new population. This proceeds until 

converged. Montes-Tadeo et al used a Heuristic-Knowledge Method to devise enrichment 

and gadolinia distributions in a BWR fuel assembly and compares the technique to five 
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standard evolutionary algorithm [Montes-Tadeo et al, 2015]. The five standard 

evolutionary algorithms are Ant Colony System, Artificial Neural Networks, Genetic 

Algorithms, Greedy Search, and a hybrid of Path Relinking and Scatter Search. The 

Heuristic-Knowledge Method uses design specific heuristics to accelerate the 

convergence towards the optimal solution. Amongst others, the method doesn’t consider 

all of the design space simultaneously, instead finding the optimum of different designs 

spaces within each generation. Uranium enrichment is optimized first and this information 

is used to optimize the gadolinia distribution in each generation. Individual pins also have 

unique heuristics. Tavron and Shwageraus uses a particle swarm algorithm to optimize the 

fuel cycle of a pebble bed reactor [Tavron and Shwageraus, 2015]. The algorithm 

improved systems performance by 4.5%, which the author’s call a modest improvement. 

Wang et al use an improved genetic-simplex algorithm to optimize a PWR steam cycle 

[Wang et al, 2017]. The authors note that genetic algorithms have excellent global search 

behaviors but poor local optimization behaviors, while the simplex algorithm has poor 

global search behaviors but excellent local optimization behaviors. Their method 

generates some population using a standard genetic algorithm then divides this population 

and performs the simplex method on the local search space. This method increased 

electrical output by 23.8 MW or increased thermal efficiency from 33.87% to 34.69%. 

The simplex method requires that the constraints and objective function be formulated as 

a polynomial, which means it cannot be used for core design calculations. Heuristics 4 

provides guidance on the correct use of evolutionary algorithms in the nuclear system 
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design. The heuristic was developed with reference to the research presented in this 

section.   

1.4 Overview of Advancements in Engineering Design 

 Many different authors have contributed to the field of engineering design and this 

section will provide a thorough review of pertinent design schemes. The first schemes are 

various interpretations of the traditional top down engineering approach that can be 

summarized as: problem definition, brainstorming, down-selection, evaluation, and 

implementation. Each author expands on some aspects of the basic method. Other top 

down models such as the Vee model, Spiral model, and Waterfall model are also 

presented. These models are expansions of the traditional top down method which 

incorporate some aspects of bottom up design methods. All of the books listed in this 

section stressed the importance of material properties in engineering design, a fact which 

will be incorporated into the proposed method. An engineering design method is presented 

in Chapter 2 of [Gregory, 1966]. The algorithm begins by recognizing the engineering 

need including the economic, social, and geopolitical environements of the system. The 

state of the art which includes both research and general scientific concepts, is combined 

with the recognition of need to develop design concepts. These design concepts are studied 

and failures result in a reevaluation of the state of the art. Implementation of the design, 

including production and marketing, results in this design becoming state of the art. While 

very useful, this algorithm lacks specifics tuned for nuclear reactors. It also assumes that 

the recognition of need and definition of state of the art happen without much difficulty. 
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While possible in other engineering fields, these stages are of paramount importance in 

nuclear engineering. The definition of state of the art and recognition of need are difficult 

in the design of nuclear systems and require special heuristics for implementation. 

Consider a safety criterion for nuclear reactors, the large release frequency of less than 

1E-6 per year. The exact translation of this to steady state operating conditions depends 

on safety studies which simulate accident scenarios like the loss of flow accident and loss 

of offsite power accident. The characteristics of these studies are set by the NRC. These 

studies normally require extensive knowledge of the system, meaning that the system must 

be very well defined early in the design process. This is not feasible, so simple models are 

used in lieu of complex models at this stage. The process of simplifying the safety analyses 

so that they are suitable for early design work is not trivial and involves expert opinion to 

set reasonable constraints. Once the system is developed, the actual system behavior can 

be verified.  

 A sequential process with multiple iterations at each stage is advocated in [Simon, 

1975]. The recommended sequence is: definition of the problem statment and a 

formulation of needs; information collection; modeling; definition of the value statement 

or judgement criterion; synthesis of alternatives; analysis and testing; evaluation; decision 

making; optimization; iteration; communication to others. The author also advocated 

changing the order of the steps depending on the scenario. The placement of the modeling 

step before the definition of the value statement and synthesis of alternatives is somewhat 

peculiar. The modeling step generates mathematical, graphical, iconic, or analog models 

of the system behavior based on information collected about the system environment. The 
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modeling step provides a way to meausre the performance of the design concepts and also 

guides the engineer in the synthesis of alternatives. The modeling step could prematurely 

bias the engineer towards certain design concepts and should be relocated to after the 

development of design concepts. System models are often concept dependent and their 

full definition can be time consuming especially if that design concept proves infeasible. 

Decision matrices, trees, and networks are all recommended for solving optimization 

problems. Such methods were commonly recommended by other authors. A general 

design scheme is given in [Dieter, 1983] and [Dieter, 1991] as: recognition of need; 

definition of problem; gathering of information; conceptualization; evaluation; 

communication of the design. This six step process is recast into a seven phase detailed 

morphology of design: feasibility study, preliminary design, detailed design, planning for 

manufacture, planning for distribution, planning for use, and planning for retirement. A 

generic model of the problem-solving process is also given in [Dieter, 1983] and [Dieter, 

1991]. It is composed of five steps, with the result of each step feeding into the next step. 

The first step is entitled decision maker in which the external stimulus, organizational 

pressures, and personal characteristics of the enginneer are taken into account. The second 

step is problem definition and it requires data and information of the problem at hand. 

Logic, mathematics, and scientific principles play a role in the the third step, analysis. The 

fourth step is entitled decision where conflicts are resolved and risks are evaluated. The 

fifth and last step is called consequences in which the effects of the decision are studied. 

Feedback, new data, economic effects, and behavioral effects all serve to modify the 

decision. This problem solving scheme is more useful than the other design schemes 
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because of its greater focus on problem definition. Conceptual design considerations and 

decision theory, elaborated on in [Dieter, 1991], are useful as part of the design 

framework, and should be integrated into a complete algorthm. Psychological aspects of 

problem solving are emphasized, including the distinction between the conscious, 

preconscious, and unconscious mind. The preconscious mind is said to be the avenue by 

which invention occurs, making relations between the information our mind stores before 

analysis by the conscious mind. Maslow’s hierarchy of needs is used as a model for the 

recongition of needs and definition of problem stages of engineering design. Poor coping 

strategies when faced with stress are also listed as well as the correct responses to stress. 

These pyschological aspects of problem solving were unique amongst the various books 

examined.  

 A 10-step algorithm is given in [Middendorf, 1969]. The sequence begins with 

determining specifications to satisfy a given need. The need is provided by the supervisor; 

this may not be applicable to nuclear reactor design as the need should be determined by 

a feasibility study. The next step is to perform a feasibility study based on the 

specifications and needs. Third step is a search for patents. After searching for patents 

alternative design concepts are developed. Criteria are developed and the most promising 

design concept is selected. It is somewhat unusual that design concepts are developed 

before the judging criteria. Step six includes the development of a mathematical model 

that pertains to the selected design model. This model is used to determine basic 

dimensions and materials of the product and specifications in step seven. The model is 

then used to optimize the design selected in step five. Step nine involves evaluating the 
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optimized design with higher order models. The last step involves communicating the 

design to administration and manufacturing personnel. This scheme involves two layers 

of modeling which is often necessary in reactor design. Step seven, determining basic 

relationships between dimensions and materials, is a useful step and can be subsumed in 

a general feasibility study. Reactor design typically makes use of several levels of 

engineering models which may or may not be performed in parallel. Step three, a patent 

search, can be broadened into a general search in academic papers, national lab reports, 

and industry reports. Step five could be placed between steps three and four. This 

algorithm is focused on brainstorming design concepts and studying them. The criteria 

defined in step five are of great importance, and different models may require different 

criteria. The definition of criteria and models is also not straight forward in reactor design. 

Feasibility studies and PIRT will be important in the definition of criteria. These criteria 

may be regarded as constraints. 

 The engineering process is divided into four main phases in [Pahl and Beitz, 1984]: 

clarification of the task; conceptual design; embodiment design; and detail design. Each 

phase has a chapter devoted to it which provides heuristics for their correct 

implementation. The entire process is summed up by the concepts of clarity, simplicity, 

and safety. Each step involves a separate iteration and is explained in detail throughout 

the book. The first step, clarification of the task, considers the following: possible 

company shortcomings; the state of technology; standards and guidelines; and future 

developments. Conceptual design is meant to identify the essential problems; establish 

function solutions; search for solution principles; combine and define concept variants; 
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evaluate against technical and economic criteria. The embodiment phase, or step three, 

determines the layout and forms of the product or system to meet the criteria. A separate 

algorithm is recommended for the embodiment phase. Detail design involves the 

optimization of the principle, layout, and forms. The algorithm emphasizes the 

establishment of principles and criteria for the design along with a thorough investigation 

of the design space. Such a scheme is well suited for reactor design, and concepts from 

this scheme will be applied for the algorithm described later. The method used by the 

Department of Defense to perform Research and Development is recommended in 

[Gibson, 1968]. Step one is research into the natural physical phenomenon. Step two is 

exploratory development for specific military problems. Research is confined to feasibility 

studies of proposed solutions. Step three is advanced research into all feasible solutions. 

Typical large projects are the VTOL aircraft or the X-16 aircraft. Step four is engineering 

development of ideas which have been extensively studied but not yet put into production. 

Management and support of the proposed ideas concerns the step five and includes the 

operation of the facilities and products. The last step is operational system development 

and the management of the approved systems and products. Step two must be modified to 

include problem definition as properly defining the problem is a major concern in 

preliminary design [Gibson, 1968]. Steps three through six concern design iterations. He 

also emphasizes that engineering design is an iterative process, and gives the steps of the 

iterative process as recognize, compare, and evaluate. Multiple design iterations are 

essential, but more emphasis must be placed on the definition of constraints and the 

objective function. Interestingly, the author lists six tools of engineering design rather than 
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any method or scheme: economics, energy, thermodynamics, information concepts, 

human factors, and optimization theory.  

 Two general algorithms for the design process are provided in [Ray, 1985]. The 

first is called the Morphology of Design and is an analogy to the life cycle of a product. 

Step one is to identify the problem and then perform a feasibility study. Steps three and 

four are preliminary design and detailed design. Steps five and six are production and 

usage. Step seven is obsolescence. Obsolescence considers both premature obsolescence 

and what to do after the product’s expected lifetime. In nuclear reactor design, this may 

include decommissioning the plant and any additional costs. Reactors that would require 

reprocessing would need additional consideration. These considerations are very common 

in the field of nuclear engineering and are normally considered in the feasibility stage. The 

second scheme is called Anatomy of the Design Process. It comprises four stages: 

identifying the problem and evaluating the need; information retrieval and assessment; 

evaluating the alternatives; communication and implementation.  

 Software design methods have developed in parallel with mechanical engineering 

design methods sometimes borrowing concepts. The Waterfall method was originally 

developed in the 1970’s as an extension of traditional top down engineering design [Lui, 

2016]. It has seven steps: Requirements and specification, Preliminary conceptual design, 

Logical design, Detailed design and testing, Operational implementation, Evaluation and 

modification, and Operational deployment. The design analysis and implementation steps 

in traditional engineering design are expanded into four individual steps. The method is 

notable because it incorporates feedback between each step and the preceding step. The 
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engineer is meant use information in the following level to reevaluate the current level 

before proceeding. Each level is visited at least twice. This simple model was developed 

into the spiral model. The spiral model was developed by B. A. Boehm in 1986 [Lui, 

2016]. The spiral model repeats traditional top down engineering design until the correct 

design is achieved. It is based on rapid prototyping where designs can be quickly 

implemented and studied. Making mistakes in the prototype produces no significant 

negative consequence as the prototype costs little to make. The spiral model is very 

common for systems whose complex nature limits what engineers can know about the 

behavior of the design before it is implemented. The engineers discover the requirements 

and the system and the behavior of the system by developing and studying these 

prototypes. While very useful for such design situations, nuclear system design is not 

conducive to rapid prototypes. The system has to perform as expected without full size 

testing although very limited prototyping is often feasible. The sequence, repeated as 

needed, is: Development test and verification, Evaluation and decision making, Define 

objectives, and Planning for the next phase.  

 Lastly, the Vee model is a compromise between the Waterfall method and the 

Spiral method.  The left side of the “V” is similar to top down engineering design whereby 

broad concepts are translated into specific designs and components. These lower level 

systems and components are integrated together to form a system. The Vee model is quite 

popular and forms the basis for [Buede, 2009]. While used in other fields, the author does 

not feel that the second half of the “V” is necessary for engineering design.  
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1.5 Axiomatic Design 

 Axiomatic Design (AD) is an engineering design process which makes use of two 

axioms or heuristics to ensure successful design [Lee and Suh, 2006]. The AD has many 

features which will be adopted into the method developed in this dissertation. AD divides 

the design process into four domains; the customer domain, functional domain, physical 

domain, and the process domain. The customer specifies desired attributes and the 

engineer creates functional requirements to meet them. Design parameters are created to 

satisfy the function requirements and process variables are created to satisfy the design 

parameters. The functional requirements, design parameters, and process variables are 

vectors. The mapping from one vector to another can be represented by matrices. The first 

axiom of AD is to always maintain the independence of the functional requirements. This 

is done in two ways. Firstly, the functional requirements must not reference each other. 

Secondly, the design parameters must not satisfy multiple functional requirements 

simultaneously. Ideally, the covariant matrix would be diagonal, where each functional 

requirement is satisfied by each design parameter. However, this may not be possible. In 

that case the matrix should be lower or upper triangular where a single functional 

requirement would be satisfied by a single design parameter. The next functional 

requirement is then satisfied by the previously satisfied design parameter and one more 

design parameter. As the first design parameter was satisfied by the first functional 

requirement, the second design parameter must be satisfied by the first and second 

functional requirements and the first design parameter. This proceeds until all the 

functional requirements are satisfied. While a full matrix would produce a unique solution, 
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the design parameters would be much more dependent on the functional requirements. 

Any change in a functional requirement would change every design parameter. The system 

is also much more expensive to solve. In practice, the matrix involves nonlinear 

relationships between the functional requirements. Many of the functional requirement 

and design parameters cannot be mathematically expressed; the vector and matrix analogy 

is used for clarity. Special corollaries are used whenever number of functional 

requirements is not equal to the number of design parameters. The method is also 

adaptable for the gradual definition of the solution space. The functional requirements and 

design parameters can be iterated on to progress from more general definition to more 

specific definitions of concepts. In this manner, AD can encompass a method based on the 

definition of constraints. However, the proposed method will still be an improvement over 

AD. The method will focus on the correct definition of functional requirements and 

developing ways satisfy them. Axioms and heuristics can be developed that are specific 

to nuclear engineering.  

The mapping from the design parameters to the process variables makes use of the 

matrix analogy. The overall form of the matrix relating the functional requirements to the 

design parameters multiplied by the matrix relating the design parameters to the process 

variables must be either diagonal or triangular. The process variables must be considered 

when formulating the design of a product. Designs are compared on the basis of 

information. Information is defined as the logarithm of the inverse of the probability of 

the design satisfying the functional requirements. The design with the lowest information, 

and therefore the largest probability of success, is chosen. In general, a coupled design 
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characterized by a full matrix would have much greater information as the likelihood of 

satisfying the functional requirements is lower considering uncertainties in actual 

operation and the exact nature of the relationships between the functional requirements, 

design parameters, and process variables. Information is a way of taking into account 

uncertainties in the actual use, performance, or development of the design. The first axiom 

could be generalized to say that a given property of the design should satisfy a single 

constraint of the system. The second axiom could be generalized to say that a design 

should be chosen which minimizes the uncertainty of the design’s performance while 

maximizing the objective function. 

1.6 The Design Space of Nuclear Systems 

 The field of nuclear systems is approximately 70 years old, beginning with 

Chicago Pile I in 1942. Since then most conceivable fission reactors have been examined 

in various levels of detail. Designs relating to large power reactors and graphite plutonium 

producing reactors were extensively studied for civil and defense purposes, respectively. 

On the other hand, only one molten salt reactor was ever built in the US, although the 

Chinese are currently building a very similar system as a test reactor. The design space for 

nuclear reactors is therefore highly known in some branches but unknown in others. 

System behavior for the less known systems must be gleaned from reference to systems 

in other industries with similar components.  

 Any design method or algorithm must be developed with as great an allowance for 

innovation as possible. Reference must be made to previous designs to encourage the 
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development of new ideas or to reexamine an old discarded idea. The previous designs 

vary in detail from broad concepts to specific layouts of plants and reactor cores. Much of 

the practical detail of nuclear systems relates to joints, fastenings, valves, pumps, flanges, 

and pipes which are often taken from related industry or innovated on the fly. Given the 

variable knowledge of nuclear systems and the desire to allow innovation, the method 

must not be unnecessarily restrictive as to the design choices. As a general principle, the 

method should favor creativity while adding heuristics only when necessary so as to 

accommodate innovation.  

 Nuclear systems are constrained by materials as in other fields; however nuclear 

engineering imposes additional constraints not present in other fields. Neutrons are 

damaging to all materials, fast neutrons especially. The microstructure of materials is 

degraded by neutrons striking the lattice with enough energy to displace atoms, forming 

defects. Nuclear fuel must also fission, which radically alters the mechanical properties of 

the materials. As such, nuclear fuel is normally contained in a cladding, which provides 

structural strength. Reactor vessels also face neutron damage, which is complicated by 

their very long lifetimes and very stringent safety requirements. The standard material 

choices in civil and mechanical engineering such as steel, concrete, air, plastic, and water 

are also used in nuclear engineering. Nuclear fuels are diverse both in composition and 

property and structural components are often exposed to stresses unique to more standard 

applications. Specialized absorber materials and moderating materials add their unique 

properties. Consider the design of a bridge. The most likely choices are either steel or 

concrete, the decision of which will based on the expected loads and stresses. This process 
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is also well codified. Consider a chemical plant. Based on the nature of the chemicals to 

be used the vessel, pipes, and fastener materials are chosen for chemical compatibility. 

Consider a reactor; should uranium dioxide or uranium zirconium metal be used? What 

about uranium carbide or uranium nitride? The choice of plutonium versus uranium is 

must include an analysis of fuel reprocessing which adds complications. In the design of 

an entire country’s fuel cycle, plutonium versus uranium will have to be examined in 

greater detail. The choice of material is also not thoroughly codified, although certain 

requirements can be stated with certainty. For these reasons, the method will focus on 

material choice.  

It is desired to have an actual method to ensure the optimally of a design. Many 

statements of the design process are general so as to be applicable to a variety of systems. 

As the method is restricted to nuclear systems, it must be specific enough to give solid 

advice while preserving innovation. The translation of utility requirements to lower level 

objectives and constraints is obvious from the outset. Therefore, the method should allow 

for the gradual definition of the search space as it evolves. A generational form of the 

method would enable the design to progress from less specific to more specific. 
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2. HIERARCHICAL HEURISTIC ENGINEERING DESIGN METHOD 

 

 The nuclear system comprises thousands of components in hundreds of systems. 

Fully specifying such a system would involve defining thousands of design variables and 

the functional relationships between them in the constraints and objectives. The ideal 

engineering design method would do exactly that, considering every variable, relationship, 

objective, and constraint simultaneously assuring that the optimal system is derived. Such 

a method is impractical. For this reason, the method must partition the system into smaller 

solvable problems. Boundaries of the smaller solvable problems are between different 

systems which have minimal effect on each other and between systems at different levels 

of conceptualization. These smaller, nested problems are called levels of abstraction, a 

term which will be defined later. These smaller problems are arranged in a hierarchy, and 

are solved in a specific order. Each problem is analyzed in the same manner. Each problem 

has some objective functions, constraints, and design variables. Design variables are found 

which satisfy the constraints and yield the best objectives (maximize or minimize). This 

framework is borrowed from mathematical optimization. Such a framework places great 

emphasis on the proper definition of constraints and objectives.  The framework is 

considered to be the simplest possible framework necessary for problem solving. Proper 

creation of the levels of abstraction is essential and is discussed at length within this 

section and in Chapter 3. The proper creation of constraints is also important and discussed 

at length within this section and in Chapter 3.  
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 Conceptualization, or the translations of physical systems into concepts, is at the 

heart of the method. By conceptualizing the nuclear systems they can be analyzed 

according to their features and not their design variables. Conceptualization is defined in 

the Merriam-Webster dictionary as the process of forming a concept, which is an entirely 

unhelpful definition. Conceptualization in this dissertation means to conceive of the design 

in decreasingly abstract terms as the design progresses from the most abstract to the most 

specific. Conceptualization allows design variables to be grouped together by function. 

Decomposition of the nuclear system results in levels of abstraction, a term which will be 

used throughout this dissertation. Each level of abstraction describes the same system but 

in increasing detail. While used in the design method as a top down process, the levels of 

abstraction are best understood from the bottom up. Consider a single component, like a 

primary pump. This component increases the pressure and/or velocity of a liquid and 

operates in the containment. In more general terms, the pump performs some function 

(pressure increase) on an input (coolant) to generate some output (coolant at higher 

pressure) and operates within an environment (containment). This pump is a part of the 

primary loop system, which has its own function, input/output, and environment. 

Generally speaking, systems/components are defined by functionality and distinguished 

by their feeding into or extracting from a larger system. The pump can be grouped with 

the related components/systems (primary loop) to form a system based on their shared 

functions and input/output. This system can be grouped with related systems into still 

broader systems until the entire nuclear system is conceived of as a whole. The whole 

nuclear system is now defined as a collection of nested subsystems described in varying 
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levels of abstraction. All of the components of the nuclear system function as a single part, 

even if certain elements like the radiation alarm detectors and secondary loop valves are 

rather uncoupled. Similar components exist in the entire reactor but should not be grouped 

together if intermediate systems/components separate them. For example, pressure gauges 

in a secondary feed-water line and the primary loop are not to be grouped together, as 

these two pressure gauges are separated by the steam generator. Higher and lower levels 

of systems are levels of abstraction within the entire nuclear system. Each 

system/component has a function(s); the function can be described as more or less broad 

in parallel to the systems itself. Each system/component has an input and output; it 

performs some function on the input to generate some output which is processed as an 

input by some other system/component. Each system/component operates in an 

environment which implicitly affects the system/component. The Fukushima accident can 

be understood as a change in environment certain systems were not designed to withstand.  
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Figure 2.1 Visual depiction of two levels of abstraction. The 2D surface represents the 

entire design space of nuclear systems. Each level operates in the solution space of the 

preceding level.  

 

 A visual representation of two levels of abstraction is shown in Figure 2.1. The x-

y plane represents the entire design space of nuclear systems which consists of thousands 

of design variables. Levels are bound by their constraints and the functionality of the levels 

is described by the objective function. The following level is defined in the solution space 

of the preceding level. Levels can be discontinuous as shown in Figure 2.1. Higher levels 

do not deal with all of the design variables themselves, but with groups of design variables. 

Therefore, the 2D surface shown in Figure 2.1 could represent two independent groups of 

design variables. Level 1 operates within this paradigm, which is translated to different 

sets of design variables in Level 2. For this reason, Level 2 would look somewhat different 

as the design space is redrawn including more information. The x axis in Figure 2.1 could 



 

28 

 

be various primary loop layouts and the y axis could be various fuel vectors. Level 2 is 

then two different primary loop layouts with very similar fuel vectors. The loop 

configurations in Level 1 could consider the number of components and their 

inputs/outputs. Level 2 could consider the dimensions, mass flow rates, temperatures, etc. 

of the two select layouts. The fuel vector may or may not be further defined; it is often 

best to specify exact enrichments when performing the core design. The independent 

variables are well and truly independent; fuel vector and primary loop layout due not affect 

each other baring certain safety related constraints. Figure 2.2 is a different representation 

of the levels of abstraction highlighting the relationship between the levels, abstraction, 

and the size of the design space. Each level is narrower and less abstract than the preceding 

level.  

 

Figure 2.2 Another visual depiction of levels of abstraction highlighting the relationships 

of abstraction and size of the design space in the various levels.  
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  While these levels of abstraction are best understood by considering a preexisting 

system from the bottom up the method must consider an undefined system. For this reason, 

the design method must be top down. The first level is always the overall purpose of the 

reactor. There are only three options; electricity production, materials testing, and process 

heat. Electricity is by far the most common application of nuclear energy, but materials 

testing is a necessary step in the development of new nuclear materials. Process heat is the 

least common application of nuclear power although desalination plants have been built 

in the past. New uses for process heat could include the production of hydrogen using 

temperatures above 700 °C. Electricity production is a subset of process heat as electricity 

is predominantly produced using a thermodynamic cycle. They are maintained as different 

applications for two reasons. Process heat applications will use the outlet temperature of 

the coolant as the prime objective of the system while outlet temperature is not a primary 

objective in electricity applications. Process heat and electricity applications have very 

different secondary coolant loops which can affect the design of the primary. The most 

common combination of overall purposes is electricity and process heat. Once determined, 

the second level of abstraction must be determined. There are no specific requirements for 

the second level of abstraction (and subsequent levels) like there are for the first. Despite 

this fact, heuristics which guide the definition of levels have been developed and are 

presented in Chapter 3.  

 Before these design algorithms are presented, some comments about the 

translation of the levels of abstraction into engineering design problems would be 
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pertinent. The function of the system defined in the level of abstraction becomes the 

objective function of the design problem. The input/outputs become the design variables 

and constraints of the problem. The environment becomes a constraint. The methodology 

used to solve this problem is dependent on the nature of the constraints and objective 

function. In general, problems with numerical design variables, constraints, and objectives 

will be solved used a mathematical optimization method. Problems with qualitative or 

simple mathematical constraints and objectives can be solved through a literature review. 

PIRT is a useful technique when performing literature review as it encourages the 

specialists to think critically about the issue. The levels of abstraction concept is highly 

general and gives little advice into the actual design of a nuclear system. The heuristics 

presented in Chapter 3 are essential for the implementation of the method as they guide 

the choice of level. Some of the more important heuristics will be briefly summarized 

here. Implicit to the preceding discussion is the concept of extent, or what each level does 

and does not consider. The definition of extent is often concurrent with the definition of 

the objective and constraints. Put simply, the level’s extent should be as small as possible. 

Once the extent of the level is known defining the constraints is straightforward. The 

objective for the current level contains the previous objective but seeks to refine it. The 

degree of refinement is determined by the extent of the level. The extent of the level can 

be increased if some future analysis will have an outstanding effect of the system. This 

can occur in pipe networks where thermal fatigue can cause unexpected joint failure where 

fluids of different temperatures come into contact. Such phenomena can be mitigated with 

an appropriate constraint or by extending the level to consider this phenomena. Explicitly 
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considering this phenomena would greatly increase computational time as complex 

phenomena would have to be modeled for all proposed system configurations whereas the 

usage of an appropriate constraint would allow a small set of layouts to be defined and the 

complex calculations would be performed on them only. This consideration highlights the 

emphasis on the definition of constraints. It is also possible to go back to a previous level 

of abstraction and rework the design from an earlier point with new information. Perhaps 

the best solution to these issues is to anticipate the future developments and fork the 

design. Multiple designs could be created which anticipate the future information’s effects 

on the design. Each design would be pursued until the required information is obtained. 

The extent of the levels is highly design dependent and a method which defines 

appropriate levels of abstraction is given in this chapter.   

 The preceding discussion can be condensed into two heuristics: first develop the 

levels of abstraction (conceptualization) and second translate the levels into design 

problems and consider them in descending level of abstraction. These two heuristics are 

given in Chapter 3 along with any others necessary to implement the design. Chapter 3 

also expands on the heuristics presented in this chapter and gives additional advice on how 

to implement them. The design of nuclear systems can be condensed into two algorithms 

presented in this section. The first focuses on the correct definitions of constraints and 

objectives. The second algorithm specifies levels of abstraction which should be 

applicable to the majority of nuclear systems.  
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2.1 Required Input Data 

There are two types of input data the method requires: user requirements and 

physical data. The chief concern for the user or operator is cost. Other concerns could be 

the neutron flux spectrum and magnitude in irradiation positions for a materials testing 

reactor or the outlet temperature for a desalination plant. Other user requirements could 

relate to the outer structure of the reactor. In the past reactor owners have perceived the 

tall dome containments as threatening to the layman. This may or may not be a realistic 

concern, but a desire to make the reactor look like a conventional industrial site has 

affected nuclear plant design. Physical data takes several forms but at its most basic form 

it consists of material properties. The most important material by mass is normally 

concrete followed by steel. Nickel alloys could be used instead of steel if corrosion is 

especially prominent. Water and air are commonly used as the final heat rejection open 

loop. Coolants occupy the next largest portion of the reactor’s mass. The core composition 

is a small portion of the overall system mass while the numerous secondary metals, 

ceramics, and plastics in the systems occupy the smallest portion of the system mass. The 

method is unsuitable for the development of the components themselves, so performance 

data for basic components is considered an input. Depending on the desired level of 

abstraction, an entire core can be considered a component if the only concern is the 

configuration of the secondary loop. Pumps, feedwater heaters, pipes, turbines are usually 

assumed to be indivisible i.e. they cannot be broken down into component parts. Heat 

exchangers may or may not be subject to the restriction. Basic structural shapes like walls, 

domes, slabs, seismic dampers, shielding blocks, stairwells, etc may also be considered 
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indivisible. Basic component data and material data is often freely available for scoping 

calculations. Safety related calculations must use actual proprietary data if this is not given 

freely.  

2.2 Objective based Design Algorithm 

 The traditional top down engineering design method can be reoriented to an 

algorithm that explicitly concerns constraints and objectives. In this vein, a sequence has 

been developed to guide the correct definition of objectives and constraints. The steps are 

not levels of abstraction but have many similar characteristics. Lower level objectives and 

constraints function within the envelope of the higher level objectives and constraints. The 

first three steps concern general properties of the design before it is specified in detail, 

reflecting a general progression from more to less abstraction. After the completion of 

Step 4 in the sequence, the designer can consider further design choices as a refinement 

of the concept or he can revert to Step 1 for a broadening of the search space. The inability 

to find a solution may be caused by over constraining the search space. If this happens, 

the engineer can revert to the previous step and redefine the objective and constraints. An 

infeasible solution is in many ways just as useful as a feasible solution. The fundamental 

sequence is presented below. Two objective steps are needed because the primary 

objective is meant to be quite broad. For example, the primary objective for most power 

plants is to provide affordable electricity as safely as possible. This is insufficient for 

designing a reactor. Secondary objectives or constraints, such as the use of LEU or the 

requirement of a certain power production cycle enable design choices to be made. It is 
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the author’s belief that engineering design is often determined by factors not initially 

considered relevant. It is hoped that by requiring the engineer to specify two levels of 

objectives the engineer will reflect more deeply on the purpose of the system. Likewise 

the engineer should focus more closely on the correct definition of constraints. The 

heuristics presented in chapter 3 would be very useful in this algorithm.  

1. Define the primary objectives 

2. Define the secondary objectives and constraints 

3. Define the materials and primary design choices 

4. Define the secondary design choices 

5. Define the tertiary design choices 

6. Consider the further design choices as needed 

7. Go back to Step 1 and repeat if desired but use the result of Step 6 as the primary 

objective 

 As an example of the method, suppose that an LWR is favored as a reactor type 

(Step 1). A consultation of the relevant operating costs and safety of BWRs versus PWRs 

could result in the choice of PWRs with fuel enriched to less than 5% (Step 2). The next 

step would assume PWRs with fuel enriched to less than 5% and compare the relevant 

safety and manufacturing considerations of UO2 versus uranium metal versus UN to yield 

UO2 as the favored fuel (Step 3). Step 4 might entail zoning the core by varying enrichment 

in several regions of the core to flatten the power profile while maintaining a certain keff. 

Step 1 used expert opinion and political considerations while Step 2 used expert opinion, 

political considerations, a PIRT, and economic analysis. Step 3 used economic analysis 
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and expert opinion while Step 4 used a standard evolutionary algorithm or genetic 

algorithm to find the optimal solution. Each step uses the solution of the previous step and 

adds more objectives and constraints. The actual process of finding the optimal solution 

is straight forward and borrowed from other researchers. The Step 2 objective could be to 

maximize safety and minimize cost. Step 2 constraints could be the political cost 

associated with LEU enriched to greater than 5% and the technological maturity of the 

PWR versus BWR. Step 3 could seek to find the cheapest fuel type while maintaining a 

certain level of safety in response to a set of accident types. Step 4 would focus on 

minimizing the power per assembly (objective) while maintaining a certain keff and 

moderator coefficient of reactivity (constraints). The number of batches would be chosen 

for economic reasons, and the core shuffling pattern would also have to be considered in 

this step. Step 5, if performed, could entail the implementation of burnable absorbers to 

maximize burnup and cycle length. This is visualized in Figure 2.3.  
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Figure 2.3 Representation of Example 1. The column on the left is the algorithm simply 

stated. The middle column shows the conclusion of each step, which is used as the input 

for the next step. The right column shows the decision-making algorithm for each step. 

 

 The previous example concludes with the implementation of Gd2O3 as a burnable 

absorber. A separate study into the use of burnable absorbers to increase burnup will 

illustrate two other features of the algorithm. The algorithm can be used to design local 

problems. It can also be used in a more iterative manner by going from Step 5 back to Step 

1. As Steps 1 and 2 are both definitions of objectives, restarting the design process will 

enable a more applicable definition of the scope of the problem. For these reasons, Step 1 

begins with the desire to increase the burnup of a preexisting core. Various methods to 

increase burnup are examined in a feasibility study; the economic prospects of each are 

judged. Each is judged to be possible; however, the branches are not given for the sake of 

brevity. Burnable absorbers are also the most difficult to optimize. The choice of burnable 
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absorber material is subject to another feasibility study wherein the cost of the material is 

weighed against the cost saved by increased fuel utilization. The use of Gd2O3 in the 

assemblies and within the core is determined by a classical optimization method such as 

genetic algorithms. The layout is optimized for keff and cycle length. It is constrained by a 

relationship governing the cost of UO2 versus the cost of Gd2O3. The cost of the fuel per 

core lifetime must be less than the cost without any Gd2O3. 

 

Figure 2.4 Representation of Example 2. An application of the algorithm to the use of 

burnable absorbers. It should be mentioned that burnable absorbers can be pursued in 

addition to other methods, like increasing the enrichment, number of batches, or reducing 

the coolant temperature and EOL. Additional methods result in branching. 
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2.3 Abstraction based Design Algorithm 

 The method described earlier down not specify the content of each level but allows 

to be discovered by the engineer. It so happens that the majority of nuclear systems will 

follow the same sequence of considerations when the levels of abstraction are defined. 

That sequence is shown in below. Each numbered step is the extent of the level of 

abstraction.  

1. Purpose of the reactor 

2. Heat removal scheme and fuel vector 

3. Layout of the primary and secondary systems 

4. Core design and primary system component design 

5. Further core and heat exchanger design 

6. Shielding and physical locations of the components 

7. Finalization of the reactor layout  

 The scheme is best understood from the bottom up. The last level, finalization of 

the reactor layout, obviously requires the previous steps to implement. Shielding can only 

be designed once the neutron source and the systems between the source and the operators 

are well defined. In the majority of reactors shielding is not a determining factor in the 

design. Usually more concrete is added until the desired gamma flux is attained. Neutron 

flux is usually mitigated by in-core shields to protect the reactor vessel. The physical 

locations of the components can only be deduced once the number and size of the 

components is known. The physical locations could be determined in levels 4, 5, and 7 but 

are determined in level 6 because this aspect follows quite smoothly from the system 
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layout concerns in earlier levels. The core and primary loop are intricate components of 

the nuclear system so their design requires two levels of abstraction. The number of levels 

of abstraction can be reduced to one or increased to three if the design is simple or 

complex, respectively. Level 3 determines the components necessary for the heat transport 

systems. Obviously, determining which components are necessary must occur before the 

components can be designed in great detail. This stage can require basic knowledge of the 

components themselves and for certain designs level’s 3 and 4 can be combined. Level 2 

determines the type of the heat removal system and the type of nuclear fuel. Level 1 is the 

necessary first level of the method.  

 This algorithm was developed by considering the PWR, the most common type of 

commercial reactor. The BWR follows the same general scheme. The algorithm, 

developed with respect to the most common types of reactor, was compared with the 

CANDU, SFR, and VHTR. Figure 2.7 provides an outline of the steps needed to design a 

PWR. It is abstracted from manuals about the PWR [the Westinghouse, 1984].  
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Figure 2.5 Recommended steps in the design of a PWR. This was used as a baseline for 

the determination of the abstraction based design algorithm. The steps are color coded.  

 

 8 sequential steps are listed although 7 levels of abstraction are recommended. The 

outline presented in Figure 2.5 is specially tuned for the PWR and focuses on the greater 

complexity of the coolant systems as opposed to the core design. The layout of the 

burnable absorbers coupled with shuffling schemes is considered the most complex aspect 

of nuclear core design while the layout of the secondary loop is considered the most 

complex aspect of the overall nuclear system. Where possible the tasks within the steps 

are divided so that they can be considered separately without including unnecessary 
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information. This outline demonstrates the division of tasks within levels as previously 

mentioned. The second step divides the choice of light water as a coolant and a two loop 

system with the usage of uranium at an enrichment of less than 5%. Enriched uranium is 

the only commercially available nuclear fuel in the USA. In countries like France, a 

mixture of plutonium and uranium is available. With enriched uranium heavy water as a 

coolant is not necessary to achieve criticality. Light water is also chosen because of its 

widespread availability. LWRs have negative void coefficients in contrast to heavy water 

reactors, but this is a minor concern at the early stages of the design. 5% is the maximum 

enrichment for commercial fuel in the USA. Perhaps the strongest political reason for 

PWRs is the legacy of the submarine program which was the basis for the US commercial 

program. The choice of a two loop system is another legacy of the submarine program. 

The BWR, which does not have a second loop, has reduced capital costs with the same 

level of safety as a PWR (arguably). The relative performance of BWRs and PWRs is 

beyond the scope of this dissertation. The third step divides the primary and secondary 

loops which are joined by the steam generator. The third and fourth steps can be performed 

as a single large step. The secondary loops are quite complicated requiring dozens of 

components and lines far in addition to simplified models (1 pump, 1 SG, 1 condenser, 1 

turbine). Balancing the temperatures and pressures of two phase water requires 

engineering software and a mathematical optimization method. Performing these 

calculations with varying system layouts would consume more computational time than 

choosing a few best layouts to analyze in detail. Extensive design work specifying the 

thermal hydraulic conditions of the inlets and outlets of the core is necessary before any 
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core design is performed. This is a trait of the abstraction based design algorithm. With 

fully specified temperatures, pressures, and the overall power, there is very little needed 

information by the core from the secondary side. When the PWR was developed severe 

accident response was not really considered and the algorithm in Figure 2.5 reflects this. 

Severe accident analysis is not considered unless the system is very well specified. This 

could be done after step 5 is completed but before step 6. Steps 3, 4, and 5 can be repeated 

if severe accident analysis proves the infeasibility of the proposed system. Fewer iterations 

would be performed if severe accident performance could be gleaned in step 4. Step 3 

could include the layouts of the redundant safety systems and step 4 could include their 

required performance.   

2.4 Mathematical Description of the Method 

 It is a commonly held belief that mathematics can be used to explain engineering 

and scientific problems better than words. I disagree with this sentiment but I acquiesce 

for the sake of satisfying the demands of those who decide whether or not I can graduate. 

The underlying rationale behind their desire for mathematics seems to be that mathematics 

makes everything more scientific. I acknowledge that mathematics is used in the sciences 

as a notation, but it is important to remember that mathematics serves science not the other 

way around. The concepts that mathematical notation elucidates should be understood 

apart from their mathematical notation. Only then can true understanding be attained. 

Mathematical notation is often obscure which limits its widespread adoption amongst 
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engineers. If the notation hinders engineer’s understanding of the text, then it should be 

discarded in favor of words and figures.  

 This section will discuss mathematical notation which can be used to explain the 

method. The most basic notation is that of the optimization problem which is adopted from 

the notation used in the optimization courses I took. Design variables are represented by 

the variable x, the vector containing all design variables. The objective is represented by 

f(x), where the objective f is some determination scheme that uses the design variables x. 

Constraints are labeled as g(x) or h(x) depending on whether or not they are equal to 0. 

For this work all constraints will be labeled as g and no assumptions are made as to what 

they equal. The next two equations neatly summarize the notation:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∀𝑓𝑖(𝑥); 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∀g𝑖(𝑥). 

The subscript i refers to a particular f(x) or g(x) while the symbol ∀ means all. The 

equations given above translate as; minimize all objective functions subject to all 

constraints over all of the design variables. The “minimize” and “subject to” do not have 

an associated mathematical symbol so the English words are used.  

 The levels of abstraction are described with set theory. In set theory capital letters 

are used i.e. A, B etc. The letters will be used in an alphanumeric fashion, where A denotes 

the set of all feasible designs in the first level of abstraction, B denotes the set of all feasible 

designs in the second level of abstraction, C denotes the set of the third level of abstraction, 

and so on. Each set of design variables, denoted by x, is contained within the appropriate 

level of abstraction as denoted in the following equation:  
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∀𝑥 ∈. 

The levels of abstraction can be reformulated meaning that the design variables may 

change between levels. Therefore, the following equation may or may not be true:  

𝑥 ∈ 𝐴, 𝐵, 𝐶. 

Each level of abstraction is solved in the same manner, denoted in the preceding equations. 

The relationship between the current and preceding constraints and objective functions is 

also undetermined because of the redefinition of the levels of abstraction. If the levels are 

not redefined, then the constraints and objectives are additive. For this reason, the set of 

all constraints and objective functions increases.  

2.5 Ensuring Nuclear Safety within the Design Process 

 In standard practice the safety of nuclear power is ensured through extensive 

deterministic and probabilistic assessments which examine system response to a variety 

of scenarios. There are several different safety criteria used by regulatory agencies. The 

most basic criteria requires that fuel temperature does not exceed safety limits when 

subjected to the design basis accident with the failure of the single most important safety 

related component. The design basis accident is a low probability (~1E-4/reactor-year) 

accident which could occur in a single reactor in a fleet of 100 reactors operating for 100 

years. Fuel temperature safety limits are determined by the cladding’s ability to maintain 

its fission product barrier. Beyond basis accidents or severe accidents are any scenarios 

that are more dangerous and have lower probabilities of occurring than the design basis 

accidents. Design basis accidents can be earthquakes, fires, tsunamis, pipe breaks, 
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equipment failures, etc and are dependent on the nature and location of the plant. These 

analyses can be called deterministic as there are specific accidents that must be overcome 

assuming the single fault criterion. Probabilistic risk assessment considers all conceivable 

accidents types and calculates the consequences considering the probabilities of 

component performance and the probability of the scenario occurring. Consequence 

analysis could limit itself to the number of fuels pins which exceed their safety limits or 

estimate the fission product inventory released by the fuel into the coolant, breaking the 

coolant barrier, breaching containment, and spreading over the environment causing 

cancer deaths. PRA and deterministic safety analysis have been used in the nuclear 

industry for several decades. The most advanced PRA calculations yield an overall 

estimate for the number of excess cancer deaths caused by the nuclear power plant per 

year. These calculations are risk, not actual deaths and there utility is debated within the 

nuclear community. There is an overwhelming abundance of information from 

international (IAEA), state (NRC, DOE etc), industry (EPRI), and academic (journals) 

about the correct application of safety analysis tools.  

 While safety analysis is a very well developed field in nuclear engineering, the 

analyses were developed to model existing systems. This is sensible, as these safety 

analyses tools were developed after the beginning of commercial nuclear power. These 

tools will not be useful at the earliest stages of nuclear system design where the majority 

of safety related decisions will be made. Only after the system is designed can its safety 

be measured, a wholly unsuitable situation. Therefore, some additional tools must be used 

to ensure nuclear safety at the higher levels of abstraction. The first tool is of course 
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literature review. Any system that is being designed likely will be different than previous 

designs. However, the developing system will be similar to previous systems and their 

existing safety analyses could be appropriated considering the differences in design. PIRT 

is a useful technique in this process as it would allow researchers to focus on the safety 

performance of previous systems while judging the differences between the systems. 

Scoping calculations have a long tradition within engineering where lower levels are 

analyzed with simple mathematical models and higher levels are analyzed with complex 

mathematical models. Unfortunately, this technique is limited by the physics of two phase 

flows. This phenomena is difficult to predict in transient simulations and requires complex 

models like RELAP5-3D or MELCOR. Single phase transients like those in VHTRs or 

SFRs can be approximated with lower order models. In small sodium cooled reactors the 

sodium in each component within the system will not have drastically different 

temperatures. This means that the entire sodium inventory could be regarded as a single 

control volume and could be analyzed with only Conservation of Energy. Core wide 

reactivity coefficients can be estimated once the fuel, cladding, core height, and layout are 

selected. VHTRs and GFRs can also be analyzed in a similar manner as their gaseous 

coolant will not undergo a phase change. The earliest these analyses can be performed is 

Level 4, once the basics of the core are known.  

 As outlined in the Appendix, three different approaches to reliability in 

engineering have been developed. The first approaches the issue from a sociological 

perspective and identifies characteristics of organizations which are highly reliable. From 

their research it can be shown that the engineers designing nuclear system must have 
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nuclear safety as a fundamental concern. The second approach analyzes organizational 

structure with control theory, an implication whose utility is undetermined. Control theory 

may be a useful analytical tool when incorporated into some other design tool but it does 

not appear to offer any significant benefit to encourage its use. The third approach is called 

Robust Design. In Robust Design, the best system is not the one which outperforms the 

others under operating conditions but the one which performs decently well under a wide 

variety of conditions which may be encountered in its lifetime. This principle is highly 

relevant to nuclear systems as a way to implicitly guarantee safety. The accident at 

Fukushima occurred because the system was subjected to a change in environment that 

was not anticipated. This accident could be analyzed under the framework of Level I and 

Level III Robust Design analysis. Sensitivity studies of system performance to small 

changes in design variables, system environment, inputs, etc. would be a useful at each 

level of abstraction. Designs with less sensitivity are to be favored over designs with 

greater sensitivity. A common theme of PRA is the degradation of the system’s 

components performance in adverse conditions. Multiple component failures across 

different safety systems result in catastrophic system failure. It is believed that the precepts 

of Robust Design could be used to ensure nuclear safety from the highest levels of design. 

Axiomatic Design is discussed in the introductory literature review. Its first precept is that 

the ideal system will have each functional requirement satisfied by a single design 

variable. The second precept states that the ideal system has the highest probability of 

satisfying the functional requirements in a manner similar to PRA and Robust Design. A 

design which does not satisfy these precepts does not mean that the design will not 
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function; rather that the design will fail to perform as well as a design which satisfies the 

two axioms. The first axiom is more powerful than the second, which can be subsumed 

into probabilistic analyses.  

 From the discussion in this section, that in the introduction, and that in the 

appendix, some conclusions about ensuring nuclear safety can be made. Deterministic and 

PRA should be used to verify system performance at lower levels of abstraction. Scoping 

calculations should be used at higher levels of abstraction while literature reviews should 

be used at all levels of abstraction. PIRT is especially useful as it organizes expert opinion 

in a systematic way. The safest design will have each functional requirement satisfied by 

a single design variable and will be the least sensitive to changes in environment, input, 

performance, etc. These precepts can be implemented at the earliest stages of the design 

process.  
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3. HEURISTICS  

 

 In this section the heuristics are provided as a series of bullet points. Heuristics are 

stated simply and organized by importance. The first two bulleted heuristics are the most 

important and are stated in the previous section. The heuristics related to constraint 

selection are also stated in the previous section and are of secondary importance. The next 

constraints relate to the choice of optimization method to solve the design problems. All 

other heuristics are of quaternary importance. The literature review which defends the 

heuristics specific to nuclear systems is presented in the appendix.   

3.1 Conceptualization of the Levels 

 The first and most important part of the engineering design process, 

conceptualization defines the extent and abstraction of the levels themselves. Even before 

any attempt is made to solve the level, the degree of conceptualization dictates how 

qualitative and quantitative the level will be.  Definition of the levels is highly flexible 

with several good paths but a great many more poor paths.  

 

Table 3.1 Conceptualization heuristics 

Number Heuristic 

1.0 Conceptualize the design process 

1.1 Each system has a function, input, output, and associated environment 
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1.2 Systems can be identified by groups of lower level components/systems 

which have a similar function and whose inputs/outputs feed into each other 

1.3 Systems can also be grouped together if they do not directly interact but 

perform a similar general function (like coolant meters) and have the same 

input/output sources. 

1.4 Systems are nested together until the entire nuclear systems is defined 

1.5 Information on the systems contained within the broader/larger ones can be 

reconstructed by the behavior of the broader/larger system with the addition 

of select constraints only applicable at lower levels. 

1.6 The levels of abstraction within the system should be chosen to be as small 

as possible. 

1.7 The first level of abstraction is always chosen to be the most abstract possible 

within the given problem framework. 

1.7.1 The first level of abstraction must always answer the following question; 

what is the overall purpose of this reactor/system? Three answers are 

possible: electricity generation, process heat/desalination, or materials 

irradiation. There is a fourth option, which is the demonstrator reactor. The 

demonstrator reactor is a small-scale version of some other reactor and its 

purpose is to mimic the operational behavior of the larger reactor to work out 

any difficulties. The design process is very simple; copy the larger system 

and simplify until the desired size is reached. This is really an additional 
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objective for reactors designed with one of the three purposes. The most 

common purpose of the nuclear system is to generate electricity, although 

materials irradiation is the most interesting and will receive attention. Any 

combination of the three answers is possible although electricity generation 

paired with desalination or process heat is the most frequent combination. 

1.7.2 It is also possible to use the method with some of the nuclear system already 

designed. In this case, the first level of abstraction is defined with respect to 

the given higher level in the same way the second level of abstraction is 

defined in relation to the first. However, the reactor as a whole can only have 

one of three overall purposes. 

 

3.2 Solving the Levels 

 Solving the levels of abstraction is straightforward compared to their definition. 

The form of the objective and constraints dictates the manner in which the level is solved.  

 

Table 3.2 Level solution heuristics  

Number Heuristic 

2.0 Solve the engineering design problems in order of decreasing abstraction 
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2.1 The system definition is directly related to the level of abstraction; by solving 

the design problem in decreasing level of abstraction the engineer solves the 

systems from the most abstract/broad to the most general/specific. 

2.2 This necessarily implies that the engineer only considers information relevant 

to the current level of abstraction, saving constraints specific to lower levels 

until it is time to examine them. 

2.3 It is desirable to solve the entire level of abstraction as a single engineering 

design problem. However, this is often impractical due to very different and 

highly independent system behavior. In these cases, the engineering design 

problems can be broken into multiple fields so long as the interfaces between 

the design problems are maintained. For example, the steam generator layout 

and reactor core can be defined in the same engineering design problem. 

However, they have very different physics, objectives, and constraints and 

should be considered separately ensuring the same mass flow rates, pressures, 

and temperatures. 

2.4 By defining the nuclear system in levels of abstraction and considering the 

system in more abstract terms a great deal of systemic error has been 

introduced between actual system behavior and the presumptions of its 

behavior. This error is of course minimized by the correct definition of 

constraints but the engineer should leave room for it in his deliberations. 

Results of detailed analyses not performed until a later stage of the design 

process frequently change the nature of the design problem. The engineer has 
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two solutions to this predicament. Firstly, go back to the previous level of 

abstraction and rework the design given the new information. Secondly, 

account for the future knowledge from the starting level by either defining 

the level in such a way that it accounts for the detailed phenomena or by 

defining multiple solutions at the starting level which accommodate the 

outcomes of the more detailed analyses. Any option is correct, although the 

latter options require a great deal of physical insight into the design. 

 

3.3 Objectives and Constraints  

 Definition of the constraints happens after the conceptualization of the level. The 

order in which the heuristics are presented here is indicative of the relative importance of 

the heuristics. Definition of objectives is much easier than constraints, and there are 

correspondingly fewer heuristics pertaining to this.  

 

Table 3.3 Heuristics for the definition of objectives and constraints 

Number Heuristic 

3.0 Objective and constraints are only defined after the engineering problem is 

fully specified. The objective is related to the purpose or function of the 

system and is normally either maximized or minimized. This should be stated 

first. Constraints are normally some limiting conditions. Constraints must 

address the inputs, outputs, and environment assuming the function of the 
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system becomes the objective. Ideally, one constraint each is defined to 

account for the inputs, outputs, and environment. However, they can be 

combined or expanded based on the needs of the design. Constraints 

frequently incorporate multiple design variables due to the dependencies. 

3.1 Constraints should be as simple as possible, comprising one design variable. 

This is often not possible given the complex nature of the systems in question. 

3.2 There is no restriction on the number of design variables, only that their 

number be minimized in any design problem. 

3.3 Safety considerations are often constraints. Safety concerns must play a role 

in in every level of engineering design. The translation of safety 

considerations into constraints and objectives has its own set of heuristics 

presented in section 3.6. 

3.4 Engineering feasibility is an important consideration within engineering 

design and can be implemented in the constraints or objectives. 

3.4.1 Feasibility can be judged through consideration of the knowledge base of the 

design. Knowledge base is a term frequently used but uncritically defined. It 

can be qualitatively defined as experience with the manufacture and 

operation of a technology. This can be quantified as the number of times the 

technology was implemented, simulations of behavior, and breadth of 

experiments demonstrating technological response to off-normal scenarios. 
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3.4.2 Feasibility can be judged through the ease of attaining commercially 

available technologies. A technology with a single manufacturer is less 

feasible than one with several. 

3.4.3 If the technology is not commercially available, feasibility can also be 

quantified in terms of years or cost to qualify a technology. 

3.4.4 Feasibility can also be judged with standards used by government agencies 

like NASA. 

3.4.5 Feasibility can be judged through the number and content of governmental 

reports on the technology. 

3.4.6 Feasibility can be judged be examining the number and content of academic 

papers. Concepts that are the topic of academic papers with little to no 

commercial sponsors are less feasible than those with some funding be it 

commercial or governmental. 

3.5 There are no restrictions on the way constraints are defined. The manner in 

which the constraints and objectives are defined determines the methodology 

used to solve them. 

3.6 Constraints can be determined through the user’s consideration of limitations 

stemming from the inputs, outputs, and environment. Environmental 

limitations are usually formulated as constraints while outputs, like power 

peaking factor, can be formulated as constraints or within the objective 

functions. Constraints for inputs often come into play when searches for 
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optimal inputs are performed. The possible input space can be highly 

nonlinear and discontinuous. If this is the case uniform sampling of the input 

space will yield infeasible design variables but can still be performed as long 

as some kind of rejection technique is implemented or if the objective 

function weights infeasible solutions quite poorly. 

3.7 Ultimately, only the engineer can properly account for the constraints. The 

best way to discover the constraints is for the user to consider what limits the 

design at each level of abstraction. That being said, some topics are more 

likely to yield useful constraints. 

3.7.1 Materials properties dictate the majority of safety related constraints. 

Common constraints include stress/strain of fuel claddings, reactor vessels, 

primary components, and containments. Temperature, because of its ability 

to reduce the strength of materials, is also considered as a constraint. 

Chemical reactions are also temperature dependent e.g. hydrogen 

production/cladding embrittlement in LWRs and eutectic formation in steel 

clad metallic fuels. Efficiency of thermodynamic cycles increases with 

temperature. This can be formulated in the constraints or in the objective 

function. 

3.7.2 Constraints can also be based on what is available for the engineers to use. 

This can be materials or components and their associated performances. 

3.7.3 Cost can be implemented in either the constraints or objective functions. 

Material and component availability can be accounted for separately or by 
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directly considering their costs. The same can be said for certain system 

configurations. 

 

3.4 Methodology 

 In principle any level can be solved with any methodology. While this will change 

the solution the method will perform regardless. These heuristics provide advice on how 

to achieve the best solution with the least effort.  

 

Table 3.4 Methodology heuristics 

Number Heurisitc 

4.0 The methodology used to solve engineering design problems is based on the 

manner in which the constraints and objective function are defined. Design 

variables with mathematical formulations should be solved using a 

mathematical optimization method; design variables with non-mathematical 

formulation should be solved with non-mathematical methods. The three 

most useful methods in nuclear system design are evolutionary algorithms, 

dynamic programming, and PIRT. 

4.1 The mathematical optimization tool should be the most simple that is capable 

of solving the problem. If the constraints and objectives are linear, then a 

linear programming technique should be chosen. If the constraints and 

objectives are nonlinear but quadratic, then a nonlinear dynamic method can 
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be used. Combinatorial problems are normally solved with combinatorial 

optimization methods based on graph theory. Constraints and objectives with 

complicated functional dependencies that mix continuous and discrete 

formulations must use some form of heuristic algorithm. An enormous body 

of literature is available about the utility of the various methods. 

4.2 Evolutionary algorithms (of which genetic algorithms are a subset) have 

received much academic attention and their usefulness can be mapped out for 

many types of problems in nuclear engineering. Neural networks are the most 

powerful tool for solving engineering design problems but are difficult to 

implement and are time consuming to find a solution. Genetic algorithms 

should be sufficient for the design of nuclear cores while dynamic 

programming is sufficient for the design of the power producing coolant loop. 

The design of heat exchangers may require a genetic algorithm. Neural 

networks should only be used if evolutionary algorithms prove insufficient 

or if future developments make them less time consuming to perform. 

Genetic algorithms are recommended as the generic optimization method 

because they are exceptionally robust and excellent at searching the design 

space. Evolutionary algorithms excel in finding many solutions with a high 

fitness but not in finding the solution with the highest fitness. Considering 

the systemic uncertainty in engineering design, a collection of good designs 

is more likely to contain the true best than the smaller collection of high 

fitness designs. 
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4.3 There are many high level decisions which must be made in the design of a 

nuclear system most of which can be made by performing a thorough 

literature review and comparing the relevant characteristics. PIRT could be 

used to guide particularly difficult literature reviews. Figure 1.1 summarizes 

the PIRT process for its original intention, but it could be tuned for 

engineering design. The first step would be to define the judgement criteria 

in detail and devise a framework for translating subjective judgements about 

feasibility and utility into numerical measurements. The second step would 

be to generate design concepts. The third step would be to evaluate each 

concept for its feasibility and ability to satisfy the objective using the 

numerical framework. The number of engineers helps estimate the 

uncertainty of any one numerical evaluation. The results are presented in step 

4. This four step process can be expanded based on the desires of the 

engineers. The original PIRT process separates the analysis of thermal 

hydraulic phenomenon by time and system. A similar distinction could be 

made in the field of nuclear design between near-term and long-term effects 

and physical phenomena. 

 

3.5 General Nuclear Design Process 

 These heuristics are not mandatory, but derived from experience dealing with 

nuclear design. They should be considered advice applicable in the majority of situations.  
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Table 3.5 General nuclear system related heuristics 

Number Heuristic 

5.0 Constraints and functions can only be known through experience with the 

system. Similarly, where to divide the nuclear system into levels of 

abstraction can only be known through experience. Therefore, the remainder 

of the heuristics are meant for the nuclear systems only. These heuristics 

should be understood as nuclear engineering design best practices; some are 

merely advice whereas others are necessary. 

5.1 The choice of heat transfer mechanism/coolant is normally the second level 

of abstraction. 

5.2 LEU is to be used in all reactors aside from military reactors. 

5.2.1 Exceptions to this can be made for materials irradiation facilities. 

5.2.2 The international soft limit for enrichment in power reactors is 5%. However, 

high enrichments can be used for non-power reactors. 

5.3 Fuel plates are favored in high density cores but generally cost more than 

pins. Fuel pins are easier to manufacture but have higher fuel centerline 

temperatures. This can pose a safety risk in certain accident scenarios and 

results in a higher Doppler penalty. 

5.4 Steel, especially stainless steel, is the favored material in reactor design. 

Stainless steel is strong, chemically compatible with most coolants and fuel 
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types, is reasonably cheap, has significant resonance integrals and thermal 

cross sections, has excellent irradiation behavior (select compositions), is 

easily machinable, and does not undergo exothermic reactions with water like 

zirconium. Nickel alloys or ceramics are to be used with fluoride or chloride 

salts, while zirconium alloys have to be used with most LWRs and CANDUs. 

5.5 It is perfectly acceptable to bury the reactor in concrete. It makes an excellent 

shielding. 

5.6 Core damage frequencies and severe accident initiating events have been 

historically underestimated. This must be taken into account when 

performing probabilistic risk assessments. Beyond Design Basis Accidents 

have occurred much more frequently than predicted, and should be analyzed. 

5.7 Several collections of design criteria have been created by various regulatory 

agencies. Design criteria for light and heavy water reactors are more common 

due to their greater numbers. Design criteria for Generation IV designs are 

being developed by the IAEA and the NRC. Using such criteria accelerates 

the regulatory time but is not strictly necessary in the USA. 

5.8 Extensive seismic isolation has not been approved by the NRC. Current 

designs mitigate earthquake damage by overdesigning the system to account 

for the full ground acceleration. Capital costs could be reduced by building 

the entire reactor on dampening pads not just specific portions of the building. 

5.9 The system should be built with non-nuclear safety grade components to the 

greatest extent possible. 
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3.6 Nuclear Safety 

The rationale behind the heuristics in this section can be found in section 6.2, 

located in the Appendix.  

Table 3.6 Nuclear safety heuristics 

Number Heuristic 

6.0 Nuclear safety is perhaps the greatest issue affecting nuclear power after cost. 

Thus, ensuring nuclear safety during the design process is essential. 

6.1 Traditional safety assessments like PRA or deterministic analyses can be 

used at the lowest levels of abstraction once the system is well defined. These 

assessments cannot be used until after level 5 in the Abstraction based Design 

Algorithm. A number of documents are available for the correct 

implementation of these assessments so it is not summarized here. 

6.2 Scoping calculations simplify system behavior and physics allowing for their 

use of higher levels of abstraction. Scoping calculations allow for prospective 

designs to be quickly analyzed. 

6.2.1 Scoping calculations use simplified versions of the governing equations. For 

example, the homogeneous equilibrium model might be used instead of a two 

phase model.  Similarly, simple hand calculations can be used to design 
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reactors if appropriate cross sections are known. The same can be said of 

deterministic transport models. 

6.2.2 Scoping calculations are normally steady state; transient analyses are either 

not performed or assured through significant safety factors on the steady state 

cases. Safety factors can be derived from literature reviews. 

6.2.3 Scoping calculations typically make use of simplified system models. For 

example, in small SFRs the sodium temperature does not change around the 

loop, meaning that the entire sodium inventory can be considered a single 

control volume. In many scenarios only the average and hottest fuel channel 

need be analyzed. 

6.2.4 Scoping calculations are easier to implement for thermal hydraulic models 

than neutronic models. Computational Fluid Dynamic models are the most 

advanced and are not usable for design calculations. 1D models with a few 

control volumes are suitable for design calculations. Complex turbulent 

behavior is modeled with experimental data in these 1D models. Performing 

these calculations is commonly taught in undergraduate mechanical or 

nuclear engineering courses and no other advice is needed. 

6.2.5 Neutronics scoping calculations are often performed differently than thermal 

hydraulic scoping calculations. Neutronic scoping calculations typically use 

fully developed codes with simplified inputs (like MCNP). This is because 

of the difficulty in cross section generation when a new system is under 

development. Core materials are often determined before the core layout is 



 

64 

 

chosen. Potential core layouts are generated and analyzed using the proposed 

materials at approximate temperatures. This is done to map out the design 

space identifying the best and worst design choices. Burnup calculations are 

often performed without the core in a critical state. If the core is not critical 

then the flux profile (in energy and space) will not be realistic; without a 

realistic flux profile, the reaction rates throughout the core will not be 

estimated correctly. However, for a variety of designs simulating the core 

non-critical will not result in significant errors. Full core burnup simulations 

are often performed with control rods in a set position. keff is often correctly 

predicted even if the flux profiles can be incorrect. 

6.3 Literature review can be used in place of scoping calculations. Between 

reactors which were built at the very beginning of the nuclear era to the 

innumerable paper reactors available in academic journals, a large bank of 

reactor concepts exists. Performance data from these reactors can be 

extrapolated to the proposed system. PIRT can be used to identify the most 

important characteristics of the proposed system and judge how well a 

preexisting design matches the proposed system. It may be necessary to 

accumulate estimated system performance from several different preexisting 

designs. As mentioned earlier a literature review can be used to derive 

appropriate safety factors for steady state calculations. NUREG documents 

are especially useful but their scope is limited to the more common reactor 

types. VHTR and SFR concepts was licensed under the AEC and these 
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documents can be used to estimate the safety performance of the proposed 

system. GFR limits can be appropriated from the SFR and VHTR while MSR 

concepts could use the MSRE documentation. 

6.4 The precepts of Axiomatic Design and Robust Design could be used to ensure 

safety. The safest design will have each functional requirement satisfied by a 

single design variable and will be the least sensitive to changes in 

environment, input, performance, etc. 

6.4.1 Axiomatic Design is discussed in the introductory literature review. Advice 

for the creation of functional requirements can be found in conjunction with 

the advice for definitions of the levels of abstraction and the translation of the 

levels to engineering design problems. 

6.4.2 Sensitivity studies about the system performance in non-ideal environments, 

inputs, or component performance should be performed at each level of 

abstraction. Sensitivity should play a role in solving the related engineering 

design problem. Sensitivity at the higher levels of abstraction could be 

difficult to quantify but must be considered. This sensitivity will become 

more defined as the system becomes more concrete. Changes in environment 

are the most basic parameter to analyze. Changes to input analyze how the 

non-ideal output from a component could affect another component. Changes 

in the functionality of the system itself are perhaps the hardest parameters to 

analyze. These changes in functionality could be due to system degradation 

from a changing environment, degradation due to age, degradation due to a 
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misunderstanding of the phenomena, degradation due to unforeseen complex 

interactions between the various system components. 
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4. FAST SPECTRUM MATERIALS TESTING REACTOR 

 

 The design of a materials testing reactor poses unique design challenges for the 

method and designer, allowing for a thorough exploration of the method. Materials testing 

reactors have to achieve set fluxes and/or power densities in certain locations and materials 

within the core. The irradiation positions must be reconfigurable. While the core design is 

highly constrained, the secondary systems are less constrained. Secondary systems often 

do not generate electricity unless a demonstrator plant is called for. Additional constraints 

for the core design and fewer constraints for the plant design simplify the design process 

of the higher levels of abstraction while making the lower levels more complex in contrast 

to the design of power reactors. Examples in Chapter 2 and the heuristics themselves focus 

on power reactors; this example is provided to demonstrate the versatility of the method. 

The initial objectives for the reactor came from a government document; additional 

constraints and objectives were provided by examining the behavior of other test reactors 

mentioned in the document. This research resulted in a number of constraints but no major 

objective. The objective came from focusing on a secondary concern wherein a 

demonstrator reactor is desired for a given Generation IV technology. The overall 

objective could then be stated as the smallest possible demonstrator reactor capable of 

fulfilling all the constraints listed in the document. Scoping calculations were used 

throughout this project. The SFR was chosen as the demonstrator reactor and a 

representative fuel geometry was adopted from a historical system with excellent 

performance. The overall height and diameter of the core was then chosen to achieve a 
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suitable degree of excess reactivity. Core power was based on the power density in the 

historical system and the required flux levels in the irradiation positions. A thorough 

global and local characterization of the system was performed. Simple two parameter 

searches were then performed to allow a limited degree of optimization for the local 

behavior. The local behavior required additional objectives and constraints. Genetic 

algorithms were not used in this investigation, just a modified form of Robust Design 

focused on defining appropriate design factors to accommodate diverse neutronics 

requirements.  

 An outline of the reactor design process will be presented first. Levels of 

abstraction are numbered in the list. The objective, constraints, and methodology of each 

level of abstraction are provided while the manner in which the constraints were defined 

and the results of each engineering design problem are not defined. All constraints and 

objectives are additive from level to level. This study was performed to propose a new 

MTR; the neutronics of the core are paramount so non-nuclear aspects of the design were 

ignored. The design is meant to be a demonstrator reactor, so the non-nuclear aspects of 

the design would be scaled down from a hypothetical large scale SFR. The document 

which provided the purpose and needs of the reactor did not offer specifics.  

1. Whether or not to build a new reactor or modify an existing reactor 

 Objective: satisfy all constraints while clarifying the original requirements. 

A durable, feasible design that is within or just beyond the realm of well-

established technology is favored.  

 Constraints: 
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i. Coolant loops with multiple possible coolants; boiling water, 

helium, molten salt, and sodium were specifically mentioned 

ii. Demonstrate an advanced reactor concept 

iii. Large volume irradiation positions 

iv. High flux thermal and fast spectrum positions for accelerated 

testing of long life materials  

v. Support LWR and advanced reactor programs 

 Methodology: extensive literature search, focusing on defining the size and 

fluxes of the irradiation positions.  

2. The coolant and fuel vector of the reactor; set relevant thermal limits 

 Objective: Satisfy all materials irradiation constraints while selecting the 

most feasible and promising reactor type 

 Constraints:  

i. Cannot use LEU 

ii. Reasonable safety performance 

 Methodology: extensive literature search, focusing on the available body 

of knowledge for the various reactor types. A PIRT study would have been 

applicable but was not performed because there were not enough 

parameters to warrant it.   

3. Assembly and fuel dimensions 

 Objective: highest flux  

 Constraints:  
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i. Sufficiently negative power coefficients so that LOFA accidents 

will not result in fuel damage 

ii. Durable, feasible assembly design 

 Methodology: choose from a preexisting assembly design from proven 

performance. A PIRT study would have been useful in judging the merits 

of the possible design concepts.  

4. The reflector material and core layout 

 Objective: maximize fast fluxes and maximize the core lifetime; minimize 

the pressure drop (weak objective) 

 Constraints: 

i. Average coolant velocity less than 10 m/s [Fast, 2006] 

ii. Core pressure drop less than 0.5 MPa [Fast, 2006] 

iii. H/D=1 

iv. Average linear power and maximum linear power must not exceed 

EBR-II values [Fast, 2006] 

v. Fast flux should be at least 5E15 n/cm2-s 

 Methodology: scoping studies 

5. Assembly specific design to attain specified fluxes and power densities 

 Objective: maximize flux (strong) and minimize reactivity penalty (weak) 

of the irradiation positions 

 Constraints:  

i. Maintain prototypical power densities 
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ii. All assemblies must be independent 

iii. Do not modify the barrier assemblies 

iv. Water should be used sparingly  

 Methodology: scoping studies 

 The initial requirements for this reactor were not specific enough for all levels of 

abstraction, and the definition of constraints played a large role in this design. Lower level 

constraints were chosen to elaborate on higher level constraints. It is possible for the 

design to be completely reconceptualized at different levels of abstraction; this was not 

the case in this design. Lower level design variables, objectives, and constraints are 

elaborations of those at higher levels. Figure 4.1 shows the relationships between the 

constraints at different levels of abstraction. There were two constraints in the lower levels 

of abstraction which do not have an origin in the preceding levels. Safety performance in 

Level 2 is a necessary consideration included in all nuclear design. H/D=1 was included 

in Level 4 to simplify the design scheme. Flattening the core (H/D<1) would reduce the 

pressure drop and increase neutron outleakage. A more thorough examination would not 

use this constraint. The design variables became more elaborate as the design progressed. 

A qualitative judgment of the safety performance of the reactor was translated into 

maximum velocities, maximum pressure drops, maximum pin powers, and sufficiently 

negative reactivity coefficients. This translation was possible because of the extensive 

knowledge base of SFRs that provided a baseline for a sufficiently safe SFR. Safety was 

assured by ensuring that this reactor did not exceed prototypic SFR steady state 

parameters.  
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Figure 4.1 Relationships between the constraints showing how lower level constraints 

were derived from higher level constraints. All preceding constraints apply at each level 

of abstraction.  

4.1 First Level of Abstraction 

 Materials testing reactors (MTR) exist to supply a high flux of neutrons for 

materials irradiation and general purpose experiments. The Advanced Test Reactor, High 

Flux Isotope Reactor, and university TRIGA reactors are all examples of MTRs where the 

primary purpose of the reactor is to supply neutrons for in core irradiation. HFIR is also 

notable for its beam ports, often used as a supply of cold neutrons. The overall design of 

a new MTR is presented in [Scherr, 2016] and [Scherr, 2018] but the design process is 

outlined here. The starting point for the reactor design was easy to decide, as it begins with 

a government document outlining the projected research needs. The Nuclear Reactor 
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Technology Subcommittee, a subcommittee of the Nuclear Energy Advisory Council, 

released a report on November 18, 2014 that requested designs for a MTR in support of 

the Generation IV and LWRS programs [Report, 2014]. The document requested a dual-

purpose reactor, one that would enable testing of multiple reactor types and serve as a 

demonstration reactor for a Generation IV reactor type. Demonstration reactors, or 

demonstrator reactors, are proof of concept designs that demonstrate the performance of 

a large-scale design. The demonstrator reactor must replicate the systems and behaviors 

of the larger system. Equipment, fueling handling, reactor physics, maintenance 

schedules, fluid behavior, etc. are all meant to be similar to a larger system. The reactor is 

also meant to have diverse neutron spectrums which could be attained by reconfiguring 

the core. Coolant loops are commonly used in materials testing reactors to simulate 

appropriate thermal hydraulic behavior around irradiated material. Such systems were 

regarded as essential in the proposed reactor, and must be capable of accommodating a 

wide variety of coolants and fuel types. The coolant loops must be capable of both steady 

state and transient behavior. It is mentioned within [Report, 2014] that the irradiation 

position in the proposed reactor must be large. Large is not defined, but can be gleaned 

from studying potential objects to be irradiated and the current volumes of the irradiation 

positions in current testing reactors.  

 Since the document which defined the reactor requirements referenced the 

Generation IV and LWRS programs, studying those programs would yield additional 

constraints and objectives. The Light Water Reactor Sustainability program is a DOE 

funded program dedicated to increasing the useful lifetime of Generation II reactors 
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[Light, 2014]. Most of those reactors have attained 20-year license extensions and there is 

a focus on the next 20-year life extensions. This would bring the final reactor lifetime to 

80 years. There are several aspects of this program, but the relevant parts are those which 

involve materials irradiation. The vessel and concrete are exposed to neutron fluences over 

the entire lifespan of the reactor, a process which could replicated in a test reactor. Large 

volumes of material would be very useful to irradiate so as to study irradiation effects. 

Replicating 80 years of irradiation in a reasonable amount of time means large volumes at 

a high flux. The claddings of LWRs are based on zirconium, which undergoes exothermic 

chemical reactions with light water at high temperature. This produces hydrogen gas, 

which can explode, and leaves the zirconium in a weaker ceramic form. The Fukushima 

accident is an excellent example of the pitfalls of zirconium alloy claddings. Steel and SiC 

are proposed as potential LWR claddings, so the reactor must be capable of replicating the 

operating conditions of those claddings [Light, 2014] [Bragg-Sitton, 2013]. The 

Generation IV forum was established in 2002 by the OECD Nuclear Energy Agency to 

promote research and development of Generation IV reactor designs in member countries. 

Six concepts were proposed: SFR, GFR, LFR, VHTR, MSR, and SCWR. The SFR and 

VHTR have received the most research and were projected to complete their viability 

studies earlier than the other four [Technology, 2014]. The modified update changes the 

projected finish times, but in the judgment of the author the SFR and VHTR are still the 

most likely to become actual systems [Technology, 2014]. The most common reactor type 

in the world, LWR, and the most likely Generation IV reactors, SFR and VHTR, should 

be the reactor types whose behavior the proposed reactor must be able to replicate. The 
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SCWR shares many characteristics with the LWR, the GFR and LFR share characteristics 

with the SFR, and the MSR could be replicated in most scenarios as its design is flexible. 

The three reactor types chosen well represent all possible reactor types and reduce the 

volume of analysis. The Fast Reactor Database 2006 Update is a collection of design 

information from historical fast reactors and proved very useful in this study [Fast, 2006]. 

The highest peak fast flux listed for any reactor type is 5E15 n/cm2s for neutrons with 

energies greater than 0.1 MeV. A MTR with fluxes lower than the actual reactor would 

require more time to simulate the lifetime of nuclear materials. This could necessitate the 

building of an actual system without complete verification of the behavior of core 

materials at the end of life, an unfavorable scenario. For this reason, the peak fast flux in 

the reactor must be greater than 5E15 n/cm2s. This value for fast flux was corroborated in 

personal correspondence with an INL researcher concerning a fast flux that would be 

required for materials irradiation research [Hayes, 2015].  

 

Table 4.1 HFIR [Xoubi, 2005] 

Nominal power 85 MWth 

Maximum flux 2.6E1015 n/cm2s thermal flux 

Center flux trap size 12.7 cm diameter 

Active fuel height  50.8 cm 

Other positions in Be reflector N/A and far less 

Total in core irradiation volume 6500 cm3 
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Table 4.2 ATR, fast flux E > 1 MeV [FY, 2009] 

Maximum power 250 MWth 

Normal operating power  110 MWth 

Active core height  122 cm 

Power tilt ratio 3:1 

Largest corner traps (5.25 in diameter) 4.4E1014/2.2E1014 n/cm2s thermal/fast 

Other corner traps (3.0 in diameter) 4.4E1014/9.7E1013 n/cm2s thermal/fast 

Largest A traps (1.59 in diameter)  1.9E1014/1.7E1014 n/cm2s thermal/fast 

Other A traps (0.66 in and 0.5 in diameter) 2.0E1014/2.3E1014 n/cm2s thermal/fast 

Other positions are smaller Other positions have lower fluxes 

Total in core irradiation volume 98000 cm3 

 

 

Table 4.3 JHR, fast flux E > 0.9 MeV [Boyard 2005] 

Nominal power 100 MWth 

Active core height 60 cm 

3 in core irradiation assemblies (94.5 mm) 4.2E1014 /2.9E1014 n/cm2s fast/thermal   

7 in the center of an assembly (32 mm) 5.5E1014/2.2E1014  n/cm2s fast/thermal 

12 positions between assemblies N/A 

6 PWR testing loops 4.3E1014 n/cm2s thermal 1% enriched pin 

Total in core irradiation volume 16000 cm3 
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Table 4.4 MBIR, fast flux E > 0.1 MeV [Tretiyakov, 2014] 

Nominal power 150 MWth 

Active fuel height 55 cm 

Fast neutron fraction ~0.7 

Maximum/average core flux 5.5E15/3.5E15 n/cm2s in the core 

14 materials testing assemblies, 7.22 cm flat to 

flat. Maximum/average flux 

4.9E15/3.6E15 n/cm2s 

3 external loops, assemblies 5 cm by 144 cm 5.0E15, 2.0E15, 1.3E15 n/cm2s 

3 instrumented in core loops for alternate 

coolant types, assemblies 4.5 cm wide.   

3.2-4.0E15 n/cm2s 

6 horizontal beam ports N/A 

Total in core irradiation volume 45000 cm3 

 

 

Table 4.5 MYRRHA, fast flux E > 0.75 MeV [Van Tichelen] [Abderrahim, 2012] 

Subcritical/critical power 65 MWth/100 MWth 

Subcritical fast/total flux in central channel 1.01E15/3.75E15 n/cm2s 

Critical fast/total flux in central channel 4.05E14/2.61E15 n/cm2s 

Subcritical fast/total flux in off central channel 4.2E14/2.6E15 n/cm2s 

Critical fast/total flux in off central channel 2.56E14/1.75E15 n/cm2s 

Total in core irradiation volume 39000 cm3 
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 The ATR has coolant loops which can accommodate different coolant types and 

can operate in transient mode [FY, 2009] [Gerstner, 2009]. The MBIR also possesses 

coolant loops but the coolant within them and whether or not alternative coolants are 

allowed are not stated. The JHR has PWR loops and it is not stated if other coolants can 

be used in them. The Fast Flux Test Facility is a 400 MWth SFR located in Hanford, 

Washington. Shutdown in 1996, it has been defueled and the sodium has been drained 

while it waits in limbo. This reactor could be restarted and it might be possible for it to be 

reconfigured as the US’s new MTR. This possibility was not examined because of FFTF’s 

maximum fast flux was less than 5E15 n/cm2-s, concerns about how configurable FFTF 

could be made, the general age of the facility (perhaps the largest concern), the interest in 

a demonstrator reactor and the report’s general emphasis on building a new reactor. Each 

current MTR was deemed to be insufficient for the same concerns reconfiguring FFTF 

was not pursued. Table 4.6 summarizes those concerns. The ability of each reactor to meet 

a certain characteristic was analyzed as high, medium, or low. While the report did 

emphasize the construction of a new reactor, this concern could be overridden if some 

existing reactor was shown to meet the capabilities sought. Flux shaping within the 

proposed fast reactors could not be found in literature and their fast fluxes, while high, did 

not exceed 5E15 n/cm2-s. The judgement criteria in Table 4.6 are a combination of 

constraints and objectives. At this stage in the design, constraints and objectives can be 

reformulated in a number of ways. The last requirement judges the US’s ability to conduct 

R&D. It was not formally stated in the NEAC report, but is an unstated assumption based 

on the other requirements listed.   
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Table 4.6 Summary of reactor characteristics evaluated with respect to the requirements 

derived from the NEAC report. L, M, and H mean Low, Medium, and High respectively.  

Characteristic HFIR ATR JHR MBIR MYRRHA FFTF 

High fast flux L L L M M M 

High thermal flux H H H L L L 

Variable spectrum L L L M M M 

Multiple coolant loops L M M M L L 

Large volumes L H M M M M 

Long lifetime L L L H H M 

Demonstrator  L L L M M M 

Ease of use for US R&D H H M L L H 

 

4.2 Second Level of Abstraction 

 The choice of fuel vector was simple. The use of highly enriched uranium is 

regarded as a proliferation risk within the US. The Reduced Enrichment for Research and 

Test Reactor Program (RERTR) has initiated in 1978 and since then has assisted in the 

refueling of over 40 reactors from HEU to LEU [RERTR, 2017]. This program and others 

within the DOE and NNSA discourage the usage of HEU in current and future test 

reactors. While not strictly prohibited, using LEU would ameliorate any such concerns. 

Similarly, there is no commercial source for plutonium in the US and defense related 
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plutonium has never been made available for research reactor and likely never will. For 

these reasons, the fuel vector of this reactor should be LEU, with HEU as a very distant 

possibility. The JHR will use 27% enriched fuel until its new high density LEU fuel is 

qualified while the MBIR uses 38.5% plutonium MOX. The ATR and HFIR use 93% 

enriched fuel, while EBR-II used HEU and FFTF used MOX. (EBR-II and FFTF were 

used to study a variety of different fuel forms and vectors but HEU-Zr was the most 

common). The lack of high fissile content fuels would dictate the size of the core and 

ultimately its power. The SFR has received a great deal of R&D all over the world. Large 

units like MONJU, Superphenix, BN-800, and BN-1200 demonstrate the concepts 

viability. The TWR, proposed by Terrpower LLC, is a SFR [Gilleland, 2016]. No other 

Generation IV reactor type has been demonstrated to the same degree as the SFR. The 

VHTR is arguably the second closest with the THTR-300, Fort St Vrain, and HTTR. A 

small concept is being constructed in China, but the VHTR demonstrators are all smaller 

than the SFR concepts. No similarly sized MSR, LFR, or GFR has been constructed. While 

the VHTR is a viable technology, attaining a high fast flux would be impossible. Molten 

lead is corrosive to most kinds of steel and its high melting point can pose operational 

difficulties. For these reasons, the SFR was chosen as the baseline reactor. It will serve as 

a demonstrator reactor for future SFR projects and should have enough flexibility to serve 

as a research reactor for a variety of reactor types.  
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4.3 Third Level of Abstraction 

Assembly design is a complex topic within SFR design. Coming up with a new 

assembly design is not difficult as long as it does not diverge from established concepts. 

Ensuring suitable performance of the new concept would be a time consuming process, 

especially when the benefits of a new assembly are hard to quantify and often cannot be 

determined except through actual usage of the assembly and assembly restraint systems. 

For these reasons, it was decided to use a preexisting assembly design and core restraint 

system. This posed the problem of choosing the best design from the inordinate number 

of concepts, both paper and physical. A durable, feasible near term design with excellent 

safety performance was desired; this meant choosing from actual reactor designs that had 

excellent operational characteristics and verified safety performance. Fortunately, several 

designs presented themselves. Fuel within FFTF and EBR-II achieved burnups equal to or 

exceeding 20% without incident [Fast, 2006]. Fuel handling accidents were uncommon in 

all reactors examined. Based on a literature review of historical SFR experience, durability 

appears to be easily satisfied as long as assembly design does not depart from the historical 

design envelope. Safety, measured as several accident performance, does differ between 

the historical SFR concepts. Severe accidents were tested in Rapsodie, EBR-II, and FFTF. 

Rapsodie successfully underwent a planned unprotected loss of flow accident at 50% 

power [Liquid, 2007]. Rapsodie, due to its high fissile content in the core, did not have an 

appreciable Doppler coefficient of reactivity. In unprotected accidents, a high Doppler 

coefficient is actually detrimental to the safety of the reactor. As core power declines and 

flow rate slows, the rods will decline in temperature. As the rods lose heat, positive 
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reactivity will be inserted from the Doppler effect, maintaining core power and core 

temperature. However, mass flow rate is determined by natural circulation, and the steel 

cladding can easily fail from the excessively high power and low mass flow rate. High 

Doppler coefficients are a feature of oxide fueled reactors because of the softer spectrum 

induced through scattering off oxygen. The resonances play a greater role than in a 

metallic fueled reactor which has a harder spectrum. In fuels with more fertile than fissile 

material, the absorption resonances will dominate in this region and the Doppler 

coefficient will be negative. In fuels with more fissile than fertile material, the fission 

resonances will dominate the absorption resonances and the Doppler coefficient can be 

negligible or positive. Given the use of 30% plutonium MOX, it is likely that Rapsodie 

would not have performed so well in its test if it had been using LEU as required for the 

proposed design.  

FFTF was also subjected to an unprotected loss of flow accident at 50% power 

[Liquid, 2007]. Gas expansion models, which increase neutron outleakage as coolant 

velocity decreases, had to be inserted into the core for these tests to be performed safely. 

Before the test the pumps were operated at a high mass flow rate to reduce the core 

temperatures so that the rise in temperature induced by the test would not breach safety 

limits. FFTF could not have withstood the same accident at full power. This stands in 

contrast to EBR-II, which underwent an planned unprotected loss of flow test at full power 

on April 3, 1986. No safety limits were breached. Only passive safety systems were used, 

meaning that this test simulated a complete loss of offsite power with partial loss of onsite 

power type accident. It is possible that Rapsodie or FFTF would have performed similarly 
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to EBR-II with metallic fuel. The fuel, coolant, and steel volume fractions of the EBR-II 

are similar to those of other designs, so a change in assembly design may not significantly 

change the neutronics, as long as the power density stays the same. EBR-II fuel pins are 

much smaller than the FFTF, allowing for lower pin linear powers and temperatures for 

the same power density. For this reason, a change in assembly design may necessitate a 

decrease in power density to maintain safe fuel temperatures. EBR-II had excellent 

operational performance and safety performance; for these reasons its design will be used 

as the basis for the reactor.  

Metallic fuels have varying material compositions, but the most promising fuel 

form is a uranium-zirconium alloy, with 10% zirconium by mass [Chang, 2007]. Metallic 

fuel has a high thermal conductivity compared to oxide fuels. Although the melting point 

of metallic fuels is lower than that of uranium dioxide, the higher thermal conductivity 

compensates in severe accidents [Chang, 2007]. Metallic fuels have higher thermal 

expansion coefficients than uranium dioxide, meaning that the fuel assemblies expand 

both vertically and axially with increasing fuel temperature more than uranium dioxide 

fueled assemblies. While uranium dioxide has a low thermal expansion coefficient, the 

steel pin will expand with temperature and drag the fuel with it, causing the fuel to expand 

with the steel. The magnitude of this safety critical phenomenon depends on the fuel pin 

design. Radial and axial expansion increases neutron leakage and increases the amount of 

sodium in the core [Chang, 2007]. More sodium in the core inserts negative reactivity and 

reduces the coolant temperature, which lowers pin temperatures. Zirconium present in the 

fuel improves the irradiation swelling behavior of the fuel. Metallic fuel assemblies have 
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been successfully irradiated to burnups of 19.9 atom percent [Chang, 2007]. Although 

metallic fuel does expand with burnup, an initial smear density of ~75% leaves enough 

room within the fuel pin for the fuel to expand [Chang, 2007]. Metallic fuels have a higher 

density and uranium weight percent than oxide fuels [Chang 2007]. A higher fissile 

density dramatically increases keff. These favorable characteristics underlie Terrapower’s 

choice to use metallic fuels in the Traveling Wave Reactor [Gilleland, 2016].   

The harder neutron spectrum of a metallic fueled SFR relative to an oxide fueled 

SFR has some other neutronics effects besides a reduced Doppler coefficient. Neutron 

importance, or adjoint flux, is a measure of the effect a neutron at a given energy and 

position will have on keff [Waltar, 2011]. The neutron importance within fast reactors 

increases for neutrons with energies above ~100 keV, depending on the reactor. At higher 

energies, the probability of fission increases while capture decreases. The number of 

neutrons released per fission increases with incident neutron energy, an effect especially 

pronounced in plutonium [Waltar, 2011]. Scenarios which reduce neutron energy, like 

added oxygen to the fuel or increasing the amount of sodium in the core, will cause 

neutrons to drop in importance reducing keff. The effect is especially pronounced if 

neutrons are shifted downwards in energy enough for them to occupy the resonance 

region, dominated by the 238U capture resonances. This is one of the reasons UO2 fueled 

assemblies have a lower kinf than metallic fueled assemblies (the other being the reduction 

in fuel density). Reductions in the density of sodium tend to increase keff due to the spectral 

hardening [Waltar, 2011]. As the density of sodium decreases with increasing temperature, 

and sodium temperature increases with core power, an increase in core power will cause 
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an increase of reactivity from the change in sodium density. This positive power 

coefficient is ameliorated by the radial and axial fuel coefficients, but can become an issue 

if the core sodium boils. Large scale boiling of sodium could counteract the expansion. 

Such a scenario is highly unlikely in an SFR because of the large margin to sodium boiling 

incorporated into the design from the outset. Oxide fueled SFRs have softer neutron 

spectrum and lower neutron importance than metallic fueled SFRs; the addition of sodium 

will have less of an effect on neutron importance so the increase in reactivity induced by 

an increase in power will be lessened for oxide fueled SFRs [Judd, 2014]. Sodium has a 

small but appreciable capture cross section at higher energies; this has a negative effect 

on keff but is small compared to the neutron softening induced by scattering. The high 

scattering cross sections are beneficial on the periphery of the reactor, where sodium acts 

to reflect neutrons back into the core. For these reasons, the sodium worth (reactivity 

induced by a decrease in density) is likely to be positive in the center of the core and 

negative on the periphery of the core in medium and large SFRs. Leakage will be more 

significant in small SFRs and can cause the core average sodium worth to be negligible or 

slightly negative.  

4.4 Fourth Level of Abstraction 

 The scope of this level is the core design, quite a large topic. A full list of the 

relevant design variables is provided in Table 4.7 while the objectives and constraints are 

provided in Table 4.8. The design variables, constraints, and objective functions are all 

quantitative, suggesting a mathematical optimization method. This project was meant as 
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a proof of concept for a new materials testing reactor; it does not have to be optimal as 

long as the concept satisfies all constraints and is reasonably successful.  

 

Table 4.7 Design variables of relevance in the fourth level of abstraction, divided between 

predetermined and undetermined variables. Predetermined variables were defined in a 

previous level of abstraction but are important in the current level. Undetermined variables 

are to be determined in the current level.  

Predetermined variables Undetermined variables Undetermined variables 

Pin diameter Core power Mass flow rate 

Pin pitch Cladding/assembly material  Core temperatures 

Assembly pitch Active core height Location of control rods 

Assembly wall thick. Axial reflector height Control rod design 

Fuel vector Reflector pin diameter Moderator material 

 Reflector pin pitch Moderator positions 

 Reflector material Irradiation positions  

 Assembly number/layout Enrichment zoning 

 

 

 For this reason, a deterministic solution methodology was devised. This 

methodology had to be revised because it initially ignored the core pressure drop. 

Fortunately, the necessary design changes could be easily implemented because the EBR-
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II had a gap between the reflector and fissile zones to accommodate the different pin 

pitches.  

 

Table 4.8 Objectives and constraints applicable in the fourth level of abstraction 

Obj./Con. Characteristic Max./Min. Importance 

Objective 

 

Fast flux Maximize Strong 

Core lifetime Maximize Strong 

Core power Minimize Weak 

Core pressure drop Minimize Weak 

Constraint 

 

Coolant velocity less than 10 m/s 

Core pressure drop less than 0.5 MPa 

H/D=1 

Maximum and average linear powers less than EBR-II 

Fast flux greater than 5E15 n/cm2-s 

Independence of assemblies 

 

 

 The first step was to perform a literature review of possible reflectors for fast 

reactors. Breeder reactors typically use 238U, but this would yield a weapons grade 

plutonium vector in the reflector and this could be construed as a proliferation risk. Steel 

has appreciable absorption cross sections in the resonance region. Scattering is necessary 

to reflect neutrons back into the driver but does soften the spectrum. MgO was 
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recommended in previous literature so it was used for the initial investigations as the radial 

and axial reflector [Macdonald, 2010]. The second step was to copy the EBR-II fuel 

assembly and build a full core with 19.75% enriched U-10Zr. As EBR-II used HEU, the 

critical mass of the same design with LEU would have to be much larger. The number of 

fissile assemblies and their height must increase because the assembly cannot significantly 

change. The axial reflector in EBR-II was 36.1 cm tall and the gap between the reflector 

and fissile assembly was 10.0 cm. The axial reflector for this reactor was 35 cm and the 

gap between the reflector and fissile regions was 5 cm to make the dimensions similar to 

those of EBR-II. EBR-II was designed for breeding; the thickness of the reflector was 

presumably designed to capture as many neutrons as possible suggesting that any further 

height would be unnecessary. In order to maintain H/D=1, 7 rings of radial reflector were 

used. Starting with an active height of 50 cm, the fissile zone was made taller and the 

number of driver assemblies was increased until a core with a keff of ~1.08 was attained. 

This gives over 10 dollars of reactivity, which was felt to be a suitable margin for excess 

reactivity this early in the design phase. Two years after the completion of this project, the 

research was reexamined for journal papers. The initial design of the axial reflectors used 

the EBR-II lattice which had unacceptably high pressure drops. This was not an issue in 

EBR-II because EBR-II was much shorter than this core. For this reason the axial 

reflectors were redesigned to have the same lattice and pin diameter as the driver while 

being 50 cm tall.  

 The third step was the calculation of average and peak linear power, which yielded 

a total core power of 600 MWth. This step should have involved the calculation of the 
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core pressure drop, but this was ignored at the time. The peak fast flux E>0.1 MeV was 

greater than 5E15 n/cm2-s, satisfying a design requirement. The fourth step was a series 

of scoping studies where the MgO was replaced by various materials. It was found that 

moderators with beryllium or carbon thermalized the spectrum, causing power peaking in 

the periphery of the core. Additionally, softening the spectrum reduces keff because of the 

neutron importance as previously mentioned. High atomic mass reflectors like PbO did 

not perform as well as others which matched the research presented in [Macdonald, 2010]. 

The fifth step was the design of the moderating region. Graphite was chosen as the 

moderator material because of its high tolerance to radiation, ease of manufacture, and 

non-toxicity. The graphite was located in steel assemblies so the moderating region could 

be easily reconfigured. The high thermal flux from the moderator caused extensive 

localized power peaking in the driver assemblies nearest the core, so specialized barrier 

assemblies where developed which had lower enrichments near the graphite. The 

enrichment within the barrier assemblies gradually increased, maintaining a reasonably 

flat power profile within the assembly while allowing as much fissile material to be placed 

in the assembly as possible. The sixth core design step was the locations of the irradiation 

positions. It was discovered that assemblies with sodium in them reduced the fast flux by 

20%. Test assemblies would have to be designed with minimal sodium, probably filled 

with an inert gas. This fact was not investigated further. In core irradiation positions were 

filled with void inside the assembly, but the assembly steel wall and inter-assembly 

sodium were modeled. 21 assemblies were removed and replaced with irradiation test 

assemblies. The highest fast flux is in the center of the core. The moderator region only 
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occupies one portion of the outer reflector and the core possesses bilateral symmetry about 

the x-axis. However, the moderator region and barrier assemblies are designed to have as 

little effect on the driver as possible. Thus, the central driver possesses six fold symmetry, 

as it would if the moderator were replaced by MgO reflector assemblies. This symmetry 

was taken into account when locating the test assemblies. To satisfy the requirements for 

large diameter high flux positions, seven assemblies were grouped together to form a large 

position. Two of these positions were created and were located in the outer driver. The 

inner driver contained seven assemblies; one in the center and six surrounding it. Scoping 

simulations were performed to find those positions which yielded the greatest fluxes. The 

removal of those 21 assemblies significantly reduced keff; fuel diameter was increased by 

4.9% to increase the amount of fuel in the core. The irradiation test assemblies did not 

contain axial reflectors, increasing outleakage especially considering that the test 

assemblies are located in high importance regions of the core. More fuel had to be added 

(10% increase in fuel mass per assembly) than was removed to compensate for the 

increased outleakage.  

 The seventh and last step was the design of the control systems. Two systems were 

used. The shutdown rods replace some of the MgO assemblies and in conjunction with the 

shim rods bring the core to far subcriticality. The in-core shim rods replace some of the 

driver assemblies and use the same pin diameter and pitch as the fuel assemblies. The B4C 

filled rods are followed by driver fuel. The rods are inserted from the top. The bottom 150 

cm of the rods is B4C, while the top 100 cm of the rods contain fuel. The driver is not axial 

reflected, being filled with sodium above and containing B4C below. Natural boron was 
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used. The worth of each assembly was less than one dollar, so a rod ejection accident 

would not result in supercriticality. Ten control rod assemblies were required. These 

changes to the core reduced the excess reactivity of a fresh core. The eighth step involved 

scoping calculations to increase the core lifetime. These ideas were not successful but 

relied on reducing the enrichment to enhance capture within the 238U and breed plutonium. 

All ideas were unsuccessful. However, the burnup of the core and driver assemblies was 

highly linear, so linear reactivity theory could be used to enhance burnup through shuffling 

the core. With a three batch shuffling strategy a cycle length of ~100 day is possible and 

the driver would attain an average burnup of 45 MWd/kgU, a value typical of PWRs.  

 This methodology yielded a design which was not optimal but did satisfy the 

constraints. The calculation of core pressure drop only considered the pin bundle; the 

pressure drop would be greater with the inlets/outlets are included. The excellent safety 

performance behavior of EBR-II can be emulated if all facets of the design are copied. For 

this reason, the methodology sought to change the core design as little as possible. The 

Fast Reactor Database did not provide the core pressure drop which is necessary to ensure 

similar safety performance. In loss of flow accidents natural circulation provides the 

cooling mechanism of the core. The balance between pressure losses in the circuit and the 

hydrostatic pressure from differences in density drive the flow. The steady state pressure 

drop in the core provides some insight into flow resistance under natural circulation. EBR-

II had a large core with far more inactive assemblies than active assemblies. For this reason 

the average coolant velocity was 0.5 m/s but the maximum coolant velocity was 8 m/s. 

Maximum coolant velocity would occur in the hottest assembly; therefore similar pressure 
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drops would occur in that assembly if the assembly design were to be exactly copied. 

However, the assembly is taller than the prototypic and uses active pin lattice for the 

reflector rather than the breeder lattice used in EBR-II. The change in geometry nullify 

any attempts to appropriate EBR-II’s safety performance to this reactor. For this reason, 

it was decided to limit the core pressure drop to a value typical for other reactors of ~600 

MWth [Fast, 2006]. Reliability requires analyzing the designs sensitivity to variability in 

inputs, environment, and performance. This was not performed because it was felt to be 

redundant with respect to safety performance as safety performance cannot be assured. 

The methodology used in this level of abstraction was deterministic and cannot be used to 

derive alternative concepts. Even if sensitivity coefficients could be computed there would 

not be another concept to compare them with. Due to the method of evaluating the core 

pressure drop sensitivity coefficients for one design would not be significantly different 

for alternative designs that similar to the parent design. Maintaining an H/D=1 is not 

necessary to satisfy the other constraints but does make the design process easier. Core 

with H/D=1 will have lower critical masses than cores where H/D≠1 because H/D=1 

minimizes neutron outleakage. Flattening the core so that H/D<1 would reduce the core 

pressure drop. To compensate for the reduction in core height more active assemblies 

would have to be added. This core would have a larger critical mass and active volume 

reducing the power density for a constant core power. Maximizing flux could be 

accomplished by reducing enrichment or increasing power density. Power density is 

maximized by increasing core power or decreasing volume. For these reasons, it is 

expected that core pressure drop will positively correlate with higher fast flux. This 
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methodology yielded a design that could be an excellent starting point for an evolutionary 

algorithm, shown in Figure 4.2.  

 

 

Figure 4.2 The core design at the end of the fourth level of abstraction. Red is 19.9% 

enriched U-10Zr, orange is 16% enriched U-10Zr, ligh blue is graphite, yellow is MgO, 

green is 15% enriched, pink is 12% enriched, light green is 6% enriched, white is 

sodium, and gray is steel.  
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4.5 Fifth Level of Abstraction 

 Flux within the outer reflectors is above 1E15 n/cm2-s but is primarily in the 

epithermal range. Replicating the PWR and VHTR neutronic behaviors was achieved in 

the graphite moderator positions. There are two different kinds of test assemblies, active 

and passive. Active assemblies contain fissile material and are heated internally by fission. 

Passive assemblies do not contain fissile material and are heated externally through 

electric heaters or through gamma heating, neutron absorption, or neutron thermalization. 

A methodology similar to that used in the fourth level of abstraction was used in this 

section. The first step was to generate prototypic flux spectrum for the PWR and VHTR, 

deciding which locations within the PWR and VHTR are most in need of materials testing. 

One of the stated desires of the NEAC report was flow loop under prototypic conditions. 

For this reason the active assemblies were designed to mimic fuel assemblies within the 

core with flowing coolant. The coolant loops were not designed because their viability can 

be assumed through the extensive experience with flow loops in the ATR. The same flux 

spectrum (active core) was used in the passive assemblies. This may or may not be useful. 

The LWRS program is concerned with the performance of steel vessels after many years 

of stress corrosion cracking. The neutron spectrum at the core vessel is often quite different 

from the spectrum in the active core. For this reason the spectral adjusting done to exactly 

mimic the prototypic spectrum could be easily adjusted to any desired spectrum. Steel was 

used as a placeholder but a variety of materials, like potential claddings or graphite, could 

require a prototypic PWR or VHTR spectrum.  
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 The second step was to develop prototypic configurations of the test assemblies, 

both similar to the prototype plants and similar to the standard test assembly 

configurations found in the ATR. Unfortunately, little information could be found online 

about exact dimensions of the transient test assemblies within the ATR. It is known that 

multiple layers of aluminum or steel are used to thermally isolate the test assembly from 

the core. The necessity of all the layers was not determined in this project, but it should 

be mentioned a water-sodium interaction would generate great quantities of sodium 

hydroxide and free hydrogen gas. This is not a favorable scenario. The PWR assemblies 

were double walled for this reason. The VHTR assemblies were not doubled walled 

because of the inert nature of helium gas and because a thick graphite block touches the 

steel wall, limiting sodium penetration in the event of a breach. Dimensions for the PWR 

assembly were derived from the AP1000 Design Control Document [AP1000, 2011]. A 

single infinitely reflected PWR pin was simulated in Serpent 2 and the flux spectrum for 

this simulation was used. Flux spectrum for prototypic PWR pins is different from an 

infinitely reflected 2.6% enriched pin, especially over the course of its lifetime. Reasons 

for this include: burnable absorbers hardening the spectrum of BOL while being 

ineffectual at EOL, control rods hardening the spectrum, burnup reducing enrichment and 

softening the spectrum, surrounding assemblies affecting spectrum, and the 

overestimation of fission neutrons implicit in all Monte Carlo codes where keff is 

significantly above 1. For all these reasons, the flux spectrum generated in this project 

would not match those in an actual reactor. However, it is not necessary that it exactly 

match. An enormous variability it spectrum shaping is possible; the spectrum presented 
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here could be easily modified with the techniques used in the project demonstrating the 

viability of the overall concept. The spectrum, although inexact, is needed to provide 

something to benchmark against. The VHTR conditions were derived in a different 

fashion. The physical design of the assembly is derived from an MCNP deck provided by 

Dr. Tsvetkov for the HTTR, a VHTR test reactor located in Japan. The spectrum was 

derived from research presented in [Sterbentz, 2008]. The GT-MHR was used in 

[Sterbentz, 2008] and the four group flux spectrum from the central ring of fuel assemblies 

was used for benchmarking because that ring had the highest fast flux. Fast flux is the 

most damaging to materials. The prototypic HTTR assembly was simulated at the GT-

MHR power density. Again, not realistic but the ease with which flux was shaped does 

not change the viability of the concept. The PWR was also simulated at the average power 

density of the core. The passive assemblies are modeled as steel cylinders 2 cm in 

diameter. The pins are cooled with a 0.5 cm thick sodium channel in direct contact with 

the steel. This is surrounded by a thin steel wall separating the sodium from the moderator. 

Only one pin is located in each test assembly to accommodate enough moderator.  

 Step three sought to match the prototype fluxes and power densities in the test 

assemblies. It was desired to maximize the flux while keeping the flux spectra as close to 

prototypic as possible. For the active assemblies this was accomplished by reducing the 

enrichment from prototypic. Gamma heating or neutron heating was ignored so power 

density was not considered in the passive assembly. Whenever possible, ZrH1.6 was used 

in place of water for flux shaping.  The most important constraint is keep the peak linear 

power in the barrier assemblies ~200 W/cm. The assemblies must be kept independent to 
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preserve the configurability of the moderating region. ZrH1.6 generates a high thermal flux. 

The shorter path-length of thermal neutrons compared to epithermal neutrons results in 

power peaking in the barrier assemblies with ZrH1.6.  For this reason absorber foils were 

used to block thermal neutrons. Blocking the thermal neutrons does prevent them from 

fissioning within the barrier assemblies and reduces keff. The number of possible 

configurations is too great for this project to examine. Therefore, as in level four, a 

deterministic methodology was developed which satisfies the constraints and maximizes 

the fluxes. Some consideration was given to the minimization of reactivity penalty. The 

reactivity penalty is greatest when a high thermal flux is present in the moderating region 

for three reasons. A softer spectrum has less neutron importance; low energy neutrons 

have shorter path-lengths and do not penetrate the core as readily as high energy neutrons. 

Neutrons on the periphery of the core have lower importance than neutrons in the center 

of the core. These two effects act to reduce keff; when the flux foils are used keff drops even 

more. Characterizations of the graphite region revealed that the peak fluxes were on the 

core centerline. For this reason the prototypic test assemblies were placed on either side 

of the core centerline, replacing graphite assemblies. The core has twofold symmetry and 

two test assemblies. This preserved symmetry and doubled the tallying positions, reducing 

the stochastic error by ~1.414. The moderating region is four assemblies across. The test 

assemblies were simulated at different distances from the core. The PWR had a higher fast 

flux fraction (flux in group over total flux) than the VHTR. For this reason the positions 

near the core were more suited to PWR testing while the positions far from the core were 

suited for VHTR testing. The VHTR assemblies had too great of an epithermal flux so 
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ZrH1.6 assemblies were used to enhance the thermal flux. Conversely, the thermal flux in 

the PWR assemblies was too high so water was removed from the test assembly. Boron 

carbide was used in the VHTR and PWR test assemblies to exactly match the thermal and 

epithermal flux. At no point in this study were all four flux fractions matched to within 

5%. Fine group flux calculations for the PWR showed that even when the four group flux 

fraction approximately matched, there were significant discrepancies. Test assemblies 

require fissile materials. The general scheme for this process was to match the flux 

fractions while holding the enrichment constant. Then once flux fractions were reasonable, 

enrichment was altered to match the desired power. Changing enrichment changed power, 

which changed the number of fissions in the test assembly, which changed the spectrum. 

However, since the majority of the neutrons within the test assembly came from without, 

this feedback mechanism was very low. The passive assemblies were modified in the same 

way. First the capsule (steel pin, sodium channel, steel wall) were moved along the core’s 

x-axis. Then varying amounts of ZrH1.6 and graphite were loaded into the assembly to 

achieve reasonable flux fractions. The capsules had to be located near the core to attain as 

high a fast flux as possible. It proved impossible to exactly match the fast flux fractions in 

the PWR or VHTR. The SFR contains massive nuclides which allow for scattering but 

minimize the energy loss in each collision. Thermal reactors contain low mass nuclides 

which maximize the energy loss per collision. For this reason fission neutrons in a PWR 

need only one or two scatters to fall out of the fast flux range (E>0.1 MeV). Dozens of 

scatters are needed in a SFR. The fast flux in the SFR is softer than the fast flux in a 
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thermal reactor for this reason, even though the total flux in an SFR is harder than the total 

flux in a thermal reactor. This is shown in Figure 4.3.   

 

Figure 4.3 120 group flux in the prototypic PWR pin and in the central driver. Flux fraction 

is the flux in each group divided by total flux. The PWR spectra was tallied over the entire 

pin cell and the Driver was tallied over the entire active assemblies.   

 

 The design of a fast spectrum materials testing reactor presented in [Scherr, 2016] 

contained a unique concept that had no prior implementation. A method to change the 

fission rate within a test assembly was proposed. The test assembly is surrounded by 

control rods, the movement of which affects the fission rate in the test assembly. The 

control rods were tipped by graphite or MgO, and their movement affects the reflection of 

neutrons back into the core. Having to quickly change the shims to accommodate rapid 
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changes in the test assembly fission rate could cause operational difficulties, so it was 

desired to minimize the reactivity worth of the transient test region. This was 

accomplished by cadmium doped MgO reflector assemblies. Cadmium has a very high 

thermal cross section and a low epithermal cross section. In small quantities fast and 

epithermal neutrons are either reflected or pass through the reflector assemblies. The 

control rods rest in light water and are well thermalized. Neutrons that enter the water 

filled control rod assemblies are absorbed in the cadmium if they escape the region. PWR, 

VHTR, and SFR test assemblies were simulated in this trap. The reactivity inserted by the 

movement of the rods was ~0.10$ and power in the test assembly could be reduced to 2% 

of nominal. Choosing the location of this flux trap was simple. It should be as far from the 

driver as possible so that as many neutrons are reflected back into the core as possible.  

4.6 Summary of the FSMTR 

 The design process of a materials testing reactor to support LWRS and Advanced 

reactor programs was outlined, demonstrating the utility of the method outside of the field 

of power reactors. Design of a materials testing reactor places more emphasis on the in 

core behavior and less emphasis on the system behavior. Core design is highly neutronics 

focused and the problem definitions are well suited to evolutionary algorithms. Such 

algorithms were not utilized because the design was performed as a feasibility study. 

Deterministic algorithms were used to solve the levels of abstraction in place of 

mathematical optimization. Literature review was essential in the higher levels and was 

used in place of formal PIRT. The first level of abstraction was concerned with whether 
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to build a new materials testing reactor or modify an existing reactor. Solved with an 

extensive literature review and a qualitative comparison of existing materials testing 

reactors, it was decided to design a new reactor despite the additional cost. The first level 

of abstraction was concerned with the information in the DOE report. The qualitative 

judgments outlined in that report where translated into decision variables and discretized 

into high, medium, or low for judging the suitability of current reactors. Thermal fluxes 

and in core volumes were judged on projected future needs and current abilities of the 

reactors. The second level of abstraction choose the coolant type and fuel vector. Literature 

review proved sufficient. There was no need for a comprehensive analysis like in the first 

level of abstraction. LEU is the required fuel vector, sodium has far more R&D, and 

metallic fuels have clear safety benefits.  

 The third level of abstraction defined the assembly. This level was the most 

difficult to perform. Assembly design is a very complex topic and must be considered with 

the choice of core restraint system, core temperatures, core shuffling systems, core layout, 

and fuel dimensions. Rather than optimizing all of these parameters, it was decided to 

simply adopt a system with proven performance. A literature review selected the EBR-II 

system as the ideal candidate, and the core design was based on that reactor. It was chosen 

primarily for its excellent >30 year operational record, where it achieved high annual 

capacity factors and had no major sodium leaks. The fourth level of abstraction defined 

the core layout. This level was perhaps the first quantitative level, where every design 

variable could be assigned some mathematical value. The fourth level was solved with a 

deterministic scheme that satisfied the design constraints but did not seek an optimal 
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solution. The fifth level of abstraction concerned the irradiation positions. While 

quantitative, a deterministic solution methodology was also used. The utility of the method 

can be understood by considering that the fourth and fifth levels of abstraction define the 

core performance requested in the report. Five levels of abstraction were needed to 

completely satisfy all of the qualitative requirements of the report. These levels also ensure 

that alternatives to the final design are considered at least conceptually and not overlooked. 

Considering design variables best examined at different levels of abstraction (such as 

coolant type and core layout) would needlessly complicate the design process. 

Determining the design variables in a hierarchical sequence allows for greater focus on 

the system behavior while ensuring that all aspects of the design are considered. Design 

variables are combined at the higher levels of abstraction. A concept like safety 

performance is considered in level 2 then translated to the number and type of accidents 

as well as capacity factor and overall risk in level 3. Safety was further considered in level 

4 through power density and pressure drop, becoming progressively quantitative through 

the levels. Ultimately, PRA and deterministic safety analysis would be needed before the 

reactor design could be truly complete. The translation of abstract design parameters like 

safety into concrete design parameters like maximum power density and pressure drop 

was accomplished through literature review. The process, and the detailed consideration 

of different design variables at different levels of abstraction, exemplify the benefits of the 

method.   
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5. ADVANTAGES OF THE METHOD 

 

 The proposed method is superior to the other methods for three reasons which will 

be elaborated on within this section. First, it prioritizes the generation of 

constraints/objectives over the design parameters. Heuristics are provided for the 

decomposition of constraints/objectives, a feature not found in any previous literature 

although it is of paramount importance. Second, the method includes fewer mandatory 

steps per generation. Thirdly, it uses multiple generations to evolve the 

constraints/objectives from the abstract to the concrete.  

 Every method will be proficient for solving some design problems but not 

proficient for others. The goal of this dissertation was to derive an engineering design 

methodology that is tuned for nuclear engineering. Once developed it was observed that 

this method may have benefits outside of nuclear engineering, although this possibility 

remains largely unexplored. Central to this method is the assertion that constraint selection 

is more important in the process than creation of design parameters or optimizing the 

design variables. This assertion stems from experience with nuclear system design and is 

exemplified in the fast materials testing reactor, where only broad objectives and 

constraints are provided. The best scheme to design the fast materials testing reactor is 

one which decomposes the high level constraints and objectives to low level constraints 

and objectives. This feature is utterly absent in the other engineering design methods. 

Traditional top down methods assume that the problem is fully defined. The Spiral model 

is well suited to prototyping, where the entire system is created then progressively altered. 
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The Waterfall model contains elements of decomposition but would have difficulty 

adapting to the needs of alternative nuclear designs. The Vee model decomposes the 

design requirements then constructs the objectives and constraints before solving the 

engineering design problem. While useful many iterations may be needed and the Vee 

model would prove cumbersome between generations. These models, especially the Vee 

model, are quite useful but can include many (potentially redundant) steps. A method was 

desired that consisted of as few steps as possible but that could be repeated until a suitable 

design was achieved. This scheme can be regarded as a generalization of the previously 

mentioned models. The proposed method can be reduced to a single generation and the 

steps from the Waterfall and Vee models incorporated into the generation. This is not 

recommended. Aspects of the steps within the Waterfall and Vee models have been 

incorporated as heuristics to guide the method. Axiomatic Design is analyzed in detail in 

section 7.5 and it did not demonstrate utility in nuclear system design. Robust Design is 

not an engineering design method per se but is a statistical methodology to demonstrate 

the resilience of a system. Certain aspects of Robust Design have been incorporate as 

heuristics.  
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6. CONCLUSIONS 

  

 This dissertation was created in response to three perceived concerns in the field 

of nuclear design. The first concern was the realization that nuclear systems are too 

complex for all design parameters to be considered simultaneously. The second concern 

is the lack of a nuclear system design methodology or a generic engineering design 

methodology that could be adapted for nuclear systems. The third is the deep seated 

intuition that the choice of constraints is essential in engineering design.  Axiomatic 

Design was regarded as the most comprehensive engineering design method but its 

heuristics were found to be of little use to nuclear systems. However, Axiomatic Design 

shows potential for broad systems level analysis. It is impossible to restrict the number of 

design parameters which affect functional requirements, an important precept of 

Axiomatic Design (sections 1.5 and 7.5). Traditional top down engineering design assume 

constraints and guide the choice of design concepts. The same is true of the Waterfall and 

Vee models, which operate over hierarchical levels of abstraction. These methods are all 

insufficient. The traditional top down engineering design scheme and its derivatives are 

robust but provide limited assistance in choosing constraints, the most important aspect of 

design (section 1.4). Evolutionary algorithms are a class of mathematical optimization 

method and have proven themselves useful in solving engineering design problems 

(section 1.3). As currently conceived evolutionary algorithms are unsuitable as an 

engineering design methodology and it was decided to adapt evolutionary algorithms for 

this purpose. A general description of the characteristics of nuclear reactor design is 
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provided followed by a description of the method with examples (section 2). The proposed 

methodology went through several phases before arriving at the form presented in section 

2. The first phase used evolutionary algorithms but modified the constraints and objectives 

at each generation. This was called the progressive generation of constraints. Heuristics 

which guided the creation of new constraints where then developed. The development of 

these heuristics lead to the levels of abstraction concept where appropriate design 

parameters evolve out of the translation of abstract concepts to more concrete objectives 

and constraints. The meta-heuristics of Axiomatic Design are simple but powerful; equally 

powerful heuristics were developed for the levels of abstraction. Two heuristics are 

regarded as of the utmost importance. The first heuristic for the levels of abstraction is to 

conceptualize the design process, best understood through nested system hierarchies. The 

second heuristic is to solve the levels in order of decreasing abstraction. Throughout 

section 3 additional heuristics are provided on conceptualizing the systems, identifying 

constraints, picking the best solution method, ensuring nuclear safety, and general best 

nuclear design practices. This methodology, described in section 2 and further developed 

in section 3, was used to study a fast spectrum materials testing reactor. The method is 

agnostic as to the reactor and solution methodology, a characteristic aptly demonstrated 

by the complete omission of analysis of the fast spectrum reactor (section 4). This example 

was used to analyze Axiomatic Design. The appendix (section 7) contains important 

information that supports or clarifies content located in the main body. Historical 

precedent for the levels of abstraction is provided in section 7.1. The literature review and 

discussion of sodium fires demonstrates how to perform an engineering literature review 
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and how to draw safety conscience conclusions for first-of-a-kind facilities. Robust Design 

(section 7.4) is incorporated into the safety heuristics in section 3.6. A brief primer on 

PIRT (section 7.6) provides principles incorporated into the heuristics.  

 The method begins at the highest possible level of abstraction, the overall purpose 

of the reactor. Some combination of three options are available: electricity, process heat, 

or neutrons for research. The engineer selects the quantity and quality of electricity, heat, 

or neutrons then moves to the second level of abstraction. The other levels are not specified 

and the engineer has enormous freedom in selecting the levels although sections 2.2 and 

2.3 provide potential outlines which should be applicable for the majority of systems. The 

current level gives concreteness to the preceding levels objectives and constraints while 

referencing the chosen design parameters of the preceding level. New objective and 

constraints are added to more precisely define the preceding objectives and constraints. 

The new design parameters are also chosen to expand on the preceding design parameters. 

This process may be understood as the decomposition of nested system hierarchies 

(section 2). Constraints may be defined through consideration of system inputs, outputs, 

environments, and functions. Purpose is regarded as a combination of objectives and 

constraints. Constraints should be stated as simply as possible. While the extent level 

should be minimized, it is possible to create very large levels and then subdivide them if 

they prove too difficult to solve. The unstated goal of this dissertation was to find a general 

engineering design framework or philosophy taking a form similar to Axiomatic Design. 

This is likely impossible. The method outlined in this dissertation requires extensive 

understanding of the system behavior although it is hoped that sufficient heuristics have 
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been provided to encourage the engineer to discover the constraints of his system. Advice 

for general nuclear system design is the most underdeveloped portion of this dissertation 

and could be the subject of future work.   
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APPENDIX 

This section contains the literature review for some of the heuristics and a 

historical example of nuclear system design. This literature review provides the 

background and proof for the heuristics given in the main dissertation. The historical 

example outlines how the levels of abstraction were implicit in the decisions made by the 

engineers. The safety heuristics are generally applicable to all reactor types while specific 

heuristics are given for sodium fires in SFRs. Reliability oriented engineering design 

schemes are compared with Robust Design. The utility of Axiomatic Design is explored 

first with respect to a fast spectrum MTR (presented in Chapter 4) and then with respect 

to PWRs and BWRs. Axiomatic Design appears useful for nuclear system design but not 

for core design.  

A.1 The Development of BWR Pressure Suppression Containment 

The proposed method is outlined here in a historical example of nuclear system 

design. There are four actors in this story: Pacific Gas and Electric (PG & E)  which will 

own the reactor being designed and has most of the financial responsibility, General 

Electric (GE) which developed the BWR and will be providing design work and fuel, 

Bechtel which is the construction contractor, and Atomic Energy Commission (AEC) 

which is responsible for licensing the reactor. Design work commenced in 1958 and the 

final design was approved by the AEC in 1960. All the constraints of the design were not 

known at the outset of the problem but emerged in conversations between the various 

entities. The design can be interpreted as occurring at the same level of abstraction or at 
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different levels. The engineers took a limited approach and planned for multiple stages of 

design and generated concepts which were attacked by the other entities who added 

different constraints to the design. If these constraints could have been known from the 

outset then the design could have proceeded more smoothly. However, the multiple levels 

and multiple stakeholders ensured that all of the constraints were implemented. Basic 

physics about steam in large pools of water was not known at the outset so essential 

physics phenomenon would have to be investigated before any design work could be 

finalized. As the licensing body, the AEC was ultimately responsible for the final design 

decisions.  

A containment is a large structure that surrounds a nuclear reactor vessel and is 

designed to prevent the release of radionuclides in the event of an accident. In the event 

of a break in the primary system of a LWR, large volumes of steam and water would be 

released pressurizing the containment. For this reason, the PWR uses a large steel lined 

reinforced concrete building to accommodate pressure spikes by providing enough air 

volume for the steam to expand without breaching the containment. The thickness of the 

wall is determined by the size of the break (which is determined by regulations) and the 

total volume of the containment. A thicker but smaller containment proved more 

expensive than a thinner but larger containment. PG & E and GE were interested in 

reducing the capital cost of a BWR for their proposed 50 MWe Humboldt Bay reactor, 

just north of San Francisco. In an informal meeting between a GE executive and a PG & 

E executive, the GE executive informed the PG & E executive about the pressure 

suppression concept which reduces the size of a BWR containment without increasing its 
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thickness. PG & E were very excited about this concept as they were largely responsible 

for financing the reactor. Pressure suppression works by condensing steam into a large 

pool of cool water which absorbs the high pressure steam, heating slightly in the process. 

This reduces the pressure spike upon a break in the primary piping, enabling a smaller 

containment volume. A smaller containment volume results in considerable cost savings 

despite the need to build large water tanks. If located around the reactor, this water could 

be used as shielding saving money on concrete. Fission products are likely to be stored in 

the water in the event of an accident. This water also provides a convenient source for 

flooding the core in case of an accident. A smaller containment would enable the core to 

be built below ground, making it look more like a conventional power plant and potentially 

easing the public’s concerns with nuclear power. While all of these attributes encouraged 

the development of the pressure suppression concept, PG & E focused mainly on the 

reduction in capital cost. PG & E had decided to contract with Bechtel to design the reactor 

and their inputs would become important in this story.  

PG & E requested that GE submit a proposal outlining the development of the 

pressure suppression containment. The proposal sought to determine the maximum 

credible accident, appropriate design to ensure that the steam was injected and condensed 

in the pool, the degree to which the pool trapped fission products, and the use of the pool 

as a source of emergency water. GE broke up the research into three phases each lasting 

several months. At the end of each phase, progress would be evaluated and a decision 

made about proceeding to the next. This proposal was sent back to PG & E which approved 

it and added additional concerns relating to the cost savings, AEC final approval, ease of 
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construction, and plausibility of the design scheme itself. Bechtel, which had already been 

informed about the pressure suppression containment, critiqued the proposed GE designs 

that were included in their R&D proposal. Bechtel contended that the designs did not 

consider refueling nor the placement of control rods. Bechtel also felt that GE’s designs 

would be difficult to construct and might be vulnerable to overturning in the event of an 

earthquake. PG & E had developed their own designs and Bechtel critiqued theirs as well, 

noting that their design used a great deal of concrete and would be difficult to refuel. 

Bechtel also provided a cost estimate much higher than PG & E had originally predicted 

and recommended their own design. After the various rounds of meetings between all the 

participants, all participants agreed to adopt Bechtel’s concept and proceed with Phase 1 

of GE’s proposed R&D scheme. At this stage, the pressure suppression pool would be 

completely separate from the reactor building but connected by a series of high pressure 

concrete conduits for steam to flow in. The containment had an odd shape being in two 

connected pieces to enclose the pool and reactor.  

The first stage of GE’s research included a basic demonstration of the idea with 

both experiments and simulations. Steam was injected into a large pool of water through 

a box with many holes. The holes broke up the steam and encouraged bubble formation. 

At some point, the engineers placed a 1.5 inch diameter pipe in the pool and injected a 

steam jet directly into the pool. The large diameter jet and the sparge box with small holes 

performed equally well. The large diameter pipe was much simpler to implement and has 

less risk of being clogged so the sparge box with many small holes was quickly abandoned. 

The steam jet did not form large bubbles but was completely condensed within one pipe 
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diameter of the pipe exit. The pipe exit must be located 10 pipe diameters below the water 

surface otherwise air would be sucked into the exit pipe as condensation in a pool creates 

a partial vacuum. The pool was noted to be well mixed at high flow rates but would stratify 

at low flow rates. In parallel to experimental research, a simple transient analysis was 

programmed to predict the peak pressure rise in containment. Blast effects were also 

conservatively estimated. Upon review of this research, PG & E decided to proceed with 

Phase 2. Phase 2 began with an estimation of the maximum credible accident the system 

should be designed against. Brittle failure of the vessel was ruled out because the reactor 

operated above the critical failure temperature. Ultimately, a break in the largest pipe 

leaving the reactor pressure vessel was deemed to be the design basis accident (to use a 

modern parlance). GE constructed a transient test facility at their plant in San Jose CA. 

The reactor design only existed in the most general form so the engineers responsible for 

the design of the transient test facility had to guess at its design. The transient facility data 

matched the simulation results and both showed that the pool could heat up to 120 °F 

without any safety consequence.  

GE generated a report about the research conducted during Phase 2 and sent it to 

PG & E and Bechtel. With the dissemination of the test data from Phase 2, engineers at 

GE and PG & E began the design of the containment in Phase 3. Although GE was 

responsible for the final design, managers at PG & E liked to anticipate the needs of the 

contractors. While there had been interest within PG & E in building the entire reactor 

below ground, some engineers within the company expressed problems with the idea. 

While earth is a useful structural material, building the entire structure underground 
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increases the cost of construction with a minor increase in safety obviating any cost 

savings by the use of the pressure suppression concept. The final containment design was 

proposed by Bechtel, which generated nine design concepts and sent them to PG & E for 

approval. PG & E ultimately decided on a reactor system using pressure suppression and 

a concentric pool around the reactor. The operating floor would be at grade level meaning 

the reactor is below ground and the building is above ground. The reactor building was of 

a conventional design, was 1 foot thick, and was gas tight. This design had the added 

benefit of being quickly and reasonably cheaply reconfigurable for a conventional 

containment in the event the AEC did not approve the pressure suppression concept. GE 

also approved of the design concept and all three companies approached the AEC for final 

approval of the concept. The AEC did not feel that the Phase 2 experiments were 

comprehensive enough to ensure the safe operation of the pressure suppression concept. 

PG & E conducted a 1/48 scale test to demonstrate the steady state and transient behavior 

of the proposed reactor. A 1/48 scale reactor vessel, 1/48 scale dry well, one full size vent 

pipe, and a full size segment of the suppression chamber and pool were built and subjected 

to accident conditions. Steam was generated at the design pressure of the vessel (1250 

psig) and injected into the dry well. Peak pressure in the suppression chamber was well 

predicted, but the peak pressure in the dry well was significantly less than predicted. This 

was due to very conservative assumptions about the orifice coefficient for a steam water 

mixture. The proposed design had quite large tolerances compared to its design 

specifications. Pool temperatures 60 °F higher than design specifications would not affect 

the peak pressures in the system. The break flow area could be twice that of the design 
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accident and the vent tubes could accommodate mass flow rates three times their design 

specifications without exceeding the design pressure. After these test, the AEC approved 

the pressure suppression concept for the Humboldt Bay reactor which was used on all 

other GE BWRs. The Mark I BWR containment with the familiar toroidal shaped pressure 

was first proposed by a draftsmen after the Humboldt reactor was developed. As a result, 

the Humboldt Bay reactor used a concentric pool but BWRs built afterwards used the 

doughnut and upside down light bulb containment. Later versions of the BWR changed 

the containment to resemble something closer to the Humboldt Bay reactor.  

The original concept of a pressure suppression containment proved successful 

aside from use of jet pipes instead of sparger boxes. The containment configuration 

fluctuated wildly in the design process. The initial designs submerged the vessel in the 

pool and did not have a conventional reactor building. With the input of Bechtel, the design 

changed to a more conventional reactor building with jet pipes leading to a pool separated 

from the foundations of the reactor building. The next iteration located the suppression 

pool inside the reactor building in a concentric pool around the vessel, while the final 

Humboldt Bay reactor configuration located the suppression pool to a concentric chamber 

below the vessel. The shaped of the suppression pool was changed to a torus for later BWR 

designs, then modified to a different shaped for later generations of BWR. Such dramatic 

changes in design are perhaps reasonable given a first of a kind design. These changes did 

not hamper the construction process so did not result in a substantial loss of income. The 

initial concept, the vessel in the pool, was discarded because it would have complicated 

the placement of control rods, refueling, and operations. The separate pool away from the 
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reactor building would have caused differential settling between the pool and the reactor 

although this configuration offered the most protection against projectiles. The design 

constraints for the containment can be stated as follows: regulatory minimum peak and 

steady state pressures resulting from the design basis accident in the containment; easy 

refueling; easy access to the reactor; easy construction; protection of the reactor in case of 

an accident while refueling; no differential settling of the foundations; adequate missile 

protection; adequate shielding. These constraints were not stated from the outset despite 

experience with nuclear systems on the part of all concerned. Bechtel was the source for 

some of the essential constraints befitting their experience with reactor designs both 

commercial and naval.  

The design of the containment could be a single level of abstraction where the 

aforementioned constraints and the scientific data would be considered together. The 

engineers in some ways adopted this viewpoint, drafting full preliminary sketches of the 

containment even with partial information. These sketches furthered the development and 

discussion although they could be considered levels of abstraction. The back and forth 

between the various participants is essential in the design process and could have not been 

approved. The tight coupling between the constraints means that containment design 

should occur at a single level of abstraction. The three R&D phases can be understood as 

levels of abstraction. The first level established the basic scientific principles. Using the 

principles, a preliminary containment design was developed and a test facility built to 

study transient behavior. Phase three finalized the design concept and proposed a design 



to the AEC. As an addendum to phase three, a 1/8 scale facility was built to verify correct 

system behavior.  

A.2 Safety Heuristics 

The recommendations of the ASME Presidential Task Force listed in “Forging a 

New Nuclear Safety Construct” are incorporated as heuristics. Firstly, beyond design basis 

accidents must be considered. Secondly, PRA of all accident scenarios is recommended 

but must consider the difficulty of predicting the likelihood of severe natural phenomena. 

The consequences of a nuclear disaster can be extreme. Whether or not Japan should have 

shut down all operating nuclear reactors after the Fukushima NPP accident is beside the 

point; they have done so and nuclear engineers must take note. The societal consequences 

of a nuclear disaster can be far greater than originally foreseen. Traditional estimates for 

nuclear safety focus on latent cancer risk to the population. While this is good, nuclear 

accidents do far more damage to society beyond cancer deaths. In addition, an event which 

was deemed beyond the design basis has occurred. The total number of reactor years of 

operation is ~16,000 at time of writing. Three loss of offsite power accidents with a 

common initiating event occurred with a frequency of 2E-4 per reactor year (3 events in 

16000 years), a likelihood far in excess of what was expected.  

Thirdly, the reliability of nuclear power as a non-greenhouse gas emitting 

technology appears to be its strongest attribute. For this reason, any plant design must have 

a high capacity factor. Design criteria are extensive and currently being rewritten to 

accommodate advanced reactors, especially non-LWRs. When written, such criteria 
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should be used to guide the design process (fourth heuristic). Criteria from other nations 

or the IAEA can be used. A common theme among the various design criteria is an 

emphasis on loss of offsite power (fifth heuristic). Changes to the design criteria can be 

quite extensive. The traditional five layers of defense in depth can be satisfied in different 

ways. The SFR fulfills them in the normal order (fuel, cladding, coolant, vessel, 

containment) while the VHTR fulfills them with fuel, fission product barrier, graphite 

matrix, coolant, and vessel. The reactor building does not protect against fission product 

release. The regulatory framework differs from country to country. However, the safety 

design analysis would appear to be the same for all countries and systems. Sixthly, safety 

analysis must begin at the conceptual stage. Ideally it would use the same code packages 

as licensing, but simplifications are allowed. It must be conservative and should analyze 

the most limiting cases.  

Forging a New Nuclear Safety Construct, ASME 2012. 

Nuclear safety must include the enormous societal costs of nuclear accidents in 

addition to traditional metrics of societal risk i.e. latent cancer risk. Extremely low 

probability events previously ignored or only given cursory examination must be 

analyzed. This would entail a complete loss of offsite power as in the Fukushima accident. 

It is noted that an accident previously thought of as beyond the design basis happened in 

Fukushima Dai-Ichi. The ability to estimate the probability of such an occurrence is called 

into question. This underlies the focus on beyond design basis accidents and their inclusion 

into considered accident scenarios. The traditional tools and methods associated with 
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nuclear power are not challenged. It is suggested that the metric used to judge the safety 

of nuclear energy in the past (core damage frequency of less than 1E-5 per reactor year) 

is insufficient in light of the extremely adverse effects of the accident on the Japanese 

people and the inability of the Japanese authorities to predict the tsunami. Deficiencies in 

human performance and accident management are noted in the Fukushima accident. The 

document also traces the history of the ASME boiler code and safety analyses of nuclear 

reactors. Emphasis is placed on current US regulations and what needs to be altered. 

Regulations concerning the Emergency Planning Zone were based on WASH-1400 and 

are noted as being unduly conservative; it is suggested that they be updated. The scientific 

problems associated with the nonlinear threshold of radiation effects are noted. The ASME 

task force foresees a time when this model is no longer used to estimate radiation risk but 

does not recommend that a different model be used at the present time. Better crisis 

communication and community outreach are recommended. While a new safety construct 

is proposed, it is possible that the US response to the 9/11 attacks is sufficient to meet it. 

Responsibility for plant safety rests on the owners and operators; the limitations of 

regulatory agencies are noted [The ASME, 2012].  

Safety of Nuclear Power Plants: Design Specific Safety Requirements No. SSR-2/1 

(Rev. 1) IAEA 2016. 

The requirements of nuclear safety in the design of a nuclear system are 

summarized in this document. Other documents in this set pertain to the overall safety 

philosophy, nuclear security, safety of fuel cycle plants, etc. This document is a 
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comprehensive overview of the requirements of nuclear safety touching on all major 

aspects at multiple levels of the design space. The requirements begin with the most 

general and gradually becomes more specific. Although this document is intended for 

LWRs only, it can be modified to other systems. The requirements do not differ 

substantially from those found in 10 CFR 50 Appendix A except for an emphasis placed 

on loss of offsite power accidents. Several requirements are given for the emergency 

power supply [Safety, 2016].   

10 CFR 50 Appendix A 

General Design Criteria are provided from which the designers and operators of a 

proposed nuclear facility must develop principal design criteria in their application for a 

construction permit or operating license to the USNRC. Simply stated, the general design 

criteria provide a minimum basis for safety considerations for commercial nuclear power 

plants. As acknowledged within the document, they are based on experience with LWRs 

and have limited applicability beyond them. For that reason, the USNRC and USDOE are 

writing modifications to the general design criteria for non-LWR systems. The general 

design criteria are grouped into six classes. There are five overall requirements in 

Appendix A: quality assurance of all components of the systems, the establishment of 

appropriate design bases for natural phenomena, assuring adequate fire protection, the 

establishment of appropriate design bases for internal accidents, and the prohibition of 

multiple nuclear reactors sharing safety systems. The defense in depth strategy relating to 

multiple fission product barriers is explicitly stated in the document. Redundancy is called 
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for in numerous criteria, especially in the emergency core cooling, residual heat removal, 

and reactivity control criteria [10 CFR 50 Appendix A].  

Advanced Reactor Design Criteria (ARDC) Development Process, USDOE 2015. 

Presentation at public meeting January 21, 2015.  

In 2012, both the USNRC and USDOE released studies on the prospects and needs 

of advanced reactors. Both noted the need for a regulatory framework for advanced 

reactors. Towards that end, the USNRC and USDOE agreed to work together in the 

development of the new design criteria specific to advanced reactors. The DOE would 

generate a report and send it to the NRC, which would then use that report to generate new 

NRC guidelines. The DOE study began with a literature review of previous AEC and NRC 

safety analyses, national laboratory reports, ANS guidelines, etc. The literature review 

focused on the SFR, FHR, and HTGR. The DOE requested insight from various 

companies involved in advanced reactors and UC-Berkeley. The general design criteria in 

10 CFR 50 Appendix A were classified into four categories: those that are generic and 

applicable to advanced reactors, those that need minor modification to be applicable to 

advanced reactors, those that need to be rewritten to be applicable to advanced reactors, 

and those that are not applicable. The study also specified new design criteria for advanced 

reactors based on stakeholder input. ANS 54.1 is specifically mentioned as being valuable 

in the creation of new design criteria. The remainder of the presentation discusses the 

meetings, methods, input, considerations, and example criteria [Advanced, 2015].  
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Guidance for Developing Principal Design Criteria for Advanced (Non-Light Water) 

Reactors, USDOE 2014.  

This report gives recommended design criteria for advanced reactors stemming 

from a joint USDOE and USNRC project. The USNRC uses the recommendations as a 

starting point for the development of design criteria which will be included in the 

regulations. Different sets of design criteria were developed. The first set is general to all 

advanced reactor types, while the other two sets are relevant to the SFR and HTGR types, 

respectively. The SFR and HTGR design criteria were developed first, and the general 

design criteria where developed from them. The SFR and HTGR were chosen because of 

the diversity in their design basis accidents, how the design basis accidents were mitigated, 

and the volume of literature available. Input from the other four types was included as the 

general advanced reactor design criteria were developed. As the proposed design criteria 

are based off of those in 10 CFR 50 Appendix A, they follow the same numbering and 

organization as the original design criteria. Criteria relating to redundancy of electrical 

equipment were altered as advanced reactors make use of passive systems for decay heat 

removal. The same heat removal system is used during shutdown and in emergencies in 

many types of advanced reactor, necessitating a change to the criteria. Criteria relating to 

containment were also changed as the HTGR does not rely on a containment as the final 

fission product barrier. The need for containment isolation is also reduced, as it is possible 

to design a system where such systems could compromise the severe accident response.  
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The SFR required five additional criteria. The intermediate loop must be 

chemically compatible with the primary loop and radioactive material must not leak into 

the intermediate. Sodium purity must be maintained. Sodium must not be allowed to 

freeze, which is possible in extended shutdown and in small sampling lines. Sodium-air 

chemical reactions must be mitigated by leak detection and through dedicated safety 

systems. Sodium-water reactions are more energetic than air interactions, and must be 

mitigated by adequate design, leak detection, and dedicated safety systems. In contrast to 

LWRs and SFRs, the HTGR safety regulations do not reference fuel limits. A holistic 

requirement, the core radioactive release design limit is used instead. This defines an 

acceptable offsite and onsite release that the multiple fission product barriers act in concert 

to achieve. Three new criteria were added. The first mandates that the design of the reactor 

vessel and system ensures the timely insertion of neutron absorbers and the integrity of 

the passive safety system. The second ensures that the reactor building maintains the 

passive heat removal systems and allow for the release of pressure in case of a break in 

the primary coolant loop. Primary coolant is not needed for severe accident mitigation not 

is a reactor containment. Thirdly, the reactor building must be designed to be periodically 

inspected and surveilled [Guidance, 2014]. 

NRC Vision and Strategy: Safely Achieving Effective and Efficient Non-Light Water 

Reactor Mission Readiness, USNRC 2016.  

While the NRC states that it is capable of licensing a non-LWR with current 

regulations and licensing frameworks, it acknowledges that significant inefficiencies 
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would result as the existing LWR based regulatory framework would have to be modified 

during the licensing process. This would cause the license to take longer and be more 

expensive than it otherwise would be. Towards that end, the NRC is implementing a 

scheme to efficiently handle non-LWRs. Part of this project is to develop or modify design 

criteria to handle advanced reactors. The NRC recognizes that it needs additional technical 

knowledge, skills, and tools to efficiently handle non-LWRs. The NRC also recognizes 

that it needs to clearly communicate its requirements and expectation to the potential 

licensee. The NRC will also need to review how it allocates its resources when licensing 

a non-LWR. The NRC divides its strategies into near-term (0-5 years), mid-term (5-10 

years), and long-term (>10 years) sections. In the near-term, the NRC will focus on its 

knowledge base, skills, codes/tools, and standards. It will devise a communication scheme 

for stakeholders and create a flexible regulatory review process for non-LWRs. In the mid-

term, it will continue and finalize the activities of the near-term. The NRC may decide to 

create a new non-LWR regulatory framework; this would be implemented after 

information is gathered and analyzed in the near-term. This new framework would be 

implemented in the long-term if needed [NRC, 2016].  

An Overview of Differences in Nuclear Safety Regulatory Approaches and 

Requirements Between United States and Other Countries, USNRC 2004. 

The regulatory agencies of other countries resemble those of the US due to the 

early leadership of the US in the development and exporting of nuclear technology. As 

this document was written in 2004, some of the observations in the document may no 
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longer be relevant. Towards that end, the findings must be judged according to whether or 

not they might still be pertinent. Perhaps the greatest difference between the US and other 

countries is the requirement of periodic safety reviews. Every country listed in the 

document except Canada and the US had safety reviews every 10 years. Canada has 

license renewals every 2-5 years which accomplish a similar purpose. The depth and 

breadth of these safety reviews is different between the counties. Japan’s are of a limited 

scope mainly concerned with plant aging while Switzerland requires comprehensive safety 

reviews with an emphasis on the state-of-the-art in science and technology. Most countries 

in the world do not have fixed term licenses, instead relying on the periodic safety reviews 

to ensure continuing safety in the face of an aging plant. Canada has 2-5 year license 

extensions, Spain has 5-10 year extensions, Finland has 10-20, and Mexico has 30 years 

license extensions. The others are technically infinite with approval of the safety reviews. 

Much discussion pertains to the use of PRA in safety analyses. It is mentioned that PRA 

is incorporated in the US more so than in other countries, but given the amount of time 

since writing this may no longer be true. Similarly, severe accident responses and 

modeling techniques are discussed at length but are not mentioned here because of the 

time elapsed since publication [Nourbakhsh, 2004].  

A comparison of US and Japanese regulatory requirements in effect at the time of 

the Fukushima accident, USNRC 2013.  

The Japanese nuclear regulatory system has been greatly modified after the 

Fukushima accident, so the critiques mentioned in this document may no longer be 
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applicable. This fact is mentioned within the document. That being said, the Japanese 

regulatory agencies did not consider natural phenomena when devising severe accident 

management techniques. Delayed containment venting was also practiced in Japan in 

contrast to the US. This technique does not vent containment until it reaches the design 

pressure. Hydrogen leaked out of the primary containment, allowing hydrogen to build up 

in the reactor building where it exploded. After 9/11, the US adopted Extensive Damage 

Mitigation Guidelines, which improved the severe accident mitigation strategies in the 

US. These had not been adopted in Japan. The Japanese regulators did not consider beyond 

design basis accidents such as station blackouts, anticipated transient without SCRAM, 

nor terrorist attacks. No regulatory guidelines existed for tsunamis and design basis floods. 

Japanese regulators has great faith in the safety of their plants, believing that severe 

accidents were so unlikely as to be unforeseeable. The document cautions against any 

feelings of superiority on the part of the NRC, as it states that US regulations may not have 

been sufficient to prevent the accident if they been in place. It is mentioned that the NRC 

did issue new regulations in light of the Fukushima accident [A comparison, 2013].  

A Comparison of International Regulatory Organizations and Licensing Procedures 

for New Nuclear Power Plant, EPRG University of Cambridge 2007.  

Nuclear power plant safety regulation and licensing are examined in Canada, US, 

UK, France, Germany, Switzerland, and Japan. All steps of the licensing process are 

discussed including site selection, design approval, construction oversight, etc. The 

conclusions are briefly summarized here. In contrast to the IAEA, the authors propose that 
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final decisions made by a nuclear regulatory agency be subject to elected governments to 

increase democratic feedback in the process. It is believed this will ameliorate the concerns 

of environmentalists. They recommend reducing the number of laws which nuclear 

operators must comply with. A single nuclear regulator for the EU is proposed. It is also 

recommended that the licensing process be split up into three different steps with licenses 

for each: design, siting, and construction/commissioning/operation. Time limited licenses 

with a renewal period of 10 years are recommended, partly to ensure public participation. 

While recommendations about the regulatory framework are not strictly relevant to the 

dissertation, the emphasis on public participation suggests a concern about severe 

accidents which parallels commentary from other literature. It is important to note that this 

was published before Fukushima [Bredimas, 2007].  

Comparison of Canadian NPP Design Requirements with those of Foreign 

Regulators, CNSC 2011. 

The Canadian Nuclear Safety Commission compares the regulations in RD-337 

and RD-310, Design of New Nuclear Power Plants and Safety Analysis for Nuclear Power 

Plants, to similar regulations in the US, Finland, UK, France, and Western European 

Nuclear Regulator’s Association to identify areas where the Canadian regulations need 

further elaboration. It should be noted that the pertinent Canadian regulations only concern 

new LWRs, not non-LWR advanced reactors.  This review will focus on the comparison 

to US regulations and the overall conclusions of the investigation. Many regulatory 

differences are noted; only those of significance are mentioned. Commonly, the same 
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overall regulatory objective is meet with different regulatory measures, causing no 

substantial discrepancy. The dose limit in the US is an annual dose of 0.05 mSv per reactor 

during normal operations and expected occurrences, in contrast to 0.5 mSv used for 

anticipated occurrences in Canadian plants. The document then states that the 25 rem (250 

mSv) dose limit for 2 hours at the site boundary during a postulated fission product release 

is used when examining severe accidents, not the 0.05 mSv limit. The Canadians allege 

that the NRC is not completely following regulations. Without reading the NRC licensing 

applications, it can be difficult to judge whether the NRC is incorrectly using the 25 rem 

rule. It should be noted that the 0.05 mSv limit isn’t relevant to severe accidents, and the 

25 rem rule was used to establish the exclusion zone in the event of a large release of 

radioactivity, almost certainly in the event of a severe accident. On this basis alone, it 

would appear that the NRC is correctly using the regulations by forcing licensees to 

demonstrate that severe accident release does not jeopardize the underlying rational 

behind the exclusion zone and that the Canadian regulations for dose limits during 

anticipated occurrences are higher than the US regulations. The core damage frequencies 

for the US reactors at 1E-4 per reactor-year whereas the Canadian limit is 1E-5 per reactor 

year. However, the concept of large early release is used in the US which has no direct 

analog in Canada. The large early release frequency in the US is less than 1E-6 per reactor 

year. The Canadian regulations do include a limit on the frequency of large releases of 

131I, as well as a requirement that “containments allow sufficient time for implementation 

of off-site emergency barriers.” It is also noted that the Canadian regulations do not 

explicitly mention station blackouts as a potential severe accident. 100% of the water and 
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metal are assumed to chemically react when designing the hydrogen mitigation systems 

in US plants.  

The Canadians point out that their regulations are more technology neutral than 

others which would explain the less specific requirements for system behavior. The 

document lists the main safety features of new reactors as: a focus on severe accidents 

especially in regard to the design basis, more passive systems, increased reliability, less 

reliance on operator actions, minimization of waste, ease of decommissioning, and 

reduction of worker doses. The Canadians state that the regulatory practices of other 

countries come close to mandating certain design choices, which could favor certain 

design choices over others. The Canadians did not examine how the other regulatory 

agencies analyzed license applications or applied their respective criteria, a fact noted as 

severely limiting any conclusions. That being said, the different dose limits are given as a 

potential discrepancy. Severe accident behavior of new nuclear designs is commonly 

analyzed with respect to offsite dose limits in PRA. In the judgment of the author, the 

advanced reactor designer must have either design specific deterministic criteria or design 

general PRA criteria with plenty of details concerning the proper use of PRA 

[Comparison, 2011].  

The French Connection: Comparing French and American Civilian Nuclear Energy 

Programs, Stanford Journal of International Relations 2010. 

The authors of this document, released before Fukushima and the drop in natural 

gas and petroleum prices, propose that the US adopt some of the nuclear policies of France. 
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The French regulatory system is regarded as simpler with no input for public opinion. This 

allows projects to move faster, reducing the cost of nuclear power. There is only one 

utility, one reactor supplier, and one turbine-generator supplier in France which also 

speeds up regulatory action. Since the French nuclear system is supported by the 

government, it can actively promote and force the growth of nuclear power. The US 

government does not have a similar role. Mentions of nuclear safety in the pre-Fukushima 

era must be recalibrated, as well as mentions of cost effectiveness against currently lower 

natural gas, petroleum, wind, and solar prices. The incident at Davis-Besse in 2002 is 

mentioned as a critique of the NRC, but the flood at the Blayais nuclear power plant is not 

mentioned. The authors recommend that the US government should begin promoting 

nuclear power to the public and subsidizing it including some form of carbon cap-and-

trade. The changes to the NRC licensing requirement are approved of, but the authors 

suggest that the NRC should designate just four reactor designs as templates to speed up 

regulatory oversite. Severe accident behavior, assumed safe before March 2011, must be 

given greater emphasis than suggested in this document. Limitations on the number of 

potential reactor designs would not be possible as it would unnecessarily restrict nuclear 

innovation. Given the proposed NRC changes mentioned elsewhere in this dissertation, 

artificial restrictions on nuclear concepts would appear unnecessary [Sastry, 2010].  

NUCLEAR SAFETY: Countries' Regulatory Bodies Have Made Changes in 

Response to the Fukushima Daiichi Accident, USGAO 2014. 
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The US Government Accountability Office reviewed the nuclear regulatory bodies 

of 16 nations (including the US) to examine changes made by regulatory bodies since the 

Fukushima accident and study the extent to which automated systems might relay data 

about plant conditions during an accident. The USGAO ultimately recommended that the 

US enhance its system and that the IAEA play a larger role in advising the NRC. Stress 

tests with a special emphasis on flooding were performed in many nations after the 

accident revealing deficiencies in existing systems. Sweden is considering changing its 

exclusion zone policy. Regulators are reexamining their accident response strategies when 

multiple reactors at the same site suffer severe core damage. Regulators are also 

considering more beyond design basis accidents. Regulators have required larger amounts 

and more diverse emergency equipment to be stored on site. Hydrogen mitigation 

strategies were examined in the majority of countries; some countries made regulatory 

changes. Filtered venting, necessary to minimize radioactive releases to the environment 

while reducing containment pressure, was also examined by the regulatory agencies. Japan 

restructured its regulatory agencies after the USNRC. The Emergency Response Data 

System (ERDS) was developed in response to Three Mile Island II and collects plant data 

during accidents. Officials at the NRC regional offices can then take the appropriate 

accident mitigation strategy. When the document was written, the system could not 

operate during a loss of offsite power accident. A minority of other countries had such a 

system, as some of the countries without such a system were considering one [Nuclear, 

2014].  
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Deterministic Safety Analysis for Nuclear Power Plant Specific Safety Guide No. 

SSG-2, IAEA 2009. 

Deterministic safety analyses are used in the nuclear industry to certify regulatory 

safety requirements. Analyses fall into two general classes, conservative and best estimate. 

Best estimate with uncertainty analysis is the preferred method, wherein the most realistic 

prediction of the plant’s behavior is made with a thorough study of the code’s uncertainty, 

uncertainty of the inputs, and uncertainty of the availability of the plant’s systems. The 

single failure criterion is often used in both conservative and best estimate analysis. 

Conservative analyses were conducted in the past due in part to a deficiency of thermal 

hydraulic behavior and the limitations of computers. Conservative analyses often make 

erroneous predictions and can lead operators to make poor decisions during an actual 

accident. If plant response is close to the safety limits, then conservative analysis can 

predict breaching of safety limits while in fact the plant would be safe. Conservative 

analyses for a few bounding cases are recommended for safety analysis during design. 

These will be supplemented with best estimate analyses for the development of emergency 

procedures, safety analysis reports, licensing requirements, plant modifications, etc. 

[Deterministic, 2009].  

Accident Analysis for Nuclear Power Plants Safety Report Series No. 23, IAEA 2002. 

While all aspects of accident analysis are covered, only those relating to design are 

summarized here. The same computer codes used in licensing are recommended for safety 

analysis at the design stage. Conservative assumptions about plant response and initial 
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conditions are used. The plant will not be fully characterized, so realistic estimates for 

plant behavior are used. Later, those estimates become the requirements of the plant 

systems. Significant safety margins should be implemented early in the design as safety 

margins tend to decrease as the design progresses. Constraints imposed by cost, research 

and development results, operating experience, and model refinement can erode safety 

margins. The most damaging incidents are analyzed at the design level [Accident, 2002].  

Nuclear Power in the UK, National Audit Office 2016. 

The government of the UK foresees a tremendous building program of power 

plants as coal plants are phased out in favor of low greenhouse gas emitting generating 

stations. Electricity consumption in the UK is expected to increase due to population 

growth, economic growth, and the use of electricity for transport and public heating. The 

levelized cost of wind and solar is greater than or comparable to that of nuclear currently, 

but is predicted to be lower than the cost of nuclear power by 2025. Despite this, the 

intermittent nature of those energy sources is considered a liability and nuclear plants are 

desired to combat this issue. The UK government is encouraging private investment in 

nuclear power by ensuring a set price for electricity. The intermittent nature of wind and 

solar provide a niche nuclear power must fill. Any new nuclear design must ensure the 

reliability of the plant [Comptroller, 2016].  



A.3 Sodium fires in SFRs 

Firstly, sodium fires in sodium fast reactors are likely to occur at least once in the 

plant’s lifetime and should be regarded as an anticipated operational occurrence. 

Secondly, sodium leaks are a threat to the operations of the plant and to the personnel, but 

do not threaten primary system integrity. Thirdly, literature recommends various steam 

generator configurations but the absence of a problem free system in historical fast 

reactors prevents any guarantees about their performance. It is noted that EBR-II did not 

have any significant sodium leaks. It is difficult to derive any meaningful conclusion from 

this fact as other small reactors did not have any significant sodium leaks while all large 

reactors did have extensive leaks. The steam generator is particularly prone to fires. The 

large difference in pressure on either side of the tubes, the corrosive nature of water at 

elevated temperatures, and the chemical reactivity of hot sodium and water exacerbate the 

preexisting problems with steam generators. Pinhole leaks can quickly turn into tube 

ruptures, the energy released by the reaction causing other tubes to fail. For this reason, 

steam generators must be protected by methods proposed in literature. Leaks in the 

primary side are mitigated by double walled piping, seismic proofing the vessel, and a 

guard vessel. Intermediate sodium leaks are more common. Standard techniques including 

steel sheeting around concrete, leak detection, fire suppression, dividing up the rooms 

containing the piping, pressure relief valves/seals, etc. are found in literature. It should be 

noted that sodium leaks do not pose a threat to fuel integrity, although a primary sodium 

leak could cause a pressure rise in the containment. Aerosols could damage equipment in 

the primary containment if the secondary sodium were to leak, assuming the containment 
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uses air. It would be prudent if multiple independent steam generators were used, 

continuing to operate if one of them were to suffer a fire.  

Fast Breeder Reactor Programs: History and Status. IFPM 2010. 

This document by the International Panel on Fissile Materials was released in 2010 and 

summarizes the various fast breeder reactor programs in Russia/USSR, Japan, India, 

France, UK, and USA. The document is highly critical of fast breeder reactor programs as 

expensive, unsafe, and proliferating. Its summaries of the fast reactor programs in each 

country place special emphasis on sodium fires. The difficulties with Superphenix, Monju, 

Dounreay Fast Reactor, BN-350, and BN-600 are listed in detail. No sodium leaks or fires 

are listed for USA reactors, although the partial fuel meltdown in Fermi-1 is mentioned. 

It is interesting to note that FFTF or EBR-II did not experience large sodium leaks leading 

to significant shut down times. This systems were actually noted for their reliability at the 

time. While the document disparages sodium fast reactors, the lack of sodium fires in USA 

reactors is an interesting fact [Cochran, 2010]. 

Metal Fire Implications for Advanced Reactor Parts 1 and 2. SNL 2007 and 2008. 

These documents summarize an investigation into sodium fires in sodium fast reactors. 

The investigation was in two parts, a literature review and a PIRT study. The literature 

review focused on incidents at Monju, BN-600, Almeria Solar Plant, and ILONA. Each 

accident had a different cause and fire propagation scenario. These accidents are given as 

situations which the plant must be designed to overcome. Corrosion is the root cause 
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behind leaks in water cooled reactors, whereas corrosion in sodium cooled reactors is 

negligible if the sodium is purified. This has been demonstrated in a number of reactors. 

Disastrous sodium leaks from the reactor vessel are considered rare because of the lower 

internal pressure, extensive seismic isolation, and use of a guard vessel. Smoke from 

sodium fires is capable of entering the control room and preventing operators from 

administering the accident. The 1975 Browns Ferry fire severed all normal core cooling 

functions, which is a worst case scenario for a sodium fire in the secondary side. Sodium 

leaks and fires in steam generators can remove the ultimate heat sink in some designs. 

Design and manufacturing defects are regarded as containing the greatest risk to sodium 

leaks. Pipes, welds, and steam generator tubes are the most likely to fail. Sodium leaks 

can also be caused by human error in following procedures and poor procedures 

themselves. An extensive literature review is presented in part two concerning analytical 

and experimental studies of sodium leaks and fires. The PRIT study focused on the 

Advanced Burner Test Reactor. Two fires where studied; a leak in the hot leg of the 

intermediate loop causing a pool fire and a leak in the cold leg of the intermediate loop 

causing a spray fire. Spray and aerosol dynamics were highlighted as needing more 

research, as is the role the sodium oxide solid precipitate plays. Hydrogen production in 

concrete was also highlighted, as was the radiation loss from the sodium crust. Most of 

the PRIT document gives the curriculum vita’s of the individuals involved in the PIRT 

[Olivier, 2007] and [Olivier, 2008]. 

Approaches to Resolve Safety Issues Related to Sodium as a Fast Reactor Coolant, 

Second Joint GIF-IAEA/INPRO Workshop 2011. I. Pakhamov. 
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This presentation posits a crack in piping which causes a small DBA or a large crack which 

causes a BDBA where most of the sodium leaks out. The crack is assumed to propagate 

slowly before a catastrophic break. A series of electroheaters surround the piping which 

will short circuit when sodium leaks. The pipe is also encased in a thermal insulation 

surrounded by another steel casing. Smoke detection systems are employed. Radioactivity 

is also measured in the air. The sodium systems are isolated into smaller rooms that are 

lined with steel, thus preventing the sodium from interacting with the concrete. Each room 

is sealed from the others. Exhaust systems remove air from the rooms if a fire occurs. 

Steam generator tube ruptures are dealt with in a similar manner. The steam generator is 

isolated when a leak occurs. Numerous safety systems are employed to detect or mitigate 

the consequences of a sodium leak. Chemistry control systems that control the oxygen and 

hydrogen concentrations in the sodium are used. When a leak occurs, the sodium is quickly 

drained out of the steam generator and an inert gas is used to fill the steam generator 

[Pakhamov, 2011].  

Approaches to Resolve Safety Issues Related to Sodium as a Fast Reactor Coolant, 

Second Joint GIF-IAEA/INPRO Workshop 2011. S. Kubo.  

This presentation was given during the same workshop as the previous review in this 

literature review. The author emphasize double walls around the piping and in the steam 

generator. Systems for detecting leaks are mentioned but not elaborated on. Steel lined 

concrete was also emphasized. A large scale leak stemming from a common fault in a 
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single or multiple lines was regarded as the worst case scenario, not smaller leaks as in the 

other presentation [Kubo, 2011].   

Design Features and Operating Experience of Experimental Fast Reactors. IAEA 

NP-T-1.9 2013.  

Liquid metal properties are reviewed including thermo-hydraulic properties, neutronics 

properties, chemical compatibility with air and water, corrosion behavior, and induced 

radioactivity. The history of liquid metal technology is reviewed including various 

thermodynamic cycles. The document focuses on Clementine, EBR-I, LAMPRE, BR-5, 

Dounreay Fast Reactor, EBR-II, Enrico Fermi Fast Breeder Reactor, and Rapsodie. FFTF 

is not mentioned. The basic operating features and notable events in their lifetimes are 

recorded. Mercury, lithium, and NaK coolants are not favored over sodium. Lead or Pb-

Bi suffer 210Po contamination and corrode steel if the oxygen content is too low. Lead 

forms PbO is the presence of water, which can block coolant channels in the reactor in the 

event of a break in steam generator tubes. Sodium and Pb/Pb-Bi purification techniques 

are discussed [Design, 2013].  

Liquid Metal Cooled Reactors: Experience in Design and Operation. IAEA 

TECDOC 1569, 2007. 

This 272 page document summarizes experience with Prototype Fast Reactor, Phenix, 

Superphenix, BN-350, BN-600, Dounreay Fast Reactor and the Pb-Bi cooled ship 

reactors. The document discusses Rapsodie, EBR-II, and FFTF in relation to their safety 
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tests. Rapsodie and EBR-II underwent a loss of flow without SCRAM accident, while 

EBR-II also underwent a loss of heat sink without SCRAM accident. FFTF was subjected 

to similar tests but at 50% power. Positive sodium void coefficients are mitigated by radial 

and axial expansion. Rapsodie did not have an appreciable Doppler coefficient, one of the 

largest drawbacks of oxide fueled reactors. Therefore, using the Rapsodie test to 

demonstrate the safety of all oxide fueled SFRs is incorrect as will be demonstrated later 

in this work. Metallic fuels have much lower temperatures and lower Doppler 

Coefficients, so can withstand transients more easily. The last portion of this document 

discusses the safety performance of the PRISM which uses metallic fuel. The benefits of 

metallic fuel are stated, although not compared to oxide fuel. The last portion of this 

document also gives concise advice for the design of a steam generator and primary loop 

based on experience in the BN-600 and Superphenix. The primary sodium purification 

technology can be located in the vessel, along with the fresh and used fuel if B4C shielding 

assemblies are utilized. Titanium stabilized steels are not recommended for use in sodium 

piping despite their mechanical strength. A single vessel steam generator with long 

straight tubes in recommended as it minimizes the number of welds and complex tubing 

[Liquid, 2007].   

Status of Fast Reactor Research and Technology Development. IAEA TECDOC 

1691, 2012. 

This 846 page document contains a great deal of information. Sodium leaks and fires will 

be discussed first. No significant sodium leaks are mentioned for EBR-I, Enrico Fermi 
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Fast Breeder Reactor, JOYO, or the FBTR. BR-5/10 has experienced 19 sodium leaks in 

its operation, although none since 1986. 7 of the leaks stemmed from sodium valve failures 

and 6 of the leaks stemmed from failures of the level gauges in sodium storage tanks. 

EBR-II did not experience any leaks in the steam generators. Their performance, both in 

heat transfer and operation, is attributed to the robust duplex tube design of the 

superheaters and evaporators. During its peak years, EBR-II’s capacity factor exceeded 

70% and reached 81% while being used for extensive fuel, materials, and system testing. 

EBR-II experienced a sodium leak and fire in an intermediate loop sampling line that was 

confined to the boiler room. It was caused by a faulty weld during regular maintenance 

and maintenance procedures were modified to ameliorate the situation. The only 

significant maintenance problem was the seal around the rotating shield plugs. A Sn-Bi 

eutectic was used as a seal and had a tendency to become contaminated and block up. This 

was mitigated by a thorough cleaning procedure, but could be permanently fixed in future 

designs by an inflatable seal. The seal prevented the cover gas in the primary circuit from 

mixing with the air on the reactor building. There have been no sodium leaks in the 

operation of BOR-60. BN-350 experienced a number of difficulties with its steam 

generators stemming from cold stamping of the Field’s tubes.  

Phenix experienced a number of sodium leakage events during its operation. In all, faults 

with the intermediate heat exchanger and steam generators accounted for ~41% of the total 

lost energy production from 1974-1990. During this period, the average load factor was 

60%. Sodium leaks not including the intermediate heat exchanger or steam generator 

accounted for a much smaller 2.6% of the total lost energy production. Other significant 
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losses of production included scheduled works (15.1%), refueling (11.2%), and negative 

reactivity events (8.1). In all, sodium leaks were the single greatest cause of loss of 

electricity production; 31 leaks occurred, most of them very minor. There were 5 sodium 

water interaction events. 4 of them were due to thermal fatigue at welds that caused 

erosion, piercing, or wasting of the other tubes or shell. The last event was due to a 

manufacturing defect. The intermediate heat exchangers have 11 events, not all of them 

leaks. As these leaks are not chemically exothermic, they are of lesser concern than faults 

in steam generators although such leaks do allow radioactivity to contaminate the 

intermediate loop. A leak in the intermediate loop led to sodium aerosol formation and a 

partial jamming of the control rod drivers. Beginning around 1999, a series of safety 

improvements were made to Phenix. Seismic reinforcement of the reactor was complete 

by 2000, with special emphasis on the steam generators. The steam generator building and 

associated piping was subdivided into steel rooms to prevent sodium leaks from spreading 

all over the building and to reduce the severity of sodium concrete interactions. The steam 

generators were also repaired by 2002 after cracks were found. Three sodium leaks 

occurred in 2003; the first in a valve bellow of the intermediate loop sodium purification 

circuit and the second in an electromagnetic pump of the steam generator hydrogen 

detection circuit. The third and minor leak occurred late in 2003, although none of these 

leaks posed a danger to the systems nor resulted in shutdowns of significant time. A small 

leak occurred in the intermediate loop in 2007 necessitating a brief shutdown.  

Prototype Fast Reactor or PFR experienced a similarly large number of sodium leaks as 

Phenix. The plant spent most the vast majority of its time shutdown during the first ten 
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years mostly due to leaks in the tube-tubeplate welds in the superheaters, reheaters, and 

evaporators. 44 leaks occurred in total, with 41 of them in the evaporators. The austenitic 

stainless steel was found to be highly unsuitable for the application and new 9Cr1Mo 

ferritic stainless steel set of tube bundles was used for the superheaters and reheaters. The 

tube-tubeplate interface was sleeved in those new bundles. The evaporator tube-tubeplate 

weld was also sleeved with 9Cr1Mo which eliminated problems in the evaporator. Prior 

to that, the bores of the tube-tubeplate welds had been shotpeened which was unsuccessful. 

Initial cracks were bypassed by simply blocking the tubes, but it became apparent that 

more drastic measures were needed after cracks were found on many welds. A small 

sodium fire happened in the intermediate loop cell after a leak from the hydrogen detection 

system in a superheater. The decay heat rejection loops suffered several leaks over the 

lifetime of the plant, but none as serious as the leaks in the steam generators. Bearing oil 

leaked from the primary pumps into the sodium, but this did not pose any threat although 

the reactor was shutdown for 6.5 months. The last significant fire in the steam generators 

happened in 1987 from a flow induced vibration in the austenitic tubes, not at a crack. The 

failure of a single tube caused 39 other tubes to fail. All of the superheaters were replaced 

as the design of the tubes was the same in each device. Cracks were also discovered in the 

outer vessels of the superheaters and reheaters, although they were repaired in situ.  

KNK-II experienced a single sodium-water interaction at the beginning of life due to a 

faulty weld. A few minor sodium leaks occurred in the intermediate loop around cracks, 

but never in the main piping. 12 leaks have occurred in the steam generator units of BN-

600, although no leaks have occurred since 1991. Half of these leaks occurred in the first 



year due to manufacturing defects. A total of 27 sodium leaks have occurred since 2010. 

Some causes, in order from most common to least include; valves, cracks, joints, 

procedural errors, manufacturing defects, holes made by personnel. It should be noted that 

the last leak took place in 1994. FFTF operated without significant sodium leaks, but it 

lacked steam generators. No significant leaks occurred in the sodium to air heat 

exchangers nor in the intermediate loops. In contrast to Phenix, Superphenix experienced 

far fewer problems sodium leaks during its operation. 3 minor leaks of no consequence 

and 1 major leak from the fuel storage drum. The storage drum was found to be irreparable. 

While few sodium leaks occurred, the overall capacity factor was 41.5%; 101 abnormal 

events were recorded and 100 of them were ‘safety significant.’ Roughly one third of the 

problems relate to design or first use and occur at the beginning of the plants life. One 

third of the problems are equipment failures or human error, and the other third are not 

plant specific. After the 1986 Almeria plant fire, the rooms containing the intermediate 

loop piping were subdivided and lined in stainless steel. Pressure release flaps were made 

in the walls of the containment building to allow hot gases to escape in the event of a fire. 

As is well documented in other sources, MONJU experienced a serious sodium leak and 

fire that was unsuccessfully covered up. An extensive safety review was conducted, but 

the reactor was never restarted baring massive public opposition [Status, 2012].  

A.4 Reliability in Engineering Design 

In this discussion, reliability in engineering is approached from two related 

viewpoints: from the viewpoint of the organization in charge of managing the system 
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(High Reliability Organization and STAMO), and from the viewpoint of the design itself 

(Robust Design). High reliability organizations are defined as organizations that operate 

in a high risk environment with few accidents. Nuclear power is regarded by researchers 

in this field as a high reliability organization [La Porte, 1996]. The author notes that high 

reliability organizations are often under financial pressure to devote fewer resources to 

safety especially if they have been reasonably successful in the past or if financial pressure 

suddenly increases. The Fukushima accident has brought renewed emphasis on nuclear 

safety and it is unlikely operators and designers of nuclear power plants will devote less 

effort to safety even in difficult financial situations. High reliability organizations have a 

strong concern within the organization itself and in the larger society about the 

performance of the system. This may be likened to the culture of safety prevalent in the 

nuclear field. High degrees of technical competence are noted in high reliability 

organizations, maintained by organizational visibility and status. Access to senior 

management and promotion to senior management for those maintaining high reliability 

are also prevalent. High operational performance is attained by extensive quality assurance 

programs and databases of equipment behavior and maintenance scheduling. High 

reliability organizations are often quite flexible in personnel scheduling or demands, have 

sufficient process overlap to accommodate failures, and sufficient independence between 

incompatible processes. While hierarchical organizational structures dominate, high 

reliability organizations have a greater preponderance of collegial working environments 

than other organizations. Roles within organizations may actually reverse depending on 

the situation. Certain actions and roles are scripted in accidents, functioning alongside 
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more collaborative forms of problem solving. In time sensitive scenarios, solutions are 

quickly implemented without extensive review. This puts an emphasis on correct 

solutions. High reliability organizations also have extensive internal oversite, often 

rewarding error finding and reporting. Strong external regulators help enforce the 

reliability culture and practices within high reliability organizations. Employees in high 

reliability organizations are highly proactive in problem solving. Peer pressure can be 

intense, often resulting in employees going beyond their job roles to fix mistakes. 

Employees often take immense pride in their work, which is enhanced by official rewards 

from management for problem solving and error finding. Employees have great discretion 

in solving time sensitive problems, often leading to a mentality wherein employees view 

themselves as masters of their respective domains. Finally, the authors noted friction 

between operators and engineers stemming from the lack of first-hand experience in 

engineers. This friction can be aggravated by the other traits in the organization, namely 

high discretion and results focused management.  

High Reliability Organization has been criticized for being too broad in its 

generalizations, lacking in firm definitions, and approached from a perspective other than 

engineering [Leveson, 2009]. It has also been noted that reliability and safety are not 

related in some systems and can be mutually exclusive. The overall methodology of High 

Reliability Organization, wherein general observations are abstracted from certain 

organizations and applied to others, has been criticized as sampling from too few data 

points, over generalizing, and applying inferences from one field to another field without 

any consideration of the differences between them. Towards this end, the authors in 
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[Leveson, 2009] recommend STAMP (Systems-Theoretic Accident Modeling and 

Processes) [Leveson, 2004] as the corrective to High Reliability Organization. 

Organizations are modeled with control theory, wherein the familiar logic of control 

systems is used. Stated briefly, control systems have a controller which receives input 

data, issues a signal to the system, and then measures the output of the system with a 

sensor which sends data back to the controller. This is called a closed loop control system; 

open loop systems are also used. The organization is modeled as a series of these 

controllers, systems, and sensors in a block diagram. While this approach can more clearly 

identify faults with organizations than High Reliability Organization, it is asking 

fundamentally different questions than High Reliability Organization. High Reliability 

Organization seeks to identify cultural/social traits within organizations that lead to better 

performance while STAMP seeks to identify specific technical faults within the 

organization. STAMP also incorporates cultural/social factors, which could account for 

some of the features in High Reliability Organization. However, these traits would have 

to be derived from observations from high reliability organizations. While insights from 

both fields are relevant to organizational reliability, this dissertation concerns engineering 

design and both fields must be reinterpreted in that light. STAMP, or control theory more 

generally, would appear to be far more useful in engineering design that High Reliability 

Organization. Nuclear safety is a highly evolved subject considered both deterministic and 

probabilistic risk management as mentioned elsewhere in this document. The relevance of 

control theory to describe nuclear safety must be made against the tried and tested methods 

of the wider nuclear field. That research is beyond the scope of the present endeavor. High 
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Reliability Organizations focuses on the internal motivations of the operators of nuclear 

plants. Likewise, the engineers responsible for the design of these systems must also 

inculcate nuclear safety culture.  

The field of Robust Design comprises a wide variety of methods centered on a 

single core concept. First developed by Genichi Taguchi in the 1950’s [Allen, 2006], 

Robust Design seeks to ensure greater product performance in the field by reducing the 

sensitivity of the product’s performance to variation in its operating conditions. While 

originally conceived as an alternative to tighter and tighter tolerances in manufacturing, 

Robust Design has evolved to consider variations in object manufacturing, environment, 

inputs, object performance differing from expectation, and other aspects. The most robust 

product may not be the one which performs best under ideal conditions, but the one who 

performs adequately under a wide range of conditions. Three aspects of the product are 

studied: the input variables, noise variables, and the system which generates the output 

[Sleeper, 2007]. Input variables are more commonly called design variables and are 

modified by the engineer to attain a given purposed. Noise variables stem from the 

situation the product is used in. Standard manufacturing tolerances comprise variation in 

design variable while probability distribution functions of the environment often comprise 

the noise variables. The actual operations of the product can be subject to variability. More 

common early in the design process is discrepancy between the model of the product’s 

behavior and its actual behavior. Type-I Robust Design only considers noise factor 

variation while Type-II Robust Design considers variations in the design variables 

themselves. Type-II can also encompass approximate design variables used early in the 



design process that satisfy a variety of situations before the design is finalized. Type-III 

Robust Design considers variability in the system’s performance. Type-I is most 

commonly studied, followed by Type-II then Type-III. A wide variety of statistical 

processes have been proposed and are briefly summarized in [Allen, 2006]. Early in the 

design process the final noise variables, manufacturing tolerances, and system behavior 

are not known. Ranges of control variables can be chosen to accommodate variability 

based on perceived behavior, but this is system dependent. The recommended methods in 

[Allen, 2006] are design dependent and could be consulted for specific methods. While 

the various methods mentioned in this section are useful in their respective, their utility as 

heuristics is somewhat more limited. Sociological considerations are not relevant while 

Robust Design is focused on statistical methods to study various systems and scenarios. 

The delineation of the various kinds of uncertainties is useful to keep in mind when 

performing early design studies. Control Theory could be studied in more detail especially 

in relation to risk management.   

A.5 Issues with Axiomatic Design 

In this section the utility of Axiomatic Design is examined. It is shown throughout 

this section that the highly coupled nature of reactor design (especially neutronic and 

neutronic/thermal hydraulic) mitigates the utility of Axiomatic Design. However, in non-

neutronic nuclear system problems Axiomatic Design could be of use.  Axiomatic Design 

is first studied using the fast spectrum MTR example from Chapter 4. The utility of 

Axiomatic Design is used in each level of abstraction, before the entire design is 
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reconceptualized in a form more conducive to Axiomatic Design. The nuclear system is 

examined at its broadest level with Axiomatic Design, and promise is shown in solving 

non-neutronic nuclear design problems. The fourth level is presented first because if 

contained the most variables, constraints, and objectives of the levels. After it is shown 

that Axiomatic Design would not be much use for the fourth level, it is shown that 

Axiomatic Design would be of little use in the first, second, third, and fifth levels. 

Axiomatic Design uses a process called zig-zagging which decomposes higher level 

functional requirements and design parameters into lower level aspects. Similar in form 

to levels of abstraction, it was decided to perform the reactor design process using 

Axiomatic Design without recourse to any other design methodology. Axiomatic Design 

is used to study nuclear systems without reference to the fast spectrum MSR. It appears 

that Axiomatic Design has some utility in nuclear system design outside of the reactor 

core. This could not explored in greater detail due to time limitations.  

Axiomatic Design uses a few concepts which will be briefly restated; they are 

elaborated on in section 1.5. The independence axiom of Axiomatic Design seeks to 

minimize the relationships of functional requirements; this is achieved by picking design 

parameters so that at least one design parameter can be fixed. At least one other functional 

requirement requires only two design parameters; the one that was fixed and an 

undetermined design parameter. The undetermined design parameter is fixed by using the 

determined design parameter and associated functional requirement. The solution 

continues in this fashion, using determined design parameters to find the undetermined 

ones. The ideal design has each functional requirement satisfied by a single design 
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parameter. The information axiom merely states that the best design has the highest 

probability of satisfying the functional requirements; this is analogous to Robust Design. 

The independence axiom could not be satisfied in any examined situation, while the 

information axiom is not unique to Axiomatic Design.  

Functional requirements for the fourth level of abstraction of the fast spectrum 

MTR are shown below. They represent the objectives and constraints. The design 

parameters commonly used in Axiomatic Design are presented after the functional 

requirements. As can be seen, there are eight functional requirements and ten design 

parameters. This is a redundant design unless some of the design parameters can be fixed. 

This is impossible so the design will not satisfy the independence axiom and will be 

coupled. The coupled nature of the fourth level of abstraction is due to the physics of 

nuclear reactors, as will be shown. In Axiomatic Design functional requirements are those 

features of the design which must be satisfied. Design parameters are those elements 

which are used to achieve the features (design requirements). The functional requirements 

and design parameters are vectors. In this example, the functional requirements are an 8 x 

1 vector while the design parameters are a 10 x 1 vector. An 8 x 10 matrix is multiplied 

by the 10 x 1 design parameter vector to fulfill the functional requirements. This matrix, 

shown below, is filled with either a 0 or an X. If a 0 is used, then the corresponding design 

parameter has no effect on the corresponding functional requirement. If an X is used, then 

the corresponding design parameters has some effect on the corresponding design 

parameter. The relationship between the design parameters and the functional 
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requirements can be of any form. The matrix was derived based on physical consideration 

without reference to the final design. Any design would have those same relationships. 

[𝐹𝑅] =

[

𝐻𝑖𝑔ℎ 𝑓𝑎𝑠𝑡 𝑓𝑙𝑢𝑥
𝐻𝑖𝑔ℎ 𝑐𝑜𝑟𝑒 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒
𝐿𝑜𝑤 𝑐𝑜𝑟𝑒 𝑝𝑜𝑤𝑒𝑟

𝐿𝑜𝑤 𝑐𝑜𝑟𝑒 𝛥𝑃
𝑃𝑒𝑎𝑘 𝑣𝑒𝑙.

𝐻

𝐷
= 1

 𝑃𝑒𝑎𝑘 𝐿𝑃
𝐼𝑛𝑑𝑒𝑝. 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑖𝑒𝑠 ]

[𝐷𝑃] =

[

𝐹𝑢𝑒𝑙 ℎ𝑒𝑖𝑔ℎ𝑡
𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑜𝑟 ℎ𝑒𝑖𝑔ℎ𝑡

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑜𝑟 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙
𝐶𝑜𝑜𝑙𝑎𝑛𝑡 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒
𝐶𝑜𝑜𝑙𝑎𝑛𝑡 𝑡𝑒𝑚𝑝𝑠.

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑟𝑜𝑑 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙
𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑟𝑜𝑑 𝑑𝑒𝑠𝑖𝑔𝑛
𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑜𝑟 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙
𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑜𝑟 𝑑𝑒𝑠𝑖𝑔𝑛

𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 ]

[

𝐻𝑖𝑔ℎ 𝑓𝑎𝑠𝑡 𝑓𝑙𝑢𝑥
𝐻𝑖𝑔ℎ 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒
𝐿𝑜𝑤 𝑝𝑜𝑤𝑒𝑟

𝐿𝑜𝑤 𝛥𝑃
𝐿𝑜𝑤 𝑣

𝐻/𝐷 = 1
 𝑃𝑒𝑎𝑘 𝐿𝑃

𝐼𝑛𝑑𝑒𝑝. 𝑎𝑠𝑠. ]

=

[

𝑋 𝑋 𝑋 𝑋 𝑋 0 0 𝑋 𝑋 𝑋
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
𝑋 𝑋 𝑋 𝑋 𝑋 0 0 𝑋 𝑋 0
𝑋 𝑋 0 𝑋 𝑋 0 0 𝑋 𝑋 0
0 0 0 𝑋 𝑋 0 0 𝑋 𝑋 0
𝑋 𝑋 0 0 0 0 0 0 0 0
𝑋 𝑋 𝑋 0 0 0 0 𝑋 𝑋 0
0 0 0 0 0 0 𝑋 0 𝑋 𝑋]

[

𝐹𝑢𝑒𝑙 ℎ𝑒𝑖𝑔ℎ𝑡
𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑜𝑟 ℎ𝑒𝑖𝑔ℎ𝑡
𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑜𝑟 𝑚𝑎𝑡.
𝐶𝑜𝑜𝑙. 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒
𝐶𝑜𝑜𝑙𝑎𝑛𝑡 𝑡𝑒𝑚𝑝𝑠.

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑟𝑜𝑑 𝑚𝑎𝑡.
𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑟𝑜𝑑 𝑑𝑒𝑠𝑖𝑔𝑛

𝑀𝑜𝑑.𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙
𝑀𝑜𝑑. 𝑑𝑒𝑠𝑖𝑔𝑛

𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑠. ]

The first three design requirements (high fast flux, high lifetime, and low power) 

are dependent on most of the design parameters. This is because all three parameters are 

integral quantities, determined from the interactions of all the design parameters. While 

these parameter are integral, the weaker dependencies can be excluded by careful choice 
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of design parameters. Flux is dependent on every aspect of the core design, especially the 

core power. While core power is not a design parameter (perhaps it should be), the coolant 

flow rate and coolant temperatures depend on the core power. The core power, coolant 

flow rates, and coolant temperatures are tightly coupled with respect to the allowable 

coolant and fuel temperatures. Varying any one or two of them requires changing the 

others. Although flux is not explicitly a function of coolant conditions, if the core design 

is held constant and either coolant temperatures or mass flow rate are changed, core power 

will change to accommodate the maximum coolant/fuel temperatures. The flux is 

measured in the irradiation positions, so their location is quite important. While the control 

systems must affect flux (from their changes in reactivity), control systems are designed 

so that they have a minimal effect on flux. Lifetime is dependent on the keff of the system 

and flux (through which power density is calculated, determining the loss of fissile 

material). Power density depends on core power and the core layout, so coolant 

temperatures and mass flow rate are also relevant design parameters. Minimizing the core 

power depends on all of the design parameters for the same reasons. Lifetime is strongly 

dependent on the design of the control systems and the number of irradiation positions. 

Each irradiation position added to the core removes fuel, increasing burnup (for the same 

core power) and reducing lifetime.  

The remaining functional requirements are also dependent on all of the design 

parameters, but only weakly. For example, the core pressure drop is dependent on the flow 

rate through each assembly, which can be controlled with orifices. By orificing the 

assembly inlets, more flow can be directed away from the low power assemblies and 
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towards the high power assemblies. Less orificing is needed when the power profile across 

the core is flatter; all of the design parameters in some way affect the power profile which 

would affect the pressure drop. Weaker relationships have been removed from the matrix. 

Fuel height, reflector height, mass flow rate, and temperatures obviously affect pressure 

drop, and the moderator design does affect the power profile and consequently the mass 

flow rate in the hottest assemblies. From this the core pressure drop is deduced. The same 

is true of the maximum velocity, which is not dependent on the heights. The control 

systems and irradiation positions would be designed to have minimal effect on the power 

profile or to flatten it so their effect on the core pressure drop is quite weak. The 

requirement that height and diameter be identical is only dependent on the core layout and 

height. Core layout is not explicitly a design parameter (although perhaps it should be) so 

the heights are the only design parameters relevant to that functional requirement. Linear 

power limits are tied to every decision that affects core power. In principle, every design 

parameter should be relevant to the linear power limits; however the irradiation positions 

and control systems will be designed so that they have minimal effect on the power profile. 

Therefore only those design parameters which greatly affect the linear power limits are 

relevant. Maintaining the independence of all the assemblies affects the control systems, 

moderator assembly design, and irradiation positions.  

Axiomatic Design with hierarchical systems can be used to decompose the system 

from higher levels of abstraction into lower levels of abstraction. This feature of 

Axiomatic Design will be examined with respect to all of the levels of abstraction. The 

first level of abstraction concerned whether or not to design a new reactor. This isn’t really 
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a design, so Axiomatic Design would not be a suitable tool for the first level of abstraction. 

While it is possible to specify functional requirements, defining design parameters is 

difficult as the functional as there are only two options; either construct a new reactor or 

use an existing one. The second level of abstraction selected the fuel vector, fuel type, and 

coolant type. There were three fuel vectors: HEU, LEU, and Pu. There were five fuel 

types: oxide, zirconium, carbide, aluminum, and dispersal. There were five coolant types: 

sodium, light water, heavy water, lead, and helium. The functional requirements are: 

providing a fast flux, a near term design, and a safe concept. Four possibilities are 

presented. No design satisfies the independence axiom and all are redundant. In fact the 

least safe concept (using helium and UO2 is unsafe) is the least coupled. The UC and 

helium design uses a graphite moderator and is VHTR. While the VHTR and LWR 

concepts are near term and safe concepts, they cannot be utilized because they do not have 

high fast fluxes. The fast flux is determined almost exclusively by the coolant type and 

moderator type. The moderator type is commonly included when selecting coolant type. 

Safety analyses must consider the fuel type and coolant type. The technical feasibility of 

the concept requires analysis of all the design parameters. The information axiom clearly 

separates the concepts. The first two design concepts differ only in their fuel type and have 

the same relationships between the functional requirements and design parameters. As 

mentioned in section 4.3, metallic fueled sodium reactors have significant safety 

advantages over oxide fueled sodium reactors. Oxide fuel is less safe but more technically 

feasible. Oxide fuel is manufactured in the US while metallic fuel has not been 

manufactured for a number of years.  



164 

[
𝐹𝑎𝑠𝑡 𝑓𝑙𝑢𝑥
𝑁𝑒𝑎𝑟 𝑡𝑒𝑟𝑚

𝑆𝑎𝑓𝑒𝑡𝑦
] = [

𝑋 𝑋 𝑋
𝑋 𝑋 𝑋
0 𝑋 𝑋

] [
𝐿𝐸𝑈

𝑈 − 𝑍𝑟
𝑆𝑜𝑑𝑖𝑢𝑚

] ; 𝑓𝑎𝑠𝑡 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 

[
𝐹𝑎𝑠𝑡 𝑓𝑙𝑢𝑥
𝑁𝑒𝑎𝑟 𝑡𝑒𝑟𝑚

𝑆𝑎𝑓𝑒𝑡𝑦
] = [

𝑋 𝑋 𝑋
𝑋 𝑋 𝑋
0 𝑋 𝑋

] [
𝐿𝐸𝑈
𝑈𝑂2

𝑆𝑜𝑑𝑖𝑢𝑚
] ; 𝑓𝑎𝑠𝑡 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 

[
𝐹𝑎𝑠𝑡 𝑓𝑙𝑢𝑥
𝑁𝑒𝑎𝑟 𝑡𝑒𝑟𝑚

𝑆𝑎𝑓𝑒𝑡𝑦
] = [

𝑋 𝑋 0
𝑋 𝑋 𝑋
0 𝑋 𝑋

] [
𝐿𝐸𝑈
𝑈𝑂2

𝑊𝑎𝑡𝑒𝑟
] ; 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 

[
𝐹𝑎𝑠𝑡 𝑓𝑙𝑢𝑥
𝑁𝑒𝑎𝑟 𝑡𝑒𝑟𝑚

𝑆𝑎𝑓𝑒𝑡𝑦
] = [

𝑋 𝑋 𝑋
𝑋 𝑋 𝑋
0 𝑋 0

] [
𝐿𝐸𝑈
𝑈𝑂2

𝐻𝑒𝑙𝑖𝑢𝑚
] ; 𝑓𝑎𝑠𝑡 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 

[
𝐹𝑎𝑠𝑡 𝑓𝑙𝑢𝑥
𝑁𝑒𝑎𝑟 𝑡𝑒𝑟𝑚

𝑆𝑎𝑓𝑒𝑡𝑦
] = [

𝑋 𝑋 0
𝑋 𝑋 𝑋
0 𝑋 𝑋

] [
𝐿𝐸𝑈
𝑈𝐶

𝐻𝑒𝑙𝑖𝑢𝑚
] ; 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 

The third level of abstraction determined the assembly and overall core layout. 

Safety constraints were based on core and system level behavior in addition to fuel type 

as in the second level of abstraction. Such behavior is difficult to model, so it was 

decided to mimic the design of a preexisting design. EBR-II was chosen for its proven 

safety record. The core was designed using a deterministic method which minimized the 

number of changes to the EBR-II design. The considerations in this level are especially 

unsuited to Axiomatic Design, while the fifth level of abstraction contains more 

constraints and design variables. In the fifth level of abstraction, the core layout is 

assumed while the irradiation positions are located within the core. The total volume 

available for irradiation depends on the number of assemblies and their design. Assuring 

the independence of the irradiation assemblies only depends on the irradiation assembly 

design, while minimizing the water content within the assembly only depends on the 
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moderator design. Flux, keff, and linear power are neutronically coupled and cannot be 

teased apart as mentioned in the discussion about the fourth level of abstraction.  

[

𝐻𝑖𝑔ℎ 𝑓𝑙𝑢𝑥
𝐻𝑖𝑔ℎ 𝑘𝑒𝑓𝑓

𝑉𝑜𝑙𝑢𝑚𝑒
 𝑃𝑒𝑎𝑘 𝐿𝑃

𝐼𝑛𝑑𝑒𝑝. 𝑎𝑠𝑠.
𝐿𝑜𝑤 𝑤𝑎𝑡𝑒𝑟]

=

[

𝑋 𝑋 𝑋 𝑋 𝑋
𝑋 𝑋 𝑋 𝑋 𝑋
0 𝑋 𝑋 0 0
𝑋 𝑋 𝑋 𝑋 𝑋
0 0 𝑋 0 0
0 0 0 0 𝑋]

[

𝐼𝑟𝑟. 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠
𝐼𝑟𝑟. 𝑛𝑢𝑚𝑏𝑒𝑟
𝐼𝑟𝑟. 𝑙𝑎𝑦𝑜𝑢𝑡

𝐴𝑏𝑠𝑜𝑟𝑏𝑒𝑟 𝑚𝑎𝑡.
𝑀𝑜𝑑.𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 ]

While Axiomatic Design did not appear very useful within the framework of 

level of abstraction, it was decided to use Axiomatic Design by itself. The constraints 

and objectives from the completed design were used to frame the problem but the all 

were translated into forms more conducive to Axiomatic Design. Zig-zagging will be 

used to decompose the design parameters and functional requirements. The simplest 

available scheme is shown below. The functional requirements are divided between 

those necessary for good reactor performance (Excellent ops.) and those necessary for 

good materials testing characteristics (Excellent irr.). The first design parameter contains 

all core and system parameters while the second contains all irradiation parameters. The 

system is still tightly coupled at this stage. A metallic fueled SFR with moderator located 

on the core periphery minimizes the information content of the system for reasons listed 

in Chapter 4. The functional requirements for this system were expanded as shown 

below.  

[
𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 𝑜𝑝𝑠.
𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 𝑖𝑟𝑟.

] = [
𝑋 𝑋
𝑋 𝑋

] [
𝐶𝑜𝑜𝑙𝑎𝑛𝑡 + 𝑓𝑢𝑒𝑙 + 𝑙𝑎𝑦𝑜𝑢𝑡

𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑠𝑖𝑔𝑛 + 𝑙𝑎𝑦𝑜𝑢𝑡
 ] 

Irradiation characteristics can be expanded into flux and linear power 

requirements. It is also desired that all irradiation positions be independent of each other. 
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Lastly, internal volume of the irradiation positions should be maximized. The design 

parameters are the layout of the irradiation positions within the core, the internal design 

of the irradiation positions, the type of moderator, and the type of absorber within the 

irradiation positions. Linear power is a function of flux and will share the same 

dependencies. Flux and keff are tightly coupled are depend on all aspects of the core 

design. Flux and keff are the solutions to the neutron transport equation, flux being the 

eigenvector and keff being the eigenvalue. Maintaining independent assemblies and 

maximizing the volume follows the independence axiom with respect to irradiation 

external layout and irradiation internal design. 

[

𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 𝑜𝑝𝑠.
𝐻𝑖𝑔ℎ 𝑓𝑙𝑢𝑥
𝑃𝑒𝑎𝑘 𝐿𝑃

 𝐼𝑛𝑑𝑒𝑝. 𝑎𝑠𝑠.
𝑉𝑜𝑙𝑢𝑚𝑒 ]

=

[

𝑋 𝑋 0 𝑋 0
𝑋 𝑋 𝑋 𝑋 𝑋
𝑋 𝑋 𝑋 𝑋 𝑋
0 0 𝑋 0 0
0 𝑋 𝑋 0 0] [

𝐶𝑜𝑜𝑙𝑎𝑛𝑡 + 𝑓𝑢𝑒𝑙 + 𝑙𝑎𝑦𝑜𝑢𝑡
𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑡. 𝑙𝑎𝑦𝑜𝑢𝑡
𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑡. 𝑙𝑎𝑦𝑜𝑢𝑡

𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑜𝑟 𝑚𝑎𝑡.
𝐴𝑏𝑠𝑜𝑟𝑏𝑒𝑟 𝑚𝑎𝑡.

 

]

For the sake of completeness, the operational requirements are divided and used 

to generate the following equation. The requirements are arranged so that they resemble 

the form of an Axiomatic Design that fulfills the independence axiom. 

[

𝐻𝑖𝑔ℎ 𝑓𝑎𝑠𝑡 𝑓𝑙𝑢𝑥
𝐻𝑖𝑔ℎ 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒
𝐿𝑜𝑤 𝑝𝑜𝑤𝑒𝑟

𝑆𝑎𝑓𝑒
𝑁𝑒𝑎𝑟 − 𝑡𝑒𝑟𝑚

𝐻𝑖𝑔ℎ 𝑡ℎ𝑒𝑟𝑚. 𝑓𝑙𝑢𝑥
𝑀𝑢𝑙𝑡. 𝑐𝑜𝑜𝑙𝑎𝑛𝑡𝑠
𝐻𝑖𝑔ℎ 𝑉𝑜𝑙𝑢𝑚𝑒
𝐼𝑛𝑑𝑒𝑝. 𝑎𝑠𝑠. ]

=

[

𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
𝑋 𝑋 0 𝑋 𝑋 𝑋 𝑋 0
𝑋 𝑋 0 0 0 𝑋 𝑋 𝑋
𝑋 0 𝑋 0 0 𝑋 𝑋 𝑋
𝑋 0 0 0 0 0 0 𝑋
0 0 0 0 0 0 𝑋 𝑋
0 0 0 0 0 0 0 𝑋] [

𝑅𝑒𝑎𝑐𝑡𝑜𝑟 𝑡𝑦𝑝𝑒
𝐹𝑢𝑒𝑙 𝑡𝑦𝑝𝑒

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑜𝑟 𝑚𝑎𝑡.
𝑃𝑜𝑤𝑒𝑟

𝐶𝑅 𝑑𝑒𝑠𝑖𝑔𝑛
𝑀𝑜𝑑.𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙
𝑀𝑜𝑑. 𝑑𝑒𝑠𝑖𝑔𝑛

𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑠. ]
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While Axiomatic Design appears completely unusable with regard to neutronics 

aspects of core design, perhaps it will be more useful with regards to non-neutronics 

aspects. To examine this possibility, the following equation was created describing a 

common nuclear system. Each component of the nuclear reactor typically fulfills a single 

function.  

[

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 ℎ𝑒𝑎𝑡
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦

𝑆𝑎𝑓𝑒𝑡𝑦 𝑖𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 
] = [

𝑋 0 0
0 𝑋 0
0 0 𝑋

] [
𝑅𝑒𝑎𝑐𝑡𝑜𝑟 𝑐𝑜𝑟𝑒

𝑇𝑢𝑟𝑏𝑖𝑛𝑒
𝑅𝐶𝐶𝑆 + 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡

 ] 

The RCCS and containment are both integral to reactor safety; now they will be 

separated. The containment seeks to protect the reactor from external threats and serves 

as a last ditch protection against radioactive release to the public. The containment in 

Three Mile Island was critical in preventing the release of large amounts of radiation. The 

RCCS, or reactor core cooling system, is necessary in case normal core cooling fails. The 

phrase “in case of failure” refers to expected failure of the reactor core. If this phrase were 

not included, then the system would be more tightly coupled. The A3,1 and A4,1 positions 

would be X if the phrase “in case of failure” were to be omitted.  

[

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 ℎ𝑒𝑎𝑡
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑙𝑒𝑎𝑘𝑎𝑔𝑒 𝑖𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹𝑃 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑖𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒

] = [

𝑋 0 0 0
0 𝑋 0 0

0/𝑋 0 𝑋 0
0/𝑋 0 0 𝑋

] [

𝑅𝑒𝑎𝑐𝑡𝑜𝑟 𝑐𝑜𝑟𝑒
𝑇𝑢𝑟𝑏𝑖𝑛𝑒

𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡
𝑅𝐶𝐶𝑆

 ] 

The reactor core and turbine are different components and some additional systems 

must exist to transport heat between them. This results in a fifth design parameter and a 

fifth functional requirement, and the new equations meets the independence axiom. 
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[

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 ℎ𝑒𝑎𝑡
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦
 𝐶𝑜𝑜𝑙𝑎𝑛𝑡 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡

𝐿𝑜𝑤 𝑙𝑒𝑎𝑘𝑎𝑔𝑒 𝑤𝑖𝑡ℎ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒
𝐿𝑜𝑤 𝐹𝑃 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑤𝑖𝑡ℎ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒]

=

[

𝑋 0 0 0 0
0 𝑋 0 0 0
0 0 𝑋 0 0
0 0 0 𝑋 0
0 0 0 0 𝑋] [

𝑅𝑒𝑎𝑐𝑡𝑜𝑟 𝑐𝑜𝑟𝑒
𝑇𝑢𝑟𝑏𝑖𝑛𝑒

𝐻𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡
𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡

𝑅𝐶𝐶𝑆

 

]

If the proposed design is a PWR, then the Axiomatic Design layout could resemble 

that shown below. The reactor core generates subcooled water which exchanges heat with 

water at a lower pressure to generate steam. In the BWR, the core generates steam. System 

pressure is primarily regulated by the turbine set point valves and bypasses. The PWR 

equation is presented first while the BWR equation is presented second. The same 

functional requirements must be meet in both design but with fewer systems in the BWR. 

The desire to generate steam within the core necessitates some design changes. The largest 

changes are within the reactor system but outside the reactor core. The relocation of the 

steam separators/dryers to the reactor vessel and the development of a recirculation system 

change the design, but the overall number of design constraints is not significantly 

different from the PWR. The usage of the turbine bypass systems and valves for pressure 

regulation changes the design envelope. Such systems are included in a PWR but are of 

less significance. For these reasons, although at this stage in the design the BWR appears 

to be less promising than the PWR by the independence axiom, it does not pose any 

challenges greater than the PWR. While the PWR was developed first historically, the 

BWR was developed shortly thereafter without any hurdles.   
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𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 ℎ𝑒𝑎𝑡
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑠𝑡𝑒𝑎𝑚

𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑒 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦
𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑐𝑜𝑜𝑙𝑎𝑛𝑡

𝐿𝑜𝑤 𝑙𝑒𝑎𝑘𝑎𝑔𝑒 𝑤. 𝑓𝑎𝑖𝑙𝑢𝑟𝑒
𝐿𝑜𝑤 𝐹𝑃 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑤. 𝑓𝑎𝑖𝑙𝑢𝑟𝑒]

=

[

𝑋 0 0 0 0 0 0 0
0 𝑋 0 0 0 0 0 0
0 0 𝑋 0 0 0 0 0
0 0 0 𝑋 0 0 0 0
0 0 0 0 𝑋 0 0 0
0 0 0 0 0 𝑋 0 0
0 0 0 0 0 0 𝑋 0
0 0 0 0 0 0 0 𝑋] [

𝑅𝑒𝑎𝑐𝑡𝑜𝑟 𝑐𝑜𝑟𝑒
𝑆𝑡𝑒𝑎𝑚 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑖𝑧𝑒𝑟
𝑃𝑢𝑚𝑝𝑠
𝑇𝑢𝑟𝑏𝑖𝑛𝑒
𝑃𝑖𝑝𝑖𝑛𝑔

𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡
𝑅𝐶𝐶𝑆 ]

[

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 ℎ𝑒𝑎𝑡
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑠𝑡𝑒𝑎𝑚

𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑒 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦
𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑐𝑜𝑜𝑙𝑎𝑛𝑡

𝐿𝑜𝑤 𝑙𝑒𝑎𝑘𝑎𝑔𝑒 𝑤. 𝑓𝑎𝑖𝑙𝑢𝑟𝑒
𝐿𝑜𝑤 𝐹𝑃 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑤. 𝑓𝑎𝑖𝑙𝑢𝑟𝑒]

=

[

𝑋 0 0 0 0 0
𝑋 0 0 0 0 0
0 0 𝑋 0 0 0
0 𝑋 0 0 0 0
0 0 𝑋 0 0 0
0 0 0 𝑋 0 0
0 0 0 0 𝑋 0
0 0 0 0 0 𝑋]

[

𝑅𝑒𝑎𝑐𝑡𝑜𝑟 𝑐𝑜𝑟𝑒
𝑃𝑢𝑚𝑝𝑠
𝑇𝑢𝑟𝑏𝑖𝑛𝑒
𝑃𝑖𝑝𝑖𝑛𝑔

𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡
𝑅𝐶𝐶𝑆 ]

A.6 How to use PIRT for Engineering PIRT 

As described in Section 1.1, PIRT can be used for engineering design. PIRT 

partitions the phenomena, systems, and time scales of interest into convenient lower level 

phenomena and systems. The knowledge and importance of each phenomena in each 

system and time scale is then qualitatively judged. The qualitative judgement is translated 

into a simple numerical scale and reported. Phenomena that is unknown and importance 

is then identified. With very few modifications this process can be adapted for nuclear 

system design. Common issues within nuclear engineering include the choice of coolant 

and choice of fuel. Objectives and constraints such as cost, feasibility, safety, etc. are 

provided and each concept is judged accordingly. Based on the numerical values for each 

category some fitness can be evaluated and the appropriate design choice identified. Table 
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4.6 provides a good example of the results of a PIRT although an overall fitness is not 

calculated. PIRT for engineering design does not need to emphasize the knowledge base 

of the potential designs. PIRT for engineering design does not need to partition the 

performance requirements. It is assumed that the objective and constraints are defined well 

enough that no further partitioning is needed. If partitioning is needed, then the constraints 

or objectives have been insufficiently designed and the engineer should reconsider all 

aspects of the level of abstraction.  

 




