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ABSTRACT

Mapping the microvascular networks in the brain can lead to significant scientific and clini-

cal insights. The recent advances of high-throughput physical sectioning light microscopy have

greatly contributed to reducing the gap in neuroimaging between large-scale, low-resolution tech-

niques and small-scale, high-resolution methods. The Brain Networks Laboratory at Texas A&M

University developed a serial sectioning microscopy technique called the Knife-Edge Scanning

Microscopy (KESM) to section and image the entire mouse brain at submicrometer resolution.

The KESM can be used to obtain information about a small animal organ, such as a whole mouse

or rat brain, at submicrometer resolution of 0.6 µm × 0.7 µm × 1.0 µm voxel size. In our effort to

map the entire vascular network in the mouse brain, the Brain Networks Laboratory perfused the

mouse brain vessels with India ink, and used the KESM to image the prepared brain.

However, the image data size of the entire mouse brain from the KESM is about 1.5 TB,

and is not easy to handle or analyze. Moreover, the dataset contains unintended noise from the

serial sectioning process. Because of these difficulties, previous studies partially analyzed the

structure of the mouse brain by manually selecting a small, noise-free portion (volume size under

1000 × 1000 × 1000 voxel) in the dataset. In addition to the KESM dataset, there have been

studies for vessel reconstruction and analysis of the whole mouse brain at lower resolution or of

partial brain regions at submicrometer resolution. However, to the best of our knowledge, there has

been no study for vessel reconstruction and analysis of the whole mouse brain at submicrometer

resolution.

In this dissertation, I will present my dataset, and computational algorithms I developed to

trace and analyze morphological properties of the whole mouse brain vascular network at submi-

crometer resolution. Since the data is available across the entire brain in full detail (the smallest

capillaries can be observed in our data), it enables the comparison of regional differences in mor-

phological properties and provides the systematic cleaning to remove and consolidate erroneous

images automatically, which enables the full tracing and analysis of the whole KESM mouse brain
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dataset with richer vasculature information. I expect this dissertation can provide rich insights to

brain and neuroscience researchers.
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INTRODUCTION

Despite the long time and effort, we have not been able to pinpoint the precise cause of

Alzheimer’s Disease (AD) yet. [38, 92]. Some studies [22, 21, 24, 92] claim that AD is caused

by cerebral vascular injury. A progressive microvascular disease is an example of a major factor

in increasing the risk of stroke and vascular dementia [42, 69, 39]. In addition, vascular structure

analysis has been used in traumatic brain injury and retinal vasculature studies where classical

vascular analysis (bifurcation points, length, vessel diameter, and vessel density) was considered

[1, 66]. Therefore, the study of microvasculature structures is very important and can help the

understanding of the role of the blood vessel organization of the brain, in brain disorders, and as a

result help advances in clinical research.

It has been challenging historically mapping and imaging the whole mouse brain at submicrom-

eter resolution [4]. However, recent advances in imaging techniques have enabled brain blood

vessel studies to be conducted in ways that were previously unthinkable [43]. The Knife-Edge

Scanning Microscope (KESM) [60, 12, 13, 14] was developed by the Brain Networks Laboratory

at Texas A&M University. The KESM allows high-throughput, and high-resolution images of the

entire mouse brain. A high-speed line-scan camera captures the sectioned tissue when it passes

over the diamond knife as the top of the specimen block is being cut. The imaged voxel size in

KESM is 0.6 µm× 0.7 µm× 1.0 µm and up to ∼ 1 cm3 volume of tissue that can be imaged. The

resulting dataset size is about 1.5 TB of raw data. The KESM was used to scan the C57BL/6J

mouse brain stained with India-ink (vascular network), Golgi (neuronal morphology), and Nissl

(soma distribution).

In this dissertation, I used the C57BL/6J mouse brain stained with India-ink data set ac-

quired by the KESM for analyzing the microvascular structure. The whole-brain cerebrovascular

Part of this chapter is reprinted with permission from "Tracing and analysis of the whole mouse brain vasculature
with systematic cleaning to remove and consolidate erroneous images." by Junseok Lee, Jaewook Yoo, and Yoon-
suck Choe. 2018. 40th Annual International Conference of the IEEE. Engineering in Medicine and Biology Society
(EMBC), EMBC copyright line © 2018 under IEEE.
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data of the C57BL/6J mouse perfused with India-ink was obtained from the KESM Brain Atlas

(KESMBA) website (kesmba.cs.tamu.edu) as a sequence of 8560 coronal image slices of dimen-

sion 12000 × 12000 px, at a voxel resolution of approximately 0.6 µm laterally and 0.7 µm lon-

gitudinally by 1.0 µm axially [15]. This dataset underwent post-acquisition processing to remove

lighting defects and noise due to mechanical chatter prior to being published to the KESMBA [87].

Motivation

Whole mouse brain microvascular images at submicrometer scale can be obtained by Knife-

Edge Scanning Microscopy (KESM) [57]. However, due to the large size of the image dataset and

the noise from the serial sectioning process of the KESM, whole mouse brain vascular reconstruc-

tion and analysis with submicrometer resolution have not been achieved yet, while several previous

studies [85, 50, 64] demonstrated manually selected small noise-free portion of the KESM dataset.

In addition to the KESM dataset, there have been study [94] for vessel reconstruction and analysis

of the whole mouse brain at lower resolution or of partial brain regions at submicrometer resolu-

tion. However, to the best of my knowledge, there has been no study for vessel reconstruction and

analysis of the whole mouse brain at submicrometer resolution.

To build and analyze the full structure of the whole mouse brain at submicrometer resolution,

I propose four goals as follows: (1) Preparing a whole mouse brain dataset for 3D reconstruction.

(2) Measuring and categorizing by the vascular diameter (3) 3D tracing and geometric analysis.

(4) Convolutional Neural Network (CNN) for the automatic classification of impaired mouse brain

images.

Approach

(1) For preparing the whole mouse brain dataset, an axial direction sub-sampling method and

a convex hull masking method are proposed. First, I propose an axial direction sub-sampling

method, where averaging consecutive image pairs and replacing significant degradation images

with a blank image are used. The resulting sub-sampled images are greatly reduced in size for

visualizing and analyzing but retain more information than sub-sampled images from other sub-
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sampling methods [6, 50]. In addition, I propose a convex hull masking method to automatically

detect the boundary of the mouse brain and eliminate unnecessary information (including noise)

outside of the region of interest(ROI). This method allows me to use a more aggressive threshold

option, which results in more abundant vascular information. (2) For measuring and categorizing

by the vascular diameter of the dataset from (1), I will calculate the diameters of the mouse brain

vessels in the section images and categorize them according to the diameter sizes. Then, for trac-

ing, the center points of two vessels are connected if their cross-sectional regions are connected in

consecutive slices along the z-axis [50]. The distributions of the vessels along with different diam-

eter sizes are visualized and analyzed using the centerlines and diameters. (3) For 3D tracing and

geometry analysis, I will create a 3D reconstruction of the whole mouse brain. Then I will trace

the vascular structure using 3D Visualization Assisted Analysis (Vaa3D) [71] software. Based on

the tracing result, I will analyze geometric features of the vascular structure. (4) For the automatic

classification of impaired mouse brain images, I will apply the Convolutional Neural Network

(CNN) [45] method to the KESM dataset. I expect that using CNN could improve the classifi-

cation accuracy of the impaired images for the KESM dataset compared to the baseline method,

Support Vector Machine (SVM) [9]. Previously, significantly damaged or impaired images were

collected manually due to the low performance of automatic classifications.

I expect this dissertation to enable the full tracing and analysis of the whole mouse brain along

with the systematic cleaning to remove and consolidate erroneous images automatically. In addi-

tion, I expect this dissertation to provide rich insights into the brain for neuroscience researchers.

Organization of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, I discuss background in-

formation that is the KESM and the KESM India ink dataset. In particular, I will describe the

operational principle and process of the KESM and the characteristics and resolution of the KESM

India ink dataset.

In Chapter 3, I describe preparing a whole mouse brain data set for 3D reconstruction. I will

explain in detail the image subsampling method which can maintain more vessel information and

3



the technique which can automatically remove noise. I also use two kinds of thresholding method

to compare and analyze the results of a dataset according to the options selected when binarizing

the image.

In Chapter 4, I focus on categorizing blood vessels according to their diameter size. Then, the

categorization of the blood vessels classified according to the size of the diameter can be visualized

in 3D.

In Chapter 5, I describe tracing and geometric analysis of the blood vessels using the dataset

from Chapter 2. In particular, traces of blood vessels in 3D can be traced, and the characteristics of

blood vessels can be geometrically analyzed by obtaining the diameter, number of the bifurcation

points, surface, and volume values of the blood vessels.

In Chapter 6, I discuss the use of Convolutional Neural Network (CNN) for the automatic clas-

sification of impaired mouse brain images. Specifically, in order to overcome the inconvenience of

manually classifying images, I will design a platform and implement a system that automatically

classifies images using machine learning techniques.

In Chapter 7, I describe related works and its results for comparing and analyzing my results.

Finally, I will discuss and conclude the dissertation in Chapter 8.
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BACKGROUND

Knife-Edge Scanning microscope (KESM)

Critical gap in neuroimaging between large-scale, low-resolutions methods and small-scale,

high-resolutions techniques has been significantly addressed by recent advances in high-throughput

physical sectioning light microscopy. Knife-Edge Scanning Microscopy (KESM) is one approach

that has emerged from such an advance in neuroimaging and Table.2.1 provides the summary com-

parison of high-throughput imaging and analysis methods. Figure 2.1 shows the KESM (US patent

#6, 744, 572) [59] developed by the Brain Networks Laboratory at Texas A&M University [60].

The KESM allows obtaining high-throughput, high-resolution images of whole mouse brains at

submicrometer-level [14]. A high-speed line-scan camera captures the sectioned tissue when it

passes over the diamond knife as the top of the specimen block is being cut (Figure 2.1b). The

imaged voxel size in KESM is 0.6 µm× 0.7 µm× 1.0 µm and up to ∼ 1 cm3 volume of tissue can

be imaged within 100 hours. The resulting dataset size is about 1.5 TB of raw data. The KESM

was used to scan the C57BL/6L mouse brain stained with India-ink (vascular network) [14], Golgi

(neuronal morphology), and Nissl (soma distribution) [55].

KESM India ink dataset

Whole-brain cerebrovasculature data of the C57BL/6J mouse perfused with India-ink was ob-

tained from the KESM as a sequence of 8,560 coronal image slices of dimension 7,790 px× 6,050

px, at a voxel resolution of approximately 1.2 µm laterally and 1.4 µm longitudinally by 1.0 µm

axially [15].

Figure 2.2 illustrates the process of obtaining a tissue image using KESM. Through this pro-

cess, I get the cross section of the mouse brain image shown in Figure 2.3. Figure 2.3 is a cross

Part of this chapter is reprinted with permission from "Mapping the full vascular network in the mouse brain at
submicrometer resolution." by Junseok Lee, Wookyung An, and Yoonsuck Choe. 2017. 39th Annual International
Conference of the IEEE. Engineering in Medicine and Biology Society (EMBC), EMBC copyright line © 2018 under
IEEE.
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Table 2.1: Summary comparison of high-throughput imaging and analysis methods

Method Resolution (x,y) Resolution (z) Volume Time

All-Optical Histology [91] 0.5 µm 1 µm 1 cm3 ∼ 900 hours

KESM 0.3∼0.6 µm 0.5∼1 µm 1 cm3 ∼ 100 hours

Array Tomography [62] ∼ 0.6 µm 0.05∼0.2 µm 100 µm3 N/A

SBF-SEM* [23] ∼ 0.01 µm ∼ 0.03 µm ∼ 500µm3 N/A

ATLUM** [33] ∼ 0.01 µm 0.05 µm ∼ 2.15mm3 N/A

Adapted from [12].
*SBF-SEM (Serial Block-Face Scanning Election Microscopy)
**ATLUM (Automatic Tape-Collecting Lathe Ultramicrotome)
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(a) KESM

(b) The principle of operation

Figure 2.1: Knife-Edge Scanning Microscope (KESM). (a) Major components of the KESM are
shown: (1) high-speed line-scan camera, (2) microscope objective, (3) diamond knife assembly
and light collimator, (4) specimen tank (for water immersion imaging), (5) three-axis precision
air-bearing stage, (6) white-light microscope illuminator, (7) water pump (in the black) for the
removal of sectioned tissue, (8) PC server for stage control and image acquisition, (9) grantie base,
and (10) grantie bridge. (b) An illustration of the principle of operation of the KESM. Adapted
from [14].
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Figure 2.2: KESM tissue imaging workflow. It illustrates the process of obtaining a tissue image
using KESM. Adapted from [72].

section of the mouse brain and the black parts are blood vessel stained with India ink [14]. This

image contains noise as well as information about blood vessels, and it requires various image

processing techniques to analyze only the blood vessels portion. Figure 2.4 is the KESM India ink

data. Figure 2.4a ia a zoom-in of the vascular data (width ~ 100 µm ) and Figure 2.4b ~ Figure

2.4d are 3D visualizations of the KESM India ink sub-sampled dataset for the whole mouse brain

vasculature (width ~ 10 mm) [14].
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Figure 2.3: A cross section of the mouse brain. The black parts are vascular stained with India
ink. Coronal view (↑ : Dorsal, ↓ : Ventral).
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(a) Zoom-in (b) Saggital view (←: Anterior,→: Posterior)

(c) Horizontal view (←: Anterior,→: Posterior) (d) Coronal view (↑: Dorsal, ↓: Ventral)

Figure 2.4: KESM India ink data. (a) Zoom-in of the vascular data (width a 1.5 mm-wide block).
(b ~ d) 3D visualizations of the KESM India ink sub-sampled dataset for the whole mouse brain
vasculature (width ~ 10mm). (a) adapted from [13]. (b ~ d) adapted from [14]
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PREPARING A WHOLE MOUSE BRAIN DATA SET FOR 3D RECONSTRUCTION

Motivation

Noise in KESM data

KESM represents a classical microscope and has typical noise as such and, several other

types of noise. These entail camera alignment, lighting frequency, and small lighting irregular-

ities caused by knife vibrations during the cutting process [57]. Figure 3.1 shows lighting defects

and knife chatter. The effect of these unique noises can reduce the amount of information that can

be obtained from the image.

Typical sub-sampling method

The images (Image Z ~ Z+7 in Figure 3.2) are cross-sections of the mouse brain as shown in

Figure 2.3. Figure 3.2 describes typical sub-sampling by z-axis. Using the typical sub-sampling

method as shown in Figure 3.2a, four consecutive images (Image Z ~ Z+3) use only one image

(Image Z) while going through two stages of sub-sampling by z-axis. In addition, if the first image

(Image Z+4)of four consecutive images (Image Z+4 ~ Z+7) is a heavily damaged image as shown

in Figure 3.2b, it is removed from the dataset while undergoing the two-step sub-sampling process

by z-axis. If the image is removed in this way, it will distort the size of the mouse brain dataset.

The following image processing step proposes a down-sampling method that can take advantage

of all four consecutive images without distorting the dataset.

Part of this chapter is reprinted with permission from "Mapping the full vascular network in the mouse brain at
submicrometer resolution." by Junseok Lee, Wookyung An, and Yoonsuck Choe. 2017. 39th Annual International
Conference of the IEEE. Engineering in Medicine and Biology Society (EMBC), EMBC copyright line © 2018 under
IEEE, and from "Tracing and analysis of the whole mouse brain vasculature with systematic cleaning to remove and
consolidate erroneous images." by Junseok Lee, Jaewook Yoo, and Yoonsuck Choe. 2018. 40th Annual International
Conference of the IEEE. Engineering in Medicine and Biology Society (EMBC), EMBC copyright line © 2018 under
IEEE.
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(a) Lighting Defects (arrows)

(b) Knife Chatter (arrows)

Figure 3.1: Noise of KESM data. KESM represents a classical microscope and several other
types of noise. These entail camera alignment, lighting frequency, and small lighting irregularities
caused by knife vibrations when the cutting process. (a) shows lighting defects and (b) shows knife
chatter. Adapted from [57].
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(a) Good images

(b) Good and heavily damaged images

Figure 3.2: Typical sub-sampling methods by z-axis. (a) Four consecutive images (Image Z ~
Z+3) use only one image (Image Z) while going through two stages of sub-sampling by z-axis.
(b) In addition, if the first image (Image Z+4 )of four consecutive images (Image Z+4 ~ Z+7) is a
heavily damaged image, it removed from the dataset while undergoing the two-step sub-sampling
process by z-axis. Coronal view (↑: Dorsal, ↓: V entral).
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Figure 3.3: Z axis sub-sampling and binarization process. Z´ is the average of image Z and
Z+1. E is a blank image for replacing damaged image. Z´́ is the average of E and Z´ +1. B is the
thresholding result of Z´́ . Coronal view (↑: Dorsal, ↓: V entral). Adapted from [47].

Image processing

The resulting dataset is about 1.5 TB per brain, which poses a significant challenge for compu-

tational analysis, especially when it comes to whole mouse brain analysis. Moreover, the dataset

of the whole mouse brain include noise and irregularities owing to the serial sectioning process.

[57]. The obtained coronal image slices were subjected to median filtering [34] to reduce the light-

ing defects (Figure 3.1a) and mechanical chatter (Figure 3.1b) left-over from the post-acquisition

processing procedures. In order to analyze and visualize the huge volume data sets, sub-sampling

methods have been commonly used for reducing the computational overhead.

Sub-sampling method

I propose a sub-sampling method (Figure 3.3) that combines two consecutive images to over-

come the problems of the typical sub-sampling method (Figure 3.2) for the z-axis. I down-sampled

the filtered image stack in the axial-direction by fifty percent. This was accomplished by averag-

ing the consecutive image pairs. I then determined the heavily damaged image manually if it was
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Figure 3.4: The necessity of reordering. After the first z-axis sub-sampling, if the heavily dam-
aged images are located consecutively (Z´, Z´+1), the second z-axis subsampling causes the blank
image to remain (Z´́ ) and cannot be included in the dataset.
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Figure 3.5: Reordering of images. After the first z-axis sub-sampling in Figure 3.5, if the heavily
damaged images are located consecutively (Z´, Z´+1), a good condition image (Z´+2) is inserted
between the blank images (B, B+1) such that the blank image is not continuous by applying the
reordering technique.
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found that many parts were physically missing as shown in Image Z and Image Z+1 in Figure 3.3,

and replaced those with significant degradation with a blank image in order to maintain the depth

throughout the axially. After the first z-axis sub-sampling in Figure 3.4, if the heavily damaged im-

ages are located consecutively (Z´, Z´+1), the second z-axis sub-sampling causes the blank image

to remain (Z´́ ) and cannot be included in the dataset. Because of this problem, it is necessary to re-

order the image sequence so that the blank images are not placed consecutively before proceeding

with the second sub-sampling of the z-axis. After the first z-axis sub-sampling in Figure 3.5, if the

heavily damaged images are located consecutively (Z´, Z´+1), a good condition image (Z´+2) is

inserted between the blank images (B, B+1) such that the blank image is not continuous by apply-

ing the reordering technique. By rearranging the order of the images in this way (B, Z´+2, B+1,

Z´+3 in Figure 3.5), it is possible to obtain an image preserving the information about the blood

vessels such as Z´́ and Z´́ +1 after the second z-axis sub-sampling and eliminate the distortion of

the entire dataset size. After this second z-axis sub-sampling process, 2,140 consecutive coronal

imaging slices are obtained.

Thresholding method

The thresholding method is the simplest method of image segmentation. The threshold value

is used to make the image of the gray-scale level a binary image. A pixel having a value smaller

than the threshold value is set to 0, and a pixel having a value equal to or larger than the threshold

value is set to 1.

If f(x, y) is a pixel, g(x, y) is a threshold version of f(x, y), and T is some global threshold [19],

g(x, y) =


0 f(x, y) < T

1 f(x, y) ≥ T

(3.1)

There are many ways to determine the threshold T for image segmentation [25, 41]. As the

vascular filaments embedded in the resultant images can be isolated by pixel intensity, I employed

the global (histogram-derived) thresholding method [83] to the binarized dataset and applied the
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(a) An image sub-sampled twice along the z-axis.

(b) Histogram of image (a)

Figure 3.6: An image sub-sampled twice along the z-axis and its histogram. (a) Image sub-
sampled twice along the z-axis. (b) Histogram of the image (a). The x-axis is the gray-scale value
(0 ~255) of the pixel and the y-axis is the number of pixels corresponding to the value. (The gray
portion of the y-axis is the logarithmic scale). Adapted from [48].
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minimum [74] and Otsu’s [68] method of the threshold to the dataset to segment the vascular.

Figure 3.6 shows an image sub-sampled twice in the z-axis and a histogram of Figure 3.6a. The

minimum threshold method is to binarize the image by choosing T (Equation. 3.1, 0 ~255) as the

lowest value of the y-axis between the two local maxima as shown in Figure 3.6b.

Equations 3.2 and 3.3 represent the formula of Otsu’s threshold method. Otsu’s threshold

method chooses the T (Equation. 3.1, 0 ~255) to minimize the intraclass (within-class, Equation.

3.2) variance and to maximize the interclass (between-class, Equation. 3.3) variance of the two

local maxima as shown in Figure 3.6b.

The probability of the two classes separated by the threshold T is ω0(t) and ω1(t) (weights), σ2
0

and σ2
1 are variances of the two classes, and µ is class means.

σ2
w(T ) = ω0(T )σ

2
0(T ) + ω1(T )σ

2
1(T ) (3.2)

σ2
b (T ) = σ2 − σ2

w(T ) = ω0(µ0 − µT )
2 + ω1(µ1 − µT )

2

= ω0(T )ω1(T ) [µ0(T )− µ1(T )]
2

(3.3)

Subsequently, I down-sampled the binarized images by twenty-five percent, laterally. As frag-

mentation amongst some of the embedded filaments occur during this process, I elected to resolve

the matter through the application of morphological methods; I specifically employed morpholog-

ical closing and hole filling operations successively across the stack [30]. I then proceeded with

the extraction of the vascular filaments embedded in this processed image. By this point, I have

attained the final voxel resolution to 4.8 µm laterally and 5.6 µm longitudinally by 4.0 µm axially.

As a result of the image processing method, the raw image at 7790×6050 resolution was down-

sized to 1947×1512 resolution, and through the two step process of combining two consecutive

images, 8,460 raw images were rebuilt into a 2, 140 dataset. Fig. 3.7 is an overflow of the image

processing.
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Figure 3.7: An overview of the image processing steps. Z´ is the average of image Z and
Z+1. Z´́ is the average of Z´ and Z´+1. B is the thresholding result of Z´́ . S is a result of sub-
sampling laterally. As a result of the image processing methods, the raw image at 7790×6050
resolution was downsized to 1947×1512 resolution, and through the two step process of combin-
ing two consecutive images, 8, 460 raw images were rebuilt into a 2, 140 dataset. Coronal view
(↑: Dorsal, ↓: V entral).
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Convex hull method (Fully automated)

Motivation

The combined mouse brain image not only contains information about the vessels but also

includes noise outside the brain. Noise, in this case, is in the form of comb stripes outside the

brain as in Figure 3.6a. The noise also affects the amount of vascular information in the process of

binarization imaging.

In order to segment only the brain part from the raw image (Figure 3.8a), An et al. [6] described

the region of interest (ROI) as the brain’s inside area. They created a freehand mask (Figure 3.8b)

that manually painted an ROI boundary to remove noise outside the brain. Then, they segmented

the brain region by combining with 20 consecutive raw images per a freehand mask. This operation

requires a lot of time and effort.

(a) Raw image (b) Freehand mask (c) Segmented image

Figure 3.8: The region of interest (ROI) as the mouse brain’s inside area with Nissl stained
data. (a) Raw image. (b) Freehand mask. (c) Segmented image after applying the freehand mask
(b). A freehand mask manually painted an region of interest to remove noise outside the mouse
brain. Adapted from [5].

Background

Convex Hull [20] is the smallest convex polygon that contains all points when given multiple

points (Figure 3.9). In Figure 3.9b, when nine points from P1 to P9 are distributed, the convex
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(a) Example of convex hull.

(b) Convex hull

Figure 3.9: Convex hull method. (a) Example of a convex hull. (b) Convex hull. When nine points
from P1 to P9 are distributed, the convex hull is the minimum convex set (P9, P2, P8, P5, P4 :
polygon) containing all points. Adapted from [20].
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hull is the minimum convex set (P9, P2, P8, P5, P4 : polygon) containing all points. By using

the convex hull method, ROI free mask as shown in Figure 3.8b can be created automatically.

Approach

Figure 3.10a is a combined mouse brain image (Z´́ in Figure 3.7). The image not only contains

information about the vessels, but also includes noise in and outside the brain. In addition, this

noise also affects the amount of vascular information in the process of binarization imaging (Figure

3.11a, 3.11b). As mentioned in section 3.2.2, I used the minimum threshold method and the Otsu’s

threshold method for image binarization. By applying the minimum method, the noise outside

the brain can be removed, but information about blood vessels is also lost (Figure 3.11a). On the

other hand, when the Otsu’s threshold method is applied, as shown in Figure 3.11b, compared with

Figure 3.11a, abundant information about the blood vessel can be obtained, but the noise outside

the brain remains. Using an image obtained with the minimum method removes noise outside

the brain, but loses information about small vessels.For this reason, I would like to use the image

results obtained from the vascular information-rich, Otsu’s threshold method to create a dataset.

Using the method does not remove noise outside the brain, and making an accurate analysis of the

cerebral vascular is impossible.

To solve this problem, I propose a method to automatically create a mask to remove noise

outside the brain using the convex hull method. To apply the convex hull method, I used the image

obtained from the minimum threshold method. This image does not provide enough information

about the blood vessel, but it is detailed enough to get the shape of the brain contour. Figure

3.10d shows the resulting mask obtained by applying the convex hull method to Figure 3.10c.

Combining the images with the convex hull mask (Figure 3.10d) and the Otsu’s threshold method

(Figure 3.10e) shows that the information about the blood vessel is abundant, as shown in Figure

3.12, and the noise outside the brain is removed.
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Figure 3.10: Convex hull method (Fully automated). (a) Combined mouse brain image. (b)
Histogram of (a). The x-axis is the gray-scale value (0 ~255) of the pixel and the y-axis is the
number of pixels corresponding to the value. (The gray portion of the y-axis is the logarithmic
scale). (c) The result image of minimum threshold method. (d) Convex hull mask. (e) The result
image of Otsu’s threshold method. (f) The result image of Otsu’s threshold method with convex
hull mask. (e) showed increased blood vessel information compared to (b). Also, (e) was less
noise than (d). I propose a convex hull masking method to automatically detect the boundary of
the mouse brain and eliminate unnecessary information (including noise) outside of the region of
interest(ROI). Coronal view (↑: Dorsal, ↓: V entral).
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(a) The binarization result image of minimum threshold method

(b) The binarization result image of Otsu’s threshold method

Figure 3.11: The binarization result images. (a) The binarization result image of minimum
threshold method (b) The binarization result image of Otsu’s threshold method. (a) and (b) are
enlarged images of Figure 3.10c and 3.10e.
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Figure 3.12: Combining the image with the convex hull mask and the Otsu’s threshold
method. This is an enlarged image of Figure 3.10f and shows that the information about the
blood vessel is abundant, but the noise outside the brain is removed.
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Results and analysis

I propose an axial direction sub-sampling method, where averaging consecutive image pairs

and replacing significantly degraded images with a blank image are used. The resulting sub-

sampled images are greatly reduced in size for visualizing and analyzing, but retain more informa-

tion than sub-sampled images from other sub-sampling methods. In addition, I propose a convex

hull masking method to automatically detect the boundary of the mouse brain and eliminate unnec-

essary information (including noise) outside of the region of interest(ROI). This method allows me

to use a more aggressive threshold option, which results in more abundant vascular information.

Figure 3.12 is one of the proposed data images. Figure 3.13 and Figure 3.14 are 3D visu-

alizations of the data set in different views, and it can see that the noise outside the brain has

been removed. As a result of image processing and convex hull mask methods, the raw image at

7790×6050 resolution was downsized to 1947×1512 resolution, and through the two step process

of combining two consecutive images, 8460 raw images were rebuilt into a 2140 dataset.

Summary

In this chapter, I described the process of preparing a whole mouse brain dataset for 3D re-

construction. In order to analyze a KESM dataset, a sub-sampling method to reduce the size of

the data is needed. In order to overcome the limitations of the existing sub-sampling method, a

method of combining successive images and replacing a heavy damaged image with a blank image

has been applied. I also binarized the images using the minimum and Otsu’s threshold methods,

and created a convex hull mask that can remove noise outside the brain while obtaining an abun-

dance of information about the blood vessels. The resulting KESM dataset is expected to be useful

for analyzing the whole mouse brain microvasculature.
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(a) Otsu’s threshold method

(b) Otsu’s threshold method with convex hull mask

Figure 3.13: 3D visualization of dataset with coronal view. (↑: Dorsal, ↓: V entral). Adapted
from [48].
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(a) Otsu’s threshold method

(b) Otsu’s threshold method with convex hull mask

Figure 3.14: 3D visualization of dataset with sagittal view. (←: Anterior,→: Posterior)
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MEASURING AND CATEGORIZING BY THE VASCULAR DIAMETER

Motivation

In this chapter, I lay the foundation from which multiscale atlases characterizing cerebrovascu-

lature structural variation comprised of the KESM dataset can be constructed from KESM datasets.

Through the geometric reconstruction of the vascular filaments embedded in the volumetric imag-

ing dataset, the capability to distinguish cerebral vessels based on diameter and other morphologi-

cal properties across the whole-brain is provided. This results in a means to study local variations

in small vessel morphometry, which has a profound effect on surrounding neuronal composition in

different cerebral regions, as well as the robust and fragile aspects of the cerebrovasculature sys-

tem across the larger vessels. Based on previous studies [8, 37, 54, 17, 61], blood vessels can be

categorized as capillaries (diameter of ≤ 10 µm), medium-sized vessels (diameter of 11 ~20 µm),

or large-sized vessels (diameter of > 20 µm). Xiong et al. [96] classify the veins and arteries of the

whole mouse brain as 3 levers with diameters size (diameter < 40 µm, 40 µm < diameter < 90 µm,

diameter > 90 µm).

Method

In order to analyze the structure of the blood vessels distributed in the mouse brain, according

to the size of the blood vessel diameter, I refer to the previous studies [8, 37, 54, 17, 61, 96] and

applied the blood vessel diameter to four criteria as shown in Table. 4.1.

Figure 4.1a is a sectioned image sub-sampled and binarized with Otsu’s threshold method.

After the application of these pre-processing steps, the size of each coronal slice is 1947×1512

pixels and the resolution is 4.8 µm× 5.6 µm. To calculate the diameter of the vessel, I took advan-

tage of the features of finding the diameter of the image processing toolbox [31, 29] provided by

MATLAB [77]. Then, four criteria were applied as shown in Table. 4.1, and the corresponding

portions were extracted from the Figure 4.1 according to the diameter of the blood vessel to make

Figure 4.1b∼ e. After that, when the two vessel cross-sections are connected by a continuous slice
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Figure 4.1: Categorization of the vessel in the coronal imaging slice according to the di-
ameter size. After the application of these pre-processing steps, the size of each coronal slice
is 1947×1512 pixels and the resolution is 4.8 µm× 5.6 µm. (a) Binarized image with Otsu’s
threshold method. It is classified into four groups depending on the size of the blood ves-
sel diameter (b ∼ e). (b) Capillaries (Diameter ≤ 10.4± 0.8µm). (c) Medium-sized vessels
(10.4± 0.8µm < Diameter ≤ 20.8± 1.6µm). (d) Large-sized vessels (part1) (20.8± 1.6µm <
Diameter ≤ 41.6± 3.2µm). (e) Large-sized vessels (part2) (Diameter > 41.6± 3.2µm).
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Table 4.1: Four criteria of the blood vessel diameter (D).

Classification The size of the vessel Actual size range*

Capillaries D ≤ 10 µm D ≤ 10.4±0.8 µm

Medium− sized vessels 11 µm < D ≤ 20 µm 10.4±0.8 µm < D ≤ 20.8± 1.6µm

Large− sized vessels (part1) 21 µm < D ≤ 40 µm 20.8±1.6 µm < D ≤ 41.6± 3.2µm

Large− sized vessels (part2) D > 40 µm D > 41.6±3.2 µm

*Actual size range: Original resolution (4.8 µm× 5.6 µm) applied (4.8 µm or 5.6 µm per 1 pixel).

along the z-axis, they connect the center point of the vessel [50] and leave relevant information in

Visualization Toolkit (VTK) file format [82]. As a result, I get four categorized vessel tracing

results (Four VTK files). I also traced the vessels using the KESM dataset that used the minimum

threshold method in the same way.

Results and analysis

I qualitatively illustrate the distribution of vascular filaments by diameter size and they are

visualized by different colors for different diameter ranges (Figure 4.2). Across the whole-brain of

the C57BL/6J mouse model, the rendering of the full-scale cerebrovasculature system are shown

from the transverse plane (Figure 4.3), coronal (Figure 4.4a) and sagittal (Figure 4.4b) views. As

shown in Figure 4.2, I categorized blood vessels from capillaries (Diameter ≤ 10.4± 0.8µm) in

blue, medium-sized vessels (10.4± 0.8µm < Diameter ≤ 20.8± 1.6µm) in black, large-sized

vessels (part1) (20.8± 1.6µm < Diameter ≤ 41.6± 3.2µm) in green, and large-sized vessels

(part2) (Diameter > 41.6± 3.2µm) in red.

32



(a) Capillaries (b) Medium-sized vessels

(c) Large-sized vessels (part1) (d) Large-sized vessels (part2)

Figure 4.2: Categorized vessels according to diameter size (Otsu’s threshold method). (a)
Capillaries (Diameter ≤ 10.4± 0.8µm). (b) Medium-sized vessels (10.4± 0.8µm < D ≤
20.8± 1.6µm). (c) Large-sized vessels (part1) (20.8± 1.6µm < D ≤ 41.6± 3.2µm). (d) Large-
sized vessels (part2) (D > 41.6± 3.2µm).
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Figure 4.3: Distribution of vessels according to diameter size over the whole mouse brain
(Otsu’s threshold method). I categorized blood vessels from capillaries (Diameter ≤
10.4± 0.8µm) in blue, medium-sized vessels (10.4± 0.8µm < Diameter ≤ 20.8± 1.6µm) in
black, large-sized vessels (part1) (20.8± 1.6µm < Diameter ≤ 41.6± 3.2µm) in green, and
large-sized vessels (part2) (Diameter > 41.6± 3.2µm) in red. Transverse plane (↑: Posterior, ↓:
Anterior)
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(a) Coronal view (↑: Dorsal, ↓: Ventral)

(b) Sagittal view (←: Anterior,→: Posterior)

Figure 4.4: Distribution according to vessel diameter size with different views (Otsu’s thresh-
old method). I categorized blood vessels from capillaries (Diameter ≤ 10.4± 0.8µm) in blue,
medium-sized vessels (10.4± 0.8µm < Diameter ≤ 20.8± 1.6µm) in black, large-sized vessels
(part1) (20.8± 1.6µm < Diameter ≤ 41.6± 3.2µm) in green, and large-sized vessels (part2)
(Diameter > 41.6± 3.2µm) in red.
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(a) Capillaries (b) Medium-sized vessels

(c) large-sized vessels (part1) (d) large-sized vessels (part2)

Figure 4.5: Categorized vessels according to diameter size (Minimum threshold method).
(a) Capillaries (Diameter ≤ 10.4± 0.8µm). (b) Medium-sized vessels (10.4± 0.8µm < D ≤
20.8± 1.6µm). (c) large-sized vessels (part1) (20.8± 1.6µm < D ≤ 41.6± 3.2µm). (d) large-
sized vessels (part2) (D > 41.6± 3.2µm).
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Figure 4.6: Distribution of vessels according to diameter size over the whole mouse brain
(Minimum threshold method). I categorized blood vessels from capillaries (Diameter ≤
10.4± 0.8µm) in blue, medium-sized vessels (10.4± 0.8µm < Diameter ≤ 20.8± 1.6µm) in
black, large-sized vessels (part1) (20.8± 1.6µm < Diameter ≤ 41.6± 3.2µm) in green, and
large-sized vessels (part2) (Diameter > 41.6± 3.2µm) in red. Transverse plane (↑: Posterior, ↓:
Anterior)
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(a) Coronal view (↑: Dorsal, ↓: Ventral)

(b) Sagittal view (←: Anterior,→: Posterior)

Figure 4.7: Distribution according to vessel diameter size with different views (Minimum
threshold method). I categorized blood vessels from capillaries (Diameter ≤ 10.4± 0.8µm) in
blue, medium-sized vessels (10.4± 0.8µm < Diameter ≤ 20.8± 1.6µm) in black, large-sized
vessels (part1) (20.8± 1.6µm < Diameter ≤ 41.6± 3.2µm) in green, and large-sized vessels
(part2) (Diameter > 41.6± 3.2µm) in red.
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I used the ParaView (Data analysis and visualization software.) application [7] to visualize the

structure of the blood vessels by running the VTK files. From the transverse plane (Figure 4.3),

the cerebral vessels comprising the Circle of Willis [28] are clearly visible, as are the penetrating

vessels that serve as the bottleneck to cortical blood flow. The variability of filament size across the

cortical hemispheres is clear as I travel laterally from the midline towards the pial surface; vessel

size variations are also apparent from coronal (Figure 4.4a) and sagittal (Figure 4.4b) viewpoint.

I obtained the tracing results shown in Figure 4.5, Figure 4.6, and Figure 4.7 using the KESM

dataset of minimum threshold method in the same way.

Summary

In this chapter, I presented data illustrating how KESM-acquired datasets provide the means

to study cerebrovasculature variation across the whole-brains of small animal models. This results

can also be used in studies to compare normal healthy brains and brains damaged by disease.

Figure 4.8a shows the vascular structure of a healthy mouse brain. The whole blood vessel

is connected well, including the part of the white arrows. On the other hand, Figure 4.8b shows

the vascular structure of an ischemic mouse brain, and there are considerable parts of the blood

vessel that are incomplete, including the part with an asterisk (*) and white arrows. As a result,

we can obtain the characteristics of each brain by analyzing normal brains and diseased brains

as shown in Figure 4.9. Figure 4.9a shows the total vascular length density and shows that the

non-ischemic brain has a higher density value than the ischemic brain. Figure 4.9b shows the

vasculature length stratified by vascular diameter. When the diameter of blood vessels is less than

20 µm, the density of non-ischemic brain is larger than an ischemic brain. In particular, it can be

seen that the difference in the results is considerably large when the diameter of the blood vessel

is less than 10 µm (capillaries) [52].

Therefore, I expect that this foundation will prove invaluable towards data-driven, quantitative

investigations into the system-level architectural layout of the cerebrovasculature and surrounding

cerebral microstructures.
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(a) A healthy mouse brain

(b) An ischemic mouse brain

Figure 4.8: Vascular architecture of a healthy and an ischemic mouse brain. (a) shows the
vascular structure of a healthy mouse brain. The whole blood vessel is connected well, including
the part shown by the white arrows. (b) shows the vascular structure of an ischemic mouse brain,
and there are considerable parts of the blood vessel that are incomplete, including the part indicated
by an asterisk (*) and white arrows. Adapted from [52].
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(a) Total vasculature length density

(b) The vasculature length density stratified by vascular diameter

Figure 4.9: Comparison of vessel length density in a healthy and an ischemic mouse brain. (a)
shows the total vascular length density and shows that the non-ischemic brain has a higher density
value than the ischemic brain. (b) shows the vasculature length stratified by vascular diameter.
When the diameter of blood vessels is less than 20 µm, the density of the non-ischemic brain is
larger than of an ischemic brain. In particular, it can be seen that the difference in the results is
considerably large when the diameter of the blood vessel is less than 10 µm (capillaries). Adapted
from [52].
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3D TRACING AND GEOMETRY ANALYSIS

The stacked image obtained through KESM was made into a dataset through Chapter. 3. In

this Chapter, I describe the 3D reconstruction, tracing, and analysis of the vascular structure of the

whole mouse brain using the KESM dataset. Figure 5.1 shows the whole process of obtaining a

dataset using KESM and reconstructing it using the obtained KESM dataset. M is a ground truth,

V is a 3D volume, I is a Image stack, V̂ is an estimated data volume, and M̂ is an estimated 3D

reconstruction.

3D reconstruction of the vasculature

After creating a whole mouse brain dataset (Section. 3), I proceeded with 3D reconstruction

using the resultant images for geometric analysis and visualization of the whole mouse brain mi-

crovascular structure. Using the 3D viewer plug-in [80], which is basically provided by ImageJ

Software [25], it is possible to visualize the binarized 2D KESM dataset into 3D reconstruction.

It can stack 2D images and view them in 3D, view the whole mouse brain structure from various

directions, and also includes a zoom function. At this time, the voxel size of the KESM dataset

used is 1947× 1512× 2140 pixels and the resolution is 4.8 µm× 5.6 µm× 4.0 µm.

Tracing the vasculature

After 3D reconstruction of the vasculature, I traced the 3D microvascular network using mor-

phological analysis. Vaa3D (3D Visualization-Assisted Analysis) software [71] supports visual-

ization and analysis of microvascular features depending on voxel resolution. In order to trace the

vascular structure, I used the MOST tracing plugin [94] provided by Vaa3D, that implements the

Part of this chapter is reprinted with permission from "Mapping the full vascular network in the mouse brain at
submicrometer resolution." by Junseok Lee, Wookyung An, and Yoonsuck Choe. 2017. 39th Annual International
Conference of the IEEE. Engineering in Medicine and Biology Society (EMBC), EMBC copyright line © 2018 under
IEEE, and from "Tracing and analysis of the whole mouse brain vasculature with systematic cleaning to remove and
consolidate erroneous images." by Junseok Lee, Jaewook Yoo, and Yoonsuck Choe. 2018. 40th Annual International
Conference of the IEEE. Engineering in Medicine and Biology Society (EMBC), EMBC copyright line © 2018 under
IEEE.
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Figure 5.1: Overview of reconstruction. Ground truth of microstructure (M), Data volume (V),
Image stack (I), Estimated data volume (V̂), Estimated 3D reconstruction (M̂). ĝ-1 is an estimated
composition of the segmentation. f̂-1 is the estimated 3D reconstruction process. Adapted from
[12, 13]

Figure 5.2: Seed detection in blood vessel. (a) Binarized image. (b) The result of seed detection.
It shows the result of detecting the seed in the binarized image. The centroids of connected areas
(white parts) in a 2D binarized image were seeds (red points). Adapted from [94]
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Figure 5.3: Voxel scooping. Starting from the seed (Figure 5.2b), it scoops the voxels by repeatedly
creating clusters using the method of extending the region. Ni,k is a centroid of a scooped voxel.
Adapted from [94].
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(a) Clusters after voxel scooping

(b) The resulting centerline

Figure 5.4: The result of voxel scooping method (a) Clusters after vexel scooping. (b) The result-
ing centline. Voxel scooping until there is no unvisited region creates clusters with the structure.
By connecting the centroids (Ni,k, Figure 5.3) obtained by the voxel scooping method, a blue
centerline can be obtained. Adapted from [94].
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Figure 5.5: SWC file format. It consists of the central point, radius of the microvascular, and
information about the connectivity. Figure 5.6 shows a visualized SWC file in Vaa3d software.
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Figure 5.6: Visualization of one SWC file. It shows a result of one of the eleven sections of
vascular tracing results with 3D viewer plugin of Vaa3D.
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voxel scooping method [78].

This voxel scooping method consists of three steps as follows. To use the voxel scooping

method, (1) it needs to find the seeds in the binarized image (Figure 5.2). The centroids of con-

nected areas (white parts) in a 2D binarized image were seeds (red points). (2) Starting from the

seed, in Figure 5.3, it scoops the voxels by repeatedly creating clusters (layers of different colors)

using the method of extending the region. As shown in Figure 5.3, voxel scooping (until there is

no unvisited region) creates clusters with the structure shown in Figure 5.4a. (3) By connecting

the centroids (Ni,k, Figure 5.3) obtained by the voxel scooping method, a blue centerline can be

obtained as shown in Figure 5.4b.

In order to apply the voxel scooping method, I recovered the KESM dataset to its original

resolution (15,580 × 12,100 × 8,560 pixels) for tracing. The traced results cannot be obtained all

at once due to the limitations of computing power at submicrometer resolution (0.6 µm× 0.7 µm×

0.1 µm). For this reason, I split the KESM dataset into 11 parts and traced each part. It is necessary

to modify the value of the z coordinate to make each part unite, therefore local z coordinates were

converted to global z coordinates along with the endpoint connections for stitching the 11 SWC

files [10]. Figure 5.6 shows a result of one of the eleven sections of vascular tracing results with

3D viewer plugin [70] of Vaa3D.

After using the voxel scooping method, I can get 11 SWC files which consist of the central

point, radius of the microvascular, and information about connectivity (Figure 5.5). In addition,

I converted the SWC file format to a VTK file format for 3D visualization using ParaView soft-

ware. The 3D viewer provided by Vaa3D is limited in showing large SWC files. However, using

ParaView software does not cause any problems with running large VTK files.

2D based diameter measurement

In Figure 5.7, I used another algorithm for measuring the microvascular diameters. In the

binarized 2D images, I picked the center point (x,y coordinates) of the microvacular segments in

the same way as in Figure 5.2. Then, for each segment, distances from the center point to the

boundary pixels were measured, among which, the minimum distance was used for a radius. As
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shown in Figure 5.7a, when measuring the diameter of a blood vessel, the shortest length of the

section becomes the diameter. At this time, I doubled the binarized image size and set the x, y

resolution to 2.4 µm× 2.8 µm when measuring the radius.

Results and analysis

Figure 5.8 and 5.10 show the 3D reconstruction of the whole mouse brain microvascular struc-

ture with minimum (Figure 3.11a) and Otsu’s (including convex hull method, Figure 3.12) method

of the KESM dataset. It can be seen that the results obtained using the Otsu’s threshold method

have rich vascular information including smaller vessels more than those using the minimum

threshold method. In addition, the convex hull method removed noise outside the brain from

the KESM dataset.

Analysis of the resulting SWC files allowed me to estimate the distribution of microvascular

diameters as shown in Figure 5.9 and Figure 5.11. This is because the SWC file consists of the

central point, radius of the microvascular, and information about the connectivity (Figure 5.5). In

Figure 5.9a and Figure 5.11a, as the diameter size increases, the corresponding numbers sharply

decrease (y-axis is log scale). Figure 5.9b and Figure 5.11b show the number of blood vessels in

the categorized range according to the diameter size of the blood vessels with a percentage.

Table 5.1: Analysis of microvascular diameter (µm). Adapted from [48].

Average Median Min Max

3D Otsu’s (Figure 5.9) 10.62 9.60 9.60 192.00

3D Minimum (Figure 5.11) 13.39 9.60 9.60 140.40

2D-Based Minimum (Figure 5.7) 9.23 5.60 4.80 227.00
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(a) The length of minor axis is a diameter of the vessel. Adapted
from [49].

(b) Method for measuring the radius

Figure 5.7: 2D-Based distance to boundary for measuring diameter. (a) The length of minor
axis is a diameter of the vessel. (b) Measuring radius method. I picked the center point of the
microvacular segments. Then, for each segment, distances from the center point to the boundary
pixels were measured, among which the minimum distance was used for a radius, and twice the
radius is the diameter.
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(a) Coronal view (↑: Dorsal, ↓: Ventral)

(b) Sagittal view (←: Anterior,→: Posterior)

Figure 5.8: 3D reconstruction of a microvascular structure using the KESM dataset with
minimum threshold method. (a), (b) shows the 3D reconstruction of the microvascular network
of the whole mouse brain restored with the ImageJ software.Adapted from [47].
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(a) Vessel counts by diameter size. Adapted from [48].
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(b) Vascular counts by categorized diameter size.

Figure 5.9: Distribution of diameter The graphs of distribution of microvascular diameters using
the KESM dateset with minimum threshold method.
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(a) Coronal view (↑: Dorsal, ↓: Ventral)

(b) Sagittal view (←: Anterior,→: Posterior)

Figure 5.10: 3D reconstruction of a microvascular structure using the KESM dataset with
Otsu’s threshold method. (a), (b) shows the 3D reconstruction of the microvascular network of
the whole mouse brain restored with the ImageJ software.
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(a) Vessel counts by diameter size.

>40

Diameter ( m)

0

10

20

30

40

50

60

70

80

90

100

V
e
s
s
e
l 
c
o
u
n
t 
(%

 o
f 
to

ta
l)

(b) Vascular counts by categorized diameter size.

Figure 5.11: Distribution of diameter. The graphs of distribution of microvascular diameters
using the KESM dateset with Otsu’s threshold method.
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Table 5.1 shows the comparison results of the average, median, minimum and maximum di-

ameter values by the microvascular in 2D and 3D situations. It can be seen that there is about a

two-fold difference in value between the median and minimum between 2D and 3D. The reason

for this result is that the Vaa3d plugin measures the longest distance from the center to boundaries

of the blood vessel as a radius [71]. This difference shows that the minimum distance measured

in the binarized 2D image may not be the exact diameter of the microvascular. The average value

of the Otsu’s threshold method is smaller than that of the minimum threshold method. On the

other hand, the maximum diameter value of the Otsu’s threshold method is larger than that of the

minimum threshold method. This difference is due to the fact that I have obtained abundant infor-

mation about blood vessels using the more aggressive threshold method (Otsu’s). This also helped

to obtain information about small-sized vessels, including capillaries.

Xie et al. [95] used twelve adult male C57BL/6 mice and obtained the mean vascular diameters

of BA (basal artery), ACA (anterior cerebral artery), and MCA (middle cerebral artery) with Micro-

X-ray computerized tomography. The results were 190± 5µm, 100± 5µm, and 120± 5µm, re-

spectively. The largest diameter result (190± 5µm) is similar to my results (in Table. 5.1).

Table. 5.2 describes a geometric analysis of the total microvascular network. I divided the

KESM dataset into 11 parts to analyze the whole brain blood vessel (Figure 5.6). This table lists

the number of bifurcations and the volume of each segment with two types of threshold method

(minimum and Otsu’s). The bifurcations and the volume size when using the Otsu’s threshold

method in all segments were larger than when using the minimum threshold method. In addi-

tion, Table. 5.3 describes a geometric analysis of the microvascular network of length and surface.

Same as Table. 5.2, the length and the surface size when using the Otsu’s threshold method in all

segments were larger than when using the minimum threshold method.

Figure 5.12 and Figure 5.14 show the microvascular tracing result of the whole mouse brain

restored using two kinds of threshold methods (minimum and Otsu’s) with ParaView software.

From this result, I can confirm that the Otsu’s threshold method obtained more abundant vessel

information than the tracing result using the minimum threshold method. Figure 5.13 and Figure

55



Table 5.2: Geometric analysis of the total microvascular network

Segments No.
Minimum threshold method Otsu’s threshold method

Bifurcations Volume (µm3) Bifurcations Volume (µm3)

1 279 5,319,400 1,399 16,495,300

2 1,773 42,458,800 5,361 83,664,700

3 2,459 89,324,200 8,558 116,135,700

4 4,196 165,699,000 18,702 313,694,000

5 5,081 209,196,000 20,766 385,968,000

6 5,239 240,860,000 20,883 431,921,000

7 5,904 214,802,000 20,597 293,508,000

8 6,623 204,284,000 14,169 227,700,000

9 7,291 252,251,000 22,692 417,472,000

10 5,912 181,771,000 19,103 329,648,000

11 2,694 90,513,400 20,123 266,320,000

Total 47,451 1,696,478,800 203,406 3,328,966,700
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Table 5.3: Geometric analysis of the microvascular network of length and surface

Segments No.
Minimum threshold method Otsu’s threshold method

Length (µm) Surface (µm2) Length (µm) Surface (µm2)

1 34,857 1,408,480 147,556 5,213,160

2 214,081 9,313,500 580,142 21,996,400

3 410,220 18,349,000 1,079,710 41,348,800

4 705,703 31,245,900 2,229,000 82,362,000

5 927,198 41,092,400 2,596,870 98,217,000

6 992,270 44,961,400 2,682,450 103,525,000

7 960,776 43,053,600 2,268,020 81,862,400

8 966,280 41,929,000 1,715,530 62,438,600

9 1,003,830 45,875,400 2,580,110 99,147,600

10 811,091 36,516,700 2,140,390 81,867,500

11 407,150 17,842,300 2,148,830 76,277,800

Total 7,433,456 331,587,680 23,505,218 876,447,260
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(a) Horizontal view (←: Anterior,→: Posterior)

(b) Sagittal view (←: Posterior,→: Anterior)

Figure 5.12: Network tracing based on minimum threshold method results. (a) and (b) are
the microvascular tracing results of the whole mouse brain restored with the ParaView software.
Adapted from [47].
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(a) Enlargement of Figure 5.12a (←: Anterior,→: Posterior)

(b) Enlargement of Figure 5.12b (←: Posterior,→: Anterior)

Figure 5.13: Enlarged images of tracing based on minimum threshold method results. (a) and
(b) are the enlargements of the black rectangular part of Figure 5.12a and Figure 5.12b. Adapted
from [47].

59



(a) Horizontal view (←: Anterior,→: Posterior)

(b) Sagittal view (←: Posterior,→: Anterior)

Figure 5.14: Network tracing based on Otsu’s threshold method results. (a) and (b) are the
microvascular tracing results of the whole mouse brain restored with the ParaView software. I
was able to obtain more abundant vascular information using a more aggressive threshold option
(Otsu’s method). Adapted from [48].
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(a) Enlargement of Figure 5.14a (←: Anterior,→: Posterior)

(b) Enlargement of Figure 5.14b (←: Posterior,→: Anterior)

Figure 5.15: Enlarged images of tracing based on Otsu’s threshold method results. (a) and (b)
are the enlargements of the black rectangular part of Figure 5.14a and Figure 5.14b. Adapted from
[48].
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5.15 show the enlargement of the black rectangles in Figure 5.12 and Figure 5.14, and I can see

that when using the Otsu’s threshold method, the number of small vessels increase, and that the

larger vessels become clearer.

In conclusion, I was able to obtain richer blood vessel information and analyze the vascular

structure of the whole mouse brain when using the Otsu’s threshold method through 3D recon-

struction, tracing, analyzing the geometric results.
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CONVOLUTIONAL NEURAL NETWORK (CNN) FOR THE AUTOMATIC

CLASSIFICATION OF IMPAIRED MOUSE BRAIN IMAGES.

Motivation

In Figure. 3.3, I manually selected the heavily damaged images due to the serial sectioning

process from the KESM dataset in order to replace them with blank images. This manual operation

requires a lot of time and effort, and was used in previous studies [50, 6] with KESM datasets as

well. In this dissertation, I propose a method for the automatic classification of impaired mouse

brain images to replace the manual operation. I utilized Convolutional Neural Network (CNN)

[45, 100, 32] for the classification task. CNN is a type of Deep Learning [81] method that has been

successfully applied to image classification and object detection [27, 88] tasks such as handwritten

digit identification [44, 97], recognition of traffic signs [86], and classification of 1,000 different

object classes [40].

Background

Convolutional Neural Network (CNN)

Figure 6.1 illustrates the experiment by David Hubel and Torsten Wiesel [35, 36]. This is

an experiment to record the individual visual cortex neuron’s response in a cat given the visual

stimulation in the form of light bars shown on the screen. When they experimented with the cat,

they found that only neurons responded to only inputs at specific locations in the visual field. Also,

the responses were very specific to certain kinds of inputs, which was oriented bars. CNN was

created based on this concept of local processing with a small set of common features.

However, using multi-layer perceptron (MLP) [26, 73] or multi-layered neural network in areas

Part of this chapter is reprinted with permission from "Tracing and analysis of the whole mouse brain vasculature
with systematic cleaning to remove and consolidate erroneous images." by Junseok Lee, Jaewook Yoo, and Yoon-
suck Choe. 2018. 40th Annual International Conference of the IEEE. Engineering in Medicine and Biology Society
(EMBC), EMBC copyright line © 2018 under IEEE.
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Figure 6.1: Hubel and Wiesel’s vision experiments. This is an experiment to record the individual
visual cortex response of a cat to oriented light bar stimulation displayed on the screen. When
they experimented with the cat, they found that only neurons responded to only inputs at specific
locations in the visual field. Also, the responses were very specific to certain kinds of inputs, which
was oriented bars. Adapted from [75].
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Figure 6.2: Typical CNN architecture with convolution and subsampling layers. CNN ar-
chitecture consists of convolution and pooling (subsampling) layers optionally followed by fully
connected layers. The correlation between spatially adjacent information is extracted using a con-
volutional filter. Various feature maps can be extracted by applying multiple filters. Sub-sampling
(pooling) reduces input data size and combines with iterative filtering to obtain a global feature. In
this case, the number of parameters is reduced by sharing the free parameter (weight, bias) applied
to the entire input, thereby lowering learning time and overfitting. In other words, a salient feature
with invariance (or robustness) independent of the phase change of the input data can be derived.
Adapted from [46].

such as image recognition, MLP sees that all inputs have the same level of importance regardless

of their location. Therefore, when a fully-connected neural network is constructed using this, there

is a problem that the size of the parameter becomes extremely large. CNN also solves this problem

by local processing (receptive field) and shared weights.

Figure 6.2 shows a typical CNN architecture that consists of convolution and pooling (sub-

sampling) layers optionally followed by fully connected layers. In the field of image processing,

convolution is mainly used for filter operation, and convolution is used to implement a filter to ex-

tract specific features from an image. As shown in Figure 6.3a, that is, if the window or mask of m

by m is repeatedly performed on the entire image, an appropriate result can be obtained according

to the coefficient values of the mask.

Pooling uses only neighboring pixel values, similar to convolution, but does not require special

operations to multiply or add, as shown in Figure 6.3b. Pooling reduces the size of the image.

Typical sub-sampling methods are max pooling and average pooling. Max pooling sets the largest
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(a) Convolution process.

(b) Pooling process.

Figure 6.3: Details of convolution and pooling processes in Figure 6.2. (a) Convolution process.
If the window or mask of m by m is repeatedly performed on the entire image (n by n), an appro-
priate result (n-m+1) by (n-m+1) can be obtained according to the coefficient values of the mask.
(b) Pooling process. Pooling uses only neighboring pixel values, similar to convolution, but does
not require special operations to multiply or add. Pooling reduces the size of the image. Adapted
from [93].
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Figure 6.4: Max and average pooling methods. Typical sub-sampling methods are max pooling
and average pooling. Max pooling sets the largest value in the adjacent pixels to the new pixel
value, and average pooling sets the average value of the adjacent pixels to the new pixel value.
Adapted from [76].
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value in the adjacent pixels to the new pixel value, and average pooling sets the average value

of the adjacent pixels to the new pixel value (Figure 6.4). At the end of the various convolution

and pooling processes and flattening of layers, a high level of inference of the neural network is

performed through fully connected layers.

Finally, the correlation between spatially adjacent information is extracted using a convolu-

tional filter and various feature map can be extracted by applying multiple filters. Sub-sampling

(pooling) reduces input data size, and combines with iterative filtering to obtain a global feature.

Inception V3

CNN shows better performance with deeper networks [84, 88, 63]. Google has developed an

Inceptive module [88] that has a much deeper network depth than the architecture of Krizhevsky

et al. [40], but with 12 times fewer parameters and higher accuracy. The Inception v1 named

GoogLeNet [88] was awarded the best prize in 2014 by participating in the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC 2014) [79], which evaluates image classification technol-

ogy.

Figure 6.5 shows the Inception module. It is possible to effectively extract features of various

scales through the convolution kernels (blue rectangle) of different sizes in the inception module.

In addition, through the 1 × 1 convolution layer (yellow rectangle) used in various places inside

the Inception module, it is possible to increase the input area and depth of the network by greatly

reducing the calculation amount.

Inception V3 [89] is a model that improves the large-scale convolutions (e.g. 5× 5 or 7× 7) to

a small-sized multi-layer structure by applying the factorization method. If the 5 × 5 convolution

is replaced by two 3 × 3 convolutions as shown in Figure 6.6b, the computation is reduced by

about 28% (25:18). Figure 6.6c shows the factorization of the N × N convolution to 1 × N and

N × 1, and the computation is reduced by 33%. This improved version of Inception v3 shows

good performance in image classification and reduces image classification errors by almost half

compared to GoogLeNet.
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Figure 6.5: Inception module. It is possible to effectively extract features of various scales through
the convolution kernels (blue rectangle) of different sizes in the inception module. In addition,
through the 1 × 1 convolution layer (yellow rectangle) used in various places inside the Incep-
tion module, it is possible to increase the area and depth of the network by greatly reducing the
calculation amount. Adapted from [88].

69



(a) Original Inception module (b) Replacing each 5 × 5 convolution with two 3 × 3
convolutions.

(c) Factorization of convolution in N × N form to
1×N and N×1.

(d) Extended the filter bank outputs.

Figure 6.6: Inception V3 module. (a) Original Inception module. Inception V3 is a model that
improves the large-scale convolutions (e.g. 5×5 or 7×7) to a small-sized multi-layer structure by
applying the factorization method. (b) The 5×5 convolution is replaced by two 3×3 convolutions,
the computation is reduced by about 28% (25:18). (c) The factorization of the N x N convolution
to 1 x N and N x 1, and the computation is reduced by 33%. (d) Extended the filter bank outputs.
Adapted from [88, 89].
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(a) Concept of data augmentation

(b) Various methods of data augmentation.

Figure 6.7: Data augmentation using label preserving transformations. (a) Concept of data
augmantation. (b) Various methods of data augmentation. Adapted from [90].
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Approach / Method

The data preparation process for training the CNN model is shown in Figure. 6.9. I apply

the convex hull mask images (C) on the raw images (R) to create the masked images (M). The

convex hull masks were used to create images that focus only on the part of the mouse brain

tissue. Artificial neural networks need large amounts of training dataset to obtain effective learning

outcomes [11, 53]. Since the amount of KESM data is limited, I applied the data augmentation

[98] method to artificially increase the amount of data.

Figure 6.7 shows data augmentation using label preserving transformations. In order to artifi-

cially increase the number of KESM data, I prepared the data using the flipping and the rotating

techniques in Figure 6.7b. The images are flipped vertically, horizontally, and vertically and hor-

izontally (V, H, and VH) for data augmentation (Figure 6.9). After the preparation process, the

8,142 raw KESM images become 32,568 images that are sufficient for training and testing. 80%

of the images are used for training and 20% are used for testing. 10% from the training set is used

as a validation set.

Figure 6.10 shows the overview of the proposed method with the KESM dataset for impaired

image classification (two cases: "good" or "impaired". The Inception V3 model is utilized for

the CNN architecture. The architecture consists of 5 convolutional layers and 2 pooling layers.

For the input images of the CNN, the images from the preparation process with the resolution

of 7790×6050 are sub-sampled to the resolution of 299×299. The labels of the images ("good"

or "impaired) are provided. Also, I compared the classification accuracy of the impaired images

for the KESM datasets between the CNN and a baseline method, Support Vector Machine (SVM)

[18, 3].

Figure 6.8 illustrates the SVM, a traditional classification approach. As shown in Figure 1.1,

there are several ways (discrimination boundaries) to classify two classes -1 and +1. SVM tries to

find the best hyperplane (the maximum margin boundary) separating two classes -1 and +1 [65].
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(a) Possible solutions.

(b) The maximum margin boundary.

Figure 6.8: The motivation of Support Vector Machine (SVM). (a) Possible solutions for sep-
arating two classes -1 and +1. (b)The maximum margin boundary. SVM tries to find the best
hyperplane separating two classes -1 and +1. Adapted from [65].
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Figure 6.9: Dataset for the Convolutional Neural Network with convex hull and data augmen-
tation methods. Masked image (M) is made by covering Convex hull mask (C) on raw image (R),
and (V, H, and VH) are created by horizontal and vertical rotation. After the preparation process,
the 8,142 raw KESM images becomes 32,568 images that is sufficient for training and testing.
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Figure 6.10: Tracing of the Convolution Neural Network with KESM data set for the im-
paired image classification. The Inception V3 model is utilized for the CNN architecture. The
architecture consists of 5 convolutional layers and 2 pooling layers. For the input images of the
CNN, the images from the preparation precess (Figure 6.9) with the resolution of 7790× 6050 are
sub-sampled to the images with the resolution of 299 × 299. The labels of the images ("good" or
"impaired") are provided. Adapted from [48].
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Figure 6.11: Computational graph of Inception V3 model as visualized using TensorBoard.
The architecture consists of 5 convolutional layers and 3 pooling layers.
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Experiments

The Inception V3 model was trained using an AMD FX (tm) -8320 CPU (Eight-Core, 3.5

GHz) and a GeForce GTX TITAN X GPU (12 GB). I utilized the TensorFlow [2] framework for

the implementation of the experiments. Figure 6.11 is a computational graph of Inception V3

as visualized using TensorBoard. (TensorBoard is a visualization tools provided by TensorFlow.)

The graph architecture consists of 5 convolutional layers and 3 pooling layers. After training the

Inception V3 model, I got the accuracy value (Equation. 6.1) [67], and I can obtain true positive

(TP), true negative (TN), false positive (FP), and false negative (FN) values through evaluation

analysis (comparison of ground truth and experiment results).

Figure 6.12 is the confusion matrix. If the actual good image is a good image in the predicted

result, it is true positive (TP). If the real impaired image is a impaired image, it is true negative

(TN). False negative (FN) is a good image misclassified as an impaired image in the predicted

result, and false positive (FP) is an impaired image misclassified as a good image in the predicted

result.

Figure 6.12: Confusion matrix. If the actual good image is a good image in the predicted result, it
is true positive (TP). If the real impaired image is a impaired image, it is true negative (TN). False
negative (FN) is a good image misclassified as an impaired image in the predicted result, and false
positive (FP) is an impaired image misclassified as a good image in the predicted result.
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In addition, other features (Precision, Recall, and F1 score [67].) for performance evaluation

were obtained by referring to the following equations.

Accuracy =
TP + TN

TP + TN + FP + FN
(6.1)

Precision =
TP

TP + FP
(6.2)

Recall =
TP

TP + FN
(6.3)

F1 score = 2× Precision×Recall
Precision+Recall

(6.4)

Results and analysis

Figure 6.13, Figure 6.14, and Figure 6.15 show the training curve (4,000 (default), 8,000, and

12,000 iterations) for the CNN model, where the accuracies and cross entropies (a loss function

that shows the progress of the learning.) of the train and validation set were plotted (orange: train,

blue: validation). As the training iteration increases, the accuracy value gradually increases and

the cross entropy value gradually decreases.

Table. 6.1 shows the performance evaluation results of the image classification ("good" or

"impaired") accuracy, precision, recall, and F1 score of the trained CNN and SVM models. The

CNN model shows higher accuracy, precision, and F1 score than the SVM, which indicates that

the approach using CNN is better for classifying the impaired image data obtained from a serial

sectioning process such as the KESM dataset. In the CNN model, when the training repetition

value is set to 12,000, the corresponding values (accuracy, precision, recall, and F1 score) are

not significantly changed comparing to the training iteration value of 8,000. The performance
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evaluation graph of the image classification result is shown in Figure 6.16, and the difference can

be easily recognized.

There is room for improvement with the accuracy of 90%. Actually, even for a human, some

images are too ambiguous to be labeled as good or impaired. Therefore, as a future work, I plan to

utilize the CNN model developed recently to improve image classification accuracy.

I randomly selected and categorized image data for training (80%) and testing (20%). However,

if I selected a specific part of the image data (the anterior and posterior of the brain in Figure. 7.5)

for training (80%) and testing (20%), then the accuracies were about 61% and 87% respectively

(Table. 6.2).

This chapter presented the CNN based method for classifying good and impaired images au-

tomatically. The CNN based model showed better accuracy than the baseline model SVM on the

random dataset. I expect that this method could be of great help in screening damaged or impaired

images in future KESM datasets.

Table 6.1: Performance evaluation of SVM and CNN (%). Adapted from [48].

Support Vector Machine Convolutional Neural Network
4,000 8,000 12,000 (training iterations)

Accuracy 88.60 90.79 91.54 91.39

Precision 89.30 95.86 96.76 96.76

Recall 97.97 92.88 92.70 92.70

F1 score 93.43 94.35 94.69 94.69
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Table 6.2: Performance evaluation of CNN with a specific part of the image data (%)

Anterior of the brain data Posterior of the brain data

Accuracy 61.07 87.18

Precision 94.29 95.16

Recall 57.09 89.39

F1 score 71.12 92.19
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(a) Accuracy curve

(b) Cross entropy curve

Figure 6.13: Training curve of the CNN model with 4,000 training iterations. The accuracy
and cross entropy change during training is shown. The light colored traces in the back represent
mean standard deviation. (Orange: train, Blue: validation). Adapted from [48].
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(a) Accuracy curve

(b) Cross entropy curve

Figure 6.14: Training curve of the CNN model with 8,000 training iterations. The accuracy
and cross entropy change during training is shown. The light colored traces in the back represent
mean standard deviation. (Orange: train, Blue: validation)
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(a) Accuracy curve

(b) Cross entropy curve

Figure 6.15: Training curve of the CNN model with 12,000 training iterations. The accuracy
and cross entropy change during training is shown. The light colored traces in the back represent
mean standard deviation. (Orange: train, Blue: validation)
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Figure 6.16: Performance evaluation of SVM and CNN. The performance evaluation graph of
the image classification result is shown, and the difference can be easily recognized.
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COMPARISON OF RESULTS TO DATA FROM THE LITERATURE.

In this dissertation, I reconstructed the vascular structure of the whole mouse brain in 3D, traced

the vessel, and conducted of geometric analysis using the results obtained in the process. In order

to verify these results, it is necessary to analyze and compare the results with previous studies.

First, I compared the results of measurements of the quantity of blood vessels in the mouse brain.

Zhang et al. [51] applied the optimized CLARITY protocol [99] to quantify blood vessels

in the mouse brain. CLARITY [16] is a method to make brain tissue transparent. Figure 7.1a

shows how the whole adult mouse brain can be made transparent. After the CLARITY method,

the mouse brain is subjected to a step of extracting and analyzing the image using confocal scan-

ning microscopy. Figure 7.1b describes the visualization and quantification of the vessels network

in the sham and tMCAO (transient middle cerebral artery occlusion) mouse brain coronal sec-

tion, and the quantification of the blood vessels is about 0.8% of the mouse brain coronal section

(504 µm×504 µm×886 µm voxel dataset, tMCAO case is not considered).

3Scan, a starting company, partially analyzed the quantification of blood vessels in the mouse

brain using data obtained using their own implementation of KESM [72]. Figure 7.2A shows

3Scan’s KESM that consists of (1) the knife arm assembly, (2) the optics train and sensor, and (3)

the water bath and stages. Figure 7.2B shows the sagittal view of mouse brain. Figure 7.2c and

Figure 7.2D are the subregions samples of the forebrain and the cerebellum (gray: microvascu-

lature, red: skeleton). Figure 7.2c and Figure 7.2D used 512 µm×512 µm×72 µm voxels dataset

(0.7 µm×0.7 µm×5.0 µm resolution). The quantification of blood vessels measured were 1.07%

(forebrain) and 3.18% (cerebellum), respectively.

Wu et al. [94] applied a 3D dataset of a whole mouse brain (three male mice, C57BL/6) used to

simultaneously visualize the cells and blood vessels. Figure 7.3a is a simultaneous cross-section of

Part of this chapter is reprinted with permission from "Tracing and analysis of the whole mouse brain vasculature
with systematic cleaning to remove and consolidate erroneous images." by Junseok Lee, Jaewook Yoo, and Yoon-
suck Choe. 2018. 40th Annual International Conference of the IEEE. Engineering in Medicine and Biology Society
(EMBC), EMBC copyright line © 2018 under IEEE.
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(a) CLARITY method.

(b) Visualization and quantification of the vessels network in the sham and tMCAO mouse brain.

Figure 7.1: CLARITY method, visualization, and quantification of the vessels network in
the sham and tMCAO mouse brain coronal section. (a) shows how the whole adult mouse
brain becomes transparent. (b) is the visualization and quantification of the vessels network in
the sham and tMCAO (transient middle cerebral artery occlusion) mouse brain coronal section.
504 µm×504 µm×886 µm voxel dataset (0.99 µm×0.99 µm×2.0 µm resolution). Scale bar=1mm.
Adapted from [51].
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cells and blood vessels with 30 µm thickness of posterior direction of the mouse brain. Figure 7.3b

shows an enlarged view of the cortical region indicated by the white box in Figure 7.3a. Figure

7.3c describes a quantity of microvascular volume by cortical depth in Figure 7.3b (I, II/III, IV, V,

and VI). The red, green and blue curves point to the agranular cortex (M1), the granular (PMBSF)

and partially granular cortex (V1), respectively, and the translucent regions indicate the standard

deviations. The quantification of microvascular volume measured about 0.4% to 1.6% in cortical

regions of the mouse brain.

Figure 7.4 is the datasets for the quantification of blood vessels in the mouse brain (spinal cord,

cerebellum, and neocortex). Table 7.2, shows the measurement results of spinal cord, cerebellum,

and neocortex at 2.40%, 2.50%, and 1.40%, respectively.

I divided the whole mouse brain into 10 parts as shown in Figure 7.5, and the quantification

of each microvascular volume was obtained as shown in Table. 7.1. The quantification of each

microvascular volume ranges from 0.81% to 1.65%. I also cropped each dataset as shown in

Figure 7.6 to obtain the fractional volume. Using the fractional volumes thus obtained, the results

of the quantification of the vasculature in the mouse brain were obtained as shown in Table. 7.1.

The quantification of each microvascular volume ranges from 1.03% to 2.62%.

In Table 7.2, I compared the result of the previous study (1.4% for the neocortex) [58] with my

percentage of total volume result, and the value of the total with minimum threshold option was

low. On the other hand, value (1.37%) using the Otsu’s threshold option is similar to the previous

study. This is due to the difference in threshold options applied when binarizing the data.

Figure 7.7 is a different cropped portions of the same dataset, and Table. 7.3 shows the quan-

tification of vasculature in the fractional volumes. The distribution ranges from 1.75% to 2.74%

depending on the cropped portions. It is possible to confirm that the quantification of the blood

vessel varies depending on the cropped portions of the same dataset.

Second, I compared and analyzed the diameter of the cerebral blood vessels. In [101], they

used synchrotron radiation to study cerebral vascular architecture in rats. The synchrotron radi-

ation has a voxel size of 5.92 µm. Figure 7.8 shows the 3D digitalized angioarchitertural map
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Figure 7.2: The KESM by 3Scan and the subregion sample of interest in whole mouse brain
vasculature. (A) The KESM consists of (1) the knife arm assembly, (2) the optics train and
sensor, and (3) the water bath and stages. (B) Sagittal view of mouse brain. (C) The subregion
sample of the forebrain (gray: microvasculature, red: skeleton). (D) The subregion sample of the
cerebellum. (C) and (D) used 512 µm×512 µm×72 µm voxels dataset (0.7 µm×0.7 µm×5.0 µm
resolution). Adapted from [72].

88



(a) Simultaneous cross-section of cells and blood vessels (thickness: 30 µm, posterior direction)

(b) Enlarged view of the cortical region indi-
cated by the white box in (a).

(c) Quantity of microvascular volume by cortical depth in (b).

Figure 7.3: A dataset of a mouse brain and quantity of microvascular volume by cortical
depth (three male mice, C57BL/6). (a) Simultaneous cross-section of cells and blood ves-
sels (thickness: 30 µm, posterior direction). (b) Enlarged view of the cortical region indicated
by the white box in (a). (c) Quantity of microvascular volume by cortical depth in (b). The
red, green and blue curves point to the agranular cortex (M1), the granular (PMBSF) and par-
tially granular cortex (V1), respectively, and the translucent regions mean the standard devia-
tions. 600 µm×600 µm×920 µm voxels dataset (0.4 µm×0.35 µm×1.0 µm resolution). Adapted
from [94].
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Figure 7.4: The datasets of a mouse brain (earlier KESM study). (a) Spinal cord. (b) A capillary
network in the cerebellum. (c) A capillary network in the neocortex. 512 µm×512 µm×512 µm
voxels dataset (0.6 µm×0.7 µm×1.0 µm resolution). Adapted from [56].
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and distribution of blood vessel diameter size of the whole rat brain. Figure 7.8b describes the

distribution percentage of blood vessel diameter size of the whole rat brain. They mentioned ap-

proximately 90% of the blood vessels are smaller than 30 µm in diameter. Similar results can be

seen in Figure 5.11b, where the distribution of blood vessel size smaller than 30 micrometers in

diameter is approximately 99%.

In conclusion, I can confirm that the results of the above-mentioned studies are included in the

category of blood vessel quantification in the whole mouse brain I obtained. The differences in the

quantification results of the blood vessels are considered to be different depending on the cropped

position, volume voxel size, and image resolution. Of course, there are differences between mouse

and rat datasets, but my results can prove that my dataset is abundant in smaller-sized cerebrovas-

cular information. Furthermore, I also can quickly obtain the quantification of each microvascular

volume at the desired region of the mouse brain.
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Figure 7.5: A whole mouse brain divided into 10 parts. Anterior to posterior was divided into
10 parts. The last posterior part (blue) consists of 234 images, and the remaining 9 parts consist of
200 images. (←: Anterior,→: Posterior)
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Figure 7.6: Cropped portion of each dataset. Left-to-right, top-to-bottom shows the
cropped portion (yellow square) of each dataset. 200 µm×200 µm×200 µm voxel dataset
(4.8 µm×5.6 µm×4.0 µm resolution).
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(a) (b)

(c)

Figure 7.7: Different cropped portions of the same dataset (part 9). 200 µm×200 µm×200 µm
voxel dataset (4.8 µm×5.6 µm×4.0 µm resolution).
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Table 7.1: Analysis of quantity of microvascular network (% of total)

Parts Volume for each part (Figure 7.5) Fractional volume (Figure 7.6)

1 0.81 1.34

2 1.21 2.62

3 1.13 1.55

4 1.39 2.32

5 1.23 1.03

6 1.22 1.83

7 1.47 1.10

8 1.17 1.20

9 1.49 1.75

10 1.65 1.53
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(a) Whole rat brain maps

(b) Distribution of blood vessel diameter size

Figure 7.8: 3D digitalized angioarchitertural map and distribution of blood vessel diameter
size of the whole rat brain. (a) The horizontal view of the whole rat brain with the 3D recon-
structed (200 serial slice-by-slice respectively). Sclae bar: 3000 µm. (b) Distribution percentage of
blood vessel diameter size of the whole rat brain. Adapted from [101].
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Table 7.2: Analysis of total microvascular network. Adapted from [48].

3D (whole) Mayerich’s [56] (512 µm×512 µm×512 µm)

Minimum Otsu’s Spinal Cord Celebellum Neocortex

Volume (% of total) 0.71 1.37 2.40 2.50 1.40

Table 7.3: Analysis of quantity of different cropped portions of the same dataset

Figure 7.7a Figure 7.7b Figure 7.7c

Volume (% of total) 1.75 1.92 2.74
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DISCUSSION AND CONCLUSION

In Chapter. 5, I divided the dataset into 10 parts to obtain the results of the blood vessel tracing

for the whole mouse brain and combined each of the results into one. There are some cases in

which the tracing results of the blood vessels are well connected as shown in Figure. 8.1a. How-

ever, some parts of the blood vessels that are not completely connected as shown in Figure. 8.1b.

I need a stitching method for partly traced vasculature results to be connected while considering

the starting and ending points in future work. Another way to obtain the tracing results is to get

the tracing results of the whole brain blood vessels at once, using a further subsampled data set.

Figure. 8.2 shows the tracing results obtained at once. The tracing results for visualization can be

obtained in a single file, but for geometric analysis, I still need to split the dataset and analyze the

partial results.

The future works can be summarized as follows. (1) Topological analysis of the reconstructed

vascular network. (2) Stitching 11 vascular tracing results into one while considering the starting

and ending points. (3) Analyzing the results by applying different models of CNN architecture.

(4) Making a dataset using more sophisticated threshold method. (better than Otsu’s)

In my dissertation, to build and analyze the full structure of the whole mouse brain at submi-

crometer resolution, I have to complete four goals. (1) For preparing a whole mouse brain dataset,

I proposed an axial direction sub-sampling method, where averaging consecutive image pairs and

replacing significant degraded images with a blank image were used. The resulting sub-sampled

images are greatly reduced in size for visualizing and analyzing, but retain more information than

sub-sampled images from other sub-sampling methods. In addition, I proposed a convex hull

masking method to automatically detect the boundary of the mouse brain and eliminate unneces-

sary information (including noise) outside of the region of interest (ROI). This method allows me

to use a more aggressive threshold option, which results in more abundant vascular information.

As a result of image processing and convex hull mask methods, the raw image at 7790×6050 res-

olution was downsized to 1947×1512 resolution, and through the two step process of combining
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(a) A well-connected image.

(b) An incomplete connection image.

Figure 8.1: Traced vasculature results near the boundary of two data sets (6 and 7 in Figure.
7.5). (a) shows a well-connected image. (b) shows an incomplete connection image.
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(a) Horizontal view (←: Anterior,→: Posterior)

(b) Sagittal view (←: Posterior,→: Anterior)

Figure 8.2: Network tracing results of a whole mouse brain vasculature at submicrometer
resolution. (a) and (b) are the microvascular tracing results of the whole mouse brain restored
with the ParaView software. I was able to obtain one VTK file as a result of tracing the entire
cerebral vessels.
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two consecutive images 8, 460 raw images were rebuilt into a 2, 140 dataset.

(2) For measuring and categorizing by the vascular diameter of the KESM dataset from goal (1),

I calculated the diameters of the mouse brain vessels in the sections images and categorized them

according to the diameter sizes (capillaries: Diameter ≤ 10.4± 0.8µm, medium-sized vessels:

10.4± 0.8µm < Diameter ≤ 20.8± 1.6µm, large-sized vessels: 20.8± 1.6µm < Diameter ≤

41.6± 3.2µm, and veins and arteries: Diameter > 41.6± 3.2µm). Then, for tracing, the center

lines were extracted by connecting the center points of two vessels if their cross-sectional regions

are connected in consecutive slices along the z-axis. The distribution of the vessels along with

different diameter sizes were visualized and analyzed using the centerlines and diameters.

(3) For 3D tracing and geometric analysis, I created a 3D reconstruction of the whole mouse

brain vessels and trace the vascular structure of it. From the tracing result, the geometrical features

(diameter, number of bifurcation point, length, surface, and volume) of the whole brain vascu-

lar structure were analyzed. I was able to obtain richer blood vessel information and analyze

the vascular structure of the whole mouse brain when using Otsu’s threshold method through 3D

reconstruction, tracing, and the total percentage of volume results.

(4) I proposed a CNN based method to automatically classify impaired mouse brain images in

the KESM dataset. I could get performance evaluation results of the image classification ("good"

and "impaired") accuracy, precision, recall, and F1 score of the trained CNN and SVM models.

The CNN model showed higher accuracy, precision, and F1 score than that of the SVM ones, which

indicates that the approach using CNN is better for classifying the impaired image data obtained

from a serial sectioning process such as the KESM dataset. The accuracy, precision, recall and F1

score of image classification by the CNN model when the training iteration value is set to 4,000,

8,000 and 12,000, confirm that the change of the corresponding values is not large even if the

training iteration value is increased. I expect that this method could be a great help in screening

damaged or impaired images in the future KESM datasets.

Overall, the studies in this dissertation enable the full tracing and analysis of the whole mouse

brain at submicrometer resolution along with the systematic cleaning to remove and consolidate
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erroneous images, automatically. I expect the results of this dissertation can provide rich insights

into the brain for neuroscience researchers.
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