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ABSTRACT

A large amount of nanomaterial characterization data has been routinely collected by

using electron microscopes and stored in image or video formats. A bottleneck in mak-

ing effective use of the image/video data is the lack of the development of sophisticated

data science methods capable of unlocking valuable material pertinent information buried

in the raw data. To address this problem, the research of this dissertation begins with

understanding the physical mechanisms behind the concerned process to determine why

the generic methods fall short. Afterwards, it designs and improves image processing

and statistical modeling tools to address the practical challenges. Specifically, this dis-

sertation consists of two main tasks: extracting useful information from images or videos

of nanomaterials captured by electron microscopes, and designing analytical methods for

modeling/monitoring the dynamic growth of nanoparticles. In the first task, a two-pipeline

framework is proposed to fuse two kinds of image information for nanoscale object de-

tection that can accurately identify and measure nanoparticles in transmission electron

microscope (TEM) images of high noise and low contrast. To handle the second task of

analyzing nanoparticle growth, this dissertation develops dynamic nonparametric models

for time-varying probability density functions (PDFs) estimation. Unlike simple statistics,

a PDF contains fuller information about the nanoscale objects of interests. Characteriz-

ing the dynamic changes of the PDF as the nanoparticles grow into different sizes and

morph into different shapes, the proposed nonparametric methods are capable of analyz-

ing an in situ TEM video to delineate growth stages in a retrospective analysis, or tracking

the nanoparticle growth process in a prospective analysis. The resulting analytic methods

have applications in areas beyond the nanoparticle growth process such as the image-based

process control tasks in additive manufacturing.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Motivation

Thanks to fast-developing nanotechnology, advanced manufacturing can produce ma-

terials with special mechanical, electrical, and optical properties by mixing nanoscale par-

ticles into the host materials. The recent progress in dynamic nanoscale imaging technolo-

gies, e.g., the introduction of in situ transmission electron microscope (TEM) imaging [1],

provides powerful tools to analyze and monitor the nanomanufacturing processes. By tak-

ing dynamic nanoscale images, in situ TEM enables us to observe the nanoparticle growth

pathways directly and provides an unprecedented opportunity for material scientists to

look closely into the nanoscale world.

Microscopic images

Transmission
electron microscope

In situ sample
holder

Figure 1.1: The structure of an in situ TEM.
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Figure 1.1 illustrates the basic structure of an in situ TEM. Material scientists put a

growth solution into an in situ sample holder that is about 200nm in thickness. After the

growth is initialized, the TEM will capture the process in the solution by taking consec-

utive images. The current in situ TEMs can take 15 image frames per second and the

resolution of each frame can run up to 1000× 1000 pixels.

In this dissertation, our research focuses on the nanoparticle self-assembly process

[3, 4], illustrated in Figure 1.2. Initialized by an electron beam, small building blocks,

like atoms, ions and molecules, form into cores simultaneously in a solution. Under cer-

tain conditions, the cores continue to grow into particles with an ordered structure. When

the process is completed, nano-super-lattices [5] with unique properties are obtained. The

self-assembly process is considered as one of the promising bottom-up methods for the

large-scale nanomanufacturing process. However, due to the randomness in the process,

the self-assembled nanoparticles tend to have a size/shape distribution with large variance.

A control strategy should be applied to the self-assembly process to ensure a concentrat-

ed size/shape distribution. To enable this type of process control, it becomes almost a

prerequisite to first develop a data-driven, dynamic model that can track and anticipate

nanoparticle growth.

Figure 1.2: Illustration of the nanoparticle self-assembly growth process.

To develop such a dynamic model, our research objective entails three tasks: (1) a
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robust processing of static TEM images that have poor image quality, (2) a retrospective

analysis of in situ TEM videos, and (3) a prospective analysis of in situ TEM videos.

We begin with an algorithm that can detect nanoparticles from a noisy background in

low-quality TEM images for measuring their properties. This work lays the basis for the

two subsequent tasks, as the individual frames of in situ TEM videos are usually images

with heavy noise. Centering on off-line TEM videos, our second task is to propose a

retrospective analyzing framework. With the estimated growth trajectory from an entire

TEM video, we can signal possible stage changes in the process and delineate the stages

of growth, providing valuable information to aid material scientists in their discoveries.

Our third task is a prospective analysis for in situ TEM videos. We develop a dynamic and

forward-looking model that can track the nanoparticles’ growth trajectory as they progress.

Our dynamic model functions like a Kalman filter in modern control systems, helping us

identify the necessary adjustments and control actions to produce nanoparticles of desired

shapes and/or sizes. The interrelationship of the three tasks is shown in Figure 1.3.

Data Science Methods on Dynamic TEM Videos

Robust Nanoparticle Detection from TEM Images

Retrospective (Offline) Analysis Prospective (Online) Analysis

Figure 1.3: The interrelationship of the proposed methods for dynamic nanoimaging data.
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1.2 Static and Dynamic TEM Image Processing

1.2.1 Static TEM Image Processing

To analyze in situ TEM videos, the first step is to detect and measure nanoparticles

from each image frame. While there is plenty of research on object detection in comput-

er science, not many dedicated methods for nanoparticle detection have been developed.

One of the commonly used tools for analyzing nanoimages is ImageJ [6], a freeware

developed by the National Institutes of Health (NIH). However, this tool was devised for

bioimage processing to detect cells and neurons from microscopic images. When we apply

ImageJ to nanoimages, the results of nanoparticle detection are usually not satisfying.

The major challenge encountered is segmenting the overlapping particles. Unlike cells,

nanoparticles do not have observable nuclei, the presence of which can give strong clues

for separating two cells. Without such clues, it becomes much more difficult to segment

the overlapping nanoparticles and infer their contours and shapes.

To overcome this challenge, specialized algorithms have been developed to detec-

t nanoparticles from TEM images and identify their shapes. Park et al. [7] proposed a

three-stage approach to overcome the challenge. First, it separates overlapping particles

based on the criterion that nanoparticles tend to have convex shapes. Then with functional

principle component analysis (PCA) [8], the whole contours of particles are recovered,

and their shapes are classified via a k-nearest neighbors (K-NN) method. Park et al. [9]

proposed to combine the contour recovery and shape classification by a learning approach.

The contours are represented by a Gaussian mixture model of B-splines, and the missing

contours and shape classes are jointly learned by the expectation-conditional maximization

(ECM) algorithm [10]. Furthermore, Konomi et al. [11] provided a Bayesian framework

for shape analysis. A dictionary of the predetermined shape families is learned from the

training TEM images. Then a marked-point process [12] is established to represent the
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particles, where the markers determine the shape information and the points indicate the

locations. The process can be inferred through a Markov chain Monte Carlo (MCMC)

method, and the morphology characteristics of nanoparticles are classified automatically.

The methods discussed above have shown good performance when applied to TEM

images with relative low noise and high quality. When we apply them to images of high

noise and low contrast, which are common for images in in situ TEM videos, the detection

results are unsatisfactory. Because nanoparticle detection is the foundation of further video

analysis, it is critical to have a detecting algorithm with both robustness and accuracy. In

the first task of this dissertation, we will focus on detecting nanoparticles from noisy and

low-contrast TEM images.

1.2.2 Dynamic TEM Image Processing

After we identify and measure nanoparticles from image frames of in situ TEM videos,

the next step is to model and analyze the dynamic growth process. In computer science,

video monitoring is usually accomplished by multiple object tracking. The motion of each

individual object is tracked through the video, then the characteristics and interactions of

all the objects are summarized to model the dynamic process. The method based on object

tracking is widely used to monitor vehicles and people in traffic and surveillance videos

[13, 14].

Researchers have proposed dynamic methods to model an individual particle’s growth

pathway observed in TEM videos. Park et al. [15] proposed a Bayesian algorithm to char-

acterize the growth pathway with non-longitudinal TEM images. The contours of nanopar-

ticles are represented by a Gaussian mixture model of B-splines with a non-decreasing

constraint, and then their multiple possible pathways are modeled by a Dirichlet process.

After the parameters of the Bayesian model are learned from TEM images captured at dif-

ferent times, the major growth trajectories of nanoparticles through the growth process are
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identified automatically. Park et al. [16] proposed another method to track the interactions

of different nanoparticles. After the particles on each image frame are detected, all the

possible interactions between neighboring particles are formulated as an energy function.

By optimizing the energy function through all the video frames, Park et al. [16] detected

the interactions that occurred in the process and track the growth pathway of any individual

nanoparticle.

However, when the quality of TEM videos is low, accurately tracking each nanoparti-

cle becomes difficult, if not impossible. Unlike people or vehicles in surveillance videos,

nanoparticles lack trackable features. Moreover, tracking every single particle may not be

necessary. In fact, material scientists care more about the collective behaviors of nanopar-

ticles, reflected more fully in the dynamic probability density function (PDF) of particles’

sizes that evolves in a particle growth process. To model the dynamic particle size distri-

bution, we develop both offline and online methods to learn the time-varying PDF from

the nanoparticle images captured in in situ TEM videos.

1.2.3 Statistical Methods for Learning Dynamic Distribution

In statistics research, there are two schools of thought to characterize a PDF from

observations: parametric methods and non-parametric ones. As no parametric model can

fit all possible PDFs of an unknown growth process, we will focus on those non-parametric

methods in this dissertation. The kernel estimator [17] and penalized B-splines [18] are

two popular non-parametric density estimation methods. The kernel estimator calculates

a summation of local kernels around all the observations to obtain the PDF, while B-

splines fit a smooth curve represented by a linear combination of basis from the observed

histogram. Both methods show strong capabilities to estimate a static PDF, but it is still a

challenging problem to extend them for a dynamic PDF estimation.

Recent works [19, 20, 21, 22] proposed a state-space method to model a time-varying
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PDF, shown in Figure 1.4. A hidden variable αt changes through time, indicating the

underlying dynamics of the process, and a PDF Fαt(r) will change accordingly. At each

time, we will observe rit following the corresponding Fαt(r). To implement the frame-

work, we would like to establish a non-parametric model between αt and Fαt(r), and

estimate them efficiently from the observed rit.

Latent Variables 

Probability

Density Functions

Observations

𝛼𝑡−1 𝛼𝑡 𝛼𝑡+1

𝑟𝑖(𝑡−1)

𝐹𝛼𝑡−1(𝑟)

𝑟𝑖𝑡

𝐹𝛼𝑡(𝑟)

𝑟𝑖(𝑡+1)

𝐹𝛼𝑡+1(𝑟)

Figure 1.4: The state-space model for esimating a time-varying distribution function.

The existing methods adopt different approaches to address these two tasks. In [20,

22], Fαt(r) is represented by a kernel estimator while αt is the weights of the local ker-

nels. The hidden states and the distributions are then estimated by sampling their posterior

distributions via MCMC. In [19, 21], Fαt(r) is approximated by the observed histograms

while αt indicates their underlying means. A particle filter [23] is devised to estimate

αt from the observations. However, neither of the existing approaches meet the online

requirements for a prospective analysis. Both methods estimate the distribution by a sam-

pling algorithm, which tends to have high computational complexity when the dimension

αt becomes large. In the second and third tasks of this dissertation, we develop both ret-

rospective and prospective methods based on a B-spline model [18]. One advantage of

our proposed approach is that the resulting methods can estimate the time-varying PDF of
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particle size efficiently and model the dynamics of self-assembly growth effectively.

As this point it is appropriate to highlight the difference between the retrospective and

prospective model. In the retrospective analysis, the goal is to estimate the time-varying

distribution from all the data captured in a finished process, whereas in the prospective

analysis, we focus on an ongoing process and monitor the growth status by estimating the

evolving particle size distribution. Speed is very essential for the prospective analysis: the

estimation should be fast enough to catch up with the video’s updating that is as fast as 15

frames per second for the video data we have at hand. By contrast, while a fast method is

always desired, processing speed is not essential in the retrospective analysis.

1.3 Structure of This Dissertation

The structure of the following chapters is as follows. In Chapter 2, we present a

nanoparticle detection method for TEM images of heavy noise and low contrast. To im-

prove the accuracy and robustness of the detection, we propose a two-pipeline framework,

in which one pipeline mainly uses intensity-based information for detection, while the

other one focuses on gradient-based information. Then, we formulate a binary integer

programming (BIP) problem to select particles from two sets of results detected by the

two pipelines. We test the proposed method on a wide range of TEM images, and the ex-

perimental results show that it can improve the detection accuracy significantly compared

to methods that only use one kind of image information.

In Chapter 3, we present the retrospective analysis for the in situ TEM videos. After the

particles are detected from the video, we estimate the time-varying PDF of nanoparticle

size from all the video frames. The PDF is represented by a penalized B-spline model and

the coefficients of the basis functions are estimated by the alternating direction method of

multipliers (ADMM) [24]. Then a robust change point detection method is proposed to

select the significant change points and identify possible growth stage changes during the
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process. The detection results are consistent with the discoveries made in [1]. A sensitivity

analysis shows that the proposed method is robust to the change of the tuning parameters.

We build a hybrid model to describe the multi-stage growth process by combining the

physics model of each stage. The hybrid model shows better accuracy than any single-

stage growth models.

In Chapter 4, we introduce the work of the prospective analysis. With the B-spline

representation, a state-space model is built to describe the change of the PDF of the par-

ticle sizes. Then a fast, closed-form expression is developed to update the particle size

distribution online. While the use of a space state model ensures the temporal continuity

of the estimation, we need another constraint to guarantee the curve’s smoothness. For

this purpose, we reformulate our state-space model and allow a penalty on the second-

order difference of the state vector to be naturally incorporated in the new formulation.

A Bayesian method is conducted to estimate the system parameters from the first several

seconds of the video. We apply the proposed method to three different in situ TEM videos

and obtain insightful tracking results of the nanoparticle growth status. In out-of-sample

testing, we demonstrate that our estimation achieves better performance compared to those

without the constraints of the curve smoothness or temporal continuity.

Finally, we summarize our major contributions in Chapter 5 and also discuss future

extensions of the existing work in both application and methodology areas.
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2. ROBUST NANOPARTICLES DETECTION FROM NOISY BACKGROUND BY

FUSING COMPLEMENTARY IMAGE INFORMATION1

Chapter 2 studies the problem of detecting the presence of nanoparticles in noisy TEM

images and then fitting each nanoparticle with an elliptic shape model. In order to achieve

robustness while handling low contrast and high noise in the TEM images, we propose

an approach to fuse two kinds of complementary image information, namely the pixel

intensity and the gradient (the first derivative in intensity). Our approach entails two main

steps: (a) the first step is to, after necessary pre-processing, employ both intensity-based

information and gradient-based information to process the same TEM image and produce

two independent sets of results; (b) the subsequent step is to formulate a binary integer

programming (BIP) problem for conflict resolution among the two sets of results. Solving

the BIP problem determines the final nanoparticle identification. We apply our method to

a set of TEM images taken under different microscopic resolutions and noise levels. The

empirical results show the merit of the proposed method: it can process a TEM image of

1024× 1024 pixels in a few minutes, and the processed outcomes appear rather robust.

2.1 Introduction

As more and more nanoparticle-embedded materials are moved from labs to commer-

cial use, we witness an increasing need for automated nanoparticle detection and char-

acterization based on the electron microscopic images of nanoparticles [1, 2, 25]. The

images include those from both TEM and SEM. Once the images are processed, material

scientists would like to characterize the morphology of nanoparticles, or to quantify the

1Reprinted with permission from Y. Qian, J. Z. Huang, X. Li, and Y. Ding, “Robust nanoparticles detec-
tion from noisy background by fusing complementary image information,” IEEE Transactions on Image Pro-
cessing, vol. 25, no. 12, pp. 5713–5726, 2016. https://doi.org/10.1109/TIP.2016.2614127,
Copyright c© 2016 by IEEE.
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dispersion of nanoparticles in the host material, as both traits are believed to have pro-

found impact on the final material properties [26, 27]. To achieve these goals, the first job

is to locate individual nanoparticles as accurately as possible, and then to characterize the

shape and size of the nanoparticles. As such, automated detection and characterization of

nanoparticles play important roles on nanomaterial exploration and production.

Park et al. [9] summarized the challenges associated with detection and characteriza-

tion of nanoparticles from TEM images. The challenges lie in the facts that the nanopar-

ticles are numerous and overlapped, and the variety of their shapes and sizes is also large.

Park et al. [9] reviewed a number of image processing methods, including watershed trans-

forms with different stopping criteria [28, 29], sliding band filter [30], graph cut [31],

active contour [32], iterative voting [33], and a multiscale morphological method (a so-

phisticated variant of watershed) [34]. They argued that these methods cannot be directly

applied to the TEM images due to the technical challenges mentioned above. Park and

his colleagues [9, 7] proposed image processing and shape analysis approaches, tailored

to nanoparticle image processing. There are also some recent developments on detecting

and measuring nanoparticles in TEM images. Yang and Ahuja [35] proposed a segmen-

tation method to isolate the granular objects using a local density clustering and gradient

barrier watershed. De Temmerman et al. [36] designed a semi-automatic approach to mea-

sure the size of the primary particles in the TEM images of powdered nanomaterials, also

relying on the watershed transfer for segmentation. Muneesawang and Sirisathitkul [37]

proposed a multi-level segmentation method for identifying nanoparticles. They applied a

k-means method to segment the TEM image into several layers and then produced multi-

ple binary images associated with different thresholds. After that, they separated particles

by applying the watershed method to each binary image and merged the results to remove

over-segmentations. Overall, these developments advance the state of the art in handling

TEM images for material characterization and exploration. However, when we try to ap-
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ply these methods to a set of TEM images at hand, the resulting performances are not

satisfactory. In particular, the quality of detection and characterization is not robust under

different resolutions and noise patterns. To understand the reason, we should discuss the

difference between the TEM images we have and the images processed in those works.

Our TEM images are taken from an important kind of nanocomposite, which has

bisphenol-F epoxy resin as the host material, blended with silicon dioxide nanoparticles

through a sol-gel process [38]. With epoxy resin as the polymer matrix and nanosilica as

the nanofiller, it has enhanced mechanical properties such as modulus, hardness and frac-

ture toughness while maintaining the optical properties (e.g., transparency), and is widely

used in both academic research and in industrial applications [39]. To attain a TEM im-

age for such material, one typically takes a thin slice of sample, which has the thickness

of 50 to 100 nanometers (nm) and is transparent to naked eyes. The slice is thin enough

for electrons to pass through, producing an image. Two examples of the TEM images,

under different instrumental resolutions, are shown in Figure 2.1, labeled as “F3-2_7" and

“F10_8", respectively. In the images, the darker dots represent the nanoparticles, whereas

the gray background represents the host material.

(a) F3-2_7 (b) F10_8

Figure 2.1: Two examples of the TEM images of silica nanoparticles.
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Compared with the nanoparticle images processed in [9, 7, 35, 36, 37], the TEM im-

ages at our disposal have much lower contrast and higher level of noises. This is due to

the fact that our nanoparticles are silica particles, whose ability of shielding off or bounc-

ing back electrons from passing through is weaker than metallic particles, and the silica

particles are blended in a solid host material, whose density is not much less than the parti-

cles themselves. Meanwhile, the nonuniformity of the resin makes the background uneven

(see Fig. 2.12(d)). By comparison, the nanoparticles used in most of the above-referenced

works are metal ones, e.g., Au in [9, 7], Ti in [36] and FePt in [37]. Those metal particles,

considering its large mass, are particularly potent in bouncing back electrons, producing

a sharp contrast between the particles and the background. The noisy nature of our TEM

images makes the detection and characterization task more challenging. In this chapter,

our focus is to develop a new method for image segmentation targeting on the nanoparticle

detection problem in noisy and low contrast TEM images.

There are two kinds of information commonly used for image segmentation: the inten-

sity information and the gradient information [40, 41]. The intensity-based approach is to

classify the pixels with similar intensity to the same category (be it an object or the back-

ground). The gradient-based information is calculated as the first-order derivative of the

pixel intensity, signaling the magnitude of change along the way. A large gradient implies

an edge (or a boundary, or a contour) separating an object from the background. To our

best knowledge, many existing nanoparticle detection methods, for instance, [7, 42, 36, 37]

among others, make primary use of one kind of image information (the use of intensity is

more popular), causing them to only work well in certain circumstances. A natural remedy

for that problem is an effective use of both kinds of image information.

The desire of combining the two kinds of image information has been raised. One

strategy of combining information is to use different kinds of information sequentially, i.e.

amend or enhance the segmentation results coming from the one kind of information by the
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other. For example, the method in [43] first over-segments an object based on the intensity

and then subsequently removes false boundaries by using gradient information. Another

example is the boundary refinement method [44], in which the initial boundary of an object

comes from the intensity information, and the boundary is then adjusted by taking into

account the gradient of pixel intensity. In the recent development, the sequential strategy

is also tailored to handle specifically nanoparticle images. For instance, the approach

in [9] is to first segment the foreground based on pixel intensity and find the location

of centers via a modified watershed transform [28]. Then, a center is matched with the

edge/boundary of the same particle, produced by Canny’s edge detector [45]. At last, the

approach in [9] combines the two image features (center and boundary) to locate each

particle. This type of information-combining approaches work well when the boundaries

detected based on gradient are similar to that of the intensity-based results, to make sure

that combining the two kinds of information through a compromise could produce a better

result. However, those approaches are not applicable to the noisy TEM images, since the

segmentation outcomes produced by using each kind of image information alone can be

drastically different (refer to Figure 2.8 (a) and (b)), leaving little common ground for a

compromise.

Another strategy of information combining is to design an energy functional, say the

Mumford-Shah functional [46], integrating both kinds of information. Then the boundary

of the foreground is evolving to maximize the energy functional until the local optima is

found; doing so is supposed to produce the optimal separation [47]. To use the intensity

information, Chan and Vese [32] assume that inside (or outside) the boundary, the variance

of intensities of image should be small and Li et al. [48] assume that the intensities of

pixels should change gradually, whereas to use the gradient information, Caselles et al.

[49] assume that the gradient of the image along the boundary should be strong. Many

recent works [50, 51, 52] consolidate these assumptions and design their versions, which,
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to certain extent, make use of both intensity and gradient information. However, applying

this strategy alone cannot handle the segmentation problem of overlapped nanoparticles,

because nearly all such methods, including [32, 52], can only segment the foreground from

the background, leaving the overlapped objects intact within the foreground. Methods

considering multiple objects detection, such as [48], require the objects at the foreground

to have unconnected boundaries, namely that the multiple objects cannot overlap.

Recognizing the shortcomings (and strengths) of those strategies, we propose a new

framework to fuse the two kinds of image information via a parallel approach. Our ap-

proach starts off with focusing the two kinds of image information separately on the same

TEM image. In other words, a TEM image is handled by two pipelines of processing in

parallel. One pipeline is using primarily the intensity information, segmenting the fore-

ground by a k-means clustering [53] and then separating the particles according to the

shape of the foreground found by a watershed transform [28], whereas the other pipeline

is using primarily the gradient information, going through an active contour [32] procedure

to find the foreground, followed by an iterative voting method [33] that finds the center of

each particle. Intensity information is also used in the second pipeline but the main driv-

ing force therein is the gradient information, differentiating it from the first pipeline of

processing.

The two pipelines of processing produce two sets of outcomes for the same image,

and as expected, some of the particle detection outcomes agree with each other (which

means two detections by different methods are almost the same), while many others do not.

When the detection outcomes agree, it reinforces the belief that they both indicate a good

detection, and when the detection outcomes differ, we then need to resolve the conflict and

choose one of the outcomes. Based on a fitness criterion to be introduced later, we select

the particle detection with the highest fitness score and discard those conflicting with it. A

binary integer programming (BIP) is formulated and solved to obtain the optimal solution.
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In order to handle TEM images containing numerous particles, we also accelerate the

optimizing procedure by using a subgraph decomposition technique. Our framework is

illustrated in Figure 2.2.

We want to note a similarity between our fitness score approach and that in [54], which

is in the context of tree detection. The approach in [54] is based on random point process

and can be seen as a soft version of the optimization problem formulated in our method,

where overlapping is penalized but not forbidden. The random point processes are solved

through Markov chain Monte Carlo, which is rather complex to optimize than the BIP

formulation used in our approach.
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Figure 2.2: The two pipelines of processing to make use of the complementary image
information.

The remaining parts of the chapter are organized as follows. In Section 2.2, we describe

the basic thoughts behind the choice of the components in each processing pipeline. In

Section 2.3, we present the formulation and solution that resolves the conflicts between

the two sets of processing outcomes. In Section 2.4, we apply our method to a set of TEM

images, obtained under different instrumental resolutions and noise conditions, and assess

the method’s effectiveness and efficiency. Finally, we summarize our work in Section 2.5.
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2.2 Basic Components in Processing Nanoparticle Images

The processing of nanoparticle images, illustrated in Figure 2.2, consists of three main

steps: the preprocessing, the two pipelines of processing, and the postprocessing. This

section intends to provide an overview of the basic components in the proposed framework.

The preprocessing is to enhance the image features from the noisy raw images, while

the postprocessing is to fit a parametric shape model, once a nanoparticle is isolated. The

two pipelines of image processing in between intend to locate the nanoparticles and isolate

each of them as accurately as possible.

The two pipelines of processing are carried out on the same image in parallel. Specif-

ically, one pipeline of processing uses primarily the intensity information, whereas the

other uses primarily the gradient information. Each pipeline further involves two methods

for separating and identifying the nanoparticles.

In this framework, many existing methods are used. In order to produce better results,

however, certain methods, especially those used in the two pipelines of processing, are

tailored towards the uniqueness of TEM images.

2.2.1 Preprocessing

The preprocessing intends to strengthen the contrast of the nanoimages and remove the

unevenness in background. The background unevenness is a result of having non-uniform

thickness in the slice of resin samples. Consequently, the resulting images are usually

lighter on one corner/side and darker on the opposite corner/side; please see Figure 2.1 for

an example. Two operations are used in the preprocessing: Butterworth high-pass filtering

(4th order) [55] and Gaussian filtering [56].

Butterworth high-pass filtering removes the low frequency components of the image

(related to the unevenness in background). A low frequency cutoff is used to identify

background patterns of large size, supposedly far greater in size than a typical particle. We
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set this value as 1, 024 divided by four folds of the average particle diameter, where the

factor of four is chosen empirically. Meanwhile, using a Gaussian filter intends to remove

the high frequency components, weeding out the small objects that cannot possibly be a

particle. The parameter in the Gaussian filter is set to be one-tenth of the nanoparticle’s

average diameter. By linking the filtering strength to the particle’s average diameter, the

strength of Gaussian filter’s smoothing strength can be adaptively adjusted. We show the

results of the preprocessing in Figure 2.3.

(a) F3-2_7 (b) F10_8

Figure 2.3: The preprocessing results of the two image examples in Fig. 2.1.

2.2.2 Intensity-Based Processing

In the first pipeline of processing, pixel intensity is used. This line of processing entails

two steps: the first step is a k-means method [57] to separate the foreground from the

background, producing the nanoparticle agglomerates, namely nanoparticle clusters. The

second step is to use the watershed transform on the segmented foreground that further

breaks the overlapped particles in the nanoparticle agglomerates into individual particles.

Each pixel in the first step is classified based on not only its intensity but also its
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coordinates. In [58], the image data is converted into a 5-dimensional vector [x, y, l, u, v]

for each pixel, where the x, y are the coordinates and l, u, v are the color values in LUV

color space. For our gray-level TEM image, the input vector is set as [wsx,wsy,R], where

R is the intensity and ws is a weighting coefficient to balance the effects between the

coordinate value and the image intensity value. In this work, we set ws = 0.2, as it is close

to the ratio of the largest grayness value over the size of the TEM image, so we will have

the similar ranges of the three coordinates. Then, we seek to find k = 2 clusters among

the image pixels, corresponding to the foreground and background, respectively.

The second step is a watershed transform based on the shape of the foreground. A wa-

tershed transform goes through an erosion-dilation cycle, in which erosion produces the

cores of neighboring objects (called markers) and dilation identifies the separating bound-

ary lines between the objects. The specific variant of watershed transform we adopt is the

Ultimate Erosion for Convex Sets (UECS) proposed by Park et al. [9], which tailors its

erosion stopping criterion towards convex objects, as the physical-chemical forces behind

nanoparticle formation do drive nanoparticles to have convex shapes.

In the implementation of the UECS, we found that the number of erosion steps can

vary widely on different particles. One shortcoming of this variation in erosion steps is

that the separating lines between particles tend to over-erode one of the particles. This

phenomenon is illustrated in Figure 2.4(a); please note the over-erosion of boundary lines

inside particle 2 and particle 3.

The remedy we devise to alleviate the over-erosion problem is to record the number

of erosion steps, following a generic idea first introduced in [34]. Provided the number

of erosion steps associated with each particle, the dilation process is then timed following

the descending order of the number of erosion steps that had been performed on respective

particles. For instance, suppose particle 1 was eroded 10 times to its final marker, while

particle 2 was eroded 20 times. In dilation, we start with particle 2 and dilate its marker
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10 times, and at which time, start the dilation of the marker of particle 1 in parallel, until

the two dilated markers meet. It appears that this simple revision improves the accuracy

of the boundary lines between particles appreciably; please see Figure 2.4(b).

(a) (b) 

1 
2 3 

4 
1 

2 3 
4 

Figure 2.4: The comparison of two watershed segmentations: (a) the result of the original
UECS; (b) the result of the revised UECS with a timed erosion-dilation process.

2.2.3 Gradient-Based Processing

Gradient-based processing makes use of the gradient of an image to detect and sep-

arate the nanoparticles. As mentioned before, gradient-based processing also uses pixel

intensity information; it is just that the gradient information plays a more deciding role

here. This line of processing also entails two elements: an active contour method [52] that

is based on the level set formulation and the iterative voting method [33].

The active contour method identifies the boundary (or edge) for the nanoparticles,

without necessarily separating a particle agglomerate into individual particles. Then the

iterative voting method locates the centers of individual particles from the preprocessed

TEM images. Once the centers of individual particles as well as the boundaries of particle

agglomerates are available, the connected particle contours can be separated and then as-

signed to individual particles by using an edge-to-marker association technique, similar to

what was initially proposed in [9].
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One difficulty of using the active contour method for the low-contrast, noisy TEM

images is that the boundary of particles is blurred and the background is noisy, making

the convergence of the recursive method sensitive to the choice of the initial contour (also

known as a mask). We propose two remedies to ensure a robust convergence. Firstly we

choose the active contour method, proposed by Tian et al. [52], that uses both intensity

and gradient information, as it has a better convergence property than its counterparts that

use only the intensity or the gradient information (e.g., [32, 49]).

Even with a capable method like [52], the choice of the initial contour still has a pro-

found impact on the outcomes of contour detection for the silica nanoparticles. To find a

proper initialization, we start the active contour method from either a large mask or a small

mask of the foreground. Then the active contour algorithm can shrink the large mask or

expand the small one to get the estimated contour. To see which mask leads to good de-

tection outcome, we first apply Otsu’s method [59] to get a binarization threshold Rt. And

then we select an offset value Rs, so that we can choose masks of different sizes. Then

the large mask, denoted by M1, can be obtained by M1 = {(x, y)|R(x, y) < Rt + Rs},

whereas the small mask, denoted by M2, by M2 = {(x, y)|R(x, y) < Rt−Rs}. Once M1

and M2 are used, the convergent outcomes are denoted by B1 and B2, respectively. We

find that with Tian et al. [52]’s algorithm, B2 (expanded from a small mask) is much better

than B1 (shrunk from a large mask); see an example in Figure 2.5. We believe that the

noisy background of the TEM images makes the use of large masks ineffective (algorithm

trapped in local optima). Therefore, we choose the small mask as the initial contour in the

chosen active contour method.

Concerning the use of the iterative voting method, we also tailor the original method

in [33] to our nano imaging problem. In the original approach, Parvin et al. [33] choose

the pixels on the edge that are detected by Canny’s edge detector [45] and use them to

vote for locating the centers. The problem with this approach is that when some edges

21



(b) (c)

(a)

(d) (e)

Figure 2.5: The process of active contour with different initializations: (a) the original
image; (b) the large mask M1; (c) the convergent result B1 from the large mask M1; (d)
the small mask M2; (e) the convergent result B2 from the small mask M2.

are hard to detect, such as in our noisy nanoparticle images, some nanoparticles will be

missed. Figure 2.6(a) shows that using the original iterative voting method in a small

region of about 20 particles produces three misses and two false detections; to produce

Figure 2.6(a), we use the ImageJ plugin of the iterative voting method [33].

Our tailoring works as follows. Note that a large magnitude of gradient indicates that

the corresponding pixel is more likely to be on the edge. We hence select all pixels of

the preprocessed image whose gradient is larger than a threshold in magnitude, and deem

them as our potential voter pixels. We then set the weight of each voter proportional to its

magnitude. The threshold here is chosen as one-fifth of the maximal magnitude of gradient

in the whole image. Because we skip the action of Canny’s edge detection, we could not

initialize the iterative voting procedure using the normal direction to the detected edges,

as recommended in [33]. Instead, we let the voting direction initialized as opposite to

the gradient direction at a voting pixel. Figure 2.6(b) shows the outcomes of our tailored
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approach, which is carried out on the same image and produces a result without misses

and false detections.

(a) ImageJ Plugin (b) Our Implementation 

Figure 2.6: The results of iterative voting: (a) ImageJ plugin outcome, where the three
misses are indicated by yellow X’s and two false detections is marked by yellow circles;
(b) our implementation outcome.

2.2.4 Postprocessing

In post-processing, we fit each identified nanoparticle with a parametric shape mod-

el. Unlike in [9] where a particle is modeled by a B-spline, our treatment here is much

simpler – we use an elliptic shape model that can be parameterized using five parameters

[x0, y0, a0, b0, θ0] (Figure 2.7(a)), where x0 and y0 are the coordinates of the center, a0 and

b0 are the lengths of the long and short axes, and θ0 is the orientation of the particle. The

reason that we choose a simple shape model is that the silica nanoparticles produced by

the sol-gel process are mostly of round or ellipse shapes; by contrast, the nanoparticles

processed in [9] have shapes of wider varieties. In the meanwhile, given the noise level in

the nanoimages processed in this work, it becomes less robust to use complicated shape

models with too much flexibility, as a flexible shape model may be too eager to adapt itself

to background noises surrounding a particle.
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When it comes to the fitting of an elliptical shape, we choose to use the second-moment

fitting method [60], which finds an ellipse that has the same mass center and same second

moments as those of a detected particle region. This treatment uses all the pixels inside the

contour of a detected particle, rather than rely on the detected contour of a particle. The

drawback of using the detected contour alone is its sensitivity to shape noises, because

many detected contours can end up with an irregular shape; see the example in Figure

2.7(a) (the gray region). This second-moment method produces much more robust shape

fitting outcomes, as evident by the comparison between Figure 2.7(b) and (c).

(x0,y0) 

a0 
b0 θ0 

(a)Fitting Ellipse                   (b) Results based 
on contour 

(c) Results based 
on region 

Figure 2.7: Post-precessing: (a) parametrization of an elliptical shape; (b) the fitting out-
comes based on contour alone; (c) the fitting outcomes based on all the pixels in a detected
particle region.

2.2.5 Pros and Cons of the Two Pipelines of Processing

In Figure 2.8, we highlight four examples to illustrate the pros and cons of the two

pipelines of processing. In example #1, the gradient-based processing produces a better

boundary of the right-side particle than the intensity-based processing does. In example

#2, the iterative voting in the gradient-based pipeline successfully segments two over-
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lapped particles based on the intensity change inside the foreground region, whereas the

intensity-based processing fails to do so. In example #3, the gradient-based process-

ing fails to identify the right-side particle because of the blurred boundary, whereas the

intensity-based process does detect. In example #4, the gradient-based processing over-

segments the left-side particle, whereas the intensity-based processing over-segments the

right-side one.

Generally speaking, our observations suggest that when the gradient is clear and ac-

curate, the gradient-based processing works better (#1 and #2); otherwise the intensity-

based processing will be more robust (#3). For some harder cases, such as #4, each

pipeline of processing does half right, so only combining the two sets of the results can

further improve the accuracy of the final detection. While the general observations make

intuitive sense, it is not always so easy to tell which pipeline of processing will do better

under a specific circumstance. This implies that the criterion that gradient information

is clear and accurate sometimes can be difficult to assess and quantify manually. What

is needed is an automatic confict resolution procedure that can pick the better of the two

detection outcomes.

2.3 Fusing the Complementary Information

The next step is to make use of the detection results from the two pipelines of image

processing and produce an enhanced detection outcome. The problem is similar to multi-

expert decision making [61], where the two pipelines of detection act as two experts and

the sets of detected particles are their decisions. If both experts agree with each other on

all decisions, then the problem is trivial, as one can choose either set of the outcomes. Oth-

erwise we should devise a conflict resolving procedure to choose one of them or discard

both.

Let us first introduce some notations. Let I = {I(i), i = 1, · · · , NI} and G =
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(a) Intensity-based Pipeline (b) Gradient-based Pipeline 

2 2 

1 1 

3 3 

4 4 

Figure 2.8: The comparison of the results of the intensity-based and the gradient-based
processing.

{G(j), j = 1, · · · , NG} denote the detected particles, respectively, by the intensity-based

and gradient-based pipeline, where NI and NG are the corresponding numbers of particles

detected.

The five shape parameters of I(i), defined in Section 2.2.4, are expressed as [x0(I(i)),

y0(I(i)), a0(I(i)), b0(I(i)), θ0(I(i))]. The set of pixels within the fitted ellipses is labeled

as PI(i), and its cardinality |PI(i)| represents the area of the corresponding region. The

corresponding notations for G(j) can be defined similarly.

We use the binary variables bI(i) and bG(j) to indicate the outcome of our resolution: if

I(i) (or G(j)) is chosen as the final detection outcome, then bI(i) (or bG(j)) will be set as

1, otherwise it is set as 0. Aggregating all the decision variables associated with individ-

ual detections, the decision vector for the intensity-based approach is expressed as bI =

[bI(1), · · · , bI(NI)]
T , and that for the gradient-based approach is bG = [bG(1), · · · , bG(NG)]

T .

Our goal is to find an optimal solution of bI and bG, which is to properly set elements of

bI and bG to 1 or 0, according to an optimality criterion introduced below.
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2.3.1 Basic Formulation for Conflict Resolution

One crucial step in making good use of the two types of detection outcomes is to

understand the three possible relationships between I(i) and G(j). The relationship is

illustrated in Figure 2.9. When two detection outcomes have only a slight overlap or no

overlap at all, as shown in Column (a) of Figure 2.9, it is unlikely that they are related

to the common particle in the image. When the two outcomes virtually coincide with

each other, manifesting in a heavy overlap between the detection regions, they point to

the same underlying particle and are then referred to as a consensus detection. When

the two outcomes occupy the same region in the image, but the detected particles have

serious disagreement, either in number (one approach detects one particle, while the other

detects two, for instance) or in key shape parameters (including the center location), these

outcomes are referred to as the conflicting detections. The consensus detections and the

conflicting detections are illustrated in Columns (b) and (c) of Figure 2.9, respectively.

The unrelated and consensus detections are relatively straightforward to deal with. It is

the conflicting detections that need further processing to decide which one to be the final

detection outcome.

As such, there are two primary questions to be addressed:

1. How to determine which category of relation (unrelated, consensus, and conflicting)

I(i)-versus-G(j) belongs to?

2. Once this relation is determined as a conflicting detection, what criterion to use to

make the final selection?

The answer to the first question apparently depends on the degree of overlap between

two detections; the above description of the three relationships provides the intuition be-

hind it. The specific formula will be presented later in Section 2.3.2.
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(b) Consensus 
Detections 

(c) Conflicting 
Detections 

(a) Unrelated 
Particles 

Figure 2.9: Three possible relationships between I(i) (blue) and G(j) (red): (a) two de-
tection results are not related to the same particle; (b) two results coincide with each other;
(c) two results are in conflict.

To address the second question, we assign each particle detection with a score, assess-

ing its fitness to the original image. Intuitively speaking, the higher the score, the better

a detection fits the original image. We denote the fitness score vector of a detection as

sI = [sI(1), · · · , sI(NI)]
T for the intensity-based approach and sG = [sG(1), · · · , sG(NG)]

T

for the gradient-based approach. The specific definition of the fitness score is provided in

Section 2.3.3.

When the two pipelines of processing reach a consensus, it enhances the credibility of

the detection and makes such detection more reliable and trustworthy. It is safe to take the

consensus outcomes and add them into the final detection results without further process-

ing. We compute the shape parameters of the final particle by averaging the corresponding

parameters of the two detections. Then we remove these particles from the sets of I and

G, so that only the conflicting detections are left to be resolved. Denote the sets of the

remaining particles as Ĩ = {Ĩ(1), · · · , Ĩ(NĨ)} and G̃ = {G̃(1), · · · , G̃(NG̃)}, where NĨ
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andNG̃ are the numbers of particles in the two revised sets, respectively. In the subsequent

conflict resolving procedure, we only need to solve for bĨ and bG̃, which are a subset of

bI and bG, respectively, and have usually fewer than half of the original elements.

For the remaining conflicting detections, we use a conflict matrix M = (Mij) to con-

nect them. M is an NĨ × NG̃ binary matrix, with each row representing one particle in Ĩ

and each column representing one particle in G̃. If Ĩ(i) and G̃(j) are conflicting, Mij = 1;

if they are unrelated, Mij = 0. Figure 2.10 shows a simple example of conflicting de-

tections and the corresponding conflict matrix. In Figure 2.10, we observe that Ĩ(1) is

conflicting with G̃(1), while Ĩ(2) is conflicting with both G̃(2) and G̃(3); this is reflected

in the 2× 3 conflict matrix to the right.

Result 𝐼  Result 𝐺  

1 

2 

1 

2 

3 

Conflicting Detections 

1 0 0

0 1 1

 
 
 

1 
2 

1   2   3 

Result 
𝐼  

Result 𝐺  

Conflict Matrix 

Figure 2.10: An example of conflicting detections (left) and the corresponding conflict
matrix (right).

With a fitness score chosen, we present the following constrained binary integer pro-

gramming (BIP) problem for selecting the final detection out of a conflict:

maxbĨ ,bG̃
sT
Ĩ
bĨ + sT

G̃
bG̃,

subject to bT
Ĩ
MbG̃ = 0.

(2.1)
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The objective function is the summation of the fitness scores of all detections, and we

aim to obtain the highest total fitness score for an image. The constraint function is to

ensure that only one of the conflicting detections will be chosen. To see this, rewrite the

constraint as
NĨ∑
i=1

NG̃∑
j=1

bĨ(i)MijbG̃(j) = 0, (2.2)

meaning that if Ĩ(i) and G̃(j) are a pair of conflicting detections, namely Mij = 1,

then bĨ(i) and bG̃(j) cannot be 1 simultaneously. We solve this BIP problem by using

the MATLAB solver ‘bintprog’. To use it, we multiply a negative sign to the objective

function to change the problem to a minimization problem.

We want to note that the authors in [54] also used model fitness in an application of

tree detection. More specifically, they first use an unknown number of ellipses to model

the trees on a plantation and then calculate the prior energy and the likelihood according

to prior knowledge and the observed images. At last, they minimized the Bayesian energy

using Markov chain Monte Carlo to find the ellipses that fit the tree crowns the best. There

are a couple of differences between their method and our conflict resolution approach.

Firstly, the approach in [54] is based on random point process. They wanted to minimize

the overlapping of different ellipses, which penalizes the overlapping but does not forbid

it, whereas in our approach, we have to choose one of the outcomes. Secondly, their

Bayesian based solution procedure is more complicated than the BIP formulation we use.

2.3.2 Consensus and Conflicting Detections

From Figure 2.9, we can see that the degree of overlap between the two detection

outcomes can be used to decide which category a pair of detections belongs to. When

the Euclidean distance between the centers of the two detections is larger than [a0(I(i)) +

a0(G(j))]/2, it means that there is no overlap between the two detected particles. The pair

is then unrelated. When the distance is smaller than [a0(I(i)) + a0(G(j))]/2, we need to
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quantify the degree of overlap. The area of overlap is |PI(i) ∩ PG(j)|. We calculate the

maximum overlapping ratio rmax and minimum overlapping ratio rmin as follows:

rmax(I(i), G(j)) = max{ |PI(i)∩PG(j)|
|PI(i)|

,
|PI(i)∩PG(j)|
|PG(j)|

},

rmin(I(i), G(j)) = min{ |PI(i)∩PG(j)|
|PI(i)|

,
|PI(i)∩PG(j)|
|PG(j)|

}.
(2.3)

We then set two thresholds, an upper ratio rU and a lower ratio rL, such that if rmax(I(i), G(j)) <

rL, we deem the overlapping region small enough to declare I(i) and G(j) unrelated; if

rmin(I(i), G(j)) < rU and rmax(I(i), G(j)) > rL, we believe that the two detection out-

comes are related but different, namely that they form a pair of conflicts; if rmin(I(i), G(j)) >

rU , we consider this as a consensus detection.

2.3.3 Fitness Score of Detections

Essentially, calculating the fitness score for each particle is equivalent to evaluating the

quality of the image segmentation, in which a regional part of TEM images is separated

into the particle and its surrounding area. Zhang et al. [62] surveyed different evaluation

methods for image segmentation quality when the ground truth is unknown. They pointed

out a simple principle that is still widely used: the inter-region disparity should be large

and intra-region variability should be small. For instance, Fisker et al. [63] maximize

the difference in the average intensities between the foreground and its surrounding back-

ground for detecting a particle. To measure the inter-region disparity and the intra-region

similarity, we need to define a neighboring region Q for particles in Ĩ and G̃. Consider

a particle Ĩ(i) (the same can be done to G̃(j)). Its foreground information is in PĨ(i) and

the surrounding background information is in QĨ(i) (shown in Figure 2.11). In identifying

QĨ(i), we double the size of PĨ(i), namely |QĨ(i)∪PĨ(i)| = 2|PĨ(i)|, so that |QĨ(i)| = |PĨ(i)|.

Our measure of the inter-region disparity and the intra-region similarity is based on the

sum of squares of pixel intensities. The sum of squares are proportional to the variance
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(x0,y0) 

a0 
b0 θ0 
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             Neighboring Region 

P Q 

Figure 2.11: The foreground region P (blue) and its neighboring region Q (green) for a
detected particle.

of the intensities within a region, so a large value indicates disparity while a small value

indicates similarity. For a good segmentation, the sum of squares of the whole region

should be much larger than that of separated background or foreground. For an arbitrary

region A in the image, its sum of squares of the intensity, denoted by SS(A), is calculated

by:

SS(A) =
∑

(x,y)∈A

[R(x, y)− R̄(A)]2, (2.4)

where R̄(A) is the average intensity of all pixels inside A. We then define the fitness score

of Ĩ(i) as:

sĨ(i) = SS(PĨ(i) ∪QĨ(i))− [SS(PĨ(i)) + SS(QĨ(i))]− λ|PĨ(i) ∪QĨ(i)|, (2.5)

where the first term SS(PĨ(i) ∪ QĨ(i)) measures the inter-region disparity, and the second

term [SS(PĨ(i)) +SS(QĨ(i))] measures the intra-region similarity. The greater their differ-

ence, the stronger indication it is to think that Ĩ(i) is part of the particle’s foreground. The

third term is a noise filter. Its inclusion forces the difference between the inter-region dis-

parity and the intra-region similarity to be great enough so as to qualify Ĩ(i) as a genuine
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particle, helping reduce the false detections in a noisy image. If Ĩ(i) is a single unrelated

particles, which means it has no conflicting detection in another set of results, it will be

selected if and only if sĨ(i) is larger then 0.

In Equation (2.5), the first term is the total sum of squares of the whole region and the

second term is the within-group sum of squares. According to the property of variance

[64], their difference equals the between-group sum of squares, i.e.,

|PĨ(i)|[R̄(PĨ(i))− R̄(PĨ(i) ∪QĨ(i))]
2 + |QĨ(i)|[R̄(QĨ(i))− R̄(PĨ(i) ∪QĨ(i))]

2, (2.6)

where R̄(PĨ(i)), R̄(QĨ(i)) and R̄(PĨ(i)∪QĨ(i)) are the average intensities of the foreground,

its neighboring region, and the combined whole area, respectively. By the choice of neigh-

boring region made above, namely |QĨ(i)| = |PĨ(i)| (they may not be exactly the same but

the difference is negligible), it means:

R̄(PĨ(i) ∪QĨ(i)) = (R̄(PĨ(i)) + R̄(QĨ(i)))/2. (2.7)

Plugging in Equations (2.6) and (2.7) into Equation (2.5), we have

sĨ(i) = |PĨ(i) ∪QĨ(i)|


(
R̄(PĨ(i))− R̄(QĨ(i))

2

)2

− λ

 . (2.8)

It is now clear how the third term in Equation (2.5) works – if the intensity difference

between the foreground and background is smaller than the threshold 2
√
λ, then, the fitness

score sĨ(i) turns negative, and consequently, Ĩ(i) will not be chosen as a particle.

2.3.4 Decomposition and Linearization

To solve the optimization problem (2.1) efficiently, we need to address two more prob-

lems: (a) There are hundreds to thousands of particles in Ĩ and G̃ in a TEM image. Solving
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the optimization in its current form is time consuming. (b) The constraint in (2.1) is not

linear, which prevents a straightforward application of some existing efficient methods.

It is necessary to decompose the original problem into smaller-sized subproblems, and to

linearize the constraint.

The way to decompose the original optimization problem is to decompose the conflict

matrix M. If M can be expressed in a block form with zero off-diagonal submatrices,

then, each block submatrix can be used to form a separate BIP problem and be solved in

parallel. A simple example is a two-block M, such as

M =

 M1 0

0 M2

 , (2.9)

then Equation (2.1) can be decomposed into two BIP problems:

maxbĨ1
,bG̃1

sT
Ĩ1
bĨ1 + sT

G̃1
bG̃1

maxbĨ2
,bG̃2

sT
Ĩ2
bĨ2 + sT

G̃2
bG̃2

subject to bT
Ĩ1
M1bG̃1

= 0 subject to bT
Ĩ2
M2bG̃2

= 0,
(2.10)

where sĨ = [sĨ1 ; sĨ2 ] and sG̃ = [sG̃1
; sG̃2

]. After solving those two subproblems, the

minimizer of the original problem can be easily obtained by combining their individual

solutions, namely bĨ = [bĨ1 ;bĨ2 ] and bG̃ = [bG̃1
;bG̃2

].

The decomposition of the BIP can also be seen as a problem to find the connected

independent subgraph. We regard the NĨ + NG̃ particles in Ĩ and G̃ as nodes to build

an undirected graph G. Then, we connect two nodes if they form a fair of conflicting

detection and obtain the corresponding adjacent matrix W. If we can find an independent

connected subgraph containing, for example, Ĩ(1), Ĩ(2) and G̃(1), G̃(2), G̃(3), that means

there is no conflicting relationship between them and any other particles. So we can form a

subproblem only concerning those five particles, and the solution of that subproblem is the
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same as the corresponding part of the whole problem. To find all connected independent

subgraphs in G, we adopt the spectrum analysis method in [65].

The theory in [65] says that the number of independent connected subgraphs of G

equals to the multiplicity of 0 eigenvalue of its normalized graph Laplacian matrix:

L = I−D−
1
2WD−

1
2 , (2.11)

where W is the adjacent matrix of the graph G, I is the identical matrix which has the

same size of W, and D is the diagonal matrix of the row (or column) sum of W. [65]

provides a detailed procedure. Following their procedure, first check if the graph G is

decomposable (i.e., check the multiplicity of 0 eigenvalue of L), and if this multiplicity is

K > 1, then G can be decomposed to a set of K independent connected subgraphs. Then

we can break M into K block submatrices {Mk}Ki=1, and the fitness score vectors sĨ and

sG̃ into {sĨk}
K
i=1 and {sG̃k

}Ki=1, respectively. As such, the original BIP can be decomposed

to K smaller subproblems that can be solved in parallel. The kth subproblem is:

maxbĨk
,bG̃k

sT
Ĩk
bĨk + sT

G̃k
bG̃k

,

subject to bT
Ĩk
MkbG̃k

= 0.
(2.12)

Next, we show that the constraint in Equation (2.1) can be linearized. Because bĨ , bG̃

and M are binary vectors/matrix, the original constraint can be replaced by the following

inequality:

MTbĨ +NĨbG̃ ≤ NĨ1NG̃
, (2.13)

where 1NG̃
represents an NG̃ × 1 vector whose elements are all 1’s.

We can show that the original constraint and Equation (2.13) are equivalent. For the

constraint in (2.1), it is obvious to see that the constraint is violated if and only if there
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exists any pair of i and j satisfying Mij = 1, bĨ(i) = 1 and bG̃(j) = 1. We want to show

that Equation (2.13) is violated under the same condition.

Equation (2.13) produces NG̃ linear inequalities. Let us consider the jth inequality:

NĨ∑
i=1

MijbĨ(i) +NĨbG̃(j) ≤ NĨ . (2.14)

1. If bG̃(j) = 0, because Mij and bĨ(i) are both binary variables taking either 0 or 1,∑NĨ
i=1MijbĨ(i) ≤ NĨ is always true. This suggests that regardless the choice of bĨ ,

the constraint in (2.14) is satisfied.

2. If bG̃(j) = 1, NĨbG̃(j) equals to NĨ . If there exits any i satisfying Mij = 1 and

bĨ(i) = 1, then
∑NĨ

i=1 MijbĨ(i) is larger than 0, making the inequality untrue. In order

for the inequality to hold, the first term must be 0, meaning when bG̃(j) = 1, Mij and

bĨ(i) cannot be 1 at the same time.

The above argument extends to all j’s.

As such, we can replace the original constraint with the inequality in (2.13), which

is linear. As the objective function is also linear, we can use efficient linear binary pro-

gramming methods (such as a branch-and-bound algorithm [66]) to solve the optimization

problem.

2.4 Experimental Results

2.4.1 Parameter Selection

One parameter used throughout the algorithm is the average diameter of the nanopar-

ticle size, denoted by d0. The d0 can be considered as the average effect of a0 and b0 in

the particle shape model, and it is used as the input to set a number of other settings in the

algorithm. The value of d0 in a TEM image is largely determined by a particle’s actual size

and the resolution level set in the TEM. Informed by our material science collaborators,
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we know about the average physical diameter of the nanoparticles to be blended in the host

material. The physical size is used to estimate d0 under a specific TEM resolution, which

is a good enough initial estimate and can be refined once the TEM image is processed.

The refined estimate of d0 can be used to run the whole algorithm a second time so as to

improve the quality of the processing.

In the main part of the algorithm, there are two other sets of parameters: (1) rU and

rL that are used to categorize the detection outcomes into three groups, i.e., unrelated,

consensus, and conflicting; (2) λ in the fitness score. We empirically choose rU = 0.8 and

rL = 0.2. We test many TEM images and find that these choices produce rather robust

categorizations consistent with human interpretation. We want to set the pixel intensity gap

to be about one-tenth of the grayness levels from the brightest to the darkest in the TEM

images, in order to differentiate a particle’s foreground from its surrounding background.

For noisy TEM images, this gap appears reasonable. Given that our TEM images have

roughly 200 grayness levels, it suggests that the gap is going to be 20, and according to

Equation (2.8), this sets λ = 100.

2.4.2 TEM Images Used in the Test

We test a total of 32 TEM images taken of the bisphenol-F epoxy resin samples that are

blended with silica nanoparticles. These images can be grouped into four categories. The

first three categories correspond to different resolution levels of TEM. All TEM images

have 1, 024 × 1, 024 pixels. So the low resolution image is taken from a big view field of

about 1, 000×1, 000 nm; the medium resolution taken from a view field of about 500×500

nm; the high resolution image taken from the smallest view field of 250 × 250 nm. The

last category, and also the fourth, of the images is the one having an uneven background

of particular patterns. This background pattern is a result of inconsistency in the resin

properties, so that the nanoparticles do not disperse well as they are blended in. This set of
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images with uneven background is taken under the low resolution. Figure 2.12 shows one

typical image for each of the kinds, in which Figure 2.12 (a) and (b) are the same images

as those shown in Figure 2.1.

(a) Low resolution (b) Medium resolution (c) High resolution (d) Uneven background

Figure 2.12: Samples of TEM images.

As we explained earlier, the average particle size d0 in an image is affected by the

resolution of TEM. The ranges of these d0’s in the aforementioned four categories of

images are presented in Table 2.1.

Table 2.1: Estimates of d0 in the TEM images.

Low
resolution

Medium
resolution

High
resolution

Uneven
background

d0 20 50 100− 120 20

2.4.3 Comparing the Integrated Approach with Individual Pipeline of Processing

Using the two images in Figure 2.1, we want to show where the integrated approach

improves upon the individual pipelines of processing. Figure 2.13 presents the detection
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outcomes. The two images illustrate the results of the integrated processing. The images

are color coded: green means a consensus detection, blue means that an intensity-based

detection prevails, and yellow means that a gradient-based detection prevails. In the low

resolution image (“F10_8"), there are 721 consensus detections, out of 1, 100 particles fi-

nally detected. Among the 379 conflicting detections, 162, or 43%, final outcomes come

from the intensity-based processing, whereas 217, or 57%, come from the gradient-based

processing. The respective numbers for the medium resolution image (“F3-2_7") are: 103

total particles, 85 consensus detections, 18 conflicting detections, and among those par-

ticles, 9, or 50%, are from the intensity-based processing, whereas the other 9, or 50%,

from the gradient-based processing. Figure 2.14 presents the outcomes of the integrated

processing for other two categories of TEM images; the same color code applies. We

observe again that the integrated processing improves upon the individual pipeline of pro-

cessing and we believe that this is a key advantage of the integrated approach, as it makes

use of the image information fully and compensate for the limitations of the approaches

emphasizing too much on one type of image information.

2.4.4 Test Outcomes of Four Kinds of TEM Images

To quantify the performance of our method, we run the algorithm on all 32 TEM im-

ages and report the number of particles they are able to identify. For the medium and high

resolution images, we are able to manually label the particles and treat the manual outcome

as our ground truth. These detection results are included in Table 2.2. In Table 2.2, for

the individual pipeline of processing, we report the numbers of the total particle detections

as well as the number of the consensus detections and the conflicting detection outcomes

selected by the integrated method. The percentages of the conflicting detections selected

from each pipeline are also shown in the table. For further comparison, we define the

dissimilarity between the detected outcomes and the ground truth as the average distance
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(a) Medium resolution (b) Low resolution

Figure 2.13: Comparison of individual pipelines of processing. The left image corre-
sponds to Figure 2.1(a) (medium-resolution image), while the right image corresponds to
Figure 2.1(b) (low-resolution image). Green particles are those from the consensus detec-
tions; blue particles are an intensity-based detection; yellow particles are an gradient-based
detection.

(a) High resolution (b) Uneven Background

Figure 2.14: Comparison of individual pipelines of processing for other two categories.
The left image corresponds to Figure “F3-2_11" (high-resolution image), whereas the right
image corresponds to Figure “F8-2_16" (image with uneven background). Color coding
is the same as in Figure 2.13.
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between the nearest centers of different point sets, and show the boxplots of the compar-

ison results in Figure 2.16. The smaller the dissimilarity, the better a detection outcome.

Because of the availability of the results in Table 2.2 and Figure 2.16, we only present half

of the processed images in Figure 2.15, as inclusion of all images makes the dissertation’s

file size too large.

Table 2.2: Comparison of particle detections for medium and high resolution images.

TEM image
Ground

truth
Intensity

Based
Gradient

Based
Consensus
Detections

Selected From Intensity Selected From Gradient Integrated
approachNumber Percentage Number Percentage

Medium resolution images
F3-2_6 103 99 97 85 9 56.3% 7 43.7% 101
F3-2_7 104 100 99 85 9 50% 9 50% 103
F3-2_8 100 99 98 73 10 35.7% 18 64.3% 101
F8-2_6 113 108 111 98 5 35.7% 9 64.3% 112
F8-2_7 134 126 131 119 1 7.7% 12 92.3% 132
F8-2_8 148 143 142 119 14 51.8% 13 48.2% 146
F10_10 214 201 195 114 64 66% 33 34% 211
F10_12 179 175 162 141 30 88.2% 4 11.8% 175

High resolution images
F3-2_9 24 24 25 14 0 0% 10 100% 24
F3-2_10 26 26 24 11 4 28.6% 10 71.4% 25
F3-2_11 26 33 25 20 5 71.4% 2 28.6% 27
F8-2_10 42 44 37 17 12 50% 12 50% 41
F8-2_11 44 41 35 20 16 69.6% 7 30.4% 43
F10_13 37 41 36 23 4 33.3% 8 66.7% 35
F10_15 47 50 34 17 24 82.8% 5 17.2% 46
F10-2_17 25 31 25 19 4 66.7% 2 33.3% 25

The results presented in Table 2.2 and Figure 2.16 demonstrate the effectiveness of

the integrated approach. Both of intensity-based and gradient-based processing contribute

to the intergraded results and combining their strengths allows the proposed method to

achieve a high degree of accuracy consistently across the samples. We also conduct an

analysis of variance (ANOVA) [67] on the dissimilarity of three groups (integrated ap-

proaches, intensity-based only and gradient-based only) for the medium and high resolu-

tion images. For the medium resolution images, the p-value of an one-way ANOVA test

is 0.0124 between the integrated approach and the intensity-based approach and 0.0013
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(a) F3-2_7 (b) F8-2_6 (c) F8-2_8 (d) F10_10

(e) F3-2_11 (f) F8-2_10 (g) F10_13 (h) F10-2_17

Figure 2.15: The processed outcomes of medium-resolution (top row) images and high-
resolution (bottom row) images.

(a) (b) 

Figure 2.16: The boxplot of the dissimilarity metric for (a) medium resolution images and
(b) high resolution images.
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between the integrated approach and the gradient-based approach. For the high resolu-

tion images, the p-value is 0.0001 between the integrated approach and the intensity-based

approach and 0.0025 between the integrated approach and the gradient-based approach.

For the low resolution images including the ones with uneven background, it is difficult

to manually count and identify all the particles, as they usually have over hundreds or even

thousands of particles. What we do here is to present the processed outcomes of individual

images in Figure 2.17, so that people can visually sense how the method performs. We

still only show half of the results due to the images large size. We present a table, similar

to Table 2.2, but it does not have the ground truth column. For the intensity-based and

gradient-based approaches, we again report the numbers of particles it detects and the

numbers of the conflicted outcomes selected by the integrated method. Combining both

Table 2.3 and Figure 2.17, we believe that the proposed method presents an advantage in

achieving robust detections when the image quality varies.

Table 2.2 and Table 2.3 also suggest that the two pipelines of processing make similar

contributions for the low, medium and high-resolution TEM images. But for those im-

ages with uneven background, more conflicting outcomes are selected from the intensity-

based processing than from the gradient-based processing. We believe that the unevenness

in background intensity causes confusion in using the gradient information, making the

intensity-based processing more accurate and the gradient-based processing less so.

2.4.5 Computation Time

People perceive that the time spent to process a TEM image is proportional to the num-

ber of particles in an image. This turns out untrue. The processing time in fact depends

heavily on the resolution level of an image; see Figure 2.18. The horizontal axis is the val-

ue of d0 related to an image’s resolution level. As the resolution gets higher, d0 gets bigger,

even for particles of the same physical size. Our algorithm spent longer time to process the
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Table 2.3: Comparison of particle detections for low resolution images.

TEM image
Intensity

Based
Gradient

Based
Consensus
Detections

Selected From Intensity Selected From Gradient Integrated
approachNumber Percentage Number Percentage

Low resolution images
F3-2_16 826 695 403 257 61.6% 160 38.4% 820
F8_8 1197 997 595 425 67.9% 201 32.1% 1221
F8-2_4 871 822 575 189 62.4% 141 37.6% 878
F8-2_5 633 678 510 65 40.4% 96 59.6% 671
F10_7 885 924 667 109 43.3% 143 56.7% 919
F10_8 1041 1077 721 162 42.7% 217 57.3% 1100
F10_9 1115 1153 730 211 46.6% 242 53.4% 1183
F10-2_3 1053 1096 763 153 43.5% 199 56.3% 1115

Uneven background images
F3-2_4 502 487 294 133 60.7% 86 39.3% 513
F3-2_5 465 463 228 150 55.3% 121 44.7% 499
F3-2_15 815 712 466 222 64.5% 122 35.5% 810
F8_13 291 200 95 124 73.8% 44 26.2% 263
F8-2_15 327 309 159 133 65.3% 60 34.7% 332
F8-2_16 556 398 199 247 73.3% 90 26.7% 536
F10-2_12 480 187 102 303 95.3% 15 4.7% 420
F10-2_13 290 259 165 80 60.6% 52 39.4% 297

high resolution images than the low-resolution ones. But the overall time is manageable.

For the 32 images, the longest processing time is about 10 minutes. Recall that our method

is intended to be an offline processing tool, so our material science collaborators deem 10

minutes very much acceptable.

The most time consuming part of our algorithm is the two iterative processing com-

ponents: the active contour and the iterative voting. When processing the high resolution

images, the heavier noise and lower contrast make it harder for the active contour method

to find the optimal solution of their energy functional. So it takes a longer time to converge.

When the iterative voting is applied to the high resolution images, the large diameter of

particles d0 leads to a large voting region for each step in its iteration, also causing a longer

time for the method to execute.
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(a) F8-2_4 (b) F8-2_5 (c) F10_8 (d) F10-2_3

(e) F3-2_4 (f) F3-2_15 (g) F8-2_15 (h) F10-2_13

Figure 2.17: The processed outcomes of low-resolution images (top row) and the images
with uneven background (bottom row).

2.4.6 Parameter Sensitivity

In this section, we discuss the effect of the input parameter d0 on the detection results.

We test a given set of TEM images using different d0’s and generate the box-plot of the

dissimilarity and total processing time in Figure 2.19. We choose the medium resolution

TEM images because (a) these images contain a good number of nanoparticles and (b)

the number of particles is manageable so that we can manually verify the ground-truth.

The recommended value of d0 is 50, which is the middle value of the parameter’s range.

Following the evaluation methodology suggested in [68, 69], we also fit a 3-degree polyno-

mial of d0 for its mean values of the dissimilarity and total time; this 3-degree polynomial

is shown as the black dashed line in the respective plots.

Figure 2.19 shows that d0 does play an importance role in affecting detection quality

as well as detection time. If d0 is chosen too small or too big, both detection quality and
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(a) (b) 

Figure 2.18: Computational time of the algorithm. The horizontal axis is d0, and the
vertical axis is the processing time in minutes.

processing time will be adversely affected. We also observe that underestimation of d0

harms the detection quality more than overestimation, while overestimation prolongs the

processing time more. Nevertheless, both detection quality and processing time remain

reasonably stable when d0 is chosen between 40 and 60, namely within 20% deviation of

the nominal particle size. This range of allowance makes it practical to use a rough esti-

mate of the particle diameter in the proposed method to produce robust detection results.

2.5 Summary

In this chapter, we proposed a new method to detect the nanoparticles in noisy (TEM)

images. The main contribution of the work is that we present a framework leading to ro-

bust processing capability. This framework entails two pipelines of processing in parallel,

making use of complementary image information, followed by a binary integer optimiza-

tion procedure to resolve detection conflicts and select better outcomes. Our method can

solve the particle detection problem for TEM images with low contrast and heavy noise,

making the new method particularly useful in the application of non-metallic nano material

analysis.
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Figure 2.19: The box-plot and response curve of (a) dissimilarity and (b) total processing
time, with respect to d0, for the medium resolution TEM images.

We do want to point out a few possible extensions of our work. When in the future

a new pipeline of processing is discovered to complement the existing two processing

pipelines, our BIP formulation does allow an extension to include those. What needs

to be done is to amend the constraint conditions to incorporate more than two detection

outcomes and devise a conflict matrix M, making sure that still only one outcome is chosen

eventually. Application front, a possible extension of the current work is to explore the

method’s applicability to bio-image processing like cell detection or object detection from

satellite images especially when the quality of those images is low.
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3. IDENTIFYING MULTI-STAGE NANOCRYSTAL GROWTH USING IN SITU

TEM VIDEO DATA1

Under a controlled circumstance, atoms, ions and molecules can simultaneously grow

into nanoparticles with a highly ordered structure, and such nanoparticles are often referred

to as nanocrystals. In situ TEM technique has caught recent attentions in material science

research because the in situ technology provides the capability of directly observing the

growth process of nanocrystals, and makes possible discoveries that ex situ instruments

cannot. As more and more dynamic TEM video data becomes available, one of the bot-

tlenecks appears to be the lack of automated, quantitative and dynamic analytic tools that

can process the video data efficiently. The current processing is largely manual in nature

and laborious, while most of the automatic tools only focus on static TEM images. The

absence of the automated processing of TEM videos does not come as a surprise, as the

growth of nanocrystals is highly stochastic and goes through multiple stages. We introduce

a method in Chapter 3, suitable for analyzing the in situ TEM videos in an automated and

effective way. The method learns and tracks the normalized particle size distribution and

identifies the phase change points delineating the stages in nanocrystal growth. Using the

outcome of the change point detection process, we produce a hybrid multi-stage growth

model and test it on an in situ TEM video, made available in 2009 by Science.

3.1 Introduction

In situ TEM is a promising new technology available to scientists for making discover-

ies in the nanoscale world. In situ TEM uses a special sample holder, allowing motion pic-

tures to be taken while the nano-objects in the sample holder are initiating, crystalizing and

1Reprinted with permission from Y. Qian, J. Z. Huang, and Y. Ding, “Identifying multi-stage nanocrystal
growth using in situ TEM video data,” IISE Transactions, vol. 49, no. 5, pp. 532–543, 2017. https:
//doi.org/10.1080/24725854.2016.1251666, Copyright c© 2017 by Taylor & Francis.
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morphing into different sizes and shapes. The unique capability of in situ TEM is that it

captures the dynamic changes at the nano or sub-nano resolution and provides the opportu-

nity of studying, and the potential of understanding, the mechanisms of multistage growth

of nanocrystals. Material scientists point out that understanding and modeling the growth

trajectory of nanocrystal are the important first step leading to the control of nanocrystal

synthesis processes in the long run, and expediting the discoveries of how a new nanoma-

terial works [26, 27]. Two in situ TEM video segments of a platinum nanocrystal growth

were made available by Zheng et al. [1] as parts of the supplementary material to their

publication. The short segment is about 21.2 seconds in duration with 30 frames per sec-

ond, and the long segment is 76.6 seconds with 15 frames per second. In addition to [1], a

number of other researchers also reported the use of in situ TEM videos in their study of

the mechanism of nanocrystal growth [2, 70, 71, 72, 73].

The current practice of processing the in situ TEM videos is largely manual in nature,

working typically as follows. Researchers label individual particles in each time frame

of the video, measure the sizes of particles, count the number and categorize their shapes,

then plot particle size/shape related histograms or report relevant statistics that may lead to

some insights into nanocrystal growth. Image processing software is used to facilitate the

isolation of overlapped nanocrystals and the measurement of their sizes or aspect ratios

(the ratio between long and short axes). One popular tool of this kind is the freeware

ImageJ [6], developed by the National Institute of Health, which was used, for instance,

in the work of [73]. There are also many recent works [7, 9, 74] improving the accuracy

of detecting nanoparticles in TEM images significantly. However, those processing tools

used can only handle static pictures one frame at a time and do not have the ability to

extract dynamic information from the videos.

The manual processing appears to be a bottleneck preventing scientists from taking full

advantage of the capability enabled by the new microscopy technique. Processing video

49



data, considering their sheer volumes and data sizes, is laborious and time-consuming.

Processing multiple clips of videos is also repetitive and prone to human errors.

More importantly, one crucial limitation of manual operation is the difficulty in identi-

fying the change points in a nanocrystal growth trajectory going through multiple phases.

It is nearly impossible for a person to identify change points accurately by simply look-

ing at the videos, while a nanocrystal growth going through multiple stages is common.

Indeed, past experiments have shown that a nanocrystal growth can be driven by differ-

ent kinetics [75, 76] in various stages. Researchers have developed mathematical models

for two kinds of growth mechanisms: the traditional monomer attachment growth, also

known as Ostwald ripening [77, 78], and the non-classical mechanism, like the orientat-

ed attachment [79, 80]. To take advantage of these models for describing the dynamics

of nanocrystal growth, a data analytic tool is pressingly needed for processing the in situ

TEM videos and detecting the phase change points delineating the growth stages.

The lack of an automated tool fulfilling the aforementioned tasks does not come as a

surprise, as the nanocrystal growth trajectory is highly stochastic. The current practice,

manual in nature aside, primarily uses some simple size/shape statistics, such as the sam-

ple average, to represent the nanocrystal evolution. However, these simple statistics are not

sufficient in fully summarizing the information in the TEM video data. In recent years,

some researchers have made the first step in going beyond simple summary statistics. Park

[81] learned the multiple-path growth trajectory of nano-crystals from the in situ or ex situ

TEM images. Park et al. [16] proposed a method to track the interacting nanocrystals

through the growth process in an in situ TEM video. This line of work focuses on track-

ing an individual nanoparticle growing through various stages. Woehl et al. [2] proposed

to identify the growth mechanism with the normalized particle size distribution (NPSD).

They estimated the NPSD by collecting nanocrystal size information from TEM videos.

Since the nanocrystal size measurements from all time frames were pooled together in
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their work to obtain a single static NPSD, Woehl et al. [2] did not describe the dynamic

change underlying the nanocrystal growth.

In this work, we propose a method to estimate the time-varying NPSD, i.e., one NPSD

at each time frame, using images from in situ TEM video. For each time frame, one could

fit a probability density function for the normalized nanocrystal sizes, using a standard

probability density estimation method, such as the penalized B-spline method [18]. How-

ever, direct application of standard methods does not give good density estimation due to

small sample sizes – there are too few nanocrystals at each time frame. To overcome the s-

mall sample size problem, we propose to extend the penalized B-spline density estimation

in the following sense. In the usual penalized B-spline formulation [18], the log density

function is modeled as a linear combination of B-spline basis functions, and the penalized

likelihood method is used to estimate the coefficients of the B-spline expansion. In our

extended formulation, the log likelihoods from all time frames are added together and, in

addition to the penalty that ensures smoothness of each estimated density function, an-

other penalty term is included to guarantee that the time-varying density functions change

smoothly over time. This new formulation of penalized B-splines allows us to borrow

information across time frames to obtain more reliable density estimation.

Under some fixed growth mechanisms, material scientists can use the self-similar ana-

lytic models to describe the theoretical NPSD [82, 83, 84], which assumes that the NPSD

can be approximated by the asymptotic solution at the infinite time. Based on that assump-

tion, after the time-varying NPSD is estimated, we can apply a change point detection

method to the estimated density functions, to identify the time points of potential phase

changes.

In order to facilitate the detection, we discretize each density function into a vector,

and then apply the principal component analysis (PCA) [85] to represent the time-varying

NPSD with a small number of principal component (PC) scores. After that, state-of-
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the-art multiple change detection methods, recently developed by Killick et al. [86] and

Fryzlewicz [87], could be used to detect the change points. One problem, however, is that

these methods tend to detect more change points than waht the physical understanding

can explain. To address this problem, we propose a selecting procedure to choose the

significant change points from the candidates identified by the existing methods, using the

sum of squared errors (SSE) as the criterion. We stop the process when the deduction

rate of SSE is smaller than a threshold. We find that this selecting procedure yields a

change point detection result that can be explained by the underlying nanocrystal growth

mechanisms. In addition to NPSD, we also apply our method to the median particle size

to supplement the NPSD-based change point detection.

With the change points detected using either the NPSD or the median particle size,

we are able to partition the particle growth process into several stages, each of which is

then described by an existing nanocrystal growth model. We applied this strategy to a

published TEM video segment to build a hybrid model for the whole stage of nanocrystal

growth. Using this new model, we can estimate stage-specific parameters and perform

quantitative comparisons of different stages. In a comparison with the single-stage model

used by Woehl et al. [2], our hybrid model is shown to be able to describe the nanocrystal

growth trajectory more accurately.

The rest of this chapter is organized as follows. In Section 3.2, we briefly discuss the

image preprocessing step and then introduce some definitions and notations. In Section

3.3, we present the details for modeling the time-varying NPSD. In Section 3.4, we present

our change point detection approach. In Section 3.5, we conduct a sensitivity analysis of

the tuning parameter used in our detection. In Section 3.6, we combine the two mechanis-

tic models, forming a hybrid model for the whole growth stage. Several comparisons are

conducted in this section. Finally in Section 3.7, we conclude our work.
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3.2 Image Preprocessing and Notations

We describe our methodology using the long segment video provided by Zheng et al.

[1] (file name: ‘1172104s1.mov’ in their supplementary material). We select the long

segment because its duration is long enough to contain multiple growth stages. Although

using the specific video as an example, the development of our stage identification and

change point detection method is not tailored to this particular example. We believe

our methodology from this section can be readily applied to other in situ TEM videos

of nanocrystal growth.

3.2.1 Video Preprocessing

Before identifying the nanocrystal growth, the first step is to detect nanocrystals in

the image of each video frame and extract their morphology information. One particular

emphasis is to address the issue of image segmentation among the aggregated nanoparti-

cles. To fulfill this preprocessing task, we used an image processing method developed

by our own team [88], which is particularly potent of handling low-contrast and noisy

TEM images and performs better than other methods for handling aggregated nanopar-

ticles [9, 7, 11]. The detection results at some selected time points are shown in Figure

3.1.

In this study, as in the original paper [1], we are primarily concerned with the change in

nanocrystal size, as the shapes of the nanocrystals are rather uniform. The nanocrystal size

is, understandably, characterized by its radius. Denote by rst the radius of the sth particle

at time t, and by r̄t the mean radius and r̃t the median radius, both at time t. Same as in

[1] and [2], the radius rst is defined as
√
Pst/π, where Pst is the area of the corresponding

particle.
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15s 30s 45s 60s 

Figure 3.1: Four frames from the long segment video provided by [1] and the nanocrystal
detection results. The contour line indicates a nanocrystal’s edge, while the ‘+’ indicates
a nanocrystal’s center.

3.2.2 Definition of Normalized Particle Size Distribution

Let Gt(r) denote the particle size distribution at time t. The mean radius r̄t can then

be expressed as:

r̄t =

∫ ∞
0

rGt(r)dr. (3.1)

We normalize the nanocrystal size rst at time t by r̄t to obtain φst = rst/r̄t. The normalized

particle size distribution, denoted as Ft(φ), where φ = r/r̄t, is the distribution of φst at

time t. It is easy to see that Ft(φ) is determined by Gt(r) and r̄t as:

Ft(φ) = r̄tGt(r̄tφ). (3.2)

Note that both Gt(·) and Ft(·) are time-varying functions, as signified by the subscript t.

NPSD provides a better measure of nanocrystal growth mechanism than the particle size

distribution (PSD). Past research [2, 77, 82] has shown that when the underlying growth

mechanism remains the same (within a single stage), the NPSD stays stable while the PSD

always changes with the growing sizes of the nanocrystals. So a change in NPSD can be a

strong clue to signify a new growth mechanism.
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3.3 Penalized B-splines for Estimating NPSD

We start off with introducing the estimation of a single probability density function

Ft(φ) from φst at time t using the method of [18]. The basic idea is to model the log

density function as a linear combination of B-spline basis functions, then estimate the

spline coefficients from the histogram of the observations by maximizing the penalized

likelihood. Specifically, the log density can be modelled as:

log(F (φ)) =
n∑
j=1

ajtBj(φ)− Ct, ∀i = 1, . . . ,m, (3.3)

where Bj(φ) is the jth B-spline basis function, n is the number of basis functions, and

Ct =

∫ ∞
0

n∑
j=1

ajtBj(φ)dφ (3.4)

is the normalized constant. Following Eilers and Marx [18], we create a histogram by

dividing the φ axis into m intervals to estimate the spline coefficients (in a B-spline, m

is the number of knots). Denote the midpoints as φi, i = 1, . . . ,m. Then the B-spline

function in Equation (3.3) evaluated at φi can be written as:

ηit =
n∑
j=1

ajtBj(φi),∀i = 1, . . . ,m. (3.5)

The number of observations falling in the i-th interval at the time frame t, denoted by

yit, can be assumed as Poisson distributed with density exp(ηit). The penalized Poisson

likelihood function of {ajt} is:

Lt({ajt}) =
m∑
i=1

yitηit −
m∑
i=1

exp(ηit)− λ1

n−1∑
j=1

(∆1ajt)
2

2
, (3.6)
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where ∆1 is a difference operator with ∆1ajt = a(j+1)t − ajt. In the above objective

function, the first and second terms correspond to the Poisson likelihood, measuring the

goodness-of-fit of Ft(φ) to the histogram {y1t, · · · , ymt}; the third term is the roughness

penalty, with λ1 being the penalty parameter, ensuring smoothness of the estimated densi-

ty. One should maximize Lt({ajt}) and then substitute the maximizer {âjt} to Equation

(3.3) to obtain the estimated probability density F̂t(φ) for a single time frame.

When the nanocrystals are too few at some time frames, estimating density functions

separately at each time frame does not produce good results. In our revised penalized

B-spline formulation, we estimate the density functions by pooling all time frames data

together. But unlike [2] in which the resulting NPSD is a constant function over the whole

growth trajectory, we allow our NPSD to be time varying, in order to capture the growth

dynamics. For this reason, we introduce an additional roughness penalty to ensure that the

density functions vary smoothly over time. The new objective function is:

L({ajt}) =
T∑
t=1

Lt({ajt})− λ2

n∑
j=1

T−1∑
t=1

(∆2ajt)
2

2
, (3.7)

where ∆2 is a difference operator with ∆2ajt = aj(t+1) − ajt. The λ2 is the temporal

roughness penalty parameter. This new formulation enables borrowing information among

different time frames and thus improves estimation efficiency, especially at those time

frames with too few nanocrystals.

We maximize the penalized log likelihood given in Equation (3.7) to obtain the spline

coefficients associated with all density functions over the whole growth duration. Ap-

parently, the algorithm developed by Eilers and Marx [18] does not apply since the new

formulation has an extra index t and an extra penalty term. The main challenge is caused

by the newly introduced, second penalty term, which makes the objective function not

separable with respect to t.
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We propose to apply the alternating direction multiplier method (ADMM) [24] to de-

couple the the relationship along the t index. Specifically, we replace ajt’s in the second

penalty term by a set of new variables zjt’s and solve the optimization problem under

the constraints ajt = zjt. We perform the constrained optimization by considering the

augmented Lagrangian as follows:

Lρ({ajt}, {zjt}, {cit}) =
T∑
t=1

Lt({ajt})− λ2

n∑
j=1

T−1∑
t=1

(∆2zjt)
2

2

− ρ
T∑
t=1

n∑
j=1

cjt(ajt − zjt)−
ρ

2

T∑
t=1

n∑
j=1

(ajt − zjt)2,

(3.8)

where cjt’s are the Lagrangian multipliers and ρ is the penalty parameter of the augmented

Lagrangian.

Then the ADMM algorithm targets to find the saddle point of Equation (3.8), defined

as:

({âjt}, {ẑjt}, {ĉit}) = arg min
{cit}

max
{ajt},{zjt}

Lρ, (3.9)

where {âjt} will be the maximizer of the penalized log likelihood of the density functions.

The saddle point is found by using the coordinate descent method [89]. The idea of the

method is as follows. In the qth iteration of updating {ajt}, {zjt} and {cjt}, firstly we

apply Eliers and Marx’s algorithm to find the optimal {ajt}, given {cjt} and {zjt} at their

current values; then, fixing {ajt} and {cjt}, the Lagrangian is a quadratic form in {zjt},

whose optimization has a closed-form solution; at last the Lagrange multipliers {cjt} are

updated by a “price update” step:

c
(q+1)
jt = c

(q)
jt + (a

(q)
jt − z

(q)
jt ) (3.10)

We continue the iteration until all those variables converge. At the convergence of the
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algorithm, we substitute the convergent values of {ajt} to Equation (3.3) to get the esti-

mated NPSD F̂t(φ) for all the time frames. The detailed steps of the ADMM algorithm

are included in the Appendix A.1. We also list the steps of the algorithm in Algorithm 1.

To estimate the NPSD using the video taken by Zheng et al. [1], we set n = 10 (the

number of B-spline basis), m = 50 (the number of knots), and T = 1, 148 (the number

of frames in the video). We choose the order B-spline as 2. The estimation is robust with

respect to those parameters, so we can choose any reasonable values. The parameter ρ only

affects the convergence speed of ADMM, so that as long as the algorithm converges, there

is no need to tune it. We set it as 9.0 in this application. The remaining tuning parameters

λ1 and λ2 can be set by the Akaike information criterion (AIC) like in [18] as

AIC(λ1, λ2) = dev(λ1, λ2) + 2dim(λ1, λ2), (3.11)

where dev(λ1, λ2) is the deviance of the estimated curves, and dim(λ1, λ2) is the effective

dimension of parameters. The deviance is defined as:

dev(λ1, λ2) = 2
T∑
t=1

m∑
i=1

yit ln yit − 2
T∑
t=1

n∑
j=1

âjtB
+
jt. (3.12)

And we define the effective dimension of parameters as:

dim(λ1, λ2) = tr{(B′B + λ1D
′
1D1)−1B′B}tr{(IT + λ2D2D

′
2)−1}, (3.13)

where tr{·} is the trace of the corresponding matrix. By minimizing AIC(λ1, λ2), the two

tuning parameters are chosen as λ1 = 0.5, λ2 = 1.5.

We show in Figure 3.2 the NPSDs estimated at t = 10s, 40s and 70s. The same

approach can also be used to estimate PSD, by replacing the observations φst with rst and

replacing knots φi with ri. The parameters m, n, T , λ1, λ2 and ρ are set the same as those
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Algorithm 1 Detailed algorithm for solving the revised penalized B-spline density esti-
mation

1. Set tuning parameters m, n, λ1, λ2 and ρ.

2. Construct the B-spline basis function Bj(φi) according to the knots φi for i =
1, . . . ,m and j = 1, . . . , n. Then we calculate B+

t = [B+
1t, · · · , B+

nt]
′ and B+

jt =∑
sBj(φst).

3. Initialize A(0), Z(0) and C(0). We recommend setting (H(0))it = log(yit), A(0) =
Z(0) = B−1H(0) and C(0) = 0.

4. Set q = 0.

5. Update A(q+1). For t = 1, . . . , T , we update each column as follows:

(a) Set ât = a
(q)
t .

(b) Solve the following equation:

B+
t −B′ exp(Bât) +B′Bât + ρ(z

(q)
t − c

(q)
t )

= [B′B + λ1D
′
1D1 + ρIn]at,

(3.14)

where ât is the result estimated from the previous iteration, and D1 is an n×n
matrix with (D1)jj as −1, (D1)j(j−1) as 1, for j = 2, . . . , n, and all other
elements as 0.
Use the solution of at to update ât.

(c) Repeat the previous step until ât converges, then let a(q+1)
t = ât.

6. Update Z(q+1) by solving the following equation:

Z(q+1) =
[
A(q+1) + C(q)

]
(IT +

λ2

ρ
D2D

′
2)(−1), (3.15)

where D2 is a T ×T matrix with (D2)tt as−1, (D2)t(t+1) as 1, for t = 1, . . . , T − 1,
and all other elements as 0.

7. Update C(q+1) via the following equation:

C(q+1) = C(q) + (A(q+1) − Z(q+1)), (3.16)

then let q = q + 1.

8. Repeat Step 5 to 7 until A, Z and C all converge.
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(a) NPSD at 10s (c) NPSD at 70s (b) NPSD at 40s 

Figure 3.2: The estimated NPSDs at 10s, 40s and 70s.

(a) PSD at 10s (c) PSD at 70s (b) PSD at 40s 

Figure 3.3: The estimated PSDs at 10s, 40s and 70s.
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used in the estimation of NPSD. The PSDs estimated at t = 10s, 40s and 70s are shown in

Figure 3.3.

3.4 Change Point Detection

The estimated NPSD F̂t(φ) is available to us as a vector at each t, i.e., {F̂t(φ1), . . . ,

F̂t(φm)}. To detect a change point in F̂t(φ) amounts to a multivariate detection problem,

and a common strategy to make such detection effective is to reduce the dimension of

the vector by using the principal component analysis (PCA) [85]. PCA attempts to find

a small number of significant projections of the original vector onto a lower-dimensional

space, which is supposed to well-represent the original vector. When applying PCA to our

NPSD, it turns out that only the first principal component (PC) is significant. In Figure 3.4,

we plot the first 10 eigenvalues corresponding to the respective principal components, as

well as the scores of the 1st and 2nd PCs. The eigenvalue of the 1st PC is much larger than

that of the other PCs. In fact, the 1st PC explains 86.5% of the total variance of the original

data. In addition to considering the numerical percentage of the 1st PC, we observe that

its score exhibits a clear pattern, while that of the 2nd PC appears random, reassuring the

decision to use the 1st PC only for our detection purpose. So in the sequel, we work with

the scores of the first PC, which is denoted by p̂t. But we do want to note that not always

is only the first PC significant. In the case that the significant PCs are more than one, we

would apply a multivariate change point detection framework, like methods in [90], on the

scores of significant PCs.

Without knowing the exact number of possible change points in the process, a popu-

lar treatment, known as the binary segmentation process (BSP) [91], is to detect the most

significant change point first and then continue applying the same detection method to the

subsequences before and after the detected change point. The dominating criterion used in

the existing BSP methods to decide the existence of a change point is the Bayesian infor-
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(b) Scores of the 1st PC 
of NPSD  

(c) Scores of the 2nd PC 
of NPSD  

(a) The eigenvalues 
corresponding to each PC 

Figure 3.4: PCA of the NPSD: (a) the eigenvalues corresponding to the first ten PCs; (b)
the scores of the first PC; (c) the scores of the second PC.

mation criterion, also known as the Bayesian information criterion (BIC) [92]. However, if

we adopt the BSP method with BIC as the stopping criterion to our data, it will find more

than 400 change points, obviously over-segmenting the nanocrystal growth trajectory. We

also try some state-of-the-art multiple change point detection methods, such as the pruned

exact linear time (PELT) [86] and the wild binary segmentation (WBS) [87] but they still

return more change points than that the mechanisms can explain (8 change points when

using PELT and 49 when using WBS).

Apparently, we need to reduce the number of change points to be consistent with the

physical understanding. In doing so, we find that a robust criterion to select the change

points with our data is the reduction rate in the sum of squared errors (SSE) of the piece-

wise constant model before and after a change point is added. Recall that NPSD is sup-

posed to stay stable within each growth stage so that the scores of NPSD’s principal com-

ponents should fluctuate around a constant within a growth stage. If all the change points

are correctly identified, the piecewise constant model for fitting the scores of the NPSD’s

principal component should produce the lowest SSE.

Given all the candidates of change points detected by one of the popular methods
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(we choose PELT here, as it turns the fewest change points among all methods we have

explored), we start with a constant model and then test each of those candidates. We pick

the first potential change point to be the place where the largest reduction of SSE can

be achieved by the two-piece constant model. If the reduction of SSE is large enough, we

believe this change point is genuine and will continue the selection process. Then, we visit

all the remaining candidates to find the next change point which gives the largest reduction

rate of SSE. We repeat the same step until the reduction of SSE is no longer significant,

i.e., it is most likely due to random noise rather than a substantial change in the process.

The detailed steps are described as follows.

Suppose we have already found c − 1 change points, denoted as t̂1, . . . , t̂c−1, while

there are g remaining candidates, denoted as t̃1, . . . , t̃g. The next possible change point

chosen from t̃1, . . . , t̃g is denoted as tc. They together segment the whole data sequence

into c + 1 subsequences, denoted by Se, e = {1, . . . , c + 1}. The overall SSE of the

piecewise constant model fitting of p̂t is computed as:

V (t̂1, . . . , t̂c−1, tc) =
c+1∑
e=1

∑
t∈Se

(p̂t − b(e)
0 )2, (3.17)

where b(e)
0 is the mean of p̂t within Se. The position of the next potential change point is

determined by:

t̂c = arg min
tc∈(t̃1,...,t̃g)

V (t̂1, . . . , t̂c−1, tc). (3.18)

Then we will delete t̂c from the candidates {t̃1, . . . , t̃g} and continue the selecting process,

until there is no remaining change point candidates.

By applying Equation (3.17) to the in situ TEM data of our example, we can find

a series of potential change points from the 8 candidates detected by PELT, which are

shown in Figure 3.5(a). Figure 3.5(b) presents the profile of the SSE, V (t̂1, . . . , t̂c), in
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which t̂(1), . . . , t̂(8) represents the order of the selection. We deem a potential change point

t̂c a genuine change point if the deduction rate of the SSE is larger than a threshold θ:

V (t̂1, . . . , t̂c−1)− V (t̂1, . . . , t̂c)

V (t̂1, . . . , t̂c−1)
> θ, (3.19)

In other words, if including t̂c reduces the SSE by more than θ× 100%, we tend to believe

that the change point is due to true process change rather than random noise. Then we

continue the selection for the next potential change point. If the criterion in Equation

(3.19) is not satisfied, we consider that all the significant change points have been found

and stop the process.

We want to note that the PC scores is auto correlated because of the temporal penalty

added in our density estimation step. Should the PC scores is severe and causing too many

false alarms, the autocorrelation in the PC scores may need to be removed first before a

change point detection method is applied. We recommend using a model free approach

such as the unweighted batch mean [93].

(a) (b) (c) 

Figure 3.5: Results of the proposed change point detection using size distribution: (a) 8
potential change point candidates detected by PELT; (b) change in V (·) when selecting a
change point at a time; (c) all change points detected when θ is varied in the range of (0.2,
0.8).
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The same strategy can also be applied to a simple statistic, such as the median or mean

particle size, which has more often been used to describe a nanocrystal growth due to

its simplicity. As the median radius is less sensitive to outliers, we apply our method to

the median particle size r̃t, instead of the mean particle size r̄t. Unlike the NPSD, which

remains relatively stable without a change point, so that its PC fluctuates around a constant,

r̃t exhibits an increasing trend along the growth process.

What we need to do is to revise the detection process to handle the trend. We adopt the

strucchange package [94], which detects change points after a regression, and using it

finds 15 change point candidates. To select the significant change points, we first apply a

de-trending operation before performing the change point detection. Following Chen and

Gupta [95], we use a linear model to de-trend the median particle size. Hence, we revise

the SSE by using the residuals after fitting a piecewise linear trend model, as follows:

V (t̂1, . . . , t̂c−1, tc) =
c+1∑
e=1

∑
t∈Se

(r̃t − b(e)
0 − b

(e)
1 t)2, (3.20)

where b(·)
0 and b(·)

1 are the coefficients of the respective linear models. Once the definition

of SSE is revised, the rest procedure for NPSD is adapted to select the significant change

points in r̃t. Figure 3.6(a) and Figure 3.6(b) present the intermediate detection results in

our example while using the median size.

The key tuning parameter in this selection procedure is θ. In our application, we set

θ = 0.5 for both NPSD and the median particle size. The choice of θ = 0.5 means that

we deem a candidate a genuine change point if its selection reduces the SSE by half or

more. By this choice, we detect one change point in NPSD and another one in median

size; the two change points are shown as “#1" in Figure 3.5(c) and “#3" in Figure 3.6(c),

respectively. For future applications, we would recommend the same choice for θ.

Setting θ = 0.5, the change point detection method produces altogether two phase
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(b) (a) (c) 

Figure 3.6: Results of the proposed change point detection using median particle size: (a)
15 potential change points detected by ’strucchange’ package; (b) change in V (·) when
selecting a change point at a time; (c) all change points detected when θ is varied in the
range of (0.2, 0.8).

change points: at 25.8s in r̃t (“#3" in Figure 3.6(c)) and at 39.9s in NPSD (“#1" in Figure

3.5(c)). These two change points segment the whole growth trajectory into three stages:

(0s, 25.8s), (25.8s, 39.9s) and (39.9s, 76.6s). The delineated stages make it immediately

clear how the nanocrystals grow: they go through two major growth stages with a transi-

tion stage in between. For this particular process, the two dominating mechanisms have

been studied and understood [1, 75, 76, 96]: in the period of (0s, 25.8s), the orientat-

ed attachment (OA) mechanism dominates, whereas in the period of (39.9s, 76.6s), the

Ostwald ripening (OR) mechanism dominates. It is understandable that the mechanism

change does not happen suddenly. As one mechanism gradually takes over from the oth-

er, a short transition period naturally exists, which is the period of (25.8s, 39.9s) in this

example.

3.5 Sensitivity of Tuning Parameter θ

Given the critical role played by θ, we further conduct a sensitivity analysis. Figure 3.7

shows the number of change points detected in both NPSD and median size, as θ varies

in the range of (0.2, 0.8). The NPSD-based detection produces either one change point or
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two change points. The first change point detected in the two-point circumstance is the

same as the change point detected in the single-point case, shown as “#1" in Figure 3.5(c).

The second change point is shown as “#2" in the same figure. The median size based

detection is more sensitive to the value of θ: it could produce from zero to two change

points over the same θ range. The two change points that could have been detected are

marked as “#3" and “#4", respectively, in Figure 3.6(c). Aside from the sensitivity issue,

another drawback of using the median size statistic is that one would not be able to detect

“#1" unless setting θ to some extreme value (like 0.1); given the analysis done by Zheng

et al. [1], we know that a phase change indeed occurred around the time of “#1," so that

missing this change point is a serious limitation.

When looking closely at the four possible change points, it is apparent to us that the

change points “#2" and “#3" are the outcome of the same change, as their time stamps are

only 3.2 seconds apart. By merging “#2" and “#3," the change point detection outcomes

could possibly segment the whole growth into four stages, three stages, or two stages,

depending the specific choice of θ. But an important message, we believe, is that the

difference in the detection outcome does not lead to a drastically different understanding

of the basic science behind. To see this point, consider the following alternatives.

When a smaller θ is used, all four change points could have been detected. Having

“#4" apparently suggests the existence of an initial nucleation stage, which is generally

hard to observe because its duration is short, data variability is high, and the number

of nanocrystals is small. Missing this initial stage is understandable and not seriously

detrimental to the subsequent analysis.

Had we chosen a large θ (say, greater than 0.6), only one change point (#1 in Fig-

ure 3.5(c)) would be detected in NPSD and no change point in median size. Hence, the

transition stage could have been missed. Still, we would not miss the big picture of two

dominating growths, i.e., OA and OR.
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The overall analysis shows that NPSD-based detection outcome is robust, as it captures

the important change points consistently in a broad range of the tuning parameter. To avoid

missing potentially important change points in future applications, one should vary θ in a

reasonable range and then chooses a manageable number of the change points.

The fact that NPSD-based detection produces a rather robust detection separating the

whole growth trajectory into two major stages speaks to the benefit of having such a de-

tection approach. Had we not known the individual mechanisms under respective stages,

this detection outcome would hint strongly where to explore for understanding the basic

science behind.

Figure 3.7: The number of change points detected in NPSD and median particle size for
θ ∈ (0.2, 0.8).

3.6 Hybrid Modeling

In this application, since we do know the dominating growth mechanisms, we can

adopt the existing first principle models for each respective growth stage and then use

an interpolation to model the transition period. As such, we produce a unified growth
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model, as a hybrid of the first principle-based model and the empirical model, for the

whole nanocrystal growth trajectory.

The models for NPSD F̂t(φ) and mean particle size r̄t during the OA growth in the

first stage (0s, 25.8s), taken from the work of Aldous [83], are, respectively:

FtOA(φ) = 2WOA
Γ(aOA+1)

(WOAφ)2aOA+1e−(WOAφ)2 ,

r̄
2(aOA+1)
tOA

= bOA(t− tOA),
(3.21)

where WOA = (aOA + 1)Γ(aOA + 3/2)/Γ(aOA + 1). Altogether three parameters used in

the two models are: aOA, indicating the variance of the process, bOA, indicating the growth

rate, and tOA, indicating the initial size of nanocrystals.

(b) Estimated NPSD 
at 70s 

(c) NPSD of the 
LSW model 

(a) Estimated NPSD 
at 45s 

Figure 3.8: (a) The empirical NPSD estimated at 45s; (b) the empirical NPSD estimated
at 70s; (c) the theoretical NPSD derived from the LSW model.

The kinetics of OR growth in the third stage (39.9s, 76.6s) was usually described by the

LSW model [82]. We did choose to use the LSW model to represent the mean particle size

(r̄t) growth in the OR stage. For the r̄t growth, the LSW model is to model the cube of r̄t

with a linear function. The model of r̄t growth in the OA stage bears a similar appearance

but the key difference is the different power term on r̄t.
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However, to model F̂t(φ) in the OR growth part, we find that the LSW model cannot

obtain a good fit for the estimated F̂t(φ). In Figure 3.8, we compare the empirical NPSDs

estimated at 45s and 70s with the NPSD derived from the LSW model. The two empirical

NPSDs are similar, and both of them look rather symmetric. The LSW-based NPSD is

more skewed with a long lower tail and has larger variance compared with the empirical

NPSDs. The long lower tail of the LSW-based NPSD presents a clear contrast with the

NPSDs estimated directly from the data. In our opinion, there are two reasons for the

mismatch. First, the smaller particles are difficult to track under the current resolution of

the in situ TEM, yet the LSW model, with a long left tail, is more sensitive to the missed

detection of these particles. Second, the LSW model has been known as inconsistent with

the experimental results for a long time [97]. For this reason, other researchers proposed

modified models to improve the fitting accuracy [98, 99, 84], but when these models are

tested against the TEM video data at hand, they do not produce more competitive fitting

quality. Here, we decide to use the OA growth model structure (derived by the Smolu-

chowski equation) to fit for NPSD in the OR growth; doing so indeed produces a better

fit. The added benefit of using the same model structure in both stages is to make their

comparison easier.

Specifically the OR growth models are:

FtOR(φ) = 2WOR
Γ(aOR+1)

(WORφ)2aOR+1e−(WORφ)2 ,

r̄3
tOR

= bOR(t− tOR).
(3.22)

The first equation here is the same as that in Equation (3.21) but with different parameters.

The three parameters used in the OR models share the same interpretations as those in the

OA model.

Using the TEM data, we estimate the parameters associated with the two stages, pre-

70



sented in Table 3.1. Compared with aOA, the larger aOR suggests that the larger variance

of NPSD in the OR growth. This conclusion is consistent with the observations made by

Zheng et al. [1], but our result provides a quantitative contrast. Using the estimated values

of bOA and bOR, we calculate the derivative of r̄t for the two stages. For the OA growth, the

derivative is calculated as:

dr̄t
dt

=
1

2(aOA + 1)
bOA[bOA(t− tOA)]

1
2(aOA+1)

−1
, (3.23)

and for the OR growth, the derivative is calculated as:

dr̄t
dt

=
1

3
bOR[bOR(t− tOR)]

1
3
−1. (3.24)

Table 3.1: The estimated parameters associated with the two stages in the nanocrystal
growth.

aOA bOA tOA aOR bOR tOR

1.47 42.2 −429.3 7.31 0.55 −1342.7

In Figure 3.9, we compare the derivatives for the OA and OR growth. The gap between

the two curves corresponds to the transition period in which no theoretical model is yet

available. The two curves make it clear that in the nanocrystal growth, the mean radius

growth rate in the OA stage is faster than that in the OR stage, just as the estimated bOA and

bOR values suggested. This was again stated by Zheng et al. [1] but our analysis provides

a quantitative picture of the mean radius evolution in the two stages.

The difference in tOA and tOR suggests that the initial nanocrystal sizes are different,

and a more negative quantity implies a large initial size. The tOA and tOR values in Ta-
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ble 3.1 make perfect sense, as the OR growth follows the OA growth, so that the initial

nanocrystals in OR have a bigger size.

OA model 

OR model 

Figure 3.9: The comparison of the first derivative of r̄t in the OA and OR growth stages.

To include the transition period between (25.8s, 39.9s), we introduce the weighting

functions λN(t) and λR(t), for NPSD and mean particle size, respectively, to combine

the two aforementioned models. The two weighting functions take the value of 0 when

t < 25.8s, 1 when t > 39.9s, and increase from 0 to 1 quadratically in between, with their

quadratic function coefficients fitted from the corresponding NPSD or mean particle size

in the transition period. The overall growth models of Ft(φ) and r̄t, respectively, are in

this hybrid structure as:

Ft(φ) = (1− λN(t))FtOA(φ) + λN(t)FtOR(φ),

r̄t = (1− λR(t))r̄tOA + λR(t)r̄tOR .
(3.25)

To verify the quality of our hybrid growth model, we show in Figure 3.10(a) the SSE
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values between the Ft(φ) simulated using Equation (3.25) and its empirically estimated

counterpart using directly the TEM observations. Except in the beginning few seconds

and the transition period, the simulated results follow very closely the empirical results.

The relatively worse fit during the transition period is understandable, as there lack theories

to describe the transition mechanism. We also fitted Woehl et al. [2]’s single-stage model

and show its SSE in Figure 3.10(a), too. Our hybrid model produces smaller SSE’s for

both the OA and OR growth stages and it is comparable to Woehl et al.’s model in the

transition period.

The above learning results provide a quantitative model to describe the whole growth

trajectory. Using the learned results, we can simulate the evolution of PSD, Gt(r), using

the hybrid model of r̄t and Ft(φ), as:

Gt(r) =
1

r̄t
Ft(

r

r̄t
). (3.26)

Then, we estimated the PSD based directly on the observations of rst by using the proposed

non-parametric density estimation method. The SSE curve between the simulated PSD and

the estimated PSD is shown in Figure 3.10(b). Additionally, we also show the SSE curves

between the estimated PSD and the PSDs simulated by using, respectively, Woehl et al.

[2]’s single-stage model, the OA growth model alone and the OR growth model alone. The

hybrid growth model fits the observed data consistently well throughout the entire growth

trajectory, while other models all have deficiencies in certain periods.

3.7 Concluding Remarks

In this chapter, we propose a method aiming at identifying and delineating different

stages in a nanocrystal growth using in situ TEM videos, assuming the self-similar analytic

solution existed for a fixed growth mechanism. We make two major contributions: the

first is to estimate a time-varying NPSD by pooling data of all time frames and develop a
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(a) SSE of the NPSD models (b) SSE of the PSD models

Woehl’s model

Hybrid model

OR model

Hybrid model

OA model

Woehl’s model

Figure 3.10: The comparison of the simulated results and the empirical estimation from
the data: (a) the SSE curves between the simulated NPSD (by using the hybrid model or
Woehl’s model) and its estimated counterpart; (b) the SSE curves between the simulated
PSDs (by using the hybrid model, Whoehl’s model, OA model alone, and OR model alone,
respectively) and their estimated counterpart.

modified penalized B-spline method accordingly; the second is to perform a robust change

point detection of the highly stochastic nanocrystal growth process, providing a detection

outcome consistent with physical understanding. We applied our change point analysis to

a published in situ TEM video clip.

Our work shows that the importance of using probability distribution functions, not the

simple statistics, for the phase identifying and model building purposes. It also reveals the

existence of a transition period between the two dominating growth stages. The existence

of the transition period is expected and our method finds its precise timing. But the under-

lying mechanism of the transition period was still poorly understood. Our hybrid model,

assuming a linear combination of the two dominating growth mechanisms in the transition

period, provides an initial attempt and fits the observations reasonably well. Moreover,

the estimated time-varying NPSD gives another evidence that the LSW model does not fit

experiment results well at the latter stage. We hope that our method can help the material
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scientists find an accurate theoretical model for predicting the long-time distribution of

the Oswald ripening. Overall, we believe that our detection and modeling efforts lay a

foundation for future quality control of nanocrystal synthesis processes. With the densi-

ty estimation and the predictive model, engineers can monitor the process and detect the

out-of-controls by comparing the observed and theoretical distributions.
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4. FAST DYNAMIC NONPARAMETRIC DISTRIBUTION TRACKING IN

ELECTRON MICROSCOPIC DATA

In this chapter, we will extend the retrospective analysis in Chapter 3 to a prospective

analysis. To enable in-process control of nanocrystal production, taking full advantage of

in situ TEM hinges upon a solution addressing a statistical challenge, which is the capabil-

ity of tracking a dynamic, time-varying probability distribution reflecting the nanocrystal

growth. Because no known parametric density functions can adequately describe the e-

volving distribution, a nonparametric approach is inevitable. Towards this objective, we

propose to incorporate the dynamic evolution of the normalized particle size distribution

into a state-space model, in which the distribution curve is represented by a B-splines

method. A closed-form algorithm runs online updates faster than the frame rate of the

in situ TEM video, making it suitable for in-process control purposes. By imposing the

constraints of the curve smoothness and temporal continuity, we improve the accuracy and

robustness of the estimation. We test our method on three published TEM videos. For

all of them, our proposed method is able to obtain efficient and accurate estimations and

outperforms several alternative approaches.

4.1 Introduction

A promising method of producing nanocrystals in large quantities is a self-assembly

process, referring to the process of producing nanocrystals from small building block-

s such as atoms and molecules that are spontaneously arranged into order structures at

the nanoscale [3, 4]. To produce nanocrystals with desired sizes and shapes, its growth

process should be monitored and controlled [100], but accomplishing this goal is rather

challenging, due to the existence of multiple growth mechanisms [1], complex interac-

tions among hundreds of nanoscale particles [16], and after all, the stochastic nature of
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the growth processes. Critical to the mission of achieving in-process control is a recent

technology innovation in nanoscale metrology, the in situ TEM [1]. An in situ TEM uses a

special sample holder in which a nanocrystal growth process takes place, allowing motion

pictures to be taken while the nanocrystals in the sample holder are initiating, crystalizing,

and morphing into different sizes and shapes.

The morphological features to be extracted from a TEM video are the sizes and shapes

of the nanocrystals and their evolving trajectories over the time. In this study, we focus pri-

marily on particle size, because all the TEM videos we have at hand contain nanocrystals

of rather uniform round shape throughout their growth process. We note that the current

progress by research communities in handling dynamic TEM images (i.e., videos) is still

at the stage of dealing with size, rather than both size and shape.

When an image frame of the nanocrystal growth process is recorded by an in situ TEM,

an image processing tool is used to extract the contours of the nanocrystals in the frame,

count the quantity, and calculate the particle sizes. After that, a histogram of the normal-

ized particle size distribution (NPSD) is created and used as the observational input to the

subsequent modeling. Here, the NPSD is the original particle size distribution normalized

by the average radius of the nanocrystals at a given moment. It is understandable that

the trajectory of the particle size distribution is trending upward, as the nanocrystals are

getting bigger over the growth process. Once normalized by the average particle size, the

upward trend is eliminated in the normalized particle size distribution, making it easier to

be monitored.

Studies show that tracking the time-varying NPSD can indeed provide valuable in-

sights to unearth the underlying growth dynamics and mechanisms [1, 2]. As such, the

nano production monitoring problem is translated to a statistical learning problem, which

is to model and track a time-varying probability density function (PDF), subject to the

following requirements.
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The first requirement is rooted in that no known parametric density functions can ad-

equately describe the time-varying NPSD throughout the nanocrystal growth. A nonpara-

metric approach appears inevitable. The second requirement is the need for a prospective

analysis, because our goal is online monitoring and tracking, and only through this online

capability does it enable in-process control. For an online analysis, the model updating

to capture the PDF change needs to be fast enough; how fast is enough is dictated by the

imaging speed (in this application, about 15 frames per second). The last requirement

arises from that the time-varying NPSD needs to be a smooth function at each frame while

also maintain smoothness and continuity across frames. Imposing these two constraints,

referred to as curve smoothness and temporal continuity respectively, will improve the ro-

bustness and accuracy of the estimation, especially when the number of observations is

not large enough at individual image frames.

To address these technical challenges, we characterize the dynamics of the normalized

particle size distribution with a state-space model, in which each PDF is representably

nonparametrically by B-splines. To enable online analysis, a closed-form estimation ap-

proach is devised to update the PDF when new observations comes, so that tracking can

run fast enough to catch up with the imaging rate. While the temporal continuity is natural-

ly imposed in the proposed model, imposing the curve smoothness in the dynamic model

is not trivial. We are able to accomplish the objective by introducing a new state vector

that penalizes the second order difference of the B-splines coefficients.

The remaining parts of the chapter are organized as follows. In Section 4.2, we review

the related work. Section 4.3, we discuss the data used in this study. In Section 4.4, we

present the state-space model and devise a closed-form for online updating and tracking

of the particle size distribution. In Section 4.5, we explain how to estimate the parameters

used in the state-space model. In Section 4.6, we apply our method to the analysis of three

segments of TEM videos and demonstrates the merits of the proposed method. Finally, we
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conclude our work in Section 4.7.

4.2 Related Work

Two branches of research are related to our undertaking: (1) nano image processing,

(2) online estimation of nonparametric density functions. We review both in the following.

Nano imaging processing. The vast majority of the existing methods for analyzing TEM

measurements, including several of our own, are for handling still images [7, 9, 37, 88].

These methods laid the foundation for handling dynamic images in TEM videos. One can

even use them to process the images one frame at a time. Of course, processing one frame

at a time is inefficient and also overlooks the dynamics and correlation among the adjacent

video frames.

There are a few approaches available for handling dynamic TEM images, and they

fall into two major lines of approach. The first line is to identify and track individual

nanocrystals [81, 16] and build a model to characterize the growth dynamics by looking at

those trajectories. This approach is in line with the objects/targets tracking research in the

computer vision literature [13, 14]. The second line is to model the distribution of certain

characteristics of the objects (say, size), instead of tracking individual objects.

The second line of approach, i.e., the distribution tracking, is more common in material

science, which is in fact what we follow in this research. On the one hand, material sci-

entists care more about the collective changes in the distribution of nanocrystals, because

the distribution change has a good scientific ground to be connected with the underlying

process dynamics, while the change exhibiting in any single nanocrystal may not be rep-

resentative. On the other hand, it is rather difficult, if not impossible, to track individual

nanocrystals in TEM videos and link them across the image frames. Individual nanocrys-

tals lack traceable features. In certain in situ TEM systems, samples continuously flow

through the imaging area, so that the samples observed every time are different, for which
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individual object tracking is no longer meaningful.

Online estimation of a nonparametric distribution. Many existing methods, e.g., the

smoothed histogram [101], the Kernel estimator [17], and penalized B-splines [18], can fit

a smooth curve for a static distribution. However, employing those methods to estimate the

distribution at each time individually fails to capture the dynamics between video frames.

Modeling a time-varying distribution is an open and challenging statistical learning prob-

lem.

Some recent research developments, e.g., [19, 20, 21, 22], outline a dynamic hierarchi-

cal framework to address the time-varying PDF modeling problem. Under this framework,

a latent variable, changing through time, underpins the dynamics of the underlying pro-

cess and drives the distribution to change over time. In the engineering fields, such a

framework is usually called a state-space model, where the latent variable is regarded as a

time-varying hidden state. To implement such a framework, the following two questions

ought to be answered: one is what to be defined as the hidden state and how to connect it

with the time-varying distribution, and the second is how to efficiently update the state, and

thus the distribution, upon receiving new observations, for the purpose of online tracking?

To our best knowledge, the existing works generally follow two major schools of

thought. One school of thought [19, 21] is to directly use the histogram as an approxi-

mation of the true distribution. In doing so, one can segment the range of a variable of

interest into several intervals, and calculate the number of observations within each inter-

val to build a histogram for each frame of image. The means of the intervals are regarded

as the state, assumed to follow an autoregressive model. After the new observations come,

the state will be updated through a particle filtering process [23]. The drawbacks of this

approach are its sensitivity to the number and positions of the intervals, and the high com-

putational complexity when the dimension of the state is large.
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The other school of thought [20, 22], assumes that the prior of the time-varying distri-

bution follows a Dirichlet mixture model [102]. This assumption treats the distribution as

the summation of an infinite number of local kernels, where the weights and locations of

those kernels are drawn from a dependent, time-varying Dirichlet process. The parameters

of the Dirichlet process can be considered as the state, and change over time through a

random walk or a diffusion process. The inference for the state is implemented by a pos-

terior sampling according to the new observations. Such an approach also suffers the high

computational complexity in the posterior sampling, especially when a large number of

local kernels exist in the model. Generally speaking, the sampling based approaches are

too slow to meet the online tracking objective (recall the 15 frames per second imaging

rate).

To develop a distribution estimation method suitable for online video tracking, the s-

tate at each time should be updated by a fast, closed-form algorithm. In that way, the

computational cost will not increase dramatically with the dimension of the states. In a

previous retrospective analysis of TEM videos [103], it was shown that the B-splines mod-

el [18] provides a competitive method for estimating a nonparametric, time-varying PDF.

The PDF curve is represented by a linear combination of a set of B-spline basis functions,

the coefficients of these basis functions, regarded as the hidden states, are efficiently es-

timated when the density curve is fit to the observed histograms. To extend the previous

retrospective approach for the online mission, we model the change of the coefficients with

a random walk, and build a state-space for the time-varying distributions. A closed-form

state updating is then accomplished by devising an extended Kalman filter [104] based on

the proposed prospective model.

To alleviate the sensitivity to the number and positions of the intervals in the observed

histograms, both the curve smoothness and temporal continuity need to be imposed on

the proposed model. While the random walk of the hidden state naturally provides the
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temporal continuity, a technical challenge to be addressed is how to incorporate the curve

smoothness in the dynamic model. One may just want to add the smoothness constraint

onto the hidden state, say, imposing a constraint on the correlation of the state vector. But

doing so makes both the updating and parameter estimation tasks difficult to carry out.

Our proposed solution is to follow a suggestion made by Eilers and Marx [18], which is

that one can penalize the second-order difference of the B-spline coefficients for imposing

smoothness on a resulting curve. Specifically, we propose to introduce a new state vector

and make part of the new vector equivalent to the second-order difference of the original

state vector. Then, we require the state variables corresponding to the second-order differ-

ence to be much smaller than the other part of the new state vector; such action provides us

a much smoother and better distribution estimation and its inclusion does not slow down

the otherwise fast state updating via the extended Kalman filter.

Comparing with the alternatives for the time-varying distribution estimation, our pro-

posed method provides a fast and closed-form updating algorithm for the hidden state

meeting the online video tracking requirement, while imposing the two constraints on the

B-splines leads to a robust and accurate estimation. Figure 4.1 presents an overview of the

proposed online, prospective analysis.

4.3 Data

A newly emerged technology and rather expensive, there are not many in situ TEMs

available yet in the United States. There are a very limited number of TEM videos avail-

able in the public domain. In this study, we use three clips of in situ TEM video: two clips

published by Zheng et al. [1] and one clip published by Woehl et al. [2]. The three video

clips have, respectively, 1,149, 637, and 112 image frames. We label them as Video 1,

Video 2 and Video 3, respectively. Figure 4.2 presents four frames of Video 1, capturing

the growth of platinum nanocrystals.
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Figure 4.1: The framework of a prospective analysis of in situ TEM videos.

Figure 4.2: Four frames from the in situ TEM video studied by [1]. The dark spots are
nanocrystals.
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The data processing works as follows. When an image frame of the nanocrystal growth

process is recorded by an in situ TEM, we first process the image and extract the nanocrys-

tal information, which is the number and the corresponding size of the nanocrystals in the

frame. The specific tool for processing individual images is from [88], a method partic-

ularly potent of handling noisy TEM images with low contrast. The result of one frame

from each video clip is shown in Figure 4.3. Of the three video clips, Video 1 and 2 are of

290 × 242 pixels in size and Video 3 is of 496 × 472 pixels. Considering their relatively

small image size, the image pre-processing can be done fairly quickly. For Video 1 and

Video 2, the image processing only takes 0.04 seconds per frame and for Video 3 it takes

0.02 seconds per frame.

Video 1 Video 2 Video 3

Figure 4.3: The nanocrystal detection results from a single frame from the three clips of
our tested video, where the green line shows a nanocrystal’s edge and the red ‘+’ shows a
nanocrystal’s center. Videos 1 and 2 were published by [1] and Video 3 was published by
[2].

After we detect all nanocrystals in the frame of time t, we calculate each nanoscrystal’s

area,A`(t), for the `-th nanocrystal at time t, for ` = 1, ..., Nt, whereNt is the total number

of nanoscrystals in the frame of time t. Then, we use A`(t) to compute the average radius

of the `-th nanocrystal, namely r`(t) =
√
A`(t)/π. The mean radius for each image frame,

r̄(t), can be readily obtained. Finally, we normalize r`(t) by r̄(t) to obtain the normalized
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radius x`(t), such that x`(t) = r`(t)/r̄(t), which are further used to create a histogram.

To create the histogram, we limited the range of x`(t) to [0, 2.0], as the number of the

nanocrystals twice as large as the average size is usually very few at any given time. We

divide the range into m intervals of equal size δ. Here we use a constant m = 21 through-

out the monitoring process and denote by xi the normalized particle size corresponding

to the center of the ith interval, i = 1, . . . ,m. The resulting histogram for the frame of

time t is denoted by the vector of Yt = [Y1t;Y2t; · · · ;Ymt], where Yit is the number of

the observed x`(t)’s falling into the ith interval of the histogram. In Section 4.6.2, we will

investigate the sensitivity of the proposed method to the parameters of the input histogram.

4.4 State-Space Modeling and Updating

4.4.1 State-Space Model for Normalized Particle Size Distribution

Our primary objective is to estimate the normalized particle size distribution function

ft(x) of x`(t). For this purpose and at a given time t, we follow the procedure in [18],

which derives a smooth representation of ft(x) fitting the histogram data Yt. This model-

ing choice is made mainly because doing so allows us to impose both the curve smoothness

and temporal continuity in an efficient way on the time-varying distribution; more details

will be discussed in the subsequent sections.

As Yit is the count of observations falling in xi − δ/2 < x`(t) < xi + δ/2, it is a

standard approach to assume that Yit follows the Poisson distribution with expectation λit

[105]:

Yit ∼ Poisson{λit}, i = 1, . . . ,m. (4.1)

Following the treatment used by Eilers and Marx [18], we model the count data with B-

splines. We adopt a generalized linear model with a log link function to represent λit
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as:

log λit =
n∑
j=1

αjtBj(xi), (4.2)

where n is the number of basis functions, Bj(x) is the B-spline jth basis, and αjt is it-

s coefficient at time t. The log link function can guarantee a positive λit. Collectively,

[α1t;α2t; · · · ;αnt] can be represented as a vector αt. If we write the B-spline basis func-

tions as a matrix B, such that (B)ij = Bj(xi), the Poisson model of Yit will be expressed

as:

Yit ∼ Poisson{(exp[Bαt])i}, i = 1, . . . ,m. (4.3)

Once αt is estimated, we can further obtain the normalized particle size distribution

ft(x) as follows. As λit ∝
∫ xi+δ/2
xi−δ/2 ft(x)dx, λit ∝ ft(xi) when δ is small, so that ft(x) can

be estimated by the continuous form of Equation (4.2) as

ft(x) =
1

constt
exp[

n∑
j=1

αjtBj(x)], (4.4)

where constt is a constant to guarantee ft(x) integrating to one.

There is a rich literature on modeling counts data like Yt; for example, dynamic Pois-

son models [21, 106, 107] or multivariate Poisson regression [19, 108, 109]. Most of the

methods update the states by posterior sampling, which is typically slow and hence cannot

catch up with the frame rate of TEM video. They fall under the retrospective analysis

category. We here look for a method that can be easily incorporated into the dynamic

state-space model for a prospective analysis.

With the B-spline representation, we can simply use the B-spline coefficient vector, αt,

as the state vector in the proposed state-space model, because the change in αt indicates

the change of the underlying normalized particle size distribution ft(x). Previous studies

[82, 83] show that ft(x) undergoes small fluctuations during a growth stage in which the
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commanding physical growth mechanism remains the same, while ft(x) will see a much

greater change as a different growth mechanism takes over. Based on this understanding,

we assume that the state vector, αt, follows a random walk. The step size of the random

walk is small under a given growth mechanism, but the step size gets large during the

period as the nanocrystal growth transitions from one mechanism to another, meaning that

the random walk takes a great stride to catch up with the changes in the underlying process.

In Figure 4.7 presented later about the innovation sequence, this change pattern in the step

size of the random walk is confirmed.

As such, the state equation reads as:

αt = αt−1 + wt, (4.5)

where wt is the disturbance vector of the state and assumed to follow the distribution of

normal(0,Q). The covariance matrix Q will be treated as a constant matrix throughout the

process. The state updating equation (4.5) and the observation equation (4.3) constitute

our state-space model.

4.4.2 Online Updating of State αt

Updating the estimation of NPSD online is thus equivalent to updating the state vector

in the state-space model. In the dynamic systems and control theory, the Kalman filter

[110] is arguably the most popular method used for conducting such update. For linear

state-space models with Gaussian observations, a Kalman filter [110] uses the posterior

mean E(αt|Y1, · · · , · · · ,Yt), denoted as α̂t, to iteratively estimate αt. There are two

main steps in a Kalman filter. The first step, known as the prediction, is to predict the prior

estimator α̂−t and covariance matrix P−t of the state at time t, based only on the observa-

tions received up to time t− 1. When the new observation of Yt arrives, the Kalman filter

undertakes a correction step to obtain the posterior estimator α̂t and covariance matrix Pt.
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For a Gaussian system, the Kalman filter has a closed-form solution for both the prediction

and correction steps and can thus run very efficiently.

Unfortunately, our state-space model of the time-varying NPSD is not a Gaussian sys-

tem because Yt follows a Poisson distribution in (4.3). To solve for the posterior mean

E(αt|Y1, · · · ,Yt), one possible solution approach is to use the sampling methods, such

as particle filtering [23], to simulate the posterior distribution of the state αt. But the sam-

pling approach is not suitable for the online estimation objective because the approach’s

computational speed can hardly meet the online update requirement. After knowing the

model set up, the shortcoming of the sampling approach is even more obvious. To esti-

mate the NPSD accurately, both Yt and αt should have a moderate to high dimension; for

instance, m ≥ 10 and n ≥ 10 . To sample from a space of such dimension for approxi-

mating a posterior distribution, the sample size are rather large, making its computational

efficiency a daunting task to be addressed.

Our solution is to extend the Kalman filter by adopting Durbin and Koopman [111]’s

method to find a good Gaussian approximation of the Poisson observation in (4.3) locally

around the current estimation α̂t. Rather to approximate the Poisson globally, the Gaussian

distribution will have a similar shape within the neighborhood of α̂t. As the Kalman filter

usually updates αt near its current position, such a local approximation can lead to an

efficient and accurate estimation. When used in our context, this means that we want to

have the following approximation:

Yt ∼ normal(Bαt + µt,Ht), (4.6)

so that the probability density functions of Equation (4.3) and (4.6) have the same first and

second derivatives with respect to αt near α̂t. Following this thought, we can derive the

following expressions for the mean vector µt and the covariance matrix Ht (please see the
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derivation details in Appendix A.2):

µt = Yt −Bα̂t − exp(−Bα̂t)[Yt − exp(Bα̂t)],

Ht = diag[exp(−Bα̂t)].
(4.7)

As such, the original state-space model is converted into an approximated Gaussian state-

space model, now constituting of Equation (4.6) and Equation (4.5). Technically, a stan-

dard Kalman filter can then be devised and applied.

A remaining problem is that α̂t is unknown when we calculate µt and Ht by Equation

(4.7). We use an iterative strategy to find α̂t: first we use the prior estimator α̂−t to

calculate µt and Ht, then update α̂t by the Kalman filter; and after that, we update µt and

Ht using the newly estimated α̂t. Repeat this process until α̂t converges. According to

both [111] and our experiments, this process converges in a number of steps.

Algorithm 2 presents the detailed estimation and updating process. We put in Ap-

pendix A.3 the basic steps and explanations of the Kalman filter for readers who are not

familiar with Kalman filter.

Estimated ෝ𝜶𝑡−1 and 𝐏𝑡−1

Predict ෝ𝜶𝑡
− and 𝐏𝑡

−

according to the state 

update

Approximate the observation equation as

𝒀𝑡 ∼ normal(𝐁𝜶𝑡 + 𝝁𝑡, 𝐇𝑡)

Update ෝ𝜶𝑡 and 𝐏𝑡 as: 

𝐊𝑡 = 𝐏𝑡
−𝐁𝑇 𝐁𝐏𝑡

−𝐁𝑇 +𝐇𝑡
−1

ෝ𝜶𝑡 = ෝ𝜶𝑡
− + 𝐊𝑡 𝒚𝑡 − 𝐁ෝ𝜶𝑡

− − 𝝁𝑡
𝐏𝑡 = 𝐏𝑡

− 𝐈 − 𝐊𝑡𝐁
𝑻

𝑡 = 𝑡 + 1

Figure 4.4: The illustration of main steps of online updating of the state αt.
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Algorithm 2 online updating method of the state-space model.

1. Set t = 1 and initialize α̂0 and P0.

2. Predict the prior estimator of the state as: α̂−t = α̂t−1.

3. Predict the prior covariance matrix as: P−t = Pt−1 + Q.

4. Set α̂t = α̂−t .

5. Calculate µt and Ht as:

µt = Yt −Bα̂t − exp(−Bα̂t)[Yt − exp(Bα̂t)],
Ht = diag(exp(−Bα̂t)).

6. Computer the innovation and its covariance matrix:

νt = Yt −Bα̂−t − µt; Ft = BP−t B
T + Ht.

7. Computer the Kalman gain as: Kt = P−t B
TF−1

t .

8. Update the posterior estimator with measurement Yt: α̂t = α̂−t + Ktνt.

9. Repeat Step 5 to 8 until α̂t converges.

10. Update the posterior covariance matrix as: Pt = P−t (I−KtB)T .

11. Set t = t+ 1, repeat from 2 until t = T .

After we obtain the posterior estimation of the state α̂t, the corresponding NPSD f̂t(x)

can be represented as:

f̂t(x) = exp[
n∑
j=1

α̂jtBj(x)], (4.8)

where α̂jt is the jth element of α̂t. Figure 4.4 highlights the main steps of online updating

of the time-varying NPSD.

4.4.3 Curve Smoothness for Distribution Estimation

While Algorithm 2 can provide an online estimation and updating of the time-varying

NPSD, it does not impose any requirement on the smoothness of the estimated distribu-

tion. Without a proper smoothness constraint, our density estimation so far is sensitive

90



to choices like the number of intervals in the histogram Yt and the number of B-spline

basis functions, and could become considerably inaccurate in the cases that some middle

intervals in the input histogram turn out empty. So our goal here is to incorporate the curve

smoothness constraint and make it to work with the state-space model.

We plan to impose the curve smoothness constraint for the B-splines density estimation

by penalizing the second order difference of the coefficients vector αt, which is denoted

as an n− 2 dimension vector ∆2αt and defined as

∆2αt =



−α1t + 2α2t − α3t

−α2t + 2α3t − α4t

· · ·

−α(n−2)t + 2α(n−1)t − αnt


=



−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0

...
...

... . . . ...
...

...

0 0 0 · · · −1 2 −1


αt.

(4.9)

When the magnitude of the difference, ||∆2αt||2, is small, it implies certain degree of

smoothness in the resulting density curve ft(x).

To put a constraint on ||∆2αt||2, we propose to transform linearly the original state αt

into another state γt. The new state γt will conclude ∆2αt but have the same dimension as

αt. We make the last n−2 coordinates of γt equal to ∆2αt, then add first two coordinates

to make it a n dimension vector. A straightforward way of setting them is to let γ1t as the

summation of all the even coordinates of αt, while γ2t as the summation of all the odd

coordinates of αt. So the transformation from αt to γt can be written as:

γ1t =

[n/2]∑
j=1

α(2j)t, γ2t =

[n/2]∑
j=1

α(2j−1)t, γ(3:n)t = ∆2αt, (4.10)

where [n/2] is the largest integer smaller than or equal to n/2. As such, we can write this
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linear transform in a matrix format, such that αt = Cγt, where

C−1
1(2j) = 1, C−1

2(2j−1) = 1, j = 1, · · · , [n/2];

C−1
j(j−2) = −1,C−1

j(j−1) = 2,C−1
jj = −1, j = 2, · · · , n;

(4.11)

and other elements of C−1 are equal to 0.

By using the new state γt, we can change the state-space model to:

Yit ∼ Poisson{(exp[BCγt])i},

γt = γt−1 + wt,
(4.12)

where wt ∼ normal(0,Q). Here we slightly abuse the notations – even though wt and Q

are used again, they are of different values from those in Equation (4.5).

This transformation in the state vector allows us to use the structure of Q to add the s-

moothness constraint on the estimated density f̂t(x). As [18] pointed out, a small ||∆2αt||2

can give us a smooth f̂t(x). Since the first two coordinates [γ1t, γ2t] are the summation of

the elements in αt, and the remaining coordinates [γ3t, · · · , γnt] are ∆2αt, we hope that

[γ3t, · · · , γnt] should have smaller magnitudes than [γ1t, γ2t]. That means the correspond-

ing disturbing vector wt has the same property, i.e., [w3t, · · · , wnt] are much smaller than

[w1t, w2t]. Given wt ∼ normal(0,Q), we can conclude that in the covariance matrix Q,

the values related to [w3t, · · · , wnt] should be also smaller than those related to [w1t, w2t].

Being aware that [γ1t, γ2t] are the summations of the even and odd terms of αt respec-

tively, and [γ3t, · · · , γnt] are the second differences of αt, it is nature to assume that their

disturbances are independent to each other, making Q a diagonal matrix denoted by as

diag(σ2
1, σ

2
2, · · · , σ2

n), in which σ2
1, σ

2
2 are the variances of w1t, w2t, and σ2

3, · · · , σ2
n are

the variances of w3t, · · · , wnt. For simplicity, we assume that σ2
1 and σ2

2 have the same val-

ue, denoted as σ2
α, and all the remaining σ2

3, · · · , σ2
n are equal, their value denoted as σ2

ε .
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According the previous analysis, requiring σ2
α � σ2

ε for the new state vector is effectively

forcing the second order difference of the original state αt to be small and thus imposing

the smoothness constraint onto the estimated density curves. We can still use Algorithm 2

to update γ̂t after replacing B and αt with BC and γt, respectively.

4.5 Parameter Estimation and Selection

In order for our prospective analysis to work, we do need a short starting up period,

which is to gather a limited amount of training video data to initialize the parameters in

the model. We typically use the first few hundreds of frames for parameter estimation,

equivalent to the first 15 to 20 seconds of the process.

In our state-space model, there are two parameters σ2
α and σ2

ε that need to be estimated

using the training data from the short starting up period, from t = 1 until time T . The two

parameters determine the covariance matrix of the disturbance vector wt: σ2
α represents

the degree of variability of the underlying state γt, whereas σ2
ε controls its second order,

indicating the smoothness of the estimated density curve. It is not convenient to find

the values of σ2
α and σ2

ε by maximized likelihood estimation (MLE) as calculation of the

likelihood of such a mixed system needs complicated process like importance sampling

[111] and simulation smoothing [112], let alone to optimize the likelihood to estimate its

parameters. Here, we adopt a Bayesian way to obtain the two parameters in the covariance

matrix.

4.5.1 Bayesian Modeling and Sampling

We regard σ2
α and σ2

ε as latent random variables and choose their prior distributions,

and then, obtain their posterior distribution through a sampling method and use the corre-

sponding posterior means as the estimate of the parameters.

Since σ2
α and σ2

ε define the covariance matrix of the disturbance vector wt, which we

assume follow a normal distribution, we choose the corresponding conjugate prior—an
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inverse-gamma distribution, making the posterior distribution in the same family. We can

write the hierarchical structure of the Bayesian model as:

Yit ∼ Poisson{(exp[BCγt])i},

γt − γt−1 = wt ∼ normal(0,Q), Q = diag(σ2
α, σ

2
α, σ

2
ε , · · · , σ2

ε ),

σ2
α ∼ inverse-gamma(a1, b1), σ2

ε ∼ inverse-gamma(a2, b2).
(4.13)

Compared to the original state-space model, the hierarchical model adds another layer as-

sociated with the prior distributions σ2
α and σ2

ε , respectively. Once observing Y1, · · · ,YT

in the starting up period, we employ a Markov chain Monte Carlo (MCMC) sampling

method to update the posterior distributions of σ2
α and σ2

ε , and then use the posterior means

as the estimate of the two parameters.

Denote the values in the kth iteration of MCMC by γ
(k)
1 , · · · ,γ(k)

T , (σ2
α)(k) and (σ2

ε )
(k).

After the initialization, we sample (σ2
α)(k) and (σ2

ε )
(k) through the Gibbs sampling, given

γ
(k−1)
1 , · · · ,γ(k−1)

T . Since we adopt the conjugate priors, the posterior distributions are

still inverse-gamma as:

(σ2
α)(k) ∼ inverse-gamma(apost

1 , bpost
1 ), (σ2

ε )
(k) ∼ inverse-gamma(apost

2 , bpost
2 ), (4.14)

where apost
1 , bpost

1 , apost
2 and bpost

2 are determined by a1, b1, a2, b2, and the sampled γ
(k−1)
t .

The derivation of the posterior distribution of (σ2
α)(k) and (σ2

ε )
(k) is included in Appendix

A.4.

Then, we sample γ
(k)
1 , · · · ,γ(k)

T , given Q(k) = diag[(σ2
α)(k), (σ2

α)(k), (σ2
ε )

(k), · · · ,

(σ2
ε )

(k)] and the observations, Y1, · · · ,YT . Unfortunately, the posterior distributions of

γ
(k)
t are not of a standard type. We therefore implement a Metropolis-Hastings algorithm

to sample γ(k)
t from t = 1 to T . For each individual t, we first draw γ

(k)
t from the following
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Algorithm 3 parameter estimation through Bayesian sampling

1. Initialize γ
(0)
1 , · · · ,γ(0)

T , (σ2
α)(0) and (σ2

ε )
(0).

2. Set k = 1, then sample (σ2
α)(k) and (σ2

ε )
(k) as: (σ2

α)(k) ∼ inverse-gamma(apost
1 , bpost

1 )
and (σ2

ε )
(k) ∼ inverse-gamma(apost

2 , bpost
2 ), where

apost
1 = a1 + (T − 1), bpost

1 = b1 + 1
2

∑2
j=1

∑T
t=2[γ

(k−1)
jt − γ(k−1)

j(t−1)]
2,

apost
2 = a2 + n−2

2
(T − 1), bpost

2 = b2 + 1
2

∑n
j=3

∑T
t=2[γ

(k−1)
jt − γ(k−1)

j(t−1)]
2.

3. Let Q(k) = diag[(σ2
α)(k), (σ2

α)(k), (σ2
ε )

(k), · · · , (σ2
ε )

(k)].

4. Set t = 1, sample γ
(k)
t from a proposal distribution: γ(k)

t ∼ normal(γ(k−1)
t ,R).

5. Calculate the acceptance rate r as:

r =

∏m
i=1 ppoi(Yit|[BCγ

(k)
t ]i)pnor(γ

(k)
t |γ

(k)
t−1,Q

(k))pnor(γ
(k)
t |γ

(k−1)
t+1 ,Q(k))∏m

i=1 ppoi(Yit|[BCγ
(k−1)
t ]i)pnor(γ

(k−1)
t |γ(k)

t−1,Q
(k))pnor(γ

(k−1)
t |γ(k−1)

t+1 ,Q(k))
,

where ppoi(·|·) is the PDF of a Poisson distribution and pnor(·|·, ·) is the PDF of a
multivariate normal distribution.

6. Generate a uniform random number, u, in [0, 1]. If r > u, accept γ(k)
t ; otherwise set

γ
(k)
t = γ

(k−1)
t .

7. Set t = t+ 1, and repeat Step 4 to 6 until t = T .

8. Set k = k + 1, and repeat Step 2 to 7 until k = K.

9. Estimate σ2
α and σ2

ε as the posterior means:

σ̂2
α =

1

K −KB

K∑
k=KB+1

(σ2
α)(k), σ̂2

ε =
1

K −KB

K∑
k=KB+1

(σ2
ε )

(k).
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proposal distribution:

γ
(k)
t ∼ normal(γ(k−1)

t ,R), (4.15)

where R = diag(σ2
1, σ

2
1, σ

2
2, · · · , σ2

2) shares a similar structure as Q. The acceptance ratio

of a newly sampled γ
(k)
t , r, is defined in a standard way, as the ratio of the conditional

PDF given the current γ(k)
t to that given the previous γ(k−1)

t . After getting r, we compare

it with a uniform random variable, u, in [0, 1], to determine whether to accept the new γ
(k)
t

or not.

After repeating the above sampling iterations K times, the posterior means can be

obtained by:

σ̂2
α =

1

K −KB

K∑
k=KB+1

(σ2
α)(k), σ̂2

ε =
1

K −KB

K∑
k=KB+1

(σ2
ε )

(k), (4.16)

where KB is the amount of the burning steps. We list the detailed steps in Algorithm 3.

4.5.2 Select the Hyper-Parameters

In this subsection, we discuss the choices of the hyper-parameters in the Bayesian

model (4.13) and the MCMC algorithm: a1, b1, a2 and b2 in the prior distribution, the

initial values of the MCMC sampling, γ(0)
t , (σ2

α)(0) and (σ2
ε )

(0); and σ2
1 and σ2

2 in the

covariance matrix R of the proposal distribution. The parameters in the MCMC sampling

matter less, as a long burning stage (namely a large enough KB) will make the MCMC

robust to initialization. As long as the MCMC has a good mixing, different proposal

distributions give similar estimation results. We set those parameters in the following

way: (σ2
α)(0) = 4× 10−2, (σ2

ε )
(0) = 8× 10−4, run the modified Kalman filter in Algorithm

2 to obtain γ
(0)
t , and let σ2

1 = 2× 10−2 and σ2
2 = 4× 10−4.

To determine the hyper-parameters in the inverse-gamma distributions of σ2
α and σ2

ε ,

we follow Gelman [113]’s suggestion, which is to choose the non-informative prior as
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Table 4.1: The parameters, σ̂2
α and σ̂2

ε , estimated using the Video 1 data and under different
b2 values. In the following, a1 = a2 = b1 = 1.0.

b2 b1/b2 σ̂2
α σ̂2

ε σ̂2
α/σ̂

2
ε

0.1 10 6.86× 10−2 4.17× 10−3 16.43
0.05 20 6.57× 10−2 3.78× 10−3 17.39
0.01 100 6.45× 10−2 3.62× 10−3 17.82
0.005 200 6.53× 10−2 3.70× 10−3 17.64

a1 = 1.0 and b1 = 1.0 for σ2
α. To make sure σ2

α � σ2
ε , we choose the same shape

parameter a2 = 1.0 but a much smaller scale parameter b2 for σ2
ε , as the mean of the

inverse-gamma distribution is proportional to the scale parameter. We found that as long

as b1/b2 is large enough, say, more than an order of magnitude, the estimation outcome

appears robust. Table 4.1 presents the posterior means of the two parameters estimated

from Video 1, with a total of K = 9×104 iterations and KB = 3×104 burning steps. The

estimated results are similar, despite a significant change in b2. In practice, we recommend

fixing b2 = 0.01 as the default setting.

4.6 Application to TEM Videos

We test our state-space model and the online updating on the three clips of in situ TEM

video described in Section 4.3. The number of the B-spline basis functions is fixed at 20

in all three cases. Because of incorporation of the smoothness constraint in our state-space

model, our final estimation of the NPSD is not sensitive to the choices of the parameter. To

save space, we discuss the full results on Video 1 clip. For the other two clips, we present

limited analysis results to confirm the generality of the modeling and analysis.

4.6.1 Analysis of the Three Videos

Our first step is to find σ2
α and σ2

ε for each clip of videos. In Video 1, there are 1, 149

frames in total with 15 frame per second (fps) frame rate. We choose the first 300 frames
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as the training set, corresponding to the first 20 seconds of the process. Using the Bayesian

estimation method in Section 4.5.2 with the default parameter setting, we obtain the two

parameters in the system as σ̂2
α = 6.45× 10−2 and σ̂2

ε = 3.62× 10−3.

Next we apply our updating method to the whole video. In our test, the TEM videos

have already been fully recorded. We are mimicking a prospective analysis, starting at the

end of the starting up period. For the remaining 849 frames in Video 1, the total process-

ing time of using our algorithm is 1.23 second, or 1.5 × 10−4 seconds per frame, much

faster than the frame rate of video (which is 15 frames per second or 0.067 seconds per

frame). Combined with the image processing time (0.04 seconds per frame), the overall

model processing is still fast enough for online monitoring. Figure 4.5 illustrates the up-

dating process running from 25.67 second through 28.33 second. The upper row shows

the input histograms, whereas the lower row shows the updated NPSDs. To demonstrate

the difference of the estimated distributions, the time difference between two consecutive

images in that plot is chosen to be 10 frames. It is evident that our Kalman filter updates

the estimation of the time-varying NPSD with both the curve smoothness and temporal

continuity.

We also show in Figure 4.6 the estimated NPSDs in different growth stages at 15s,

30s, 45s and 60s, respectively. Figure 4.6(a) presents the NPSD at the beginning of the

growth stage when the nanocrystals are initializing in the chemical solution. The variance

of the particle sizes is large and the support of the distribution is broad. Figure 4.6(b)

presents a NPSD at the orientated attachment [83] growth stage, at which time the smaller

particles collide with each other and are merged into larger ones. The variance of the

particle sizes is smaller than that of the first stage. There is a noticeable bimodal pattern in

the NPSD, in which the two peaks correspond to the sizes of the smaller particles and the

merged (larger) particles, respectively. The final two plots in Figure 4.6 (c) and (d) are in

the final growth stage, known as the Ostwald ripening [82] stage. In that stage, the larger

98



Input Histograms

Updated Distributions

Figure 4.5: Illustration of the updating process of our state-space model.

particles grow at the expense of dissolving smaller particles. The size distribution tends

to get concentrated and become unimodal. The variance continues to decrease. Material

scientists expect to get nanocrystals having more uniform sizes at the end of the growth

process. Our state-space model’s online tracking results are consistent with the manual

analysis results presented in the original report [1].

(a) (b) (c) (d)

Figure 4.6: The estimated NPSD of Video 1 at different growth stages.
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The last part of analysis performed on Video 1 is to show the innovation sequence of

this nanocrystal growth process. Loosely speaking, the innovation sequence is the dif-

ference between what is newly observed at time t and what is anticipated, based on the

state-space model and historical observations. In the past use of Kalman filter, the inno-

vation sequence is commonly used to indicate a process change: if the underlying process

is stable, then the innovation is supposedly to be random noise, whereas if the underlying

process is going through a change, then the innovation sequence shows departure from

random noise. The innovation at time t, denoted by νt and its covariance matrix Ft, is

computed in Step 6 of Algorithm 2. To monitor the multivariate vector νt, we calculate

the Mahalanobis squared distance [114] between νt and 0 at each t, such that

At = νTt F
−
t νt. (4.17)

Figure 4.7: At obtained from the innovation sequence of the Kalman filter.

The sequence {A1, A2, . . . , AT} for Video 1 is plotted in Figure 4.7. We observe that

there is a transition period between the 20 second and 40 second time marks, and before
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and after the transition period, the innovation sequence appears to have smaller magni-

tudes. This observation is consistent with the physical understanding discovered by Zheng

et al. [1], i.e., the beginning stage of the growth is driven by the mechanism of orientated

attachment, the latter stage is driven by the mechanism of Ostwald ripening, and there is

a transition period in between. The timing of the transition period, discovered in the ret-

rospective analysis [103], is between 25.8 second and 39.9 second. The result in Figure

4.7 shows that by tracking the innovation sequence of the state-space model, it offers the

opportunity to detect the possible mechanism changes in the process.

Next, we test our algorithm on Video 2, which was published in the same paper [1]

as Video 1 and captures a similar nanocrystal self-assembly growth process. There are

total 637 frames in Video 2 with 15 fps frame rate. We still choose the first 300 frames to

estimate the parameters. The Bayesian method produces the estimate of σ2
α as 8.15×10−2

and that of σ2
ε as 3.73× 10−3. Using these parameters, we estimate the NPSDs and show

some results in Figure 4.8. The total updating time is 0.098 seconds, or 1.54×10−4 seconds

per frame; this computational performance is consistent with that in processing Video 1

(and the image processing also costs 0.04 seconds per frame). Video 2 is a shorter clip

and contains fewer particles. By observing the density plots in Figure 4.8, we are satisfied

with the density curves estimated by our state-space model.

(a) (b) (c) (d)

Figure 4.8: The estimated NPSDs of Video 2.
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Lastly, we test our algorithm on Video 3. It was published in [2] and captures a dif-

ferent growth process than that in Videos 1 and 2. This process is of silver nanocrystal

growth. There are only 112 frames in this video clip with 1 fps frame rate, so we pick the

first 50 frames as the training set to estimate the parameters. For the process in Video 3,

the parameters are accordingly estimated as σ2
α = 1.87 × 10−1 and σ2

ε = 7.86 × 10−3 by

the proposed Bayesian method. Applying our updating method to Video 3, the total run

time is 0.02 seconds, or 1.79 × 10−4 seconds per frame. The images processing time for

Video 3 is 0.02 seconds per frame, so that the combined computation is again faster than

the frame rate. Figure 4.9 presents the estimated NPSD of Video 3. In this process, the

NPSD is always unimodal and its variance gets larger in the process.

(a) (b) (c) (d)

Figure 4.9: The estimated NPSDs of Video 3.

4.6.2 Comparison with Alternative Methods

In this section, we demonstrate the merits of the proposed method, especially the ben-

efit of having both the curve smoothness and temporal continuity. We demonstrate all

comparison results using Video 1 but the same insight holds true for other videos. We

do not compare our method with a retrospective method because a retrospective (off-line)

method sees all data and has the luxury of time, whereas a prospective (online) method
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only sees a subset of the data, unless it reaches the very end of the video, and must be time

conscious.

The first comparison is to conduct an out-of-sample quantitative test, comparing the

proposed state-space method with three types of alternative: the first type is a pure histogram-

based treatment (no smoothness constraint at all), the second type is to impose the curve

smoothness within a frame but estimate the NPSD one frame a time without considering

and imposing temporal continuity, and the third type is a state-space model without the

curve smoothness (i.e., with temporal continuity across frames but no curve smoothness

within a frame). In the second type of alternative, we include three popular methods: the

smoothed histogram [101], the kernel estimation [17], and the penalized B-splines [18].

For the state-space model without the curve smoothness, we use αt instead of γt as the

state, and the covariance matrix Q of the disturbance vector wt is set as diag(σ2
α, σ

2
α, · · · ,

σ2
α). The single parameter σ2

α can be estimated by a simplified Bayesian model, assuming

σ2
α ∼ inverse-gamma(1, 1). The first 300 frames are still used for the training purpose.

The Bayesian estimate of σα is 0.059, which is very close to that estimated in the previous

subsection.

The out-of-sample test is to calculate the log-likelihood of the estimated probability

density functions based on a number of observed nanocrystals. We randomly pick 90%

the observed nanocrystals in each and every image frame and use them to establish our

model and estimate the NPSD. Then, we use the remaining 10% observed nanocrystals

in each and every frame to calculate the log-likelihood. For a given testing nanocrystal

observation having a normalized particle size x` at time frame t, its log-likelihood is:

log pt(x
`) =

n∑
j=1

Bj(x
`)[Cγt]j − log constt, (4.18)

where constt is a normalization constant making the estimated NPSDs integrate to one.
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Here pt(·) is used for a probability density function, in order to be differentiated from the

ft(·) notation used earlier, which is an un-normalized density.

We then proceed to calculate the summation of the log-likelihoods for all the 10% out-

of-sample testing nanocrystals at all time frames and use this summation as the accuracy

metric of the distribution estimation. We repeat the out-of-sample test 500 times for each

of the six methods. The mean of the log-likelihoods results are summarized in Table 4.2.

Table 4.2: Comparison results of the out-of-sample test among six approaches: using the
observed histograms directly, three estimation methods considering the curve smoothness
only, the state-space method without the curve smoothness, and the proposed method; all
tested on Video 1.

Methods Mean of log-likelihoods
Observed histograms (no constraint) −∞

Curve smoothness only
Smoothed histograms −41.6
Kernel estimation −24.4
Penalized B-splines −46.7

State-space model
(with temporal continuity)

Without curve smoothness 129.8
With curve smoothness 196.1

In the out-of-sample test, the shortcoming of using the histogram directly is highlighted—

almost all the log-likelihoods obtained are negative infinity. When certain samples fall into

an empty interval of the histogram (meaning that this interval does not have any training

observations), the direct histogram method sets the likelihood of this testing sample as 0,

causing the log-likelihood to be negative infinity.

The distribution estimation methods with the curve smoothness can overcome this neg-

ative infinity problem. However, these methods estimate the distribution from each frame

independently, lacking the ability to borrow information across time frames. When the

number of observations at each frame is not large enough, they fail to produce a quality
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estimate, as evident by the poor results in the out-of-sample test.

By using the state-space transition equations, the two state-space methods incorporate

the temporal continuity, allowing the estimators to borrow information from other image

frames and leading to much better performances than the other alternatives.

Between the state-space models with and without the curve smoothness, the one with

the curve smoothness produces a much higher log-likelihood measure. We conduct a

statistical testing and see whether the log-likelihood difference between the two approach-

es is significant. A one-way ANOVA, in which the null-hypothesis is that the two log-

likelihoods have the same mean, yields a p-value of 6 × 10−162, which confirm that the

difference is indeed significant.

Given the benefit of using the state-space framework demonstrated above, we hence

set the focus of the next two comparisons to be between the two state-space models, with

and without the curve smoothness.

(a) (b) (c) (d)

Figure 4.10: The estimated NPSDs of Video 1 by the state-space model without the curve
smoothness.

The second comparison is to inspect the resulting NPSD obtained by the two state-

space models. In Figure 4.10, we show the NPSDs, estimated at 15s, 30s, 45s and 60s

by the state-space model without the curve smoothness. Comparing the results in Figure
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4.6 obtained at the same time marks by the state-space model with the curve smoothness,

the estimated distributions in Figure 4.10 are far worse, as they are very sensitive to small

changes of any bin and do not handle well the existence of empty bins in a histogram. To

see this point, consider the following observations. In Figure 4.10(b), while the orientated

attachment growth mechanism suggests a bimodal distribution, the estimated distribution

gives us three peaks. Between Figure 4.10(c) and (d), the variance is supposed to decrease,

as this is in the Ostwald ripening growth stage, but the estimated distribution shows an

increasing variance. When displaying the online distribution estimation frame by frame,

it is obvious to us that the state-space model without the curve smoothness produces the

time-varying NPSDs that are far more volatile and often react to noises and disturbances

too dramatically.

The third comparison is to show the robustness of the proposed method to possible

changes in the number of intervals in the input histograms. In the previous studies, we set

the length of interval as 0.1 which gives 20 intervals in a histogram. In this comparison

experiment, we test the cases by setting the length of interval to 0.2, 0.15, 0.08 and 0.05,

respectively, and then estimate the corresponding NPSD, using the state-space model with

and without the curve smoothness. We compare the resulting NPSDs with that obtained

under the default setting, i.e., the length of a interval 0.1 or 20 intervals in the histogram.

The difference between the two NPSDs is measured by a L2 norm of the two density

function curves.

In Figure 4.11(a), we plot the L2-norm differences at each time frame between the

NPSDs estimated, respectively, using the histograms with 10 intervals (the length of a

interval 0.2) and 20 intervals (the length of a interval 0.1). It is apparent that inclusion

of the curve smoothness leads to a much robust estimation outcome. In Figure 4.11(b),

we present the summation over all frames of the L2-norm differences between the NPSDs

estimated, respectively, using histograms of a various number of intervals and the default
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(a) (b)

Figure 4.11: L2-norm difference between two NPSDs: (a) L2-norm differences at each
time frame between the NPSDs estimated using the histograms with 10 intervals and 20
intervals; (b) the summation over all time frames of the L2-norm differences between the
NPSDs estimated using histograms of various lengths of intervals and the default setting.

setting (i.e., 20 intervals or interval length 0.1). In the broad range of choices, in which the

default histogram parameter is doubled or halved (from 10 intervals to 40 intervals), the

proposed method with the curve smoothness can get a rather robust estimation of the NPS-

D. By contrast, the state-space model without the curve smoothness performs comparably

only in a much narrower range, roughly from using 16 intervals (0.125 interval length) to

22 intervals (0.09 interval length). This comparison demonstrates that by adding the curve

smoothness, the proposed method is less sensitive to the parameter setting of the input

histograms.

4.7 Summary

In this chapter, we propose an online method for monitoring the evolution of certain

population characteristics observed in dynamic imaging (i.e., videos). Our model injects

a flexible and robust modeling ability into a fast and closed-form updating algorithm. We

demonstrate its application in monitoring the particle size distribution as a nanocrystal

growth process is being observed by an in situ TEM.

The contributions of this work can be summarized as follows:
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• The nonparametric method that models a time-varying probability density function

and its specific tailoring to the nanocrystal growth process;

• A closed-form updating algorithm in the form of an extended Kalman filter for track-

ing the nanocrystal growth in real time;

• A sophisticated approach that addresses both modeling and estimation challenges,

especially the incorporation of both the curve smoothness and temporal continuity

in the modeling of a time-varying distribution.

Even though our method is demonstrated primarily in the context of estimating the

normalized particle size distribution, we believe that the resulting method is general and

should be applicable to other online distribution estimation problems. For other applica-

tions, one needs to replace the normalized particle size with a population characteristic of

specific interest to that application. One importance assumption that may face challenges

is the random walk assumption on the disturbance vector. Nonetheless, the random walk

assumption appears a broadly accepted choice that can be a good starting point in a model-

ing effort, unless there exist contradicting evidences associated with a specific application

to override its use.
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5. CONCLUSIONS

In this chapter, we summarize the major contributions and impacts of the data science

methods developed in this dissertation for handling nanoscale imaging data. We conclude

this dissertation by discussing the possible extensions.

5.1 Summary

The contributions of the three chapters are listed as follows:

1. Chapter 2: We proposed a robust method to identify nanoparticles in low-quality

TEM images. By combining two different kinds of image information, we improved

the efficiency and accuracy of the nanoparticle detection. This laid the ground work

for our subsequent research on in situ TEM videos, as the video frames are usually

low-quality TEM images.

This work tackles an important problem for nanoimaging data: how to exact accurate

information from raw images or videos. As the volume of the original data is usually

large and the quality is sometimes low, we cannot begin any further analysis before

identifying and measuring nanoparticles accurately. This work also contributes to

the general image processing area. It proposes a framework to improve detection

accuracy by fusing two kinds of information in noisy and low-contrast images.

2. Chapter 3: We proposed a retrospective analysis for in situ TEM videos that identi-

fies the change points in nanoparticle growth. This analysis objective was fulfilled

by developing a new time-varying probability density function estimation method,

followed by a robust change point detection procedure that is much less sensitive to

the high degree of noises and stochasticity in in situ TEM videos.

This work gives nanomaterial scientists a convenient tool to find interesting points
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and periods from in situ TEM video clips that will save research time and energy

and expedite scientific discoveries. Regarding methodology, this work also expands

knowledge and generates new insights regarding how to handle the over-detection

problem for change-point detection on time series data with high randomness.

3. Chapter 4: We proposed a prospective analysis for in situ TEM videos. We tracked

and updated the growth status dynamically in a forward-looking way to identify

the necessary control actions during growth. This analysis can be used to monitor

and control the production of nanomaterials with desirable properties. An online,

dynamic model such as this is the first of its kind.

This work provides a possible way of designing an in-control self-assembly growth

process with the help of in situ TEM video. As the online estimated particle size

distribution can indicate the underlying growth mechanism, it can help us trigger

the control action when the growth status is changing. Regarding methodology,

our prospective analysis proposed a fast, closed-form method to estimate an online

dynamic probability density function with the constraint of the curve smoothness

and temporal continuity.

5.2 Future Study

Extending this dissertation’s work may follow two directions: extending the current

methods to solve other problems and developing new tools for emerging problems in the

nanomanufacturing area.

Extend current methods: All the previous work, i.e., nanoparticle detection from

TEM images and dynamic modeling of the nanoparticle growth process, can be extended

to other applications. Accurate nanoparticle detection can help us identify microstructures

in other TEM or SEM images. For example, in additive manufacturing, the surface of a

product from a 3D printer usually needs to be polished. We are developing a method to
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automate the polishing process and identifying particles on the surface from SEM images

can determine the current polishing phase. The dynamic modeling of particles’ behavior

can also be applied to other applications. When objects of interest from video data are

hard to track individually, the proposed dynamic modeling of the distribution can capture

the overall changing trend. We are now investigating a video showing the performance

of a sand remover on a solar panel. Our method can quantify the changing patterns of

sand clusters lying on a solar panel and monitor the performance of its sand remover in

real-time.

Develop new tools: When we have more and more data from advanced manufactur-

ing, new problems emerge and new tools need to be developed. Two new needs draw our

attentions. One is a fast, multi-shape analysis of nanoparticles from TEM images. The

work in Chapter 2 is using an elliptical model to fit each particle, and it does not work well

when particles have other shapes, like triangles or rectangles. There are some previous

studies on multi-shape modeling based on non-parametric Bayesian method, but they are

sensitive to noises and have high computational costs. We are developing a library-based

method to overcome those drawbacks. It aims to learn a multiple shape library from train-

ing data, and when a new testing image comes, each particle will be identified according

to the segmentation result and the closest prior shape in the library.

The other topic is to recover a high-resolution image from a low-resolution sample,

which is referred to as super-resolution analysis in the field of image processing. It is not

appropriate to apply existing super-resolution algorithms to SEM images directly, because

some unique properties of those images, like a low-contrast level and blurred boundaries,

are usually ignored in the generic super-resolution methods. We are working on method-

ologies to improve recovery accuracy and efficiency by considering those properties.
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APPENDIX A

DERIVATIONS OF ALGORITHMS IN VIDEO ANALYSIS

A.1 Optimization of Density Estimation (Section 3.3 of Chapter 3)

We proposed to maximize the penalized log likelihood of the density functions by

ADMM [24]. We write the corresponding augmented Lagrangian as:

Lρ({ajt}, {zjt}, {cit}) =

T∑
t=1

Lt({ajt})− (λ2/2)
n∑
j=1

T−1∑
t=1

(∆2zjt)
2

− ρ
T∑
t=1

n∑
j=1

cjt(ajt − zjt)− (ρ/2)
T∑
t=1

n∑
j=1

(ajt − zjt)2,

(A.1)

where

Lt({ajt}) =
m∑
i=1

yitηit −
m∑
i=1

exp(ηit)− λ1

n−1∑
j=1

(∆1ajt)
2

2
. (A.2)

The ADMM algorithm targets to find the saddle point of Equation [3.8], defined as:

({âjt}, {ẑjt}, {ĉit}) = arg min
{cit}

max
{ajt},{zjt}

Lρ, (A.3)

where {âjt} will be the maximizer of the penalized log likelihood of the density functions.

The saddle point is found by using the coordinate decent method [89]. First we change

the min-max problem to a max-min one by adding a negative sign in Equation (3.8) and

rewrite it in a matrix form:

L′ρ(A,Z,C) = −
T∑
t=1

Lt(A) + (λ2/2)
n∑
j=1

T−1∑
t=1

(∆2zjt)
2

+ ρCT (A− Z) + (ρ/2)
T∑
t=1

||A− Z||22,

(A.4)
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where (A)jt = ajt, (Z)jt = zjt and (C)jt = cjt. Then we update A, Z, C iteratively to get

the saddle point. When updating one of the three variables, we will fix the other two. The

values of variables in the qth iteration are signified via the (q) superscript.

To update A, we solve:

arg min
A
−

T∑
t=1

Lt(A) + (ρ/2)||A− Z(q) + C(q)||22. (A.5)

The problem can be decomposed into T independent subproblems for each time t. Denote

the t-th column of A, Z and C by at, zt and ct, respectively. The difference operator ∆1

can be rewritten as a matrix multiplication:

n−1∑
j=1

(∆1ajt)
2 = a′tD

′
1D1at, (A.6)

where D1 is an n× n matrix with (D1)jj as −1, (D1)j(j−1) as 1, for j = 2, . . . , n, and all

other elements as 0.

We can update at by:

a
(q+1)
t = arg min

at

{
−

m∑
i=1

yitηit +
m∑
i=1

exp(ηit)

+ (λ1/2)a′tD
′
1D1at + (ρ/2)[a′tat − 2(z

(q)
t − c

(q)
t )′at]

}
.

(A.7)

The solution of the above minimization problem can follow [18], as they solved a similar

problem. But we need to make some modification to what [18] did because we included a

new term (the fourth term in the large bracket) in the above objective function. According

to [18], the solution of at is to set the first derivative of the above objective function to
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zero. That leads us to the following equation:

B+
t −B′ exp(Bat) = λ1D

′
1D1at + ρ[at − (z

(q)
t − c

(q)
t )], (A.8)

where B+
t = [B+

1t, · · · , B+
nt]
′ and B+

jt =
∑

sBj(φst). Unfortunately, the above equation

does not have a closed-form solution for at, so we have to solve it through an iterative

procedure by using the following equation (which did a first order Taylor expansion of the

exponential term, so that at can be solved through a weighted linear regression):

B+
t −B′ exp(Bât) +B′Bât + ρ(z

(q)
t − c

(q)
t )

= [B′B + λ1D
′
1D1 + ρIn]at,

(A.9)

where In is the n × n identity matrix and ât is the result estimated from the previous

iteration, whose initial value is set to be a(q)
t (from the q-th step). Once the numerical

iterative procedure converges, the resulting at is treated as a(q+1)
t .

To update Z, we solve:

Z(q+1) = arg min
Z

{
λ2

n∑
j=1

T−1∑
t=1

(∆2zjt)
2

+ (ρ/2)||A(q+1) − Z + C(q)||22
}
.

(A.10)

The terms in the large bracket can be rewritten as:

||A(q+1) − Z + C(q)||22 +
λ2

ρ

n∑
j=1

T−1∑
t=1

(∆2zjt)
2. (A.11)

The second term can be transformed into a matrix form:

n∑
j=1

T−1∑
t=1

(∆2zit)
2 = ||ZD2||22 (A.12)
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whereD2 is a T×T matrix with (D2)tt as−1, (D2)t(t+1) as 1, for t = 1, . . . , T−1, and all

other elements as 0. In fact, the above minimization problem has a closed-form solution

for Z(q+1), which is

Z(q+1) =
[
A(q+1) + C(q)

]
(IT +

λ2

ρ
D2D

′
2)(−1). (A.13)

At last, we update the Lagrangian multipliers C by:

C(q+1) = C(q) + (A(q+1) − Z(q+1)). (A.14)

We continue the iteration until all those variables converge.

A.2 Gaussian Approximation of Poisson Distribution (Section 4.4.2 of Chapter 4)

The Poisson distributed observation equation can be written as

Yit ∼ Poisson{(exp[Bαt])i}, i = 1, . . . ,m, (A.15)

and we would like to find a Gaussian distribution

Yt ∼ Normal(Bαt + µt,Ht), (A.16)

to approximate it. Durbin and Koopman [111] proposed that if the probability distribution

functions (PDFs) in Equation (A.15) and (A.16) have the same first and second derivatives

w.r.t the state αt, then Equation (A.16) can serve as a good approximation of Equation

(A.15) in updating the state-space model. We can use this idea to calculate µt and Ht in

Equation (A.16). To simplify the derivation, we use Bαt instead of αt as the variable to

calculate those derivatives.

The logarithm of the PDFs in Equation (A.15) and Equation (A.16), as a function of
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Bαt, can be expressed, respectively, as

log pp([Bαt]i) = Yit[Bαt]i − exp[Bαt]i, i = 1, . . . ,m, (A.17)

and

log pg(Bαt) = −1

2
(Yt −Bαt − µt)

TH−1
t (Yt −Bαt − µt) + const, (A.18)

where ‘const’ is a term unrelated to αt.

In Equation (A.17), the PDF of each coordinate of Bαt is independent to each other,

Equation (A.18) should have the same property, meaning that Ht should be a diagonal

matrix. We can then rewrite Equation (A.18) as:

log pg([Bαt]i) = − 1

2[Ht]ii
(Yit − [Bαt]i − [µt]i)

2 + const, (A.19)

Then calculating the first and second derivatives of Equation (A.17) and (A.19) w.r.t

[Bαt]i and equating them at the estimated α̂t, we get the following two equations:

Yit − exp[Bα̂t]i =
1

[Ht]ii
(Yit − [Bα̂t]i − [µt]i), (A.20)

and

exp[Bα̂t]i =
1

[Ht]ii
. (A.21)

The two equations further yield:

[Ht]ii =
1

exp[Bα̂t]i
= exp[−Bα̂t]i, (A.22)
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and

[µt]i = Yit − [Bα̂t]i − exp[−Bα̂t]i(Yit − exp[Bα̂t]i). (A.23)

Rewriting Equation (A.22) and (A.23) in a matrix form, we finally obtain µt and H as:

µt = Y −Bα̂t − exp(−Bα̂t)[Y − exp(Bα̂t)],

H = diag(exp(−Bα̂t)).
(A.24)

A.3 Detailed Steps of Kalman Filter (Section 4.4.2 of Chapter 4)

Given a linear Gaussian state-space model

Yt ∼ Normal(Bαt + µt,Ht),

αt+1 = αt + wt, wt ∼ Normal(0,Q),
(A.25)

the Kalman filter can estimate the state αt in a recursive way from t = 1 to time T . First

we need to predict αt and its covariance according to the estimation of the previous step

as
α̂−t = α̂t−1,

P−t = Pt−1 + Q,
(A.26)

where α̂−t is called the prior estimator and P−t is the prior covariance matrix. The two

equations above can be derived from the distribution of p(αt|Y1, · · · ,Yt−1) [115].

When a new Yt is coming, we calculate the innovation νt and its covariance matrix

according to the previous prediction α̂−t and the new input Yt as

νt = Yt −Bα̂−t − µt;

Ft = BP−t B
T + Ht.

(A.27)
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Then the Kalman gain will be calculated as:

Kt = P−t B
TF−1

t . (A.28)

At last we update the estimator of state αt and its covariance matrix as:

α̂t = α̂−t + Ktνt,

Pt = P−t (I−KtB)T ,
(A.29)

where α̂t is called the posterior estimator and P−t is the posterior covariance matrix. Those

equations can be derived from the distribution of p(αt|Y1, · · · ,Yt) [115].

A.4 Posterior Distribution of σ2
α and σ2

ε (Section 4.5.1 of Chapter 4)

Here we want to show the derivation of the posterior distribution of σ2
α and σ2

ε in our

Bayesian model:

Yit ∼ Poisson{(exp[BCγt])i},

γt+1 − γt = wt ∼ normal(0,Q), Q = diag(σ2
α, σ

2
α, σ

2
ε , · · · , σ2

ε ),

σ2
α ∼ inverse-gamma(a1, b1), σ2

ε ∼ inverse-gamma(a2, b2).
(A.30)

Since Q is a covariance matrix, we can rewrite the second layer of the model (4.13) as:

γjt − γj(t−1) ∼ normal(0, σ2
α), j = 1, 2, t = 2, · · · , T, (A.31)

and

γjt − γj(t−1) ∼ normal(0, σ2
ε ), j = 3, · · · , n, t = 2, · · · , T. (A.32)

For j = 1, 2, γjt−γj(t−1) are regarded as 2(T−1) i.i.d variables following normal(0, σ2
α).
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Since we choose the conjugate prior σ2
α ∼ inverse-gamma(a1, b1), its posterior distribution

has the same formation as inverse-gamma(apost
1 , bpost

1 ). As derived in [116], apost
1 and bpost

1

are calculated as:

apost
1 = a1 +

1

2
2(T − 1) = a1 + (T − 1), (A.33)

and

bpost
1 = b1 +

1

2

2∑
j=1

T∑
t=2

[γjt − γj(t−1)]
2. (A.34)

For j = 3, · · · , n, γjt− γj(t−1) are regarded as (n− 2)(T − 1) i.i.d variables following

normal(0, σ2
ε ). Following the same derivation, the posterior distribution of σ2

ε is written as

inverse-gamma(apost
2 , bpost

2 ) with

apost
2 = a2 +

1

2
(n− 2)(T − 1), (A.35)

and

bpost
2 = b2 +

1

2

n∑
j=3

T∑
t=2

[γjt − γj(t−1)]
2. (A.36)
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