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ABSTRACT

Missing data are very common in many areas such as sociology, biomedical sciences and clin-

ical trials. Simply ignoring the incomplete cases may cause bias in estimation procedures. In

this dissertation we investigate semiparametric estimation of linear regression coefficients through

generalized estimating equations with single-index models when some covariates are missing at

random for both independent and identically distributed (i.i.d.) data and longitudinal data. Exist-

ing popular semiparametric estimators by weighted estimating equations may run into difficulties

when some selection probabilities are small or the dimension of the covariates is not low.

For i.i.d. data, we propose a new simple parameter estimator using a kernel assisted estimator

for the augmentation by a single-index model without using the inverse of selection probabilities.

We explore the asymptotic efficiency of the proposed estimator and its relationships with exist-

ing estimators. In particular, we show that under certain conditions the proposed estimator is as

efficient as the existing methods based on standard kernel smoothing, which are often practically

infeasible in the case of multiple covariates.

For incomplete longitudinal data, we propose a similar estimator when the covariate is non-

monotone missing at random. Heteroscedasticity is considered and working independence cor-

relation structure is applied to simplify the estimation procedure. Asymptotic consistency and

normality are derived along with sandwich formulas for asymptotic covariances.

The above methods are supported by simulation studies and real data examples. The numerical

results show that the proposed estimators avoid some numerical issues caused by estimated small

selection probabilities that are needed in other estimators.

ii



DEDICATION

To my parents, my grandmother, and to the memory of my grandfather.

iii



ACKNOWLEDGMENTS

I would like to sincerely thank my research advisor, Dr. Suojin Wang, for his guidance and

patience on my research projects during the past five years. Dr. Wang has provided me with so

much help and support whenever I ran into difficulties. I learned a lot from him, not only the

knowledge for research in statistics, but also the attitude towards academics and life. Without his

persistent help and guidance, this dissertation would not have been possible.

I would like to thank my committee members, Dr. Jim Ji, Dr. Samiran Sinha and Dr. Lan

Zhou, for their valuable advice on my research projects and presentation skills.

I would like to thank my parents and my grandparents, who supported me all the time and

gave me all the power I needed. Nobody means more to me than my families in the pursuit of my

doctorate degree.

Finally I would like to thank all my friends for their listening and help all the way.

iv



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professors Suojin Wang

(advisor), Samiran Sinha and Lan Zhou of the Department of Statistics and Professor Jim Ji of the

Department of Electrical and Computer Engineering.

The methodologies and proofs in Chapter 3 and 4 were coauthored with Professor Suojin Wang.

All other work conducted for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by a graduate assistantship from Department of Statistics, Texas

A&M University.

v



NOMENCLATURE

AC Available Case Analysis

AIPW Augmented Inverse-Probability Weighted Estimator

AMSE Asymptotic Mean Square Error

CC Complete Case Analysis

DR Doubly Robust

EM Expectation-Maximization

GEE Generalized Estimating Equation

GLM Generalized Linear Model

GLMM Generalized Linear Mixed Model

I.I.D. Independent and Identically Distributed

IPW Inverse-Probability Weighted Estimator

MAR Missing At Random

MCAR Missing Completely At Random

MI Multiple Imputation

MLE Maximum Likelihood Estimation

MNAR Missing Not At Random

MS Mean-Score Estimator

NW Nadaraya-Watson

OLS Ordinary Least Square

SE Standard Error

SIM Single-Index Model

WEE Weighted Estimating Equation

vi



WI Working Independence

WLS Weighted Least Square

vii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. LITERATURE REVIEW .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Missing Data Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Missing Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Missing Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Models for Longitudinal Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Marginal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Random Effects Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Transition Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Kernel Smoother . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Nadaraya-Watson Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Single-index Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Existing Methods for Handling Missing Covariate Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Methods for i.i.d Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Methods for Incomplete Longitudinal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3. SEMIPARAMETRIC ESTIMATION IN REGRESSION WITH MISSING COVARI-
ATES FOR I.I.D. DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Brief Review of Existing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Inverse-probability Weighted Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

viii



3.2.2 Augmented Inverse-probability Weighted Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Mean-score Estimator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 The Issues of Small Selection Probabilities and Curse of Dimensionality . . . . 25
3.3.2 Single-index Model and the Proposed Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Asymptotic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Proofs of the Main Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.1 Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.2 Proof of Lemma 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.3 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.4 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.5 Proof of Corollary 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.7 Illustrative Example of Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.8 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4. SEMIPARAMETRIC ESTIMATION IN REGRESSION WITH MISSING COVARI-
ATES FOR LONGITUDINAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Notations and Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Complete Case Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Available Case Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.3 Inverse-probability Weighted Estimator (IPW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.4 Augmented Inverse-probability Weighted Estimator (AIPW) . . . . . . . . . . . . . . . . . 63

4.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Asymptotic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5 Empirical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.6 Real Data Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.7 Conclusion Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5. SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2 Further Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

ix



LIST OF FIGURES

FIGURE Page

3.1 Plots for showing the relationship between self-esteem score and other variables.
Top left: Side-by-side boxplot of Self-esteem score vs. Gender; Top right: Side-
by-side boxplot of Self-esteem score vs. Marks; Bottom left: Side-by-side boxplot
of Self-esteem score vs. Smoking Status; Bottom right: Scatterplot of Self-esteem
score vs. BMI.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Boxplots of the true selection probabilities πij’s for each table with compound
symmetry correlation structure at one simulation run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Histograms of the estimators for 1000 times simulations under the setting of Table
4.3 with AR(1) correlation structure. 1st row: IPW; 2nd row: AIPW; 3rd row:
AOLS; 4th row: AWLS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Plots for showing the relationship between log bilirubin and other variables. Top
left: Scatterplot of Log Bilirubin vs. Measurement Time. Each curve presents the
change in Y over time for each patient; Top right: Scatterplot of Log Bilirubin
vs. Log Cholesterol; Bottom left: Side-by-side boxplot of Log Bilirubin vs. Drug;
Bottom right: Scatterplot of Log Bilirubin vs. Age. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

x



LIST OF TABLES

TABLE Page

3.1 Simulation results of 1000 replications for the normal data, Xi ∼ N(0, 1), Zi ∼
N3(0, I3), εi ∼ N(0, 1), with α = (2.2,−0.9,−0.7, 0, 0), about 20% missing at
random on average. For each entry, the first line displays the bias, the second line is
the empirical standard error/averaged asymptotic standard error, and the third line
is the 95% coverage probability. An “∗” indicates the asymptotic standard error
formula unavailable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Simulation results of 1000 replications for the normal data, Xi ∼ N(0, 1), Zi ∼
N3(0, I3), εi ∼ N(0, 1), with α = (0.5,−1,−0.5, 0, 0), about 40% missing at
random on average. For each entry, the first line displays the bias, the second line
is the empirical standard error/averaged asymptotic standard error, and the third
line is the 95% coverage probability. An “∗” indicates the asymptotic standard
error formula unavailable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Simulation results of 1000 replications for the normal data, Xi ∼ N(0, 1), Zi ∼
N3(0, I3), εi ∼ N(0, 1), with α = (−0.5,−0.5,−0.5, 0, 0), about 60% missing at
random on average. For each entry, the first line displays the bias, the second line is
the empirical standard error/averaged asymptotic standard error, and the third line
is the 95% coverage probability. An “∗” indicates the asymptotic standard error
formula unavailable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Simulation results of 1000 replications for the normal data,Xi ∼ (Gamma(5, 1)−
5)/

√
5, Zi ∼ N3(0, I3), εi ∼ t5/

√
5/3, with α = (2.2,−0.9,−0.7, 0, 0), about

20% missing at random on average. For each entry, the first line displays the bias,
the second line is the empirical standard error/averaged asymptotic standard error,
and the third line is the 95% coverage probability. An “∗” indicates the asymptotic
standard error formula unavailable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Simulation results of 1000 replications for the normal data,Xi ∼ (Gamma(5, 1)−
5)/

√
5, Zi ∼ N3(0, I3), εi ∼ t5/

√
5/3, with α = (0.5,−1,−0.5, 0, 0), about 40%

missing at random on average. For each entry, the first line displays the bias, the
second line is the empirical standard error/averaged asymptotic standard error, and
the third line is the 95% coverage probability. An “∗” indicates the asymptotic
standard error formula unavailable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xi



3.6 Simulation results of 1000 replications for the normal data,Xi ∼ (Gamma(5, 1)−
5)/

√
5, Zi ∼ N3(0, I3), εi ∼ t5/

√
5/3, with α = (−0.5,−0.5,−0.5, 0, 0), about

60% missing at random on average. For each entry, the first line displays the bias,
the second line is the empirical standard error/averaged asymptotic standard error,
and the third line is the 95% coverage probability. An “∗” indicates the asymptotic
standard error formula unavailable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 2010/2011 YSS data analysis focusing on Asian students (n = 493) . . . . . . . . . . . . . . . . . . 53

4.1 Simulation results of 1000 replications for the normal data (n = 100, m̄ = 5),
under two different correlation structures, with homoskedastic/heteroskedastic er-
rors, and α = (1.5,−0.5,−0.5, 0, 0), about 18% missing at random on average.
For each entry, the first line displays the bias, the second line is the empirical
standard error/averaged asymptotic standard error, and the third line is the 95%
coverage probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Simulation results of 1000 replications for the normal data (n = 100, m̄ = 5),
under two different correlation structures, with homoskedastic/heteroskedastic er-
rors, and α = (2,−0.5,−1.5, 0, 0), about 20% missing at random on average. For
each entry, the first line displays the bias, the second line is the empirical standard
error/averaged asymptotic standard error, and the third line is the 95% coverage
probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Simulation results of 1000 replications for the non-normal data (n = 100, m̄ =
5), under two different correlation structures, with homoskedastic/heteroskedastic
errors, and α = (2,−0.5,−1.5, 0, 0), about 20% missing at random on average.
For each entry, the first line displays the bias, the second line is the empirical
standard error/averaged asymptotic standard error, and the third line is the 95%
coverage probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Simulation results of 1000 replications for the normal data (n = 100, m̄ = 5),
under two different correlation structures, with homoskedastic/heteroskedastic er-
rors, and α = (0.2,−0.5,−1.5, 0, 0), about 40% missing at random on average.
For each entry, the first line displays the bias, the second line is the empirical
standard error/averaged asymptotic standard error, and the third line is the 95%
coverage probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Simulation results of 1000 replications for the non-normal data (n = 100, m̄ =
5), under two different correlation structures, with homoskedastic/heteroskedastic
errors, and α = (0.2,−0.5,−1.5, 0, 0), about 40% missing at random on average.
For each entry, the first line displays the bias, the second line is the empirical
standard error/averaged asymptotic standard error, and the third line is the 95%
coverage probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 PBC Data Analysis (n = 127, m̄ = 7.24) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xii



1. INTRODUCTION

Regression analysis is a very wide and classic topic in statistics. It explores the relationship

between the independent variable (response) and the dependent variables (covariates). It is useful

for prediction and forecasting. There have been many parametric or nonparametric models and

methods developed for different kinds of regression problems for the purpose of estimation, pre-

diction, statistical inference and so on. However, when some of the data are missing due to some

reasons, the commonly used methods and theory for complete data may not work well if you just

simply ignore the incomplete cases. Unfortunately, the missing data problem is not uncommon in

many fields, such as sociology, epidemiology, biomedical science, clinical trials and public health

research. The reasons for missingness can be, but not limited to unavailability of measurements,

physical loss of data, survey nonresponse, study subjects’ refusal to answer the questions or to

continue the participation, or even the patients’ deaths. And it is even easier for us to have data

partially missing when we access large volumes of data nowadays.

One example of independent and identically distributed (i.i.d.) data is the Canada 2010/2011

Youth Smoking Survey (YSS) data. The 2010/2011 YSS is a Health Canada sponsored pan-

Canadian, classroom-based survey of a representative sample of students in grades 6 through 12.

It was implemented in schools between October 2010 and June 2011 by provincial level teams lo-

cated in the 9 participating provinces in Canada. The original dataset has many attributes, including

smoking status, a score evaluating the student’s self-esteem, age, sex, body mass index (BMI) and

other features. An important research interest is to explore whether smoking will have influence on

the student’s self-esteem, controlling other variables. One possible way is to establish a regression

model between the self-esteem score and the predictors, including the smoking status. However,

we find the data for BMI may be missing for some students and the missing proportion is about

30%. Throwing away those incomplete cases definitely will result in a big loss of information and

the results from standard regression methods may be incorrect.

In the case of longitudinal data, it is more often to encounter the situation of missing data be-
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cause repeated measurements need to be made on each subject during the follow-up. For example,

a double-blinded randomized trial in primary biliary cirrhosis of the liver (PBC) for comparing the

drug D-penicillamine (DPCA) with a placebo was conducted by the Mayo Clinic between January,

1974 and May, 1984. PBC is a rare but fatal liver disease with a prevalence of about 50-cases-

per-million population. There were 312 patients involved in this trial with information gathered

routinely during the follow-up. The original dataset has 19 attributes including some demographic

variables like age and sex, clinical measurements like the presence/absence of ascites, and bio-

chemical measurements such as the levels of bilirubin, albumin. Since bilirubin is a very important

prognostic factor in PBC (Shapiro et al. (1979)), we would like to explore the difference between

the two treatment groups on bilirubin levels, controlling other variables such as cholesterol level

and age. But in the original data, almost 40% of total measurements on cholesterol level are miss-

ing. For each patient, the data is partially missing, which means the availability of cholesterol level

varies from the current visit to the next. This arbitrary pattern makes the missing data problem even

more complicated.

Many research works have been done for linear regression models and generalized linear mod-

els (GLM). Fuchs (1982), Schluchter & Jackson (1989), Horton & Laird (1999) and Ibrahim (1990)

proposed estimation procedure through maximum likelihood. These model-based methods are

flexible and clear for inference, and the asymptotic properties can be obtained via the second

derivatives of the log-likelihood.

Bayesian methods can be considered as another approach based on likelihood. One can find

details of estimation in Ibrahim et al. (2002) and Daniels & Hogan (2008). But it can be challenging

to correctly specify the conditional covariate distribution and the joint priors over parameters.

Multiple imputation (MI) might be the most popular approach in industry and software pack-

ages. The basic idea of MI is to impute missing data to create a new “complete” sample, and then

analyze it as if it were a complete data set for multiple times. MI methods for linear regression

models are discussed in Rubin (2004) and Little & Rubin (2014).

However, in most situations, all the above three methods depend on the specification of the
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likelihood. They can be very sensitive to misspecification of the likelihood. To have more robust

estimation with less likelihood assumptions, Robins et al. (1994) proposed a class of semipara-

metric estimators based on weighted estimating equations (WEE) under the missing at random

(MAR) mechanism. The weights are the reciprocals of the conditional probabilities of the data

being observed, so we call them inverse-probability weights. These probabilities can be modeled

parametrically, such as a logistic model. Wang et al. (1997) proposed a nonparametric kernel

smoother for these probabilities and developed asymptotic theory for the estimator. The WEE can

also include the augmentation term, which makes use of the data in the incomplete cases and can

always improve the efficiency. Again parametric models can be assumed on this augmentation,

and Wang & Wang (2001) showed a nonparametric kernel estimator for it.

These semiparametric estimators look reasonable and more flexible than likelihood-based meth-

ods, but there are two main problems for them. The first one is that the inverse-probability weights

can be highly variable and skewed when the probabilities are positive but near zero. The second

problem is that we may suffer from “curse of dimensionality” when we use multivariate kernel

functions. Therefore, in this dissertation we will investigate the following questions for both i.i.d.

data and longitudinal data:

1. How to effectively estimate the parameters in the linear model semiparametrically without

inverse-probabilities when covariates are MAR.

2. How to estimate the augmentation nonparametrically on a low-dimension basis.

3. How efficient the parameter estimators are compared to the existing methods.

The following chapters are organized as follows. In Chapter 2, we review the basic missing data

concepts, useful longitudinal models and existing methods for handling missing data. In Chapter

3, we propose a new semiparametric estimator for i.i.d. data without using inverse-probability

weights. We study the properties of the proposed estimator through theories and numerical stud-

ies. In Chapter 4, we extend the method to longitudinal data. The methodology is supported by
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theorems, simulations and a real data example. We make conclusion remarks for this dissertation

in Chapter 5.
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2. LITERATURE REVIEW

In this chapter, we review the main concepts and models in missing data analysis, longitudinal

data analysis, nonparametric regression and semiparametric models. In Section 2.1, we introduce

the concepts of different missing mechanisms and missing patterns. In Section 2.2, we briefly

introduce three commonly used models in longitudinal data analysis: marginal models, random

effects models and transition models. In Section 2.3, we discuss some particular nonparametric

kernel smoothers and their asymptotic properties. In Section 2.4, we provide a brief review of the

literature of existing methods for handling missing data in both i.i.d. data and longitudinal data,

especially the semiparametric methods based on estimating equations.

2.1 Missing Data Concepts

2.1.1 Missing Mechanisms

Missing mechanisms are important to the missing data analysis. Different missing mechanisms

lead to different methodologies for handling the incomplete data problem. The concept was for-

malized first by Rubin (1976), and explained in details by Little & Rubin (2014), among other

authors.

Missing mechanisms are first discussed on missing response in the data. Let Y denote the com-

plete response data and R be the missing data indicator. Let Yobs denote the observed components

of Y , and Ymis the missing components. The missing mechanism concepts are established on the

conditional distribution of R given Y as f(R|Y, ϕ), where ϕ denotes unknown parameters. If

f(R|Y, ϕ) = f(R|ϕ) for all Y, ϕ,

that is, the missingness does not depend on any values of the response data Y , no matter Yobs or

Ymis. Then this missing mechanism is called missing completely at random (MCAR). We can have

a more general assumption that the missingness can depend on the observed part Yobs, but not on
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the missing part Ymis, that is,

f(R|Y, ϕ) = f(R|Yobs, ϕ) for all Ymis, ϕ.

This missing mechanism is called missing at random (MAR). Then the last missing mechanism

is called missing not at random (MNAR) if the distribution of R can also depend on the missing

values Ymis, which violates the assumptions of MCAR and MAR.

If we consider i.i.d. univariate data as Y = (y1, ..., yn)
⊤, R = (R1, ..., Rn)

⊤, then we have

f(Y,R|θ, ϕ) = f(Y |θ)f(R|Y, ϕ) =
n∏

i=1

f(yi|θ)
n∏

i=1

f(Ri|yi, ϕ),

where θ denotes the unknown parameters for the density of yi as f(yi|θ). In this situation, MCAR

is equivalent to MAR because both of them imply f(Ri|yi, ϕ) = f(Ri|ϕ).

However, we will have a different conclusion when we consider missing covariate data. Con-

sider the regression analysis of a response, Y , on a set of covariates (X,Z) with covariate X

missing for some subjects. Then MCAR means Pr(Ri = 1|yi, Xi, Zi) ≡ p with a constant p,

while MAR implies Pr(Ri = 1|yi, Xi, Zi) = Pr(Ri = 1|yi, Zi) = π(Qi) with a function π(·)

and Qi = (yi, Zi)
⊤. For longitudinal data, let Yi = (Yi1, ..., Yimi

)⊤ denote the mi × 1 completely

observed response vector for subject i, Xi = (Xi1, ..., Ximi
)⊤ be the covariate vector that may

be missing at some time point tij , Zi = (Zi1, ...,Zimi
)⊤ be the covariate matrix that is always

observed and Ri = (Ri1, ..., Rimi
)⊤ be the indicator vector of subject i. Then MAR means

f(Ri|Yi,Xi,Zi,γ) = f(Ri|Yi,X
(o)
i ,Zi,γ),

where Xo
i denotes the observed part of Xi and γ denotes the unknown parameters.

2.1.2 Missing Pattern

Since we consider both cases of a single covariate being missing and several covariates being

missing at the same time in this dissertation, to distinguish from the missing pattern in the situation
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of several covariates missing separately in i.i.d. data, the following concepts of missing pattern are

only applied to incomplete longitudinal data, mainly described in Diggle (2002).

The missing pattern is monotone (or dropouts) if whenever Xij is missing, so are Xik for all

k ≥ j; otherwise we say the missing pattern is non-monotone (or intermittent). Dropouts are

common in clinical trials data because the subject leaves the study and never comes back. This

can be caused by the subject’s worse health condition or even death. In the current study, it is not

reasonable to assume that the covariate Xij has the monotone missing pattern while the responses

Yij’s are fully observed. This motivates us to consider non-monotone missingness, which is always

more difficult than monotone missingness to make the factorization of the likelihood.

2.2 Models for Longitudinal Data Analysis

In this section, we briefly introduce the three most commonly used models for longitudinal data

analysis. For this dissertation we focus on linear models, so the models will be introduced based

on generalized linear models (GLM). Details about these models are introduced systematically in

Diggle (2002).

2.2.1 Marginal Models

The basic assumption for marginal models of longitudinal data is that the regression on predic-

tors is modeled separately from within-subject correlation. That is,

E(Yij|Xi) = E(Yij|X ij) = µij,

where Yij is the response variable for the jth measurement of subject i, X ij is the set of predictors

and Xi = (X i1, ...,X imi
), µij is the marginal mean of the response given the predictors, i =

1, ..., n, j = 1, ...,mi. With GLM, we have h(uij) = X⊤
ijβ, V ar(Yij) = ν(µij)ϕ, where h(·) is

a known link function, ν(·) is a known variance function and ϕ is an unknown scale parameter.

The within-subject correlation is a function of marginal means with additional parameters α, that

is, Cor(Yij, Yik) = ρ(µij, µik;α), where ρ(·) is a known function. Note that for linear model, the

variance is independent of the mean.
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The marginal model is the approach we take for analyzing incomplete longitudinal data in

Chapter 4. When the probability distribution of the response is available, the above necessary

functions are known and normal maximum likelihood methods can be applied to obtain the es-

timates of β. The parameterization of the likelihood for binary and count data can be found in

Bishop et al. (1977) and Fitzmaurice & Laird (1993). However, that information is not always

available or can be correctly specified. Liang & Zeger (1986) proposed to estimate β through the

following generalized estimating equations (GEE) as

n−1/2

n∑
i=1

∂µ⊤
i

∂β
Var(Yi)

−1(Yi − µi) = 0,

where µi = (µi1, ..., µimi
)⊤. Liang & Zeger (1986) showed that the solution of GEE is consistent

for β provided that the model for marginal mean µij is correctly specified even if the covariance

Var(Yi) is misspecified. Write

Var(Yi) = F
1/2
i Ci(ρ)F

1/2
i ,

where Fi = diag(σ2
ij), Ci(ρ) is called the working correlation matrix with parameters ρ and a

particular form such as uniform correlation or AR(1).

2.2.2 Random Effects Models

Random effects models consider that the response is assumed to be a linear function of predic-

tors with regression coefficients varying from one individual to the next. Using the GLM frame-

work, we assume that conditional on unobservable variables U i, Yij’s are independently drawn

from the exponential family f(Yij|U i;β) such that

h{E(Yij|U i)} = X⊤
ijβ + d⊤

ijU i,

where U i are q × 1 i.i.d. random variables from certain density f(U i), usually a Gaussian dis-

tribution with mean 0 and variance G; dij are q-element vectors of predictors attached to each
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measurement. If we ignore the serial correlation and measurement errors in the responses, then U i

is the main source of within-subject correlation. Consider a linear model,

Yij = X⊤
ijβ + d⊤

ijU i + ϵij,

where ϵij are independent Gaussian random noise with mean 0 and variance σ2. Then

Var(Yi) = DiGD⊤
i + σ2Ii

with Di = (di1, ...,dimi
)⊤. There are some particular examples for the random effects model. If

we have dij = X ij , then each individual can be thought to have their own regression coefficient

β + U i. If q = 1 with dij = 1, then the model actually means a random intercept regression

model. Based on the exponential family distribution of response and the density of f(U i;G), the

maximum likelihood estimator (MLE) of β can be obtained from the marginal distribution of Y as

L(θ;Y) =
n∏

i=1

∫ mi∏
j=1

f(Yij|U i;β)f(U i;G)dU i,

where θ includes β and parameters in G. If we do not have a closed form for the integral, the

expectation-maximization (EM) algorithm can be used to get the MLE of θ. In this sense, U i can

be regarded as a latent variable and L(θ;Y) is the observed likelihood.

2.2.3 Transition Models

Under a transition model, we consider the conditional distribution of each response Yij given

the past responses Hij = (Yi1, ..., Yi,j−1) and covariates X ij . These conditional distributions also

intriduce the correlation between Yij’s. Under GLM,

h(µC
ij) = X⊤

ijβ +
s∑

r=1

fr(Hij;α),
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where µC
ij = E(Yij|Hij). For a linear regression with autoregressive errors for Gaussian data, the

transition model actually means a Markov model, as

Yij = X⊤
ijβ +

s∑
r=1

αr(Yi,j−r −X⊤
i,j−rβ) + ϵij.

In this way, the joint distribution of Y can be easily factored as

f(Y) = f(Yi1)

mi∏
j=2

f(Yij|Hij).

More materials about transition models for categorical data and the methods of estimation can be

found in Diggle (2002).

2.3 Kernel Smoother

In this section we briefly review the nonparametric kernel regression techniques which is used

later for estimating the conditional expectations in this dissertation. There is abundant literature on

this topic and we only focus on the local constant weighted smoother here.

2.3.1 Nadaraya-Watson Estimator

Consider the regression problem with dependent variable Y and independent variable X . Gen-

erally, we assume

yi = m(xi) + εi, i = 1, ..., n,

where ε is the white noise, and m(·) is usually a smooth function. Then E(Y |X = x) = m(x). To

reveal the relationship between Y and X flexibly, we want to estimate the function m(·) nonpara-

metrically. Based on the truth that

m(x) = E(Y |X = x) =

∫
y
f(x, y)

f(x)
dy =

∫
yf(x, y)dy

f(x)
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and the kernel density estimation for the joint density f(x, y) and f(x) with a kernel K, Nadaraya

(1964) and Watson (1964) proposed the Nadaraya-Watson (NW) estimator as

m̂(x) =

∑n
i=1 yiKh(x− xi)∑n
i=1Kh(x− xi)

,

where Kh(·) = K(·/h) with h the bandwidth. It is essentially a local constant estimator. The

convergence of m̂(x) has been shown by Härdle (1990) and Gasser & Müller (1984) derived the

asymptotic mean square error (AMSE) for this estimator. For simplicity, with a regular second-

order kernel function K(u) and h→ 0, nh→ ∞, we have

AMSE(m̂(x)) =
1

nh
C1 + h4C2,

where C1 and C2 denote some finite constants. Then minimizing AMSE with respect to the h leads

to the optimal bandwidth rate as hopt = O(n−1/5) and the corresponding AMSE of orderO(n−4/5).

2.3.2 Single-index Model

For the above NW estimator, we will have the boundary issue as the metric neighborhoods

tend to contain less points on boundaries, which may lead to bias. When X is multi-dimensional,

the boundary effects are even more severe (Friedman et al. (2001)). We will need to use some

proper multivariate kernels, but still suffer from “curse of dimensionality”. One possible approach

to overcome the difficulty of high-dimensional X is to use the single-index model (SIM) for di-

mension reduction by Ichimura (1993). Assume the smooth function m : Rp → R of X ∈ Rp has

a particular form as a function of the linear combination of X , that is,

yi = g(θ⊤xi) + εi,

where g : R → R is a univariate smooth function, θ is a p-elements unknown index vector. For

identifiability, we assume the first non-zero element of θ is positive 1. Following the idea of the
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NW estimator, one estimator of g can be

ĝ(u|θ) =
∑n

j=1 yjKh(u− θ⊤xj)∑n
j=1Kh(u− θ⊤xj)

.

Härdle et al. (1993) discussed the estimation of θ and the choice of the bandwidth h. A leave-one-

out estimator of g is

ĝi(u|θ) =
∑

j ̸=i yjKh(u− θ⊤xj)∑
j ̸=iKh(u− θ⊤xj)

.

Then define

Ŝ(θ, h) =
n∑

i=1

{yi − ĝi(θ
⊤xi|θ)}2,

so that one can use cross-validation to minimize Ŝ(θ, h) with respect to (θ, h). Härdle et al. (1993)

showed that the resulting estimator θ̂ is a root-n consistent estimate of θ, and the optimal rate for

h is still O(n−1/5).

2.4 Existing Methods for Handling Missing Covariate Data

In this section, we briefly introduce the existing methods for missing covariate data in both

univariate i.i.d. data and longitudinal data. The main focus will be on the semiparametric methods

based on GEE under MAR mechanism. These reviews depend on Ibrahim et al. (2005) and Ibrahim

& Molenberghs (2009).

2.4.1 Methods for i.i.d Data

Consider the regression analysis of a response, Y , on a set of covariates (X,Z⊤)⊤ as a linear

regression model Y = Wβ+ε, where W = (1, X, Z⊤)⊤ is the covariate vector, E(ε|W ) = 0, and

the covariate X may be missing for some subjects.

Much work using the maximum likelihood has been developed in the area of missing covariate

regression analysis. This model-based method is flexible and clear for inference, and the asymp-

totic properties can be obtained via the second derivatives of the log-likelihood. When the observed

likelihood is not available in closed form because of difficulty of the multi-dimensional integral,

the EM algorithm is a popular technique for obtaining the maximum likelihood estimate with ig-
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norable missing categorical or continuous covariates (Fuchs (1982), Schluchter & Jackson (1989)

and Ibrahim (1990)).

Another likelihood-based approach is Bayesian methods, which are straightforward in terms

of concepts and inferences. On the other hand, it can be challenging to correctly specify the con-

ditional covariate distribution f(Xi|yi, Zi; γ) and the joint priors over parameters (β, γ). Ibrahim

et al. (2002) considered Bayesian methods for MAR covariates in GLM with informative prior

based on historical data.

The most popular approach in industry and software packages might be multiple imputation

(MI). The basic idea of MI is to impute missing data multiple times to create M “complete”

datasets, then analyze them and summarize the results to have a final estimate (usually by taking

average of the results from the M datasets). MI methods for MAR covariates in linear regres-

sion models are discussed in Rubin (2004) and Little & Rubin (2014). In terms of specifying the

conditional covariate distribution, MI works similarly to the EM algorithm and the motivation is

Bayesian, but the idea of MI itself is quite general and can be applied to other methods (Ibrahim

et al. (2005)). Hsu et al. (2014) proposed a nearest neighbor-based nonparametric multiple imputa-

tion approach for missing covariate data by using the distance calculated from a two-dimensional

summary score of information about the missing covariate and the missingness indicator.

In most situations, all the above three methods depend on the specification of the likelihood.

When the distributional assumptions are correct, they are optimal. However, they can give biased

estimators when the assumptions are violated. To have more robust estimation with less likelihood

assumptions, some semiparametric methods such as weighted estimating equations (WEE) are

proposed. Robins et al. (1994) proposed a class of semiparametric estimators based on inverse-

probability WEE

∆(β, ψ) = n−1/2

n∑
i=1

{
Ri

πi
Di(Wi)(yi −W⊤

i β) +

(
1− Ri

πi

)
ψi(Qi)

}
= 0,

where n is the total sample size (including incomplete cases), Qi = (yi, Z
⊤
i )

⊤, Di(Wi) is a func-
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tion satisfying a local identification condition as nonsingular E{Di(Wi)W
⊤
i }, ψi(Qi) is an arbi-

trary function of Qi, Ri is the binary indicator such that Ri = 1 if the covariate Xi is observed

and Ri = 0 otherwise, πi = E(Ri|Qi) is the probability of observing Xi. Robins et al. (1994)

discussed the choices of Di and ψi, and showed that there exist unique D(eff)
i and correspond-

ing ψ(eff)
i (Qi) = E{D(eff)

i (Wi)(yi −W⊤
i β)|Qi} that can achieve the semiparametric efficiency

bound of β̂. However, D(eff)
i does not always have a closed form, so we choose a convenient one

as Di = ∂µi/∂β = Wi, where µi = E(yi|Xi, Zi). Thus the estimating equation is the GEE for

this regression problem. Then ψi(Qi) = E(Ti|Qi) with Ti = Wi(yi −W⊤
i β), the regular score

function.

If we let ψi ≡ 0, the resulting estimator is the inverse-probability weighted estimator (IPW).

We usually fit a logistic regression model of Ri on Qi to estimate πi’s in the equations. When the

logistic regression model is incorrect for πi, the estimation can be biased. To overcome this diffi-

culty, Wang et al. (1997) proposed a nonparametric kernel smoother for the selection probabilities

as

π̂(q) =

n∑
i=1

RiKh1(q −Qi)

n∑
i=1

Kh1(q −Qi)
, (2.1)

where K is an rth-order kernel function, h1 is the bandwidth parameter, and Kh1(·) = K(·/h1).

Wang et al. (1997) also developed asymptotic theory for the estimator, including the optimal band-

width rate.

When ψi ̸= 0, the estimator is the augmented inverse-probability weighted estimator (AIPW).

This estimator can be more efficient than IPW because it also incorporates the incomplete cases.

The most important advantage of AIPW is that it is doubly robust (DR) in the sense that the

estimator will be consistent when either the selection probability model (πi) or the augmentation

model (ψi(Qi)) is correctly specified. There are many works discussing the DR estimator and

extensions, such as Bang & Robins (2005), Kang & Schafer (2007) and Robins & Ritov (1997).

Extending Wang et al. (1997), Wang & Wang (2001) considered kernel estimation for both πi and

ψi(Qi), which avoids modeling them parametrically. The kernel estimator for ψi can be expressed
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as

ψ̂(q) =

n∑
i=1

RiTiKh2(q −Qi)

n∑
i=1

RiKh2(q −Qi)
(2.2)

with another kernel bandwidth h2. It can share the same order of kernel function and same rate of

bandwidth with π̂(q) in (2.1).

When we still have ψi ̸= 0 but do not include the inverse-probability weights, we obtain the

mean-score estimator (MS). Reilly & Pepe (1995) proposed this estimator when all the compo-

nents of Q are discrete. Wang & Wang (2001) extended it to the setting where some components

are continuous. When both the selection probability πi and the augmentation ψi are estimated

nonparametrically by the standard kernel smoother, Wang & Wang (2001) showed the asymptotic

equivalence among IPW, AIPW and MS.

Although Robins et al. (1994) restricted πi to be bounded away from 0, in practice you may

still get some positive but near-zero values for the estimates π̂i, which can cause the inverse-

probabilities to be highly variable and skewed (Kang & Schafer (2007), Robins et al. (2007)).

Han & Wang (2013), Han (2014) and Han (2016) recently developed some methods to improve

the robustness of AIPW estimators by allowing multiple working models for both the selection

probability and the augmentation. Multiple robustness can then be gained, which means that the

estimators are consistent if any of the working models is correctly specified. In addition, these

estimators are not sensitive to near-zero selection probabilities.

2.4.2 Methods for Incomplete Longitudinal Data

Consider the following longitudinal linear model:

Yij = W⊤
ijβ + εij = β0 +Xijβ1 +Z⊤

ijβ2 + εij (2.3)

for i = 1, ..., n and j = 1, ...,mi, where W ij = (1, Xij,Z
⊤
ij)

⊤, β is the vector of the regression

coefficients, Yij is a continuous response and (Xij,Z
⊤
ij)

⊤ are covariates of subject i observed

at time tij with corresponding random error εij . Here we consider the sparse longitudinal case,
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which means that mi is bounded when n → ∞. Different subjects are mutually independent, but

generally there is within-subject correlation for observations measured at different time points. Let

Rij denote the indicator of the availability of Xij . That is, let Rij = 1 if Xij is observed and

Rij = 0 if Xij is missing. Let Ri = (Ri1, ..., Rimi
)⊤ be the indicator vector of subject i.

As a regression problem, it is always the basic goal to get an unbiased estimator of β. An

extensive literature discussed the situation of dropouts (Diggle (2002)) under the MAR mecha-

nism (Little & Rubin (2014)). When the joint likelihood of the response and covariates is available

through normal random effect model or generalized linear mixed model (GLMM) with the data

MAR, regular maximum likelihood methods such as EM algorithm give consistent estimates (Hor-

ton & Laird (1999), Fuchs (1982), Schluchter & Jackson (1989) and Ibrahim (1990)). Specifically,

by modeling the dropout process in addition, one can use selection models or pattern-mixture

models based on two different factorizations of the joint density of the responses, covariates and

missingness indicators (Little (1993), Little (1995)). As a simple example, if you have dropout re-

sponse data y with covariates x and missingness indicators r are given, the selection model factors

the complete data distribution as

f(y, r|x,θ) = f(y|x,θ)f(r|y,x,θ),

where θ are the parameters, while a pattern-mixture model factors the distribution as

f(y, r|x,θ) = f(y|r,x,θ)f(r|x,θ).

Although from a theoretical point of view, the two models are just two different ways factoring the

same full-data distribution, practically these two approaches lead to different kinds of simplifying

assumptions and different analyses, as indicated in Diggle (2002). These two models can also

extend to the MNAR mechanism (Ibrahim & Molenberghs (2009)). Bayesian methods (Daniels

& Hogan (2008)) and multiple imputation (Schafer (1997), Rubin (2004)) can also be considered

to handle the missing data problem. However, all the above methods usually require likelihood
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assumptions and can be sensitive to model misspecification.

For complete longitudinal data, Liang & Zeger (1986) proposed to perform the analysis based

on GEE as

n−1/2

n∑
i=1

∂µ⊤
i

∂β
V−1

i {Yi − µi(β)} = n−1/2

n∑
i=1

W⊤
i V

−1
i (Yi −Wiβ) = 0,

where µi = (µi1, ..., µimi
)⊤ is the vector of conditional mean with µij = E(Yij|Xi,Zi). With a

working covariance structure, this semiparametric method gives consistent results once the marginal

mean of the outcomes at each time is correctly specified. When we have incomplete data, GEE

generally produces asymptotically unbiased estimates only under the MCAR mechanism. As re-

viewed in Section 2.4, Robins et al. (1994) first introduced a class of inverse-probability weighted

estimators and augmented inverse-probability weighted estimators for i.i.d. data based on GEE

when data are MAR. The weights are obtained from the parametric models for the selection proba-

bilities. These models need to be correctly specified to guarantee the consistency of the estimation

for IPW. By choosing the augmentation to be the conditional expectation of the score function in

the first part of the estimating equations, AIPW is doubly robust. That is to say, AIPW is consis-

tent when either the selection probability model or the missing covariate model conditional on the

observed data is correctly specified. Robins et al. (1995) extended the idea of IPW to longitudinal

data with monotone missing response.

Recently, more research works have been done on DR estimators for incomplete longitudinal

data. Lipsitz et al. (1999) first introduced the DR estimator for cross-sectional studies with a miss-

ing covariate and properties similar to maximum likelihood. Other literature includes Van der Laan

& Robins (2003), Bang & Robins (2005) and Seaman & Copas (2009). But this literature mainly

solves the problem for monotone missing incomplete response. Dealing with non-monotone miss-

ing values is generally more difficult because the variety of patterns makes the factorization of

the likelihood very challenging. Chen et al. (2010) and Chen & Zhou (2011) discussed the DR

estimator for both response and covariates non-monotone missing at random. These works are im-
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pressive for a more complicated situation, but many assumptions are needed for the identifiability

of the models. It is not easy to calculate the marginal selection probabilities even under the correct

parametric models and the augmentation may involve nontrivial integration.
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3. SEMIPARAMETRIC ESTIMATION IN REGRESSION WITH MISSING COVARIATES

FOR I.I.D. DATA

In this chapter we investigate semiparametric estimation of regression coefficients through gen-

eralized estimating equations with single-index models when some covariates are missing at ran-

dom. Existing popular semiparametric estimators by weighted estimating equations may run into

difficulties when some selection probabilities are small or the dimension of the covariates is not

low. We propose a new simple parameter estimator using a kernel assisted estimator for the aug-

mentation by a single-index model without using the inverse of selection probabilities. We explore

the asymptotic efficiency of the proposed estimator and its relationships with existing estimators.

In particular, we show that under certain conditions the proposed estimator is as efficient as the

existing methods based on standard kernel smoothing, which are often practically infeasible in the

case of multiple covariates. A simulation study and a real data example are presented to illustrate

the proposed method. The numerical results show that the proposed estimator avoids some numer-

ical issues caused by estimated small selection probabilities that are needed in other estimators.

3.1 Introduction

Standard methods for regression generally require fully observed data. In practice, however,

for the regression analysis of a response, Y , on a set of covariates (X,Z), the covariate X may be

missing for some subjects. This is common in many areas such as biomedical sciences and clinical

trials due to different reasons, including unavailability of covariate measurements, loss of data, and

survey nonresponse. For example, in a subset of Canada 2010/2011 Youth Smoking Survey (YSS)

data as described in Section 3.7, 144 students (total n = 493) had their BMI (Body Mass Index)

missing. Here we consider the linear regression model Y = Wβ + ε, where W = (1, X, Z⊤)⊤ is

the covariate vector, and E(ε|W ) = 0. The objective of this regression analysis is to estimate the

regression coefficients β when the scalar covariate X is assumed to be missing at random (MAR)

in the sense of Rubin (1976).
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Much work using the maximum likelihood has been developed in the area of missing covariate

regression analysis. This model-based method is flexible and clear for inference, and the asymp-

totic properties can be obtained via the second derivatives of the log-likelihood. However, the

observed likelihood is generally difficult to get in a closed form for most missing data problems,

which needs factorization and reparameterization of the likelihood. These can be achieved with

multivariate normal model (Hartley & Hocking (1971)) or specific monotone patterns of missing

(Little & Rubin (2014)). When likelihood factorization is not available, the EM algorithm is a

popular technique for obtaining the maximum likelihood estimation (MLE) with ignorable miss-

ing categorical or continuous covariates (Fuchs (1982), Schluchter & Jackson (1989) and Ibrahim

(1990)).

Another likelihood-based approach is Bayesian methods, which are straightforward in terms

of concepts and inferences. On the other hand, it can be challenging to correctly specify the condi-

tional covariate distribution and the joint priors over parameters. Ibrahim et al. (2002) considered

Bayesian methods for MAR covariates in GLM with informative prior based on historical data.

The most popular approach in industry and software packages might be multiple imputation

(MI). The basic idea of MI is to impute missing data to create a new “complete” sample, and then

analyze it as if it were a complete data set. MI methods for MAR covariates in linear regres-

sion models are discussed in Rubin (2004) and Little & Rubin (2014). In terms of specifying the

conditional covariate distribution, MI works similarly to the EM algorithm and the motivation is

Bayesian, but the idea of MI itself is quite general and can be applied to other methods (Ibrahim

et al. (2005)). Hsu et al. (2014) proposed a nearest neighbor-based nonparametric multiple imputa-

tion approach for missing covariate data by using the distance calculated from a two-dimensional

summary score of information about the missing covariate and the missingness indicator.

In most situations, all the above three methods depend on the specification of the likelihood.

When the distributional assumptions are correct, they are optimal. However, they can give biased

estimation when the assumptions are violated. To have more robust estimation with less likelihood

assumptions, some semiparametric methods such as weighted estimating equations (WEE) are
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proposed. Robins et al. (1994) proposed a class of semiparametric estimators based on inverse-

probability WEE

∆(β, ψ) = n−1/2

n∑
i=1

{
Ri

πi
Di(Wi)(yi −W⊤

i β) +

(
1− Ri

πi

)
ψi(Qi)

}
= 0,

where n is the total sample size (including incomplete cases), Qi = (yi, Z
⊤
i )

⊤, Di(Wi) is a func-

tion satisfying a local identification condition as nonsingular E{Di(Wi)W
⊤
i }, ψi(Qi) is an arbi-

trary function of Qi, Ri is the binary indicator such that Ri = 1 if the covariate Xi is observed

and Ri = 0 otherwise, πi = E(Ri|Qi) is the probability of observing Xi. Robins et al. (1994)

discussed the choices of Di and ψi, and showed that there exist unique D(eff)
i and correspond-

ing ψ(eff)
i (Qi) = E{D(eff)

i (Wi)(yi −W⊤
i β)|Qi} that can achieve the semiparametric efficiency

bound of β̂. However,D(eff)
i does not always have a closed form, so we choose a convenient one as

Di = ∂µi/∂β = Wi, where µi = E(yi|Xi, Zi). Then ψi(Qi) = E(Ti|Qi) with Ti = Wi(yi−W⊤
i β)

the regular score function. If we let ψi ≡ 0, the resulting estimator is the inverse-probability

weighted estimator (IPW). We usually fit a logistic regression model of Ri on Qi to estimate πi’s

in the equations. When the logistic regression model is incorrect for πi, the estimation can be

biased. To overcome this difficulty, Wang et al. (1997) proposed a nonparametric kernel smoother

for the selection probabilities and developed asymptotic theory for the estimator, including the op-

timal bandwidth rate. When ψi ̸= 0, the estimator is the augmented inverse-probability weighted

estimator (AIPW). This estimator is generally more efficient than IPW because it also incorporates

the incomplete cases. The most important advantage of AIPW is that it is doubly robust (DR) in the

sense that the estimator will be consistent when either the selection probability model (πi) or the

augmentation model (ψi(Qi)) is correctly specified. There are many works discussing the DR esti-

mator and extensions, such as Bang & Robins (2005), Kang & Schafer (2007) and Robins & Ritov

(1997). AIPW can still fail when both models are misspecified, and it always needs distributional

assumptions on p(xi|yi, zi) to estimate ψi(Qi).

Although Robins et al. (1994) restricted πi to be bounded away from 0, in practice you may
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still get some positive but near-zero values for the estimates π̂i, which can make the inverse-

probabilities highly variable and skewed (Kang & Schafer (2007), Robins et al. (2007)). Extending

Wang et al. (1997), Wang & Wang (2001) considered kernel estimation for both πi and ψi(Qi), de-

veloped several kernel assisted estimators, and showed their asymptotic equivalence. However,

when the dimension of the continuous part in Qi increases, we need multivariate kernel functions

and the estimation procedure suffers from the “curse of dimensionality”. This motivates us to pro-

pose using a single-index model on E(Ti|Qi). Then we can apply a univariate kernel function on

the single-index Q⊤
i γ. Han & Wang (2013), Han (2014) and Han (2016) recently developed some

methods to improve the robustness of AIPW estimators by allowing multiple working models for

both the selection probability and the augmentation. Thus multiple robustness can be gained, which

means the estimators are consistent if any of the working models is correctly specified. In addition,

these estimators are not sensitive to near-zero selection probabilities. Our method, from another

perspective, is numerically stable with near-zero selection probabilities simply by not including

them in the point estimation procedure. Based on Wang & Wang (2001), we develop asymptotic

distribution theory for the resulting estimator and compare it with IPW and AIPW. We also con-

duct simulation studies to investigate the finite-sample performance of the proposed estimator in

comparison with existing methods.

The rest of the chapter is organized as follows. In Section 3.2 we briefly review IPW and

AIPW. We then describe our new estimator in Section 3.3. In Section 3.4 we present asymptotic

theory of the above estimators of β and compare their asymptotic efficiency. In particular, we show

that under certain conditions and assumptions, our proposed estimator is as efficient as the existing

methods based on standard kernel smoothing, which are often practically infeasible in the case of

multiple covariates. In Section 3.6 we provide the results of our simulation studies. In Section 3.7

we apply our methods to Canada 2010/2011 Youth Smoking Survey (YSS) data. We make some

concluding remarks in Section 3.8.
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3.2 Brief Review of Existing Methods

3.2.1 Inverse-probability Weighted Estimator

Robins et al. (1994) proposed a class of estimators based on weighted estimating equations.

One of them is IPW through the estimating equation

∆1(β, π) = n−1/2

n∑
i=1

Ri

πi
Wi(yi −W⊤

i β) = 0. (3.1)

The selection probabilities πi’s are usually unknown in observational studies. One can assume a

parametric model for πi, for example, a logistic regression model under MAR

πi(α) = P(Ri = 1|yi, Zi, α) = {1 + exp(−α0 − α1yi − α⊤
2 Zi)}−1 = {1 + exp(−α⊤Qi)}−1,

where α is unknown. In our estimation problem, α is a nuisance parameter and can be estimated

by maximum likelihood estimator α̂. We denote the solution of ∆1(β, π(α̂)) = 0 as β̂PIP in the

rest of the chapter.

Another approach is to estimate πi nonparametrically. Wang et al. (1997) considered non-

parametric kernel smoothers for the selection probabilities. Let d be the number of continuous

components of Q, K be an rth-order kernel function, h1 be the bandwidth parameter, and define

Kh1(·) = K(·/h1). Then the kernel estimator of π(q) is given by

π̂(q) =

n∑
i=1

RiKh1(q −Qi)

n∑
i=1

Kh1(q −Qi)
. (3.2)

The resulting estimator is consistent, but is difficult to implement when Q is multi-dimensional.

A complete-case (CC) analysis is to use the observed data only treating the partial data set as

a completely observed data set. This approach generally not only leads to inconsistent estimates

when the missing mechanism is not MCAR, but also loses efficiency due to discarding information

from incomplete cases. We will illustrate these points through simulations in Section 3.6.
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3.2.2 Augmented Inverse-probability Weighted Estimator

The IPW does not incorporate the incomplete cases, which generally leads to inefficient esti-

mates. Robins et al. (1994) proposed the AIPW by solving the following equations:

∆2(β, π, ψ) = n−1/2

n∑
i=1

{
Ri

πi
Ti +

(
1− Ri

πi

)
ψi

}
= 0, (3.3)

where ψi = E(Ti|Qi). Further, it also obtains the DR property. We can still estimate the selection

probability πi using a parametric model or a kernel smoother such as (3.2). To estimate ψi, Wang

& Wang (2001) proposed to use a kernel estimator similar to that for πi given by

ψ̂(q) =

n∑
i=1

RiTiKh2(q −Qi)

n∑
i=1

RiKh2(q −Qi)
(3.4)

for another kernel bandwidth h2. It can share the same order of kernel function and same rate

of bandwidth with π̂(q) in (3.2). It is possible to use a parametric model on ψ or specify the

conditional distribution p(xi|Qi), but then it will fall into the same area of techniques as EM

algorithm, Bayesian or MI.

3.2.3 Mean-score Estimator

The mean-score estimator (MS) solves

∆3(β, ψ) = n−1/2

n∑
i=1

{RiTi + (1−Ri)ψi} = 0. (3.5)

Reilly & Pepe (1995) proposed this estimator with all components of Q discrete, where ψi is

estimated by

ψ̂i =
1

n
(o)
yi,Zi

∑
j∈V (o)

yi,Zi

Tj(Xj; β|yi, Zi)
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with V (o)
yi,Zi

denoting the subset of complete cases for y = yi, Z = Zi, n
(o)
yi,Zi

the size of V (o)
yi,Zi

,

Tj(Xj; β|yi, Zi) the score function for the samples in V (o)
yi,Zi

. It simply uses the averaged score of

the complete cases with the same Qi as the estimate of ψi. Wang & Wang (2001) extended it to the

setting where some components are continuous by (3.4). Unlike IPW or AIPW, MS does not need

to estimate the selection probabilities πi.

3.3 Proposed Methodology

3.3.1 The Issues of Small Selection Probabilities and Curse of Dimensionality

Although theoretically the IPW and AIPW estimators are unbiased estimators when either

the model for selection probabilities (π) or for augmentation (ψ) is correctly specified, they may

encounter numerical problems if some πi’s are small so that the inverse-probability weights are

highly variable. In this case, some subjects may have very large weights to significantly influence

the weighted averages, and the sampling distribution of a locally semiparametric efficient estimator

(IPW, AIPW) can be markedly skewed and highly variable, leading to biased estimation. We will

illustrate this point through simulations in Section 3.6. This phenomenon is observed and discussed

by Kang & Schafer (2007) and Robins et al. (2007), existing at least when parametrically modeling

πi. In this sense, the mean-score estimator has its advantage as it does not need to model and use

inverse-probability weights.

However, all the kernel-estimation-based estimators mentioned above, including the MS esti-

mator, have the same problem: curse of dimensionality. If the dimension d of the continuous part

in Q is more than one, the performance of kernel functions can be unsatisfying.
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3.3.2 Single-index Model and the Proposed Estimator

To overcome the problem discussed above, we consider a single-index model on ψ. Notice that

ψi = E(Ti|Qi) = E
{
Wi(yi −W⊤

i β)
∣∣Qi

}
= E(Wi|Qi)yi − E(WiW

⊤
i |Qi)β

=


1

E(Xi|Qi)

Zi

 yi −


1 E(Xi|Qi) Z⊤

i

E(Xi|Qi) E(X2
i |Qi) E(Xi|Qi)Z

⊤
i

Zi ZiE(Xi|Qi) ZiZ
⊤
i

 β. (3.6)

Thus we only need to model E(Xi|Qi) and E(X2
i |Qi). Assume a single-index model (SIM)

Xi = g(Q⊤
i γ) + ei, (3.7)

where g is an unknown smooth univariate function, γ is the parameter of the model with the same

dimension of Qi, ei’s are random errors with zero mean. To guarantee identifiability, we assume

the first non-zero element of γ is positive 1. If the number of complete cases is n1, one estimator

of g(·) based only on the complete cases is

ĝ(u|γ) =

n1∑
j=1

X
(o)
j Kh

(
u−Q

(o)
j

⊤
γ
)

n1∑
j=1

Kh

(
u−Q

(o)
j

⊤
γ
) =

n∑
k=1

RkXkKh(u−Q⊤
k γ)

n∑
k=1

RkKh(u−Q⊤
k γ)

,

where (X
(o)
j , Q

(o)
j ) are pairs of the complete cases. Then under the SIM condition, we have

Ê(Xi|Qi) = Ê(Xi|Q⊤
i γ) = ĝ(Q⊤

i γ) =

n∑
k=1

RkXkKh((Qi −Qk)
⊤γ)

n∑
k=1

RkKh((Qi −Qk)⊤γ)
. (3.8)
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We can also apply this model to get an estimate of E(X2
i |Qi) as

Ê(X2
i |Qi) =

n∑
k=1

RkX
2
kKh((Qi −Qk)

⊤γ)

n∑
k=1

RkKh((Qi −Qk)⊤γ)
. (3.9)

We can construct

π̂∗
i (γ) = Ê(Ri|Q⊤

i γ) =

n∑
k=1

RkKh((Qi −Qk)
⊤γ)

n∑
k=1

Kh((Qi −Qk)⊤γ)
(3.10)

as the estimated selection probabilities modeled by the SIM using the same (γ, h). Notice that

(3.8) and (3.10) have the same forms as (3.4) and (3.2) (NW-estimators). But the former two are

conditional on the single-index and thus can just use univariate kernel functions with the additional

parameter γ. Due to this similarity, we can extend the asymptotic results by Wang & Wang (2001)

to the single-index models. The details will be shown in Section 3.4. On the other hand, compared

to Wang & Wang (2001), here we only estimate the first two moments of Xi given Qi by using

the local average when estimating ψi but keep the original yi, Zi since they are always observed,

instead of using the local average of the whole score function like (3.4).

Let

ψ̂i(γ) =

n∑
k=1

RkTi,kKh((Qi −Qk)
⊤γ)

n∑
k=1

RkKh((Qi −Qk)⊤γ)
,

where Ti,k = Wi,k(yi −W⊤
i,kβ) with Wi,k = (1, Xk, Z

⊤
i )

⊤. This ψ̂i(γ) is a kernel estimate of ψi by

estimating only E(Xi|Qi) and E(X2
i |Qi) with a kernel smoother via (3.6). Then the AIPW (3.3)

and MS (3.5) estimators in the previous section can be extended using the SIM as follows:

(a) AIPW with a parametric model on selection probabilities:

∆2(β, π(α̂), ψ̂(γ)) = n−1/2

n∑
i=1

{
Ri

πi(α̂)
Ti +

(
1− Ri

πi(α̂)

)
ψ̂i(γ)

}
= 0; (3.11)
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(b) MS without inverse-probability weights:

∆3(β, ψ̂(γ)) = n−1/2

n∑
i=1

{
RiTi + (1−Ri)ψ̂i(γ)

}
= 0. (3.12)

We use β̂PIPA and β̂A to denote the solutions of equations (3.11) and (3.12) respectively.

Generally, besides the main parameter β, γ is an unknown nuisance parameter which also

needs to be estimated. However, in our case with the linear relationship between Y and (X,Z⊤)⊤,

we have a special form of γ as γ = (1,−β⊤
Z )

⊤, where βZ is the regression coefficient of Z as

E(Y |X,Z) = β0 + β1X + β⊤
ZZ. In that sense, the single index is ui = Q⊤

i γ = yi − β⊤
ZZi and γ is

a part of β so that we do not need to estimate γ separately. Note also that the choice of bandwidth

h is crucial. Technical details about bandwidth selection will be discussed in Section 3.4.

Under certain conditions, we can show that these two estimators are asymptotically equivalent

(see Corollary 3.1 below), and they are both as efficient as the existing estimators using standard

kernel smoothing, which are often practically infeasible in the case of multi-covariates. In practice,

we prefer β̂A because the estimation procedure of β̂A has the clear advantage of not involving

inverse of selection probabilities to avoid modeling πi’s thus it is simpler. Moreover, it is important

to note that unlike all inverse probability weighted estimators, β̂A is not sensitive to the positive

near-zero πi’s since we do not use them in the point estimation procedure.

Of course, β̂A no longer has the property of double robustness, and thus needs a consistent

estimator of ψ. In this setting, the performance of β̂A depends on whether the single-index model

(3.7) is reasonable. Since the relationship between the response and covariates is assumed to be

linear, it is not unreasonable to assume this model. Actually it is valid when (yi, Xi, Zi) jointly

follows a multivariate normal distribution. More generally, it can still give reasonably robust results

under other distributions, as is to be shown in our numerical studies in Section 3.6.

3.4 Asymptotic Properties

In this section, we will show the asymptotic behavior of the proposed estimator β̂A, and its

asymptotic equivalence to some other estimators described above under certain conditions. For
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simplicity, we define π∗
i (γ) = E(Ri|Q⊤

i γ) as the selection probabilities conditional on the single-

indexQ⊤
i γ with parameter γ, πi(α) as the selection probabilities based on a parametric model with

parameter α. We need the following regularity conditions to establish the asymptotic theory:

(i) The smoothing parameter h satisfies nh2 → ∞ and nh2r → 0, as n→ ∞.

(ii) All the selection probabilities πi’s are bounded away from zero.

(iii) The selection probability function on the single-index π∗(γ) has r continuous and bounded

partial derivatives a.e.

(iv) The density function f(u) of U and the conditional density function fU |R(u) of U |R have r

continuous and bounded partial derivatives a.e.

(v) The conditional distributions fU |R=0(u) and fU |R=1(u) have the same support, and b(u) =

fU |R=0(u)/fU |R=1(u) is bounded over the support.

(vi) The conditional expectations ψ(u|γ) = E(T |Q⊤γ = u) and E(TT⊤|Q⊤γ) exist and have r

continuous and bounded partial derivatives a.e.

(vii) For score T , E(TT⊤) and E{(∂/∂β)T} exist and are positive definite, and (∂2/∂β∂β⊤)T

exists and is continuous with respect to β a.e.

Recall that r is the order of the kernel function used in the estimation. From regularity condition

(i), r is related to the rate of the bandwidth h. Since we are considering a SIM for estimation, a

standard 2nd-order (r = 2) univariate kernel function seems reasonable in practice.

Let ηn = {nh2r + (nh2)−1}1/2. The following lemmas are important to prove our main theo-

rems.

Lemma 3.1. Under regularity conditions (i)-(vii) and assuming that the single-index model (3.7)

is true, we have

n−1/2

n∑
i=1

(1−Ri){ψ̂i(γ)− ψi(γ)} = n−1/2

n∑
i=1

Ri{T 0
i − ψ0

i (γ)}a(Q⊤
i γ) +Op(ηn),
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where a(Q⊤
i γ) = {1− π∗

i (γ)}/π∗
i (γ), T

0
i = EZi|ui,Ri=0(Ti) =

∫
Tif(Zi|ui, Ri = 0)dZi, ψ0

i (γ) =

EZi|ui,Ri=0{ψi(γ)} =
∫
ψi(γ)f(Zi|ui, Ri = 0)dZi with ui = Q⊤

i γ as the single index.

This is an extension of Lemma 1 in Wang & Wang (2001). The proof of this lemma is given in

Section 3.5.1.

Note that with the SIM and the single index ui = yi − β⊤
ZZi, we can write Ti and ψi(γ) as

Ti =


ui − β0 − β1Xi

uiXi − β0Xi − β1X
2
i

Zi(ui − β0 − β1Xi)

 , ψi(γ) =


ui − β0 − β1E(Xi|ui)

uiE(Xi|ui)− β0E(Xi|ui)− β1E(X
2
i |ui)

Zi{ui − β0 − β1E(Xi|ui)}

 .

Since MAR implies (Xi ⊥ Ri)|Qi, we also have

T 0
i =


ui − β0 − β1Xi

uiXi − β0Xi − β1X
2
i

Z
u|0
i (ui − β0 − β1Xi)

 , ψ0
i (γ) =


ui − β0 − β1E(Xi|ui)

uiE(Xi|ui)− β0E(Xi|ui)− β1E(X
2
i |ui)

Z
u|0
i {ui − β0 − β1E(Xi|ui)}


with Zu|0

i = E(Zi|ui, Ri = 0).

Lemma 3.1 is useful because it converts asymptotically a sum of dependent random variables

to a sum of independent and identically distributed (i.i.d.) random variables. Then it is easier to be

dealt with by applying standard asymptotic theory.

Lemma 3.2. Under the same conditions as those in Lemma 3.1, we have

a)

n−1/2

n∑
i=1

Ri{ψ̂i(γ)− ψi(γ)} = n−1/2

n∑
i=1

Ri{T 1
i − ψ1

i (γ)}+Op(ηn);

b)

n−1/2

n∑
i=1

Ri

π̂∗
i (γ)

{ψ̂i(γ)− ψi(γ)} = n−1/2

n∑
i=1

Ri

π∗
i (γ)

{T 1
i − ψ1

i (γ)}+Op(ηn);

c) In addition, if the parametric model for selection probabilities is correctly specified and has

a single-index model form with the same single index ui = Q⊤
i γ as the augmentation, which
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means πi(α) = πi = π∗
i (γ), then

n−1/2

n∑
i=1

Ri

πi(α̂)
{ψ̂i(γ)− ψi(γ)} = n−1/2

n∑
i=1

Ri

πi
{T 1

i − ψ1
i (γ)}+Op(ηn),

where T 1
i = EZi|ui,Ri=1(Ti), ψ1

i (γ) = EZi|ui,Ri=1{ψi(γ)}.

The proof of Lemma 3.2 is given in Section 3.5.2. The idea of the proof is analogous to that of

Lemma 3.1.

Define

Ui = RiTi + (1−Ri)ψi(γ) +Ri{T 0
i − ψ0

i (γ)}a(Q⊤
i γ).

Based on Lemmas 3.1 and 3.2, we have the following main theorems.

Theorem 3.1. Under the regularity conditions (i)-(vii) and assuming that the single-index model

(3.7) is true, β̂A is asymptotically equivalent to the solution of the following estimating equation:

n−1/2

n∑
i=1

Ui = 0.

Furthermore, we have

n1/2(β̂A − β)
D−→ Np(0,ΣA),

where ΣA = D−1MD−1 with D = −n−1E(∂T1/∂β
⊤) = E(W1W

⊤
1 ) and M = cov(U1) =

A+B + 2C for

A = E
(
π1T1T

⊤
1

)
+ E

{
(1− π1)ψ1ψ

⊤
1

}
,

B = E
{
π1(T

0
1 − ψ0

1)(T
0
1 − ψ0

1)
⊤a2(Q⊤

1 γ)
}
,

C = E
{
π1T1(T

0
1 − ψ0

1)
⊤a(Q⊤

1 γ)
}
.

The main step of the proof is to obtain the asymptotic equivalence between our estimating

equation ∆3(β, ψ̂(γ)) = 0, and n−1/2
n∑

i=1

Ui = 0 with true π∗(γ) and ψ(γ). The details can be
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found in Section 3.5.3.

The asymptotic covariance matrix ΣA of β̂A can be estimated by first estimating A, B and

C separately. However, this approach cannot guarantee the necessary property of non-negative

definiteness of the resulting covariance estimate and it might lead to numerically unstable results.

For this reason, we propose to estimate ΣA directly as follows:

Σ̂A = D̂
−1

n (γ̂)

(
1

n

n∑
i=1

ÛiÛ
⊤
i

)
D̂

−1

n (γ̂), (3.13)

where

Ûi = RiTi(β̂A) + (1−Ri)ψ̂i +Ri{T̂ 0
i (β̂A)− ψ̂0

i }a(Q⊤
i γ̂)

with ψ̂i = ψ̂i(β̂A, γ̂), ψ̂0
i = ψ̂0

i (β̂A, γ̂) being the estimates of ψi, ψ0
i based on β̂A and

D̂n(γ̂) = n−1

n∑
i=1

{
RiWiW

⊤
i + (1−Ri)Ê(WiW

⊤
i |Q⊤

i γ̂)
}
.

Here T̂ 0
i is T 0

i with Zu|0
i estimated by

Ẑ
u|0
i = Ê(Zi|ûi, Ri = 0) =

n∑
k=1

(1−Rk)ZkKh((Qi −Qk)
⊤γ̂)

n∑
k=1

(1−Rk)Kh((Qi −Qk)⊤γ̂)

with ûi = Q⊤
i γ̂.

Note that to get Ê(WiW
⊤
i |Q⊤

i γ̂), we only need to calculate Ê(Xi|Qi) and Ê(X2
i |Qi) through

(3.8) and (3.9) because of the structure in (3.6).

Theorem 3.2. Under the same conditions as in Theorem 3.1 and the additional conditions for

Lemma 3.2(c), we have

n1/2(β̂PIPA − β)
D−→ Np(0,ΣPA),

where ΣPA = D−1(S − S∗ + V )D−1, with D = E(W1W
⊤
1 ), S = E{T1T⊤

1 /π
∗
1(γ)}, S∗ =

E{ψ1ψ
⊤
1 /π

∗
1(γ)} and V = E(ψ1ψ

⊤
1 ).
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It is readily seen that a consistent covariance matrix estimate of β̂PIPA is given by

Σ̂PA = D̂
−1

n (γ̂)

[
1

n

n∑
i=1

{
Ri

π̂∗2
i (γ̂)

(
T̂i − ψ̂i

)(
T̂i − ψ̂i

)⊤
+

Ri

π̂∗
i (γ̂)

ψ̂iψ̂
⊤
i

}]
D̂

−1

n (γ̂) (3.14)

with T̂i = T̂i(β̂PIPA, γ̂), ψ̂i = ψ̂i(β̂PIPA, γ̂) being estimates of Ti, ψi based on β̂PIPA. Since

Pr(Ri = 1|ui, Zi) = Pr(Ri = 1|Qi) = πi = π∗
i (γ) = Pr(Ri = 1|ui), the additional condition

for Lemma 3.2(c) implies that (Zi ⊥ Ri)|ui. Then T 0
i = T 1

i = EZi|ui
(Ti), ψ0

i (γ) = ψ1
i (γ) =

EZi|ui
{ψi(γ)}.

Although the relationship between ΣA and ΣPA is generally not clear even under the conditions

of Theorem 3.2, numerically the SE of β̂A is competitive (see Section 3.6) and β̂A does not have

the potential danger of having exceedingly high inverse-probability weights. The theorems also

demonstrate the asymptotic normality of the above estimators, which helps us to make inferences

with the estimators.

Corollary 3.1. Under the same conditions as in Theorem 3.2 and further assumingE(Zi|ui) = Zi,

we have

(a) β̂A and β̂PIPA are asymptotically equivalent and are both more efficient than β̂PIP ;

(b) The estimators β̂A and β̂PIPA based on a single-index model are as efficient as those based

on a standard multivariate kernel smoother.

It is intuitive to see that these estimators are asymptotically more efficient than β̂PIP because

they incorporate the incomplete cases. However, when the conditions are satisfied, it is surprising

to see that the estimators based on the SIM can keep the efficiency of the standard kernel smoothers

(such as (3.2), (3.4) proposed by Wang & Wang (2001)) with a lower dimension of information.

Since IPW is asymptotically equivalent to AIPW and MS estimators with both selection probabil-

ities and augmentation estimated by a standard kernel smoother (Wang & Wang (2001)), the proof

of the corollary also shows that IPW using a standard kernel smoother is more efficient than β̂PIP ,

which was not discussed by Wang et al. (1997).
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We define ΣP as the asymptotic covariance matrix of β̂PIP and Σ̃ for β̂A, β̂PIPA based on

a standard kernel smoother. For two positive semi-definite covariance matrices A and B, we

define A ≽ B if A − B is positive semi-definite. From the proof in Section 3.5.5, we see that

ΣP ≽ Σ̃ = ΣA = ΣPA under the conditions in Corollary 3.1.

The performance of the estimator β̂A depends on the choice of the bandwidth h used in the

kernel function Kh(·). In the regularity conditions, we require nh2 → ∞ and nh2r → 0, as

n → ∞. Therefore, the classical optimal rate of the bandwidth O(n−1/5) does not work in our

situation, as indicated in Sepanski et al. (1994). A reasonable choice is h = Cn−1/3, where C is a

constant. A plug-in method can be applied to estimate C. For simplicity, we can use C = σ̂u as

suggested by Wang et al. (1997) and Zhou et al. (2008), where σ̂u is the sample standard deviation

of the single index ui. We use this formula to choose the bandwidth in our following numerical

studies.

3.5 Proofs of the Main Theorems

3.5.1 Proof of Lemma 3.1

Proof. The idea in the proof is similar to that in the proof of Lemma 1 in Wang & Wang (2001).

Recall that ui = Q⊤
i γ = yi−β⊤

ZZi is the single index and that n1 is the number of complete cases.

Let

f̂U |R=1(u) =
1

n1h

n∑
k=1

RkKh(u− uk), En(u) = f̂U |R=1(u)− fU |R=1(u),

Vni = f̂U |R=1(ui), Wni =
1

n1h

n∑
k=1

RkTi,kKh(ui − uk).

Under the regularity conditions, we have E{En(u)} = O(hr) and var{En(u)} = O{(nh)−1} by

the Taylor expansions. Then by the Chebyshev inequality, En(u) − E{En(u)} = Op{(nh)−1/2},

which implies En(u) = Op{hr +(nh)−1/2}, and thus En(ui) = Op{hr +(nh)−1/2}. Similarly, we

have Wni − ψiVni = Op{hr + (nh)−1/2}.
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Define δn = h2r + (nh)−1. Under the SIM condition,

ψ̂i − ψi =
Wni − ψiVni
fU |R=1(ui)

− (Wni − ψiVni)En(ui)

VnifU |R=1(ui)
=
Wni − ψiVni
fU |R=1(ui)

+Op(δn). (3.15)

Let Q∗
i = RiQi, X∗

i = RiXi for i = 1, ..., n as the values of the complete cases. Then

E

{
Wni − ψiVni
fU |R=1(ui)

∣∣∣∣Ri = 0, all (R,Q∗, X∗)

}
=

1

n1

n∑
k=1

Rk

∫
(Ti,k − ψi)Kh(ui − uk)

hfU |R=1(ui)
fQ|R=0(Qi)dQi

=
1

n1

n∑
k=1

Rk

∫∫
(Ti,k − ψi)Kh(ui − uk)

hfU |R=1(ui)
fU,Z|R=0(ui, Zi)dZidui

=
1

n1

n∑
k=1

Rk

∫ {∫
(Ti,k − ψi)Kh(ui − uk)

hfU |R=1(ui)
fZ|U,R=0(Zi)dZi

}
fU |R=0(ui)dui

=
1

n1

n∑
k=1

Rk

∫
(T 0

i,k − ψ0
i )Kh(ui − uk)

hfU |R=1(ui)
fU |R=0(ui)dui

=
1

n1

n∑
k=1

Rk(T
0
k − ψ0

k)b(uk) +Op(h
r),

where T 0
i,k = EZi|ui,Ri=0(Ti,k) =

∫
Ti,kf(Zi|ui, Ri = 0)dZi, b(u) is defined in regularity condition

(v). The last step is because of the concentration of ui on uk. Using the same idea and {· · ·} to

denote a repeat of the preceding term, we also have

var

{
Wni − ψiVni
fU |R=1(ui)

∣∣∣∣Ri = 0, all (R,Q∗, X∗)

}
=

1

n2
1

n∑
k=1

Rk

[∫ {
(Ti,k − ψi)Kh(ui − uk)

hfU |R=1(ui)

}
{· · ·}⊤ fQ|R=0(Qi)dQi

−

{
n∑

k=1

Rk

∫
(Ti,k − ψi)Kh(ui − uk)

hfU |R=1(ui)
fQ|R=0(Qi)dQi

}
{· · ·}⊤

]
+Op

(
1

nh

)
= Op

(
1

nh

)
.
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Let

Sn = n−1/2

n∑
i=1

(1−Ri)

{
Wni − ψiVni
fU |R=1(ui)

− 1

n1

n∑
k=1

Rk(T
0
k − ψ0

k)b(uk)

}
.

Then the summations withRi = 0 in Sn are i.i.d. random variables conditioning on all (R,Q∗, X∗).

Thus we have

var{Sn|all (R,Q∗, X∗)} =
n− n1

n
var

{
Wn1 − ψ1Vn1
fU |R=1(u1)

∣∣∣∣ all (R,Q∗, X∗)

}
= Op

(
h2r +

1

nh

)
.

Then E(Sn) = O(hr) and var(Sn) = O(h2r + (nh)−1) imply Sn = Op(ηn). Back to (3.15), we

have

n−1/2

n∑
i=1

(1−Ri)(ψ̂i − ψi) = n−1/2

n∑
i=1

{
(1−Ri)

1

n1

n∑
k=1

Rk(T
0
k − ψ0

k)b(uk)

}
+Op(ηn)

= n−1/2

n∑
k=1

Rk(T
0
k − ψ0

k)a(uk) +Op(ηn).
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3.5.2 Proof of Lemma 3.2

Proof. (a). The proof is analogous to that of Lemma 3.1. The main difference is that this is the

summation of the complete cases. Thus we need to condition on Ri = 1. Then

E

{
Wni − ψiVni
fU |R=1(ui)

∣∣∣∣Ri = 1, all (R,Q∗, X∗)

}
=

1

n1

n∑
k=1

Rk

∫
(Ti,k − ψi)Kh(ui − uk)

hfU |R=1(ui)
fQ|R=1(Qi)dQi

=
1

n1

n∑
k=1

Rk

∫∫
(Ti,k − ψi)Kh(ui − uk)

hfU |R=1(ui)
fU,Z|R=1(ui, Zi)dZidui

=
1

n1

n∑
k=1

Rk

∫ {∫
(Ti,k − ψi)Kh(ui − uk)

hfU |R=1(ui)
fZ|U,R=1(Zi)dZi

}
fU |R=1(ui)dui

=
1

n1

n∑
k=1

Rk

∫
(T 1

i,k − ψ1
i )Kh(ui − uk)

hfU |R=1(ui)
fU |R=1(ui)dui

=
1

n1

n∑
k=1

Rk(T
1
k − ψ1

k) +Op(h
r),

where T 1
i,k = EZi|ui,Ri=1(Ti,k) =

∫
Ti,kf(Zi|ui, Ri = 1)dZi. The rest of the proof follows in the

same manner as in the proof of Lemma 3.1.

(b). Similarly to the proof of (a), we have

n−1/2

n∑
i=1

Ri

π∗
i (γ)

{ψ̂i(γ)− ψi(γ)} = n−1/2

n∑
i=1

Ri

π∗
i (γ)

{T 1
i − ψ1

i (γ)}+Op(ηn).

According to the Hölder inequality for the sum of the product terms in the second term below, we

have

n−1/2

n∑
i=1

Ri

π̂∗
i (γ)

{ψ̂i(γ)− ψi(γ)}

= n−1/2

n∑
i=1

Ri

π∗
i (γ)

{ψ̂i(γ)− ψi(γ)}+ n−1/2

n∑
i=1

Ri

π̂∗
i (γ)π

∗
i (γ)

{π∗
i (γ)− π̂∗

i (γ)}{ψ̂i(γ)− ψi(γ)}

= n−1/2

n∑
i=1

Ri

π∗
i (γ)

{T 1
i − ψ1

i (γ)}+Op(ηn).
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(c). The proof can be obtained analogously as in (b).

3.5.3 Proof of Theorem 3.1

Proof. Based on the conclusion of Lemma 3.1,

∆3(β, ψ̂(γ)) = n−1/2

n∑
i=1

RiTi + (1−Ri)ψi(γ) + (1−Ri){ψ̂i(γ)− ψi(γ)}

= n−1/2

n∑
i=1

RiTi + (1−Ri)ψi(γ) +Ri{T 0
i − ψ0

i (γ)}a(Q⊤
i γ) +Op(ηn)

= n−1/2

n∑
i=1

Ui +Op(ηn).

Since ∆3(β, ψ̂(γ)) is asymptotically equivalent to a sum of i.i.d. random variables, β̂A is asymp-

totically normally distributed and has the asymptotic covariance ΣA = D−1MD−1 with

M = cov

(
n−1/2

n∑
i=1

Ui

)
= cov(U1)

= cov {R1T1 + (1−R1)ψi}+ cov
[
Ri{T 0

i − ψ0
i (γ)}a(Q⊤

i γ)
]

+ 2cov
(
R1T1 + (1−R1)ψi, Ri{T 0

i − ψ0
i (γ)}a(Q⊤

i γ)
)

= A+B + 2C.

3.5.4 Proof of Theorem 3.2

Proof. We first consider the first part, ∆1(β, π(α̂)), of its estimating equation (3.11). By assump-

tion, a correctly specified parametric model for the selection probabilities with parameter α is given

by

πi = πi(α) = E(Ri|Qi) = π(α|Qi).
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The log-likelihood is

l(α) =
n∑

i=1

Rilog{πi(α)}+ (1−Ri)log{1− πi(α)}.

The corresponding estimating equation for MLE α̂ is given by

n−1/2

n∑
i=1

π′
i(α)

πi(α){1− πi(α)}
{Ri − πi(α)} = 0.

Then we have

n1/2(α̂− α) =

[
E

{
π′
1(α)π

′
1(α)

⊤

π1(α){1− π1(α)}

}]−1
{
n−1/2

n∑
i=1

π′
i(α)

πi(α){1− πi(α)}
{Ri − πi(α)}

}

+Op(n
−1/2).

Moreover,

∆1(β, π(α̂)) = n−1/2

n∑
i=1

Ri

πi(α̂)
Ti

= n−1/2

n∑
i=1

Ri

πi(α)
Ti − n−1/2

n∑
i=1

Ri

π2
i (α)

Tiπ
′
i(α)

⊤(α̂− α) +Op(n
−1/2)

= n−1/2

n∑
i=1

Ri

πi(α)
Ti − E

{
1

π1(α)
ψ1π

′
1(α)

⊤
}
n1/2(α̂− α) +Op(n

−1/2)

= n−1/2

n∑
i=1

Ri

πi
Ti − E

{
1

π1(α)
ψ1π

′
1(α)

⊤
}[

E

{
π′
1(α)π

′
1(α)

⊤

π1(α){1− π1(α)}

}]−1

{
n−1/2

n∑
i=1

π′
i(α)

πi(α){1− πi(α)}
{Ri − πi(α)}

}
+Op(n

−1/2)

= ∆1(β, π)− F (α)C−1(α)Pn(α) +Op(n
−1/2),

where F (α) = E
{

1
π1(α)

ψ1π
′
1(α)

⊤
}

, Pn(α) = n−1/2
n∑

i=1

π′
i(α)

πi(α){1−πi(α)}{Ri −πi(α)}, C(α) =

E
{

π′
1(α)π

′
1(α)

⊤

π1(α){1−π1(α)}

}
.

We now consider the second part of the estimating equation. By Lemmas 3.1 and 3.2(a), we
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obtain that

n−1/2

n∑
i=1

{ψ̂i(γ)− ψi(γ)} = n−1/2

n∑
i=1

Ri{ψ̂i(γ)− ψi(γ)}+ n−1/2

n∑
i=1

(1−Ri){ψ̂i(γ)− ψi(γ)}

= n−1/2

n∑
i=1

Ri{T 1
i − ψ1

i (γ)}+ n−1/2

n∑
i=1

Ri{T 0
i − ψ0

i (γ)}a(Q⊤
i γ)

+Op(ηn).

Recall that the additional condition for Lemma 3.2(c) requires πi = π∗
i (γ). This implies that T 0

i =

T 1
i = EZi|ui

(Ti), ψ0
i (γ) = ψ1

i (γ) = EZi|ui
{ψi(γ)}. Let T ∗

i = EZi|ui
(Ti), ψ∗

i (γ) = EZi|ui
{ψi(γ)}.

Then

n−1/2

n∑
i=1

{ψ̂i(γ)− ψi(γ)} = n−1/2

n∑
i=1

Ri

πi
{T ∗

i − ψ∗
i (γ)}+Op(ηn) (3.16)

Equation (3.16) and Lemma 3.2(c) imply that

n−1/2

n∑
i=1

{
1− Ri

πi(α̂)

}
{ψ̂i(γ)− ψi(γ)} = Op(ηn).

Then

n−1/2

n∑
i=1

{
1− Ri

πi(α̂)

}
ψ̂i(γ) = n−1/2

n∑
i=1

{
1− Ri

πi(α̂)

}
ψi(γ) +Op(ηn).

As in the proof for the first part ∆1(β, π(α̂)), we can show that

n−1/2

n∑
i=1

Ri

πi(α̂)
ψi(γ) = n−1/2

n∑
i=1

Ri

πi
ψi(γ)− F (α)C−1(α)Pn(α) +Op(n

−1/2).
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Finally we have

∆2(β, π(α̂), ψ̂(γ)) = n−1/2

n∑
i=1

Ri

πi(α̂)
Ti +

{
1− Ri

πi(α̂)

}
ψ̂i(γ)

= n−1/2

n∑
i=1

Ri

πi
Ti − F (α)C−1(α)Pn(α) + n−1/2

n∑
i=1

ψi(γ)

− n−1/2

n∑
i=1

Ri

πi
ψi(γ) + F (α)C−1(α)Pn(α) +Op(ηn)

= n−1/2

n∑
i=1

Ri

πi
Ti + n−1/2

n∑
i=1

(
1− Ri

πi

)
ψi(γ) +Op(ηn)

= n−1/2

n∑
i=1

Ri

π∗
i (γ)

Ti + n−1/2

n∑
i=1

{
1− Ri

π∗
i (γ)

}
ψi(γ) +Op(ηn)

= ∆2(β, π
∗(γ), ψ) +Op(ηn).

In summary, we have shown that under certain conditions ∆2(β, π(α̂), ψ̂(γ)) is asymptotically

equivalent to ∆2(β, π
∗(γ), ψ), which is a sum of i.i.d. terms. Hence, β̂PIPA is asymptotically

equivalent to the solution of ∆2(β, π
∗(γ), ψ) = 0, having asymptotic normality with asymptotic

covariance

ΣPA = D−1(S − S∗ + V )D−1.

3.5.5 Proof of Corollary 3.1

Proof. By the fact that

∆1(β, π(α̂)) = ∆1(β, π)− F (α)C−1(α)Pn(α) +Op(n
−1/2),

where F (α) and C(α) are given in the proof of Theorem 3.1, and by (A.1) in Wang et al. (1997),

with an extension to a general parametric model, we have the asymptotic covariance for β̂PIP as

ΣP = D−1{S̃ − F (α)C−1(α)F (α)⊤}D−1,
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where S̃ = E(T1T
⊤
1 /π1). By Wang & Wang (2001),

Σ̃ = D−1(S̃ − S̃
∗
+ V )D−1

is the asymptotic covariance matrix for β̂ when ψ̂ is based on a standard kernel smoother, where

S̃
∗
= E(ψ1ψ

⊤
1 /π1).

First we show that ΣP ≽ Σ̃. By the construction of the covariances, we only need to show that

S̃
∗ − V ≽ F (α)C−1(α)F (α)⊤. Define ξ = (

√
1−π1

π1
ψ1,

π′
1(α)√

(1−π1)π1

)⊤. Then we have

E(ξξ⊤) =

 E
(

1−π1

π1
ψ1ψ

⊤
1

)
E
{

1
π1
ψ1π

′
1(α)

⊤
}

E
{

1
π1
π′
1(α)ψ

⊤
1

}
E
{

π′
1(α)π

′
1(α)

⊤

(1−π1)π1

}
 =

 S̃
∗ − V F (α)

F (α)⊤ C(α)

 ≽ 0.

By the Schur complement condition of the matrix above, we have

(S̃
∗ − V )− F (α)C−1(α)F (α)⊤ ≽ 0.

Therefore, S̃
∗ − V ≽ F (α)C−1(α)F (α)⊤, which implies that ΣP ≽ Σ̃.

Next, we show that Σ̃ = ΣA = ΣPA and thus the asymptotic equivalence between β̂A and

β̂PIPA. Based on the results of Theorem 3.1, we can rewrite ∆3(β, ψ̂(γ)) as

∆3(β, ψ̂(γ)) = n−1/2

n∑
i=1

Ui +Op(ηn)

= n−1/2

n∑
i=1

[
Ri

π∗
i (γ)

Ti +

{
1− Ri

π∗
i (γ)

}
ψi +Ria(Q

⊤
i γ)

{
(T 0

i − ψ0
i )− (Ti − ψi)

}]
+Op(ηn).

The conditionE(Zi|ui) = Zi implies that T 0
i = T 1

i = Ti andψ0
i (γ) = ψ1

i (γ) = ψi(γ). by Theorem

3.2, both ∆2(β, π(α̂), ψ̂(γ)) and ∆3(β, ψ̂(γ)) are asymptotically equivalent to ∆2(β, π
∗(γ), ψ) and

thus have the same asymptotic covariance matrix as

ΣA = ΣPA = D−1(S − S∗ + V )D−1.
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Recall the condition of Lemma 3.2(c) that πi = π∗
i (γ). Then S = S̃, S∗ = S̃

∗
. Thus we finally

have

ΣP ≽ Σ̃ = ΣA = ΣPA.

3.6 Simulations

In this section, we investigate the performance of the proposed estimator β̂A compared to other

estimators, in terms of bias and standard error. We also examine the covariance estimation using the

sandwich-formula (3.13), by comparing the asymptotic standard error with the empirical standard

error. The empirical standard error is obtained from 1000 estimates through independent Monte

Carlo simulations under the same data-generating conditions. The asymptotic normality of the

estimators is examined by calculating the 95% coverage probabilities. We also use this numerical

study as an example to illustrate the phenomenon of highly variable inverse-probabilities, as well

as the robustness of our estimator under non-normal distributions.

There are two main scenarios in our simulations. For both of them, we consider n = 250 and

500. In the first scenario, we have (yi, Xi, Zi) generated from a multivariate normal distribution

with Xi ∼ N(0, 1), Zi ∼ N3(0, I3), εi ∼ N(0, 1), i = 1, 2, ..., n. Thus we have p = 4. The true

regression coefficients β = (0, 0.5, 1,−1,−0.5)⊤, and yi = Wiβ+εi withWi = (1, Xi, Z
⊤
i )

⊤. The

selection probabilities for observingXi are πi = {1+exp(−α0−α1yi−α2Zi1−α3Zi2−α4Zi3)}−1,

which satisfy MAR onX . In this setting, the single-index model on the augmentation is easily seen

to be valid. We have three different choices for the values of α. On average, there are about 20%,

40% and 60% of the cases that have X missing. We choose to use a second-order Gaussian kernel

function (r = 2). The bandwidth selection has been discussed in the previous section. In practice,

since X2
i is more variable than Xi, we use h = 0.4σ̂un

−1/3 when estimating E(X2
i |Qi). The

coefficient parameters are estimated through the estimating equations (3.12) by iterations in R.

We use a logistic regression model to model the missing process parametrically for β̂PIP and

β̂PIPA. In this setting, this model is correctly specified so that theoretically they are unbiased esti-
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mators. However, the (estimated) selection probabilities can be positive but near zero, which may

lead to numerically biased estimates as we indicated earlier. Our empirical experience suggests

that, since we only use the information in incomplete cases when estimating Ê(Zi|ui, Ri = 0),

it would be helpful to include a correction factor matrix in the sandwich-formula (3.13) for small

to moderate sample sizes, such as those in our simulation studies, especially when the percent-

age of missingness is high and the data is believed to be skewed. For example, we may replace

the estimated asymptotic covariance by Σ̂
∗
A = F c · Σ̂A, where F c = diag{a, ..., a, b, a, ..., a}−1,

a = 1− 0.3× miss%, b = (1− 0.7× miss%) · min(exp{(n− 500)/5000}, 1), and miss% means

the percentage of missingness of X in the data set. The position of b matches the position of the

coefficient of the missing covariate. This is what we used for β̂A in our numerical results. For

simulation purposes, we also show the results of the full data β̂F as a benchmark for comparison.

The results for the first scenario are displayed in Tables 3.1–3.3. For each estimator, the first

line displays the bias, the second line is the empirical standard error/averaged asymptotic stan-

dard error by formula over 1000 replications, and the third line is the 95% coverage probability.

Since the conditions for Theorem 3.2 are not satisfied in the simulation studies, we do not have a

closed form for Σ̂PA. Thus we put an “∗” in the places of averaged asymptotic SE of β̂PIPA and

use the 1% trimmed empirical SE to calculate the 95% coverage probabilities. The reason to use

the trimmed SE is that we have some extremely “bad" results caused by the near-zero selection

probabilities and these few extreme values make the empirical SE too large compared to other esti-

mators. As expected, the CC analysis produces biased estimates in this scenario. We also observe

that β̂PIP always has significant bias for each parameter, and β̂PIPA has bias at least for β1, the

coefficient of X , even with n = 500. Moreover, the above two estimators have much larger stan-

dard errors than β̂A. Given the multivariate normal data and correctly specified logistic model for

the selection probabilities in Tables 3.1–3.3, β̂PIP and β̂PIPA should be consistent. The deviation

from the expectation arises from the estimated positive but near-zero selection probabilities. These

inverse-probability weights make β̂PIP and β̂PIPA unstable and skewed distributed, resulting in

large standard errors and biases. The near-zero selection probabilities also have influence on the
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sandwich-formula of the asymptotic covariance, making the averaged asymptotic standard error

very different from the empirical standard error and resulting in low coverages. On the other hand,

our proposed estimator β̂A performs well on bias and standard error. Its asymptotic standard error

is also close to the empirical standard error. The 95% coverage probabilities of β̂A are reasonable.

In the second scenario, we use non-normal distributions to generate data. Specifically, we

generate Xi from a standardized gamma distribution (Gamma(5, 1) − 5)/
√
5, Zi ∼ N3(0, I3)

and εi from a standardized t distribution with df = 5 as t5/
√

5/3. We keep the same settings

for the parameters. The results for the second scenario are displayed in Tables 3.4–3.6. In this

setting, the parametric model for selection probabilities is still valid, but the single-index model

on the augmentation is not. However, we get conclusions similar to those from the first scenario.

Estimators β̂PIP and β̂PIPA still have large biases and standard errors. Our proposed estimator has

a slightly low coverage for β1, but is much better compared to other estimators in terms of bias,

standard errors and coverage probabilities.

These simulation results illustrate our point on the numerical issues in β̂PIP and β̂PIPA that are

mainly caused by estimated positive but near-zero selection probabilities. Our proposed estimator

β̂A has its advantage of not only the simplicity but also that it does not need to make parametric

model assumption on the selection probabilities or the conditional covariate distribution p(X|y, Z).

It is not sensitive to the near-zero selection probabilities and gives pretty robust estimates even

when the single-index model is misspecified.

Although both scenarios have a continuous missing covariate X , our method can also be ap-

plied to the situations with a categorical missing covariate. The parallel theory should still be valid

as long as the single-index model E(Xi|Qi) = g(Q⊤
i γ) is still true (e.g., GLMs). When X is a

binary variable, the estimation procedure can even be simpler because E(X2
i |Qi) = E(Xi|Qi).

3.7 Illustrative Example of Data Analysis

In this section we apply our proposed method to the data collected from the Canada 2010/2011

Youth Smoking Survey (YSS). The 2010/2011 Youth Smoking Survey (YSS) is a Health Canada

sponsored pan-Canadian, classroom-based survey of a representative sample of students in grades
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Table 3.1: Simulation results of 1000 replications for the normal data, Xi ∼ N(0, 1), Zi ∼
N3(0, I3), εi ∼ N(0, 1), with α = (2.2,−0.9,−0.7, 0, 0), about 20% missing at random on av-
erage. For each entry, the first line displays the bias, the second line is the empirical standard
error/averaged asymptotic standard error, and the third line is the 95% coverage probability. An
“∗” indicates the asymptotic standard error formula unavailable.

β̂0 − β0 β̂1 − β1 β̂2 − β2 β̂3 − β3 β̂4 − β4

n = 250

β̂F
-0.0024 -0.0014 -0.0001 0.0006 0.0011

0.0020/0.0020 0.0021/0.0020 0.0020/0.0020 0.0020/0.0020 0.0020/0.0020
0.943 0.936 0.953 0.944 0.943

β̂CC
-0.1527 -0.0307 -0.1051 0.0575 0.0309

0.0023/0.0022 0.0023/0.0022 0.0024/0.0024 0.0023/0.0023 0.0022/0.0022
0.436 0.917 0.712 0.870 0.924

β̂PIP
-0.0120 -0.0026 -0.0150 0.0072 0.0068

0.0026/0.0022 0.0029/0.0024 0.0033/0.0025 0.0029/0.0024 0.0028/0.0024
0.909 0.904 0.854 0.905 0.910

β̂PIPA
-0.0048 0.0100 0.0002 0.0074 0.0019
0.0021/∗ 0.0025/∗ 0.0022/∗ 0.0021/∗ 0.0021/∗

0.926 0.928 0.927 0.931 0.934

β̂A
-0.0009 -0.0059 0.0010 -0.0002 0.0004

0.0021/0.0021 0.0023/0.0024 0.0021/0.0020 0.0021/0.0020 0.0021/0.0020
0.949 0.956 0.934 0.944 0.940

n = 500

β̂F
0.0004 -0.0014 0.0004 -0.0016 0.0024

0.0015/0.0014 0.0015/0.0014 0.0013/0.0014 0.0014/0.0014 0.0015/0.0014
0.941 0.938 0.960 0.948 0.941

β̂CC
-0.1512 -0.0299 -0.1045 0.0573 0.0317

0.0017/0.0016 0.0016/0.0015 0.0016/0.0017 0.0016/0.0016 0.0016/0.0016
0.148 0.893 0.501 0.779 0.891

β̂PIP
-0.0053 -0.0031 -0.0084 0.0036 0.0044

0.0019/0.0016 0.0021/0.0018 0.0024/0.0020 0.0022/0.0019 0.0021/0.0018
0.903 0.911 0.891 0.904 0.919

β̂PIPA
0.0028 0.0294 0.0090 -0.0154 0.0007

0.0015/∗ 0.0018/∗ 0.0016/∗ 0.0016/∗ 0.0015/∗
0.927 0.934 0.927 0.927 0.928

β̂A
0.0009 -0.0037 0.0005 -0.0018 0.0018

0.0015/0.0015 0.0017/0.0017 0.0014/0.0014 0.0015/0.0014 0.0015/0.0014
0.945 0.953 0.946 0.941 0.940
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Table 3.2: Simulation results of 1000 replications for the normal data, Xi ∼ N(0, 1), Zi ∼
N3(0, I3), εi ∼ N(0, 1), with α = (0.5,−1,−0.5, 0, 0), about 40% missing at random on av-
erage. For each entry, the first line displays the bias, the second line is the empirical standard
error/averaged asymptotic standard error, and the third line is the 95% coverage probability. An
“∗” indicates the asymptotic standard error formula unavailable.

β̂0 − β0 β̂1 − β1 β̂2 − β2 β̂3 − β3 β̂4 − β4

n = 250

β̂F
-0.0024 -0.0014 -0.0001 0.0006 0.0011

0.0020/0.0020 0.0021/0.0020 0.0020/0.0020 0.0020/0.0020 0.0020/0.0020
0.943 0.936 0.953 0.944 0.943

β̂CC
-0.3499 -0.0578 -0.1642 0.1086 0.0536

0.0028/0.0028 0.0025/0.0025 0.0029/0.0028 0.0027/0.0026 0.0026/0.0025
0.027 0.884 0.543 0.727 0.880

β̂PIP
-0.0462 -0.0166 -0.0432 0.0258 0.0151

0.0035/0.0028 0.0038/0.0030 0.0044/0.0032 0.0043/0.0031 0.0038/0.0030
0.814 0.869 0.793 0.822 0.861

β̂PIPA
-0.0037 0.0197 -0.0075 0.0127 0.0018
0.0026/∗ 0.0040/∗ 0.0028/∗ 0.0026/∗ 0.0025/∗

0.922 0.918 0.926 0.928 0.934

β̂A
-0.0002 -0.0127 0.0005 -0.0006 -0.0003

0.0022/0.0023 0.0028/0.0029 0.0021/0.0020 0.0021/0.0021 0.0021/0.0021
0.956 0.959 0.935 0.938 0.941

n = 500

β̂F
0.0004 -0.0014 0.0004 -0.0016 0.0024

0.0015/0.0014 0.0015/0.0014 0.0013/0.0014 0.0014/0.0014 0.0015/0.0014
0.941 0.938 0.960 0.948 0.941

β̂CC
-0.3458 -0.0548 -0.1631 0.1080 0.0558

0.0020/0.0020 0.0018/0.0018 0.0020/0.0020 0.0019/0.0019 0.0018/0.0018
0.000 0.824 0.257 0.554 0.831

β̂PIP
-0.0278 -0.0111 -0.0292 0.0203 0.0148

0.0027/0.0022 0.0029/0.0024 0.0035/0.0026 0.0033/0.0025 0.0029/0.0024
0.852 0.907 0.819 0.844 0.880

β̂PIPA
-0.0088 -0.0210 -0.0023 0.0216 0.0121
0.0018/∗ 0.0027/∗ 0.0019/∗ 0.0018/∗ 0.0018/∗

0.927 0.925 0.928 0.931 0.934

β̂A
0.0020 -0.0065 0.0005 -0.0024 0.0012

0.0016/0.0016 0.0020/0.0021 0.0015/0.0014 0.0015/0.0015 0.0015/0.0015
0.954 0.950 0.947 0.936 0.935
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Table 3.3: Simulation results of 1000 replications for the normal data, Xi ∼ N(0, 1), Zi ∼
N3(0, I3), εi ∼ N(0, 1), with α = (−0.5,−0.5,−0.5, 0, 0), about 60% missing at random on
average. For each entry, the first line displays the bias, the second line is the empirical standard
error/averaged asymptotic standard error, and the third line is the 95% coverage probability. An
“∗” indicates the asymptotic standard error formula unavailable.

β̂0 − β0 β̂1 − β1 β̂2 − β2 β̂3 − β3 β̂4 − β4

n = 250

β̂F
-0.0024 -0.0014 -0.0001 0.0006 0.0011

0.0020/0.0020 0.0021/0.0020 0.0020/0.0020 0.0020/0.0020 0.0020/0.0020
0.943 0.936 0.953 0.944 0.943

β̂CC
-0.2830 -0.0227 -0.0902 0.0447 0.0243

0.0036/0.0036 0.0032/0.0030 0.0035/0.0033 0.0032/0.0031 0.0033/0.0031
0.288 0.929 0.832 0.917 0.915

β̂PIP
-0.0269 -0.0037 -0.0174 0.0098 0.0085

0.0037/0.0030 0.0042/0.0035 0.0049/0.0036 0.0046/0.0036 0.0042/0.0035
0.861 0.872 0.827 0.862 0.897

β̂PIPA
-0.0063 0.0290 -0.0041 0.0021 < 0.0001
0.0026/∗ 0.0040/∗ 0.0028/∗ 0.0028/∗ 0.0026/∗

0.933 0.922 0.930 0.929 0.922

β̂A
-0.0023 -0.0083 0.0003 -0.0006 -0.0003

0.0023/0.0025 0.0032/0.0035 0.0021/0.0021 0.0022/0.0021 0.0022/0.0021
0.964 0.968 0.936 0.937 0.934

n = 500

β̂F
0.0004 -0.0014 0.0004 -0.0016 0.0024

0.0015/0.0014 0.0015/0.0014 0.0013/0.0014 0.0014/0.0014 0.0015/0.0014
0.941 0.938 0.960 0.948 0.941

β̂CC
-0.2805 -0.0226 -0.0907 0.0428 0.0261

0.0026/0.0025 0.0022/0.0022 0.0024/0.0024 0.0023/0.0022 0.0023/0.0022
0.062 0.923 0.774 0.888 0.915

β̂PIP
-0.0107 -0.0022 -0.0093 0.0033 0.0079

0.0026/0.0023 0.0030/0.0027 0.0036/0.0029 0.0033/0.0028 0.0031/0.0027
0.896 0.908 0.876 0.890 0.908

β̂PIPA
0.0005 0.0107 0.0001 -0.0040 0.0034

0.0019/∗ 0.0026/∗ 0.0020/∗ 0.0019/∗ 0.0018/∗
0.919 0.933 0.926 0.932 0.933

β̂A
0.0015 -0.0055 0.0004 -0.0022 0.0015

0.0017/0.0018 0.0022/0.0025 0.0015/0.0015 0.0015/0.0015 0.0016/0.0015
0.944 0.975 0.954 0.933 0.932

48



Table 3.4: Simulation results of 1000 replications for the normal data, Xi ∼ (Gamma(5, 1) −
5)/

√
5, Zi ∼ N3(0, I3), εi ∼ t5/

√
5/3, with α = (2.2,−0.9,−0.7, 0, 0), about 20% missing

at random on average. For each entry, the first line displays the bias, the second line is the em-
pirical standard error/averaged asymptotic standard error, and the third line is the 95% coverage
probability. An “∗” indicates the asymptotic standard error formula unavailable.

β̂0 − β0 β̂1 − β1 β̂2 − β2 β̂3 − β3 β̂4 − β4

n = 250

β̂F
-0.0012 0.0009 -0.0018 0.0005 0.0001

0.0020/0.0020 0.0021/0.0020 0.0020/0.0020 0.0020/0.0020 0.0020/0.0020
0.950 0.940 0.956 0.939 0.949

β̂CC
-0.1481 -0.0284 -0.0988 0.0570 0.0294

0.0022/0.0022 0.0023/0.0022 0.0024/0.0024 0.0023/0.0022 0.0022/0.0022
0.447 0.918 0.725 0.859 0.921

β̂PIP
-0.0160 -0.0065 -0.0209 0.0091 0.0075

0.0029/0.0022 0.0033/0.0024 0.0032/0.0025 0.0034/0.0024 0.0029/0.0024
0.883 0.884 0.877 0.879 0.906

β̂PIPA
-0.0019 0.0029 0.0002 -0.0045 -0.0003
0.0021/∗ 0.0029/∗ 0.0023/∗ 0.0021/∗ 0.0021/∗

0.925 0.930 0.929 0.923 0.929

β̂A
-0.0005 -0.0012 0.0001 -0.0008 0.0005

0.0021/0.0021 0.0025/0.0024 0.0021/0.0020 0.0021/0.0020 0.0020/0.0020
0.961 0.945 0.941 0.937 0.945

n = 500

β̂F
-0.0009 -0.0015 -0.0006 -0.0012 -0.0006

0.0014/0.0014 0.0014/0.0014 0.0013/0.0014 0.0015/0.0014 0.0014/0.0014
0.957 0.948 0.956 0.943 0.954

β̂CC
-0.1479 -0.0317 -0.0980 0.0544 0.0279

0.0016/0.0016 0.0016/0.0016 0.0016/0.0017 0.0016/0.0016 0.0015/0.0015
0.146 0.886 0.558 0.807 0.908

β̂PIP
-0.0103 -0.0089 -0.0138 0.0063 0.0041

0.0022/0.0017 0.0023/0.0019 0.0025/0.0020 0.0025/0.0019 0.0023/0.0018
0.895 0.902 0.885 0.914 0.918

β̂PIPA
-0.0033 0.0083 -0.0040 -0.0012 0.0007
0.0015/∗ 0.0021/∗ 0.0016/∗ 0.0015/∗ 0.0015/∗

0.930 0.934 0.932 0.923 0.926

β̂A
-0.0009 -0.0017 -0.0002 -0.0017 -0.0003

0.0015/0.0015 0.0018/0.0017 0.0014/0.0014 0.0015/0.0014 0.0014/0.0014
0.959 0.930 0.943 0.933 0.943
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Table 3.5: Simulation results of 1000 replications for the normal data, Xi ∼ (Gamma(5, 1) −
5)/

√
5, Zi ∼ N3(0, I3), εi ∼ t5/

√
5/3, with α = (0.5,−1,−0.5, 0, 0), about 40% missing at

random on average. For each entry, the first line displays the bias, the second line is the em-
pirical standard error/averaged asymptotic standard error, and the third line is the 95% coverage
probability. An “∗” indicates the asymptotic standard error formula unavailable.

β̂0 − β0 β̂1 − β1 β̂2 − β2 β̂3 − β3 β̂4 − β4

n = 250

β̂F
-0.0012 0.0009 -0.0018 0.0005 0.0001

0.0020/0.0020 0.0021/0.0020 0.0020/0.0020 0.0020/0.0020 0.0020/0.0020
0.950 0.940 0.956 0.939 0.949

β̂CC
-0.3292 -0.0527 -0.1561 0.1030 0.0542

0.0031/0.0029 0.0028/0.0027 0.0029/0.0029 0.0027/0.0027 0.0026/0.0025
0.048 0.899 0.594 0.755 0.877

β̂PIP
-0.0546 -0.0183 -0.0467 0.0282 0.0166

0.0037/0.0027 0.0040/0.0031 0.0041/0.0030 0.0040/0.0030 0.0038/0.0029
0.758 0.860 0.794 0.842 0.869

β̂PIPA
0.0002 0.0300 0.0035 -0.0077 -0.0020

0.0026/∗ 0.0044/∗ 0.0027/∗ 0.0026/∗ 0.0024/∗
0.931 0.918 0.937 0.930 0.933

β̂A
< 0.0001 -0.0012 0.0003 -0.0001 0.0002

0.0022/0.0023 0.0032/0.0030 0.0021/0.0020 0.0022/0.0021 0.0021/0.0021
0.947 0.925 0.942 0.932 0.936

n = 500

β̂F
-0.0009 -0.0015 -0.0006 -0.0012 -0.0006

0.0014/0.0014 0.0014/0.0014 0.0013/0.0014 0.0015/0.0014 0.0014/0.0014
0.957 0.948 0.956 0.943 0.954

β̂CC
-0.3306 -0.0570 -0.1562 0.1014 0.0526

0.0021/0.0021 0.0020/0.0019 0.0020/0.0020 0.0019/0.0019 0.0018/0.0018
0.000 0.838 0.288 0.592 0.837

β̂PIP
-0.0317 -0.0188 -0.0291 0.0189 0.0154

0.0037/0.0023 0.0034/0.0026 0.0040/0.0026 0.0033/0.0025 0.0034/0.0024
0.792 0.863 0.824 0.863 0.882

β̂PIPA
0.0004 0.0306 -0.0015 -0.0140 -0.0108

0.0019/∗ 0.0032/∗ 0.0019/∗ 0.0018/∗ 0.0018/∗
0.924 0.922 0.930 0.924 0.925

β̂A
-0.0008 -0.0033 -0.0001 -0.0017 -0.0005

0.0016/0.0016 0.0024/0.0021 0.0015/0.0014 0.0016/0.0015 0.0015/0.0015
0.949 0.921 0.942 0.921 0.942
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Table 3.6: Simulation results of 1000 replications for the normal data, Xi ∼ (Gamma(5, 1) −
5)/

√
5, Zi ∼ N3(0, I3), εi ∼ t5/

√
5/3, with α = (−0.5,−0.5,−0.5, 0, 0), about 60% missing

at random on average. For each entry, the first line displays the bias, the second line is the em-
pirical standard error/averaged asymptotic standard error, and the third line is the 95% coverage
probability. An “∗” indicates the asymptotic standard error formula unavailable.

β̂0 − β0 β̂1 − β1 β̂2 − β2 β̂3 − β3 β̂4 − β4

n = 250

β̂F
-0.0012 0.0009 -0.0018 0.0005 0.0001

0.0020/0.0020 0.0021/0.0020 0.0020/0.0020 0.0020/0.0020 0.0020/0.0020
0.950 0.940 0.956 0.939 0.949

β̂CC
-0.2777 -0.0279 -0.0964 0.0449 0.0266

0.0040/0.0037 0.0034/0.0033 0.0035/0.0034 0.0032/0.0032 0.0033/0.0031
0.329 0.924 0.842 0.918 0.916

β̂PIP
-0.0314 -0.0137 -0.0327 0.0068 0.0100

0.0038/0.0029 0.0043/0.0036 0.0047/0.0036 0.0046/0.0034 0.0043/0.0034
0.839 0.879 0.849 0.877 0.886

β̂PIPA
-0.0477 0.1346 -0.1189 0.0309 0.0571
0.0026/∗ 0.0042/∗ 0.0027/∗ 0.0025/∗ 0.0025/∗

0.931 0.924 0.924 0.925 0.923

β̂A
0.0013 -0.0029 -0.0005 -0.0005 0.0003

0.0023/0.0025 0.0035/0.0035 0.0022/0.0021 0.0022/0.0021 0.0022/0.0021
0.960 0.947 0.937 0.927 0.929

n = 500

β̂F
-0.0009 -0.0015 -0.0006 -0.0012 -0.0006

0.0014/0.0014 0.0014/0.0014 0.0013/0.0014 0.0015/0.0014 0.0014/0.0014
0.957 0.948 0.956 0.943 0.954

β̂CC
-0.2790 -0.0256 -0.0958 0.0447 0.0284

0.0027/0.0026 0.0023/0.0023 0.0024/0.0024 0.0022/0.0023 0.0024/0.0022
0.067 0.924 0.768 0.897 0.906

β̂PIP
-0.0168 -0.0104 -0.0196 0.0041 0.0101

0.0030/0.0023 0.0034/0.0028 0.0037/0.0029 0.0036/0.0028 0.0033/0.0027
0.877 0.902 0.868 0.908 0.893

β̂PIPA
0.0016 0.0118 0.0073 -0.0031 -0.0012

0.0018/∗ 0.0029/∗ 0.0019/∗ 0.0018/∗ 0.0019/∗
0.928 0.933 0.922 0.929 0.926

β̂A
-0.0002 < 0.0001 -0.0002 -0.0019 -0.0003

0.0016/0.0017 0.0025/0.0025 0.0015/0.0015 0.0016/0.0015 0.0016/0.0015
0.962 0.963 0.938 0.921 0.927
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6 through 12. The 2010/2011 YSS was implemented in schools between October 2010 and June

2011 by provincial level teams located in the 9 participating provinces in Canada. More details

can be found in 2010/2011 YOUTH SMOKING SURVEY MICRODATA USER GUIDE, or from

https://uwaterloo.ca/canadian-student-tobacco-alcohol-drugs-survey.

We focus on data collected from Asian students (Grade 6 through 8). The main interest is to

explore the correlation between the students’ self-esteem scores and smoking status, controlling

other covariates as sex, marks and BMI. The variables used are displayed below:

1. esteem: a 0 to 12 score measuring the student’s overall self-esteem;

2. sex: a binary variable indicating the student’s gender (0 for female and 1 for male);

3. marks: a categorical variable with five levels describing the student’s marks during the past

year: mostly A’s (1), mostly A’s and B’s (2), mostly B’s and C’s (3), mostly C’s (4) and

mostly below C’s (5);

4. smoke: originally a categorical variable with 3 levels: currently smokes, formerly smoked

and never smoked. In this data set of Asian students from Grade 6 to 8, we do not have

students in status of “formerly smoked”. Thus we can regard this variable as binary for

smoking (smoke = 1) or not (smoke = 0);

5. BMI: a continuous variable that measures the respondent’s body mass index.

We take a subset with size n = 493, which has complete observations on esteem, sex, marks

and smoke. In this data set, there are 121, 160 and 212 students in Grades 6 through 8, respectively.

There are 252 female students and 241 male students, and only 9 smokers and 484 non-smokers.

But 29.2% (144 out of 493) students have BMI missing. We consider a linear model on the

self-esteem score as

esteem = β0 + β1BMI + β2sex+ β3marks+ β4smoke+ ε.
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Table 3.7: 2010/2011 YSS data analysis focusing on Asian students (n = 493)

β̂0(intercept) β̂1(BMI) β̂2(sex) β̂3(marks) β̂4(smoke)

β̂CC 12.1476(0.6649) -0.0975(0.0291) -0.0177(0.2322) -0.6646(0.1747) -1.1455(0.9920)
p-value < 0.0001 0.0009 0.9392 0.0002 0.2488

β̂PIP 12.0189(0.7695) -0.0966(0.0314) 0.0388(0.2251) -0.5395(0.1858) -1.4591(1.1036)
p-value < 0.0001 0.0022 0.8633 0.0039 0.1867

β̂PIPA 12.4119(0.6205) -0.1092(0.0338) 0.0038(0.1976) -0.6034(0.1572) -3.0881(1.2228)
p-value < 0.0001 0.0133 0.9846 0.0001 0.0119

β̂A 12.2657(0.6332) -0.0991(0.0314) -0.0178(0.2046) -0.6241(0.1512) -3.2420(1.2059)
p-value < 0.0001 0.0017 0.9305 < 0.0001 0.0074

Assume that the missing mechanism is MAR and that the parametric model for selection probabil-

ities is

logit(π) = α0 + α1esteem+ α2sex+ α3marks+ α4smoke.

After fitting a logistic model, we find the p-values for α1, α2 and α3 as 0.0321, 0.0431 and 0.0159

respectively, so that esteem, sex and marks are significant at the significance level of 0.05.

Before estimating the regression coefficients β, we first look at the self-esteem scores of the

8 smokers: {0, 0, 0, 2, 7, 8, 9, 9, 12}. We find most of them are lower than the average self-esteem

score of the non-smokers of 9.24, and 4 of them have extremely low scores. The difference can

also be found in Figure 3.1 for the exploratory data analysis. This in some sense implies that

the smokers among the students have a lower self-esteem score compared to the non-smokers.

The results of the analysis can be found in Table 3.7. In the estimating procedure of β̂PIPA, we

find πi(α̂) and π̂i(γ̂) are very close. This indicates that the assumptions in Theorem 3.2 might be

reasonable in this situation. The values in brackets are the standard errors of the corresponding

estimators using the sandwich-formulas (3.13) and (3.14).

In Table 3.7 we observe that all methods conclude that BMI and marks are significant in

the linear model, while sex is insignificant. The significant effects show that higher body mass

index and worse marks lead to lower self-esteem scores. The main difference lies in the effect

of smoke. The complete-case analysis and inverse-probability method give insignificant results,
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Figure 3.1: Plots for showing the relationship between self-esteem score and other variables. Top
left: Side-by-side boxplot of Self-esteem score vs. Gender; Top right: Side-by-side boxplot of
Self-esteem score vs. Marks; Bottom left: Side-by-side boxplot of Self-esteem score vs. Smoking
Status; Bottom right: Scatterplot of Self-esteem score vs. BMI.

but the rest of the methods conclude significance. The difference is caused mainly by the smaller

absolute value of the point estimates of the first two methods, compared to β̂PIPA and β̂A. Since

the missing mechanism is not completely missing at random, the results of β̂CC are likely to be bi-

ased. Combined with the comparison of the self-esteem scores between smokers and non-smokers

mentioned before, we believe that the results of significance are more reliable. The performance

of β̂PIP might be explained by the misspecification of the model on selection probabilities. Based

on the analysis above, we conclude that Asian students in Grade 6 through 8 who smoke have a

significantly lower self-esteem score compared to the non-smokers, controlling other covariates,

BMI , sex and marks during the past year.
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3.8 Concluding Remarks

In this chapter we have proposed an unweighted mean-score-form estimator of regression coef-

ficients through GEE with a single-index model when some covariates are missing at random. This

is a semiparametric estimation approach since we only assume a single-index model on augmen-

tation without making any distribution assumptions. We do not even specify a parametric model

such as a logistic model for the missingness mechanism. We have also introduced the standard

doubly robust estimator β̂PIPA with the same single-index model on augmentation and paramet-

rically modeled selection probabilities. We have presented the asymptotic distribution for β̂PIPA

and β̂A in Theorems 3.1 and 3.2, along with the sandwich-formulas of the asymptotic covariances

and the choice of the bandwidth. We also have shown the asymptotic equivalence between the

two augmented estimators under certain conditions. However, one important advantage of our pro-

posed estimator over the (augmented) inverse-probability weighted estimators is that it does not

include selection probabilities in the point estimation procedure so that it does not need to model

πi’s and avoids the situation of having highly variable inverse-probability weights, as described in

Robins et al. (2007). In this sense, numerically our proposed estimator is not sensitive to positive

but near-zero selection probabilities, while the performance of the inverse-probability weighted

estimators are highly influenced by those near-zero πi’s. Furthermore, compared to using a stan-

dard multivariate kernel function, the SIM we use on augmentation not only avoids the curse of

dimensionality, but also keeps the efficiency of standard kernel smoothing in some particular situa-

tions. The R code used in our simulations and the example can be found on the following website:

https://github.com/zhuoersun/Missing-Data.

In this work, we only considered a single univariate covariate X in simulation studies and

the real data example. The results can be easily extended to the particular case of a multivariate

X when Ri = 0 means that all the covariates in Xi are missing at the same time. It would be

interesting but more challenging to consider more complex missingness patterns such as monotone

or non-monotone missingness in covariates. One can refer to Chen (2004) and Sinha et al. (2014)

for more information. It would be natural to extend the proposed methodology to generalized
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linear models. However, generalized linear models have a more complicated score function and do

not have the simple form of augmentation like (3.6). Further investigation will be required in this

important problem. Yet as another future research problem, it would also be interesting to apply

this idea to longitudinal data with some covariates partially missing.
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4. SEMIPARAMETRIC ESTIMATION IN REGRESSION WITH MISSING COVARIATES

FOR LONGITUDINAL DATA

4.1 Introduction

Longitudinal data analysis is very common in many fields of research studies, especially in

sociology, biomedical science, clinical trials and public health research. It is often of interest

to estimate the parameter β of a longitudinal regression model with time-varying responses and

covariates. However, it is quite possible that some of the covariates in the data are partially miss-

ing at some observation times. This can be caused by unavailability of covariate measurements,

study subjects’ refusal to answer the questions or to continue the participation, patients’ deaths and

many other reasons. An extensive literature discussed the situation of informative dropouts (Dig-

gle (2002)) under the missing at random (MAR) mechanism (Little & Rubin (2014)). When the

joint likelihood of the response and covariates is available through normal random effect model

or generalized linear mixed model (GLMM) with the data MAR, regular maximum likelihood

methods such as EM algorithm give consistent estimates (Horton & Laird (1999), Fuchs (1982),

Schluchter & Jackson (1989) and Ibrahim (1990)). Specifically, by modeling the dropout pro-

cess in addition, one can use selection models or pattern-mixture models based on two different

factorizations of the joint density of the responses, covariates and missingness indicators (Little

(1993), Little (1995)). These two models also work under the missing not at random (MNAR)

mechanism (Ibrahim & Molenberghs (2009)). Bayesian methods (Daniels & Hogan (2008)) and

multiple imputation (Schafer (1997), Rubin (2004)) can also be considered to handle the missing

data problem. However, all the above methods usually require likelihood assumptions and can be

sensitive to model misspecification.

For complete longitudinal data, Liang & Zeger (1986) proposed to perform the analysis based

on generalized estimating equations (GEE). With a working covariance structure, this semipara-

metric method gives consistent results once the marginal mean of the outcomes at each time is cor-
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rectly specified. But when we have incomplete data, GEE generally produces unbiased estimates

only under missing completely at random (MCAR) mechanism. Robins et al. (1994) first intro-

duced a class of inverse-probability weighted estimators (IPW) and augmented inverse-probability

weighted estimators (AIPW) for i.i.d. data based on GEE when data are MAR. The weights are

obtained from the parametric models for the selection probabilities. These models need to be

correctly specified to guarantee the consistency of the estimation for IPW. By choosing the aug-

mentation to be the conditional expectation of the score function in the first part of the estimating

equations, AIPW is doubly robust (DR). That is to say, AIPW is consistent when either the selec-

tion probability model or the missing covariate model conditional on the observed data is correctly

specified. Robins et al. (1995) extended the idea of IPW to longitudinal data with monotone miss-

ing response.

Recently, more research works have been done on DR estimators for incomplete longitudinal

data. Lipsitz et al. (1999) first introduced the DR estimator for cross-sectional studies with a miss-

ing covariate and properties similar to maximum likelihood. Other literature includes Van der Laan

& Robins (2003), Bang & Robins (2005) and Seaman & Copas (2009). But this literature mainly

solves the problem for monotone missing incomplete response. Dealing with non-monotone miss-

ing values is generally more difficult because the variety of patterns makes the factorization of

the likelihood very challenging. Chen et al. (2010) and Chen & Zhou (2011) discussed the DR

estimator for both response and covariates non-monotone missing at random. These works are im-

pressive for a more complicated situation, but many assumptions are needed for the identifiability

of the models. It is not easy to calculate the marginal selection probabilities even under the correct

parametric models and the augmentation may involve nontrivial integration.

The DR estimator can still be inconsistent if both of the selection probability model and the

missing covariate model are misspecified. Moreover, although Robins et al. (1994) restricted the

selection probabilities to be bounded away from 0, in practice you may still get some positive

but near-zero values for their estimates, which can make the inverse-probabilities weights highly

variable and the resulting estimators highly skewed distributed. This phenomenon is observed and
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discussed at least in i.i.d. data (Kang & Schafer (2007), Robins et al. (2007)) and also exists in

incomplete longitudinal data. Instead of modeling the missing process parametrically, Wang et al.

(1997) and Wang & Wang (2001) proposed nonparametric kernel smoother for the selection prob-

abilities and the augmentation. However, few works have been done for estimating the selection

probabilities and augmentation nonparametrically in incomplete longitudinal data. In practice, us-

ing multivariate kernel functions also suffers from “curse of dimensionality”. In this chapter, we

propose a new semiparametric estimator for incomplete longitudinal data based on augmented GEE

without inverse-probability weights when a covariate is non-monotone MAR. The augmentation

is estimated through kernel smoothing based on a single-index model (SIM). Heteroscedasticity is

allowed and we use a working independence (WI) correlation structure to simplify the estimation

procedure. This approach is appealing because it does not require the specification of the joint dis-

tribution of the data or the parametric models for selection probabilities and the missing covariate.

It is also simple because the point estimation procedure does not include any estimation for the

selection probabilities, and thus avoids the situation of unstable inverse-probability weights.

The rest of the chapter is organized as follows. In Section 4.2 we introduce the necessary

notations and briefly review IPW and AIPW. We then describe our new estimators in Section 4.3. In

Section 4.4 we present an asymptotic theory of the proposed estimators and show their asymptotic

consistency and normality along with sandwich formulas for asymptotic covariances. In Section

4.5 we provide the results of our simulation studies. In Section 4.6 we apply our methods to a real

data example. Concluding remarks are made in Section 4.7.

4.2 Notations and Models

Consider the following longitudinal linear model:

Yij = W⊤
ijβ + εij = β0 +Xijβ1 +Z⊤

ijβ2 + εij (4.1)

for i = 1, ..., n and j = 1, ...,mi, where W ij = (1, Xij,Z
⊤
ij)

⊤, β is the vector of the regression

coefficients, Yij is a continuous response and (Xij,Z
⊤
ij)

⊤ are covariates of subject i observed at
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time tij with corresponding random error εij . Here we consider the sparse longitudinal case, which

means that mi is bounded when n → ∞. In vector and matrix forms, let Yi = (Yi1, ..., Yimi
)⊤

denote the mi× 1 completely observed response vector for subject i, Xi = (Xi1, ..., Ximi
)⊤ be the

covariate vector that may be partially missing at some time point tij and Zi = (Zi1, ...,Zimi
)⊤ be

the covariate matrix that is always observed. Then the whole covariates matrix can be expressed

as Wi = (W i1, ...,W imi
)⊤. We assume that different subjects are mutually independent, but

generally there is within-subject correlation for observations measured at different time points.

Let Vi = Cov(Yi|Xi,Zi) = Cov(εi) with εi = (εi1, ..., εimi
)⊤. Using the variance-correlation

decomposition, Vi can be expressed as Vi = F
1/2
i Ci(ρ)F

1/2
i , where Fi = diag(σ2

ij) with σ2
ij =

var(εij), Ci(ρ) is the correlation matrix of εi with parameters ρ. When heteroscedasticity is

allowed, we assume σ2
ij = σ2(tij), where σ2(·) is a smooth function.

To model the missing process of Xij , let Rij denote the indicator of the availability of Xij .

That is, let Rij = 1 if Xij is observed and Rij = 0 if Xij is missing. Let Ri = (Ri1, ..., Rimi
)⊤

be the indicator vector of subject i. As suggested by Chen et al. (2010) and Chen & Zhou (2011),

instead of modeling P (Ri = ri|Yi,Xi,Zi) directly, we can focus on the conditional models as

P (Rij = rij|R̄ij,Yi,Xi,Zi), which reflects the nature of the observation process over time. Here

R̄ij = (Ri1, ..., Ri,j−1)
⊤ is the history of the indicators until time ti,j−1. This form is very important

for monotone missing pattern (dropout), which means that Rit = 0 implies Ri(t+1) = 0 (Robins

et al. (1995)). It is also useful for non-monotone missing pattern (intermittent) because the joint

distribution of Ri then can be expressed as

P (Ri = ri|Yi,Xi,Zi) =

mi∏
j=2

P (Rij = rij|R̄ij,Yi,Xi,Zi) · P (Ri1 = ri1|Yi,Xi,Zi). (4.2)

When the data are missing at random (MAR) in the sense of Rubin (1976), we have P (Ri =

ri|Yi,Xi,Zi) = P (Ri = ri|Yi,X
o
i ,Zi), where Xo

i denotes the observed part of Xi. Then a

somewhat stronger condition is assumed as

P (Rij = rij|R̄ij,Yi,Xi,Zi) = P (Rij = rij|R̄ij,Yi, X̄
o
ij,Zi), (4.3)
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where X̄o
ij represents the history of observed Xij until time ti,j−1. Since dropout means that once

a subject leaves the study, return is not possible, it is not reasonable to assume that the covariate

Xij has the monotone missing pattern while the responses Yij’s are fully observed. Thus in this

chapter, we only consider non-monotone missing patterns and assume the first measure is always

observed (Ri1 = 1).

Now our main interest is to consistently estimate the true regression parameters β when some

Xij are missing intermittently. For completely observed data, Liang & Zeger (1986) proposed to

estimate β through GEE as

n−1/2

n∑
i=1

∂µ⊤
i

∂β
V−1

i {Yi − µi(β)} = n−1/2

n∑
i=1

W⊤
i V

−1
i (Yi −Wiβ) = 0,

where µi = (µi1, ..., µimi
)⊤ is the vector of conditional mean with µij = E(Yij|Xi,Zi). The

main benefits of GEE are that it does not require fully likelihood assumption on the data and the

estimator is still unbiased when the correlation structure Ci or even the whole covariance Vi is

misspecified. Therefore, Liang & Zeger (1986) refers Ci(ρ) as a ‘working’ correlation matrix

which can be selected by the user with certain structure (compound symmetry, AR(1), etc.). A

convenient choice is working independence (WI) structure, which means Ci(ρ) = Imi
. For the

rest of the chapter, we will focus on the WI structure. Based on GEE, there are some existing

methods when Xij is partially missing.

4.2.1 Complete Case Analysis

Complete case analysis (CC) uses the following estimating equation

n−1/2

n∑
i=1

I(Ri = 1mi
)W⊤

i V
−1
i (Yi −Wiβ) = 0,

where I(·) is the indicator function, 1mi
is a vector of 1 with length mi. CC only makes use of the

data of those subjects who have complete observations at each time point.
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4.2.2 Available Case Analysis

Available case analysis (AC) uses the following estimating equation

n−1/2

n∑
i=1

W⊤
i Mi(Yi −Wiβ) = 0,

where Mi = F
−1/2
i (C−1

i ⊙ ∆i)F
−1/2
i with ∆i = [δijk]mi×mi

, δijk = I(Rij = 1, Rik = 1)

and ⊙ denotes the component-wise product. Considering WI structure, Mi can be simplified to

MWI
i = F

−1/2
i ∆WI

i F
−1/2
i with ∆WI

i = diag(Rij). Then the estimating equations can also be

expressed as

n−1/2

n∑
i=1

mi∑
j=1

1

σ2
ij

RijW ij(Yij −W⊤
ijβ) = 0.

It is obvious that AC is different from CC as it uses all observations at tij when Xij is available

instead of dropping the entire data of that subject. CC and AC have unbiased estimators when

data is missing completely at random (MCAR), but they can lead to inconsistent estimators under

MAR.

4.2.3 Inverse-probability Weighted Estimator (IPW)

To solve the problem of inconsistent estimation using GEE, Robins et al. (1994) first proposed

a class of semiparametric estimators based on inverse-probability weighted GEE for i.i.d. data and

Robins et al. (1995) extended it to longitudinal data with monotone missing responses. Chen et al.

(2010) generalized the idea to longitudinal data with both response and covariate intermittently

MAR. In our setting with missing covariate only, the estimating equation is

n−1/2

n∑
i=1

W⊤
i M

∗
i (Yi −Wiβ) = 0,
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where M∗
i = F

−1/2
i (C−1

i ⊙ ∆∗
i )F

−1/2
i with ∆∗

i = [δ∗ijk]mi×mi
, δ∗ijk = I(Rij = 1, Rik = 1)/πijk,

πijk = P (Rij = 1, Rik = 1|Yi,Xi,Zi). Again with the WI structure, it is equivalent to have

n−1/2

n∑
i=1

W⊤
i M

∗WI
i (Yi −Wiβ) = n−1/2

n∑
i=1

mi∑
j=1

1

σ2
ij

Rij

πij
W ij(Yij −W⊤

ijβ) = 0, (4.4)

where M∗WI
i = F

−1/2
i ∆∗WI

i F
−1/2
i with ∆∗WI

i = diag(Rij/πij) and πij = P (Rij = 1|Yi,Xi,Zi).

Although we have avoided calculating the joint conditional probabilities like πijk with the

WI structure, it is still not straightforward to gain the marginal probabilities πij . Even under

(4.2) and (4.3), one needs to do the integration by summing up all the possible outcomes of R̄ij

(Chen et al. (2010)). For the purpose of illustrating the method more easily, we further assume

P (Rij = rij|R̄ij, X̄
o
ij,Yi,Zi) = P (Rij = rij|X̄o

ij,Yi,Zi). Then (4.2) can be rewritten as

P (Ri = ri|Yi,Xi,Zi) =

mi∏
j=1

P (Rij = rij|Yi,Xi,Zi) =

mi∏
j=1

πij. (4.5)

Based on this condition, we can model πij directly. Let
n∑

i=1

Si(α) = 0 be the estimating equation

from the maximum likelihood of Ri based on a specified model (e.g., logistic regression model on

πij) with the nuisance parameter α, Ui(β,α) = W⊤
i M

∗WI
i (Yi − Wiβ). Then actually we are

solving

n−1/2


n∑

i=1

Ui(β,α)

n∑
i=1

Si(α)

 = 0 (4.6)

simultaneously. Note that generally (4.5) is not required. IPW will lead to unbiased parameter

estimators if the model on πij is correctly specified.

4.2.4 Augmented Inverse-probability Weighted Estimator (AIPW)

Although IPW gives consistent estimators under the correctly specified model, it still does

not make use of the information (yij and Zij) from the incomplete cases (Rij = 0). Chen et al.

(2010) added an augmentation term Ai into the equation (4.4) and Ai is an arbitrary function of
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the available measurements that may not be included in (4.4) with mean 0.

Another problem of IPW is that it can still be biased when the model on πij is misspecified.

Robins et al. (1994) and Chen & Zhou (2011) suggested to use

n−1/2

n∑
i=1

[
W⊤

i M
∗
i (Yi −Wiβ) + EXm

i |Yi,Xo
i ,Zi

{W⊤
i N

∗
i (Yi −Wiβ)}

]
= 0, (4.7)

where N∗
i = F

−1/2
i {C−1

i ⊙(11⊤−∆∗
i )}F

−1/2
i , Xm

i denotes the missing part of Xi. This AIPW has

the doubly robust (DR) property. That is, the resulting estimators will be consistent when either

the selection probability model on πij or the missing covariate model on the augmentation (the

conditional expectation) is correctly specified. With the WI structure we can simplify it to

n−1/2

n∑
i=1

mi∑
j=1

1

σ2
ij

[
Rij

πij
W ij(Yij −W⊤

ijβ) +

(
1− Rij

πij

)
EXij |Yi,X̄o

ij ,Zi
{W ij(Yij −W⊤

ijβ)}
]
= 0.

To estimate the conditional expectation, likelihood assumptions or parametric models are specified

on the covariate model. Chen & Zhou (2011) expressed the joint density as

f(Xi|Yi,Zi;γ) =

mi∏
j=2

f(Xij|X̄ij,Yi,Zi;γ) · f(Xi1|Yi,Zi;γ), (4.8)

where X̄ij = (Xi1, ..., Xi,j−1) is the history of Xij until time ti,j−1 and γ is the nuisance parameter

for the density. Then models can be specified on f(Xij|X̄ij,Yi,Zi;γ). The estimate of γ can be

obtained through maximizing the observed likelihood function

L(γ) =
n∏

i=1

∫
f(Xi|Yi,Zi;γ)dX

m
i .

Let ∂logL(γ)/∂γ⊤ =
n∑

i=1

Oi(γ) = 0 be the corresponding estimating equation, Ui(β,α,γ) be

the component inside the summation in (4.7). Then the whole estimating process can be regarded
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as solving

n−1/2



n∑
i=1

Ui(β,α,γ)

n∑
i=1

Si(α)

n∑
i=1

Oi(γ)

 = 0. (4.9)

4.3 Proposed Method

Let Tij = W ij(Yij −W⊤
ijβ) and ψij = EXij |Yi,X̄o

ij ,Zi
(Tij). It is obvious that Tij is the regular

score function for linear regression, ψij is the conditional expectation of Tij . Although the AIPW

in (4.7) has the DR property, it still can be biased when both the selection probability model and the

covariate model are misspecified. Actually it is not easy to model P (Rij = rij|R̄ij,Yi,Xi,Zi) and

f(Xij|X̄ij,Yi,Zi;γ) correctly. Since the histories R̄ij and X̄ij have different length for different

time tij , generally the nuisance parameters can be different as α(j) and γ(j). There might be too

many parameters at large j for correct model specification. It would need further assumptions to

make things simpler. For example, Chen & Zhou (2011) assumed that Rij depends only on the

previously (ti,j−1) observed outcomes and covariates, and (4.5) is another approach. There are

other ways to model the joint densities instead of using the factorization through the hierarchical

structure like (4.2) and (4.8), but correctly modeling the correlation structure within Ri or Xi is

very challenging.

Even when both the selection probability model and the covariate model are correctly speci-

fied, IPW and AIPW may encounter numerical problems if some πij’s are near zero to cause the

inverse-probability weights highly variable, resulting in biased estimators. This phenomenon is

observed and discussed by Kang & Schafer (2007) and Robins et al. (2007). We will illustrate the

phenomenon by numerical examples in Section 4.5.

Wang et al. (1997) and Wang & Wang (2001) proposed to estimate the selection probability

and the conditional expectation in the augmentation using nonparametric kernel smoothing for

i.i.d. data. Details can be found in Section 3.2 of Chapter 2. To extend the application of this idea

to longitudinal data with the WI correlation structure, we first need the following assumption.
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Assumption 4.1.

E(Xij|X̄o
ij,Yi,Zi) = E(Xij|Qij),

where Qij = (Yij,Z
⊤
ij)

⊤.

Under this assumption, ψij can be written as ψij = E(Tij|Qij). Notice that

ψij = E(Tij|Qij) = E
{
W ij(Yij −W⊤

ijβ)
∣∣Qij

}
= E(W ij|Qij)Yij − E(W ijW

⊤
ij|Qij)β

=


1

E(Xij|Qij)

Zij

Yij −


1 E(Xij|Qij) Z⊤

ij

E(Xij|Qij) E(X2
ij|Qij) E(Xij|Qij)Z

⊤
ij

Zij ZijE(Xij|Qij) ZijZ
⊤
ij

β. (4.10)

Thus we only need to modelE(Xij|Qij) andE(X2
ij|Qij). Let d denote the length of the continuous

part in Qij . Although under Assumption 4.1 the calculation of ψij has already been simplified, the

regular multivariate kernel smoother for E(Xij|Qij) and E(X2
ij|Qij) will suffer from “curse of

dimensionality" when d > 1. To overcome this difficulty, we make another assumption.

Assumption 4.2. Assume a single-index model (SIM)

Xij = g(Q⊤
ijγ) + eij,

where g is an unknown smooth univariate function, γ is the parameter of the model with the same

dimension of Qij , and eij’s are random errors with zero mean.

To guarantee identifiability, we assume the first non-zero element of γ to be positive 1. If the

number of available cases for subject i is m(o)
i =

mi∑
j=1

Rij , one estimator of g(·) based only on the

available cases is

ĝ(u|γ) =

n∑
i=1

m
(o)
i∑

j=1

X
(o)
ij Kh

(
u−Q

(o)
ij

⊤
γ
)

n∑
i=1

m
(o)
i∑

j=1

Kh

(
u−Q

(o)
ij

⊤
γ
) =

n∑
k=1

mk∑
l=1

RklXklKh(u−Q⊤
klγ)

n∑
k=1

mk∑
l=1

RklKh(u−Q⊤
klγ)

,
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where (X
(o)
ij ,Q

(o)
ij ) are pairs of the available cases, Kh(·) = K(·/h) is a univariate kernel function

with bandwidth h. Then under the SIM condition, we have

Ê(Xij|Qij) = Ê(Xij|Q⊤
ijγ) = ĝ(Q⊤

ijγ) =

n∑
k=1

mk∑
l=1

RklXklKh((Qij −Qkl)
⊤γ)

n∑
k=1

mk∑
l=1

RklKh((Qij −Qkl)⊤γ)

. (4.11)

We can also apply this model to get an estimate of E(X2
ij|Qij) as

Ê(X2
ij|Qij) =

n∑
k=1

mk∑
l=1

RklX
2
klKh((Qij −Qkl)

⊤γ)

n∑
k=1

mk∑
l=1

RklKh((Qij −Qkl)⊤γ)

. (4.12)

We can construct

π̂∗
ij(γ) = Ê(Rij|Q⊤

ijγ) =

n∑
k=1

mk∑
l=1

RklKh((Qij −Qkl)
⊤γ)

n∑
k=1

mk∑
l=1

Kh((Qij −Qkl)⊤γ)

(4.13)

as the estimated selection probabilities modeled by the SIM using the same (γ, h). Notice that

(4.11) and (4.13) are essentially NW-estimators with univariate kernel functions and the additional

parameter γ. Compared to Wang & Wang (2001), here we only estimate the first two moments of

Xij given Qij by using the local average when estimating ψij but keep the original Yi, Zi since

they are always observed, instead of using the local average of the whole score function Tij .

Let

ψ̂ij(γ) =

n∑
k=1

mk∑
l=1

RklT
(kl)
ij Kh((Qij −Qkl)

⊤γ)

n∑
k=1

mk∑
l=1

RklKh((Qij −Qkl)⊤γ)

,

where T (kl)
ij = W

(kl)
ij (Yij −W

(kl)
ij

⊤
β) with W

(kl)
ij = (1, Xkl,Z

⊤
ij)

⊤. This ψ̂ij(γ) is a kernel esti-

mate of ψij by estimating onlyE(Xij|Qij) andE(X2
ij|Qij) with a kernel smoother via (4.10). Then

we can first propose an Ordinary Least Square (OLS) semiparametric estimator without inverse-
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probability weights as

U(β, ψ̂(γ)) = n−1/2

n∑
i=1

mi∑
j=1

{
RijTij + (1−Rij)ψ̂ij(γ)

}
(4.14a)

= n−1/2

n∑
i=1

[
W⊤

i ∆
WI
i (Yi −Wiβ) + ÊXm

i |Yi,Xo
i ,Zi

{W⊤
i (Imi

−∆WI
i )(Yi −Wiβ)}

]
= 0,

(4.14b)

where ÊXm
i |Yi,Xo

i ,Zi
{W⊤

i (Imi
− ∆WI

i )(Yi − Wiβ)} is the estimate of EXm
i |Yi,Xo

i ,Zi
{W⊤

i (Imi
−

∆WI
i )(Yi−Wiβ)} based on ψ̂ij . Let β̂AOLS denote the solution of the above estimating equation.

We will show that β̂AOLS is an unbiased estimator in Section 4.4. Clearly, (4.14b) ignores the vari-

ance structure σ2
ij . Hence β̂AOLS works well for homoscedasticity (σ2

ij ≡ σ2), but it is not efficient

when heteroscedasticity is present. Recall the assumption that σ2
ij = σ2(tij) when heteroscedastic-

ity is allowed. Let ε̂ij = Yij −W⊤
ijβ̂AOLS be the residuals after fitting (4.14b). Obviously, some of

the residuals cannot be obtained because some Xij’s are missing. Following the idea of Fan et al.

(2007), a kernel estimator with bandwidth hσ for σ2(t) is

σ̂2(t) =

∑n
i=1

∑mi

j=1Rij ε̂
2
ijKhσ(t− tij)∑n

i=1

∑mi

j=1RijKhσ(t− tij)
,

which only uses the available residuals in the calculation. Then σ2
ij can be estimated through

σ̂2
ij = σ̂2(tij) =

∑n
k=1

∑mk

l=1Rklε̂
2
klKhσ(tij − tkl)∑n

k=1

∑mk

l=1RklKhσ(tij − tkl)
. (4.15)

Based on these estimated variances, a Weighted Least Square (WLS) estimator adjusted for het-

eroscedasticity is proposed as

U(β, ψ̂(γ), σ̂2(t)) = n−1/2

n∑
i=1

mi∑
j=1

1

σ̂2
ij

{
RijTij + (1−Rij)ψ̂ij(γ)

}
(4.16a)

= n−1/2

n∑
i=1

[
W⊤

i M̂
WI
i (Yi −Wiβ) + ÊXm

i |Yi,Xo
i ,Zi

{W⊤
i N̂

WI
i (Yi −Wiβ)}

]
= 0, (4.16b)

68



where M̂WI
i = F̂

−1/2
i ∆WI

i F̂
−1/2
i , N̂WI

i = F̂
−1/2
i (Imi

−∆WI
i )F̂

−1/2
i with F̂i = diag(σ̂2

ij). Let β̂AWLS

denote the solution of the above estimating equation.

Generally, like the estimation procedure of AIPW, γ is an nuisance parameter which needs to be

estimated. However, in our case with the linear relationship between Yij and (Xij,Z
⊤
ij)

⊤, we have

a special form of γ as γ = (1,−β⊤
2 )

⊤. In this sense, the single index is uij = Q⊤
ijγ = Yij −Z⊤

ijβ2

and γ is a part of β so that we do not need to estimate γ separately. Note that while the choice

of the kernel functions does not have much influence on the performance of the estimators with a

fixed order r, the choice of the bandwidths h, hσ is crucial. More details about bandwidth selection

will be discussed in Section 4.4.

Notice that the estimation procedures of β̂AOLS and β̂AWLS do not involve the marginal se-

lection probabilities πij’s, which are usually difficult to model and calculate. The SIM structure

allows us to use univariate kernel functions during the procedure and avoids suffering from “curse

of dimensionality". A more important benefit is that unlike all inverse-probability weighted esti-

mators (such as IPW, AIPW), β̂AOLS and β̂AWLS are not sensitive to those positive but near-zero

πij’s since we do not use them in the point estimation procedure.

On the other hand, due to the construction of the estimating equations (4.14b) and (4.16b)

without inverse-probability weights, β̂AOLS and β̂AWLS no longer have the property of double ro-

bustness, thus need a consistent estimator of ψij . This consistency depends on whether Assumption

4.2 of a single-index model on Xij is reasonable. Because of the linear relationship between Yij

and (Xij,Z
⊤
ij)

⊤ in this setting, it seems not unreasonable to assume this model. Actually Assump-

tion 4.2 is valid when (Y⊤
i ,X

⊤
i ,Z

⊤
i1, ...,Z

⊤
imi

)⊤ jointly follows a multivariate normal distribution

under the WI correlation structure. The two proposed estimators can still give robust results under

other distributions or the assumptions are not exactly satisfied, which is to be illustrated through

numerical studies in Section 4.5.

4.4 Asymptotic Properties

In this section, we will show the asymptotic behavior of the proposed estimators β̂AOLS and

β̂AWLS. For simplicity, we define π∗
ij(γ) = E(Rij|Q⊤

ijγ) as the selection probabilities conditional
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on the single-index Q⊤
ijγ with parameter γ. Let U = Q⊤γ denote the single-index random vari-

able. Let N =
∑n

i=1mi be the total number of observations, and N (o) be the total number of

available observations. We need the following regularity conditions to establish the asymptotic

theory:

(i) The smoothing parameter h satisfies nh2 → ∞ and nh2r → 0, as n→ ∞.

(ii) The smoothing parameter hσ satisfies hσ → 0 and nhσ → ∞, as n→ ∞.

(iii) All the selection probabilities πij’s are bounded away from zero.

(iv) The selection probability function on the single-index π∗(γ) has r continuous and bounded

partial derivatives a.e.

(v) The density function f(u) of U and the conditional density function fU |R(u) of U |R have

rth continuous and bounded partial derivative a.e.

(vi) The conditional distributions fU |R=0(u) and fU |R=1(u) have the same support, and b(u) =

fU |R=0(u)/fU |R=1(u) is bounded over the support.

(vii) The conditional expectations ψ(u|γ) = E(T |Q⊤γ = u) and E(TT⊤|Q⊤γ) exist and have

r continuous and bounded partial derivative a.e.

(viii) For score T , E(TT⊤) and E{(∂/∂β)T} exist and are positive definite, and (∂2/∂β∂β⊤)T

exists and is continuous with respect to β a.e.

Recall that r is the order of the kernel function used in the estimation. From regularity condition

(i), r is related to the rate of the bandwidth h. Since we are considering a SIM for estimation, a

standard 2nd-order (r = 2) univariate kernel function seems reasonable in practice.

Let ηn = {nh2r+(nh2)−1}1/2. The following lemma is important to prove our main theorems.
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Lemma 4.1. Under regularity conditions (i)-(viii) and when Assumption 4.1 and 4.2 are true, we

have

n−1/2

n∑
i=1

mi∑
j=1

(1−Rij){ψ̂ij(γ)− ψij(γ)} = n−1/2

n∑
i=1

mi∑
j=1

Rij{T 0
ij − ψ0

ij(γ)}a(Q⊤
ijγ) +Op(ηn),

and

n−1/2

n∑
i=1

mi∑
j=1

1−Rij

σ̂2
ij

{ψ̂ij(γ)− ψij(γ)} = n−1/2κ
n∑

i=1

mi∑
j=1

Rij{T 0
ij − ψ0

ij(γ)}a(Q⊤
ijγ) +Op(ηn),

where a(Q⊤
ijγ) = {1−π∗

ij(γ)}/π∗
ij(γ), T

0
ij = EZij |uij ,Rij=0(Tij) =

∫
Tijf(Zij|uij, Rij = 0)dZij ,

ψ0
ij(γ) = EZij |uij ,Rij=0{ψij(γ)} =

∫
ψij(γ)f(Zij|uij, Rij = 0)dZij with uij = Q⊤

ijγ as the

single index and κ =
∑n

i=1

∑mi

j=1

(
1−Rij

σ2
ij

)
/
∑n

i=1

∑mi

j=1(1−Rij) =
∑n

i=1

∑mi
j=1(1−Rij)/σ

2
ij

N−N(o) .

Proof. The idea in the proof is similar to that in the proof of Lemma 1 in Wang & Wang (2001).

Recall that uij = Q⊤
ijγ = Yij − β⊤

2 Zij is the single index. Let

f̂U |R=1(u) =
1

N (o)h

n∑
k=1

mk∑
l=1

RklKh(u− ukl), En(u) = f̂U |R=1(u)− fU |R=1(u),

Anij = f̂U |R=1(uij), Bnij =
1

N (o)h

n∑
k=1

mk∑
l=1

RklT
(kl)
ij Kh(uij − ukl).

Under the regularity conditions with the sparse longitudinal data setting, we have E{En(u)} =

O(hr) and var{En(u)} = O{(nh)−1} by the Taylor expansions. Then by the Chebyshev inequal-

ity, En(u) − E{En(u)} = Op{(nh)−1/2}, which implies En(u) = Op{hr + (nh)−1/2}, and thus

En(uij) = Op{hr + (nh)−1/2}. Similarly, we have Bnij − ψijAnij = Op{hr + (nh)−1/2}.

Define δn = h2r + (nh)−1. When Assumption 4.1 and 4.2 are true,

ψ̂ij − ψij =
Bnij − ψijAnij

fU |R=1(uij)
− (Bnij − ψijAnij)En(uij)

AnijfU |R=1(uij)
=
Bnij − ψijAnij

fU |R=1(uij)
+Op(δn).

Let Q∗
ij = RijQij , X∗

ij = RijXij for i = 1, ..., n, j = 1, ...,mi as the values of the available
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cases. Then

E

{
Bnij − ψijAnij

fU |R=1(uij)

∣∣∣∣Rij = 0, all (R,Q∗,X∗)

}
=

1

N (o)

n∑
k=1

mk∑
l=1

Rkl

∫
(T

(kl)
ij − ψij)Kh(uij − ukl)

hfU |R=1(uij)
fQ|R=0(Qij)dQij

=
1

N (o)

n∑
k=1

mk∑
l=1

Rkl

∫∫
(T

(kl)
ij − ψij)Kh(uij − ukl)

hfU |R=1(uij)
fU,Z|R=0(uij,Zij)dZijduij

=
1

N (o)

n∑
k=1

mk∑
l=1

Rkl

∫ {∫
(T

(kl)
ij − ψij)Kh(uij − ukl)

hfU |R=1(uij)
fZ|U,R=0(Zij)dZij

}
fU |R=0(uij)duij

=
1

N (o)

n∑
k=1

mk∑
l=1

Rkl

∫
(T

(kl)0
ij − ψ0

ij)Kh(uij − ukl)

hfU |R=1(uij)
fU |R=0(uij)duij

=
1

N (o)

n∑
k=1

mk∑
l=1

Rkl(T
0
kl − ψ0

kl)b(ukl) +Op(h
r),

where T (kl)0
ij = EZij |uij ,Rij=0

{
T

(kl)
ij

}
=
∫
T

(kl)
ij f(Zij|uij, Rij = 0)dZij , b(u) is defined in regu-

larity condition (vi). The last step is because of the concentration of uij on ukl. Using the same

idea and {· · ·} to denote a repeat of the preceding term, we also have

var

{
Bnij − ψijAnij

fU |R=1(uij)

∣∣∣∣Rij = 0, all (R,Q∗,X∗)

}
=

1

{N (o)}2
n∑

k=1

mk∑
l=1

Rkl

[∫ {
(T

(kl)
ij − ψij)Kh(uij − ukl)

hfU |R=1(ui)

}
{· · ·}⊤ fQ|R=0(Qij)dQij

−

{
n∑

k=1

mk∑
l=1

Rkl

∫
(T

(kl)
ij − ψij)Kh(uij − ukl)

hfU |R=1(uij)
fQ|R=0(Qij)dQij

}
{· · ·}⊤

]
+Op

(
1

nh

)
= Op

(
1

nh

)
.

Thus,

ψ̂ij − ψij =
1

N (o)

n∑
k=1

mk∑
l=1

Rkl(T
0
kl − ψ0

kl)b(ukl) +Op(δn).
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Let

Sn = n−1/2

n∑
i=1

mk∑
l=1

(1−Rij)

{
Bnij − ψijAnij

fU |R=1(uij)
− 1

N (o)

n∑
k=1

mk∑
l=1

Rkl(T
0
kl − ψ0

kl)b(ukl)

}
.

Then the summands withRij = 0 in Sn are i.i.d. random variables conditioning on all (R,Q∗,X∗).

Thus we have

var{Sn|all (R,Q∗,X∗)} =
N −N (o)

n
var

{
Bn11 − ψ11An11

fU |R=1(u11)

∣∣∣∣ all (R,Q∗,X∗)

}
= Op

(
h2r +

1

nh

)
.

Then E(Sn) = O(hr) and var(Sn) = O(h2r + (nh)−1) imply Sn = Op(ηn). Hence we have

n−1/2

n∑
i=1

mk∑
l=1

(1−Rij)(ψ̂ij − ψij)

= n−1/2

n∑
i=1

mk∑
l=1

{
(1−Rij)

1

N (o)

n∑
k=1

mk∑
l=1

Rkl(T
0
kl − ψ0

kl)b(ukl)

}
+Op(ηn)

= n−1/2

n∑
k=1

mk∑
l=1

Rkl(T
0
kl − ψ0

kl)a(ukl) +Op(ηn).

The proof of the second part is similar. We still have the same conclusions on the conditional

expectation and variance of ψ̂ij − ψij . Then let

Sw
n = n−1/2

n∑
i=1

mk∑
l=1

1−Rij

σ2
ij

{
Bnij − ψijAnij

fU |R=1(uij)
− 1

N (o)

n∑
k=1

mk∑
l=1

Rkl(T
0
kl − ψ0

kl)b(ukl)

}
.

We have

var{Sw
n |all (R,Q∗,X∗)} =

n∑
i=1

mi∑
j=1

(1−Rij)/σ
4
ij

n
var

{
Bn11 − ψ11An11

fU |R=1(u11)

∣∣∣∣ all (R,Q∗,X∗)

}
= Op

(
h2r +

1

nh

)
.
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Again we have Sw
n = Op(ηn). Let δσn = h2rσ + (nhσ)

−1. Since σ̂2
ij − σ2

ij = Op(δ
σ
n), finally

n−1/2

n∑
i=1

mk∑
l=1

1−Rij

σ̂2
ij

(ψ̂ij − ψij)

= n−1/2

n∑
i=1

mk∑
l=1

1−Rij

σ̂2
ij

(ψ̂ij − ψij)− n−1/2

n∑
i=1

mk∑
l=1

σ̂2
ij − σ2

ij

σ̂2
ijσ

2
ij

(1−Rij)(ψ̂ij − ψij)

= n−1/2

n∑
i=1

mk∑
l=1

{
1−Rij

σ2
ij

1

N (o)

n∑
k=1

mk∑
l=1

Rkl(T
0
kl − ψ0

kl)b(ukl)

}
+Op(ηn)

= n−1/2κ
n∑

k=1

mk∑
l=1

Rkl(T
0
kl − ψ0

kl)a(ukl) +Op(ηn).

Note that with the SIM and the single index uij = Yij − β⊤
2 Zij , we can write Tij and ψij(γ) as

Tij =


uij − β0 − β1Xij

uijXij − β0Xij − β1X
2
ij

Zij(uij − β0 − β1Xij)

 ,

ψij(γ) =


uij − β0 − β1E(Xij|uij)

uijE(Xij|uij)− β0E(Xij|uij)− β1E(X
2
ij|uij)

Zij{uij − β0 − β1E(Xij|uij)}

 .

Since MAR and Assumption 4.1 imply (Xij ⊥ Rij)|Qij , we also have

T 0
ij =


uij − β0 − β1Xij

uijXij − β0Xij − β1X
2
ij

Z
u|0
ij (uij − β0 − β1Xij)

 ,

ψ0
ij(γ) =


uij − β0 − β1E(Xij|uij)

uijE(Xij|uij)− β0E(Xij|uij)− β1E(X
2
ij|uij)

Z
u|0
ij {uij − β0 − β1E(Xij|uij)}


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with Z
u|0
ij = E(Zij|uij, Rij = 0).

Lemma 4.1 is useful because it converts asymptotically a sum of dependent random variables

to a sum of independent and i.i.d. random variables. Then it is easier to derive the following

theorems by applying standard asymptotic theory.

Define

Lo
i (β, ψ(γ)) = W⊤

i ∆
WI
i (Yi −Wiβ) + EXm

i |Yi,Xo
i ,Zi

{W⊤
i (Imi

−∆WI
i )(Yi −Wiβ)}

+W0
i
⊤
∆WI

i a(ui)(Yi −W0
iβ)− EXm

i |Yi,Xo
i ,Zi

{W0
i
⊤
∆WI

i a(ui)(Yi −W0
iβ)},

where W0
i = (W 0

i1, ...,W
0
imi

)⊤ with W 0
ij =

(
1, Xij,Z

u|0
ij

⊤)⊤
, a(ui) = diag{a(uij)}.

Theorem 4.1. Under the regularity conditions (i)-(viii) and assuming that Assumptions 4.1 and 4.2

are true, β̂AOLS is asymptotically equivalent to the solution of the following estimating equation:

n−1/2

n∑
i=1

Lo
i (β, ψ(γ)) = 0.

Furthermore, we have

n1/2(β̂AOLS − β)
D−→ Np(0,Σo),

where Σo = Go
−1ΩoGo

−1 with Go = −n−1E{∂U(β, ψ(γ))/∂β⊤} = E(W1W
⊤
1 ) and Ωo =

cov(Lo
1) = E{Lo

1(β, ψ(γ))L
o
1(β, ψ(γ))

⊤}.
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Proof. Based on the conclusion of Lemma 4.1,

U(β, ψ̂(γ))

= n−1/2

n∑
i=1

mi∑
j=1

[
RijTij + (1−Rij)ψij(γ) + (1−Rij){ψ̂ij(γ)− ψij(γ)}

]
= n−1/2

n∑
i=1

mi∑
j=1

[
RijTij + (1−Rij)ψij(γ) +Rij{T 0

ij − ψ0
ij(γ)}a(Q⊤

ijγ)
]
+Op(ηn)

= n−1/2

n∑
i=1

[
W⊤

i ∆
WI
i (Yi −Wiβ) + EXm

i |Yi,Xo
i ,Zi

{W⊤
i (Imi

−∆WI
i )(Yi −Wiβ)}

+W0
i
⊤
∆WI

i a(ui)(Yi −W0
iβ)− EXm

i |Yi,Xo
i ,Zi

{W0
i
⊤
∆WI

i a(ui)(Yi −W0
iβ)}

]
+Op(ηn)

= n−1/2

n∑
i=1

Lo
i (β, ψ(γ)) +Op(ηn).

It is obvious that

E
[
W0

i
⊤
∆WI

i a(ui)(Yi −W0
iβ)− EXm

i |Yi,Xo
i ,Zi

{W0
i
⊤
∆WI

i a(ui)(Yi −W0
iβ)}

]
= 0.

Thus we have

E{Ui(β, ψ̂(γ))}

= E{Ui(β, ψ(γ))}+Op(ηn)

= E
[
EXm

i |Yi,Xo
i ,Zi

{W⊤
i ∆

WI
i (Yi −Wiβ)}+ EXm

i |Yi,Xo
i ,Zi

{W⊤
i (Imi

−∆WI
i )(Yi −Wiβ)}

]
+Op(ηn)

= E
[
EXm

i |Yi,Xo
i ,Zi

{W⊤
i (Yi −Wiβ)}

]
+Op(ηn)

= Op(ηn).

Hence β̂AOLS is asymptotically unbiased. Since U(β, ψ̂(γ)) is asymptotically equivalent to a sum

of i.i.d. random variables Lo
i (β, ψ(γ)), β̂AOLS is asymptotically normally distributed and has the
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asymptotic covariance Σo = Go
−1ΩoGo

−1 with

Go = −n−1E{∂U(β, ψ(γ))/∂β⊤} = E(W1W
⊤
1 ),

Σo = cov

(
n−1/2

n∑
i=1

Lo
i (β, ψ(γ))

)
= cov(Lo

1) = E{Lo
1(β, ψ(γ))L

o
1(β, ψ(γ))

⊤}.

The Σo can be estimated by

Σ̂o = Ĝ−1
o

{
1

n

n∑
i=1

L̂o
i (L̂

o
i )

⊤

}
Ĝ−1

o , (4.17)

where

L̂o
i = W⊤

i ∆
WI
i (Yi −Wiβ̂) + ÊXm

i |Yi,Xo
i ,Zi

{W⊤
i (Imi

−∆WI
i )(Yi −Wiβ̂)}

+ (Ŵ0
i )

⊤∆WI
i a(ûi)(Yi − Ŵ0

i β̂)− ÊXm
i |Yi,Xo

i ,Zi
{(Ŵ0

i )
⊤∆WI

i a(ûi)(Yi − Ŵ0
i β̂)}

=

mi∑
j=1

[
RijTij(β̂) + (1−Rij)ψ̂ij(γ̂) +Rij

{
T̂ 0
ij(β̂)− ψ̂0

ij(γ̂)
}
a(ûij)

]

with Ŵ0
i = (Ŵ

0

i1, ..., Ŵ
0

imi
)⊤, Ŵ

0

ij =
(
1, Xij, (Ẑ

u|0
ij )⊤

)⊤
, a(ûi) = diag{Q⊤

ijγ̂}, β̂ = β̂AOLS

and

Ĝo = n−1

n∑
i=1

[
W⊤

i ∆
WI
i Wi + ÊXm

i |Yi,Xo
i ,Zi

{W⊤
i (Imi

−∆WI
i )Wi}

]
.

Here Z
u|0
ij can be estimated by

Ẑ
u|0
ij = Ê(Zij|ûij, Ri = 0) =

n∑
k=1

mk∑
l=1

(1−Rkl)ZklKh((Qij −Qkl)
⊤γ̂)

n∑
k=1

mk∑
l=1

(1−Rkl)Kh((Qij −Qkl)⊤γ̂)

.

Note that to get ÊXm
i |Yi,Xo

i ,Zi
{W⊤

i (Imi
− ∆WI

i )Wi}, we only need to calculate Ê(Xij|Qij)

and Ê(X2
ij|Qij) through (4.11) and (4.12) because of the structure in (4.10).
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Similarly, define

Lw
i (β, ψ(γ), σ

2(t))

= W⊤
i M

WI
i (Yi −Wiβ) + EXm

i |Yi,Xo
i ,Zi

{W⊤
i N

WI
i (Yi −Wiβ)}

+ κW0
i
⊤
∆WI

i a(ui)(Yi −W0
iβ)− EXm

i |Yi,Xo
i ,Zi

{κW0
i
⊤
∆WI

i a(ui)(Yi −W0
iβ)}.

Theorem 4.2. Under the regularity conditions (i)-(viii) and assuming that Assumptions 4.1 and 4.2

are true, β̂AWLS is asymptotically equivalent to the solution of the following estimating equation:

n−1/2

n∑
i=1

Lw
i (β, ψ(γ), σ

2(t)) = 0.

Furthermore, we have

n1/2(β̂AWLS − β)
D−→ Np(0,Σw),

where Σw = Gw
−1ΩwGw

−1 with Gw = −n−1E{∂U(β, ψ(γ), σ2(t))/∂β⊤} = E(W1F
−1
1 W⊤

1 )

and Ωw = cov(Lw
1 ) = E{Lw

1 (β, ψ(γ), σ
2(t))Lw

1 (β, ψ(γ), σ
2(t))⊤}.

The proof is analogous to the proof of Theorem 4.1. Σw can be estimated by

Σ̂w = Ĝ−1
w

{
1

n

n∑
i=1

L̂w
i (L̂

w
i )

⊤

}
Ĝ−1

w , (4.18)

where

L̂w
i = W⊤

i M̂
WI
i (Yi −Wiβ̂) + ÊXm

i |Yi,Xo
i ,Zi

{W⊤
i N̂

WI
i (Yi −Wiβ̂)}

+ κ̂(Ŵ0
i )

⊤∆WI
i a(ûi)(Yi − Ŵ0

i β̂)− ÊXm
i |Yi,Xo

i ,Zi
{κ̂(Ŵ0

i )
⊤∆WI

i a(ûi)(Yi − Ŵ0
i β̂)}

=

mi∑
j=1

[
Rij

σ̂2
ij

Tij(β̂) +
(1−Rij)

σ̂2
ij

ψ̂ij(γ̂) + κ̂Rij

{
T̂ 0
ij(β̂)− ψ̂0

ij(γ̂)
}
a(ûij)

]
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with κ̂ =
∑n

i=1

∑mi

j=1

(
1−Rij

σ̂2
ij

)
/
∑n

i=1

∑mi

j=1(1−Rij), β̂ = β̂AWLS and

Ĝw = n−1

n∑
i=1

[
W⊤

i M̂
WI
i Wi + ÊXm

i |Yi,Xo
i ,Zi

{W⊤
i N̂

WI
i Wi}

]
.

Note that Theorem 4.2 reduces to Theorem 4.1 when the random errors are homoscedastic

(σ2(t) ≡ σ2).

The performance of the estimators AOLS and AWLS depend on the choice of the bandwidth h

used in the kernel function Kh(·) for the estimation of ψij . In the regularity conditions, we require

nh2 → ∞ and nh2r → 0, as n → ∞. Therefore, the classical optimal rate of the bandwidth

O(n−1/5) does not work in our situation, as indicated by Sepanski et al. (1994). A reasonable

choice is h = CN−1/3 for some constant C. A plug-in method can be applied to estimate C. For

simplicity, we can use C = σ̂u as suggested by Wang et al. (1997) and Zhou et al. (2008), where

σ̂u is the sample standard deviation of the single index uij . On the other hand, the classical optimal

rate of the bandwidthO(n−1/5) still works for the kernel smoother (4.15) of σ2(t). We can also use

a plug-in bandwidth as hσ = σ̂tN
−1/5, where σ̂t is the sample standard deviation of the observation

times tij . We use these formulas to choose the bandwidths h and hσ in our following empirical

studies.

4.5 Empirical Studies

In this section, we investigate the performance of our proposed estimators β̂AOLS and β̂AWLS

for finite samples, compared to other commonly used GEE-based methods. In the simulation stud-

ies setting, the true regression parameter is of dimension 4 as β = (0, 0.5, 1,−1)⊤. Zij is of length

2 as Zij = (Z1ij, Z2ij)
⊤ and are independently generated from N2(0, I2). Xi is jointly generated

from a multivariate normal or gamma distribution with mean 0, variances 1 and an exchangeable

correlation structure (ρx = 0.6). Marginally the gamma distribution is (Gamma(5, 1) − 5)/
√
5.

While Xi1 is always available, Xij (j > 2) might be missing according to the following missing

process:

logit(πij) = α0 + α1Ri,j−1Xi,j−1 + α2Yij + α3Z1ij + α4Z2ij,
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which satisfies the MAR mechanism. There are 3 sets of values for the true parameter α, making

the covariate 18%, 20% and 40% missing on average respectively. The time of measuring tij is

generated in a similar way as Fan et al. (2007): each subject has a set of “scheduled" time points,

{0, 1, 2, ..., 5}, and each scheduled time except time 0 has a 20% chance of being skipped. Then

the selected scheduled times plus a uniform [0, 1] random variable makes tij . Thus we produce

unbalanced longitudinal data and on average the number of observations for each subject m̄ =∑n
i=1mi/n is about 5.

The random errors are generated as εi = chol(Vi)ε
0
i , where chol(Vi) is the lower triangle

matrix from Cholesky decomposition of the covariance matrix Vi, and ε0i are independently gen-

erated from the standard normal or standardized t distribution (t5/
√
5/3). Then Cov(εi) = Vi.

We know Vi = F
1/2
i Ci(ρ)F

1/2
i with Fi = diag(σ2

ij). There are mainly two scenarios for Vi:

1. The within-subject correlation structure is compound symmetry with ρ = 0.6. That is, for

ε(tij) = εij , Cor(ε(t1), ε(t2)) = ρ for t1 ̸= t2 and σ2
ij ≡ 1.

2. The within-subject correlation structure is AR(1) with ρ = 0.6. That is, for ε(tij) =

εij , Cor(ε(t1), ε(t2)) = ρ|t1−t2| for t1 ̸= t2. The variances are heteroskedastic through

var(εij) = σ2(tij) = 0.25exp(t/6).

We have two types of data: normal data with both Xi and εi from multivariate normal dis-

tributions; and non-normal data with Xi from a gamma distribution and εi from a t distribution

as described above. For IPW and AIPW, we fit a logistic regression model for Rij when j > 2

on H ij = (1, Ri,j−1Xi,j−1, Yij,Z
⊤
ij)

⊤. Thus the selection probability model is correctly specified,

which should guarantee unbiased estimators for IPW/AIPW theoretically. Then the estimating

equations mentioned in (4.6) have Si(α) = H⊤
i (Ri − πi(α)), where Hi = (0,H i2, ...,H imi

)⊤,

πi(α) = (1, πi2, ..., πimi
). For the augmentation in AIPW, we fit a linear regression model for Xij

on Qij = (1, Yij,Z
⊤
ij)

⊤. This model specification is correct at least for the normal data. We will

have Oi(γ) = Q⊤
i (Xi − Qiγ), where Qi = (Qi1, ...,Qimi

)⊤ in (4.9). Chen et al. (2010), Chen

& Zhou (2011) and Robins et al. (1995) all give asymptotic theories for IPW/AIPW based on the
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estimating equations (4.6) and (4.9). We will use the sandwich formulas from these papers to gain

the asymptotic covariance in the simulation studies without detailed explanation.

For β̂AOLS and β̂AWLS, we choose to use a second-order Gaussian kernel function (r = 2).

The bandwidth selection has been discussed in the previous section. In this simulation study,

we use h = 0.7σ̂uN
−1/3 and hσ = σ̂tN

−1/5. Assumptions 4.1 and 4.2 are valid at least for

the normal data scenario. The asymptotic standard errors are obtained through (4.17) and (4.18).

Our empirical experience suggests that, since we only use the information in incomplete cases

when estimating E(Zij|uij, Rij = 0), it would be helpful to include a correction factor matrix

in the sandwich-formulas (4.17) and (4.18) for small to moderate sample sizes, such as those in

our simulation studies, especially when the percentage of missingness is high and the data are

believed to be skewed. For example, we may replace the estimated asymptotic covariance by

Σ̂
∗
AOLS(Σ̂

∗
AWLS) = F c · Σ̂AOLS(Σ̂AWLS), where F c = diag{a, ..., a, b, a, ..., a}−1, a = 1 − 0.8 ×

miss%, b = (1 − miss%) · min(exp{(n − 1500)/5000}, 1), and miss% means the percentage of

missingness of X in the data set. The position of b matches the position of the coefficient of the

missing covariate. This is what we used for β̂AOLS and β̂AWLS in our numerical results.

Table 4.1 displays the results of normal data with stable selection probabilities. For each es-

timator, the first line displays the bias, the second line is the empirical standard error/averaged

asymptotic standard error over 1000 replications, and the third line is the 95% coverage proba-

bility. We run simulations for both of the covariance structures mentioned above. The example

boxplot of πij for one simulation run can be found in Figure 4.1. As we can see, there are no

near-zero values that may cause the highly variable weights discussed in Section 4.3. As expected,

CC and AC produce biased estimates because of the MAR mechanism. IPW and AIPW are un-

biased, which is reasonable because the selection probability model and covariate model are both

correctly specified in this situation. AOLS and AWLS also give consistent results, and are as ef-

ficient as AIPW based on similar standard errors. When heteroskedasticity is present, AWLS has

slightly smaller standard errors than AOLS.

The other two normal data cases with 20% and 40% missing rate can be found in Tables 4.2
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and 4.4. As the boxplots show in Figure 4.1, unlike the simulation setting for Table 4.1, these two

cases have very unstable πij’s. A few of the selection probabilities are near zero, which makes the

corresponding inverse-probability weights very large and several terms dominate the summations

in (4.4) and (4.7). This numerical issue leads to highly skewed distributions for IPW and AIPW, re-

sulting in large bias, standard errors and deviation from the asymptotic normal distributions though

the parametric models are still correctly specified as in Table 4.1. The near-zero selection prob-

abilities also have influence on the sandwich formula of the asymptotic covariances of IPW and

AIPW, making the averaged asymptotic standard error very different from the empirical standard

error and resulting in low coverages. To make the results comparable, we used 1% trimmed empir-

ical SE for AIPW and put a “*” when the asymptotic SE is ridiculously large. On the other hand,

the proposed estimators AOLS and AWLS perform well on bias and standard error. They may have

small bias when the missing rate is high at 40%, but are still much better than IPW and AIPW. The

asymptotic standard errors are generally close to the empirical standard errors. The 95% coverage

probabilities of AOLS and AWLS are also reasonable.

The results of non-normal data are shown in Table 4.3 and 4.5. We keep the same parameters

of (β,α) as in Tables 4.2 and 4.4 respectively except the generating distributions for Xi and

εi. In this setting, the parametric model for selection probability is still valid, but the parametric

model for covariate and the SIM for Xij (Assumption 4.2) are not. However, we get similar

conclusions as for the normal data. Actually we can use the histograms of the 1000 replications for

different estimators in Figure 4.2 as an example to explain the results. Although IPW and AIPW

should give unbiased estimation due to the correctly specified selection probability model and

DR property, the numerical issues caused by near-zero πij’s makes the estimators highly skewed

distributed, reflected by the first two rows of histograms in Figure 4.2. But AOLS and AWLS still

have normal-shape sampling distributions with the peaks located near the true values of β although

the coverages are little bit low for β1.

These results illustrate the numerical problems in IPW and AIPW that are mainly caused by

the positive but near-zero selection probabilities. The proposed AOLS and AWLS are not sensitive
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to the near-zero πij’s and robust to the misspecification on the single-index model. They do not

require modeling the selection probabilities and likelihood assumptions on f(X|Yi,Zi), and hence

have a simpler point estimation procedure.

To be mentioned, although the simulations only have a continuous missing covariate Xij , our

methodology can also be applied to categorical random variables. The theory is still true as long as

the SIM E(Xij|Qij) = g(Q⊤
ijγ) and Assumption 4.1 are valid. When Xij is binary, the estimation

procedure can even be simpler because E(X2
ij|Qij) = E(Xij|Qij).

Figure 4.1: Boxplots of the true selection probabilities πij’s for each table with compound symme-
try correlation structure at one simulation run.

4.6 Real Data Examples

In this section, we apply our proposed method to the data from a double-blinded randomized

trial in primary biliary cirrhosis of the liver (PBC) for comparing the drug D-penicillamine (DPCA)

with a placebo, conducted by the Mayo Clinic between January, 1974 and May, 1984. PBC is a

rare but fatal liver disease with a prevalence of about 50-cases-per-million population. There were

312 patients involved in this trial with information gathered routinely during the follow-up. More

details about the trial can be found in Fleming & Harrington (2011) and the data are available in
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Table 4.1: Simulation results of 1000 replications for the normal data (n = 100, m̄ = 5),
under two different correlation structures, with homoskedastic/heteroskedastic errors, and
α = (1.5,−0.5,−0.5, 0, 0), about 18% missing at random on average. For each entry,
the first line displays the bias, the second line is the empirical standard error/averaged
asymptotic standard error, and the third line is the 95% coverage probability.

β̂0 − β0 β̂1 − β1 β̂2 − β2 β̂3 − β3

Compound
Symmtry
(ρ = 0.6)
σ2
ij ≡ σ2

CC -0.2437 -0.0288 -0.0201 0.0214
0.0042/0.0040 0.0025/0.0025 0.0024/0.0022 0.0023/0.0022

0.512 0.919 0.914 0.926

AC -0.0762 -0.0128 -0.0196 0.0205
0.0027/0.0026 0.0017/0.0017 0.0015/0.0015 0.0015/0.0015

0.843 0.934 0.923 0.922

IPW -0.0025 0.0000 0.0015 -0.0007
0.0027/0.0026 0.0018/0.0017 0.0017/0.0016 0.0017/0.0016

0.922 0.926 0.932 0.930

AIPW -0.0027 0.0001 0.0014 -0.0004
0.0026†/0.0026 0.0017†/0.0017 0.0014†/0.0014 0.0014†/0.0014

0.930 0.938 0.924 0.935

AOLS -0.0003 -0.0031 0.0017 -0.0009
0.0027/0.0027 0.0017/0.0019 0.0015/0.0015 0.0014/0.0015

0.949 0.958 0.934 0.954

AWLS 0.0005 -0.0029 0.0020 -0.0013
0.0027/0.0027 0.0018/0.0018 0.0015/0.0015 0.0014/0.0015

0.946 0.957 0.937 0.955

AR(1)
(ρ = 0.6)

σ2
ij = σ2(tij)

CC -0.0729 -0.0105 -0.0103 0.0132
0.0022/0.0021 0.0017/0.0016 0.0016/0.0016 0.0016/0.0016

0.791 0.928 0.929 0.921

AC -0.0404 -0.0067 -0.0100 0.0119
0.0014/0.0014 0.0011/0.0011 0.0011/0.0010 0.0011/0.0011

0.835 0.927 0.937 0.923

IPW -0.0016 0.0004 0.0014 0.0003
0.0014/0.0013 0.0012/0.0011 0.0011/0.0011 0.0012/0.0011

0.933 0.917 0.934 0.925

AIPW -0.0012 0.0013 0.0015 0.0000
0.0013†/0.0013 0.0011†/0.0011 0.0010†/0.0010 0.0010†/0.0010

0.938 0.925 0.922 0.929

AOLS -0.0006 0.0038 0.0013 -0.0001
0.0014/0.0014 0.0011/0.0012 0.0010/0.0010 0.0010/0.0010

0.951 0.963 0.942 0.942

AWLS 0.0001 0.0009 0.0014 -0.0001
0.0013/0.0013 0.0011/0.0011 0.0010/0.0009 0.0009/0.0009

0.943 0.962 0.928 0.940

†: 1% trimmed empirical standard errors.
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Table 4.2: Simulation results of 1000 replications for the normal data (n = 100, m̄ =
5), under two different correlation structures, with homoskedastic/heteroskedastic errors,
and α = (2,−0.5,−1.5, 0, 0), about 20% missing at random on average. For each entry,
the first line displays the bias, the second line is the empirical standard error/averaged
asymptotic standard error, and the third line is the 95% coverage probability.

β̂0 − β0 β̂1 − β1 β̂2 − β2 β̂3 − β3

Compound
Symmtry
(ρ = 0.6)
σ2
ij ≡ σ2

CC -0.4855 -0.0599 -0.0752 0.0759
0.0041/0.0039 0.0026/0.0024 0.0025/0.0023 0.0025/0.0023

0.041 0.852 0.794 0.796

AC -0.1830 -0.0432 -0.0784 0.0806
0.0026/0.0025 0.0017/0.0017 0.0016/0.0016 0.0016/0.0016

0.375 0.856 0.652 0.627

IPW -0.0215 -0.0125 -0.0203 0.0171
0.0033/0.0026 0.0027/0.0020 0.0025/0.0019 0.0027/0.0019

0.861 0.856 0.826 0.799

AIPW -0.0072 0.0052 -0.0024 0.0051
0.0027†/0.0077 0.0022†/0.0171 0.0017†/0.0054 0.0016†/0.0193

0.937 0.930 0.930 0.928

AOLS -0.0012 -0.0048 0.0017 -0.0008
0.0027/0.0028 0.0019/0.0019 0.0015/0.0014 0.0014/0.0015

0.950 0.955 0.942 0.955

AWLS 0.0006 -0.0046 0.0023 -0.0016
0.0027/0.0027 0.0019/0.0019 0.0015/0.0015 0.0015/0.0015

0.949 0.952 0.941 0.953

AR(1)
(ρ = 0.6)

σ2
ij = σ2(tij)

CC -0.2048 -0.0360 -0.0456 0.0447
0.0026/0.0025 0.0019/0.0017 0.0017/0.0017 0.0017/0.0017

0.259 0.864 0.833 0.855

AC -0.0970 -0.0246 -0.0468 0.0471
0.0015/0.0015 0.0011/0.0011 0.0011/0.0011 0.0011/0.0011

0.457 0.887 0.718 0.716

IPW -0.0065 -0.0037 -0.0103 0.0086
0.0020/0.0016 0.0018/0.0013 0.0018/0.0013 0.0019/0.0013

0.874 0.883 0.842 0.834

AIPW 0.0024 0.0102 0.0014 -0.0019
0.0016†/0.0646 0.0014†/0.1314 0.0013†/0.0752 0.0013†/0.0444

0.928 0.914 0.927 0.929

AOLS -0.0001 0.0058 0.0006 0.0003
0.0016/0.0016 0.0012/0.0012 0.0010/0.0010 0.0010/0.0010

0.947 0.958 0.943 0.939

AWLS 0.0025 0.0027 0.0017 -0.0004
0.0015/0.0015 0.0011/0.0012 0.0010/0.0010 0.0010/0.0010

0.944 0.950 0.951 0.940

†: 1% trimmed empirical standard errors.

85



Table 4.3: Simulation results of 1000 replications for the non-normal data (n = 100,
m̄ = 5), under two different correlation structures, with homoskedastic/heteroskedastic
errors, and α = (2,−0.5,−1.5, 0, 0), about 20% missing at random on average. For each
entry, the first line displays the bias, the second line is the empirical standard error/averaged
asymptotic standard error, and the third line is the 95% coverage probability.

β̂0 − β0 β̂1 − β1 β̂2 − β2 β̂3 − β3

Compound
Symmtry
(ρ = 0.6)
σ2
ij ≡ σ2

CC -0.4674 -0.0676 -0.0714 0.0684
0.0044/0.0041 0.0029/0.0027 0.0024/0.0024 0.0024/0.0024

0.046 0.828 0.830 0.821

AC -0.1743 -0.0405 -0.0753 0.0726
0.0026/0.0026 0.0017/0.0017 0.0016/0.0016 0.0016/0.0016

0.401 0.873 0.677 0.691

IPW -0.0224 -0.0123 -0.0177 0.0160
0.0033/0.0027 0.0028/0.0020 0.0028/0.0019 0.0025/0.0019

0.858 0.860 0.848 0.840

AIPW -0.0027 -0.0157 0.0025 -0.0006
0.0028†/0.0068 0.0025†/0.0164 0.0017†/0.0106 0.0017†/0.0116

0.949 0.916 0.937 0.929

AOLS 0.0007 -0.0041 0.0009 -0.0034
0.0027/0.0028 0.0019/0.0019 0.0014/0.0015 0.0015/0.0015

0.958 0.947 0.958 0.950

AWLS 0.0036 -0.0037 0.0017 -0.0039
0.0027/0.0027 0.0019/0.0019 0.0014/0.0015 0.0015/0.0015

0.953 0.942 0.957 0.944

AR(1)
(ρ = 0.6)

σ2
ij = σ2(tij)

CC -0.2000 -0.0345 -0.0410 0.0409
0.0027/0.0025 0.0020/0.0019 0.0017/0.0017 0.0017/0.0017

0.276 0.884 0.871 0.861

AC -0.0948 -0.0238 -0.0442 0.0433
0.0015/0.0015 0.0011/0.0011 0.0011/0.0011 0.0011/0.0011

0.467 0.898 0.762 0.745

IPW -0.0104 -0.0062 -0.0084 0.0075
0.0019/0.0016 0.0018/0.0013 0.0018/0.0013 0.0019/0.0013

0.878 0.852 0.865 0.839

AIPW 0.0221 0.0681 -0.0176 -0.0146
0.0017†/∗ 0.0016†/∗ 0.0013†/∗ 0.0013†/∗

0.941 0.906 0.930 0.920

AOLS -0.0031 0.0042 -0.0004 -0.0008
0.0016/0.0015 0.0012/0.0012 0.0010/0.0010 0.0010/0.0010

0.944 0.942 0.943 0.947

AWLS 0.0010 0.0016 0.0004 -0.0018
0.0015/0.0014 0.0012/0.0011 0.0009/0.0009 0.0010/0.0009

0.942 0.940 0.940 0.941

†: 1% trimmed empirical standard errors.
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Table 4.4: Simulation results of 1000 replications for the normal data (n = 100,
m̄ = 5), under two different correlation structures, with homoskedastic/heteroskedastic
errors, and α = (0.2,−0.5,−1.5, 0, 0), about 40% missing at random on average. For
each entry, the first line displays the bias, the second line is the empirical standard
error/averaged asymptotic standard error, and the third line is the 95% coverage prob-
ability.

β̂0 − β0 β̂1 − β1 β̂2 − β2 β̂3 − β3

Compound
Symmtry
(ρ = 0.6)
σ2
ij ≡ σ2

CC -0.7716 -0.0698 -0.0914 0.0966
0.0069/0.0061 0.0040/0.0037 0.0043/0.0037 0.0043/0.0038

0.045 0.841 0.795 0.812

AC -0.2745 -0.0382 -0.0715 0.0745
0.0029/0.0028 0.0018/0.0018 0.0018/0.0018 0.0018/0.0018

0.114 0.892 0.739 0.731

IPW -0.0497 -0.0196 -0.0350 0.0377
0.0042/0.0030 0.0036/0.0025 0.0038/0.0024 0.0037/0.0024

0.778 0.818 0.770 0.743

AIPW 0.0000 0.0393 -0.0019 -0.0305
0.0031†/∗ 0.0038†/∗ 0.0023†/∗ 0.0022†/∗

0.922 0.905 0.912 0.921

AOLS -0.0009 -0.0063 0.0017 -0.0006
0.0027/0.0029 0.0020/0.0020 0.0015/0.0016 0.0015/0.0016

0.962 0.949 0.948 0.969

AWLS 0.0018 -0.0062 0.0019 -0.0007
0.0027/0.0029 0.0020/0.0020 0.0015/0.0016 0.0015/0.0016

0.963 0.942 0.952 0.964

AR(1)
(ρ = 0.6)

σ2
ij = σ2(tij)

CC -0.3357 -0.0405 -0.0516 0.0527
0.0049/0.0042 0.0035/0.0029 0.0034/0.0030 0.0034/0.0031

0.272 0.840 0.843 0.866

AC -0.1546 -0.0233 -0.0429 0.0444
0.0016/0.0016 0.0012/0.0012 0.0012/0.0012 0.0012/0.0012

0.128 0.891 0.777 0.773

IPW -0.0229 -0.0111 -0.0185 0.0196
0.0025/0.0019 0.0023/0.0017 0.0025/0.0017 0.0025/0.0017

0.806 0.844 0.805 0.785

AIPW -0.0207 0.0419 -0.0019 0.0615
0.0020†/∗ 0.0023†/∗ 0.0018†/∗ 0.0018†/∗

0.917 0.912 0.917 0.902

AOLS -0.0076 0.0123 0.0001 0.0009
0.0016/0.0016 0.0013/0.0013 0.0011/0.0011 0.0010/0.0011

0.938 0.935 0.945 0.940

AWLS -0.0035 0.0057 0.0004 0.0006
0.0015/0.0015 0.0012/0.0013 0.0010/0.0010 0.0010/0.0010

0.942 0.950 0.941 0.951

†: 1% trimmed empirical standard errors.
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Table 4.5: Simulation results of 1000 replications for the non-normal data (n = 100,
m̄ = 5), under two different correlation structures, with homoskedastic/heteroskedastic
errors, and α = (0.2,−0.5,−1.5, 0, 0), about 40% missing at random on average. For each
entry, the first line displays the bias, the second line is the empirical standard error/averaged
asymptotic standard error, and the third line is the 95% coverage probability.

β̂0 − β0 β̂1 − β1 β̂2 − β2 β̂3 − β3

Compound
Symmtry
(ρ = 0.6)
σ2
ij ≡ σ2

CC -0.7585 -0.0896 -0.0955 0.0968
0.0082/0.0070 0.0052/0.0046 0.0048/0.0040 0.0046/0.0040

0.053 0.843 0.806 0.819

AC -0.2637 -0.0350 -0.0702 0.0686
0.0029/0.0028 0.0020/0.0020 0.0018/0.0018 0.0018/0.0018

0.144 0.905 0.760 0.771

IPW -0.0550 -0.0223 -0.0379 0.0346
0.0041/0.0029 0.0037/0.0025 0.0035/0.0023 0.0035/0.0023

0.760 0.802 0.760 0.757

AIPW 2.0517 6.3115 3.5297 -0.9407
0.0033†/∗ 0.0040†/∗ 0.0022†/∗ 0.0026†/∗

0.941 0.893 0.924 0.921

AOLS 0.0001 -0.0047 0.0013 -0.0028
0.0027/0.0029 0.0022/0.0020 0.0015/0.0016 0.0015/0.0016

0.962 0.938 0.970 0.961

AWLS 0.0042 -0.0046 0.0016 -0.0026
0.0027/0.0029 0.0022/0.0020 0.0015/0.0016 0.0015/0.0016

0.957 0.935 0.970 0.958

AR(1)
(ρ = 0.6)

σ2
ij = σ2(tij)

CC -0.3322 -0.0416 -0.0509 0.0526
0.0051/0.0045 0.0041/0.0034 0.0036/0.0030 0.0036/0.0031

0.301 0.837 0.838 0.843

AC -0.1492 -0.0198 -0.0428 0.0410
0.0017/0.0016 0.0013/0.0013 0.0012/0.0012 0.0012/0.0012

0.169 0.921 0.787 0.805

IPW -0.0283 -0.0120 -0.0177 0.0207
0.0025/0.0018 0.0024/0.0016 0.0025/0.0017 0.0024/0.0017

0.784 0.817 0.801 0.789

AIPW -0.0052 0.0254 0.0012 0.0030
0.0021†/0.0125 0.0022†/0.0433 0.0018†/0.0258 0.0017†/0.0140

0.926 0.870 0.927 0.920

AOLS -0.0091 0.0122 -0.0013 -0.0001
0.0016/0.0016 0.0013/0.0013 0.0010/0.0011 0.0011/0.0011

0.940 0.923 0.950 0.945

AWLS -0.0026 0.0067 -0.0009 -0.0006
0.0015/0.0015 0.0013/0.0012 0.0010/0.0010 0.0010/0.0010

0.941 0.927 0.948 0.948

†: 1% trimmed empirical standard errors.
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Figure 4.2: Histograms of the estimators for 1000 times simulations under the setting of Table
4.3 with AR(1) correlation structure. 1st row: IPW; 2nd row: AIPW; 3rd row: AOLS; 4th row:
AWLS.

Appendix D of the book. You can also find the data online at http://lib.stat.cmu.edu/

datasets/pbcseq.

The original interest of this study is to compare the survival distributions for the two groups

and establish a Cox proportional hazards regression model for making estimation (Murtaugh et al.

(1994)). Komarek & Komárková (2013) proposed a clustering method for multivariate longitudinal

data and used the PBC data as an illustrative example. The original dataset has 19 attributes includ-

ing some demographic variables like age and sex, clinical measurements like the presence/absence

of ascites, and biochemical measurements such as the levels of bilirubin, albumin. At the end of

the study, there are three types of patients’ status: alive, dead or liver transplanted. For simplicity

and case control, we focus on the subset of alive patients with the following variables:

1. Y -LogBi: logarithm of serum bilirubin (mg/dl), which is a liver bile pigment;
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2. X-LogCh: logarithm of serum cholesterol (mg/dl), which is a blood lipoprotein;

3. Z1-Drug: a binary variable indicating the treatment group (0 for placebo and 1 for DPCA);

4. Z2-Age: a continuous variable as the patient’s age at the measurement time;

5. t-Year: a continuous variable recording the years between the enrollment and this visit,

obtained by dividing the original data in days by 365. Start with 0 as the measurement time.

Since bilirubin is a very important prognostic factor in PBC (Shapiro et al. (1979)), here we

would like to explore the difference between the two groups on bilirubin levels, controlling other

variables as cholesterol level and age. Note that the data for cholesterol is non-monotone missing.

For the purpose of illustration, we delete several patients’ records with missing cholesterol at the

enrollment (t = 0). The final data we use has n = 127 patients with totallyN = 919 measurement.

There are 64 of them in the DPCA group and 63 in the placebo group. Z1 is a baseline value for

each patient, while other variables are time-varying. The number of measurements for each patient

mi ranges from 1 to 16, with an average as 7.24. X (log cholesterol) is always available at the

first measurement, but may be missing intermittently during the follow-up with a 32.3% overall

missing proportion.

We first perform simple exploratory data analysis on the data. Results are visualized in Figure

4.3. The blue curves in the right two scatterplots are obtained through locally weighted smoothing.

From the plots, we find the relationships between Y and X , Z2 are almost linear, and the distribu-

tions of Y for the two groups do not differ too much. Based on this, we consider a linear model

as

LogBi = β0 + β1LogCh + β2Drug + β3Age + ϵ.

Assume the missing mechanism forX is MAR and the parametric model for selection probabilities

is

logit(πij) = α0 + α1Ri,j−1Xi,j−1 + α2Yij + α3Z1ij + α4Z2ij.

After fitting the logistic model, the p-values for α1, α2 and α4 are all smaller than 0.001. This
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Figure 4.3: Plots for showing the relationship between log bilirubin and other variables. Top left:
Scatterplot of Log Bilirubin vs. Measurement Time. Each curve presents the change in Y over
time for each patient; Top right: Scatterplot of Log Bilirubin vs. Log Cholesterol; Bottom left:
Side-by-side boxplot of Log Bilirubin vs. Drug; Bottom right: Scatterplot of Log Bilirubin vs.
Age.

at least indicates that the missingness of X is related to Y and observed part of X , thus MCAR

mechanism should not be considered and the MAR assumption seems reasonable.

We applied our proposed method to this incomplete data and compare it to other estimators

just like what we did in Section 4.5. For the augmentation in AIPW, we still fit a linear regression

model for Xij on Qij = (1, Yij,Z
⊤
ij)

⊤. The results of the analysis can be found in Table 4.6. The

values in the brackets are the standard errors of the estimators. From the table we observe that all

methods conclude that LogCh is significant in this linear model while Age is insignificant. And

LogCh has a positive relationship with LogBi. As expected, CC has larger standard errors than

other estimators. The rest of the listed estimators have similar efficiency, though AWLS always
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Table 4.6: PBC Data Analysis (n = 127, m̄ = 7.24)

β̂0(Intercept) β̂1(LogCh) β̂2(Drug) β̂3(Age)

CC -3.4542(1.2083) 0.8600(0.1999) -0.7904(0.3615) -0.0.0016(0.0095)
p-value 0.0050 < 0.0001 0.0307 0.8669

AC -2.1783(0.6921) 0.5211(0.1480) 0.0100(0.1399) -0.0.0061(0.0091)
p-value 0.0021 0.0006 0.9432 0.5043

IPW -2.0945(0.6302) 0.4949(0.1310) -0.0156(0.1239) -0.0061(0.0074)
p-value 0.0012 0.0002 0.9002 0.4094

AIPW -2.1266(0.6034) 0.4874(0.1307) 0.0021(0.1197) -0.0050(0.0078)
p-value 0.0006 0.0003 0.9863 0.5275

AOLS -2.1552(0.5740) 0.4798(0.1549) 0.0199(0.1411) -0.0040(0.0089)
p-value 0.0003 0.0024 0.8881 0.6533

AWLS -2.1369(0.5323) 0.4703(0.1399) 0.0068(0.1318) -0.0037(0.0085)
p-value 0.0001 0.0010 0.9591 0.6661

has smaller SE than AOLS for considering heteroscedasticity. The main difference lies in the effect

of Drug. CC gives significant result while the rest conclude insignificance based on the p-values.

Since MCAR is not reasonable here, we believe that CC can draw a wrong conclusion about the

relationship between Drug and LogBi . In this case we do not have unstable inverse-probability

weights, so the results of IPW, AIPW, AOLS and AWLS are very close and more reliable than

CC/AC under MAR. Based on these results, we can conclude that there is no significant difference

of serum bilirubin levels between the DPCA and the placebo group. This is consistent with the

boxplot in Figure 4.3 and the analysis results mentioned in Fleming & Harrington (2011) as “there

are no detectable differences between the distributions of survival times for the DPCA and placebo

treatment groups”.

4.7 Conclusion Remarks

In this chapter we have proposed a new semiparametric estimator for longitudinal regression

parameters based on augmented GEE without inverse-probability weights using a single-index

model for augmentation when the covariate is non-monotone missing at random. Except the SIM

and some necessary regularity conditions, we do not need to specify any likelihood or parametric

models for the missing process. Since we do not include the selection probabilities in the point

92



estimation procedure, our method not only has a simpler algorithm, but also avoids the situation of

highly variable inverse-probability weights. In this sense, numerically our proposed estimator is

not sensitive to positive but near-zero selection probabilities, while IPW and AIPW can be highly

influenced by those near-zero πij’s. Equally importantly, compared to using a standard multivariate

kernel function, the SIM we use on augmentation avoids the problem of curse of dimensionality.

Variance functions are considered for heteroscedasticity. Asymptotic theory has been developed

for the proposed estimators showing the asymptotic consistency and normality, which is important

for making statistical inference. All these conclusions are supported by our numerical studies.

In this work, we only considered a single univariate covariate X in simulation studies and the

real data example. The results can be easily extended to the particular case of a multivariate X

when Rij = 0 means that all the covariates in X ij are missing at the same time. It is interesting

to consider several covariates missing separately, but this is out of the scope of this research.

Further research problems include the estimation of the parameter ρ of the true correlation structure

C(ρ), the estimation and related theory using similar methods but with another working correlation

structure instead of WI, and extension to generalized linear models.
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5. SUMMARY AND CONCLUSIONS

5.1 Summary

In this dissertation, we have proposed a simple semiparametric estimator for linear regression

parameters based on augmented GEE without inverse-probability weights using a single-index

model for augmentation when the covariate is MAR for both i.i.d. data and longitudinal data.

In particular, the missing pattern in the incomplete longitudinal data is as general as being non-

monotone missing.

The proposed method does not need to specify any likelihood or parametric models for the

selection probability or the missing covariate except the SIM and some necessary regularity condi-

tions. One important advantage of our proposed estimator over the (augmented) inverse-probability

weighted estimators is that it does not include selection probabilities in the point estimation pro-

cedure so that it does not need to model them and avoids the situation of having highly variable

inverse-probability weights. In this sense, numerically our proposed estimator is simple and not

sensitive to positive but near-zero selection probabilities, while the performance of IPW and AIPW

are highly influenced by those near-zero selection probabilities. Equally importantly, compared to

using a standard multivariate kernel function, the SIM we use on augmentation avoids the prob-

lem of curse of dimensionality. Asymptotic theory has been developed for the proposed estimator

showing the asymptotic consistency and normality, along with the sandwich formulas for asymp-

totic covariances. Additionally, for i.i.d. data, we have shown that our proposed estimator is

asymptotically equivalent to AIPW with the same estimation for the augmentation under certain

conditions, and the SIM we use also keeps the efficiency of standard kernel smoothing in some

particular situations. For longitudinal data, a WI correlation structure is applied to simplify the

estimation procedure, and heteroscedasticity is allowed with variance functions being estimated

nonparametrically based on the partially observed residuals derived from an initial estimate.

Simulation studies for data generated from different distributions (multivariate normal or non-
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normal) with different sample sizes, missing proportions and correlation structures were con-

ducted. The results support our theoretical conclusions and illustrate the phenomenon of unstable

inverse-probability weights for IPW and AIPW. The proposed method is applied to one real data

example for i.i.d. data and longitudinal data, respectively.

5.2 Further Study

There are still some interesting open problems for future research. One problem is to extend

the methodology to GLM or even more flexible regression models. This extension seems straight-

forward but actually is complicated because they no longer have the simple form of the score

functions for linear models. Another possible topic is to consider several covariates missing sep-

arately, which means they are not always observed or missing at the same time. Furthermore, for

longitudinal data, it is still not clear how to construct the estimation procedure and establish the

theory with another structured correlation matrix instead of the WI. Finally, it will be interesting

to consider generalizing the method to MNAR mechanism.
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