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ABSTRACT 

The invention of rechargeable batteries has dramatically changed our landscapes 

and lives, underpinning the explosive worldwide growth of consumer electronics, 

ushering in an unprecedented era of electric vehicles, and potentially paving the way for 

a much greener energy future. Unfortunately, current battery technologies suffer from a 

number of challenges, e.g., capacity loss and failure upon prolonged cycling, limited ion 

diffusion kinetics, and a rather sparse palette of high-performing electrode materials. 

This dissertation will focus on elucidation of the influence of electronic structure on 

intercalation phenomena. Mechanistic understanding of compositional and electronic 

structure heterogeneities spanning from atomistic to mesoscale dimensions is imperative 

to facilitate the rational design of novel electrode chemistries and architectures. First, 

this dissertation provides an introduction to the fundamental science challenges involved 

in electrode design utilizing V2O5 as a model system to review means of defining ionic 

and electronic conduction pathways. Subsequently, the oxidative chemistry of graphite, a 

canonical anode material, is evaluated with the purpose of understanding the spatial 

localization and connectivity of functional groups in graphene oxide, which is of utmost 

relevance to the design of high-performing electrode composites. Furthermore, scanning 

transmission X-ray microscopy (STXM) observations indicate the formation of lithiation 

gradients in individual nanowires of layered orthorhombic V2O5 that arise from electron 

localization and local structural distortions. Electrons localized in the V2O5 framework 

couple to a local structural distortion, giving rise to small polarons, which are observed 

to be trap Li-ions and are found to represent a major impediment to Li-ion diffusion. In 
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addition, this dissertation presents the first direct visualization of patterns of 

compositional inhomogeneities within cathode materials during electrochemical 

discharge. Two distinct patterns are evidenced: core—shell separation and striping 

modulations of Li-rich and Li-poor domains within individual particles. 3D 

compositional maps have been developed and translated to stress and strain maps, 

providing a hitherto unprecedented direct visualization of stress and strain 

inhomogeneities.  Finally, a cluster of interlaced LixV2O5 nanoparticles is evaluated by 

scanning transmission X-ray microscopy. Increased heterogeneity at the interface 

between particles suggests the exchange of Li-ions, implying a “winner-takes-all” 

behavior (corresponding to particle-by-particle lithiation of an ensemble of particles). 

Such behavior portends the creation of localized hot-spots and provides insight into a 

possible origin of failure of Li-ion batteries.  
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CHAPTER I 

INTRODUCTION AND MOTIVATION* 

I.1 Introduction 

 As a result of the sharp fall in the levelized costs of electricity generation from 

renewable energy sources such as wind and solar and the increasing proportion of 

electricity generated from such intermittent sources,1 the development of large-area 

energy storage formats has emerged as a critical imperative. The last decade has seen the 

emergence of a thriving landscape of energy storage options spanning the range from 

flywheels and pumped hydroelectric storage to intercalation, conversion, and flow 

batteries that each have distinctive advantages and are individually well suited to 

specific energy conversion scenarios.2 Rechargeable intercalation batteries have rapidly 

gained prominence as scalable energy storage vectors that can provide high volumetric 

and gravimetric energy densities across hundreds of cycles.3–5 The operation of an 

intercalation battery is predicated on the reversible insertion/extraction of a charged 

species (almost always Li-ions in current technologies) between a coupled pair of 

electrodes separated by an ionically conductive and electrically insulating electrolyte, 

accompanied by redox processes within the host matrix; the cations diffuse along 

chemical potential gradients during discharging of the battery and uphill against 

chemical potential gradients during charging, accompanied by current flow in an 

external circuit to maintain charge balance.3–8 Whilst apparently straightforward in 

*
 Reproduced with permission from De Jesus, L. R.; Andrews, J. L.; Parija, A.; Banerjee, S. Defining Diffusion 

Pathways in Intercalation Cathode Materials: Some Lessons from V2O5 on Directing Cation Traffic. ACS Energy Lett. 
2018, 3, 915–931. Copyright 2018 Reproduced with permission from the American Chemical Society. 
 



 

 2 

conception, the operation of intercalation batteries requires multiscale charge and mass 

transfer processes across several interfaces. The reversible operation of batteries requires 

the unimpeded progression of a sequence of chemical reactions and charge transfer 

processes ranging from solvation/desolvation of cations at electrolyte/electrode 

interfaces to formation of an ion-permeable surface passivating layer at electrode 

surfaces, redox reactions at metal sites, and intercalation-induced solid—state 

transformations. These processes are inevitably also accompanied by less desirable 

pathways such as defect formation and diffusion, metal plating, and electrolyte 

decomposition. Mechanistic elucidation and predictive design of battery chemistries and 

architectures thus necessitate a precise understanding of ion and electron conduction 

pathways and the dynamical evolution of structure under applied potential, mechanical 

strain, and large compositional fluctuations.9–11 Bottlenecks in the diffusion of ions and 

electrons give rise to pronounced inhomogeneities across porous electrode structures that 

profoundly impact energy dissipation, cyclability, and the proportion of actively 

intercalating materials. In this chapter, we review mechanistic ideas for directing cation 

diffusion across multiscale electrode architectures based on mapping of lithiation 

gradients, modeling of diffusion pathways, and topochemical stabilization of metastable 

polymorphs providing a variety of different conduction paths. Diffusion limitations are 

considered with respect to electron transport, ion diffusion, and coupled phenomena. A 

classical intercalation host, vanadium pentoxide (V2O5), having numerous accessible 

polymorphs in addition to the thermodynamically stable phase, is used as a model 

system to develop mechanistic ideas.12,13 
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Electrode materials for intercalation batteries must be designed keeping in mind a 

number of constraints related to the thermodynamics and kinetics of cation diffusion.14–17 

In order to obtain a large voltage, the differential in free energies of Li-ions across the 

pair of electrodes must be high; however, even the thermodynamically uphill process 

needs to be accessible under a potential bias (and must not be kinetically blocked). The 

insertion of Li-ions requires that the intercalation host have available a high density of 

available redox-active centers and insertion sites) and that intercalation sites are 

interconnected by low-energy diffusion pathways.18  

Two broad classes of crystalline intercalation hosts can be distinguished based on 

the nature of their phase diagrams and intercalation mechanisms; materials wherein Li-

ions are incorporated through formation of a continuous solid solution19–21 and materials 

wherein Li-ion intercalation brings about a pronounced structural phase transformation. 

As arguably a case in point of the former, the layered structure of LixCoO2 (and related 

solid solutions with substitutional incorporation of other elements on the Co site) is 

preserved over a broad range of Li-ion concentrations, yielding a structure that comports 

as a solid-solution across a considerable range of electrochemical conditions.19,22 In the 

case of LixFePO4, a classical nucleation and growth mechanism involving the initial 

nucleation of a Li-rich LixFePO4 upon supersaturation of a Li-poor matrix and its 

subsequent propagation (with a considerable miscibility gap between the two phases) is 

supplanted by a much more rapid solid-solution formation pathway for nanometer-sized 

particles at high current rates and temperatures.9,23–28 Both classes of structural 

transformations can give rise to multiscale inhomogeneous lithiation gradients as a result 
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of diffusion limitations. The consequences of such largescale inhomogeneities are 

profound, spanning the range from non-uniform energy dissipation and the creation of 

localized “hot spots” to large anisotropic stress that brings about electrode pulverization.  

A critical imperative that has emerged is the identification of electrode 

chemistries and the design of precisely structured architectures that allow for diffusion of 

cations along programmable pathways. Such electrode design requires consideration of 

phenomena spanning the range from atomistic to mesoscale dimensions and events 

spanning the range from individual hopping of cations between adjacent sites to shearing 

of lattices to accommodate phase transformations and the entire deformation of particles 

and porous particulate networks. In order to facilitate electrode design, detailed 

multiscale understanding of diffusion phenomena must be coupled with predictive 

modeling and synthetic schemes. The subsequent sections review recent results related 

to deciphering multiscale diffusion phenomena using a layered classical intercalation 

host V2O5 as a model system along with advances related to atomistic and mesoscale 

design implemented as a means of circumventing the diffusion bottlenecks identified in 

mechanistic studies.  

α-V2O5 is an orthorhombic, layered compound that crystallizes with a space 

group symmetry of Pmmn.29 In this structure, [VO5] pyramids, the fundamental building 

block of α-V2O5, are connected by shared edges and corners to form zigzag lamellar 

sheets along the crystallographic a-direction (Fig. I.1a). These lamellar sheets, with 

separation of 4.368 Å, are held together by van der Waals’ forces to form a layered 

compound as shown in Figure I.1a.29 α-V2O5 has a high theoretical capacity (450 mAhg-
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1) and a large open circuit voltage30; however, despite the excellent theoretical metrics, 

α-V2O5 continues to be plagued by myriad issues including low conductivity, phase 

inhomogenity31–33, and irreversibility after lithiation beyond x=1.0.34 Several of these 

observed problems are a result of diffusion limitations that are ionic, electronic, or 

coupled ionic—electronic in origin.35 In the following three sections, we discuss 

fundamental impediments to cation diffusion within α-V2O5 as unraveled using scanning 

transmission X-ray microscopy, X-ray spectroscopy, and density functional theory 

calculations which relate to Chapter III, IV, and V of this dissertation; the subsequent 

two sections discuss potential approaches to mitigate these shortcomings utilizing 

nanostructuring and stabilization of metastable structures. We conclude this chapter with 

a discussion of cathode materials for ‘beyond-Li’ batteries and opportuities for mining 

novel compositional phase space to design potential intercalation hosts as well as 

outlining prospects for bridging critical knowledge gaps regarding intercalation 

mechanisms  

I.1.1 Atomistic Diffusion Pathways, Electronic Conduits, & Polaron Bottlenecks 

The availability of nudged elastic band (NEB) and associated methods for 

mapping of energy landscapes have allowed for density functional theory (DFT) 

modeling of likely diffusion pathways in crystalline materials, providing an atomistic 

view of ion diffusion pathways and allowing for a comparative evaluation of the 

energetics of diffusion barriers.36–38 Figures I.1a–b depict the diffusion pathway of Li-

ions in α-V2O5. Diffusion is observed to be strongly favored along the crystallographic b 

axis and involves substantial changes in local coordination. The inserted Li-ion is 
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ensconced within an approximately octahedral coordination environment but needs to 

transit through a relatively tightly spaced trigonal planar coordination environment 

defined by three oxide ions to get to an adjacent symmetry-equivalent empty octahedral 

coordination site (Fig. I.1c). The barrier for hopping of Li-ions from one site to another 

is estimated to be ca. 0.22 eV (Fig. I.1d). Such a barrier can be correlated to the diffusion 

coefficient (with knowledge of the attempt frequency) and is modified by increasing Li-

ion occupancy. As a result of the relatively large change of local coordination 

environment and the narrow transition state, the migration barrier is relatively high for α-

 

Figure I.1. Charge transport in α-V2O5. (a,b) Calculated diffusion pathway followed 
by Li-ions along the b-axis of α-V2O5, as determined from nudged elastic band 
calculations; the panels depict the pathway viewed along the a- and b-axes, 
respectively (adapted from Ref. 31 from Chapter I with permission under the terms 
of the Creative Commons CC BY). Vanadium atoms are depicted as grey spheres, 
oxygen atoms are depicted as red spheres, and Li atoms are depicted as green 
spheres. (c) As Li-ions diffuse between the layers of V2O5, they hop between quasi-
octahedral coordination environments transiting across a spatially constrained 
trigonal planar coordination environment. (reprinted from Ref. 54 from Chapter I 
with permission from Elsevier) (d) The diffusion barrier for migration of Li-ions is 
calculated to be 0.22 eV (adapted from Ref. 31 with permission under the terms of 
the Creative Commons CC BY) (e) Calculated band structure and orbital-projected 
density of states for bulk V2O5, depicting the mostly O 2p character of the valence 
band (green lines), and the primarily V 3d character of the conduction band (red 
lines). 
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V2O5 and indeed this limitation is considerably amplified for larger and/or more 

polarizing cations such as Na+, Mg2+, Ca2+, and Al3+.39–42 

Diffusion pathways represent an intrinsic property of a crystal structure but can 

be potentially modulated through either (a) atomistic design to identify and stabilize 

alternative polymorphs or (b) dimensional reduction, which is especially opportune for 

2D van der Waals’s solids, wherein bulk diffusion is supplanted by surface diffusion. 

Based on extensive computational analyses of diffusion pathways, the idea of “frustrated 

coordination” has been put forth wherein sub-optimal coordination environments are 

thought to particularly facilitate cation diffusion since cations within such environments 

do not represent deep wells in the free energy landscape43 and can readily hop across 

local minima. Furthermore, relatively small changes in coordination environments are 

thought to be conducive to lower migration barriers as a result of a decreased amount of 

bond-breaking and bond formation needed to access the transition state. Advances in 

atomistic design to mitigate diffusion logjams both for Li- and multivalent ions are 

discussed in subsequent sections. 

During discharge of the battery, insertion of Li-ions within the cathode at the 

electrolyte interface is balanced by electron flow from the current collector to the 

cathode material to maintain charge balance. Conversely, during charging of the battery, 

the transition metal sites are oxidized as cations are extracted at the electrolyte interface 

and the electron density is extracted at the current collector. Consequently, electron 

transport and not just ion diffusion is necessary within the electrode architecture to 

facilitate redox processes at transition metal sites. Transition metal oxides used as 
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cathodes typically have valence bands that are predominantly O 2p in origin and 

conduction bands that are derived from metal d states. Figure I.1e plots the calculated 

band structure of α-V2O5 depicting the V 3d nature of the conduction band states. The 

narrow energy dispersion of the conduction band states and the appearance of a split-off 

conduction band derived from V 3dxy states results in a high effective mass and low 

mobility of electrons, thereby resulting in a relatively poor electrical conductivity for this 

material.44–47 Indeed, the primary mode of charge transport in this material is believed to 

be the diffusion of small polarons.48 The electrical conductivity of such oxides can be 

modulated to some extent through extrinsic aliovalent doping or the inclusion of 

conductive additives. In the latter case, the conductive additives necessarily must be 

closely interfaced with the active electrode materials such as in the form of 2D stacked 

heterostructures proposed by Pomerantsova and Gogotsi to enable coupling of ionic and 

electronic diffusion.49 Smaller bandgap polymorphs or materials with more extensive 

energy dispersion of conduction band states (and thus a lower effective mass of 

electrons) are furthermore attractive alternatives from an atomistic design perspective 

(but this often carries a voltage penalty).  

The coupling of cation diffusion with electron density, as inevitably occurs 

within a cathode material during redox processes, is effectively probed using X-ray 

absorption spectroscopy (XAS) and imaging methods such as scanning transmission X-

ray microscopy (STXM) that capture inhomogeneities in the electronic structure of the 

cathode material and provide a chemically specific compositional map.50 Examining the 

spatiotemporal evolution of spectroscopic signatures provides a detailed perspective of 
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the coupled electronic—ionic origins of diffusion limitations.30–32,44 Whilst to a first 

approximation, the XAS methods probe the unoccupied density of states and thus the 

 
Figure I.2. Polaronic and staging origins of inhomogeneous lithiation. (a) Scanning 
transmission X-ray microscopy image showing the inhomogeneous spatial distribution 
of Li-ions across a V2O5 nanowire as indicated by the spatially localized contributions 
of spectra plotted in (b); the red, green, and blue components correspond to low, 
intermediate, and high concentrations of Li-ions, respectively. (c) Scheme depicting 
the energetic benefits of charge localization and lifting of spin degeneracy upon 
addition of a single electron to V2O5. The right panel depicts the stabilization of a 
small polaron (adapted from Ref. 31 from Chapter I with permission under the terms 
of the Creative Commons CC BY). (d) Illustration of stage-ordering phenomena. The 
initial stochastic intercalation of ions between two specific layers results in a local 
expansion of the interlayer spacing and facilitates insertion of a second ion within the 
same layer, contributing to lithiation gradients along the nanowire seen in (a).  
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formal valence and electron localization in vanadium atoms, the inhomogeneities 

observed are reflective of lithiation gradients given the redox processes accompanying 

Li-ion insertion/extraction.30,31 Figure I.2 depicts a STXM image indicating the 

heterogeneous distribution of different lithiated phases in chemically lithiated V2O5 

measured with single-particle resolution.31,32 Figure I.2a maps the spatial distribution of 

three spectral components identified within the sample (and plotted in Fig. I.2b); each of 

the components correspond to X-ray absorption near-edge structure (XANES) spectra 

acquired at V L- and O K-edges of the imaged region. The V L-edge XANES spectra 

comprise two sets of spectral features split as a result of spin–orbit coupling by ca. 7 eV. 

The first spectral feature centered at ca. 518 eV (V LIII) corresponds to transitions from 

the V 2p3/2 → V 3d states, whereas the second set of spectral features centered at ca. 525 

eV, (V LII), correspond to transitions from V 2p1/2 → V 3d states.44,45,51,52 The V LIII-edge 

spectral feature is characterized by fine spectral structure and provides a glimpse of the 

start of the conduction band in V2O5. The two spectral features at ca. 515.6 and 516.8 eV 

can be attributed to transitions of V 2p→V 3dxy and V 2p → V 3dxz/yz character at the 

bottom of the V2O5 conduction band, respectively, as elucidated by DFT calculations 

performed by Neese and co-workers.45 In contrast, the O K-edge XANES spectra 

comprise features corresponding to transitions from O 1s core states to O 2p states 

hybridized with V 3d states, which are split into t2g and eg* states as result of the 

approximately octahedral crystal field of the oxide ligands.44 The absorption feature at 

ca. 529 eV (t2g) arises primarily from a transition to a final state derived from the 

hybridization of 2px/y states of vanadyl oxygen atoms with V 3dxz/yz orbitals and from the 
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hybridization of oxygen 2px orbitals of bridging oxygen atoms with V 3dxy states. In 

contrast, the spectral feature at ca. 531 eV (denoted as eg in Fig. I.2b) results from a final 

state that has contributions from O 2p states hybridized with V 3dz2 and V 3dx2–y2 

states.51,52  

The relative intensities of the spectral features are found to be strongly dependent 

on the filling of the conduction band resulting from reduction of V2O5 upon chemical 

lithiation. Specifically, the intensities of the V 3dxy absorption at the V LIII-edge and the 

ratio between t2g and eg features at the O K-edge are greatly modified with increasing 

levels of lithiation.31,53 For the former, the filling of the lowest-lying “split-off” V 3dxy 

states results in suppression of the lowest-energy absorption feature at the V LIII-edge as 

a result of Pauli blocking. At the O K-edge, the diminished intensity of the t2g absorption 

with respect to the eg absorption arises from the lifting of the electron spin degeneracy, 

caused by the emergence of electron correlation effects as well as the structural 

distortion of the lattice arising from Li-ion intercalation.31  

Figure I.2a depicts heterogeneous domains of a pair of LixV2O5 nanowires; the 

red, green, and blue regions correspond to successively increasing extents of lithiation. 

The larger nanowire is ca. 250 nm in thickness and ca. 400 nm in diameter, whereas the 

smaller nanowire is ca. 50 nm thick and ca. 100 nm in diameter.31 The heterogeneity of 

lithiation attributed to two distinct origins: i) diffusion limitations resulting from 

stabilization of small polarons, specifically, the stabilization of quasi-particles wherein 

localized electron density on a vanadium atom is coupled to the structural distortion of 

the lattice induced as a result of Li-ion intercalation (Fig. I.2c); ii) the manifestation of 
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stage ordering phenomena wherein the insertion of an initial Li-ion within a particular 

layer is followed by a successive insertion of Li-ions within the same layer (which has 

already been expanded) instead of adjacent layers (Fig. I.2d).31 The first-mentioned 

polaronic bottleneck is especially pronounced as a result of the narrow split-off 

conduction band derived from V 3dxy states in α-V2O5 and underlines the pronounced 

role of electronic structure in mediating Li-ion diffusion31,42 (vide infra); upon initial 

reduction, the electron density is localized within these states and can serve to self-trap 

adjacent Li-ions. Indeed, spectral features corresponding to such localized “mid-gap” 

polaronic states are observed just above the valence band edge in high-energy X-ray 

photoemission spectra of these systems.31 While atomistic in origin, the polaronic 

bottleneck brings about pronounced lithiation gradients even within individual particles 

(Fig. I.2a). As will be discussed below, increasing lithiation brings about a sequence of 

intercalation-induced phase transformations in V2O5 and thus the spatiodynamic 

propagation of such phase transformations is greatly influenced by such polaronic 

barriers. Given the highly coupled nature of electronic and ionic diffusion processes, a 

realistic deconvolution is difficult but polaron diffusion phenomena have been estimated 

to account for a substantial portion of the migration barrier in several oxide materials.54 

Understanding diffusion limitations thereby necessitates an accurate description 

of atomistic diffusion pathways, electron transport, and coupled polaron diffusion 

phenomena. While a plethora of articles examining diffusion pathways using density 

functional theory calculations have become available in recent years, the latter two 

considerations are often neglected and this is arguably a major origin of the current 
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inadequate predictive power of first-principles calculations. A precise understanding of 

the evolution of electronic structure as a function of lithiation is necessary as is a more 

exact treatment of electron correlation. Experimental probes of electronic structure such 

as resonant inelastic X-ray scattering and X-ray absorption spectroscopy hold promise 

for enabling the benchmarking of first-principles calculations. Increasing the accuracy of 

calculations will allow for the development of improved design principles that take into 

account the full complexity of coupled ionic and electronic diffusion.  

I.1.2 Stabilization and Diffusion of Polarons in Cathode Materials 

From an electronic structure perspective, during reduction and concomitant 

intercalation of the cathode material, the added electrons begin to fill unoccupied states 

starting from the bottom of the conduction band. As illustrated by the two competing 

states in Figure I.2c, the extent to which electron density will be delocalized across 

different metal centers (or localized on a transition metal center) depends on the balance 

between the kinetic energy gained by delocalizing the electron density across a band, the 

penalty incurred as a result of Coulombic repulsions between delocalized electrons 

(electron correlation), and the energetic stabilization gained by inducing a local lattice 

distortion (an electron—phonon coupling interaction).12 Given the narrow 3d bands of 

vanadium and the manifestation of strong electron correlation in most transition metal 

oxides, electron localization is energetically strongly preferred over delocalization of 

electron density across the unit cell. The combination of localized electron density and 

lattice distortion constitutes a polaron. The localized polaron is further stabilized by 

interactions with Li-ions. As shown in Figure I.3a, depending on the electronic structure 
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of the material and the specific states available, reduction of the metal oxide yields new 

occupied bands below the Fermi level (as observed using hard X-ray photoemission 

spectroscopy in the case of LixV2O5)31,42 and such a polaronic feature essentially splits 

off from the rest of the conduction band instead of forming a half-filled band. From a 

structural perspective, the inserted Li-ions also polarize the framework as represented 

schematically in Figure I.3b and thereby displace atoms in their immediate vicinity from 

their equilibrium positions in the pristine unintercalated phase. The coupling of the 

localized electron density with its lattice distortion and adjacent Li-ions yields a self-

trapped polaron that then diffuses through the lattice in a conjoined manner. The hopping 

from one localized well to another is intrinsically coupled to diffusion of the 

intercalating species and manifests practically in a greater local diffusion barrier of the 

intercalating species, leading to atomic-scale ‘traffic-jams’.31,32,53,55–57 The effective mass 

of the polaron and its barrier to diffusion depends on the strength of the electron—

phonon coupling and the strength of the self-trapping interaction with the Li-ions. When 

polarons with deep wells occur in cathode materials, the observed diffusivity of the 

materials is dramatically dampened. With increasing lithiation and an increased density 

of polarons, Figures I.3a and b illustrate the closer proximity of such distortions resulting 

in easier diffusion through stabilization of a percolative network or eventually phase 

transformation to a structure that can better accommodate a periodic array of structural 

distortions.  
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 The split-off V 3dxy-derived band of α-V2O5 provides a facile set of states for 

localization of electrons.30,31,46 The formation of the polaron in α-V2O5 is depicted in Fig. 

I.2c. Upon lithiation, the electron localizes on the 3dxy orbital of a nearby vanadium site 

(Fig. I.2c), inducing a subtle perturbation of the surrounding framework. Similarly, the 

presence of a charged cation within an interstitial site between layers of α-V2O5 induces 

a substantial polarization of the framework where the oxygen atoms pucker towards the 

lithium and the vanadium atoms are slightly repelled.31,40 The formation energy of the 

polaron in α-V2O5 is a thermodynamically favorable value of -0.41 eV. This results in 

higher energy barriers values for hoping mechanisms, thus sluggish diffusion, of Li ions 

and the polaron of 0.22 eV and 0.34 eV, respectively.31,40  

Figure I.3. Electronic and atomistic structure implications of polaron formation. (a) 
Evolution of the density of states of a representative cathode material and (b) a 
schematic depiction of the corresponding structural perturbation induced as a result 
of polaron formation at varying degrees of lithiation. The blue and red spheres 
represent the anionic and cationic sublattices upon lithiation and the grey shaded 
regions denote the spatial extent of the lattice that is distorted the structure.  
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It is important to note that even while the localization of electron density at 

vanadium centers is particularly prominent in this example, these considerations are 

broadly generalizable to early first-row transition metal oxides given their constricted 

3d-derived states and the manifestation of electron correlation effects.55,56,58,59 Sluggish 

diffusion kinetics resulting from polaronic confinement of intercalating species are thus 

likely quite pervasive in oxide cathode materials.31,56,60–62 While first row transition 

metals are particularly attractive from an earth abundance perspective, and given their 

low atomic masses, allow for high energy densities, the aforementioned localization and 

trapping phenomena need to be mitigated to facilitate cation diffusion. In other words, 

defining cation diffusion pathways necessitates not just consideration of the local 

coordination environments for hopping of cations as defined by a crystal structure but 

also electron—phonon coupling and electron correlation as it pertains to polaron 

stabilization and diffusion. It is worth noting that depending on the specific transition 

metal and intercalating species, the diffusion of electron as well as hole polarons 

associated with transition metal centers require mitigation.58,63 Subsequent sections will 

address mitigation of these diffusion gridlocks both in terms of atomistic design of novel 

materials as well as nano-31,33,44 and meso-structuring64 of existing cathode materials to 

offset the impact of diffusion impediments by truncating solid-state diffusion path 

lengths.  

I.1.3 Intercalation-Induced Phase Transformations and Phase Boundaries 

Structural distortions induced upon cation intercalation (or for that matter in 

response to external stimuli such as temperature, strain, or pressure) are initially 
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accommodated through local distortions; however, depending on the nature of the free 

energy landscape, given the availability of a sufficient amount of energy, a structure will 

relax towards a more energetically favorable arrangement of atoms. Phase-

transformation phenomena thus arise from the sine qua non of solids to re-accommodate 

their atoms to better reach a stable conformer in response to external forces (e.g., 

pressure and temperature)12,65 or compositional modulation achieved through 

intercalative or doping reactions.66 The transformations can be considered to be either 

displacive or reconstructive with the specific designation depending on the magnitude 

and nature of atomic displacements required to stabilize a new phase.67–70 In the former, 

the concerted motion of atoms brings about a rearrangement of the unit cell, thereby 

stabilizing a new phase that bears a direct symmetry relationship to the parent structure 

as observed with Martensitic transitions in VO2 and HfO2. The latter type of 

transformation necessitates a complete restructuring of the material with the cleavage of 

existing bonds and formation of new bonds to stabilize a new phase that is entirely 

transformed from the parent structure as evidenced in the transformation between the 

anatase and rutile phases of TiO2.71  

  α-V2O5 serves as an excellent example of a material that initially undergoes a 

series of displacive transformations with increasing intercalation of Li-ions.33 Upon 

initial lithiation up to a low lithium content (x ≤ 0.1), the α-V2O5 phase retains its 

structure, albeit with puckering of the layers and a slight expansion of the interlayer 

spacing.69,72 However, further Li-ion intercalation stablizes the ε-LixV2O5 phase (0.33 ≤ 

x ≤ 0.80) with a space group of Pmmn.68,73 This structure defines eight-coordinated 
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distorted bicapped triangular prismatic coordination environments for Li-ions between 

the layers of V2O5. As denoted by the arrows in Figure I.4b, the apical V=O bonds of the 

[VO5] units are puckered towards the lithium atoms intercalated within the prismatic 

environment as a result of electrostatic interactions between the oxygen lone pairs and 

the Li-ions. With still further insertion of Li-ions (0.88 ≤ x ≤ 1.0), the δ-LixV2O5 phase is 

stabilized in the orthorhombic system.68,73,74 The lamellar sheets of α-, ε- and the δ-phase 

are similar in terms of local vanadium geometry; however, in order to accommodate a 

higher lithium content, the stacking sequence is shifted along the b-axis by half a unit 

cell length in the δ-phase polymorph (Fig. I.4c); the space group symmetry is thus 

changed to Amma.33 The local coordination environment of the Li-ions changes from the 

	

Figure I.4. Sequence of intercalation-induced structural phase transformations in 
V2O5. Supercell structures of (a) α-V2O5, (b) ε-LixV2O5, (c) δ-LixV2O5, and (d) γ-
LixV2O5. Green and red spheres represent lithium and oxygen atoms, respectively; 
the solid red pyramids represent [VO5] units. The structural distortions induced as a 
result of Li-ion intercalation are delineated in the figure.  
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eight-coordinated bicapped trigonal prismatic environment in ε-LixV2O5 to an 

approximately tetrahedral coordination in δ-LixV2O5.75 Finally, with even further 

lithiation, in the Li-range 1.0 < x < 2.0 of LixV2O5, the γ-phase is stabilized with a space 

group symmetry of Pnma.76 The formation of the γ-LixV2O5 phase from δ-LixV2O5 can 

be conceptualized by rotation of the two edge-shared [VO5] square pyramidal units by 

90ᵒ, in opposite directions, along the V1—O1, and V2—O2 bonds, respectively, as 

delineated by a pair of curved arrows in Figure I.4c. Notably, only alternate pairs of 

edge-shared [VO5] pairs are puckered in a lamellar sheet of V2O5. This results in the 

apical V=O bonds being slightly skewed from the crystallographic b-axis. In 

comparison, the apical V=O bonds in α-, ε-, and δ-V2O5 are oriented directly along the b 

axis. This distortion of the vanadyl directionality drastically changes the coordination 

environment of the intercalated lithium from six-coordinated to define approximately 

tetrahedral coordination environments, which furthermore allow for accommodation of 

higher lithium concentrations. Still further lithiation appears to induce an irreversible 

reconstructive phase transformation to a cubic ω-Li3V2O5 phase; a detailed structure 

elucidation for this phase remains elusive and some authors have suggested that the 

structure might indeed be a mixture of lithium vanadates and oxides.77  

The multiphasic domains stabilized when the composition approaches phase 

limits in the phase diagram and the experimentally observed manifestation of extended 

phase coexistence regimes furthermore necessitate the diffusion of Li-ions across 

multiple phase boundaries within particles and across the interconnected network of 

particles that constitute the active electrode. Such phase boundaries thus further limit Li-
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ion diffusion and phase propagation across multiple Li-ion concentration windows in 

LixV2O5. A clear delineation of the effects of phase segregation on the thermodynamics 

and kinetics of intercalation phenomena remains to be established and neccessitates 

coupling electrochemical measurements to probes of atomistic and electronic structure. 

I.1.4 Inhomogeneous Lithiation and Phase Inhomogeneities Across Ensembles of 

Particles 

Figures I.1 and I.2 illustrate the idea of ionic and coupled ionic—electronic 

polaronic diffusion barriers that give rise to bottlenecks for Li-ion diffusion. Figure I.4 

illustrates the intercalation-induced phase transformations induced within this system. 

Limitations in the uptake of Li-ions thus result in lithiation gradients that are further 

translated to phase inhomogeneities across individual particles and across ensembles of 

particles. The progression of nucleation and growth of lithiated phases are dictated by 

local concentration gradients and intercalation phenomena rather than by the global 

voltage across the cell.9,53,78–80 As such, the dimensions of particles, specific 

morphological features, inter-particle connectivity, the presence of extended defects, and 

the exposed crystallographic facets determine in large measure the sequence of phase 

propagation events.53,78 

Figure I.5 depicts STXM maps acquired across ensembles of interlaced particles 

clearly illustrating the broad variation of Li-content (correlated also to phase 

inhomogeneities) across the ensembles at different length scales. The color scheme again 

corresponds to increasing lithiation in going from red to green to blue domains in the 

images. The corresponding XAS spectra are shown alongside for Figures I.5c and e. 
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Figure I.5a provides an example of multimodal electron microscopy and STXM imaging 

of the same small ensemble of particles.53 Based on STXM imaging of lithiation 

concentrations in these (and other) small interconnected networks of particles, 

intercalation-induced phase transformations appear to have a strong preference for 

propagation in a sequential manner along individual particles (even at the cost of 

	

Figure I.5. Inhomogeneous lithiation across ensembles of particles. (a) Schematic 
depiction of inhomogeneous lithiation of two interconnected particles—both 
particles are initially homogeneously lithiated to a low-Li-content phase. However, 
one of the particle gains an advantage and lithiates preferentially with respect to its 
underlying counterpart depleting the particle below of its Li-content to facilitate 
rapid phase propagation of a Li-rich phase as per a “winner takes all” mode. The 
insets depict STXM and scanning electron microscopy images of the model system 
(adapted from Ref. 53 from Chapter I with permission from The Royal Society of 
Chemistry). (b) A larger area STXM image of a cluster of several interconnected 
particles; the corresponding spectra are plotted in (c); the regions demarcated in red, 
green, and blue correspond to low, intermediate, and high Li-ion concentrations. (d) 
Large-area STXM image depicting considerable inhomogeneity of lithiation; the 
corresponding spectra are plotted in (e)  
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depleting adjacent particles of Li-ions) instead of concurrently across the entire network 

(as schematically illustrated in Fig. I.5a).53,78 These differences indicate the role of inter-

particle connectivity within a group of particles. Indeed, it appears that in such phase-

separating materials, any particle that has a slight advantage over another in initially 

inserting Li-ions (owing to a locally high concentration gradient, a surface that is 

favorably disposed to intercalate Li-ions, or as a result of sheer stochastics) will rapidly 

continue to lithiate at the expense of adjacent particles (as schematically illustrated in 

Fig. I.5a), following a sequential particle-by-particle process;79 Zhao and colleagues 

have demonstrated using phase-field modeling that indeed an actively lithiating (and 

phase-transforming particle) depletes an adjacent interconnected particle via an 

interface.78 Such a sequential mode of lithiation gives rise to large concentration 

gradients that inevitably then bring about phase inhomogeneities and coherent strain as 

well as diffusion limitations at phase boundaries.  

Figures I.5b and d show larger-area views of phase and concentration 

inhomogeneities in ensembles of particles. Intriguingly, a low level of lithiation to the (x 

~ 0.1) α-LixV2O5 phase is observed to occur fairly homogeneously across the entire 

network. However, subsequent nucleation and growth of lithiated domains occurs 

seemingly stochastically driven by local intercalation phenomena. Across ensembles of 

particles, considerable heterogeneity is observed between particles exhibiting deep 

lithiation and sparsely lithiated particles. Within individual nanowires, both lateral and 

length-wise domains are stabilized. Some nanowires show approximately core—shell 

behavior with more highly lithiated shells and Li-poor cores; the shells are observed in 



 

 23 

ex situ measurements to form compositional stripes of Li-rich and Li-poor domains as a 

result of differential rates of Li-ion intercalation and diffusion.81 A similar result of 

initially homogeneous lithiation followed by phase segregation has also been deduced 

from principal component analysis of V K-edge XANES spectra.32  

The creation of “hot spots” results in strongly amplified current density within 

specific electrode regions during charge/discharge processes, which thereby controls the 

localized energy dissipation profile and increases the probability of parasitic reactions 

that eventually result in loss of capacity and degradation. The complexity of phase 

evolution and the stabilization of distinctive lateral and longitudinal domains within 

individual particles as well as across networks is best captured by methods such as phase 

field modeling. For example, utilization of phase field modeling in conjunction with 

STXM has enabled mapping of tensile and compressive stress within individual 

nanowires of LixV2O5 resulting from compositional modulations.81 Core—shell 

separation and striations along the shell give rise to a considerably inhomogeneous stress 

profile that can bring about the fracture of typically brittle oxide cathodes upon 

prolonged cycling. Further phase heterogeneity (discernible in the inset to Fig. I.5a) 

stems from the presence of screw dislocations and the secondary growth of Li-rich 

phases at nanowire tips. Indeed, the role of extended defects such as dislocations in 

enabling or impeding Li-ion diffusion represents a tantalizing subject that is yet to be 

explored in detail.  

While homogeneous intercalation across an entire porous electrode may be very 

difficult to accomplish in practice, the design of mesoscale architectures wherein 
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intercalation and phase propagation proceeds via a deterministic instead of probabilistic 

or stochastic manner would represent a major advance. In order to achieve the 

deterministic diffusion of Li-ions and propagation of phase transformations, a deeper 

understanding of fundamental mechanisms is imperative. While individual analytical 

methods provide valuable clues to underlying mechanisms of charge and mass transport, 

there exists a considerable knowledge gap between the high spatial resolution that can be 

accessed through advanced electron microscopy techniques, the energy resolution 

accessible using synchrotron-based X-ray absorption/emission spectroscopies, and the 

larger (perhaps more representative) volumes sampled using micro-X-ray diffraction 

methods. Multimodal characterization is thus imperative to develop a precise 

understanding of mechanism and to rationally guide the design of electrode 

architectures. Being able to accurately translate atomistic phenomena to continuum 

scales taking into account the coupling of chemistry, mechanics, and electric fields 

through scale bridging models will be essential to inform the design of patterned 

electrodes.82 Multiple approaches exist for precisely structuring matter but a clear 

description of optimal mesoscale architectures has hitherto not been developed with a 

few exceptions. In a similar vein, while the programmable placement of defects 

represents a difficult task, their patterned incorporation through surface 

functionalization, templating, differential strain,81,83,84 or specific growth conditions that 

promote microtwinning would provide access to well-defined ion diffusion pathways 

and provide a means to direct cation diffusion. 
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In the next two sections, we address two distinct approaches to overcome the 

multiscale diffusion limitations derived from polarons and phase boundaries. The first 

approach seeks to mitigate the influence of polarons and phase inhomogeneities by 

control over dimensionality, essentially by limiting the diffusion path lengths and by 

defining particle sizes below the critical dimensions wherein phase boundaries can be 

stabilized. The second approach focuses on the bottom-up design of materials that allow 

for more facile diffusion of ions and polarons. It is important to note that these two 

approaches are not mutually exclusive, but can be combined synergistically to harness 

additive benefits.  

I.1.5 Mitigating Gridlock by Truncating Diffusion Pathlengths 

Methods for nanostructuring of cathode materials have proven to be successful in 

enhancing cycling stabilities, specific charge capacities, and power densities.33,64 Some 

of the advantages of nanostructured materials include: increased ability to accommodate 

strain gradients introduced upon inhomogeneous-lithiation-induced phase 

transformations; increased electrolyte-electrode-surface interface derived from high 

surface areas; additional capacitative and pseudo-capacitative charge storage as a result 

of increased surface areas; and shorter diffusion path lengths within nanoparticles for Li-

ion intercalation.8,33,85  

Remarkably, the sequence of lithiation and the associated phase transformations 

in V2O5 are found to strongly depend on particle size.33 The lithiation process is 

homogeneous and phase separation in greatly reduced for nanoplatelets with thickness in 

the order of 20–50 nm; in contrast, multi-phase domains are stabilized for nanowires 
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with thicknesses on the order of 150–250 nm, suggestive of a two-phase nucleation and 

growth scenario. These findings have been rationalized based on phase-field modeling 

studies of intra-particle phase separation.78 Larger particles are predicted to exhibit 

compositional modulation of periodic Li-rich and Li-poor domains, whereas in smaller 

particles the phase separation is suppressed as a result of the faster ratio of reaction to 

diffusion rate and the inability to stabilize an interfacial boundary (alternatively, the 

interface can be considered to grow on the free surface). The critical size wherein phase 

segregation is suppressed will depend on the temperature and charge/discharge rate but 

appears to be in the range of 20—50 nm for V2O5 when α-V2O5 is intercalated by Li-

ions. The critical size representing a cross-over between phase separating and single-

phase behavior will furthermore depend on the morphology given the potentially 

counteracting effects of surface and bulk free energies. For multivalent cations, this 

critical size appears to be much smaller (on the order of 10 nm) given the higher 

diffusion barriers encountered in intercalation hosts thus far.86   

Figure I.6 depicts the use of STXM as a local structure probe to correlate the 

extent of lithiation (depth of discharge) and phase separation with particle size of V2O5 

upon chemical lithiation. Figure I.6a shows a high-resolution scanning electron 

microscope (HR-SEM) image of the same region imaged by STXM, indicating a broad 

range of particle sizes. The long axis of the particles vary from 0.1 to 5 µm. Figures 

I.6b—d shows the spectral intensity maps of three components corresponding to 

increasing extents of lithiation. The intensity maps have been derived based on a singular 

value decomposition (SVD) analysis of the STXM image stack using the component 
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spectra (plotted in Fig. I.6f) as reference spectra (labeled as i, ii, and iii). The heat maps 

in Figures I.6b—d indicate the relative abundance of the component at a specific pixel 

on a scale that increases from deep blue to red. The graded contributions of each of the 

components at each pixel has been determined, allowing for the construction of maps 

delineating the relative abundance of each of the spectral components at each pixel 

within the imaged region (Fig. I.6e). Indeed, spatial mapping of the three spectral 

components clearly indicates that the red component (Fig. I.6b), which has the highest 

t2g/eg intensity ratio (corresponding to the lowest extent of lithiation), is more localized 

 

Figure I.6. Size dependence of diffusion limitations. (a) SEM image of an ensemble 
of LixV2O5 nanoparticles (lithated for 1 h) with a substantially polydisperse size 
distribution.  (b—d) Intensity maps of the three spectral components (the intensity of 
the spectrum at each pixel is denoted by the color bar) as identified by SVD analysis 
of hyperspectral STXM data. (e) A false color map showing the relative localization 
of the three components, the color at each pixel represents the major spectral 
contribution (blue –most lithiated– or green –mildly lithiated– or red –least 
lithiated– consistent with the color of the spectra in (f)). (g) Percentage contribution 
of the high-Li-content (blue) and low-Li-content (red) spectral components in each 
particle plotted as a function of the area of the nanoparticles. 
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on relatively larger particles, whereas the component resulting from the blue spectrum 

(Fig. I.6d), with the least t2g/eg intensity ratio (highest lithiation), is predominant on the 

relatively smaller particles. The component plotted as the green spectrum presenting an 

intermediate t2g/eg intensity ratio (intermediate lithiation), is localized on relatively few 

(larger) particles. Figure I.6e depicts the clear size-dependent segregation of the spectral 

signatures. After 1 h of chemical lithiation, the smaller particles are clearly more 

extensively lithiated; furthermore, the particles do not show any evidence for phase 

segregation, whereas multiphasic domains can be distinguished for several of the larger 

particles. 

 A more quantitative analysis has been performed by plotting the percentage 

contribution of the blue (most lithiated) and red (least lithiated) spectral components to 

each particle as a function of the logarithmic cross-sectional area (Fig. I.6g). Since, there 

are only a few particles with intermediate lithiation (suggesting a primarily two-phase 

process) these are not included in the analysis. Indeed, the percent contribution of the 

blue component is above ca. 39% (region outlined as blue rectangle) and the red 

component below 39% (region outlined as red rectangle), respectively, in all the particles 

with cross-sectional area bigger than 0.16 µm2, whereas the red component contributes 

below 29% and red component above 29%, respectively, to all the particles with cross-

sectional area greater than 0.37 µm2. When the cross-sectional area of the particles is 

between 0.16 µm2 and 0.37 µm2, there is no clear selectivity between blue or red 

components (region outlined as yellow rectangle). The observed correlation of particle 

area with increasing lithiation as well as the observed single-phase lithiation of smaller 
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particles suggests that the particle dimensions play a critical role in determining the 

nucleation and propagation of intercalation-induced transformations. Indeed, these 

results suggests that decreasing the particle size of actively intercalating domains below 

a critical dimension (below a critical nucleation volume) can enable more homogeneous 

single-phase lithiation, thereby suppressing diffusion limitations at phase boundaries and 

also mitigating the coherent strain at such boundaries.78,87 Single-phase lithiation along 

with shorter pathlengths for coupled ionic-electronic diffusion represent a major 

advantage of nanostructuring. Unfortunately, decreasing the size of the nanoparticle 

comes with a caveat: the capacity of the single particle is reduced as a result of surface 

tension effects88 with added deleterious effects of increased surface reactions89 and 

potential agglomeration, which can render primary particles within the agglomerate 

inaccessible to intercalation.  

An interconnected network of particles with well-defined dimensions of diffusion 

pathways is thus desirable—the precise structuring required to mitigate phase 

transformations and promote homogeneous lithiation represents an inverse design 

problem that requires coupling of experimental observables with atomistic as well as 

continuum scale modeling. Developing viable synthetic approaches that yield 

mesostructured networks with desired crystallite size and interconnectivity remains a 

formidable challenge. Once templates have been identified through multiscale inverse 

design approaches, they will need to be elaborated and replicated within large area 

formats. It is worth noting that in addition to particle size, the exposed crystallographic 

facets and orientation of the channels within the particles is furthermore of utmost 
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importance as illustrated by Kohyama et al.90 As an illustrative example of the design of 

patterned substrates, colloidal crystal templating, with the use of polystyrene 

microspheres as removable templates, has been used to create a porous mesostructured 

α-V2O5 architecture, which provides both a higher capacity as well as improved 

cyclability and a sharper phase transition (with a decreased phase coexistence regime) as 

compared to an unpatterned thin film.64 However, an inevitable limitation of such 

approaches is that smaller domain sizes oftentimes result in lower volumetric capacities, 

which is especially a challenge for mobility applications wherein volumetric capacity 

represents a paramount consideration. Templating is just one example of a method to 

develop mesostructured intercalation electrode architectures; directed assembly mediated 

by electric or magnetic fields or specific drying patterns can furthermore aid the 

preparation of textured substrates; the viable large-area manufacturing of cathode 

materials will need to be developed to take advantage of opportunities made available by 

truncating diffusion path lengths. 

I.1.6 Mitigating Polaronic Confinement and Facilitating Cation Diffusion using 

Atomistic Materials Design 

A second approach for facilitating cation diffusion and mitigating coupled 

polaronic barriers involves the tailored design of entirely new crystal structures as 

summarized in Figure I.7. In this section, we turn our attention to alternative metastable 

polymorphs of V2O5 that show distinctive structural motifs in comparison to α-V2O5, the 

thermodynamically stable polymorph discussed above. As illustrated by Figure I.4, 

different polymorphs of V2O5 define distinctively different local coordination geometries 
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for intercalated Li-ions. The accessible diffusion pathways are considerably modified in 

each case as a result of changes in V—O connectivity.  A much richer palette of V2O5 

polymorphs is accessible based on topochemical extraction of M-cations from a versatile 

family of crystalline ternary vanadium oxide bronzes with the composition MxV2O591 

where the cation M can be varied across a broad compositional and stoichiometric range 

(x) within a diverse range of V2O5 structural frameworks with varying V—O 

connectivity.12 Another class of related compounds have intercalated cations or trapped 

solvent molecules; the pillaring cations serve to separate V2O5 single or double 

layers.92,93 Expanded structures with short-range order are furthermore accessible for 

V2O5 such as aerogels94–96 and xerogels.97,98 Such a rich structural palette provides 

access to a myriad range of diffusion pathways showing extensive variability of cation 

coordination environments as a function of the V—O connectivity, the linkages of 

vanadium-centered polyhedra, and the stacking of single- or double-layered [V2O5] 

sheets whilst still retaining multi-electron redox vanadium centers.39,40,46,99 Pillaring 

cations and intercalated solvent molecules provide further opportunities for screening of 

polarization induced by cations. As such, the ability to stabilize metastable polymorphs 

opens up a versatile design space where design elements theorized to facilitate cation 

diffusion such as frustrated coordination and spacious transition states can be sought. 

Furthermore, as a result of the varying V—O connectivity, considerable modulation of 

the extent of ionicity/covalency is possible across these polymorphs, which has 

tremendous implications for the width of the 3d-derived conduction band (which 

determines the electron mobility and thus electronic conductivity), the extent to which 
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the diffusing cation is able to polarize the anion lattice, as well as the extent to which the 

cation can be trapped by an adjacent electron to form a polaron. In order words, the 

changes in connectivity between the atoms in metastable V2O5 polymorphs allow for 

considerable flexibility in the design of conduction pathways for both ions and electrons, 

allowing for a means to alleviate the shortcomings of the thermodynamically stable α-

V2O5 phase described in the previous sections.  

A metastable polymorph that has proven to be an excellent intercalation host is 

the quasi-1D tunnel-structured ζ-V2O5 phase, which retains the primary structural motif 

of the parent ternary β-AgxV2O5 Wadsley bronze, from which it is derived (Fig. 

I.7).40,42,46,54,100 The lower Li-ion and polaron diffusion barriers (0.13 and 0.24 eV, 

respectively) as compared to α-V2O5 (0.22 and 0.34 eV, respectively) within this 

structure stems from several aspects of its atomistic and electronic structure. Figure I.7a 

contrasts the total (grey shaded region) and vanadium-projected density of states (DOS) 

calculated for the two polymorphs.46 As noted above, because α-V2O5 has only a single 

distinct vanadium site, the crystal field splitting in an approximately square pyramidal 

geometry results in a distinct “split-off” conduction band with dxy character lower in 

energy than the dxz/yz states (highlighted by the transparent grey box). DFT calculations 

show that in α-V2O5, a single electron donated by the intercalating species localizes in 

the V dxy orbital of the nearest vanadium site, giving rise to a polaron.31 In contrast, ζ-

V2O5 has three distinct vanadium sites with different ligand field splitting than observed 

for the lone vanadium site in α-V2O5, resulting in a broader more energy degenerate d-

band and a smaller bandgap (1.50±0.20 eV as compared to 1.90±0.20 eV for α-V2O5).46 
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The lower effective mass and resulting increased mobility of electrons in this structure 

effectively diminishes the strength of the polaron and allows for easier polaron diffusion. 

Furthermore, the vanadium—oxygen bonds within the material are much more covalent 

(owing to greater overlap of d-bands), which reduces the polarization of the framework 

induced by the diffusing electropositive Li-ions (due to reduced effective partial charge 

on the coordinating oxygen ligands).46  

The diffusion pathway of Li- and Mg-ions in ζ-V2O5, as calculated from NEB 

calculations, is depicted in Figure I.7b and represents a considerable departure from the 

diffusion pathway traced by Li-ions in α-V2O5. In the case of α-V2O5, the change in 

coordination number across the diffusion pathway linking two symmetry-equivalent sites 

is 8 → 3 (transition state) → 8 with a trigonal planar transition state as shown in Fig. 

I.1c. However, in ζ-V2O5 the change in coordination number across the diffusion 

pathway is considerably less pronounced changing from 4 → 3 (transition state) → 5 → 

3 (transition state) → 4. The smaller changes in coordination number equate to a 

relatively lesser extent of bond-breaking and bond formation required to diffuse the 

cation and translates to a ca. 0.09 eV reduction of the Li-ion diffusion barrier. This 

polymorph thus serves as an excellent validation of the concept of frustrated 

coordination. The significant improvement in diffusion kinetics for ζ-V2O5 derives not 

only from the wider d-bands and lower energy cation diffusion pathways discussed 

above but also reflect the relative stability of the rigid tunnel framework, which can 

accommodate Li ions through solid-solution formation over a broad range (0 < x < 0.66) 

without substantial structural distortions, thereby substantially mitigating the creation of 
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phase boundaries and diminishing the energy dissipation that inevitably accompanies 

phase transitions.25,33,53,101 In recent work, we have used Bayesian principal component 

analysis (PCA) analysis of STXM data to demonstrate that ζ-V2O5 undergoes single-

phase lithiation with only a single spectral component discernible across multiple 

nanowires, whereas pronounced inter-and intra-particle inhomogeneities and distinctive 

spectroscopic signatures of Li-rich and Li-poor domains are identified for α-V2O5 upon 

lithiation (as also readily apparent in Figs. I.2 and I.5).42 The 1D ζ-phase thus 

intercalates Li-ions through a continuous lithiation pathway that is starkly different from 

the sequential intercalation-induced structural transformations observed in α-V2O5.   

The diffusion pathways of Li- and Mg-ions in two other metastable compounds, 

γ′-V2O5 and ε′-V2O5 are also depicted in Figure I.7b. The puckered single-layered γ'-

phase exhibits a 4 → 3 (transition state) → 5 → 3 (transition state) → 4 diffusion 

pathway with a cation diffusion barrier in the range of 0.15—0.18 eV depending on the 

Li-ion concentration. In contrast, in the double-layered ε-phase, a 4 → 4 (transition state) 

→ 4 pathway is traced by the cations yielding an exceedingly low diffusion barrier of 

0.10 eV. The greater rigidity of the double-layered ε'-phase phase renders it less 

amenable to polarization by intercalated cations as compared to the single-layered γ' and 

α-polymorphs. Intriguingly, the stacking sequence of [V2O5] sheets have been found to 

strongly influence the nature of the diffusion pathways, the size of the transition state, 

and thus the migration barriers. δ' and ρ'-phases can be conceptualized to result from the 

ε'-phase based on a sliding of the [V4O10] layers with respect to one another. Alteration 

of the stacking sequence yields very different conduction pathways. Li-ions in the δ'-
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phase undergo migration through 5 → 3 (transition state) → 4 → 3 (transition state) → 5 

with a diffusion barrier in the range of 0.07−0.19 eV. In the case of the ρ'-phase, 

migration of ions occur through a change in coordination environment from 6 → 4 

(transition state) → 6 → 4 (transition state) → 6. The predicted migration barrier is 0.07 

eV, which is greatly reduced as compared to the other polymorphs as a result of the 

specific diffusion pathway and relatively spacious transition states.39 The layered 

metastable polymorphs furthermore hold potential for exfoliation down to single sheets 

wherein surface diffusion phenomena can potentially be facilitated.102 Figure I.7c shows 

the structure of several target metastable frameworks potentially accessible from 

topochemical extraction of native cations from MxV2O5 ternary vanadium oxide bronzes. 

The parent phases are delineated in the next section. 

Indeed, one can extrapolate that thermodynamically stable phases are inimical to 

cation mobility since they most often bind the cation that is sought to be diffused within 

tightly defined and favorable coordination environments where their mobility is severely 

restricted; metastable structures that do not represent the absolute thermodynamic 

minima for a specific composition (and thus oftentimes are inaccessible from direct 

synthesis) can oftentimes accommodate cations with some degree of frustration. Cations 

inserted within these structures encounter sub-optimal coordination environments, which 

facilitate easier ion diffusion.42,54  

The rugged energy landscape of the binary vanadium oxide VO2 holds further 

lessons for the design of an even more expanded palette of V2O5 polymorphs. For 

instance, substitutional doping of VO2 with Al or Cr allows for the stabilization of an 
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insulating monoclinic M2 polymorph, which is distinct from the thermodynamically 

stable M1 phase.103,104 In contrast, substitutional incorporation of W and Mo on the 

vanadium sublattice as well as interstitial incorporation of B atoms stabilizes the metallic 

rutile phase, thereby shifting the canonical metal—insulator transition of VO2 down 

below room temperature. The interstitial doping of atomic hydrogen stabilizes distinctive 

orthorhombic O1 and O2 metallic phases.66,105–107 The use of substitutional doping to 

stabilize metastable polymorphs of V2O5 is less explored and represents a potentially 

rich area of discovery.  

Metastable structures in tandem with pre- or co-intercalation of ions could further 

facilitate the intercalation of monovalent and multivalent ions.98,108–110 For example, 

hydrated versions of double-layered V2O5 (similar in structure to the ε-phase) have been 

shown to exhibit excellent performance as Na- and K-ion intercalation hosts.98,111 Pre-

intercalated structures wherein V2O5 layers are separated by pillaring cations show 

proportionately improved performance with increasing interlayer separation.93 An 

important caveat must be noted for metastable intercalation hosts. Stabilization of such 

polymorphs represents a considerable synthetic challenge. The most common strategy to 

stabilize such polymorphs is to synthetically access a region of a multidimensional phase 

diagram (spanning composition, temperature, pressure, and related variables) wherein 

such structures are in fact the lowest energy polymorph, followed by quenching to 

ambient conditions;112 however, in the absence of a detailed understanding of energy 

landscapes, predictive design of synthetic approaches represents a considerable 

challenge. The barrier to reversion to the thermodynamically stable polymorph further 
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represents an important consideration. A detailed understanding of energy landscapes of 

intercalation hosts is imperative to understand transformation pathways and energy 

differentials. Such understanding will further provide critical guidance for the design of 

synthetic approaches. 

I.1.7 Double Trouble: Diffusing Multivalent Cations 

The ionic and coupled ionic—electronic roadblocks discussed above for α-V2O5 

are further exacerbated for multivalent cations31,60–62 as a result of their stronger 

polarizing nature, which contributes to a severe paucity of viable cathode materials 

capable of reversibly intercalating multivalent ions such as Mg2+, Ca2+, and Al3+.113 

Current strategies to design diffusion pathways involve screening charge through the use 

of covalent Mo6S8 Chevrel phases (which, however, comes at the cost of a low operating 

voltage)114,115 or screening charge through solvation of Mg-ions.110,116 Based on DFT 

calculations, we have predicted a much smaller diffusion barrier for Mg2+ diffusion in 

metastable ζ-V2O5 derived from the smaller changes in the coordination environment 

along the diffusion pathway (accounting for a suppression of the diffusion barrier from 

1.2 eV predicted for α-V2O5 to 600—900 meV in ζ-V2O5) and a reduced polaron 

diffusion barrier (reduced from 340 meV to 240 meV for a single polaron).40,46 Indeed, 

in recent work, we have demonstrated that nanowires of this phase can reversibly 

intercalate 90 mAh/g of Mg-ions with excellent cyclability up to 100 cycles and an 

average operating potential of 1.65 V versus Mg2+/Mg0.54 The observed capacity has 

been observed to arise from Mg-ion intercalation within 1D tunnels up to a 

stoichiometry of Mg0.33V2O5 as unequivocally established using high-angle annular dark 
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field scanning transmission electron microscopy (STEM) imaging and XAS. These 

parameters immediately render this material one of the most promising Mg-ion cathode 

materials thus far discovered and provides strong validation of the idea of metastable 

phases as cathode materials to define desired diffusion pathways. Further elaboration of 

the material through aliovalent doping, control of particle size, and structured 

enmeshment with conductive additives will likely yield further enhancements of 

 
Figure I.7. Metastable frameworks as a means of mitigating diffusion limitations. 
(a) Calculated projected (colored traces) and total (grey) density of states for ζ-
V2O5 and α-V2O5 (adapted from Ref. 46 from Chapter I with permission from the 
PCCP Owner Societies). The characteristic split-off conduction band of α-V2O5 is 
not observed for ζ-V2O5 owing to increased energetic overlap of V 3d orbitals. (b) 
The calculated diffusion pathway for Li-ions in three metastable polymorphs of 
V2O5 depicting frustrated coordination environments, as well as the geometry of 
the resulting transition state (reprinted with permission from citation 40. Copyright 
2016 American Chemical Society) (c) Several metastable frameworks potentially 
accessible from topochemical extraction of native cations from MxV2O5 ternary 
vanadium oxide bronze phases. 
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diffusion rates. Still lower barriers, ca. 0.21−0.24 eV and 0.28−0.46 eV, respectively, 

have been predicted for Mg-ion diffusion in double-layered ε'- and ρ′-V2O5 polymorphs 

that differ only in the stacking of [V4O10] layers.39,40 Indeed, restacking of 2D layers can 

serve as a further design tool to define specific conduction pathways for multivalent 

cations. The diffusion of Ca-ions necessitates somewhat large transition states; For Ca-

ion diffusion, the barriers deduced from NEB calculations are ca. 0.37−0.55 eV in ρ′-

V2O5, ca. 0.56−0.65 eV in δ′-V2O5, and ca. 0.59−0.68 eV in γ′−V2O5. These values are 

within the range wherein viable Ca-ion mobility can be expected especially upon 

reducing particle size.39 

 In addition to the ζ-phase, the metastable γ′-V2O534,117 polymorph has been 

stabilized based on delithiation of the γ-LixV2O5 ternary phase. However, it remains to 

be evaluated for multivalent intercalation. Based on extensive DFT calculations and 

experimental realization of ζ-V2O5 as a viable high-voltage, high cyclability, and high-

capacity material, a blueprint for defining conduction pathways for multivalent ions can 

be broadly put forth. In this approach, ternary vanadium oxides of the form MxV2O5 with 

desirable structural motifs are identified from the crystallographic and mineralogical 

literature and the corresponding empty polymorphs are evaluated using DFT in terms of 

their stability and diffusion barriers. For structures determined to be intriguing, the 

intercalated cation is leached topochemically via topotactic chimie douce methods that 

allow for retention of the structural framework while extracting the “native” cations. The 

stabilized structure can then be chemically or electrochemically intercalated with Li- or 

multivalent cations to prepare a cathode material with well-defined conduction pathways 
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that are distinctly different from that of α-V2O5. Such an approach thus greatly expands 

the available palette of binary polymorphs of V2O5. Figure I.7c depicts the structures of 

different metastable V2O5 frameworks conceptually derived from topochemical 

extraction of the native cations of39,40 ε/δ/ρ-MxV2O5 (where M= ε-CuxV2O5, δ-AgxV2O5 

or δ-CaxV2O5, and ρ-KxV2O5 yield ε'/δ'/ρ'-V2O5)39, [(Me)4N]0.25V2O5 (yielding β-

V2O5)118,119, and Cs0.35V3O7 (yielding microporous V2O5)120. Topochemical leaching can 

be achieved using Br2 or I2 solution or by reaction with NOBF4 or NO2BF4.54,121 It is 

worth noting that such a topochemical mapping of metastable phase space will 

furthermore be applicable to other oxide or sulfide frameworks, and suggests a versatile 

means of defining conduction pathways to enforce design elements such as frustrated 

coordination and mitigation of large structural transformations.122,123 Experimental 

studies of cation intercalation in broader palettes of structures characterized by 

distinctive structural motifs, variations of polyhedral connectivity, and electronic 

structure is anticipated to yield richer descriptors of specific atomistic elements that can 

facilitate multivalent diffusion while meeting the other constraints required for use as a 

viable intercalation host (e.g., chemical and mechanical stability, criticality). 

I.2 Conclusion and Dissertation Outlook 

In this dissertation, we provide a summary of work performed to evaluate the 

mechanism of insertion of Li-ion within a cathode material. We also use scanning 

transmission X-ray microscopy to evaluate changes in electronic structure and 

intercalation-induced phase transformations resulting from insertion processes. We start 

in Chapter II, where we discuss the oxidative chemistry of graphite, which has attracted 



 

 41 

renewed interest, given the importance of exfoliated graphene oxide (GO) as a precursor 

to chemically derived reduced graphene oxide (r-GO), which is finding increasing use as 

the active element of anode architectures. The development of structured carbon 

composites provides a means to improve the number of cycles, capacity, and rate 

performance of anode materials. Functionalization of nanostructured carbons is 

imperative to facilitate the formation of structured anode composites. In Chapter II, we 

demonstrate the application of principal component analysis to scanning transmission X-

ray microscopy data for the construction of detailed real-space chemical maps of 

graphene oxide. These chemical maps indicate very distinct functionalization motifs at 

the edges and interiors, and in conjunction with angle-resolved near-edge X-ray 

absorption fine structure spectroscopy enable determination of the spatial location and 

steric orientations of functional groups. In Chapter III, we turn our focus to the origin of 

intercalation-induced transformations and phase heterogeneities within individual V2O5 

nanowires upon chemical lithiation, which are seen to strongly depend on the formation 

of polarons coupling electron diffusion barriers with structural distortions. We 

demonstrate using scanning transmission X-ray microscopy (STXM) that in individual 

nanowires of layered V2O5, lithiation gradients observed upon Li-ion intercalation arise 

from electron localization and local structural distortions. The electron localized on the 

V2O5 framework couples to a local structural distortion, giving rise to a small polaron 

that serves as a bottleneck for further Li-ion insertion. The stabilization of this polaron 

traps Li-ions giving and impedes equilibration of charge density across the nanowire, 

which in turn gives rise to distinctive domains. The enhancement in high rate 
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charge/discharge for this material upon nanostructuring can be attributed to 

circumventing challenges with charge transport from polaron formation. In Chapter IV 

we demonstrate compositional striping modulations between Li-rich and Li-poor 

domains along the edges of individual nanowires of Li-ion-intercalated V2O5 based on 

analysis of hyperspectral X-ray microscopy data. Analysis of scanning transmission X-

ray microscopy data using singular value decomposition and principal component 

analysis provides a means to map compositional inhomogenieties across individual 

nanowires and ensembles of nanowires alike. The compositional maps are further 

transformed to stress and strain maps, which depict the localization of tensile stress and 

strain within individual nanowires of LixV2O5. The core/shell and compositional striping 

modulations manifested here and the resulting strain gradients point to the need to design 

cathode materials and electrode architectures to mitigate such pronounced local 

inhomoegeneities in Li-ion intercalation and diffusion. Finally, in Chapter V, we show 

based on scanning transmission X-ray microscopy studies of Li-ion intercalation within 

interconnected V2O5 particle networks that interconnects between cathode particles 

strongly influence the transport of Li-ions and the resulting spatial propagation of phase 

transformations across the network. Considerable phase heterogeneity is observed across 

interfaces that are rationalized based on phase field models that suggest that the 

propagation of Li-rich domains occurs preferentially across a single particle instead of 

concurrent lithiation and nucleation of Li-rich domains across the entire network. 

Further phase heterogeneity arises from defects and secondary growth of Li-rich phases 

at nanowire tips. These findings suggest that mesoscale architectures can potentially be 
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designed with appropriately positioned interconnects to maximize the proportion of 

actively intercalating regions and to ensure equilibration of local current densities. 
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CHAPTER II 

INSIDE AND OUTSIDE: X-RAY ABSORPTION SPECTROSCOPY MAPPING OF 

CHEMICAL DOMAINS IN GRAPHENE OXIDE* 

II.1 Introduction 

The oxidative chemistry of graphite was first investigated over 150 years ago but 

has enjoyed a renaissance of sorts in recent years as researchers have sought to develop 

exfoliation and defunctionalization pathways to transform this material into a form more 

analogous to its celebrated cousin, single-layered graphene.1–5 Similar to the extraction 

of graphene from graphite, the layered compound graphite oxide can be readily cleaved 

and exfoliated to yield single- and few-layered graphene oxide.2–4 The intense interest in 

the chemical reactivity of graphene oxide originates primarily from the notion that 

elimination of its pendant functional groups and restoration of conjugated domains will 

allow for reconstitution of the sp2-hybridized framework of single-layered graphene, 

thereby yielding a scalable wet-chemical route for transformation of graphite to 

graphene without necessitating high-temperature processing.2,3,6 However, some fairly 

detailed structural studies that have emerged indicate some key differences in the 

geometric and electronic structure of reduced graphene oxide (often denoted as 

chemically derived graphene) as compared to single-layered graphene obtained through 

mechanical exfoliation, chemical vapor deposition, or recrystallization of SiC surfaces.7–

10 In particular, chemically derived graphene is characterized by remnant functional 

*
 Reproduced with permission from De Jesus, L. R.; Dennis, R. V.; Depner, S. W.; Jaye, C.; Fischer, D. A.; Banerjee, 

S. Inside and Outside: X-Ray Absorption Spectroscopy Mapping of Chemical Domains in Graphene Oxide. J. Phys. 
Chem. Lett. 2013, 4, 3144–3151. Copyright 2013 Reproduced with permission from the American Chemical Society. 
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groups, nanoscopic holes, misaligned sp2-hybridized domains, and topological defects 

such as single-bond rotations and dislocation cores; taken together, these imperfections 

obscure manifestation of the full range of Dirac physics expected for single-layered 

graphene although the conductivity of graphene oxide is enhanced by several orders of 

magnitude upon chemical or thermal reduction.7,8 Understanding the bond 

connectivities, steric orientations, and spatial distribution of functional groups in 

graphene oxide along with their influence on local electronic structure is imperative to 

the manipulation, derivatization, and defunctionalization of this material, especially as 

graphene oxide emerges as an interesting material in its own right with applications in 

chemical and biological labeling, supported catalysis, polymer fillers, and capacitative 

energy storage.2,3,11–13 While numerous high-resolution transmission electron microscopy 

(HRTEM), scanning tunneling microscopy, and solid-state nuclear magnetic resonance 

(NMR) studies have provided important insights into the structure of graphene oxide, 

chemical mapping of this highly inhomogeneous material remains much less explored.7–

10,14–18 Here, we use principal component analysis in tandem with scanning transmission 

X-ray microscopy (STXM) and high-resolution near-edge X-ray absorption fine 

structure (NEXAFS) spectroscopy at C and O K-edges to delineate distinct differences in 

the functionalization motifs at the edges and interior basal planes of graphene oxide.        

Theories regarding the structure of graphite oxide and its constituent layers date 

as far back as the original synthesis. Several models that have been advanced over the 

years can be roughly categorized based on the periodic and non-periodic organization of 

functional groups with specific models invoking the increased abundance of a specific 
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type of functionality.2,10,19,20  An additional important distinction pertains to retaining 

planarity or requiring puckering of the framework of hexagonally arrayed carbon atoms 

to accommodate the presence of functional groups. Without attempting to be 

comprehensive, different models of the structure of graphene oxide can be summarized 

as follows: Hofmann proposed a model wherein 1,2-epoxy functionalities are dispersed 

on either face of planar graphene sheets with extensive loss of aromaticity; Ruess 

suggested an alternative puckered framework linking together periodically aligned 

cyclohexane units in chair configurations functionalized with hydroxyl and 1,3-epoxide 

moieties; Scholz-Boehm proposed a different repeating unit with 1D aromatic chains 

separated by corrugated backbone features comprising hydroxyl and quinoidal species; 

Nakajima-Matsuo proposed a completely puckered periodic lattice framework distorted 

from planarity with electron delocalization at the C=O groups; and Dekany proposed a 

modification of the Ruess and Scholz-Boehm models wherein alternating chains of 

aromatic domains are held together by periodic trans-linked cyclohexyl regions bearing 

quinoidal, 1,3-ether, and tertiary alcohol species.2,14,20 While Pacile et al. have posited 

the alignment of functional groups in a periodic array (as would be expected from the 

Dekany model) based on polarization dependence of O K-edge absorption features in a 

NEXAFS spectroscopy experiment, the vast majority of experimental evidence thus far 

provides support for yet another model, proposed by Lerf and Klinowski, wherein the 

planarity and long-range orientational order of sp2-hybridized graphene is 

preserved.7,10,14,18–20 According to this model, extended nanometer-sized regions of 

unperturbed graphene with a high degree of crystalline order are interspersed with 
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heavily functionalized domains wherein the basal planes bear randomly oriented 1,2 

epoxide and tertiary alcohol species.19,21 In addition, carboxylic acid groups and 

quinoidal species are located at edges and at the reconstructed corners of nanoscopic 

holes. This model has been further refined based on solid-state NMR studies by Ajayan 

and co-workers to incorporate five- and six-membered lactol rings at the edges along 

with esters of tertiary alcohols (likely formed by condensation of proximal tertiary 

alcohol and carboxylic acid groups located within the same sheet or on adjacent 

sheets).10  

An extensive suite of experimental tools has been brought to bear on the task of 

deducing the structure of non-stoichiometric, apparently non-periodic graphene oxide. 

Cross-polarized 2D NMR experiments have confirmed the presence of the functional 

groups cited above for the Lerf-Klinowski model and have suggested that the sp2-

hybridized carbon atoms are bound to 1,2-epoxide and tertiary alcohol functionalities 

while indicating that the carboxylic acid and ketone moieties are spatially segregated 

from the extended conjugated domains.10,17 The identification of these functional groups 

and their mobilization and temperature evolution has further been extensively 

investigated by Fourier transform infrared (FTIR) spectroscopy.22 High-resolution 

transmission electron microscopy and electron diffraction experiments have evinced the 

non-periodic nature of the distribution of functional groups and the remnance of largely 

unperturbed and unstrained sp2-hybridized domains while further suggesting the 

introduction of topological defects.7,8,14,15 However, scarce little is known about the 

spatial correlation of the functional group distribution and the validity therein of the 
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Lerf-Klinowski model. As ensemble analytical techniques, FTIR, solid-state NMR, and 

photoemission spectroscopies do not allow for investigation of the spatial localization of 

different functional groups. In contrast, while HRTEM enables precise identification of 

crystalline order and real space atomic positions, it does not allow clear mapping of 

chemical domains, particularly in heavily functionalized seemingly amorphous regions. 

Here, we turn to STXM to probe the pattern of functionalization in graphene oxide with 

a high degree of chemical sensitivity. The lower radiation damage induced in the 

samples as compared to electron microscopy and the use of incident soft X-rays with a 

high degree of polarization enables clear visualization of spatial inhomogeneities in the 

functionalization of graphene. 

II.2 Methodology 

II.2.1 Preparation of Graphene Oxide 

Graphene oxide was synthesized using the modified Hummers method1 utilizing 

natural flake graphite from Bay Carbon Inc. (Michigan, USA). Briefly, graphite was 

oxidized using KMnO4 and H2O2 and the expanded graphite oxide was exfoliated to 

yield graphene oxide. A graphene oxide solution in deionized water was vacuum filtered 

through a silicon nitride TEM window with ca. 2 µm holes and 3 µm spacing between 

holes. The silicon nitride membrane has a thickness of 50 nm and a window size of 0.5 

mm × 0.5 mm. A single flake of few-layered graphene oxide was identified using 

transmission electron microscopy and further characterized by STXM and Raman 

spectroscopy. Ensemble NEXAFS measurements were performed on graphene oxide 

from the same batch as was vacuum filtered through the silicon nitride membrane by 
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preparing a free-standing GO paper by vacuum filtration through a nitrocellulose 

membrane. 

II.2.2 Scanning Transmission X-ray Microscopy 

STXM data was collected at spectromicroscopy beamline 10ID-1 of the 

Canadian Light Source, Saskatoon, SK, a 2.9 GeV third-generation synchrotron light 

source. The STXM end-station is equipped with an elliptically polarized undulator 

source (APPLE II) and a slitless entrance-plane grating monochromator. Incoming X-

rays were focused using a Fresnel lens zone plate including an order-sorting aperture to 

eliminate unwanted diffraction orders. The optical design allows for high flux in 

transmission geometry and yields a spatial resolution of ~30 nm. Plane grating 

monochromators with 250-line mm-1 and a 500-line mm-1 were used for the C and O K-

edge measurements, respectively. A pixel size of 30 nm was used with a 1 ms dwell time 

at each pixel location. The areas of interest were raster scanned through the focal point 

of the X-ray beam, and transmitted beam intensities were measured at the detector. 

Energy scans were performed stepwise through regions of interest with typical resolving 

power (ΔE/E) of 2×10-4 to acquire sequences of images denoted as image stacks. The 

image stacks were analyzed using Jacobsen’s Principal Components Analysis (PCA) 

suite and aXis2000 (available free for non-commercial applications at 

http://unicorn.mcmaster.ca/aXis2000.html). Principal component analysis was used to 

orthogonalize and noise-filter the spectral features of the STXM image stacks. This 

involves deconvoluting the spectra into discrete abstract orthogonalized components that 

each represent a linear combination of spectral signatures from multiple chemical 
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species. Subsequently, cluster analysis (as a pattern matching mode) was used to classify 

pixels by spectral similarity to extract average spectra with improved signal-to-noise 

characteristics across the given cluster. The graded contributions of the orthogonalized 

spectral components at each pixel were also determined, allowing for construction of 

maps indicating their relative abundance at each pixel within the area of interest. 

Application of this multivariate analysis method allows for nanoscale visualization of 

chemical speciation (such as in Fig. II.3B) by reconstructing images from eigenspectra 

in complex samples without requiring a priori knowledge of reference spectra of the 

different chemical species. The angle dependence cutoff was set to the point just before 

the highest pixel contribution.  This approach eliminates thickness variations and allows 

for mapping of variations in chemical signatures. 

II.2.3 Transmission Electron Microscopy 

TEM images were acquired using a JEOL 2010 instrument operating at 200kV 

using the same Norcada grids as noted above. 

II.2.4 Raman Spectroscopy 

The Raman spectrum of the graphene oxide flake was acquired in back-scattered 

mode using a Horiba Jobin-Yvon Labram HR system with 514.5 nm laser excitation 

using an edge filter for Rayleigh line rejection and an Andor Peltier-cooled CCD 

camera. The spectrum was acquired using a 600 lines mm-1 grating yielding a resolution 

of 1.5 cm-1. 
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II.2.5 Near-Edge X-ray Absorption Spectroscopy 

 Carbon K-edge NEXAFS experiments were performed at National Institute of 

Standards and Technology (NIST) beamline U7A of the National Synchrotron Light 

Source at Brookhaven National Laboratory. A 600 lines/mm toroidal spherical grating 

monochromator was used yielding an energy resolution of approximately 0.08 eV. The 

entrance slits were set to 30 µm × 30 µm. The spectra were acquired in partial electron 

yield (PEY) mode using a channeltron electron multiplier detector with an entrance grid 

bias set to -150 V to enhance surface sensitivity and limit noise. A charge compensating 

electron gun was used to neutralize the effects of sample charging. The PEY signals 

were normalized using the incident beam intensity obtained from the photoemission 

yield of a freshly evaporated Au grid with 90% transmittance placed along the path of 

the incident X-ray beam to eliminate the effects of beam fluctuations and 

 

Figure II.1. Raman spectrum and TEM image of a graphene oxide flake 
located within an amorphous silicon nitride window. (A) The D, G, and 2D 
bands of graphene oxide are apparent in the spectrum. (B) TEM image 
indicating regions with varying electron contrast.     
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monochromator absorption features. The C K-edge spectra were calibrated to an 

amorphous carbon mesh with a π* transition at 285.1 eV. Pre- and post-edge 

normalization of the data was performed using the Athena suite of programs. 

II.3 Results and Discussion 

STXM yields a stack of element-specific X-ray absorption spectra with ca. 30 

nm spatial resolution.18,23,24 As a first approximation, features in X-ray absorption 

spectra represent a replica of the atom-projected unoccupied density of states weighted 

by the absorption cross-section as modified by dipolar selection rules and perturbed by 

core—hole interactions. More specifically, for graphene oxide considered here, the 

observed spectral features represent the superposition of dipole-allowed transitions from 

locally modified C—C and C—O core levels to unoccupied and partially occupied states 

above the Fermi level.25–30 By raster scanning a finely focused soft X-ray beam over the 

Figure II.2. Integrated STXM image stacks acquired at the C and O K-edges for a 
graphene oxide flake. The transmission data is changed into optical density (OD) by 
calculating I/I0, where I, the intensity transmitted through the sample is divided by I0, the 
background signal measured within a hole. A) C K-edge STXM image integrating the 
spectral features in the range between 280-320 eV; the vertical grey scale represents the 
optical density  (B) Overlay of the C K-edge image (green) and the O K-edge image 
(purple) optical density maps indicating the spatial inhomogeneities in the extent of 
functionalization across the flake. (C) O K-edge STXM image integrating the absorbance 
in the range between 280-320 eV; the vertical grey scale represents the optical density.       
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area of interest, it is thus possible to construct a spatially resolved map of the local 

perturbations to the electronic structure induced as a result of chemical functionalization, 

thereby providing a means to explore inhomogeneities in the functionalization pattern. In 

past work, we have used STXM to map electronic asperities and locally doped domains 

in CVD-grown graphene based on the polarization dependence of the π* resonance and 

the intensity of a pre-edge absorption feature.24 STXM mapping of reduced graphene 

oxide has allowed for quantitative evaluation of the number of layers at the edges and 

interiors based on the normalized optical density, and have further shown intriguing 

azimuthal angle dependences at the edges of the reduced graphene oxide sheets 

suggesting the stabilization of electronic states associated with a specific edge 

termination motif (zigzag versus armchair).9,24 Another remarkable study has indicated 

charge redistribution at Co3O4/N-doped graphene interfaces with the reduction of Co 

apparently spatially correlated with nitrogen incorporation.23 However, to the best of our 

knowledge, detailed STXM chemical mapping of graphene oxide has not been reported 

thus far. In this study, we correlate spatially resolved STXM data to transmission 

electron microscopy and Raman spectroscopy data acquired for the same graphene oxide 

flake and further examine high-resolution NEXAFS spectra to probe the functional 

group distribution and orientation. 

Graphene oxide has been prepared by using a modified Hummer’s approach (see 

detailed description in Experimental section) and is deposited onto an amorphous silicon 

nitride window through vacuum filtration. X-ray photoelectron spectroscopy analysis 

suggests extensive oxidation with the incorporation of 31.4% oxygen.30 A large few-
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layered graphene oxide flake that has lateral dimensions of ca. 4 µm has been identified 

by optical microscopy and is further characterized by TEM, STXM, and Raman 

spectroscopy.  Figure II.1A shows the Raman spectrum of the graphene oxide flake with 

Figure II.1B depicting the corresponding electron microscopy image.   

The Raman spectrum of graphene oxide is characterized by a G band derived 

from doubly degenerate (comprising both longitudinal and transverse optic 

contributions) phonon modes of E2g symmetry at Brillouin zone center of graphene, an 

energy dispersive 2D band arising from a double resonance process required to maintain 

momentum conservation, and a disorder-activated D band, which becomes Raman active 

due to phonon divergence processes within the interior of the graphene Brillouin zone, 

and is activated by defect sites and edges.31–33 The G, 2D, and D modes appear at 1576, 

2785, and 1330 cm-1, respectively. The inevitable breaking of the periodic symmetry of 

sp2-hybridized graphene, sp3-rehybridization of a significant fraction of sites, and the 

introduction of defects leads to a pronounced increase of the D band intensity of 

graphene oxide (up to a ID/IG value ~ 1) as compared to single-layered graphene.25,34 

Figure II.1B shows a low-magnification TEM image of the same graphene oxide flake 

studied by Raman spectroscopy. The TEM image indicates that the graphene oxide flake 

is ~4 µm in size and has varying areas of electron contrast due to increased flake 

thickness, presence of folds, and varying extents of functionalization, as further 

corroborated by STXM elemental maps. 

Figures II.2A and II.2C show integrated STXM image stacks acquired for the 

graphene oxide flake (the same flake as indicated in Figure 1) at the C K-edge (in the 
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range between 280—320 eV) and the O K-edge (in the range between 525—560 eV), 

respectively. The transmission data have been mapped in terms of integrated optical 

density (OD) across the energy windows of interest. Both the sample (I) and an empty 

space or hole within the area of interest (Io) is simultaneously imaged during acquisition 

of the image stacks. Higher optical density regions in the images correlate directly to 

greater elemental concentrations of carbon and oxygen within these areas. Figure II.2B 

depicts a composite map blending the optical density plots from Figures II.2A and II.2C, 

wherein carbon is represented in green and oxygen is represented in purple. This image 

clearly suggests an increased concentration of oxygen within specific domains of the 

graphene oxide flake, providing evidence for inhomogeneities in the extent of 

functionalization. Notably, the C K-edge map in Figure II.2A does not indicate 

discernible particle-like contrast in regions that appear purple in the composite map of 

Figure II.2B, suggesting that the additional contrast seen in TEM and the distinctive 

features in the composite map arise from heavily functionalized domains rather than 

thickness variations. Corrugations are also visible in Figure II.1A and in previous work 

we have indicated the ability of STXM to map electronic corrugations in graphene.24 

Figure II.3 shows C K-edge NEXAFS data acquired for a free-standing graphene oxide 

paper from the same batch as deposited onto the TEM grid for STXM analysis. 

NEXAFS data has been acquired at 25˚, 54.7˚ (magic angle), and 85˚ incidence of the 

soft-X-ray beam to probe the steric orientations of the functional groups on graphene 

oxide. As noted above, element-specific C K-edge NEXAFS spectra correspond to 

dipolar transitions from carbon 1s core levels (as modified by chemical 



 

 72 

functionalization) to unoccupied states possessing carbon 2p character. The transition 

matrix element is subject to the angular overlap of the polarization vector of the incident 

electromagnetic radiation and linear momentum operator of electrons, thereby enabling 

NEXAFS spectroscopy to serve as a sensitive orbital-specific probe for examining the 

orientation of molecular frameworks and periodic solids.9,24–27,30,35  

 At near-normal incidence of the incident X-rays, the electric-field vector is 

aligned along the plane of a hypothetically flat graphene sample, and thus predominantly 

 

Figure II.3. C K-edge NEXAFS spectra of graphene oxide acquired at three 
different angles (25˚, 54.7˚ and 85˚) of incidence of the X-ray beam. The peak 
assignments are noted in Table 1 and further elaborated in the text. The spectra 
have been offset for clarity.  
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probes states of σ* symmetry. However, at glancing incidence, the electric-field vector is 

essentially perpendicular to the plane of graphene, thus primarily probing states of π* 

symmetry. NEXAFS data collected at 54.7˚ (magic angle) allow for the elimination of 

effects from preferential orientation.  

The lowest energy peak in Figure II.3 at ~285.39 eV (labeled π*) can be assigned 

to the transition of C 1s core level electrons into states of π* symmetry around the M and 

 

Figure II.4 Chemical domain mapping of graphene oxide. (A) Orthogonalized 
eigenspectra derived from STXM spectral stacks by principal component analysis. 
(B) Real space cluster map representing the relative contributions of the different 
orthogonalized components in different regions of the sample. Red represents 
Component I, Yellow represents Component II, Green represents Component III, 
and Blue represents the background (Component IV).  (C) 2D scatter plot with 
pixels plotted according to their weights along Component II and I, dotted lines 
segregating the components are intended to be guides to the eye.  (D—F) Graded 
STXM maps depicting the contributions of each component across the graphene 
oxide flake: (D) Component I; (E) Component II; and (F) Component III are 
STXM images of the regions assigned by PCA.  
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L points of the graphene Brillouin zone above the Fermi level, whereas the highest 

energy peak positioned at ~293.49 eV (labeled σ*) corresponds to the excitation of C 1s  

core level electrons to dispersionless states of σ* symmetry.25,31,36,37 Both the π* and σ* 

features are thought to be excitonic in sp2-hybridized single-layered graphene but have 

diminished lifetimes in graphene oxide.26 Significant diminution in the intensity of the 

π* feature is noted when going from near-glancing (25°) to near normal (85°) incidence, 

suggestive of substantial anisotropy (alignment of graphene oxide flakes parallel to the 

substrate) within the graphene oxide paper and indicating that graphene oxide 

substantially retains the planar framework of sp2-hybridized graphene. Intermediate to 

the π* and σ* resonances are four features labeled a (~286.89 eV), b (~287.99 eV), c 

(~289.19 eV), and d (~290.45 eV), which can be assigned to functional groups that 

decorate the basal plane and edges of the graphene oxide sheets (Table II.1). These 

assignments are consistent with previous experimental spectra of the graphene oxide, 

functionalized carbon nanotubes, and are further validated by spectra acquired for 

molecular building blocks containing these functional groups.26,27,38 The assignments are 

further supported by NEXAFS spectra of molecular standards collected within the 

McMaster University database.38 The relatively higher electronegativity of oxygen with 

respect to carbon leads to increased stabilization of C-O core levels (as compared to C-C 

states). Furthermore, bonding C-O states are stabilized and their replica antibonding 

states are destabilized with respect to the Fermi level as compared to homopolar C-C 

bonds. Consequently, the increased energy separation between modified C-O core levels 

and the corresponding anti-bonding states is reflected in the absorption features ascribed 
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to the functional groups appearing at relatively higher energies as compared to the π* 

resonances. All four intermediate resonances are observed at magic angle incidence as 

shoulders or distinct peaks due to elimination of angular dependence of intensity induced 

by the steric orientations of the different functional groups.  

The feature labeled a can be assigned to transitions from C 1s core levels to π* 

states of C-O bonds derived from hydroxyl groups, whereas the resonance labeled b can 

be ascribed to the transition of C 1s core level electrons to antibonding C-O states that 

are derived from epoxides, both these moieties have been postulated to be decorating the 

basal plane of graphene oxide as per the Lerf-Klinowski model.25,28,39 The pronounced 

feature evident at ~289.19 eV (labeled c) can be attributed the excitation of C 1s core 

level electrons to states of π* symmetry primarily localized at C=O bonds from carbonyl 

groups.29,39 The resonance labeled d is visible as a distinct resonance at 25° and as a 

shoulder at 54.7° and 85° incidence of the X-ray beam. This feature can be ascribed to 

 

Energy (eV) Chemical Identity 

285.39π* π π* C=C* C=C 

286.89a π* C-OH 

287.99b σ* C-O (epoxide) 

289.19c π* C=O 

290.45d π* O=C-O 

293.49σ* σ* C-C 

Table II.1. Functional Group Assignments of Spectral Features Observed in C 
K-edge Spectra for STXM and NEXAFS. 
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transitions to antibonding states of C=O bonds from carboxylic acid (-COOH) 

functionalities.29,39 The emergence of this feature at glancing incidence is particularly 

telling regarding the orientation of the carboxylic acid moieties and suggest that 

localized π* orbitals are parallel to the π* cloud of graphene, which can only be possible 

if the carboxylic acids are splayed parallel to the plane of the flake. Such a steric 

orientation is consistent with the modified Lerf-Klinowski model, which places 

carboxylic acid groups (and lactols) at edge sites.19 Such an angular dependence of the 

carboxylic acid resonances has heretofore not been observed in NEXAFS studies of 

graphene oxide and are further corroborated by STXM data (vide infra). Another notable 

feature in Figure II.3 is the emergence of σ* C-O feature ascribed to epoxides at near 

normal incidence (85°). The pronounced polarization dependence of this feature suggests 

a significant fraction of 1,2-epoxides that lie in-plane as well as indicate some distortion 

from planarity for epoxide-functionalized carbon atoms. 

  Figure II.4A shows the eigenspectra for the different orthogonalized components 

at the C K-edge derived from PCA treatment of the STXM data.40,41 It should be noted 

that the eigenvalues extracted from the deconvolution of the data do not specifically 

represent a specific functional group. Through the use of mathematical operators, 

orthogonalized eigenspectra can be extracted from the data and encompass linear 

combinations of spectral features from specific functional groups; which upon 

evaluation (as shown in Fig. II.4A) can have greater spectral weight from an individual 

functional group. The PCA analysis method has been more extensively discussed in the 

Supporting Information. These spectra are calibrated to the π* feature at 285.3 eV. The 
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π* peak is of relatively lower intensity since the electric-field vector of the incident X-

rays interacts overlaps predominantly with σ* final states in the basal plane of GO at 

normal incidence. The functional group absorptions are labeled a—d as noted in Table 

II.1 with the same assignments as discussed above for the NEXAFS spectra. The 

component spectra plotted in Figure II.4A represent linear combinations of spectral 

signatures of different functional groups and exhibit some notable differences. All four 

functional groups are represented in Component III. In contrast, the ketone (feature C) 

and carboxylate (feature D) functionalities are especially pronounced and the epoxide 

contribution (feature B) is relatively diminished in Component I.  Component II has a 

high epoxide concentration analogous to Component III but has lower hydroxyl (feature 

A) and quinoidal (feature C) concentrations. Moreover, Component III is distinct from 

Component II in having increased π* intensity. Given the linear polarization of the 

incident X-ray beam this would suggest a greater concentration of wrinkles and folds in 

this region, which would allow for better coupling of the sp2-hybridized framework with 

the electric field vector of the normally incident X-rays.24 

Figures II.4D-F indicates graded maps depicting the contribution of the 

individual orthogonalized components at each pixel within the graphene oxide flake. The 

PCA software affords the ability to use an angle distance measure (between the different 

components) to specify a radius below which pixels are not included in the 

determination of cluster centers; thereby substantially mitigating thickness variations in 

the optical density map and enabling chemically sensitive imaging.41 The angle 

dependence cutoff has been set to the point just before the highest pixel contribution.  In 
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other words, such a cutoff enables distinct chemical signatures to be emphasized over 

intensity variations derived from greater abundance of a specific chemical species within 

a thicker region.41 Figure II.4B presents a PCA cluster image with different color 

representations of the orthogonalized components plotted in Figure II.4A. Consistent 

with the graded maps of the spectral contributions in Figures II.4D-F, Figure II.4B 

suggests a greater contribution for Component I at the edges and within a select few 

interior domains of the graphene oxide flake. In contrast, Components II and III are 

more heavily weighted within the interior of the graphene oxide flake. Figure II.4C 

shows a scatter plot with pixels plotted according to their weights in two specific 

component axes. Similar 2D scatter plots can be constructed for each pair of components 

identified here.  

The “outer ring” feature of Component I is particularly instructive and provides 

direct evidence that carboxylic acid and ketone groups are situated preponderantly on the 

edges of graphene oxide (our spatial resolution is ca. 30 nm). Note that the increased 

presence of folds and corrugations near edges could make this region appear to 

somewhat broader in terms of lateral dimensions. The observed weighting in the PCA 

cluster map provides the first spatially resolved verification of the modified Lerf-

Klinowski model.10,19 This observation further corroborates the angular dependence of 

the carboxylic acid resonance observed in ensemble angle-resolved NEXAFS spectra of 

Figure II.3, which appears to indicate that the carboxylic acid moieties are held parallel 

to the graphene plane. Such a steric orientation can be accommodated only at edges and 

in proximity of holes. Components II and III, which have greater contributions from 
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epoxide moieties are found to be weighted much more heavily within the interiors of the 

graphene oxide flakes consistent again with the Lerf-Klinowski picture, which suggests 

that the basal planes are functionalized with hydroxyl and 1,2-epoxide groups. Ajayan 

and co-workers have observed close correlations between sp2-hybridized carbon atoms 

and these two functional groups in cross polarized NMR studies but have found that the 

carboxylic acid moieties are spatially segregated from the conjugated framework (as is 

indeed evidenced here from their location at edge sites). As noted above, Component II 

 

Figure II.5. STXM image and integrated NEXAFS spectrum acquired at the O K-
edge. (A) Integrated O K-edge X-ray absorption spectrum measured for the 
graphene oxide flake; (B) Depiction of the Lerf-Klinowski model describing three 
components, I (red), II (yellow), III (green) with functional group distributions 
consistent with the eigenspectra of the same colors shown in Figure II.4; (C) 
STXM image plotting the intensity of the π* C=O feature across the sample; and 
(D) STXM image plotting the C-O σ* intensity across the sample. 
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has a higher π* intensity suggesting a greater density of wrinkles and folds within the 

green domains of Figure II.4B. 

Figure II.5A shows X-ray absorption spectra acquired at the O K-edge integrated 

across the entire sample. Two well-separated absorption features are observed at 531eV 

and a broader peak around 539 to 542 eV. The feature at ca. 531 eV can be attributed to 

transitions from O 1s core levels to π* C=O states derived from carboxylic acid and 

ketone moieties, whereas the broad absorption feature centered around  539—542 eV 

can be attributed to the superposition of transitions from O 1s core levels to finals states 

of σ* symmetry localized on O-H, C-O and C=O bonds.18,25,26,39 Shown in Figure II.5B 

is a depiction of the Lerf-Klinowski model highlighting the functionalization motifs of 

the three components extracted by PCA in their respective colors (I-red, II-yellow, and 

III-green, as per Fig. II.4). Figures II.5C and 5D are optical density maps acquired for 

the graphene oxide flake at 531 and 542 eV, respectively.  Figure II.5C maps the 

concentration of π* C=O species and matches well with the highly oxidized regions seen 

in the TEM image of Figure II.1B and the composite oxygen maps shown in Figure 

II.2B and C. Figure II.5D depicts the STXM map for C-O σ* states centered at 542 eV 

with areas of overall greater oxidation prominently discernible as bright spots.  

II.4 Conclusions 

In conclusion, we have developed the first experimentally verified spatially 

resolved description of the functionalization of graphene oxide. Using a combination of 

PCA analysis of STXM data and angle-resolved high-resolution NEXAFS spectroscopy 

experiments we have been able to chemically map functionalization patterns and to 
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determine steric orientations of functional groups in graphene oxide. We note first the 

inhomogeneous functionalization of graphene oxide with highly functionalized domains 

interspersed between more planar and crystalline regions. A second major finding 

pertains to chemically mapping the functional group distribution. The segregation of 

quinoidal and carboxylate species at the edges of graphene oxide has been a 

longstanding postulate and constitutes a key component of the Lerf-Klinowski model of 

graphene oxide. We present here the first experimental validation unequivocally 

demonstrating that the carboxylate functional groups are located primarily on the outer 

edges of graphene oxide, with epoxide and hydroxyl groups concentrated within the 

interior of the graphene oxide flake. Finally, we have been able to deduce the planarity 

of carboxylic acid groups and the specific orientations adopted by 1,2-epoxides based on 

angle-resolved NEXAFS measurements of graphene oxide sheets. Careful 

functionalization protocols targeted to these functional groups may be able to tether 

specific moieties with control of steric orientation (pendant from edges versus residing 

atop graphene oxide planes). Analogous functional group distribution is expected for 

oxidized graphene produced by similar aggressive acid oxidation methods. 

Understanding the spatial distribution of functional groups and the distinct 

functionalized domains within graphene oxide paves the way for targeted tethering of 

other moieties and is critical for incorporation of this material within polymer and metal 

composites, biomaterial constructs, and nanostructured heterostructures.  
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CHAPTER III 

MAPPING POLARONIC STATES, LITHIATION GRADIENTS, AND PHASE 

NUCLEATION IN INDIVIDUAL V2O5 NANOWIRES* 

III.1 Introduction 

The inadequacies of Li-ion batteries have emerged as a major constraint in many 

areas of technological design and can be attributed in large measure to challenges with 

the identification of optimal cathode chemistries and architectures.1–4 In essence, a 

cathode material ought to be able to reversibly store a high concentration of inserted ions 

and furthermore the insertion/extraction and intervening diffusion of ions through the 

host matrix must occur rapidly to facilitate the efficient discharging/charging of the 

battery. There are numerous other caveats related to charge transfer at interfaces, earth 

abundance of the constituent elements, and safety considerations that are vital for 

cathode design. Even this simplified description illustrates the critical imperative to 

carefully match thermodynamic driving forces of charge transfer (the free energy of the 

ion insertion reaction) with the kinetics of ion diffusion. In the most ubiquitous example 

of a Li-ion battery, correlated motion of both ions and electrons must often be 

considered. These correlations can be driven by the chemical composition, crystal 

structure, and/or electrode geometry of the cathode.1,5,6 Electron microscopy and 

microanalysis probes along with local-structure characterization methods, such as total 

scattering, have provided great insight into the transformation of crystal structures upon 

*Reproduced with permission from De Jesus, L. R.; Horrocks, G. A.; Liang, Y.; Parija, A.; Jaye, C.; Wangoh, L.; 
Wang, J.; Fischer, D. A.; Piper, L. F. J.; Prendergast, D.; and Banerjee, S. Mapping Polaronic States and Lithiation 
Gradients in Individual V2O5 Nanowires. Nat. Commun. 2016, 7, 12022:1–9. Reproduced with permission under the 
terms of the Creative Commons CC BY 
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ion insertion and have enabled identification of numerous bottle-necks, for instance: 

fracture dynamics; formation of deleterious side-products;7–10 stabilization of metastable 

structures; or loss of structural homogeneity over repeated charge/discharge cycles. 

However, the role of electronic structure and its contribution to diffusion barriers for ion 

migration is less appreciated.5,11 Such diffusion barriers are responsible for the 

limitations of V2O5 as a cathode material at high rates and the remarkable (>100,000-

fold) enhancement in the performance of this material upon nanostructuring.12–14 

Understanding the origin of these diffusion barriers is imperative for developing 

fundamental design rules for cathode materials to alleviate charge localization.  

 V2O5 crystallizes in an orthorhombic layered structure with space group Pmmn 

with a van der Waals’ separation of 4.368 Å between the layers (Fig. III.1a).15,16 Three 

distinct types of oxygen sites can be identified: vanadyl (V=O) oxygen atoms that point 

between the layers and bridging and chaining oxygen atoms that connect the polyhedra. 

V2O5 was first proposed as a Li-ion intercalation host by Whittingham in 1976 owing to: 

the abundance of interlayer sites that can accommodate Li-ions; the readily accessible 

V5+/V4+ and V4+/V3+ redox couples; and the strong enthalpic driving forces for Li-ion 

insertion within this structure.12,17–19 However, despite these promising attributes the 

poor high-rate performance of these materials and issues with retention of capacity over 

prolonged cycling have limited the widespread commercial development of this material. 

In recent years, this material has enjoyed a resurgence of sorts with the realization that 

the galleries between V2O5 layers can accommodate not just Li-ions but also other main-

group and transition metal cations of interest to “beyond-Li” battery chemistries, as well 
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as the understanding that the sluggish kinetics of Li-ion insertion/extraction can be 

considerably accelerated by scaling to nanometer-sized dimensions.19–22 

Electrochemical measurements and spectroscopic probes often reveal the 

presence of two or more phases when a phase transition accompanies lithiation of a 

cathode material. In many commercial cathode materials such as LiCoO2 or LiMn2O4, 

Li-insertion occurs with only modest first order transitions (driven by Li ordering). 

However, in LiFePO4 a pronounced structural transformation between Li-rich and Li-

poor phases is involved. Similarly, a number of intercalated phases can be distinguished 

for LixV2O5 with varying values of x depending on the concentration of Li ions inserted 

within the structure. Figures 1a and b show the structural progression of V2O5 with 

increasing intercalation of Li ions; a slightly distorted α-phase is initially stabilized for x 

< 0.1 and with further lithiation is transformed to the ε-phase (Fig. III.1a), which is 

stabilized in the range 0.35 < x > 0.8 with initially cubooctahedral and then tetrahedral 

coordination of Li ions; with still more lithiation, a puckered δ-phase is stabilized for ca. 

0.8 < x > 1.0 (Fig. III.1b). In this regime, the phase transitions involve increased 

separation of the V2O5 layers and their puckering and gliding motions to accommodate 

the structural distortions induced by an increasing concentration of Li ions without 

requiring cleavage of V—O bonds.1,12,15 Further lithiation (x >1.0) brings about more 

pronounced structural distortions that involve bond-breaking and inversion of [VO5] 

polyhedra that are irreversible in the bulk, although there is evidence for recovery of the 

orthorhombic structure upon delithiation for nanostructures21,22 even for x approaching 3 

in LixV2O5.23 In V2O5, the phase transitions across the structures depicted in Figures 1a 
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and b are rapidly accelerated, by up to 100,000 times, upon scaling to nanometer-sized 

dimensions yet there is evidence from combined Raman and powder diffraction studies 

of substantial variations in the extents of surface and bulk lithiation.15,24 Understanding 

the origin of such phase segregation is imperative for the design of cathode materials and 

geometries.  

Upon chemical lithiation, the ionized Li-ion as well as the electron must diffuse 

through the solid matrix with the localization of the latter often bringing about a 

 
Figure III.1. Structural distortions induced upon insertion of Li-ions and 
characterization of geometric and electronic structure As the layered structure of 
V2O5 is intercalated with Li-ions, it undergoes a series of phase transformations, to 
a puckered ε-phase (a); upon further lithiation, the ε-phase transforms with an in-
plane shift to a δ-phase (b). (c) Scanning electron microscopy images depict V2O5 
nanowires with lengths spanning hundreds of microns (scale bar, 3 µm). (d) High-
resolution transmission electron microscopy (TEM) image of an individual V2O5 
wire (scale bar, 5 nm) indicating the separation between the (711) lattice planes of 
orthorhombic V2O5. The top inset shows a low-magnification TEM image of 
several nanowires (scale bar, 0.2 µm), whereas the bottom inset indicates an 
indexed selected area-electron diffraction pattern (scale bar, 5 per nm). (e) X-ray 
absorption near edge structure (XANES) measurements of stoichiometrically 
lithiated V2O5 depicts a reduction of the 3dxy resonance at the V L-edge and a 
diminution of the t2g to eg* ratio at the O K-edge with increasing lithiation. 
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pronounced structural distortion; the combination of the electron and its structural 

distortion is termed a small polaron, provided the distortion has a length scale 

comparable to the primitive unit cell of the host material. The signatures of polaron 

formation and polaron hopping energies have been predicted theoretically, but direct 

experimental evidence of polaron formation and the accompanying geometric distortions 

have hitherto not been examined.5,25–28 Here, we present direct evidence of 

inhomogeneities in charge localization and local structural distortions induced upon 

lithiation using scanning transmission X-ray microscopy (STXM) and corroborate 

theoretical predictions of a distinctive polaronic state using X-ray absorption near-edge 

structure and hard-energy X-ray photoemission spectroscopies. The polaron hopping 

barrier impedes electron diffusion and gives rise to phase inhomogeneity evident as 

lithiation gradients across an individual particle. 

III.2 Results and Discussion 

Chemical lithiation using n-butyllithium is used to model Li-ion insertion within 

a cathode as per the reaction:29 

V!O! + 𝑥C!H!Li → Li!V!O! +  
𝑥
2 C!H!"    (EQUATION III. 1) 

Figures III.1c and d indicate scanning electron microscopy (SEM) and transmission 

electron microscopy (TEM) images of V2O5 nanowires grown by a previously reported 

hydrothermal method; the nanowires range from 150—250 nm in diameter and span 

several hundred micrometers in length.15 The lattice-resolved TEM image in Figure 1d 

shows the separation between (711) planes of orthorhombic V2O5 and, along with the 

accompanying selected area electron diffraction pattern, indicates that the single-
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crystalline nanowire grows along the crystallographic c direction without any discernible 

extended defects.  

Fig. A.1 shows an integrated V L- and O K-edge X-ray absorption near edge 

structure (XANES) spectrum acquired for an individual nanowire of V2O5 along with 

putative assignments derived from restricted open shell configuration interaction with 

singles (ROCIS) quantum chemistry calculations reported by Neese and co-workers30 for 

the V L-edge and a density functional theory calculation for the O K-edge, further 

elaborated below. As an element- and edge-specific probe of unoccupied states, XANES 

serves as a valuable tool to probe electronic structure and chemical bonding in extended 

solids and single molecules alike.31,32 The V L-edge is characterized by V LIII and V LII 

spectral features corresponding to transitions from V 2p3/2 → V 3d (ca. 518 eV) and V 

 
Figure III.2. Evaluating electronic structure changes caused by lithium-ion 
incorporation Scanning transmission X-ray microscopy (STXM) image and 
integrated X-ray absorption near edge structure (XANES spectrum acquired for (a) 
an individual V2O5 nanowire (scale bar, 500 nm), (b) an individual nanowire after 
1 min of chemical lithiation (scale bar, 200 nm), and (c) a lithiated nanowire 
subjected to delithiation in Br2 solution (scale bar, 500 nm). Pronounced 
differences are discernible after lithiation including diminution of the V LIII-edge 
feature attributed to a V 3dxy final state and the reduction of the t2g:eg* ratio. The 
complete recovery of the electronic structure upon delithiation suggests that the 
spectral changes can be directly attributed to Li-ion intercalation. All spectra have 
been pre- and post-edge normalized to a unitary absorption cross-section to depict 
the relative spectral intensities. 
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2p1/2 → V 3d (ca. 525 eV) states, respectively,30,33,34 which are split by the spin-orbit 

coupling of the V 2p atomic orbitals of ca. 7 eV. In turn, the O K-edge corresponds to 

transitions from O 1s states to states with O 2p character. As a result of substantial V 

3d—O 2p orbital hybridization, two distinct sets of resonances are observed, reflecting 

the crystal field splitting of the V 3d orbitals. Assignments of the spectral features 

illustrated in Fig. A.1 are derived from density functional theory modeling and are 

further corroborated by angle-resolved XANES experiments (wherein the modulation in 

the intensity of resonances as a function of the polarization reflects the orbital symmetry 

of the final states).30,33,34  

A Coster—Kronig Auger decay process into a 2p3/2 hole renders the V LII feature 

less informative;34 however, the V LIII resonance indicates fine-structure features that 

strongly depend on the polarization vector; these transitions comprise transitions from 

the singlet V 2p63d0  into V 2p53d1 states split by crystal field and multiplet effects.30 

Despite convoluting multiplet effects, ROCIS calculations30 indicate that the first two 

sharp resonances at 515.6 and 516.8 eV, respectively, correspond to final states that have 

relatively “pure” V 3dxy and 3dxz/yz character and indeed angle-resolved XANES studies 

bear out these proposed orbital symmetries.30,33,34 In contrast, the O K-edge is not 

convoluted by multiplet effects and can be clearly distinguished as three sets of 

transitions from O 1s core levels to (a) O 2px and 2py states that engage in π interactions 

with the t2g (V 3dxz, 3dxy, 3dyz) states of the metal cations (at 529.7 eV); and overlapping 

σ states that represent direct end-on hybridization of (b) O 2px and 2py with V 3dx
2

-y
2 

states at 531.6 eV and (c) O 2pz with V 3dz
2 states at 533.1 eV. The calculated XCH-
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XAS spectrum shown in supplementary Fig. 1b suggests that the t2g manifold is derived 

primarily from transitions from O 1s core levels to O 2px/py states of the vanadyl 

oxygens that are hybridized with V 3dxz and 3dyz states; a lesser contribution to this 

resonance arises from transitions into O 2py states of bridging oxygen atoms hybridized 

with V 3dxy states and O 2px states of chaining oxygen atoms hybridized with V 3dxy 

states. The hybridization of the V=O oxygens with V 3dxz/yz thus dominates the lineshape 

of the t2g resonance in the XANES spectrum with the non-bonding V 3dxy contributing 

much less, in stark contrast to the V LIII-edge spectrum, wherein the lowest lying “split-

off” state is primarily V 3dxy in origin.30 These assignments thus allow for an orbital-

specific description of changes in electronic structure as a function of the lithiation of 

V2O5 and provide unprecedented insight into charge localization phenomena. 

Figure III.1e shows XANES spectra for a series of intercalated V2O5 samples 

with increasing values of x in LixV2O5. XANES resonances are collected at magic angle 

(54.7°) incidence to mitigate specific texturation effects.35 Several trends are 

immediately discernible (since XANES probes empty orbitals, the diminution of a 

resonance, to first approximation, corresponds to occupation of states that give rise to the 

resonance): the first resonance in the V LIII spectrum corresponding to transitions to the 

split-off dxy conduction band of V2O5 is strongly diminished with increasing lithiation 

consistent with the reduction of V2O5 upon lithiation (V5+ to V4+) and indicating the 

occupation of the lowest lying conduction band states. Furthermore, at the O K-edge, the 

relative intensities of the transitions to the t2g and eg* (π* and σ*) states are greatly 

modified with the former resonances losing spectral weight. The origin of this 
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pronounced modification of spectral lineshapes is distinct from filling of the non-

bonding V 3dxy states and suggests a pronounced rehybridization of V—O bonding at the 

vanadyl oxygens (vide infra). 

In contrast to ensemble spectra depicted in Figure III.1e, focusing the X-ray 

beam allows for acquisition of spatially resolved STXM data with ca. 25 nm spatial 

resolution, thereby allowing us to probe the lithiation of an individual nanowire 

immersed in a toluene solution of n-butyllithium for 1 min (Fig. III.2b) By finely raster 

scanning the sample, STXM provides a means to construct a spatially resolved map of 

the local perturbations to the electronic and geometric structure induced by ion 

intercalation. Indeed, X-ray imaging has contributed greatly to understanding of 

inhomogeneities in biomaterials and polymeric systems.36,37 The absolute energy 

calibration, detector linearity (Fig. A.2), and beam point spread function are main 

sources of error for this technique and have been carefully addressed as described in the 

Methods section.38  

Figure III.2a depicts the STXM image and integrated V L- and O K-edge spectra 

of an individual V2O5 nanowire with a diameter of ca. 200 nm. In contrast to the 

orientation-averaged ensemble XANES spectra presented in Figure 1e, well-resolved 

lineshapes are discernible for an individual single-crystalline V2O5 nanowire and the 

spectral transitions can be assigned as noted in supplementary Fig. III.1 and discussed 

above. Figure III.2b depicts the STXM image and corresponding integrated spectrum 

acquired for a V2O5 nanowire after chemical lithiation for 1 min. Pronounced differences 

are readily discernible in this spectrum; the transition attributed to a V 3dxy final state at 
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515.6 eV is greatly diminished in intensity. Concomitantly, at the O K-edge, the t2g 

peaks are broadened and diminished in relative intensity with respect to the eg* peaks. In 

concordance with the ensemble XANES spectra (Fig. III.1e), the integrated element-

specific spectrum in Figure III.2b suggests that the electrons donated by the inserted Li-

ions have been transferred and reside on the V2O5 framework but are localized on the 

lowest-lying V=O 3dxz/yz—O 2p hybridized states of the conduction band, which have 

been substantially distorted as a result of lithiation.17,39–41 Interestingly, upon delithiation 

by immersion in Br2 solution the electronic structure for V2O5 is recovered in its entirety 

 
Figure III.3. Mapping Electron Density, Inhomogeneous Lithiation, and Local 
Structural Distortions Across a Single V2O5 Nanowire. Three distinct spectral 
contributions deconvoluted from region of interest analysis of Fig. 2b are plotted 
in panels (a)—(c) in order of increasing lithiation evidenced as a diminution of 
the V 3dxy resonance at the V LIII-edge and the t2g:eg* ratio at the O K-edge. 
Intensity maps for each spectral contribution are plotted in (d)–(f) (scale bar, 200 
nm), respectively, showing inhomogeneous regions of lithiation. A nonlinearity 
correction has been implemented as described by Collins and Ade and described 
in the Methods section.38 All spectra have been pre- and post-edge normalized to 
a unitary absorption cross-section to depict the relative spectral intensities. The 
colour scale bars represent normalized optical density. 
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(Fig. III.2c) confirming that the electronic structure modulation observed in V2O5 

derives directly from lithiation.  

Unlike Figures III.2a and c wherein the spectra show little variation across the 

span of the nanowires, several distinct spectral contributions are discernible for the 

lithiated nanowire of Figure III.2b. A region of interest (ROI) analysis allows for 

identification of three distinct domains that are characterized by spectra individually 

plotted in Figures III.3a—c; these spectra correspond to different regions of the 

nanowire shown in Figure III.2b (the spectrum in Figure III.2b captures the integrated 

spectrum). In going from Figure III.3a to c, the intensity of the t2g resonance is 

progressively diminished with respect to the eg* resonance, indicating successively 

greater electronic reduction of the V2O5 framework; the accompanying maps in Figures 

III.3d—f indicate the spectral intensities of each of these components across the 

nanowire, suggesting the presence of distinct domains as a result of inhomogeneous 

lithiation. These maps are derived based on singular value decomposition of the image 

stack and by using as a reference the ROI spectra identified within different regions of 

the same image sequence. This operation produces a set of composition maps where 

intensities represent the signal strength of each of the spectral components (Figs. 

III.3a—c) in that highlighted area. Notably, Fig. A.3 shows a thickness map of the 

nanowire (determined after a nonlinearity correction) along with a cross-sectional SEM 

image of the surface of an individual nanowire that indicates that the domains visualized 

in Figure III.3a—c result from inhomogenous lithiation and do not reflect thickness 

variations.  Figure III.3d represents the least lithiated domains within this sample and is 
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weighted most strongly at the periphery of the nanowire; based on the ensemble spectra 

depicted in Figure III.1e and previous angle-resolved spectra acquired for V2O5 

nanowires33, an extent of lithiation in the broad range 0.1 < x < 0.5 can be surmised. 

Note that the intensities at the V LIII edge for the lithiated sample are substantially 

diminished as compared to unlithiated and delithiated V2O5 as a result of state blocking; 

occupation of conduction band states diminishes the intensity of the low-energy XANES 

 
Figure III.4. Density of states calculation for V2O5 and LiV2O5. The 
GGA+U ground-state projected-DOS (pDOS) of pristine V2O5 (a–b) and 
the stoichiometric LixV2O5 (c–d) that adopts the pristine V2O5 vertical 
stacking order. The upper panels are the pDOS of vanadium in which the 
gray area indicates the occupied states. In the lower panels, the key 
components that are mainly responsible for the changes in the main peak 
intensity at the O K-edge are outlined by solid curves. The total pDOS 
(black curves) are the summation of px-, py-, and pz-components from all 
three types of oxygen; chain (Oc), bridge (OB) and vanadyl (OV), with the 
corresponding stoichiometric ratio. 
 



 

 100 

features. The interiors of the nanowires show two distinct spectral components depicted 

in Figures III.3e and III.3f with substantially greater extents of lithiation (estimated to be 

0.5 < x < 0.9 and 0.9 < x < 1.40, respectively). In particular, Figure III.3f defines a 

highly reduced strip that runs across a large section of the nanowire. The reduction of the 

3dxy resonance at the V LIII edge correlates to the occupation of the lowest-lying levels in 

the conduction band of V2O5 by the electron ionized from the inserted Li atom. The 

resonance observed after lithiation arises from a superposition of remnant V5+ and 

reduced vanadium sites. In contrast, the diminished relative intensity of the low-energy 

t2g peaks at the O K-edge is the result of an induced structural distortion and further 

polarization of the electron density on V2O5 caused by the heterogeneous insertion of Li-

ions (vide infra). In other words, the V LIII-edge allows for direct evaluation of electron 

density on the vanadium sites, whereas the O K-edge unveils structural distortion of the 

vanadyl V=O bonds induced as a result of electron localization. 

The increased lithiation at the core and the reduced lithiation of the surfaces is 

explicable based on the orientation of the nanowires (Fig. III.1d) and the preferred 

insertion of Li-ions between the layers. In essence, the nanowire is being viewed down 

the crystallographic b-axis and thus is enclosed at the top and bottom by ab planes that 

are impermeable to lithiation. The pronounced differences in lithiation likely further 

result from the stage ordering typical of layered materials42,43; the initial stochastic or  

defect-driven intercalation of Li-ions between two specific V2O5 layers results in a local 

expansion of the interlayer spacing and facilitates insertion of a second Li-ion within the 

same layer. Indeed, Fig. A.4 indicates a sequence of calculated V2O5 structures with 
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insertion of one Li-ion (Fig. A.4a) and then two possibilities for insertion of the second 

Li-ion: within the same layer (Fig. A.4b) and alternating layers (Fig. A.4c); insertion of 

Li-ions within the same layer is thermodynamically favored by -0.235 eV per formula 

unit. 

To better understand the variations in the oxygen XANES spectra of the 

nanowires, GGA+U (U = 3.1 eV)44 calculations were employed to examine the evolution 

of the electronic structure as a function of increasing insertion of Li ions.44,45 The on-site 

Coulomb repulsive energy U is essential to capture the effects of strong electron 

correlation with vanadium 3d orbitals. Orthorhombic V2O5 (Fig. III.1a) is a dielectric 

material with a bandgap of ca. 2.3 eV;16,46–48 the conduction band is primarily V 3d in 

character, whereas the valence band has an extensive O 2p contribution.16,30 The 

projected density of states (pDOS) of pristine V2O5 is shown in Figures III.4a and b, 

with the valence band maximum (VBM) aligned at 0. The two spin channels are 

completely degenerate in this d0 system with pure V5+. In the crystal field of the slightly 

distorted [VO5] square pyramid, the 3dxy orbitals from the perfect octahedral t2g group 

are further split into a high-energy component that overlaps with the degenerate 3dxz and 

3dyz orbital and a lower-energy component that dominates the conduction band edge49–51 

(at ca. 2 eV above the VBM in Fig. III.4a). This lower energy 3dxy orbital is 

approximately non-bonding and comprises two split-off bands. The prominent feature in 

the oxygen total pDOS results primarily from the strong hybridization of the V 3dxz and 

3dyz orbitals with the vanadyl oxygen atom and indeed these features contribute to the 

sharp XANES resonance at 529 eV.52 The secondary feature from the oxygen pDOS is 
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the typical eg component and gives rise to the absorption peak at 531 eV.  Even without 

core-hole effects, the ground-state pDOS can still reproduce these features in the V2O5 O 

K-edge spectrum (Fig. A.1b) and enables understanding of the trends observed upon 

lithiation.53 With increasing, the donated electrons begin to occupy the non-bonding 3dxy 

component at the band edge. We first consider a simple periodic system with pure V4.5+ 

site, where the electron occupies only a quarter of all available 3dxy orbitals (as in α-

NaV2O5).51,54 Even at this electron doping level, electron correlation effects are 

important. The two spin channels are significantly split as a result of the localization of 

spin states induced by local lattice distortions, which lifts the spin degeneracy as 

depicted by Figure III.4c. The donated electrons take on 3dxy character and the localized 

spins51,54,55 are arrayed along the orthorhombic b-axis of V2O5. Contrary to intuition, the 

observed diminution of t2g intensity is not due to Pauli-blocking from electron 

occupation, since the Fermi level remains far below the main peak position in the 

quarter-filled case.  Instead, the lifted spin degeneracy induced by the correlation effects 

and lattice distortion plays a much more important role in reducing the t2g peak intensity. 

In short, the oxygen 2p components that strongly hybridize with the V 3d-orbitals are 

also split into two non-degenerate spin channels, leading to a severe drop in the main 

peak intensity (Fig. III.4d). Further details of the pDOS, illustrating this splitting, are 

depicted in Fig. A.5. Both the lifting of spin degeneracy and the lattice distortion caused 

by lithiation contribute to reduction of the intensity of the t2g peak. The inserted Li-ions 

electrostatically attract the vanadyl oxygens towards them and create a pronounced 

distortion on the a-c plane (Fig. III.1b). Such a distortion further shifts the energetic 
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position of 3dxz-orbitals, resulting in a noticeable migration of t2g intensity to higher 

spectral energies. Based on the abovementioned effects, the pDOS shown in Figure 

III.4d captures the specific origins of the evolution of the O K-edge spectra.  

 The Coulomb interaction between the spin-up and spin-down states, represented 

by the on-site Coulomb repulsion energy U, favors the removal of spin degeneracy along 

one spin polarization so as to lower the total energy of the system (Fig. A.6) and indeed 

this stabilization counteracts the elastic energy expended to bring about the distortion of 

the geometric structure depicted in Fig. A.7 (also see Movie A.1). In Figure A.6, we 

initiate a supercell with perfect V2O5 lattice symmetry and an added electron and relax 

the structure by enforcing spin degeneracy. The electron density also become 

delocalized in this case and this delocalized structure is ca. 0.22 eV higher in energy than 

the small polaron structure with a localized electron. These results further suggest that 

the stabilization of the small polaron in V2O5 is energetically favored both as a result of 

lattice distortion as well as the lifting of spin degeneracy.56,57 The influence of the Li-ion 

on the small polaron is further discussed below.  

In order to understand the localization of the electron density upon Li-ion 

intercalation, the electronic difference is calculated following equation III.2:  

∆𝜌 𝑟 =  𝜌!"!!!!! 𝑟 −  𝜌!" 𝑟 − 𝜌!!!! 𝑟   (EQUATION III. 2) 

where 𝜌!"!!!!! 𝑟  is the electron density of the Li-intercalated V2O5, 𝜌!" 𝑟  of isolated 

Li atoms in the same position as in the total system and 𝜌!!!!(𝑟) for V2O5. Fig. A.4 plots 

the increase and decrease in electron density of singly lithiated Li0.125V2O5 and doubly 

lithiated Li0.25V2O5 systems. The increase in electron density traces the contours of a V 
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3dxy orbital, indicating an electron localized in this lowest-lying state of the conduction 

band; in contrast, the electron density decrease is localized within bonds along the [VO5] 

pyramid. To put it differently, the increased electron density localized on the V 3dxy 

orbitals polarizes the V—O bonds and brings about a pronounced increase of the bond 

length. The coupled charge localization and distortion of the geometric structure further 

defines a small polaron as observed in the single-electron reduction case. Movie A.1 

illustrates the localized distortion of the structure wherein the V atom shifts away from 

the intercalated Li-ion; the bridge and chain oxygen atoms distort away from the central 

vanadium atom reflecting increased bond lengths and the vanadyl oxygen atoms orient 

toward the intercalated Li-ions defining its cubooctahedral local coordination 

environment.  

 
Figure III.5. Valence Band and Hard X-ray Photoemission Spectroscopy 
(HAXPES) Measurements of V2O5 and LixV2O5 (a) Valence Band spectra for 
pristine V2O5 (red) and LixV2O5 (black). The right inset depicts a magnification of 
the region showing the emergence of a feature below the Fermi level. As 
predicted by theory, HAXPES measurements clearly illustrate the appearance of a 
polaronic state below the Fermi level. (b) HAXPES performed on these samples 
demonstrates the existence of V4+ and V5+ sites at the V 2p3/2 peak. 
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Polaronic confinement in transition-metal oxides has been extensively examined 

using DFT calculations.5,25,26 Ioffe and Patrina have previously attempted to correlate the 

conductivity of V2O5 to small polaron formation using electronic transport 

measurements.27 However, direct atomic-scale evidence of polaron formation has thus 

far been elusive. The clear correlation of transitions related to final states involving the 

V 3dxy level upon lithiation noted in Figure III.2 and the subsequent effect on the crystal 

structure of the material shown in the reduction of the t2g/eg* ratio clearly indicates that 

polaron formation plays a key role in limiting Li-diffusion within this material.  

The energetic barrier to polaron diffusion within Li0.125V2O5 was calculated. 

Previous studies have shown strongly disfavored Li migration along the a- and c-axes 

with migration barriers of 1.88 eV and 1.69 eV, respectively.58 Fig. A.8a and A.8b show 

a schematic depiction of the path adopted by Li-ions between adjacent Li sites along the 

b-axis, with a calculated diffusion barrier of 0.22 eV.19 The diffusion of Li-ions involves 

a change in the local coordination environment from 8→3→8 anions. Fig. A.8c 

illustrates the constrained trigonal planar transition state; the energetic barrier derives in 

large part from the substantial change of coordination number and the unfavorable 

coordination environment in the transition state. To further understand electron-polaron 

interactions with the intercalated Li-ion, the polaron formation energies are calculated 

for two separate pairs of vanadium positions (Fig. A.9). In the first case, the electron is 

localized on the V1—V2 pair (in proximity of the Li-ion), whereas in the second case 

the electron is localized on the V3-V4 pair (far from the Li-ion). The former 

configuration yields a formation energy of -0.41 eV/V2O5 unit suggesting that the 
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polaron is stabilized by an attractive interaction with the Li-ion. In contrast, the 

calculated formation energy for the latter configuration with the polaron situated at V3-

V4 positions is 0.02 eV/V2O5, clearly a much less stable configuration for the polaron. 

Fig. A.19c indicates that the migration barrier for the V1-V2 polaron is 0.34 eV, whereas 

the comparable value for the V3—V4 pair is 0.03 eV. These calculations thus suggest 

that small polarons are preferentially stabilized adjacent to the intercalated Li-ions but 

this stabilization also entails a substantial barrier for migration of the polarons along the 

V2O5 framework.56 In other words, the intercalated Li-ions play a critical role in 

stabilizing the polaron and determining its ease of migration. 

 Now turning our attention to the electronic consequences of Li-ion intercalation, 

the calculated orbital-projected density of states in Fig. A.10 suggest that lithiation 

should be accompanied by the appearance of a “mid-gap” state between the valence and 

conduction band. To examine the predictions of the appearance of a filled state derived 

from polaron formation in the upper valence band, hard X-ray photoemission 

spectroscopy (HAXPES) measurements have been performed for lithiated samples (Fig. 

III.5). The V 2p3/2 spectrum in Figure III.5b clearly indicates the presence of discrete V4+ 

and V5+ states. Most notably, the inset to Figure III.5a indicates the emergence of a 

feature not observed for orthorhombic V2O5 at ca. 1.0 eV below the Fermi level in the 

valence band spectrum that corroborates and serves as a distinctive signature of the mid-

gap polaronic predicted by DFT. The appearance of this state provides definitive 

experimental evidence for localized electrons corresponding to stabilization of a small 

polaron. 
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The experimental results in concert with the calculations indicate that local 

structural distortions and the stabilization of small polarons impede electron diffusion 

within V2O5 and give rise to distinctive lithiation gradients.42,59 The STXM images 

correspond to a map of electron density on the V2O5 framework, which further reflects 

the lithiation gradient as a result of the close association of localized electrons with Li-

ions. As noted above, in LixV2O5, the Li-ion stoichiometry x determines the phase of the 

material and a series of phase transformations are evidenced with increasing lithiation. 

Barriers to diffusion of Li-ions thereby also influence the sequence of structural phase 

transformations. In other words, STXM provides a view of trapped electron density, 

which is correlated to lithiation gradients, further reflecting barriers to propagation of 

phase transformation within an individual LixV2O5 nanowire. The pronounced increase 

in high-rate  performance as observed for nanostructures thus likely results much more 

facile phase nucleation enabled by easier electron and ion diffusion.  

III.3 Conclusions 

In summary, we have mapped the changes in electronic structure as well as local 

structural distortions induced by the lithiation of V2O5 using a combination of V L-edge 

and O K-edge XANES and STXM probes of the conduction band and HAXPES 

examination of the valence band; the spectra are interpreted with the assistance of 

DFT+U calculations. Specifically, we note the stabilization of distinctive domains within 

individual nanowires of lithiated V2O5 corresponding to the emergence of charge density 

gradients along the nanowires that can be correlated to inhomogeneous lithiation. These 

measurements provide the first view of highly anisotropic lithiation of layered materials 
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resulting from the peculiarities of their electronic and geometric structure. Spectral 

assignments verified by DFT modeling suggest that lithiation of V2O5 induces the 

localized reduction of specific vanadium sites with the electron derived from the ionized 

Li ion residing in neighboring V 3dxy orbitals that are the lowest lying states in the 

conduction band. In a complementary fashion, O K-edge XANES spectra and STXM 

maps depict the local structural distortions induced by exchange interactions and small 

polaron formation as a result of strong modification of V—O hybridization along the 

vanadyl V=O bonds. DFT calculations confirm that electron density localization is 

sufficient to drive elastic distortion of the local atomic structure. The quasiparticle 

comprising the trapped electron and the local distortion constitutes a small polaron and 

polaronic signatures predicted by DFT have been verified by HAXPES studies. 

Delithiation of V2O5 brings about elimination of the polaron and complete recovery of 

the electronic structure. The small polaron formation directly evidenced in these studies 

is thought to be the origin of sluggish diffusion of Li-ions through the cathode, with a 

diffusion barrier of ca. 0.22 eV, limiting high rate performance. The strongly accelerated 

kinetics of lithiation observed upon scaling to nanometer-sized dimensions can also in 

large measure be attributed to the ability to circumvent the limitations of sluggish small 

polaron hopping at these sizes. The fundamental limitations to ion diffusion unveiled 

here suggest that V2O5 cathode materials will benefit from development of quasi-

amorphous or highly porous materials where charge is not required to travel large 

distances or by devising novel lattice frameworks with lower extent of polaronic 

confinement. Quasi-amorphous or highly porous materials would have a greater contact 



 

 109 

area with the electrolyte, thereby greatly limiting the range over which small polaron 

hopping needs to be sustained and mitigating the kinetic impediments imposed by 

stabilization of a polaron. 

III.4 Methodology 

III.4.1 Synthesis and Chemical Lithiation of V2O5 Nanowires 

Synthesis and the subsequent lithiation of the V2O5 nanowires were carried out as 

previously reported.15 Briefly, V2O5 nanowires were synthesized via hydrothermal 

reduction of bulk V2O5 (Sigma-Aldrich 99.5%) with oxalic acid (J.T. Baker) to prepare 

V3O7·H2O nanowires followed by oxidation in air at 300˚C to obtain phase-pure V2O5 

nanowires. Lithiation was carried out within a glove bag under Ar ambient via 

immersion of the powder in molar excess (4:1 Li:V2O5) of 2.5 M n-butyllithium solution 

in hexanes (Sigma-Aldrich) diluted to 0.025 M in toluene. Delithiation was 

accomplished by immersion of the lithiated samples in pure liquid Br2 for 2 h, followed 

by washing with large amounts of hexanes. The samples are sealed within a glovebox for 

transport to synchrotrons for XANES and STXM measurements. 

III.4.2 XANES Spectroscopy 

XANES measurements were carried out at the National Synchrotron Light 

Source (NSLS) of Brookhaven National Laboratory at beamline U7A operated by the 

National Institute of Standards and Technology (NIST) with a toroidal mirror spherical 

grating monochromator using a 1200 lines mm-1 grating with a nominal energy 

resolution of 0.25 eV with a slit size of 30 x 30 µm. XANES spectra were collected in 

partial electron yield mode with a channeltron multiplier near the sample surface; the 
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detector was used with an entrance grid bias of -200 V bias to reject low-energy 

electrons; a charge compensation gun was used to avert the charging of the samples. The 

incident beam is linearly polarized 85% in the plane of the synchrotron ring. As XANES 

uses linearly polarized light and incorporates dipolar transitions, the absorption cross 

section transforms as follows: 

𝜎 𝜀 =  𝜎!𝑠𝑖𝑛!𝜃 + 𝜎!𝑐𝑜𝑠!𝜃   (EQUATION III. 3) 

where 𝜎 𝜀  is the Cartesian tensor for the absorption cross section derived from Fermi’s 

Golden rule, 𝜎! and 𝜎! are distribution functions of crystallite orientation, and 𝜃 is the 

angle between the polarization vector and sample. If 𝜃 = 54.7˚, the isotropic average is: 

𝜎 𝜃 = 2𝜎! +
𝜎!

3   (EQUATION III. 4)  

and thus specific texturation effects are heavily mitigated at this angle. The partial 

electron yield (PEY) signals were normalized using the incident beam intensity to 

eliminate the effect of incident beam intensity fluctuations and monochromatic 

absorption features. The V L- and O K-edge spectra were acquired in a single scan. The 

data was collected along a metallic vanadium reference mesh for energy calibration. Pre-

and-post edge normalization of the spectrum was performed using the Athena suite of 

programs. 

III.4.3 Scanning Transmission X-ray Microscopy (STXM) 

STXM measurements were performed at the SM (10-ID1) beamline of the 

Canadian Light Source (CLS), a 2.9 GeV third-generation synchrotron facility. A 25 nm 

outermost-zone zone plate was used to obtain a diffraction-limited spatial resolution 

better than 30 nm. A 500 line mm-1 plane grating monochromator (PGM) was used to 
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acquire the V L-edge and O K-edge spectral stacks. The incident photon flux (Io) count 

rate was adjusted to be less than 20 MHz and optimized to ca. 17 MHz as read by the 

STXM detector within a hole located close to the sample of interest and measured at 560 

eV by adjusting the exits slits to 17/16 µm (dispersive/non-dispersive). The V L- and the 

O K-edge stacks covered an energy range from 508—560 eV with energy steps of 0.2 

eV in the region of interest and 1 eV in the continuum region beyond the specific 

elemental edges with dwell time of 1 ms for each section. Right circularly polarized light 

X-rays, generated by an elliptically polarized undulator (EPU) was used in the 

experiments. All STXM data were analyzed and processed using aXis2000 software 

(http://unicorn.mcmaster.ca/aXis2000.html). STXM maps are derived based on singular 

value decomposition of the image stack in aXis2000 and by using as a reference the ROI 

spectra identified within different regions of the same image sequence. This operation 

produces a set of composition maps where intensities represent the signal strength of 

each of the spectral components (Figs. III.3a—c) at each specific pixel of that 

highlighted area. To correct for the non-linearity of the detector, the flux was measured 

as a function of dispersive slit width for non-dispersive slit widths of 5 µm, 10 µm, 15 

µm, 25 µm at 560 eV (Fig. A.2). The resultant curves were fit using the function as per 

the method described by Collins and Ade:38  

𝐼′ =  𝐼!(1− 𝑒(!!(!!!!))  (EQUATION III.5)  

where I' is the measured flux, Is is the detector saturation flux, κ is the rate at which 

measured flux approaches saturation, x is the dispersive slit width, and x0 is a slit width 
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zero offset. The parameters extracted from the fit function allow for the measured flux to 

be corrected to the actual flux using the following relationship: 

𝐼 =  −𝐼! 𝑙𝑛 1−
𝐼’
𝐼!

  EQUATION III. 6   

From this analysis, the quantum efficiency of the detector can be determined as a 

function of flux and is plotted in supplementary Figure III.2.38 The experimental 

spectrum of the lithiated V2O5 nanowires was corrected by first extracting the average 

measured flux at each pixel from the image stack. The extracted flux was then corrected 

by calculating the actual flux, as in latter equation, yielding a spectrum representative of 

the actual flux values at each pixel. Due to the magnitude of correction being dependent 

upon the measured flux, a correction factor was then calculated for each pixel, which 

was then multiplied by the stack to yield a corrected image (Fig. III.3). 

III.4.4 Hard X-ray Photoemission Spectroscopy (HAXPES) 

HAXPES measurements were performed at the National Institute of Standards 

and Technology (NIST) bending magnetic beamline X24 of the National Synchrotron 

Light Source of Brookhaven National Laboratory. Measurements were performed at a 

ca. 4 keV photon energy with a pass energy of 500 eV and a Gaussian instrumental 

broadening of 0.45 eV. The higher excitation of HAXPES circumvents serious charging 

issues that are common to UV and soft X-ray photoelectron spectroscopy. No evidence 

of charging was observed during our measurements. The HAXPES spectra are energy 

aligned to the Fermi level of a gold foil reference in electrical contact with our samples, 

unless stated otherwise. To mitigate further energy alignment shifts from beam drift, the 

Au reference scans were measured before and after each spectrum. 
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III.4.5 Computational Details 

The ground-state structural and electronic properties of V2O5 and the lithiated 

systems are obtained using density functional theory60,61 with the Vienna ab initio 

simulation package (VASP)62. The exchange-correlation energies are calculated within 

the specific generalized-gradient approximation (GGA) of Perdew-Burke-Ernzerhof 

(PBE)63. The electron-ion interaction is treated with projector-augmented-wave (PAW) 

pseudopotentials64,65, using a 400 eV plane-wave kinetic energy cut-off. A rotationally 

invariant DFT+U approach45 is employed to describe the on-site Coulomb interaction of 

the spin-up and spin-down electrons, with U = 3.1 eV.44 To converge the total energy, 

we sample the first Brillouin zone with a Monkhorst-Pack reciprocal-space grid of 

6x6x6 k-points. All the atomic structures being considered have been relaxed until each 

Cartesian force component is no greater than 0.01 eV Å-1. To guarantee highly resolved 

projected density of states (pDOS), we calculate Kohn-Sham eigen-energies based on 

the converged electron density on a grid of 24x24x24 k-points centered at the zone 

center (Γ-point). The pDOS is numerically broadened with a Fermi-Dirac smearing of 

0.2 eV, approximately mimicking the intrinsic broadening due to the oxygen 1s core-

hole lifetime. Higher resolution pDOS shown in the supplemental materials is obtained 

from the much smaller broadening of 0.03 eV. The Tkatchenko-Scheffler method was 

used to describe the van der Waals interaction between the layers of V2O5.66 Lithium-ion 

diffusion barriers in α-Li0.125V2O5 are calculated using the nudged-elastic band (NEB) 

method67 as implemented in VASP. A total of seven images are calculated between the 

end-points to capture the energy landscape for lithium-ion diffusion. The end points are 



 

 114 

optimized to a force tolerance of ±0.001 eV Å-1, whereas the convergence criterion for 

the forces along the NEB path is 0.1 eV Å-1.68  
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CHAPTER IV 

STRIPING MODULATIONS AND STRAIN GRADIENTS WITHIN INDIVIDUAL 

PARTICLES OF A CATHODE MATERIAL UPON LITHIATION* 

IV.1 Introduction 

The fundamental mechanism of operation of a Li-ion battery involves the 

reversible migration of Li ions between an anode and a cathode, typically solid-state 

materials that provide a large difference in the chemical potential of inserted Li-ions.1–3 

Electrode materials are most often porous particulate networks bound together within a 

conductive matrix. Insertion of Li-ions within electrode materials can occur with 

continuous compositional modulation stabilizing a solid-solution across a broad range of 

stoichiometries,4,5 or alternatively, involve one or more discontinuous phase 

transformations.6–10 The insertion and extraction of Li-ions is inevitably accompanied by 

an alteration of lattice parameters and change of volume, which has substantial 

consequences for retention of the mechanical integrity of the electrodes.11–14 The 

progressive deterioration of the accessible capacity of electrodes upon prolonged cycling 

is a major impediment to the broader utilization of intercalation batteries in large-area 

formats. Such deterioration appears to derive in some measure from inhomogeneous 

strain that causes mechanical pulverization of the electrode particles and results in loss 

of conduction pathways across the particulate network.15,16 Delineating multiscale strain 

and compositional inhomogeneities in electrode materials has thus emerged as an urgent 

*Reproduced with permission from De Jesus, L. R.; Stein, P.; Andrews, J. L.; Luo, Y.; Xu, B.-X.; Banerjee, S. 
Striping Modulations and Strain Gradients within Individual Particles of a Cathode Material upon Lithiation. Mater. 
Horizons 2018, 5, 486-498. Reproduced with permission from the Royal Society of Chemistry. 
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imperative but is not readily accessible given the intrinsic limitations of most local 

structure probes although coherent diffraction imaging, Raman microprobe analysis, 

neutron radiography, in-situ powder X-ray diffraction, and high-resolution electron 

microscopy methods have each provided insight into aspects of intercalation phenomena 

at specific length scales.15,17–26 In this work, we demonstrate that principal component 

analysis of hyperspectral soft-X-ray scanning transmission X-ray microscopy (STXM) 

data allows for the “standard-free” delineation of local state of charge in individual V2O5 

particles as well as ensembles of particles upon Li-ion intercalation. The compositional 

profiles are furthermore converted to strain maps, thereby providing a means of 

elucidating local inhomogeneities in stress and strain at phase boundaries.   

It is increasingly apparent that the progression of intercalation-induced structural 

transformations within a matrix of particles is determined by highly localized 

intercalation phenomena rather than the global voltage profile.27–31 The specific 

spatiodynamic propagation of phase transformations depends on the atomistic diffusion 

pathways defined by the crystal structure of the electrode material, variations in the 

surface state of the particle, the relative positioning of particles with respect to the 

current collector, desolvation reactions at the electrolyte interface, and the dynamics of 

lithiation of adjacent particles.17,27–29,31–34 Such inhomogeneities have profound 

consequences for determining the proportion of actively intercalating electrode 

materials, define local “hot-spots” wherein the current is greatly amplified during 

charge/discharge processes, and consequently dictate localized energy dissipation 

profiles.29,35,36 From the perspective of coupling of electrochemistry and mechanics, 
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phase inhomogeneities give rise to substantial stress at interfaces and such local stresses 

can indeed be large enough to induce fracture and electrode pulverization.11,12,14,37–40 

Several approaches have been developed as remedies to this problem ranging from the 

synthesis and development of smart template anode materials,41–44 the synthesis of 

dichalcogenide/anode composites,45 and the preparation of anode/carbonaceous-

nanomaterial composites,46–49 in order to mitigate of deterioration of the active anode 

material. 

Figure IV.1. Intercalation-induced phase transformations in V2O5. (a) Atomic 
structure renditions of orthorhombic V2O5 and the ε- and δ-phases of LixV2O5. (b) 
Transmission electron microscopy (TEM) image of an ensemble of LixV2O5 nanowires 
after chemical lithiation. (c) Powder X-ray diffraction (XRD) pattern depicting the 
phase coexistence of several phases of LixV2O5 upon chemical lithiation of V2O5 
nanowires by immersion in a 4:1 solution of n-butyllithium in hexanes for 15 min (an 
average composition of Li0.30±0.08V2O5 is deduced based on ICP-MS analysis).	
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Elucidating compositional and phase inhomogeneities across electrodes is a 

considerable challenge since it requires examination not just of morphological variations 

but necessitates high-resolution mapping of chemical and structural speciation. Indeed, 

coherent diffraction imaging methods capture structural distortions but since they are 

limited to probing variations of the lattice constant do not directly map the state of 

charge or chemical composition. Hyperspectral X-ray imaging has emerged as a 

valuable tool for this purpose and allows for simultaneous examination of variances in 

atomistic and electronic structure.29,30,32,50,51 In scanning transmission X-ray microscopy 

(STXM), raster scanned transmission images are acquired across a range of soft X-ray 

energies, allowing for evaluation of heterogeneities based on acquisition of an element-

specific X-ray absorption near-edge structure spectrum at every pixel. X-ray microscopy 

has contributed to evaluation of intercalation mechanisms and hysteresis in 

LiFePO4;29,51–53 polaron formation and phase separation in LixV2O5 particles;30,34,50,54 

and spatial distribution of discharged products in Li-O batteries.55 In recent work, Weker 

and collaborators have visualized the formation of cracks upon lithiation of Ge particles 

using operando transmission X-ray microscopy.38 Statistical deconvolution of 

hyperspectral STXM data using methods such as principal component analysis (PCA)56–

58 can provide a powerful means to map chemical speciation with high spatial resolution 

but have not been hitherto used for mapping electronic-structure, compositional, or 

phase profiles of electrode materials. PCA provides a means to orthogonalize the 

hyperspectral dataset to eigenspectra and allows for mapping of discrete chemical 

components without requiring a priori knowledge of standard spectra, which oftentimes 
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are unavailable for intercalated phases. Herein, we demonstrate the use of PCA to 

evaluate electronic structure and phase inhomogeneities across nanowires of lithiated 

V2O5 based on STXM imaging at the V L- and O K-edges. We further demonstrate a 

method to develop compositional maps and to subsequently render such maps as stress 

and strain profiles across the nanowires. The methods demonstrated here provide a 

means to elucidate the spatial variances in chemical and phase speciation as well as 

strain generated as a result of intercalation-induced phase transformations. The 

multiscale evaluation of compositional and strain inhomogeneities provides mechanistic 

insight into the lithiation process and suggests the complex evolution of multiphasic 

domains within individual nanowires involving considerable differences between the 

core and the surface and compositional striping modulations along the surface contours 

of the nanowires. 

IV.2 Results and Discussion 

IV.2.1 Intercalation-Induced Structural Transformations upon Chemical Lithiation of a 

Cluster of V2O5 Wires 

The orthorhombic phase of vanadium pentoxide (V2O5) depicted in Figure IV.1a 

is a canonical intercalation host with an abundance of interstitial sites and a readily 

accessible redox couple that allows for charged ionic species to be accommodated with 

accompanying reduction of vanadium sites.59–61 Li-ion insertion within V2O5 initiates a 

series of phase transformations that bring about substantial structural distortions as 

depicted in Figure IV.1a.60–63 Initial lithiation results in transformation to a slightly 

distorted α-LixV2O5 phase, which is stabilized within a concentration range of x < 0.1 in 
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LixV2O5. Upon increasing incorporation of Li-ions, ε-LixV2O5 is stabilized in the 

concentration range between 0.3 < x < 0.85 (an incommensurate ε’-phase can be 

distinguished above x > 0.53); this structure is characterized by pronounced puckering of 

the apical oxygens as a result of electrostatic interactions with the inserted Li-ions as 

well as an expansion of the interlayer spacing in order to accommodate the increased 

concentrations of Li-ions. With further insertion of Li-ions, in the range 0.88 < x < 1.0, 

δ-LixV2O5 is stabilized with a highly puckered structure characterized by the layers 

sliding by half a unit cell length along the b direction. Increasing the Li-ion 

concentration still further, beyond x > 1, brings about two irreversible phase 

transformations to highly distorted γ and ω phases. Herein, we focus on the reversible 

regime of Li-ion incorporation where structural modifications are anisotropic but less 

pronounced than upon stabilization of the γ- and ω-phases.8 Previous STXM mapping 

results showed surprising phase segregation and intercalation gradients within individual 

nanowires of chemically lithiated V2O5.50 Based on spectroscopic studies of electronic 

structure and density functional theory modeling, phase heterogeneities in this system 

have been attributed to two primary origins: (i) stage-ordering phenomena, i.e., the 

preferential insertion of Li-ions into an already expanded layer;10,64 and (ii) the 

formation of small polarons, which correspond to the coupling of an electron in the V2O5 

framework with a local structural distortion.50,54 Given the distinctive spectroscopic 

signatures of different LixV2O5 phases50 at V L and O K-edges, arising from 

modifications to the electronic structure of V2O5 induced by lithiation, STXM is 

expected to be an effective probe not just of individual nanowires but ensembles of 
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particles where heterogeneities are a result of multiscale intercalation gradients.34 Figure 

IV.1b depicts a transmission electron microscopy (TEM) image of a LixV2O5 nanowires 

prepared by chemical lithiation of hydrothermally grown V2O5 nanowires in n-

butyllithium as per:6,65 

 (EQUATION IV.1) 

Details of the synthesis and chemical lithiation of V2O5 nanowires are provided 

in the Methods section.6,50 Chemical lithiation eliminates the directionality inherent in 

electrochemical lithiation experiments, allows for exposure to a globally invariant Li-ion 

flux, and furthermore can be performed without use of a binder. As such, it is a useful 

model for electrode processes and allows for examination of fundamental mechanisms 

underpinning intercalation phenomena.  The powder X-ray diffraction (XRD) pattern in 

Figure IV.1c corresponds to V2O5 nanowires subject to chemical lithiation with a large 

molar excess of n-butyllithium for 15 min (an average composition of Li0.30±0.08V2O5 is 

deduced based on ICP-MS analysis); considerable local phase-coexistence and 

heterogeneity is discernible with reflections from α-, ε-, ε’-, and δ-phases, as indexed in 

the pattern.6,66–68 The performance of V2O5 as a cathode material is reflected in the first 

discharge cycle (Figure A.11) with a capacity of 355 mAhg-1 at a constant 0.2 C rate. 

The transformation between the lithiated phases of V2O5 can be observed as plateaus at 

3.4, 3.2, and 2.3 V for α–ε, ε–δ, and δ–γ phases, respectively, reflecting the sequence of 

transformations shown in Figure IV.1a. Transformation to the γ-phase is irreversible and 

further cycling retains the distorted γ' structure. 

 

	V2O5 + xC4H9Li→LixV2O5 + x
2C8H18(g)
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Figure IV.2. Mapping phase inhomogeneities using PCA and ROI 
deconvolution of hyperspectral STXM data. (a) Scanning electron microscopy 
image depicting the morphological features of a collection of V2O5 nanowires 
further examined by STXM. (b) Integrated STXM image acquired across the V 
L- and O K-edges (508 to 560 eV) for a cluster of V2O5 nanowires chemically 
lithiated for 15 min as described in the Methods section (resulting in an average 
composition of Li0.30±0.08V2O5 based on ICP-MS analysis). (c) An integrated V 
L- and O K-edge X-ray absorption spectrum acquired for the entire region. Two 
distinct methods have been used to deconvolute the spectra into components that 
are mapped across the image. (d) Three spectral components denoted as A—C 
are identified in distinct regions and the spectral stacks are deconvoluted into 
graded combinations of the three components. The image depicts an intensity 
map of the three components with increasing extent of lithiation from A—C. (e) 
PCA is used to deconvolute the hyperspectral data into three discrete 
eigenspectra, denoted as components III—V (components I and II correspond to 
the background), and the intensities of the eigenspectra are plotted at each pixel. 
Several nanowires are delineated by numbers to facilitate discussion. 
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IV.2.2 Elucidation of Compositional Inhomogeneities in LixV2O5 by Singular Value 

Decomposition (SVD) and PCA Analysis of STXM Images 

In order to spatially resolve phase inhomogeneities observed in ensemble XRD 

measurements, a cluster of interconnected chemically lithiated V2O5 nanowires has been 

examined using scanning electron and scanning transmission X-ray microscopy as 

shown in Figure IV.2. Figure IV.2a depicts a high-resolution scanning electron 

microscopy image, whereas Figure IV.2b shows the corresponding integrated STXM 

image constructed by scanning across the V L- and O K-edges from 508 to 560 eV. 

Figure IV.2c depicts the integrated X-ray absorption spectrum acquired for these 

nanowires. X-ray absorption spectroscopy involves the excitation of core electrons to 

unoccupied and partially occupied states, and thus principally maps the atom-projected 

unoccupied density of states of the excited solid.30,69,70 Rigorous spectral assignments are 

now available for V L-edge and O K-edge absorption features of V2O5 based on first-

principles simulations of excited state spectra and angle-resolved X-ray absorption 

spectroscopy measurements.50,71–73 The V L-edge spectrum of V2O5 comprises V LIII and 

V LII absorption features, corresponding to transitions from V 2p3/2 → V 3d (ca. 518 eV) 

and V 2p1/2 → V 3d (ca. 525 eV) states, respectively;71,72 these features are separated by 

a spin-orbit splitting of ca. 7 eV. As a result of the operation of Coster—Kronig Auger 

decay processes, the V LII absorption is subject to considerable spectral broadening and 

is consequently less informative as a probe of local electronic structure. In contrast, the 

V LIII absorption has well-resolved fine structure corresponding to transitions from 

singlet V 2p63d0 to V 2p53d1 states split by crystal field and multiplet effects.50,72,74 The 
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first two sharp features correspond to distinct transitions from V 2p states to states of 

fairly “pure” V 3dxy (ca. 515.6 eV) and V 3dxz/yz (ca. 516.8 eV) character as labelled in 

Figure IV.2c. The O K-edge corresponds to transitions from O 1s states to states with O 

2p character. As a result of the substantial hybridization between the O 2p and V 3d 

derived states, two distinct features can be resolved, reflecting the distorted octahedral 

crystal field splitting of the V 3d-derived states (denoted as t2g and eg in Fig. IV.2c). The 

features correspond to transitions of O 1s electrons to (i) O 2px and 2py states engaged in 

π interactions with the V 3d t2g states (529.7 eV); and (ii) O 2px and 2py states engaged in 

direct σ interactions with V 3dx
2

-y
2 (at ca. 531.6 eV), and 2pz states engaged in σ-

interactions with V 3dz
2 states (at ca. 533.1 eV).  

The intercalation of Li-ions within V2O5 is coupled with redox chemistry at the 

vanadium sites, specifically the local reduction of V5+ sites to V4+ sites; the added 

electron occupies the lowest-lying states at the bottom of the conduction band, which in 

the case of V2O5
 corresponds to a split-off conduction band that has primarily V 3dxy 

character.71–73,75 Li-ion insertion thus results in a significant diminution, or even 

disappearance, of the V LIII absorption feature at 515.6 eV as a result of Pauli blocking 

(owing to filling of the V 3dxy state). Furthermore, the polarization, lattice distortion, and 

lifting of spin degeneracy in the V 3d1 system strongly modifies the ratio of the t2g and 

eg* features at the O K-edge; the intensity of the t2g feature is gradually diminished as a 

function of increasing Li-ion concentration.50 These two spectral modifications, which 

are directly correlated to Li-ion content, are of particular significance for statistical 

deconvolution of hyperspectral stacks. 
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Two distinct methods have been used to map spatial inhomogeneities. In the first 

case, based on examining integrated spectra across different regions of the image and 

given prior knowledge of evolution of V LIII and O K-edge X-ray absorption spectra 

with increasing Li-ion content,30,34,50,54 three different components (A—C) are identified 

as plotted in Figure IV.2d. Notably, these components are spectra integrated within 

discrete regions of the image. Next, the spectral data at each pixel across the entire 

image is deconvoluted into a combination of the three component spectra using SVD. 

Spatial maps are then constructed reflecting the relative weights of each of the three 

components at each pixel as depicted in the left panel of Figure IV.2d. The components 

herein correspond to spectra characteristic of specific regions of the image. However, 

they do not represent “pure” spectra of individual phases and furthermore are based on 

approximations of spectral signatures of potential species used to facilitate selection. 

Figure IV.3 maps the intensity of each of the three components individually 

across the region of interest. Components A—C depict stark differences with respect to 

the intensity of the transition to the V 3dxy final state at the V LIII edge and the ratio 

between t2g and eg* components at the O K-edge, indicating a successive increase of 

lithiation from A—C (Fig. IV.2d). As a first finding, mapping of the spectral 

components clearly delineates that the ensemble XAS spectrum plotted in Figure IV.2c 

does not accurately remarkable spatial inhomogeneity of lithiation (state-of-charge) 

prevalent across this cluster of nanowires. Component A is assigned to a relatively low-

Li-content α-phase, Component B represents the intermediate Li-content ε-phase, 

whereas Component C represents a substantially higher degree of lithiation. The almost 
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complete loss of the V 3dxy absorption feature at 515.6 eV and the appearance of a strong 

3dxz/yz absorption feature at 516.8 eV are suggestive of a more substantial rearrangement 

of the crystal structure to accommodate a higher concentration of Li-ions; these spectral 

features are attributed to the substantially more distorted δ-LixV2O5 phase characterized 

by sliding of the layers along the b direction.  

Seven individual nanowires have been labelled 1—7 as depicted in the images. 

Based on Figures IV.2 and IV.3, the nanowires on the top and left are relatively less 

lithiated, whereas the nanowires on the bottom right of the image are relatively more 

lithiated. No clear correlation is observed between the nanowire dimensions and the 

extent of lithiation. For instance, nanowire labelled 5 is much more extensively lithiated 

as compared to the nanowire labelled 7 even though Figure IV.2a shows that it is much 

thicker. Considering nanowires 1—3, the SEM image suggests that these are individual 

faceted nanowires; Figures IV.2d and IV.3 suggest that these nanowires show 

considerable compositional variations, domain formation, and the coexistence of both 

Components A and B within each of the nanowires. Similarly, nanowire 6 shows the 

coexistence of Components A and C. While component B, which represents a relatively 

greater extent of lithiation is generally more predominant at the edges of the nanowires 

and along the nanowires at the apex of the region of interest, an alternating interleaved 

domain structure is observed suggestive of the stabilization of a complex domain 

structure upon cation insertion. Figure A.12 depicts high-resolution SEM images of 

various segments of the cluster of nanowires shown in Figure IV.2a. A consistent 

morphology is retained along the length of individual wires suggesting that the observed 
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modulations in the intensities of spectral components observed in Figures IV.2 and IV.3 

result from compositional and not topographical variations. Figures IV.3d—f depicts an 

alternation of intensity along the length of select nanowires for each of the three 

components. Figure IV.3d indicates stripes of Li-poor Component A in nanowire 2, 

whereas Figure IV.3f depicts stripes of the Li-rich Component C along nanowire 1. Such 

stripe formation observed here is likely a result of the spinodal decomposition to Li-rich 

and Li-poor domains at the particle boundaries.76,77 Intercalation of Li-ions within thin 

wires occurs faster laterally (along the edges) rather than transversally (through the 

nanowire) due to sluggish diffusion of ions; this results in pronounced compositional 

“stripes”. Striping resulting from compositional heterogeneity has been indirectly 

evidenced in coherent diffraction imaging based on mapping of lattice constants and has 

been predicted by numerous phase field models.15,31,65 However, to the best of our 

knowledge the images here represent the first direct evidence of compositional 

modulation along the length of Li-ion intercalated nanowires. Indeed, similar behaviour 

with compositional heterogeneities and modulations is observed in electrochemically 

lithiated samples extracted from samples discharged at 2.75 V in a coin cell 

configuration (Figure A.13). In the imaged ensemble of nanowires, core–shell behaviour 

and the formation of stripes is observed along the length of the nanowires.  

Next, we examine an alternative “standard-free” treatment of the hyperspectral 

STXM data. PCA methods can be applied without a priori knowledge of spectral 

components and yield eigenspectra that maximize the variances within the spectral data 

integrated across the sample. Figure IV.2e depicts the three components, denoted as 
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III—V derived from such analysis. Components I and II correspond to the background. 

PCA analysis clearly distinguishes the background signal from a hole (depicted in blue 

in Fig. IV.2e) and the signal of the underlying silicon nitride grid (depicted in orange).  

 Utilizing an angle distance cutoff or normalized scalar to specify a radius below 

which pixels are not included mitigates differences arising primarily from thickness 

variations.58 Figure A.14 depicts spatial maps of the principal components reflecting 

their weights at each pixel; Table A.1 summarizes the cluster weight percentage as 

evaluated in each of the dimensions. Figure A.15 depicts the separation of the pixels 

 

Figure IV.3. Intensity maps derived from region-of-interest singular value 
decomposition analysis of an ensemble of V2O5 nanowires lithiated for 15 min 
(resulting in an average composition of Li0.30±0.08V2O5 based on ICP-MS analysis). 
a–c) Intensity maps depict the localization of the spectral signatures of components 
A—C in Figure IV.2d. Component A corresponds to the lowest extent of 
lithiation, whereas Component C corresponds to the highest lithaition, as 
determined by the relative intensity of the 3dxy resonance and the t2g:eg* ratio. d–f) 
Modulations of spectral intensities within the boxed regions of the upper panels 
corresponding to the distribution of Li-rich and Li-poor domains within individual 
nanowires. 
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along three distinct pairs of component axes. Each pixel is classified (and thus colored) 

according to its position in the scatter plot, which shows effective separation along the 

component axes. In contrast to the overlapping coloration of different components in 

Figure IV.2d, in the PCA map of Figure IV.2e, each pixel is colored to reflect just the 

majority component. Even though eigenspectra are principally representative of the total 

spectral variances and do not directly correspond to experimental spectra, their 

lineshapes embed chemical information. While the single coloration at each pixel does 

not provide as granular of a compositional map as in Figure IV.2d (and thus modulations 

are not as clearly observed), they nevertheless delineate distinct compositional (and thus 

phase) gradients. Based on the intensity of the feature at 515.6 eV corresponding to the 

transition to the V 3dxy state and the relative intensities of the t2g and eg absorptions at the 

O K-edge, Component III is a spectrum representative of V2O5 with a relatively low 

degree of lithiation; the higher weighting of this component at the nanowire cores is 

consistent with the slower lithiation of the core6 albeit it is clear that as also observed in 

Figure IV.2d a clear core-shell structure is not established. Similarly, component IV 

reflects a higher degree of lithiation based on the relatively lower intensity of the V 3dxy 

absorption at the V L-edge and the lower ratio of t2g:eg* intensities at the O K-edge; this 

component is weighted substantially at the edges of the nanowires. This component thus 

is analogous to component B in Figure IV.2d. The distribution of this component is 

discontinuous along the nanowire surfaces consistent with the compositional modulation 

noted in Figure IV.3.  Remarkably, component V accurately captures the relatively 

highly lithiated δ-LixV2O5 spectral signature and such nanowires are clearly  
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Figure IV.4. Mapping of the composition map onto a concentration 
distribution from PCA analysis of STXM data. (a) PCA map defining 
domains with varying extents of lithiation obtained from deconvolution of a 
STXM hyperspectral image acquired for an individual particle of V2O5 
chemically lithiated for 1 min (an average composition of Li0.28±0.07V2O5 is 
deduced based on ICP-MS analysis). (b) Integrated V L- and O K-edge 
spectrum and eigenspectra obtained from PCA analysis. Component I 
(yellow) is the least lithiated, followed by component II corresponding to an 
intermediate extent of lithiation (green), and finally component III, which 
corresponds to the highest extent of lithiation (the corresponding pixel-
weighted scatterplots are plotted in Fig. A.13). (c) Using the nanowire 
contours, a finite element mesh has been created onto which the composition 
(x) data have been mapped. (d) Linear transformation of the composition by 
corresponding average phase concentrations then yields the concentration 
distribution over the nanowire. (e) Schematic depiction of the progression of 
Li-intercalation within V2O5 to the formation of stripes with Li-poor (yellow) 
and Li-rich (blue) domains.  
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distinguishable from the rest of the cluster in the PCA analysis. PCA analysis thus 

provides a standard-free means of orthogonalizing the STXM dataset and can delineate 

lithiation gradients and phase segregation in a chemically meaningful manner. 

IV.2.3 Generation of Compositional, Stress, and Strain Maps from PCA Analysis of 

STXM Data 

The ability to deconvolute hyperspectral X-ray microscopy data further facilitates 

the mapping of compositional, stress, and strain profiles across an individual particle. 

Figure IV.4a depicts the PCA map derived from STXM imaging of an individual particle 

with a diameter of ca. 3 µm upon chemical lithiation for 1 min (an average composition 

of Li0.28±0.07V2O5 is deduced based on ICP-MS analysis). Figure IV.4b depicts the 

integrated V L- and O K-edge X-ray absorption spectrum and three eigenspectral 

components obtained from PCA analysis of the hyperspectral stack. Figure A.16a–c 

depict the scatter plots illustrating the scores of the spectrum at each pixel with respect to 

the three different components (the respective component weights are summarized in 

Table A.2); the selected principal components are seen to allow for effective 

classification of each of the pixels, which are mapped in Figure IV.4a. Components I—

III correspond to increasing levels of lithiation based on the intensity of the V 3dxy 

feature at the V LIII edge and the ratio of t2g:eg* intensities at the O K-edge. Notably, the 

extent of lithiation is lower as compared to Figure IV.2 given the reduced immersion 

time here. The components can be attributed to approximate values of Li-ion content 

based on the intensities of the V 3dxy feature and the ratio of t2g:eg* intensities. The 
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yellow core is sparsely lithiated whereas the surface indicates modulation of Li-rich and 

Li-poor domains. 

While STXM provides detailed compositional maps of electrode 

materials,32,34,50,51 a major constraint is that it is a 2D imaging method whereas in order 

to obtain stress and strain maps, such as required to evaluate inhomogeneous coherent 

strain at phase boundaries, the thickness of the sample is required. Indeed, the thickness 

of the nanowire in Figure IV.4a can be estimated based on a quantitative measurement of 

the absorption cross-section; Figure A.17 (Supporting Information) indicates that the 

nanowire (ca. 245 nm in diameter) has a uniform thickness of ca. 79 nm along the 

diameter as delineated by the consistent height at two different regions spaced ca. 400 

nm apart.  The concentration of Li-ions (state of charge) in each cluster is furthermore 

required in order to precisely develop a compositional map; these values can be 

approximated based on the ratio between the t2g:eg* absorbances, which serve as a direct 

probe for the amount of Li intercalation in α-V2O5. The weights of the individual 

clusters (as delineated in Table A.2) provide a means to weight the contribution of the 

composition-specific components at each pixel, thereby enabling the development of a 

detailed composition map. 

The composition map plotted in Figure IV.4c has been obtained from weighted 

superposition of the respective pixel-wise intensity data as described in the Methods 

section. Li-rich and Li-poor domains are clearly evidenced at the edges denoting clear 

segregation. The concentration map in Figure IV.4d maps the concentration of Li-ions 

across the particle. Domains demarcated in red denote regions of a locally enhanced ion 
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concentration reaching 1.75 x 104 mol·m-3 (x=0.41 in LixV2O5, corresponding to the ε-

phase) at the edges of the nanowires, whereas the core is substantially less lithiated with 

a concentration of ca. 6.00 x 103 mol·m-3 (x=0.15 in LixV2O5, corresponding to the α-

phase). Since the lattice parameters of LixV2O5 vary continuously as a function of Li-ion 

content (in ε-V2O5, a=11.420–11.377 Å; b=3.558 –3.570 Å),78–80 the inhomogeneous 

compositional profile induces localized lattice mismatch and straining of the active 

material. Figure IV.4e depicts a schematic of the progression of Li-ion intercalation 

within V2O5 showing core—shell segregation followed by spinodal segregation of Li-

poor and Li-rich domains as stripes as observed in Figure IV.4c. 

In order to map stress and strain gradients resulting from compositional 

inhomogeneities, the nanowire geometry has been extracted from this map by the 

Marching Squares algorithm, yielding the outline curves of the nanowire. These data 

have been used to generate a planar finite element mesh. The corresponding spatial 

composition data have been mapped onto its nodes. A finite element simulation of the 

coupled chemo-mechanical behavior81 yields stress and strain maps in the Cartesian 

reference frame. The stress and strain maps have been transformed onto the nanowire-

aligned along the xi-eta coordinate system in order to facilitate interpretation. The 

incurred stress gradients have been mapped in a nanowire-aligned coordinate system, as 

depicted in Figures IV.5a and b. These maps depict the anisotropic deformation induced 

by the insertion of Li ions. The stress maps suggest that it is in particular the regions of 

high heterogeneity that exhibit high levels of stress. Clusters of high local ion 

concentrations tend to expand isotropically but are hindered by the surrounding material. 
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This can be observed in Figure IV.5a where the bands of high compressive longitudinal 

stress 𝜎!  with magnitude of ca. 305 MPa are correspondent with bands of Li-rich 

domains (Fig. IV.4d). As illustrated in Figure IV.5c, the material in the outer layers of 

the nanowire is compressively strained along the longitudinal direction. In contrast, the 

core of the nanowire is subjected to tensile stresses of around 100 MPa, which is brought 

about by the expanding Li-rich edges “pulling” at the core of the nanowire. The lateral 

expansion of the nanowire is comparatively unconstrained, as is demonstrated by the low 

lateral stresses ση depicted in Figure IV.5b. The expansion of the V2O5 layers in order to 

accommodate Li-ions at the edges of the particles is expected to create tensile stresses 

that further induce significant compressive stress within the nanowire interiors as a result 

of the anisotropic distortion of the layered structure upon Li-ion intercalation (Fig. 

IV.1a). The inhomogeneity in direction and magnitude of stress establishes strain 

gradients across the particle as mapped in Figures IV.5c and d. Indeed, such strain 

gradients considerably alter intercalation and diffusion in active material,81,82 and can 

underpin electromechanical degradation.39,83 Such degradation can result in fracture of 

the particle and loss of capacity.84,85 In contrast, recent studies suggest that tensile strain 

can induce modulation of electrochemical potentials by ca. 40 mV and bring about a 

doubling of Li-ion diffusion coefficients within V2O5.83 The ability to extract 

concentration, stress, and strain profiles further renders STXM a valuable probe of 

intercalation phenomena. The pronounced strain gradients at phase boundaries provide a 

direct visualization of the implications of compositional inhomogeneities. 
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IV.3 Conclusions 

In conclusion, the initiation and progression of Li-ion intercalation within 

electrode materials is dominated by local phenomena and results in considerable 

inhomogeneity both within individual particles and across ensembles of adjacent 

particles. STXM serves as an effective element-specific probe of electronic structure, 

and since electronic structure is greatly modulated by cation intercalation, provides a 

spatially resolved view of distinct domains stabilized upon lithiation of transition metal 

oxides. Upon chemical lithiation of V2O5 nanowires, longitudinal and lateral domain 

	

Figure IV.5.	Stress and strain profiles derived from PCA maps. (a)–(b) Longitudinal 
and lateral stress maps, respectively; positive intensities reflect tensile stress, 
whereas, negative intensities reflect compressive stress. (c)–(d) Longitudinal and 
lateral strain maps, respectively, indicating inhomogeneous strain profiles resulting 
from intercalation of Li-ions. 
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formation is evidenced within individual nanowires and is reflective of surface lithiation 

phenomena as well as compositional striping corresponding to separation of Li-rich and 

Li-poor domains at particle boundaries. Considerable compositional inhomogeneity is 

evidenced within an ensemble and appears to reflect selective deep lithiation of specific 

particles whereas adjacent particles are lithiated to a much lower extent. A principal 

component analysis treatment of STXM hyperspectral data allows for deconvolution of 

V L-edge and O K-edge spectra to principal components reflective of different lithiated 

phases and allows for reconstruction of domain maps without a priori knowledge of 

spectral profiles. Such an analysis allows for elucidation of intercalation gradients within 

individual nanowires. Mapping compositional and phase inhomogeneities is greatly 

consequential for determining the actively intercalating regions and localized current 

profiles. The compositional information gleaned from PCA analysis of STXM data in 

conjunction with determination of the nanowire thickness based on quantitative 

evaluation of the X-ray absorption cross-section as well as knowledge of lattice 

parameters of intercalated phases allows for mapping of stress gradients and strain 

across an individual particle. The significant disparity between domains subjected to 

compressive and tensile stress as a result of inhomogeneous lithiation is thought to 

underpin capacity loss. Mitigating such inhomogeneities requires the development of 

cathode materials that are able to accommodate Li-ions with less of a structural 

distortion and that can mitigate polaronic bottlenecks to Li-ion diffusion or structuring of 

electrodes to facilitate more homogeneous lithiation. Future work will focus on in-situ 

and in-operando STXM and ptychography studies of intercalation phenomena within 
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cathode and anode architectures in realistic device configurations in conjunction with 

electron microscopy such as to combine the excellent spatial resolution accessible from 

the latter methods with the energy resolution and high chemical sensitivity of 

synchrotron-based X-ray imaging.24,25 Inhomogeneities will further be explored for 

“beyond Li” energy storage vectors such as multivalent cations.86   

IV.4 Materials and Methods 

IV.4.1 Chemical Lithiation of V2O5 Nanowires 

Single-crystalline V2O5 nanowires were prepared by air oxidation of 

hydrothermally grown V3O7 nanowires as described in previous work.6 Chemical 

lithiation of the nanowires was performed within a glove box filled with argon by 

immersion of powders in a solution of 2.5 M n-butyllithium (Sigma-Aldrich) in hexanes 

diluted to 0.025 M in heptane for a specific time interval (0.025 M of n-butyllithium to 

0.55 mM of V2O5, corresponding to a ca. 4:1 molar excess of Li:V2O5). The samples 

were then washed within the glove box with copious amounts of hexanes to remove any 

unreacted lithium precursor. The recovered powder was allowed to dry under argon 

ambient. 

IV.4.2 Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) 

The average Li-ion concentration of the solid lithiated V2O5 samples was 

determined by ICP-MS using a PerkinElmer NexION 300D instrument. Powder samples 

lithiated for a specific time were dissolved to achieve overall concentrations of 5–7 ppm 

in a 1 vol.% aqueous solution of HNO3 solution (15 M). 
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IV.4.3 Powder X-ray Diffraction 

Powder X-ray diffraction (XRD) measurements were performed using a Bruker 

D8-Focus Bragg−Brentano X-ray powder diffractometer with a Cu Kα radiation source 

(λ = 0.15418 nm).  

IV.4.4 Microscopy Characterization 

Transmission electron microscopy (TEM) images were obtained using a JEOL 

JEM-2010 instrument operated at an accelerating voltage of 200 kV. SEM images were 

acquired using a JEOL JSM-7500F FE-SEM operated at 2 kV.  

STXM data were collected at the spectromicroscopy (SM) beamline 10ID-1 of 

the Canadian Light Source, Saskatoon, SK. The beamline is equipped with an elliptically 

polarized undulator source; incident soft X-rays were focused onto the sample of interest 

using a Fresnel zone-plate, which includes an order-sorting aperture to eliminate 

undesired diffraction orders. A plane grating monochromator with 500-line mm-1 was 

used for hyperspectral imaging at V L- and O K-edges. A dwell time of 1 ms was used 

for signal acquisition at each pixel. The image stacks were analyzed using the Principal 

Components Analysis (PCA) suite developed by Jacobsen and co-workers and aXis2000 

(http://unicorn.mcmaster.ca/aXis2000.html).87 Region of interest (ROI) maps were 

obtained by a SVD of the image stack and by using as a reference, spectral components 

identified within different regions of the stack. This procedure yields a set of 

composition maps where intensities represent the signal strength of each of the selected 

components. Thickness maps were developed by linearly scaling the V L- and O K-edge 

stack to a reference spectrum of LixV2O5 (spectrum scaled to a calculated elemental X-
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ray absorption spectrum of a 1 nm thick material). Principal component analysis was 

performed to orthogonalize the data and reduce the noise of the spectral features. The 

hyperspectral stack was deconvoluted into components representing a linear combination 

of spectral signatures. The graded contributions of the orthogonalized spectral 

components at each pixel were subsequently determined, allowing for the construction 

of maps indicating the relative abundance of each of the orthogonalized components at 

each pixel within the area of interest.57,58 Application of this analysis method allows for 

reconstruction of spatially resolved images from eigenspectra of complex samples 

without requiring a priori knowledge of reference spectra. The angle dependence cutoff 

was set to the point just before the highest pixel contribution; this substantially mitigates 

the effects of thickness variations and allows for mapping of variations in chemical 

signatures.  

IV.4.5 Electrochemical Cycling 

Galvanostatic cycling of V2O5 was carried out in a coin cell configuration against 

a Li metal anode using a Landt battery testing system (CT2001A) at a 0.2 C rate. The 

cathode is prepared by casting a mixture of active material (V2O5 nanowires), conductive 

carbon material (C45), and binder (polyvinylidene fluoride) in a 7:2:1 ratio, respectively, 

on the Al foil current collector. The electrolyte used was a 1.0 M solution of LiPF6 in a 

(1:1 (v/v) mixture of diethyl carbonate and ethylene carbonate (Sigma Aldrich). 

IV.4.6 Compositional & Strain Maps 

Compositional and strain maps were generated by defining meshes using the 

PCA separated component maps. The starting points for the mesh generation procedure 
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are the maps shown in Figure A.18. These normalized intensities in images space 

represent intensities xi; x=0.2 (a,d); x=0.4 (b,e); and x=0.5 (c,f) corresponding to various 

phases of LixV2O5. First, these images were subjected to a Gaussian filter to remove 

noise; subsequently, superposition of the pixel intensities, as weighted by the 

corresponding stoichiometric fraction xi, yields a composition map in image space as 

shown in Figure A.19a. This image exhibits a relatively low resolution of 75 x 65 pixels. 

A continuous representation can be achieved by bilinear interpolation of the pixel data, 

resulting in the smooth composition map shown in Figure A.19b. In order to extract the 

nanowire geometry from image space, the Marching Square algorithm was applied with 

a user-defined threshold for the stoichiometric fraction x. The resulting nanowire outline 

curves, shown in Figure A.19b, were then used as input for the Finite Element mesh 

generator GMSH. The local stoichiometric fraction was mapped onto the nodes of the 

planar triangle mesh, was and scaled by the ion concentration (state-of-charge). The 

resulting finite element model was used to solve for the distribution of stresses and 

strains using the software package FEAP. To that end, linear isotropic material behavior 

was assumed together with a chemical eigenstrain model:  

,   (EQUATION IV.2) 

wherein σij denotes the components of the symmetric second-order Cauchy stress tensor, 

Cijkl are the components of the fourth-order elasticity tensor describing the elastic 

material properties, Ω is the partial molar volume of LixV2O5 under insertion of Li, and 

δkl are the components of the unit tensor. εkl are the strain components, more exactly, the 

components of the symmetric second-order infinitesimal strain tensor defined by  

	σ ij =Cijklεklel 	εkl
el = εkl −

Ωc
3 δkl
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(EQUATION IV.3) 

where ui denotes the components of the displacement vector and where (·),i denotes a 

partial derivative with respect to the i-th spatial coordinate. The  is the elastic strain, 

which is correlated directly to the stress. For the finite element simulations, the 

composition (state-of-charge) as determined by the image conversion process was used 

as a constant field causing eigenstrain according to Eq. IV.3. For simplicity, constant 

concentration-independent elastic parameters and a constant partial molar volume was 

approximated. In particular, a Young’s modulus of E = 43 GPa, a Poisson’s ration of 

v=0.3, and a partial molar volume of Ω = 2.415 x 10-6 m3mol-1 were used in the finite 

element simulations. Extension of the model to concentration-dependent parameters is, 

however, straightforward and will be implemented in future work when such constants 

become available for lithiated V2O5 phases. In order to exclude rigid-body 

displacements, the displacement components were constrained normal to the nanowire 

edges along the image borders. The resulting stresses and strains were finally 

transformed by standard techniques from the Cartesian coordinate frame to a nanowire-

aligned planar coordinate system. 
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CHAPTER V 

LITHIATION ACROSS INTERCONNECTED V2O5 NANOPARTICLE NETWORKS* 

V.1 Introduction 

Lithium-ion batteries have in short order emerged as the dominant means of 

portable energy storage and have underpinned “off-the-grid” electrification of 

technologies spanning the range from consumer electronics to vehicular transportation.1,2 

The operating principle of this technology involves the closely coupled reversible 

transport of electrons and ions between a pair of host matrices that provide a large 

difference in the chemical potential of intercalated Li-ions.3 The electrochemical 

insertion of Li-ions within several common host matrices, for instance, FePO4,4,5 lithium 

titanate, lithium nickel manganese oxides, or graphite, requires a structural phase 

transformation that inevitably necessitates energy dissipation, and as an activated first-

order process is accompanied by a characteristic time scale and hysteresis.3,6–9 

Incomplete understanding of the dynamics and progression of cation insertion/extraction 

and concomitant phase transformation, particularly at the cathode,6 represents a major 

impediment to the rational discovery of cathode materials and the predictive design of 

electrode architectures. 

In the most commonly used configuration, the cathode of Li-ion batteries 

comprises porous composites of particles electrically interconnected to each other and 

the current collector with the help of conductive layers. It has become increasingly 

apparent that local differences such as particle size variations, distance from current 

collector, and surface states engender considerable heterogeneity in depth of discharge 
*Reproduced with permission from De Jesus, L. R.; Zhao, Y.; Horrocks, G. A.; Andrews, J.; Stein, P.; Xu, B.-X.; Banerjee, 
S. Lithiation across Interconnected V2O5 Nanoparticle Networks. J. Mater. Chem. A 2017, 5, 20141–20152. Reproduced 
with permission from the Royal Society of Chemistry. 



 

 163 

or extent of lithiation across cathode particles that are furthermore dependent on the 

charge/discharge rate and overpotential.7,10–12 In other words, the sequence of 

transformation of particles within the electrodes is dominated by local phenomena and 

local Li-ion activities and not the global voltage profile. In the canonical cathode 

material, LixFePO4, widely divergent phenomena spanning the range from particle-by-

particle transformation (“mosaic instability”) to concurrent intercalation have been 

observed, corresponding to a broad spread of heterogeneity, density of actively 

intercalating particles, and sequence of intercalation/deintercalation events.12–17 For 

instance, Delmas et. al. have observed that LixFePO4 particles are delithiated/lithiated 

sequentially.13 Orvananos and co-workers have investigated the dynamics of 

interparticle phase separation7 and developed a simplified two-particle model, wherein at 

a constant applied current, a particle that is closer to the separator undergoes rapid 

lithiation while simultaneously depleting a particle that is in closer proximity to the 

current collector (particle-by-particle).9 The heterogeneity in lithiation of LixFePO4 has 

beenattributed to the subtle balance between the local overpotential and the phase 

transformation barrier and is strongly dependent on the rate and particle size. In this 

material, stabilization of a metastable solid-solution phase furthermore provides an 

alternative lithiation route at fast rates for small particles.18 From a practical perspective, 

such widespread inhomogeneities across the electrode and the resulting occurrence of 

hotspots as a result of high local current densities is thought to underpin 

electromechanical degradation and loss of cyclability, and as such needs to be mitigated 

to prolong operational lifetimes. Strategies to circumvent and mitigate these limitations  
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Figure V.1. Sequence of phase transformations induced by lithiation and the model 
system in aggregate. (a) The insertion of Li-ions within V2O5 (characterized by 
square pyramidal coordination of vanadium atoms) brings about a transformation to 
a mildly distorted α-phase (x < 0.1 in LixV2O5), followed by puckering and lattice 
expansion to accommodate an increased concentration of Li-ions (0.3 < x < 0.8) 
stabilizing the ε-phase, followed by displacement of layers with respect to each 
other to form a highly puckered δ-phase (0.8 < x < 1). (b) High-resolution scanning 
electron microscopy (HR-SEM) image of an interconnected network of V2O5 
nanowires used as our model system (Fig. A.20). Lithiation gradients within the 
same cluster have been evaluated through scanning transmission X-ray microscopy 
at the V L and O K-edges; the integrated image is shown in (c) and the 
corresponding integrated spectrum of lithiated V2O5 is depicted in (d). The labels in 
(d) indicate the orbital symmetry of the final states as elucidated based on density 
functional theory calculations and angle-resolved X-ray absorption near-edge 
structure measurements23,43,44. Schematic depiction of crystal field splitting 
(corresponding to square pyramidal coordination of vanadium atoms by the oxide 
ligands) and electronic transitions observed in V L-edge and O K-edge X-ray 
absorption spectra for V2O5 derived from density functional theory calculations by 
Maganas et. al further verified by atom-projected density functional theory results 
discussed below.43 The integrated spectrum (f) of a group of delithiated nanowires 
(inset) shows recovery of the electronic structure of V2O5. 
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have been developed for several Li-ion host materials. In the case of anode materials, 

increased rate capabilities and reduced degradation have been demonstrated upon 

coating the anode with a conductive carbonaceous matrix19,20,21 and by increasing the 

porosity of the composite electrode.22 These methods endow enhanced stability that 

alleviates the change in volume, which plagues many electrode materials allowing for 

improved diffusion of ions within the host.  

Given the highly local nature of intercalation phenomena, recent attention has 

focused on mapping intercalation gradients across small ensembles of particles and 

individual particles using single-particle imaging methods.10,12,23,24 Of particular interest, 

the stabilization of discrete domains with varying lithium content has been observed 

within LixFePO4 platelets and has been attributed to surface-induced variations in extent 

of intercalation,12 whereas in individual V2O5 nanowires such domains have been 

attributed to stage ordering phenomena and electron localization as a result of the 

stabilization of small polarons.23,24 Such local measurements of intercalation profiles are 

imperative to elucidate phenomena not accessible from ensemble electrochemical 

measurements. As an example, micrometer-resolution Raman spectroscopy has been 

employed to locally map the state-of-charge of Li1-x(NiyCozAl1-y-z)O2. This provides an 

effective method to evaluate the inhomogeneous distribution of Li-ion content within an 

electrode under different aging protocols.25 In this work, we use scanning transmission 

X-ray microscopy (STXM) to map lithiation gradients and ensuing phase transformation 

across an interconnected particle network, providing a direct measure of the competing 
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thermodynamics and kinetics of intercalation-induced phase transformations and 

resulting heterogeneities induced within a network of particles. 

As our model system we select V2O5, which is a classical layered intercalation 

host for alkali ions, first proposed as such by Whittingham.26 V2O5 crystallizes in an 

orthorhombic-layered structure and has several desirable characteristics as an 

intercalation host27,28 including ample available interstitial sites, readily accessible 

V5+/V4+ and V+4/V3+ redox couples, a stable fully oxidized state, and a reasonable 

voltage difference with respect to commonly used anodes.3,29,30 Unfortunately, V2O5 

suffers from poor high-rate performance and complications with retention of capacity 

over extended cycling. The role of intercalation-induced phase transformations has been 

suggested with regards to the poor kinetics and loss of capacity but remains to be 

elucidated. Nevertheless, this material has attracted renewed interest as a potentially 

viable cathode material as a result of being one of a limited number of potential hosts for 

multivalent intercalation chemistries and the greatly modified phase diagram accessible 

by reducing the dimensions of the particle.31,32 In addition, the electronic structure of the 

V2O5 system is sensitive to the intercalation of ions, allowing for a direct probe of the 

extent of lithiation.23,24 Orthorhombic V2O5 is characterized by an up-up-down-down 

arrangement of [VO5] square pyramids linked by corner- and edge-sharing oxygens to 

form 2D sheets; the infinite sheets thus formed are stacked along the crystallographic c 

axis as depicted in Figure 1a. The intercalation of Li-ions within this structure launches a 

series of structural phase transformations that are reversible up to a lithium-content of 

ca. one Li per V2O5.33–35 At low concentrations of x < 0.1 in LixV2O5, an α-phase, only 
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slightly distorted from the orthorhombic structure is stabilized. With increasing 

lithiation, the ε-phase is stabilized (with a single-phase regime between 0.35 < x < 0.8) 

and is characterized by expansion of the interlayer spacing along the c axis and in-plane 

puckering as the apical vanadyl oxygens are electrostatically drawn towards the 

intercalated Li-ions. Further lithiation above x > 0.8 induces more extensive puckering 

and sliding of the layers by half a unit cell length along the b direction, stabilizing the δ-

phase of LixV2O5 in the range 0.88 < x < 1.034 (Fig. 1a). Delithiation in this range of Li-

ion concentrations is fully reversible back to orthorhombic V2O5. However, lithiation to 

x > 1 induces not just sliding of the layers but considerable distortion and inversion of 

the square pyramids as the layers adopt an up-down-up-down motif stabilizing a 3D γ-

phase; delithiation hereinafter yields a metastable puckered γ'-phase and is not reversible 

back to the 2D layered geometry through the δ → ε → α sequence.3,28,36 

The sequence and reversibility of phase transformations in V2O5 is strongly 

dependent on particle size and rate.31,37 For ultra-thin nanoplatelets with thicknesses on 

the order of 20—50 nm, our past work indicates that phase separation is strongly 

suppressed, whereas in nanowires that are 150—250 nm in diameter, phase 

heterogeneities are discernible from Raman and X-ray diffraction measurements. In 

recent work, STXM measurements indicate pronounced lithiation gradients and phase 

separation within individual V2O5 nanowires.23 The inhomogenities are attributed to the 

following two origins: (i) electron localization within V 3dxy orbitals couples to the 

structural distortion induced by Li-ion intercalation resulting in stabilization of small 

polarons that propagate anisotropically along the nanowires; (ii) stage ordering of Li-ion 
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intercalation in this layered material such that it is energetically preferable to lithiate the 

same layer after an initial lithiation event rather than initiating lithiation of a second 

layer.23 Principal component analysis of ensemble V K-edge X-ray absorption near-edge 

structure (XANES) spectroscopy data suggests initial conversion to α-LixV2O5 followed 

by a two-phase regime wherein a highly lithiated phase grows at the expense of the low-

lithiated phase.24 However, the microscopic mechanisms of phase transformation and 

propagation are entirely unexplored, particularly with regards to multiple particles. In 

this work, we examine lithiation gradients and phase separation within a network of 

interconnected nanowires and observe considerable compositional and phase 

heterogeneity both within individual nanowires as well as across the different nanowires 

suggesting a pronounced role for interfaces in mediating Li-ion transport and thus phase 

propagation. Interfaces within the interconnected network clearly modify the local 

potentials and facilitate phase transformations in a manner very distinctive from 

individual nanowires. A phase-field diffusion-reaction model, which considers 

intraparticular diffusion, surface chemical reaction, and phase separation simultaneously, 

is developed to understand the observed intercalation gradients. Elucidating the phase 

separation profiles across interconnected networks suggests routes for designing 

mesoscale architectures with larger proportions of actively intercalating areas and with 

ordered cascades of lithiation/delithiation pathways. 
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V.2 Experimental 

V.2.1 Chemical Lithiation of V2O5 Nanowires 

Synthesis and the subsequent lithiation of the V2O5 nanowires were carried out as 

previously reported.31 In summary, lithiation was carried out within a glove box filled 

with argon via immersion in a molar excess (4:1 Li:V2O5) of n-butyllithium solution 

(Sigma-Aldrich) in hexane for 1 h. Delithiation was accomplished by immersion of the 

lithiated samples in liquid Br2 for 2 h, followed by washing with large amounts of 

hexanes. The samples were sealed within a glovebox for transport for synchrotron 

measurements. Contact angle measurements were acquired using an in-house 

goniometer setup wherein indium tin oxide-coated glass was coated with a layer of V2O5 

nanowires and a 5µL droplet of hexanes was deposited on the sample.   

V.2.2 Scanning Electron Microscopy (SEM) and Scanning Transmission X-ray 

Microscopy (STXM) 

Wires were dispersed in isopropanol and drop-cast onto a 50nm thick Si3N4 

window for characterization in SEM and subsequent STXM. SEM images were acquired 

by using a JEOL JSM-7500F FE-SEM at a working distance of 8.3 mm and operated at 

2 kV. STXM measurements were performed at the SM (10-ID1) beamline of the 

Canadian Light Source (CLS), a 2.9 GeV third-generation synchrotron facility. A 25 nm 

outermost-zone zone plate and a 500 line mm-1 plane grating monochromator (PGM) 

was deployed to acquire the V L-edge and O K-edge spectral stacks. The incident photon 

flux (Io) count rate was optimized to ca. 17 MHz as measured by the STXM detector 

within an empty hole and measured at 560 eV by adjusting the exits slits to 17/16 µm 
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(dispersive/non-dispersive). The V L- and the O K-edge stacks covered an energy range 

from 508—560 eV with energy steps of 0.2 eV in the region of interest and 1 eV in the 

continuum region beyond the specific elemental edges with dwell time of 1 ms for each 

section. Right circularly polarized light X-rays, generated by an elliptically polarized 

undulator (EPU) was used in the experiments in order to reduce polarization dependence 

of spectral intensities. All STXM data were analyzed and processed using aXis2000 

software (http://unicorn.mcmaster.ca/aXis2000.html). STXM intensity maps were 

derived based on singular value decomposition (SVD) of the image stack in aXis2000 

and by using as a reference the spectra identified within different regions of the same 

image sequence. Such an operation produces hyperspectral composition maps wherein 

intensities represent the location of the spectra signal strength (Figs. V.2a—c) at each 

specific pixel of that highlighted area.  

Thickness maps were developed by fitting the V L- and O K-edge stack to a 

linearly scaled spectrum of LixV2O5 for an X-ray elemental profile of a 1 nm thick 

material, assuming the density to be 3.357 g cm-3, as calculated by aXis2000. The 

elemental profile spectrum is in absorbance or optical density (OD), allowing the 

thickness of the sample to be evaluated quantitatively using a Beer law dependence of 

transmission with thickness. 

V.2.3 Computational Details 

The ground-state density of states (DOS) of V2O5 is obtained using density 

functional theory with the Vienna ab-initio simulation package (VASP). The exchange-

correlation energies are determined within the specific generalized-gradient 
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approximation (GGA) of Perdew-Burke-Ernzerhof (PBE). The electron-ion interaction is 

treated with projector-augmented-wave (PAW) pseudopotentials by using a 400 eV 

plane-wave energy cut-off. A DFT+U approach is employed to describe the on-site 

Coulomb interaction with U = 4.0 eV. We sample the first Brillouin zone with a 

Monkhorst-Pack reciprocal-space grid of 6x6x6 k-points and the structure was relaxed 

until each force component is no greater than 0.01 eV Å-1. To guarantee highly resolved 

projected density of states (pDOS), we calculate Kohn-Sham eigen-energies based on 

the converged electron density on a grid of 12x12x12 k-points. The pDOS is numerically 

broadened with a Fermi-Dirac smearing of 0.2 eV. The Tkatchenko-Scheffler method 

was used to describe the van der Waals interaction between the layers of V2O5. The 

phase field model for diffusion and reaction, Equation V.(2)-(4), are implemented in the 

open-source finite element program FEAP. For time integration, the backward Euler 

method is employed with adaptive time step control. Spatially higher order partial 

differential equations are solved using the B-spline based finite cell method.38 The 

particles are immersed in a regular background Cartesian mesh and the geometries are 

represented by different sets of integration points, allowing for the representation of 

complex geometries. Surface quadrature points, which are located on particle-solution 

interface and on the particle-particle interfaces, are produced based on the surface mesh 

generated by NETGEN, where surface quadrature points are obtained from a standard 

six-point formula. The code has been parallelized at the assembly level by OpenMP. On 

these points, the corresponding modified Butler—Volmer models explained in the 

previous context are applied. 
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V.3 Results and Discussion 

V.3.1 Spectral Assignments and Electronic Structure Signatures of Lithiated V2O5 

Phase-pure single-crystalline V2O5 nanowires, prepared as described 

previously,31 are chemically lithiated by reaction with n-butyllithium36 for 1 h in hexanes 

as per: 

     (EQUATION V.1) 

Figure V.1b depicts a high-resolution scanning electron microscopy (HRSEM) image of 

a network of interconnected V2O5 nanowires lithiated for 1 h. These nanoparticles are 

interfaced but are not covalently bonded. Seven distinct regions can be distinguished as 

labeled in the Figure. Figure A.20 depicts a high-magnification view of the SEM image 

depicted in Figure V.1b, further allowing for visualization of the interconnected and 

demonstrating retention of nanowire integrity of the wire is not affected by the lithiation 

process. Chemical lithiation allows for elimination of a number of confounding 

parameters enabling examination of the role of interfaces across the interconnected 

network. Lithiation can occur at two-phase interfaces between the solution and the 

nanowire and does not require a three-phase contact between the electrolyte, conductor, 

and electrode such as required in an electrochemical reaction.13 Furthermore, chemical 

lithiation in hexanes confines inter-particle charge and mass transport to interconnects. 

Notably, V2O5 is completely wet by hexanes (n-hexane has a low surface tension of 

18.43 mN/m at 293K), as depicted by flash spreading and a contact angle measurement 

of 0˚ measured upon application of a liquid droplet to the prepared materials (Figure 

A.21). Finally, by performing this reaction within a large bath, the global Li-ion flux can 

V2O5  + x  C4H9Li (hexanes) → LixV2O5  +  x
2

 C8H18(g)
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be assumed to be constant. Consequently, gradients in Li-ion concentrations and phases 

measured across this system can be directly attributed to specific particle morphologies 

and proximity to the other particles. Figure V.1c depicts the STXM image of this 

interconnected network and Figure V.1d shows the integrated V L- and O K-edge X-ray 

 

Figure V.2. Evaluating electronic structure inhomogeneities and phase separation 
in interconnected V2O5 wires. Region-of-interest analysis of the subgroup of 
particles in regions 1—4.  (a)–(c) depict maps of three spectral components 
(colour-bars to the right depict the intensity of the spectrum at each pixel) 
identified by singular variable decomposition analysis that are plotted in (e)–(g). 
Based on the intensities of the V 3dxy features at the V LIII-edge and the ratios of 
the t2g to eg intensities at the O K-edge, components e—g correspond to increasing 
lithiation (Table V.1). In each case, the yellow—red regions demarcate a greater 
contribution from the respective spectral component, whereas black—blue 
corresponds to relatively small spectral contributions within the specific regions. 
(d) An overlay of the three spectral components illustrating the compositional and 
phase heterogeneity across the interconnected network. Red, green, and blue 
regions demarcate majority contributions at the specific pixel from spectral 
components in (e), (f), and (g), respectively. The corresponding HRSEM image for 
this region is depicted in (h). The extent of global lithiation in V2O5 depends on 
the nature of the interconnects. The arrangement of particles in this Figure has 
been used to model the progression of lithiation by phase-field modelling, as 
depicted in Figure V.4 and in Movie A2.  
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absorption spectra acquired for these particles. The particle thicknesses can be directly 

evaluated from the transmission profiles as described in the Methods section. Region 1 is 

a small nanoparticle of ca. 50 nm in thickness and 1 µm in length (Fig. A.22) and is in 

direct contact with a longer nanowire denoted as region 2, which grows parallel to a 

second nanowire denoted as region 3; the latter two nanowires are each ca. 120 nm in 

thickness. Another nanowire denoted as region 4 has a thickness of ca. 55 nm and is 

interfaced directly with region 3 (Figure A.20b). Figure A.23 shows thickness profiles 

for regions 5—7. Region 6 is a long wire that is ca. 85 nm in thickness; region 5 is a 

domain within this nanowire that appears to be separated by a screw dislocation or 

surface step (Figure A.20c). Region 7 is a small particle ca. 20 nm in thickness and ca. 

850 nm in length interfaced directly with region 6.  

X-ray microscopy is a versatile and powerful probe of local electronic structure 

and has been used to elucidate chemical and structural inhomogeneities in various types 

of materials.12,39–42 It is instructive to compare the integrated V L-edge and O K-edge 

spectrum acquired for the lithiated particle network plotted in Figure 1d with the stack 

acquired for delithiated V2O5 nanowires shown in Figure V.1f. Delithiation of the 

nanowires in liquid Br2 induces full recovery of the electronic structure of orthorhombic 

V2O5 suggesting complete extraction of Li-ions23,24,43,44 in Figure V.1f. The spectral 

changes in Figure V.1c thus directly stem from Li-ion intercalation within the 

nanowires. The integrated spectrum in Figure V.1d comprises a number of different 

spectroscopic signatures corresponding to varying extents of lithiation; the spatial 
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localization of these signals (inaccessible in an ensemble measurement) are plotted in 

Figures V.2 and V.3 and allow for mapping of lithiation gradients across the network. 

 The V L-edge features labelled as such in Figure 1f correspond to transitions 

from V 2p3/2 → V 3d (centered at ca. 518 eV, labelled V LIII) and V 2p1/2 → V 3d 

(centred at ca. 525 eV, labelled V LII) states, respectively, consistent with dipole-

selection rules for core-level electronic spectroscopy wherein transitions with a change 

of angular momentum quantum number ∆l = ±1 are allowed with conservation of 

spin.23,43,44 The separation of ca. 7 eV between these features corresponds to the spin-

orbit coupling of V 2p states characteristic of pentavalent vanadium.44,45 A Coster—

Krönig Auger decay process renders the V LII edge less descriptive, principally due to 

the broadening that accompanies this type of decay; nevertheless, the V LIII spectral 

features are characterized by fine-structure resonances and provide a sensitive view of 

the bottom of the conduction band in V2O5 (Figure A.24 shows the calculated orbital-

projected density of states for V2O5). These absorption features correspond to transitions 

from a singlet V 2p63d0 electronic configuration to V 2p53d1 states that are rendered 

non-degenerate as a result of crystal field splitting (Fig. V.1e) and multiplet effects.45 

The first two sharp resonances that emerge at 515.6 eV and 516.8 eV, respectively, can 

be assigned to transitions to final states of 3dxy and 3dxz/yz character based on restricted 

open-shell configuration interaction with singles	quantum chemistry calculations 

performed by Neese and co-workers.43 The assignments are further borne out by angle-

resolved XANES measurements that confirm the 3dxy symmetry of the lowest-lying 

conduction band state of V2O5.44 To a first approximation, Li-ion intercalation induces 
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reduction of vanadium atoms to tetravalent vanadium and as such the lowest lying V 3dxy 

states are occupied creating a small polaron. Figure V.1d indicates that as a result of 

filling of the lowest-lying states in the unoccupied density of states (Fig. A.24), the V 

3dxy and V 3dxz/yz features are strongly attenuated23,24 (and are rendered “dark” in the 

integrated spectrum for the lithiated phase as a result of Pauli blocking). Indeed, the 

relative attenuation of these features serves as a signature of Li-ion insertion (and 

vanadium reduction). 

 The spectral features at the O K-edge correspond to transitions from O 1s to O 

2p states; substantial hybridization between V 3d-O 2p orbitals results in two distinct 

sets of resonances (of t2g and eg character; Fig. V.1e) that are reflective of the crystal 

field splitting of the V 3d orbitals (Fig. A.24).23,43,46 Based on eXcited-state Core-Hole 

(XCH) density functional theory calculations, the t2g absorption feature (at ca. 529 eV) 

arises primarily from the hybridization of vanadyl oxygen 2px/y orbitals with the V 3dxz/yz 

orbitals; this feature also has contributions from states derived from hybridization of 2py 

orbitals of bridging oxygen atoms and 2px orbitals of chaining oxygen atoms with V 3dxy 

states (Fig. V.1e). In contrast, the eg absorption (at ca. 531 eV) corresponds to transitions 

of O 1s core electrons to O 2p states hybridized with V 3dz
2 and V 3dx

2
-y

2 states that are 

relatively raised in energy as a result of their end-on σ interactions. Figure 1d indicates 

that consistent with previous observations, Li-ion intercalation strongly modifies the O 

K-edge XANES spectrum.23,24 In particular, the relative ratios of the t2g and eg intensities 

are greatly modified; the It2g/Ieg ratio is >>1 for the initial or delithiated V2O5 samples 

but is modified to ≤ 1 upon Li-ion intercalation. This change in t2g intensity is principally 
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due to the influence of lithiation and electron localization on the electronic structure of 

V2O5. Specifically, lifting of the electron spin degeneracy is induced by the emergence 

of electron correlation (as the system goes from a V5+ 3d0 system to a mixed valence 

system with considerable V 3d1 sites) and the distortion of the structural lattice, which 

raises the energy of the π-bonded t2g states.23,24 The relative ratio of the t2g and eg 

absorption features (It2g/Ieg) serves as a second measure of the Li-ion concentration and 

thus the local level of lithiation a particle when evaluated by STXM. 

V.3.2 STXM Mapping of Lithiation Across an Interconnected Particle Network 

The interconnected network of particles shown in Figure V.1 has been divided 

into two subgroups; Figure V.2 shows STXM maps and spectral components identified 

across regions 1—4, whereas Figure V.3 depicts the corresponding data for regions 5—7 

(Fig. A.20, depicts high-magnification SEM images). In Figure V.2, singular value 

decomposition (SVD) of the image stack yields three spectral components plotted as 

Figures V.2e—f. Based on the two measures noted above, the intensity of the V 3dxy 

feature at the V LIII-edge and It2g/Ieg ratios, the three components depicted in Figures 

V.2e—g represent increasing extents of lithiation. Figure V.2e corresponds to a low 

degree of lithiation as is characteristic of α-LixV2O5. Indeed, the t2g absorption feature is 

much higher in intensity as compared to the eg feature (as also observed for unlithiated 

and delithiated V2O5 in Fig. V.1f).23,24 In stark contrast, the t2g and eg absorption features 

are similar in intensity for the third spectral component plotted in Figure V.2g, which 

corresponds to a higher Li-content δ-LixV2O5 phase. The spatial localization of these 

components is mapped in Figures V.2a—c and allows for direct visualization of the 
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considerable compositional and thus phase heterogeneity across this region of 

interconnected particles. The thin nanowire denoted as region 1 as well as the tips of the 

other three nanowires are heavily lithiated and have been transformed to the δ-phase 

(Fig. V.2d). In contrast, nanowires 2 and 4 are sparsely lithiated and are in the α-phase. 

The nanowire denoted as region 3 shows an intermediate extent of lithiation 

corresponding to the ε-phase. The mapping of compositional heterogeneity using the 

 

Figure V.3. Electronic structure inhomogeneities and phase separation within 
nanowires and across interfaces. Region-of-interest analysis of the subgroup of 
particles in regions 5-7.  (a)–(c) depict maps of three spectral components (colour-
bars to the right depict intensity of the spectrum at each pixel) identified by 
singular variable decomposition analysis that are plotted in (e)–(g). Based on the 
intensities of the V 3dxy features at the V LIII-edge and the ratios of the t2g to eg 

intensities at the O K-edge, components e—g correspond to increasing lithiation 
(see Table V.1). In each case, the yellow—red regions demarcate a greater 
contribution from the respective spectral component, whereas black—blue 
corresponds to relatively small spectral contributions within the specific regions. 
(d) An overlay of the three spectral components illustrating the compositional and 
phase heterogeneity across the interconnected network. Red, green, and blue 
regions demarcate majority contributions at the specific pixel from spectral 
components in (e), (f), and (g), respectively.  The corresponding HRSEM image 
for this region is depicted in (h). 
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electronic structure of V2O5 thus permits a detailed view of the influence of 

interconnects on the phase heterogeneity. It is apparent that in this system, Li-ion 

transport across the interconnected regions preferentially facilitates growth of the 

heavily lithiated phases within individual nanowires instead of nucleating heavily 

lithiated domains within every nanowire. Figures V.2a and d particularly depict the stark 

contrast in Li-ion content across the interfaces between (a) regions 1 and 2 and (b) 

regions 3 and 4. Regions 1 and 3 are strongly enriched in Li-ions and transformed to 

high-Li-content ε- and δ-phases, respectively, whereas the domains of nanowires 2 and 4 

that are in direct contact are depleted of Li-ions. Notably, the tips of these two nanowires 

are heavily lithiated likely mediated by an entirely distinct mechanism involving 

insertion from the flux at narrower tips that are subjected to a high local potential 

gradient (marking a secondary nucleation event).31,47–49 Li-ion transport across interfaces 

thus preferentially grows the highly lithiated domains in 1 and 3 without nucleating 

phase transformations within 2 and 4. Interestingly, nanowire 4 is less lithiated as 

compared to nanowire 3 despite being thinner suggesting that the specifics of 

interconnectivity rather than particle size determine the lithium content and thus spatial 

sequence of phase transformation. From a thermodynamic perspective, such a transport-

driven segregation across the interfaces minimizes the creation of energetically 

expensive new interfaces, whereas from a kinetic perspective, diffusion across the 

interface and growth of the highly lithiated phases appears to require a lower activation 

energy as compared to phase nucleation. A phase-field model that reproduces this 

progression of phase transformations is further developed below. Interestingly, for a 
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bundle of nanowires that are closely interfaced across most of their length, discrete 

spectral components can be resolved (Fig. A.25), but are very similar suggesting that 

extended interfaces, unlike the interfaces in Figure V.1b, allow for equilibration and a 

relatively greater degree of phase homogeneity. 

Figure V.3 indicates a similar mapping of lithiation and phase gradients across 

regions 5—7. Regions labeled 5 and 6 form part of the same nanowire but appear to be 

separated by a dislocation or surface step (Fig. A.20c) and show vastly different extents 

of lithiation. Figures V.3c and g indicate that region 6 is very heavily lithiated (δ-

LixV2O5), whereas the bottom of region 5 has a very low Li-ion concentration (Fig. V.3a 

and e). The induction of a defect thus appears to serve as a barrier for Li-ion transport 

Region It2g/Ieg 
(a.u.) 

Estimated Li 
concentration x in 

LixV2O5 
Phase 

1 1.185 1.1–1.3 δ 

2-3 0.992 1.3–1.5 δ 

4 1.694 0.0–0.31 α 

5 2.132 0.0-0.1 α 

6 0.829 1.4–1.5 δ 

7 1.414 0.7–0.9 ε 

V2O5 2.801 0 α 
delithiated V2O5 2.763 0 α 

Table V.1. Li-ion content across different regions of an interconnected particle 
network as deduced from It2g/Ieg ratios in O K-edge XANES spectra. The 
expected phases based on extent of lithiation are also listed as sketched in figure 
V.1a 
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and phase propagation. Transport limitations appear to limit growth of the lithiated phase 

across the defect. In addition, these defects appear to be affecting secondary lithiation at 

the tips that are apparent in Figure V.2c. It is noteworthy that while tips represent 

regions amenable to secondary nucleation as shown in Figure V.2c, their propensity to 

further insert Li-ions and nucleate higher lithiated phases will be modified by the 

specifics of the local geometry. Figure V.3d shows considerable heterogeneity across the 

same nanowire with three distinct striped domains along the nanowire length 

corresponding to low, intermediate and high lithiation. Region 7, the thin nanowire, is 

lithiated to the ε-phase with a Li-ion concentration of ca. 0.7-0.9. Region 7 appears to be 

equilibrated with one of the domains (lithiated to an intermediate extent) of the thicker 

nanowires but not with the heavily lithiated domain at the center of nanowire. The phase 

separation across regions 6 and 7 illustrate again that particle size is not the sole 

predictor of extent of lithiation.  

A more quantitative perspective of the extent of lithiation across the 

interconnected network is provided by Figure A.26, which illustrates the ∆µ(E) spectra50 

corresponding to the differential between each spectral component and the O K-edge 

spectrum of unlithiated V2O5.  The spectra have been aligned to the eg* peak, and thus 

the most negative change of t2g intensity represents the highest degree of lithiation. Table 

V.1 depicts the It2g/Ieg ratio and the Li-ion concentration as well the phase deduced from 

this analysis. It is noteworthy that even domains 4 and 5 are lithiated to some extent 

consistent with our previous observations that stabilization of the low-Li-content α-phase 

proceeds homogeneously.24 Combining high-resolution transmission electron 
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microscopy21,22,51 with scanning transmission X-ray microscopy will allow for 

combining the spatial resolution of the former method with the electronic structure 

sensitivity of the latter method and will be the focus of future work. 

V.3.3 Phase Field Modeling of Heterogeneity Across Interconnected Particle Networks 

The initial insertion of Li-ions within layered structures is driven by locally high 

current densities and likely has some initial stochasticity.23 Subsequent lithiation is 

driven by stage ordering phenomena wherein insertion of Li-ions within the same 

expanded layer is preferred over intercalation within a pristine layer as long as diffusion 

within the layer is not impeded by structural deformations (such as layer collapse) 

induced by a defect.10 Indeed, the existence of dislocations has been related to capacity 

loss of the material as a result of induced strain and stress.52,53 The observations of 

lithiation gradients and phase heterogeneities across the interconnected particle networks 

illustrated in Figures V.2 and V.3 suggest that increasing Li-ion content inserted from 

the external flux results in supersaturation of the low-Li-ion-concentration (α) phase and 

that nucleation of the higher concentration ε or δ phases is initiated at specific sites 

within the interconnected network. Subsequently, these phases grow along specific 

nanowires while depleting interconnected nanowires and establishing considerable phase 

heterogeneity across the network. A phase-field diffusion-reaction model incorporating 

phase separation across interconnected multiple particles has been developed to explore 

the dynamics of nucleation and growth as observed here. The lithium diffusion inside 

each particle is subject to the Cahn—Hilliard equation: 

               (EQUATION V.2) ∂c( p)

∂t
=∇ • M ( p)∇ µ( p) − k ( p)∇2c( p)( )⎡

⎣
⎤
⎦
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where the superscript p ranges from 1 to the total number of the considered particles, c is 

the normalized lithium concentration with respect to the maximum concentration, t is the 

time and M is the mobility. The term 𝑘(!)∇!𝑐(!) represents the interfacial energetic 

penalty so that the growth of domain interfaces within a particle is not favored. The bulk 

chemical potential µ takes the regular solution expression as:  

          (EQUATION V.3) 

where R is the gas constant, T is the absolute temperature, x is a phase parameter, which 

will allow for the co-existence of two phases when it has the value greater than 2. On the 

particle-electrolyte interface, the EQUATION V.1 is considered with the simplification 

that x = 1. The flux on the particle-electrolyte interface is modeled through the modified 

Butler—Volmer equation as:54 

    (EQUATION V.4) 

where s is the molar concentration of the intercalation sites on the surface, a is the 

activity of lithium in different environments, 𝛽 is the a symmetry factor for a forward 

and backward reaction, 𝛾 is the chemical activity coefficient of the transition state, and F 

is the Faraday constant. The overpotential η is defined as ∆𝜙 – Voc + η(p)/F, where ∆𝜙 is 

the electro-static potential difference between the electrode and the electrolyte and Voc is 

the open circuit voltage. The flux across the particle-particle interface is modelled in a 

similar fashion as EQUATION V.4, where the overpotential is defined as the chemical 

difference between the two particles. 
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Phase field modelling is ideal to evaluate this system since it allows for the 

determination of phase formation and diffusion without being computationally 

prohibitive.55,56 In previous work, phase field modelling has helped elucidate 

mechanically coupled phase separation effects during Li-ion intercalation.57,58 

The model assumes diffusion occurs from a constant potential external bath into 

the nanowires and across interconnects as constrained by conditions for chemical 

lithiation. Figure V.4 indicates a sequence of concentration profiles modelled using this 

approach for a network of particles approximating the geometry seen in Figure V.2. 

Movie A.2 depicts the evolution of lithiation within this group of particles. As a result of 

the increased surface area and local activities, lithiation is initiated at the tip and 

 

Figure V.4. Phase-field modeling of Li-ion insertion within an interconnected particle 
network. Li-ion diffusion within an interconnected particle network similar to Figure 
V.2 is simulated with a constant flux. (a)–(j) indicates snapshots from Movie A2. 
Lithiation starts with the smallest nanowire and indeed sections of other nanowires in 
contact with the actively lithiating domains are depleted. Once large domains adjacent 
to the interfaces have been homogenerously lithiated, secondary nucleation events are 
initiated are the tips as a result of high local potentials. Images (f) and (g) show 
concentration and phase profiles remarkably similar to Figure V.2. A schematic 
diagram of the proposed exchange evolution is shown in (k). 
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propagates across the nanowires. However, the contact area between the nanowires are 

important conduits for Li-ion transport and preferential lithiation of one nanowire occurs 

at the expense of an interfaced nanowire suggesting that the phase heterogeneity within 

the network is directly related to interparticle diffusion of Li-ions induced by the 

concentration-dependent phases. Movie A.3 and Figure A.27 compare the phase 

separation in the same two-particle configuration in two cases: in one case interparticle 

diffusion is allowed, whereas in the other case, the interface diffusion is prevented. 

Comparison of the results show clearly that when the particles are poorly connected, 

both particles get lithiated almost simultaneously, whereas a viable diffusion pathway 

between particles accelerates the lithiation of the smaller particle at the cost of the 

delayed lithiation of the bigger one.  

Considering relevant numerical values, based on nudged elastic band density 

functional theory calculations, the diffusion coefficient for migration of Li-ions within α-

V2O5 is 3.69×10-4 cm2s-1; this value reflects the migration barrier within the 

orthorhombic crystal structure assuming a perfect structure and is derived from the 

distortion of the structural framework upon Li-ion diffusion.32 Experimental values 

measured for porous electrodes based on electrochemical analysis yields values of ca. 

5.50 x 10-11 cm2s-1.32,59,60 The differential arises in large measure from barriers to inter-

particle transport and suggests that this parameter essentially entirely dominates 

diffusion within an electrode. Once a particle begins to lithiate, given a viable inter-

particle diffusion pathway and the facile barrier to Li-ion diffusion within the single-

crystalline domain, the lithiation front propagates across this particle before initiating 
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lithiation of an adjacent interconnected particle thereby resulting in phase separation 

across the network. Notably, this would not be true in the alternative extreme scenario 

where the diffusion of ions between particles is severely restricted; this would bring 

about the simultaneous lithiation of the interconnected particles without phase separation 

as observed in Figure A.27b. The experimentally observed distinct phase separation in 

the particles is thus attributed to the establishment of interfacial particle diffusion 

pathways. Furthermore, if lithiation were to proceed through stabilization of a 

continuous solid-solution (if nucleation and growth mechanisms were eliminated),18,61 

homogeneous nucleation would be expected across the network without manifestation of 

the phase heterogeneity observed here. This result suggests that the nature of 

interconnected networks assumes special significance for phase-transforming materials. 

As noted above, a change from phase-segregation to solid-solution process has been 

experimentally observed in LiFePO4 at different rates of charging but has not been 

observed for V2O5 at the timescales examined thus far.12,24 Figure V.4d suggests that 

after phase separation across interfaces, secondary nucleation events are preferentially 

initiated at the tips, mediated by the locally high potentials. Indeed, such events likely 

underpin the high Li-ion concentrations at the nanowire tips visible as hotspots in Figure 

V.2c. In particular, in Figure V.4f several aspects of phase heterogeneity observed in 

Figure V.2d are reproduced. For instance, the smallest particle (top left one) is first 

lithiated, and the interfaced part of the neighbouring particle (middle one) has a rather 

low extent of lithiation, which indicates a flux of lithation from the middle particle to the 

smaller particle. Next, the middle and the right particles start to be lithiated from their 
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particle tips. Finally, the middle particle appears to be drawing Li-ions from the right 

particle across the interface. Figure A.28 suggests that at low extents of lithiation, 

interconnected particles will relax to a homogeneous distribution, at intermediate 

lithiation, phase separation will occur predominantly across interfaces, and at high 

lithiation different domains will be stabilized within an individual nanowire.  

In this model, the phase heterogeneity is considerably driven by kinetic barriers 

to phase nucleation. It is clear that the nature of interfaces strongly modify local 

activities and thus concentration profiles and the sequence of lithiation and ensuing 

phase transformation. In other words, the phase progression and dynamics of lithiation 

are greatly modified for a particle depending on its proximity and interface with adjacent 

particles in a network. The phase-field results are in concert with the acquired data 

through STXM for the subgroup of particles with the same arrangement (seen in Fig. 

V.2). The model reproduces the route taken by the Li-ions and the resulting spatial 

propagation of phase transformations across the interconnected particle network. Highly 

lithiated domains are stabilized preferentially at regions of high local current density 

such as tips and exchange occurs to the most thermodynamic favorable particle (most 

active material). 

V.4 Conclusions 

Mosaic instabilities and particle-by-particle intercalation have emerged as 

important constructs for understanding substantial heterogeneities in the concentration of 

actively intercalating particles and the sequence of phase transformations observed 

within cathode materials.7,11,12,49,62,63,64 Using interconnected nanowires of V2O5, which 
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undergo a series of phase transformations with increasing lithiation, we demonstrate 

considerable heterogeneity of lithiation across domains of individual particles as well as 

across particles of an interconnected particle network. For the former, defects and 

structural distortions strongly influence Li-ion transport and thus phase nucleation and 

propagation. For the latter, we find that the nature of interconnects strongly modifies the 

phase heterogeneity and induces separation between Li-rich and Li-poor regions across 

interfaces. Once a system is supersaturated, nucleation of a high-Li-ion content occurs 

only on one side of the interface with concomitant depletion of the adjacent connected 

particle. The Li-rich phase subsequently propagates preferentially across a single 

nanowire instead of across the entire particulate network. Such a sequence is reproduced 

in phase-field simulations and suggests that phase separation across interfaces in 

interconnected networks stems in large measure from barriers to nucleating high Li-ion 

content phases. Secondary nucleation events are further facilitated at tips due to locally 

high activities. The propagation of Li-ions along “hot stripes” can be reconciled based 

on the stabilization of polarons and stage ordering within this system.23,65,66 These 

findings suggest that mesoscale architectures can potentially be designed with 

interconnects to maximize the proportion of actively intercalating regions and to ensure 

better equilibration of local current densities. 
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CHAPTER VI 

SUMMARY AND OUTLOOK 

Electrodes of intercalation batteries are dynamically evolving entities that 

inevitably present time-dependent compositional heterogeneities. Diffusion limitations 

in cathode materials arise from ionic, electronic, and coupled ionic—electronic origins. 

Atomistic barriers such as constricted transition states and the stabilization of polarons 

influence the nucleation and propagation of intercalation-induced phase transformations 

and thereby lead to multiscale heterogeneities. In this dissertation, we have used α-V2O5 

as a model system to develop mechanistic ideas of the origins of diffusion limitations 

making extensive reference to X-ray absorption/emission spectroscopy studies of local 

structure, STXM mapping of compositional domains, and first-principles DFT 

calculations. In addition, a limited study of graphene anode materials is also presented. 

The multiscale gridlock derived from ionic diffusion barriers, low electron mobilities, 

stabilization of polarons, and sequence of intercalation-induced transformations 

observed in V2O5 has many parallels in other transition metal oxide cathodes given 

commonalities in electron correlation and electronic conduction reliant on narrow 3d 

bands. Understanding the coupling of ionic, electronic, and thermal transport requires 

multiscale understanding spanning the range from atomistic phenomena to phase 

transitions within single particles and the sequential/parallel evolution of a network of 

interconnected particles. Achieving the facile diffusion of multivalent cations represents 

an especially formidable challenge given their higher ability to polarize the host lattices. 
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The rational design of electrode chemistries and architectures to mitigate diffusion 

limitations would benefit greatly from deeper mechanistic understanding. Ex situ 

measurements are frequently unable to capture the full complexity of phenomena 

manifested under operational conditions and oftentimes do not precisely describe 

metastable states, surface diffusion, and intermediate configurations mediating cation 

diffusion. In situ measurements that have started to become available are clearly 

imperative to bridge this critical gap in our understanding of these systems. Furthermore, 

redox processes at transition metal sites are distinctively sensitive to peculiarities of 

electronic structure and the stabilization and evolution of specific hybrid states at the 

conduction band edge. Understanding how electronic structure is correlated with 

atomistic structure and mapping its spatiotemporal evolution during charge/discharge 

processes is thus of fundamental importance to mechanistic understanding.  

Several approaches to mitigate diffusion limitations are proposed based on 

current mechanistic understanding. First, nanostructuring and reduction of particle size 

can suppress phase boundaries and allow for single-phase lithiation (below a critical size 

for phase separation), curtail solid-state diffusion path lengths that have to be traversed 

by ions and polarons, and allow for better accommodation of strain induced by 

compositional gradients. Mesoscale inverse design approaches are necessary to define 

3D architectures that can homogeneously intercalate Li- and multivalent cations. 

Alternatively, metastable phases of V2O5 provide access to a rich palette of structures 

with differently structured cation diffusion pathways and varying extents of covalency, 

thereby allowing for precise atomic-scale tunability of electron and ion diffusion. A vast 
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compositional space of metastable phases remains to be explored and makes available a 

considerable expanse of design space wherein design elements such as frustrated 

coordination and rigid sub-units can be sought. Combining the two approaches, through 

nanostructuring of metastable phases, also holds considerable promise as does surface 

exfoliation and the construction of atomically engineered 2D architectures. Multiscale 

design taking into consideration atomistic and electronic structure and spanning the 

range from single-particle phenomena to precise mesoscale structuring of networks is 

imperative to circumvent the many limitations of current energy storage constructs.  
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APPENDIX A 

SUPPLEMENTARY FIGURES AND TABLES 

 

   

 

Figure A.1. Peak assignments for V L- and O K-edge X-ray absorption near edge structure 
(XANES) Spectra (a) Assignments of V LIII-edge spectral features to specific transitions 
measured for an individual V2O5 nanowire (b) Ab-initio calculated spectrum for V2O5 
depicting major contributors for the t2g and eg* peaks at the O K-edge. 
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Figure A.2. Corrections for Detector Nonlinearity (a) Detector response as a 
function of dispersive slit widths for specified non-dispersive slit widths (5, 
10, 15, and 25 µm). The latter three plots have been fitted by the function 
indicated as Equation III.5. The fits are indicated by solid lines. (b) Measured 
flux and quantum efficiency as a function of actual photon flux for a non-
dispersive slit width of 25 µm. 
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Figure A.3. V L- and O K-edge chemical imaging of a single lithiated V2O5 
nanowire Thickness map (a) for a 1 min lithiated V2O5 nanowire where the gray 
scale represents the thickness in nm (scale bar, 200 nm), the dashed line represents 
the section surveyed in (c). Linearly scaled reference spectrum for LixV2O5 (b) used 
to construct the thickness map. High-resolution scanning electron microscopy 
images of a single V2O5 nanowire depicting a uniform rectangular cross-section (d) 
(scale bar, 200 nm).  
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Figure A.4. Stage Ordering of Li-ion Insertion Charge density differences calculated for 
V2O5 with one intercalated Li-ion (a), two Li-ions incorporated within the same layer 
(b), and two Li-ions incorporated in alternate layers (c). The increase of charge density 
is depicted in yellow and decrease of charge density is depicted in blue. The increased 
charge density is observed to trace the contours of the V 3dxy orbital. The decrease in 
charge density is localized between the bonds showing polarization of the bonds 
between V–O bonding. The calculated formation energies depict a preference for 
successive lithiation of the same layer, as compared to alternate layers.  
 



 

 206 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.5.  Projected density of states (pDOS) (a) α-LiV2O5 and (b) δ-LiV2O5 
Supplementary Figure III.4 demonstrates the impact of stacking order on the pDOS. 
It can be seen that in both cases the spin-up and –down channel are split much in 
the same manner, except that the dxz-component blueshifts (red curves) to higher 
energies in δ-LiV2O5. This is because the relative gliding of the V2O5 layer in δ-
LiV2O5 causes the inserted Li-ion to situate at the mid-point of two dangling 
vanadyl oxygens, which substantially magnifies the lattice distortion on the ac 
plane. pDOS broadened with 0.03 eV for (c) V2O5 and (d) α-LiV2O5. This directly 
corresponds to the calculated Fig. III.3. Two spin-components are shown for α-
LiV2O5. The DFT+U calculation predicts that the lifting of spin degeneracy causes 
the spin-up and –down components of 3d states to be split by ca. 0.7 eV. The large 
spin-channel splitting is also evident in the oxygen 2p states, which is the primary 
cause for the diminution of the sharp t2g resonance in the O K-edge absorption 
spectra.  
 



 

 207 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

Figure A.6. Charge localization upon addition of a single electron in 
pristine V2O5 The polaron formation in the V2O5 structure is dependent 
of the electron spin. Enforcing spin-degeneracy on a supercell of V2O5 
results in charge delocalization throughout V2O5 and a total energy 
increase of roughly 0.22 eV for the supercell with 24 V atoms. This 
suggests the polaron is energetically favorable due to correlation effects 
and is stabilized via symmetry breaking mechanisms. 
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Figure A.7. Structural Distortion Induced by Polaronic Confinement A schematic 
depiction of the transformation of a single unit cell of V2O5 upon intercalation of a 
Li-ion. A sequence of structural changes is depicted with puckering of the apical 
oxygen towards the lithium ion and rearrangement of the vanadium ions away 
from the intercalated Li-ion. Movie A.1 illustrates the distortions induced in V2O5 
upon lithiation. 
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Figure A.8. Nudged elastic band studies of Li-ion Diffusion Pathways 
Schematic depicting the migration pathway adopted by a Li-ion along the b-
axis; as observed along the a-axis (a) and the b-axis (b). A view of the 
oxygen coordination environment at the transition state in α-V2O5 (c). The 
minimum diffusion pathway energy is calculated to be 0.22 eV for a Li-ion 
moving along the b-axis of α-LixV2O5 (d). 
 



 

 210 

  

 

Figure A.9. Nudged elastic band studies of V4+ polaron diffusion pathways 
(a) The formation of a polaron at position V1 (or V2) close to the Li-ion or 
positions V3 and V4 relatively far from the Li-ion. (b) Tabulated values of 
formation energies for the two configurations depicted in (a). (c) 
Calculated migration barriers for hopping of polarons situated at (V1, V2) 
sites in proximity of the Li-ion (solid line) and relatively far away from the 
Li-ion (V3, V4) (dashed lines). The steps involved in polaron diffusion are 
depicted in (d) All the orbitals are plotted at a value of electron density 
equal to 0.015 eÅ-3. 
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Figure A.10. Orbital-projected density of states for V2O5 with one- or two- 
inserted Li-ions A “mid-gap” state is observed to appear within the bandgap as a 
result of lithiation and is experimentally corroborated by the HAXPES results 
shown in Figure III.5.    
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Figure A.11. Galvanostatic charge−discharge curves measured for V2O5 in a 
coin-cell configuration at a constant 0.2 C rate. The plateaus correspond to 
distinctive intercalation-induced phase transitions in V2O5: α→ε at 3.4 V, ε→δ 
at 3.2 V, and δ→γ at 2.3 V. 
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Figure A.12. High-resolution SEM images of the cluster of wires imaged by STXM . 
High-resolution images of segments of the interlaced wires depicted in Figure IV.2a. 
The segments are numbered as in Figures IV.2 and IV.3.  
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Figure A.13. Intensity maps derived from region-of-interest singular value decomposition 
of electrochemically lithiated samples at a discharge of 2.75 V. a–c) Intensity maps depict 
the location of the spectral signatures, Components A'—C' plotted in (e)-(g). (d) An overlay 
of the three spectral components illustrating the compositional and phase heterogeneity 
across the interconnected network. Red, green, and blue regions demarcate majority 
contributions at the specific pixel from spectral components in (e), (f), and (g), respectively. 
h) Integrated STXM image of the cluster of wires.  
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Figure A.14. Spatial Distribution of Components III—V as Deduced from PCA 
analysis of Hyperspectral STXM Data Acquired for an Ensemble of Lithiated V2O5 
Nanowires. (a)–(c) show the spatial location of the separated components III—V 
generated by PCA of the hyperspectral stack. The corresponding eigenspectra are 
plotted in Fig. IV.2e.  
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Figure A.15. Clustering of pixels in PCA analysis and spatial profiles of individual 
principal components. (a)–(c) show the comparison between components in terms of 
separation of generated pixels by PCA of the hyperspectral stack. Blue and yellow 
represent background components, whereas III, IV, and V correspond to the components 
with eigenspectra plotted in Figure IV.2e. Dotted lines establishing boundaries are 
guides to the eye. 
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Figure A.16. PCA Analysis of STXM data acquired for an individual V2O5 nanowire after 1 min of 
chemical lithiation (an average composition of Li0.28±0.07V2O5 is deduced based on ICP-MS 
analysis). (a–c) Scatter plots depicting the scores at each pixel for each of the three components. 
The analysis allows for effective classification of each of the pixel to three components. Dotted 
lines serve as a guide to the eyes. 
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Figure A.17. Thickness map of an individual chemically lithiated V2O5 
nanowire that is 245 nm in diameter. (a) Thickness map of the chemically 
lithiated V2O5 nanowire depicted in Figure IV.4., where the gray scale bar 
depicts the thickness in nm. The colored dashed lines represent the cross-
sections measured in (b) and (c).  
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Figure A.18. Conversion of STXM scan data into a composition map. The normalized 
intensities in (a)–(c) were subjected to Gaussian filtering in order to remove noise (d)–
(f). 
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Figure A.19. Superposition of the filtered intensities. Using the stoichiometry 
fractions xi as weighting factors, yields the distribution of x over the pixel space 
(a). Bilinear interpolation of the pixel data yields a smooth composition map in 
pixel space, from which the outlines of the nanowire geometry have been extracted 
using a Marching Cubes algorithm (b). 
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Figure A.20. Magified high-resolution SEM images of a cluster of lithiated particles. 
High-resolution SEM images providing a magnified view of the particle cluster shown 
in Figure V.1a. (a) Regions 1, 2, 3, 6, and 7; (b) region 4 sits atop regions 2 and 3 
(intimate contact with 3); and (c) an imperfection (screw dislocation or surface step) 
separates one nanowire into regions 5 and 6.  
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Figure A.21. Contact angle measurement of pristine V2O5 with a droplet of 
hexanes. Contact angle measurements for hexanes on a layer of V2O5 
nanowires suggests immediate and complete spreading of the liquid droplet 
to a contact angle of 0°. 
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Figure A.22. Mapping of optical density in regions 1-4. Thickness map (a) for 
regions 1-4 correlated directly to Figure V.2.; the gray scale represents the 
thickness in nanometers. Several line profiles acquired across the optical density 
image are plotted and allow for elucidation of nanowire thicknesses of (b) 
regions 2-3; (c) regions 2-4, and (d) regions 1-3.  
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Figure A.23. Mapping of optical density in regions 5-7. Thickness map (a) for 
regions 5—7 correlated directly to figure 3; the gray scale represents the 
thickness in nm. Several line profiles acquired across the optical density image 
are plotted and allow for elucidation of nanowire thicknesses of (b) region 5; (c) 
region 6, and (d) region 7.  
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Figure A.24. Atom and orbital-projected density of states of V2O5. a) atom-projected 
density of states of V2O5 as calculated from density functional theory. The top of the 
valence band has predominantly O 2p character, whereas the bottom of the conduction 
band has predominantly V 3d character. b) Orbital-projected density of states indicating 
the splitting of the t2g (3dxy, 3dxz, and 3dyz) and eg (3dz2, 3dx2-y2) states as also indicated in 
Figure V.1e.  
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Figure A.25. Evaluating electronic structure inhomogeneities and phase separation in 
V2O5 nanowires with extended interfaces. STXM mapping of lithiation profiles across a 
bundle of closely interfaced nanowires. (a)–(c) depict maps of three spectral components 
identified by singular value decomposition analysis that are plotted in (e)–(g). While 
three spectral profiles can be resolved, they are closely related and correspond to the 
high Li-content δ-phase of LixV2O5. (d) An overlay of the three spectral components 
illustrating slight variations along the length of the nanowires. 
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Figure A.26. Differential XANES Analysis of Spectral Data. The spectrum for an 
unlithiated sample was subtracted to the spectrum found for each region of the cluster of 
wires in Figure V.1. All the spectra have been normalized to the eg absorption feature. 
The relative intensities allow for assignment of approximate Li-ion concentration. 
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Figure A.27. Lithiation in the networks of two particles interconnected to each other 
(a) and isolated from one other (b). The particles are immersed in a lithium bath with 
constant potential and lithiated from a homogeneous lithium fraction of 0.25. The 
contour plots show the snapshots as a function of elapsed time. The curves show the 
evolution of lithium fraction in each particle: dashed line represents the larger 
particle, whereas the solid line represents the smaller particle. It is clear that during 
lithiation, isolated particles experience intraparticular phase separation and are fully 
lithiated almost at the same time, whereas in interconnected networks with 
interparticle diffusion allowed it is clear that the smaller particle gets lithiated faster 
than the connected particle. 
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Figure A.28. Relaxation of interconnected two particles from non-equilibrium solid-
solution with different overall State of Charge (SOC). Contour plots in the upper row 
show the sequence of relaxation with three different given initial SOC. Curves in the 
lower row show the respective lithium concentrations in each particle. The blue solid 
curve represents the smaller particle, whereas the dashed red curve represents the 
larger particle. The interparticular phase separation occurs when the overall lithium 
concentration stays in the spinodal region, as shown in (a). On the other hand, when 
the overall lithium concentration is too low, the complete network will merge into a 
homogeneous phase, as shown in (b). With increased overall concentration, as shown 
in (c), phase separation also appears inside a single particle at equilibrium. 
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Components	 Cluster	
weights	1	

Cluster	
weights	2	

Cluster	
weights	3	

Cluster	
weights	4	

Cluster	
weights	5	

I	 0.104	
(31.84%)	

-0.0704	
(21.62%)	

0.0398	
(12.21%)	

-0.0858	
(26.34%)	

-0.0260	
(7.99%)	

II	 1.75	(47.31%)	 -1.62	(43.82)	 -0.125	
(3.38%)	 0.166	(4.49%)	 0.0372	

(1.00%)	

III	 9.17	(75.36%)	 1.74	(14.33%)	 -0.0822	
(0.68%)	 0.948	(7.79%)	 -0.225	

(1.85%)	

IV	 4.19	(54.27%)	 -1.10	
(14.26%)	

0.794	
(10.28%)	

-1.10	
(13.09%)	

-0.627	
(8.11%)	

V	 7.51	(49.88%)	 1.08	(7.20%)	 -2.86	
(18.99%)	

-2.76	
(18.31%)	 0.846	(5.62%)	

 

 
 

  

Table A.1. Summary of the cluster weights of each component deduced from the 
PCA analysis performed in Figure IV.2. 
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Components	 Cluster	
weights	1	

Cluster	
weights	2	

Cluster	
weights	3	

Cluster	
weights	4	

1	 0.00578	
(2.92%)	

0.121	
(61.28%)	

0.00463	
(2.34%)	

0.0661	
(33.45%)	

2	 5.05	(91.89%)	 0.421	(7.67%)	 0.00355	
(0.06%)	

-0.0208	
(0.38%)	

3	 1.18	(43.40%)	 -1.14	
(42.15%)	

0.348	
(12.86%)	

0.0429	
(1.58%)	

4	 1.33	(46.58%)	 -1.14	
(39.94%)	

-0.377	
(13.22%)	

-0.00770	
(0.27%)	

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table A.2. Summary of the cluster weights of each component deduced from 
the PCA analysis performed in Figure IV.4. 
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Movie A.1 Structural distortion induced by lithium intercalation. 
Transformation of a single unit cell of V2O5 is characterized by the puckering 
of the apical oxygen towards the Li-ion, while the vanadium atoms rearrange 
by moving away. This distortion causes the localization of electron on the 
vanadium atom, creating a small polaron. 

Movie A.2 Lithiation across two particles interconnected to each other 

Movie A.3 Lithiation across two particles isolated to each other 

 


