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ABSTRACT

In this thesis we propose a novel method to study the dynamics of topological magnetic tex-

tures. Based on the stability of these objects, scaling and symmetry arguments, we show that,

despite the complexity of the micromagnetic model, the electric and magnetic driven dynamics

can be described in terms of a few relevant dynamical parameters. This method reproduces well

known behaviors reported in the literature without the assistance of sophisticated micromagnetic

numerical calculations. Moreover, it allows for the study of new phenomena relevant for proposing

new memory devices based on topological textures.

Based on a specific configuration of a nanowire with a strong pinning point, we predict a peri-

odic injection of domain walls by all electrical means. Our analytical results reveal the existence of

a critical current. For currents below the critical current, the magnetic configuration is stable and

fully defined by a single parameter. For currents slightly above the critical current, this parameter

becomes dynamical and is associated to the periodic injection of domain walls into the nanowire.

The period is given by a universal exponent T ∼ (j − jc)1/2. The process is very general and in-

dependent of microscopic details. A major feature is that the process is independent of "twisting"

terms or applied external magnetic field.

We also propose a Hamiltonian dynamics formalism for the current and magnetic field driven

dynamics of ferromagnetic and antiferromagnetic domain walls in one-dimensional systems. We

obtain Hamiltonian equations for pairs of the dynamical parameters that describe the low energy

excitations of domain walls. This model independent formalism includes both the undamped and

damped dynamics. We use it to study current induced domain wall motion in ferromagnetic and

antiferromagnetic materials. In the second material, we include also the influence of magnetic

fields and predict an orientation switch mechanism for antiferromagnetic domain walls which can

be tested experimentally.

Moreover, we extend the formalism from nanowires to thin-films and study extended domain

walls as string objects. The description includes the dynamics of vortices and curvatures along
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the domain wall as well as boundary effects. We provide an effective action that describes the

dynamics of domain walls with periodic boundary conditions. By considering closed domain walls,

we included the dynamics of smoothly deformed skyrmions in the large radius limit. Our theory

provides an analytical description of the excitation modes of magnetic skyrmions in a natural

way. The method developed along the thesis proves to be rich and powerful, being crucial for the

development of a new generation of memory devices based on magnetic topological textures.
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1. INTRODUCTION

1.1 Spintronics

In the past decades, the progress in the relatively young and application-driven field of spin-

tronics has paved the way towards novel solutions for the demand of portable, high speed and high

storage capacity devices. Spintronics was founded by the 2007 Nobel prize awarded work on giant

magnetoresistance (GMR) and its goal is to exploit the spin degree of freedom in addition to the

charge degree of freedom of an electron. [6] The current technological paradigm for computational

devices is based only on the charge degree of freedom and currently faces obstacles towards its im-

provement. As society moves towards a more gadget-integrated life-style, in order to satisfy the

increasing demand for smaller, faster and more efficient devices, new paradigms have been con-

sidered. In this thesis we will present current developments in spintronics and their applications to

memory devices.

The current paradigm for computers are the use of transistor technology. It is based on semi-

conductor devices and the charge degree of freedom of the electron. This concept has driven

the information-technology for more than sixty years and is currently facing obstacles towards its

progress. [7] The technology invented in 1947 has inspired George Moore in 1965 to predict an

exponential trend for the increase in the density of transistors in computer-devices. This trend was

called Moore’s Law. [8] In 2009, an analogous observation was done by Mark Kryder concerning

the hard drive capacity, the projection was called Kryder’s Law. The scalability of this technol-

ogy was reliable for more than five decades. [9] The current limits faced by the state-of-the-art

proposed devices, however, discourage further developments. Even though there are proposals for

new ways to accommodate a higher density of components, the efficiency of each individual com-

ponent hasn’t increased significantly in the past few years. This imposes a fundamental obstacle

given the limits on heat removal capacity. [10] The difficulties faced by the transistor technology

have motivated the search for new technologies for computational devices.
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A promising alternative candidate is the conjunct use of electrical and magnetic phenomena.

The non-volatility of magnetization configurations has been exploited for applications in memory

devices since the end of the nineteenth century. [11] In the past decades, the discovery of new

methods to explore the interaction between the electric currents and the magnetic properties, given

initially by the GMR effect, has given rise to a diverse range of applications. Moreover, the use

of new nanoscale properties of magnetic configurations and their electric current and light driven

dynamics has stimulated new and more efficient approaches. [12, 13, 6] The field that studies this

new physics was called spintronics.

Some nanoscale objects of fundamental importance in spintronics are topological magnetic

textures. They have attracted great interest in particular in the last decade due to their appli-

cations for memory and logic devices. [13] An evidence of this increasing interest is the recent

increasing number of review papers on the subject. [14, 6, 15] The stability of these objects,

even in the presence of external perturbations and temperature effects, is one of the main prop-

erties that supports them as reliable memory units. Another relevant property is the particle-

like behavior under applied current and magnetic fields. These features have motivated an in-

tense and diverse effort to obtain the means to create and manipulate topological magnetic ob-

jects. [16, 17, 18, 19, 20, 21, 22, 23] In this thesis, we will present theoretical results on creation of

topological magnetic textures in nanowires and a description of current and field driven dynamics

of topological textures in nanowires and thin-films.

1.2 Micromagnetism and topological textures

Micromagnetism is the dynamical theory of magnetic textures in the continuous approxima-

tion of a ferromagnetic or antiferromagnetic structure. [24] Ferromagnetic and antiferromagnetic

materials can be modeled as a discrete lattice of magnetic moments interacting with each other,

with an electronic field and with external perturbations. From the characteristic strengths of the

interactions, it is possible to obtain natural scales for the dynamical behaviors. In the case where

the natural length scale is much bigger than the lattice size, a continuous approximation for the

discrete lattice is allowed, see Fig. 1.1. In this context, Landau and Lifshitz obtained in the 30’s a
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set of equations that describes the dynamics of the continuous magnetization configuration called

micromagnetic equations. [25]

Figure 1.1: A representation of the micromagnetic modeling of the discrete lattice of magnetic
moments. On the right pannel we see the continuous version of the discrete lattice of the left
pannel. The colors represent the component of the magnetization normal to the plane, ranging
from out-of-plane to in-plane orientations.

An interesting aspect of the description of magnetic textures as continuous vectorial fields is the

emergency of topological properties. Topology is the area of Mathematics that studies properties

that are preserved under smooth transformations. Topology has a broad range of application in

physics, including in particle physics, cosmology and condensed matter physics. An evidence of

the importance of these applications is the fact that a work based on this concept was awarded

the 2016 Nobel prize in Physics. A field of topology with particular interest to condensed matter

physics is the homotopy theory, which is crucial for the description of topological solitons. In the

context of micromagnetism, topological solitons appear as topological magnetic textures.

In mathematical terms, topological solitons are classical solutions of the equations of motion

that are homotopically different from the ground state. This means that it is impossible for these

objects to dynamically decay into the vacuum state, and, therefore, are stable against fluctuations

and external perturbations. The first example of these solutions applied to physics was proposed by

Skyrme to explain the stability of elementary particles. [26] These solutions were called skyrmions.

Later on, skyrmions received a very precise mathematical description and gained importance in

other fields such as condensed matter physics. Another topological soliton of major importance
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are domain walls. These solitons emerge in systems with spontaneously broken discrete symme-

tries. Skyrmions and domain walls can be observed as stable topological textures in magnetic

samples. [13, 15, 24, 27, 28, 29, 30, 31, 32]

The stability of topological magnetic textures is of significant relevance for studying their dy-

namics. Even though the micromagnetic equations are highly complicated non-linear and non-

local equations with an infinite degrees of freedom, the low energy excitation dynamics of these

topological objects can be described by just a finite set of dynamical parameters. [33, 34, 35, 36]

This grants them a particle-like behavior. From this point of view, it is possible to effectively

describe systems of topological textures only in terms of the relevant dynamical parameters and

disregarding microscopic details. [2]

A macroscopic and effective description of the dynamics in terms of a finite set of relevant

dynamics parameters and minimal requirements is the guiding principle of the theoretical results

presented in this thesis. By analyzing the underlying micromagnetic description of stable solutions,

we have identified the relevant dynamical parameters that describes the small energy excitations.

Moreover, by taking into account only these dynamical parameters, we obtained the minimal re-

quirements for the creation of topological textures and their manipulation with external magnetic

fields and electrical currents. The microscopic detail independent formalism proved to be robust

and powerful. It reproduced well known facts and also allowed for the search of new dynamical

behaviors.

1.3 Overview

This thesis is organized as follows: In the Methods Chapter 2.1, we introduce fundamental

aspects of the micromagnetic model. We will explain the Landau-Lifshitz-Gilbert equation and

the relevant effective interactions. The dynamical equation will be both derived from an action

through a variational principle and from the Hamiltonian formalism. As relevant solutions of the

dynamical equations, we will present an introduction on topological magnetic textures. Moreover,

we will present methods to solve the LLG equations for some configurations. This theory will be

fundamental for the understanding of the following chapters. In Chapter 3, we present the results
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of the first published paper. We predict a periodic injection of domain walls in a nanowire by all

electrical means. We study the stability of a certain magnetic configuration and derive a domain

wall production for currents above a certain critical current. In Chapter 4, we present the results of

the second published paper. We obtain a Hamiltonian formalism for the dynamical parameters that

describe the current and magnetic field driven dynamics in ferromagnetic and antiferromagnetic

nanowires. From this formalism, we obtain known results reported in the literature and predict

new mechanisms, such as an orientation switch in an antiferromagnetic domain wall. In Chapter

5, we present the results of the third published paper. We extend the formalism of domain walls in

nanowires to thin films. We describe how to obtain the dynamics of domain walls including local

degrees of freedom along the wire. These are, for example, vortices and curvatures. Moreover,

by considering closed domain walls, we describe the dynamics of smoothly deformed skyrmions

in the large radius limit. We obtain the excitation modes of skyrmions. In the Conclusion, 6, we

summarize all main results presented in the thesis.
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2. METHODS

2.1 Micromagnetic model - the Landau-Lifshitz-Gilbert equation

The dynamical equations for the micromagnetic model is given by the Landau-Lifshitz-Gilbert

(LLG) equation and it models a broad range of magnetic texture dynamics. It was initially pro-

posed by Landau and Lifshitz to describe the motion of a system of magnetic moments under the

influence of external magnetic fields. [25] The goal was to understand the ferromagnetic behavior

of materials. Under the presence of an external magnetic field, ferromagnets tend to align with the

applied field. For this reason, besides the energy conserving precessional movement of the mag-

netic moment, they introduced a phenomenological damping term to account for the alignment

with the external field. Since this term could not account for more general dynamics observed in

ferromagnets, Gilbert rederived the equations of motion for a system of magnetic moments using

a variational approach. [37] The equation obtained was called LLG equation.

The starting point of this phenomenological theory is to describe the system of magnetic mo-

ments of a ferromagnet as a continuous magnetization vector fieldM(r) with constant magnitude,

|M(r)| = Ms, (2.1)

whereMs is the magnetization saturation, it correspond to the magnetization density of the material

in the case where all magnetic moments are aligned, and r is the position of the local magnetization

in the ferromagnet. The magnetic momentum of an electron is related to its spin momentum by

M = −γS, (2.2)

where γ > 0 is the gyromagnetic constant. A property of the spin momentum, is that it satisfies

the SO(3) algebra

{Si, Sj} = εijkSk, (2.3)
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where Si are the i-component of the spin momentum, i = 1, 2, 3, and εijk is the skew-symmetric

tensor in 3d. From the equation of motion for the dynamics of a spin angular momentum in the

presence of a magnetic field H and a phenomenological damping term we obtain the intuitive1

LLG equation, as seen on Ref. [37],

dM

dt
= −γM ×H +

α

Ms

M × dM

dt
, (2.6)

where α is a dimensionless damping constant. The first term in Eq. 2.6 correspond to the pre-

cessional movement of the magnetization, while the second term, related to damping, aligns the

magnetization with the external field, see Fig. 2.1. An important remark is that, it is preferable

in many cases to study the dynamics of the magnetization orientation represented by the unitary

vectorm = M/Ms
2.

The magnetic field H felt by each magnetic moment may be due to external magnetic fields

applied to the material as well as due to the surrounding magnetic moments. In the most general

case, one can consider each magnetic moment in a "effective" magnetic energy potential H that

takes into account all the interactions,

H = − δH
δm

. (2.8)

1An important remark is that the LLG Eq. 2.6 can be obtained in a intuitive manner. From the fact that the
magnetization vectorM has constant magnitude, any variation ofM must be perpendicular toM ,

dM ⊥M . (2.4)

Therefore we can always decompose the vectorial components of dM/dt into a basis orthogonal doM ,

dM

dt
= ai∂iM +M × b, (2.5)

where ai and bi are functions of M and other parameters of the systems. Therefore, by dimensional analysis and
dynamical considerations, one can propose how each interaction contributes. This intuition will be important later to
incorporate electrical current driven dynamics in the LLG equation.

2The LLG equation for the unitary vector fieldm is

dm

dt
= − γ

Ms
m×H + αm× dm

dt
. (2.7)

This will be the representation mostly used in this thesis.
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Figure 2.1: Representation of the LLG equation dynamics. The blue and yellow vectors represent
the precessional force and the damping term respectively, they belong to a plane perpendicular to
the magnetization direction M represented in red.. The blue circle corresponds to the precession
movement caused by the external field. The green spiral is the final motion taking into account the
damping.

Experimental observations and theoretical predictions have identified the main contributions

for the effective HamiltonianH as

H = Hex +Hanys +HDMI +Hdm +HHext +Hme, (2.9)

where Hex is the exchange interaction, Hanys is the anysotropy energy, HDMI is due to the

Dzyaloshinskii-Moryia interaction (DMI), Hdm is the demagnetization energy, HHext is the po-

tential due to external magnetic fields and Hme is the magnetoelastic energy. Hdm and HHext are

due to actual magnetic fields while the other three potentials have quantum mechanical origins.

A brief description of the above interactions follows, for more details check references therein.

• The exchange energy, Hex, also called stiffness energy, is responsible in ferromagnetic sys-

tems for a constant equilibrium magnetization direction. This is one of the ferromagnetic
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Figure 2.2: Representation some interactions between magnetic moments in a ferromagnet. Image
a) correspond to the exchange interaction between neighboring magnetic moments as they tend to
align. Figure b) correspond to anisotropy interaction with an easy axis, the magnetic moment tend
to align with the easy axis given by n. Figure c) correspond to a Bloch DMI that induces a rotation
of the magnetization in a plane perpendicular to a certain direction.

material’s most fundamental properties. It emerges from the interaction between nearest

neighbors in the discrete lattice. It is proportional to the square of the gradient of the mag-

netization,

Hex =
J

2

∫
dV (∇m)2, (2.10)

where J is the exchange constant with dimension Energy/length. This constant depends on

the properties of the material and in general changes with temperature. [38] If J is positive-

valued, this interaction favor the alignment of all magnetic moments, this is called a ferro-

magnetic state, see Fig. 2.2 a). Negative values of J would favor a state with neighboring

moments being in anti-parallel directions, this is called an antiferromagnetic state and the

effective Hamiltonian is not applicable. The ground state for this interaction is invariant un-

der a global rotation. This potential can be derived as a Taylor expansion of the Heisenberg

interaction. [24]

• The anisotropy energy, Hanys, is a potential that depends on the relative direction between

the local magnetization and the structural axes of the material. The major contribution for

this effective potential is the spin-orbit interaction. The function that describes the anisotropy

energy is obtained by analyzing the symmetries of the material. In this thesis, we will only

consider anisotropies with time reversal symmetry. Thus, only quadratic terms in the mag-
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netization may appear,

Hanys =

∫
dV λΠ

(
(m · n)2

)
(2.11)

where n is the direction defined by the material and λ is an overall constant to define the

total strength of the anisotropy, i.e. Π ((m · n)2) = ±1 at the maximum/minimum energy

configurations. This potential is often expanded in a Taylor series. The signs of the expanded

terms designate the preferred directions of the magnetization, for example the existence of an

easy/hard axis, see Fig. 2.2 b). Due to symmetry it is also possible to obtain cubic anisotropy,

among others, which favors more than one axis. [24]

• The DMI interaction,HDMI , are chiral interactions. It favors a rotation of the magnetization

profile around a certain direction and with a defined chirality, see Fig. 2.2 c). It was first

introduced by I. E. Dzyaloshinskii and T. Moryia in Refs. [39, 40]. The microscopic origins

are spin-orbit scattering of electrons in inversion-asymmetric crystal fields. [41] Although

this inversion asymmetry is absent in bulk structures, it plays an important role in multi-

layered structures. The plane of rotation favored by DMI is given by structural aspects of

the heterostructures. In general DMI can be classified as bulk (or Bloch DMI),HDMI B, and

interfacial (or Néel DMI),HDMI N ,

HDMI B =

∫
dV (−D1(mz∂xmx −mx∂xmz) +D2(mz∂ymy −my∂ymz)) , (2.12a)

HDMI N =

∫
dV (D1(mz∂xmx −mx∂xmz) +D2(mz∂ymy −my∂ymz)) (2.12b)

whereD1 andD2 are constants that depend on the symmetries of the chiral interaction and its

strength. Different values for D1 and D2 are a recently discovered feature and are associated

to the so called anisotropic DMI. [42]

• The demagnetization potential, Hdm, is due to dipole-dipole interaction between the mag-

netic moments. It is a non-local interaction since it takes into account every single magnetic

moment in the material. The reduced volume and surface charge densities, ρ and σ, respec-
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tively, are given by

ρ = ∇ ·m, σ = m · n, (2.13)

where n is the normal direction at the surface. The electrostatic potential created due to

these charge densities is

Φelecr
′ =

Ms

4πµ0

∫
dV

ρ(r)

|r′ − r|
+

∫
dS

σ(r)

|r′ − r|
, (2.14)

where µ0 is the vacuum magnetic permeability. Moreover, in terms of the charge densities

and the electric potential, the total energy contribution from the dipole-dipole interaction is

Hdm =
Ms

2

(∫
dV ρΦelec +

∫
dS σΦelec

)
. (2.15)

This energy potential depends highly on the geometry of the magnetic structure and has

relevant boundary effects. In lower dimensional structures, such as thin-films and nanowires,

the above calculation can be simplified. In these cases, the demagnetization field can be seen

as an effective easy-axis anisotropy with strength, [24, 43]

λeffect =
M2

s

2µ0

. (2.16)

• The external field energy, HHext , also known as Zeeman energy, follow as the known inter-

action between the local magnetic momentsm and an external fieldHext

HHext = −Ms

∫
dVH ·m. (2.17)

• The magneto-elastic contribution,Hme, emerges from the elastic degrees of freedom of mag-

netic crystals. Magnetic bodies deform under the influence of magnetic fields and this pro-

duces an energy potential. Since these effects are really small in ferromagnets, we will not

take them into account in this thesis.
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With the effective magnetic field, Eq. 2.8, given by the energy potentials in Eq. 2.9 and the LLG

Eq. 2.7, it is possible to describe the magnetization dynamics in a broad range of materials. How-

ever, this rather non-local and non-linear complicated equation with infinite degrees of freedom

often requires numerical calculations to obtain solutions. A method to simplify the micromagnetic

equations is to reduce the number of degrees of freedom. The process of reducing the degrees of

freedom is better understood from the underlying Hamiltonian and Lagrangian formalism of the

LLG equation. For this reason, we will show how to obtain the LLG Eq. 2.7 from these formalisms.

2.1.1 Hamiltonian equation of motion

In the Hamiltonian formalism, the dynamics is described in terms of the phase space of gener-

alized coordinates q and conjugated momenta p satisfying a Poisson bracket

{qα, pβ} = δαβ, (2.18)

where α, β are generalized indexes. The Hamiltonian equations of motion for the coordinates q,p

in terms of the Poisson bracket are

dq

dt
= {q,H}+ γq, (2.19a)

dp

dt
= {p,H}+ γp, (2.19b)

whereH is the Hamiltonian for the system and γq,p are the damping terms.

For the dynamical system of magnetic momentsm, the Poisson bracket is given as in Eq. 2.3,

{mi(r),mj(r
′)} = − γ

Ms

εijkmk(r)δ3(r′ − r). (2.20)

The Hamiltonian is the one given in Eq. 2.9. The damping term, derived from a phenomenological

viscosity term, is given by the Gilbert damping term αm × dm/dt. The LLG Eq. 2.7, therefore,
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can be written as a Hamiltonian equation

dm

dt
= − γ

Ms

m× δH
δm

+ αm× dm

dt
↔ dm

dt
= {m,H}+ γm. (2.21)

2.1.2 Lagrangian Formalism and Berry phase

The Lagrangian formalism obtains the equations of motion from an action functional A[m],

A[m] ≡
∫
dtL[m], (2.22)

where L[m] is called a Lagrangian and is a functional of the magnetic configuration m. By using

the variational principle, the equations of motion correspond to the Euler-Lagrange equation,

d

dt

(
δL[m]

δdm/dt

)
− δL[m]

δm
= 0. (2.23)

A difficulty of to obtain the Lagrangian formalism for the magnetic moment field dynamics is

the unusual Poisson bracket in Eq. 2.20. From the constraint of the constant magnitude, it is

known that not all degrees of freedom of m are independent. Furthermore, from the structure

of the Poisson bracket in Eq. 2.20 one obtains that these degrees of freedom are dynamically

conjugated. The kinetic part of the Lagrangian L[m], i.e. dependent of dm/dt, is given by the

spin Berry phase. [44] In the reference frame of the magnetic moment, the adiabatic time evolution

is associated to a geometrical phase given by

γt = A · dm
dt

, (2.24)

whereA[m] is the gauge potential of a magnetic monopole with field strength

∑
jk

εijk
δAj
δmk

= −Ms

γ
mi. (2.25)
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This gauge potential is invariant under gauge transformations 3. Once the magnetization completes

a cycle, the area covered by the spin correspond to the Berry phase4

SB =

∫
dtA · dm

dt
, (2.28)

see Fig. 2.3.

Figure 2.3: Representation of the spin Berry phase. On the first sphere in the left, we show the
magnetic moment m in the presence of the field potential A. As it evolves in time, it acquires a
phase given by γt. In the last panel we see the cap representing the spin Berry phase.

The Action given by the Berry phase, Eq. 2.28, and the Hamiltonian, Eq. 2.9,

A = SB −
∫
dtH, (2.29)

3A common representation of the gauge potential,A[m], is

A =
Ms

γ

ez ×m
1− ez ·m

, (2.26)

as seen in Ref. [45].
4In the spherical representation, m = (sin θ cosφ, sin θ sinφ, cos θ), the potential in Eq. 2.26 becomes the usual

representation of the Berry phase

SB =
Ms

γ

∫
dt (cos θ − 1)

dφ

dt
. (2.27)
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provides the energy conserving dynamics, i.e. the precessional movement of the magnetic moment,

of the LLG Eq. 2.7.

To obtain the damping factor, one needs to include the presence of a dissipative force to the

equation of motion, i.e. a force proportional to the time evolution. This can be done by adding a

term to the Euler-Lagrange equation of motion 2.23,

d

dt

(
δL[m]

δdm/dt

)
− δL[m]

δm
+

δR
δdm/dt

= 0, (2.30)

where

R
[
dm

dt

]
=
αMs

2γ

∫
dV

(
dm

dt

)2

(2.31)

is the Rayleigh dissipation functional, see Ref. [37].

2.1.3 Torque due to currents

So far, in the LLG equation, we only included interaction between the local magnetic moments

in the lattice. It is possible, however, to add an interaction with itinerant spins in the lattice. They

correspond to free electrons moving in the ferromagnet. For a reading on the theory that models

ferromagnetic materials as composed by fixed local magnetizations and free electrons, we suggest

Ref. [46]. Electrons are endowed with an electric charge and a spin degree of freedom. The spin

of an electron can interact with the local magnetization through mostly two ways: spin transfer

torque (STT) and spin orbit torque (SOT). In this work we will focus on spin transfer torque. For

these interactions, we need to consider not the current of electric charge, but of the spin momentum

of the electron. STT is due to the change in the spin moment of the electron as it moves around a

magnetic configuration, see Fig. 2.4, while SOT is due to interaction between the spin momentum

and the local magnetic moment. The relation between the spin polarized current, vs, and the electric

current, j, is given by

vs =
jPγ~
2eMs

, (2.32)
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where P is the polarization rate, i.e. the rate of spins aligned in the electric current, and e is the

electric charge. [47]

Figure 2.4: Representation of a spin current, vs, flowing in a magnetic texture m. Notice that the
spin current aligns with the local magnetization.

For the adiabatic motion of the spin current, we can consider the spin transfer torque as the limit

for infinitely thin successive cross-sections of the Slonczewski spin transfer term, [48, 49, 50],

dm

dt
= −(vs ·∇)m. (2.33)

This interaction can be obtained by an associated Berry phase gain for the electron. As the spin of

the electron follows the magnetization orientation, the spin precesses and the electron acquires a

Berry phase. In the spherical representation for the spin of the electron,

SB e = −
∫
dt (cos θ − 1) (vs ·∇)φ. (2.34)

Another interpretation for the origin of the adiabatic STT is called the spin valve. As a spin currents
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passes through a region with constant magnetic moment orientation, the spins are "filtered". This

produces a torque in the magnetization. The accumulation of magnetic moment, however, can lead

to another torque. It is called non-adiabatic torque. It is perpendicular to the adiabatic torque. This

interaction that results from non-equilibrium states is associated to a damping term, [50],

dm

dt
= −βm× ((vs ·∇)m) , (2.35)

where β is a positive constant determined phenomenologically.5

2.1.4 Antiferromagnets

For a broader application of spintronics, we need to consider also antiferromagnets. Anti-

ferromagnets are associated to neighboring magnetic moments being anti-parallel, i.e. a negative

exchange constant. This means that the total magnetic moment is zero. In these materials there is

no stray field and they are insensitive to external magnetic fields. [51] These features present both

advantages and obstacles. On one hand, it allows for a more efficient spin dynamics. Textures are

more sensitive to electric currents. On the other hand, the magnetic invisibility makes it difficult

to detect and manipulate magnetic textures. Overall, the field of antiferromagnetic spintronics has

seen a lot of progress recently in experimental techniques. [52, 53, 54, 55, 56, 57]

From a macroscopic point of view, in order to allow for a good description of the sum of

the magnetic moment of neighboring atoms being zero, AFM materials are often described as a

system of interleaved magnetic sublattices. [58] A particular case are bipartite lattices, in which

one consider only two ferromagnetic sublattices described by mA(r) and mB(r), see Fig. 2.5.

In this model, one defines the Néel vector as l = mA −mB and the AFM magnetization vector

M = mA +mB. The AFM nature is realized by a strong exchange interaction between lattices

5From a intuitive point of view, the above dependences for the spin transfer torques are unique. Assuming that the
spin momentum of the electron couples with the variation of the magnetization, (vs ·∇)m, and a proper choice for a
basis for these interactions, see Eq. 2.5, the total torque due to electric current must be

dm

dt
∝ a(j ·∇)m+ bm× ((j ·∇)m) , (2.36)

where the constants a and b can be chosen to fit the theory from a phenomenological point of view.
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Figure 2.5: Schematics of an antiferromagnetic bipartite lattice. The black lines shows the next
neighbors, the red lines and blue lines shows the decomposition of the lattice into two sublattices,
mA andmB, respectively.

favoring a configuration for which M → 0. This decomposition into ferromagnetic sublattices

will be the basis of the description of topological textures in AFM structures in this work.

2.2 Topological magnetic textures

Topological magnetic textures are smooth magnetic field configurations on a surface that are

homotopically different from the ferromagnetic state. This usually occurs when the boundary con-

ditions for the surface allows for non-trivial homotopy groups. Due to the topological properties,

there are no smooth transformation that allows to obtain the ferromagnetic state from the topo-

logically non-trivial configuration state. This property grants them stability. For real materials,

in which one needs to take into account the discretization of the lattice, these states usually cor-

respond to local minima of the energy functional and are stable or metastable states. [21, 59, 60]

The non-trivial topological configurations arise mainly from interactions that allows for a twist of

the magnetization, see Fig. 2.6. Dipole-dipole interactions and DMI induce a continuous twisting

and generates a sequence of different magnetization orientations. Anisotropy interactions, which

induces a discrete symmetry for the ground states, also allows for the formation of topological
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structures with the coexistence of different domains in the same structure.

This thesis will focus on field configurations in one and two dimensional structures. In one

dimension one observe the existence of domain walls. In two dimensions a much richer range

of possibilities is possible. We will focus on extended domain walls and skyrmions. In the next

subsections we will present the basic ideas of these topological solutions.

Figure 2.6: Existence of non-trivial magnetic configurations due to (a) twisting interactions and
(b) anisotropy interaction

2.2.1 Domain walls

Domain walls (DW) correspond to the finite-sized transition between two inequivalent ferro-

magnetic states. Usually one observes 180◦ and 90◦ DWs, associated to easy-axis anisotropy or

shape anisotropies. [24] In this thesis we will only consider the first. The name "domain wall"

comes from the idea of domains. In magnetism, domain is a region where all magnetic moments

are aligned, i.e. in the ferromagnetic state. Exchange interaction, external magnetic fields and easy

axis anisotropies favors the formations of domains. The coexistence of different domains in the

same sample is associated to domain walls on the boundary between these domains.
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The topological properties of a DW may be understood from the idea of identifying opposite

ends of a thin ribbon. In the presence of a a unique ferromagnetic state, it is possible to identify

the structure with ends identified to a loop. In the presence of a DW, to identify opposite ends

of the ribbon, one requires a twist of the ribbon. This generates what is called a Möbius strip. A

Möbius strip is topologically inequivalent to a loop, see Fig. 2.7. From the energy point of view, the

stability of the DW state is due to being a local minima. In order to go from a DW state with two

domains to a single domain, it is necessary to flip a macroscopic number of magnetic moments.

Figure 2.7: Representation of topology properties of DWs. If one identify the ends of a strip in
the ferromagnetic state we obtain a loop, while if we do the same procedure for a DW, we obtain a
Möbius strip.

According to the plane of rotation of the magnetic moments in a DW, it can be named as a

Bloch DW, in which the plane of rotation is perpendicular to the transition, and as Néel DW, in

which the plane of rotation is along the transition, see Fig. 2.8.

The simplest solution for a DW is given by a model with only exchange interaction and easy-

axis anisotropy. This solution provides a natural length and energy scales for the magnetization

textures. Given a nanowire along the x-axis, with an easy axis along an êz orientation, we obtain
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Figure 2.8: Representation (a) Néel DW, the magnetization rotates within the DW plane; (b)Bloch
DW, the magnetization rotates in a plane perpendicular to the DW plane.

an effective Hamiltonian density,H, of the form

H =

∫
dx

(
J

2
(∂xm)2 − λm2

z

)
, (2.37)

where J is the positive exchange constant and λ is the positive anisotropy constant. A natural

rescaling parameter is x → x̃ = x/∆, where ∆ =
√
J/2λ. Notice that x̃ is dimensionless. The

Hamiltonian density from Eq. 2.38 becomes

H = EDW
∫
dx̃
(
(∂x̃m)2 −m2

z

)
, (2.38)

where EDW =
√
JK/2 is the DW energy density. [24] The states with minimum energy are the two

opposite ferromagnetic states, m = ±êz. The DW solution corresponds to state with minimum

energy satisfying the boundary conditions m = êz at one end and m = −êz at the other end. To

perform this calculation, it is helpful to consider them in the spherical representation,

m = (sin θ cosφ, sin θ sinφ, cos θ) . (2.39)
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In this representation, Eq. 2.38 becomes

H = EDW
∫
dx̃
(
(∂x̃θ)

2 + sin2 θ (∂x̃φ)2 − cos2 θ)
)
. (2.40)

The minimization of this effective energy is given by the following equations

∂x̃
(
sin2 θ∂x̃φ

)
= 0, (2.41a)

∂2
x̃θ − sin 2θ

(
(∂x̃φ)2 + 1

)
= 0 (2.41b)

The solution for both equations with the boundary conditions θ+∞ = −θ−∞, where θ−∞ = ±π/2,

are

φ = φ0, sin θ = tanh

(
x+ x0

∆

)
. (2.42)

where φ0 and x0 are constants. Notice that this solution is invariant under a global rotation of φ and

the profile is invariant under a translation along x, typical of a translationally invariant Hamiltonian.

For more general solutions of DWs, check Ref. [24]. The dynamics of DWs will be presented in

following sections.

2.2.2 Skyrmions

Magnetic skyrmions are topological objects in two dimensions. The mathematical definition

of a Skyrmion is: a smooth field configuration defined by a non-trivial surjective map from the

coordinate space, corresponding to the thin-film R2, to an order parameter space, a spherical

shell S2, with a non-trivial topology. It is everywhere non-singular, finite and with no winding

number at infinity. In other words, if one considers a unitary smooth vectorial field, m, on an

infinite plane with the orientation at infinity identified, it is possible to associate the vectorial field

to a covering of a sphere. The solid-angle, Ω, corresponding to this cover is given by

Ω =

∫
d2xm · (∂xm× ∂ym) . (2.43)
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It is possible to collapse into a single point, corresponding to the orientation at infinity, through a

smooth transformation any partial cover of the sphere. However, a complete cover of the sphere

can not collapse into a single point through smooth transformations, see Fig. 2.9. Therefore, the

covering of a sphere corresponds to a topological property. A skyrmion corresponds to each time

the field configuration cover the sphere. We associate to it the integer topological charge

Q =
1

4π

∫
d2xm · (∂xm× ∂ym) , (2.44)

which is also called winding number.

Figure 2.9: A sketch between the magnetic configurations on a plane and the projection to a sphere.
Notice that while configuration that cover partially the sphere can collapse to the ferromagnetic
state, skyrmions are not allowed to by smooth transformations.

The existence of magnetic skyrmions was shown by Bogdanov and collaborators in the late

1980’s and early 1990’s as mean-field ground states for models of anisotropic, non-centrosymmetric

magnetic materials with chiral spin-orbit interactions subjected to an applied magnetic field. [30,

31, 61] Their existence were previously mentioned by Pokrovsky in 1978. [62] Skyrmions were

experimentally observed by the first time as a skyrmion-tube lattice in the cubic helimagnet man-

ganese silicide (MnSi) in the presence of an applied external magnetic field. [32] Beyond skyrmion
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lattices, other skyrmion textures have been discussed in thin films such as magnetic bubble do-

mains. [63] Skyrmion configurations emerge from the interplay between three hierarchical energy

scales: ferromagnetic exchange coupling, crystalline field interactions and twisting interactions

(such as DMI and dipole-dipole interactions). The latest interaction defines the typical size of

skyrmions, ranging from 100nm − 1µm, in the case of long range dipole-dipole interactions, and

5− 100nm in the case of DMI. For a general discussion of skyrmions we recommend Ref. [15].

The magnetic profile of a skyrmion is highly dependent on its size. [24, 31, 64] In this thesis we

will focus on skyrmions with radius much larger than the DW width. In this case, the skyrmion can

be considered as closed DWs. [3, 59] In the same sense as in the DW, a skyrmion may classified

as a Bloch skyrmion or Néel skyrmion if the closed DW that defines the radius of the skyrmion is

a Bloch or Néel DW.

2.3 Methods to study magnetization dynamics

The dynamics of the magnetic moments in a ferromagnet is well described by the LLG Eq. 2.7.

This equation is highly non-linear, non-local and with infinite degrees of freedom. These condi-

tions impose a major challenge for full analytical solutions and often requires numerical calcula-

tions.

Numerical calculations are often performed by micromagnetic simulation softwares, e.g. Mu-

Max3, [65], and MicroMagnum, [66]. These softwares use the LLG equation to calculate con-

secutive configurations of a discretized magnetic sample. Given an initial configuration and the

desired perturbations, the simulations provide the corresponding time evolution of the configura-

tion. These simulations are extremely useful to provide the expected behavior in experiments for a

broad range of situations.

For the analytical calculations, a way to overcome the challenges imposed by the model is to

consider simplifications of the LLG equation. There are two important methods: linearization and

soft mode description. The linearization of the LLG equations allows for studying small perturba-

tions of an static state. This method is largely used to study the excitation modes of the ferromag-

netic state and other magnetic configurations. [4, 67, 68] It is also the basis for the analytical studies
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of spin waves. Spin waves are propagating perturbations of the local magnetic state. [69, 70] Their

great advantage is that they can carry information without moving charges, and therefore avoid

Joule heating. Their range of frequencies are in the GHz and low THz regime. The soft mode

description is another largely used method to solve the dynamical LLG equation is the soft mode

approach. Due to the stability of topological magnetic textures, their low energy excitation modes

are described by a reduced number of degrees of freedom. [35, 71] This allows for the description

of dynamics of topological textures via a finite number of time dependent parameters and their

equations of motion.

In this section we will briefly introduce two methods used to study analytically the magnetiza-

tion dynamics: 1) Linearization, and 2) Soft mode description.

2.3.1 Linearization and spin waves

This method is based on considering small perturbations, s, of well defined magnetic config-

urations, ms. The major feature of the method is that it produces a linear equation of motion for

the perturbation s. First, we consider a total magnetization field,mT , given by

mT = ms + s, (2.45)

where ms is a solution of the LLG equation under some specific conditions and s is a small

perturbation around the solution ms. The condition for the magnitude of s is that it is much

smaller than 1, |s| � 1 . The magnitude of mT and ms, both solutions to the LLG equation,

must satisfy, however, the unit magnitude constraint, |m| = 1. A simple calculation reveals that

s ⊥ms,

(ms + s) · (ms + s) = mT ·mT

|ms|2 + |s|2 + 2ms · s = 1

1 + 2ms · s ≈ 1

ms · s ≈ 0, (2.46)
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where we used that |s|2 � 1. For this reason, it is possible to decompose s in a basis on the plane

perpendicular to ms, see Fig. 2.10. Usually, given a magnetization ms, a natural basis on the

Figure 2.10: Representation of the magnetization ms and the plane that must contain the pertur-
bation ~s. s1,2 represent a basis on the plane.

plane orthogonal to the unitary vectorms is given by δms andm× δms. Forms in the spherical

coordinate representation,

ms = (sin θs cosφs, sin θs sinφs, cos θs) , (2.47)

we consider usually a basis using the variation δms → ∂θsms. The procedure above provides the

following basis to study the perturbations of a statems, [4, 5, 72],

ê1 ≡ms = (sin θs cosφs, sin θs sinφs, cos θs) (2.48a)

ê2 = (cos θs cosφs, cos θs sinφs,− sin θs) , (2.48b)

ê3 = (− sinφs, cosφs, 0) . (2.48c)

26



With this basis, the perturbation s can be decomposed as

s = s1ê2 + s2ê3. (2.49)

Furthermore, the total magnetization,mT , is given by

mT = ê1

√
(1− s2

1 − s2
2) + s1ê2 + s2ê3, (2.50)

which satisfies the unitary constraint, |mT | = 1. In some cases, it is also possible to consider a

complex plane given by

ê± =
1√
2

(ê2 ± iê3) . (2.51)

In this case, the total magnetization definition 2.50 becomes

mT = ê1

√
1− 2η η∗ + ηê+ + η∗ê−. (2.52)

Since ê1 satisfies the LLG Eq. 2.7,

dê1

dt
= − γ

Ms

ê1 ×H [ê1] + αê1 ×
dê1

dt
, (2.53)

and we can expand the dynamical equation for the total magnetization,mT , up to linear order in the

perturbations. Or, equivalently for the dynamics without damping terms, consider the Lagrangian

up to the quadratic order in the perturbations. [4, 5, 49, 73, 74, 75]

The method described above is often used to obtain the dispersion relations for spin waves and

the energy excitations of topological textures. [68, 72, 76] For the latter, however, the complicated

potentials usually requires sophisticate numerical calculations.

As a quick example of the linearization method, we will calculate the spin wave dispersion

of the ferromagnetic state in ferromagnetic thin-film with easy-axis anisotropy. In this case, the
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effective Hamiltonian 2.9 reduces to

H = τ

∫
d2x

(
J

2
(∇m)2 − λm2

z

)
. (2.54)

For D < 4EDW/π, the ground state is given by the ferromagnetic state m = ±êz. It is important

to remark that for D > 4EDW/π the ground state correspond to helical states that may contain

skyrmion lattices. [30, 32, 59] The equation of motion for a perturbation of the ferromagnetic

ground state in this case is given by

ds

dt
=

γ

Ms

êz ×
(
J∇2s− 2λs

)
. (2.55)

By considering that the perturbations assume can be decomposed in a basis of wave equations,

corresponding to spin waves, we obtain the following dispersion relation

ω =
γ

Ms

(
Jk2 + 2λ

)
(2.56)

where k is the wave vector. [5] Notice that there is an activation gap, 2λγ/Ms, due to the presence

of anisotropy.

2.3.2 Soft mode approach

The infinite degrees of the LLG Eq. 2.7 written in terms ofm(r, t) can be mapped to equations

in terms of an infinite set of dynamical parameters, ξ(t),

m(r, t) ≡m(r, {ξ(t)}). (2.57)

This method is called collective coordinate approach and it is valid for the most general case. [35]

A remark is that this description is model independent. From a macroscopic point of view, the

possibility of classify the dynamical parameters in different time scales allows for the study of

certain specific behaviors of the magnetization by analyzing solely the equations of motions for a
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finite set of parameters.

The time evolution of the magnetic field, m, in terms of the dynamical parameters, ξ(t) is

given by

ṁ(r, t) =
∑
ξi

ξ̇i∂ξim, (2.58)

where, from now on, for any function f(t), df/dt = ḟ . Performing this substitution into the

LLG Eq. 2.7, multiplying by
(
m× ∂ξim

)
, and integrating over the whole volume of the structure

provide a generalization of Thiele’s equations [35, 71, 77]

∑
j

Gij ξ̇j =
γ

Ms

∂H
∂ξi

+ α
∑
j

Dij ξ̇j (2.59)

where the matrix elements Gij and Dij are

Gij[ξ] =

∫
dVm ·

(
∂ξim× ∂ξjm

)
, (2.60a)

Dij[ξ] =

∫
dV
(
∂ξim · ∂ξjm

)
, (2.60b)

and are called the gyrotropic tensor and the viscosity tensor respectively. In the formalism of

collective coordinates we map the LLG equation with infinite degrees of freedom to an infinite set

of Eqs. 2.59 to for the dynamical parameters. It is important to remark that, as seen in Eq. 2.21,

the Thiele equations also correspond to a Hamiltonian equation,

ξ̇i = {ξi, H}q,p + γξi , (2.61)

where the Poisson brackets {·, ·}q,p are now defined for pairs of canonical variables (qi,pi) in

terms of the independent collective coordinates ξi(t) and their time derivatives ξ̇i(t). The definition

of (qi,pi) follows from the spin Berry phase defined in Eq. 2.28. Using the substitution 2.58 in

Eq. 2.28, one obtains

SB =
Ms

γ

∫
dtξ̇i

∑
ξi

∫
dV A · ∂ξim, (2.62)
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so that we can write qi → ξi and pi →
∫
dV A∂ξim. Since A is a function of m which depends

only on the set of dynamical parameters ξi, it is clear that pi can also be written in terms of the

dynamical parameters ξi. If we take the derivative of pi in terms of ξj we obtain

∂ξj

∫
dV A · ∂ξim =

∑
k

∫
dV

δA

δmk

∂ξjmk · ∂ξim+

∫
dV A · ∂ξi ξjm

=
∑
k,l

∫
dV

δAl
δmk

∂ξjmk · ∂ξiml +

∫
dV A · ∂ξi ξjm

=

∫
dVm ·

(
∂ξim× ∂ξjm

)
+

∫
dV A · ∂ξi ξjm

= Gij[ξ] +

∫
dV A · ∂ξi ξjm, (2.63)

where in the third line, we used the simmetry properties of the sum in i and j and the definition

of the gauge potential for the monopole, see Eq. 2.25. In the total action, the second term will

vanish when we consider the term that is proportional to ξiξ̇j . The derivation 2.63 implies that, it

is possible to write from the Berry phase, a Poisson bracket of the form

Ms

γ

∑
j

Gij{ξi, ξj} = 1. (2.64)

The damping term γi may be obtained in a similar way by using the substitution from Eq. 2.58 into

the Rayleigh dissipation term 2.31. From this procedure we obtain the viscosity tensor defined in

Eq. 2.60b.

This formalism is valid for any dynamics of the magnetization. In the specific case of topo-

logical textures, there is a clear hierarchy on the time scales of the evolution of the dynamical

parameters. The stability of these objects allows for the separation between hard modes, corre-

sponding to fast dynamics, and soft modes, corresponding to slow dynamics. [33, 35, 78] Another

particularity, is that the soft modes obey the relation 2.64 in pairs. [2, 33, 71] This means that Gij

do not depend explicitly on ξi and can be inverted. For soft modes, one obtains the following
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Poisson bracket for the soft modes

{ξi, ξj} =
γ

Ms

G−1
ij . (2.65)

Notice that this Poisson bracket is derived only from the kynectic term of the Lagrangian and does

not depend on the specific details of the Hamiltonian. With this Poisson bracket, it is possible to

obtain a powerful and rich model independent formalism. [2]
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3. DOMAIN WALL CREATION IN FERROMAGNETIC NANOWIRES BY ELECTRIC

MEANS

The manipulation of the position and orientation of DWs in ferromagnetic nanowires by electric

current is the basis of a proposed new generation of magnetic memory devices. [13, 28, 47, 79, 80]

A crucial element for the functionality of these devices is the creation of DWs. Currently, DWs are

usually created by applying strong local magnetic fields or perpendicular currents. [13, 81, 82, 83]

In the work that was published in PRB, we demonstrated that the creation solely by an applied

current along the wire is possible. [1] This presents advantages to respect to the current methods.

It allows, for example, for the existence of smaller devices. The theory can also be extended to

other configurations. It was shown that the same principle allows for a skyrmion-antiskyrmion pair

creation in ferromagnetic thin-films. [84] Within this mechanism, we considered a semi-infinite

nanowire with easy axis anisotropy along the wire and a fixed magnetization perpendicular to

the easy-axis at the end of the nano-wire, see Fig. 3.1. The fixed magnetization may be due to

a strong pinning center or an adjacent permanent ferromagnet. We predicted the existence of a

critical current, above which a current is capable of inducing the periodic creation of DWs in this

configuration. We were able to also calculate the periodicity of the creation.

Figure 3.1: Representation of the configuration for DW creation. mfix represent the fixed magne-
tization, vs correspond to the applied spin current, and ns is the direction of the easy-axis.

A major goal of this project was to show that this process is quite general. It does not depend

on details of the microscopic properties of the materials and obeys a quite universal law. From
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a minimal model, with only exchange and anisotropy interaction, and spin transfer torque, we

were able to derive the periodic DW injection. We did not require any "twisting" interactions such

as DMI or dipole-dipole interactions. We predicted, however, that if one includes some of these

interactions and damping terms it is possible to reduce significantly the critical current.

This chapter is organized as follows: First, we will obtain the existence of the critical current.

Given the configuration proposed above, see Fig. 3.1, we shown the existence of different critical

currents for the ferromagnetic state and the fixed magnetization. Second, we consider the dynamics

of the magnetization for applied currents in the limit just above the critical current. We show that

this dynamics can be described in terms of a single parameter, corresponding to the position of

a fictitious DW. The dynamics of this parameters reveals a finite period inversely proportional to

the square root of the increment of current above the critical current. Finally, we discuss the main

results and provide an experimental estimative for the results found in this work.

3.1 Critical current

In this section we derive the existence of critical currents below which the ferromagnetic state

and the fixed magnetization configurations are stable. We consider the dynamics given by LLG

Eq. 2.7 and the STT contribution for a spin current along the wire, Eq. 2.33,

ṁ = − γ

Ms

m× δH
δm
− vs∂xm− βvsm× ∂xm+ αm× ṁ. (3.1)

For the effective Hamiltonian H, we consider a minimalist model with only exchange energy and

easy-axis anisotropy,

H = a2

∫
dx

(
J

2
(∂xm)2 − λm2

x

)
, (3.2)

where a2 is the area of the cross section of the nanowire. If one substitute the Hamiltonian 3.2 into

Eq. 3.1, we obtain

ṁ = −γa
2

Ms

m×
(
−J∂2

xm− 2λêxmx

)
− vs∂xm+ αm× ṁ. (3.3)
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From this equation1, one can calculate the critical current for both the ferromagnetic state and

the fixed magnetization state. We start by considering the ferromagnetic state. We perform this

calculation following the linearization approach from Sec. 2.3.1. The ferromagnetic state mf =

±êx satisfies Eq. 3.3, with ṁ = 0. If we consider perturbations of the ferromagnetic states as spin

waves,m = êx + s with s = s0e
i(wt−kx) and no damping term, we obtain a dispersion relation of

the form

ω ∝ vs ±

√
8

(
γa2

Ms

)2

Jλ− v2
s . (3.4)

This means that, for currents vs < (γa2/Ms)
√

8Jλ, the spin waves do not change amplitude,

and therefore, will lose energy with the damping process. For spin currents bigger than the value

above, the spin waves can increase in amplitude. In this case, the ferromagnetic state is no longer

stable under perturbations. Therefore the critical current for the ferromagnetic state is given by

vCs = (γa2/Ms)
√

8Jλ.

The conditions for the stability of the fixed magnetization state can be obtained by analyzing the

conserved quantities with ṁ = 0. To obtain the first quantity, we consider two arguments. First,

from the physical point of view, in the presence of damping, α > 0, the effective Hamiltonian 3.2

tends to be minimal. This means that we can consider 3.2 as an action that must be minimized.

Since it is explicitly independent of x, this implies the conservation of a "Hamiltonian" associated

to the "action" 3.2. Second, from a mathematical point of view, if we multiply the Eq. 3.3 by

(m× ∂xm), we obtain the equation

∂x

(
J

2
(∂xm)2 + λm2

x

)
= 0. (3.5)

It is important to notice that, in the presence of non-adiabatic STT, Eq. 2.35, we need to add to the

right hand site a term proportional to βvs (∂xm)2.

For the second conserved quantity, we can consider the conservation of magnetic momentum.

1In this chapter, we will neglect the contribution from the non-adiabatic STT, proportional to the β damping term.
Whenever necessary, we will mention the modifications due to this term.
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This can be obtained from the x component of Eq. 3.3,

∂x

(
γa2

Ms

J êx · (m× ∂xm) + vsmx

)
= 0. (3.6)

Tn the presence of non-adiabatic STT, Eq. 2.35, the above equation is proportional to βvsêx ·

(m× ∂xm). From the conservation relations 3.5 and 3.6, we can compare their values at in-

finity, x → ∞, and at the fixed magnetization, x = 0, to obtain a critical current given by

vcs = (γa2/Ms)
√

2Jλ, which is half of the critical current for the ferromagnetic state. The idea

applied here for nanowires can be extended to thin-films. In this case, a region of fixed magnetiza-

tion is also responsible for the existence of a critical current above which there is a production of

pairs of skyrmions and anti-skyrmions. [84]

For chiral nanowires, we need to introduce DMI. If one introduces Bloch DMI, given by

Eq. 2.12a, in a nanowire, we modify the effective Hamiltonian 3.2 and consequently Eq. 3.6,

∂x

(
γa2

Ms

J êx · (m× ∂xm) +
γa2

Ms

Dm2
x + vsmx

)
= 0. (3.7)

As expected, DMI introduces chirality to the system and increases the angular moment from the

DW. Following the previous approach, one find the following relation for the critical current

∣∣∣γa2

Ms

D + vs

∣∣∣ < vcs. (3.8)

This relation shows that, with the twisting term due to DMI, different direction of currents have

different critical currents.

The above calculations provide a range of spin currents, vCs > vs > vcs, for which the magneti-

zation dynamics close to the fixed magnetization is not static but the ferromagnetic state is stable.

This motivates to study the dynamics in this range of currents. In Refs. [1, 84], it was proven that

for currents right above vs c one has the periodic production of topological textures. This is the

subject of next chapter.
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3.2 DW injection in a nanowire

For currents just above the critical current, the stability of the system allows us to assume that

the dynamical behavior won’t produce configurations that diverges significantly from the static

solutions below the critical current. For this reason, it is interesting to analyze the properties of the

static solutions.

From the condition 2.5, one can writem in terms of the functions Λ(x) and Γ(x) as

∂xm = (êx ×m)Γ(x) + [m× (êx ×m)]Λ(x), (3.9)

with ∂xmx = Λ(x)(1−m2
x). In this basis, Eqs. 3.5 and 3.6 read:

J

2
(1−m2

x)(Λ
2 + Γ2) = −λ(1−m2

x), (3.10)

Γ(1−m2
x) =

(
Ms/(γa

2J)
)
vs(1−mx). (3.11)

From the system of equations above, eliminating Γ and using ∂xmx = Λ(1−m2
x) one obtains the

following equation

(∂xmx)
2 −

(
Ms

γa2J

)2 (
(vcs)

2(1−m2
x)

2 − v2
s(1−mx)

2
)

= 0, (3.12)

which we can solve by separating variables:

x =
γa2J

Ms

∫ mx

0

dmx

(
(vcs)

2(1−m2
x)

2 − v2
s(1−mx)

2
)−1/2

. (3.13)

The above integral provides the full DW profile. The boundaries are given by the configuration at

the fixed magnetization, where mx = 0 to the magnetization at any other point of the semi-infinite

wire. To understand the solution above, it is helpful to visualize the denominator from Eq. 3.13,

see Figs. 3.2 and 3.3.

It is relevant to consider an analogy between the magnetization configuration, mx, along the
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Figure 3.2: Plot of the functionD(mx, vs/v
c
s) = −(vcs)

2(1−m2
x)

2+v2
s(1−mx)

2 of the denominator
in terms of the magnetization and the ratio between the current and the critical current. On the
horizontal plane, we see the color of the corresponding magnetization, going from blue, in the
ferromagnetic state, to red, perpendicular to the ferromagnetic state. Since −D(mx, vs/v

c
s) is in a

square root, only the negative values provide real solutions to the equation. For vs/vcs > 1 there
are no solutions that satisfy mx = 0 as we can observe from the plot.

wire,x, as a particle, given by position x̃(t), with mass 2 (γa2J/Ms)
2 moving in time in a potential

well given by−D(mx, vs/v
c
s)− → −P (x̃, vs/v

c
s). [1] At infinity, the magnetic moment aligns with

the uniaxial anisotropy direction, mx(x → ∞) = 1, which translates into x̃(t → ∞) = 1. The

magnetization profile, thus, corresponds to a particle that at time zero is at the origin, x̃(t = 0) = 0,

and that approaches unity, x̃(t → ∞) = 1. If one extends the motion to t < 0, meaning x < 0,

we observe an interesting behavior. In this case, since the corresponding energy given by 3.12 is

conserved and equal to zero, the full particle motion correspond to an oscillatory motion starting

at t = −∞ at x̃ = 1 to a point of return x̃0, defined by P (x̃0, vs/v
c
s) = 0, at some time t0. At the

returning point it switches the direction of motion and travels back to x̃ = 1. As one can see from

Fig. 3.2, the point of return x̃0 has negative values for vs < vcs so that the particle crosses x̃ = 0,
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Figure 3.3: Image concerning the definition of x0 and the magnetization profile. (a) The black
line represents the potential P (x̃), which in this thesis stand for D(mx, vs/v

c
s) and x̃ = Mx, for

vs < vcs. The allowed interval of the magnetization direction is given by the blue interval. The
dotted line shows the same function for vs > vcs. (b) Sketch of the magnetization profile, Mx(x).
Reprinted from Ref. [1] with permission.

meaning mx = 0, twice. While the second time the particle crosses x̃ = 0, correspond to the fixed

magnetization, the first time that x̃ = 0 correspond to a fictitious DW on the x < 0 side of the wire.

The full profile of the magnetization can be characterized, therefore, in terms of the parameter

x0, position of the the magnetization mx that satisfies D(mx, vs/v
c
s) = 0. To find the dependence

of x0 in terms of the current, we consider that (vs − vcs)/vcs � 1 and mx 0 . 0. This allows for the

approximation

D(mx, vs/v
c
s) ≈ vcs(vs − vcs)− (vcs)

2mx. (3.14)

From this, one finds that the magnetization mx that is root of D(mx, vs/v
c
s) is mx 0 = (vs−vcs)/vcs.

The position of this magnetization can be found from Eq. 3.13

x0 =
γa2J

Ms

∫ mx 0

0

dmx

(
vcs(vs − vcs)− (vcs)

2mx

)−1/2
. (3.15)

From which we find

x0 = −γa
2J
√

2

Msvcs

√
vcs − vs
vcs

. (3.16)

38



From the interpretation that x0 corresponds to a parameter that defines the profile of the magneti-

zation configuration for the full wire and allows for, in the case x0 < 0 the existence of a fictitious

second DW. One can extrapolate the result to the dynamical case for currents above the critical

current. In this case, we incorporate the dynamics of the magnetization profile into the parameter

x0,

m(x, t) = m0 (x− x0(t)) + s, (3.17)

wherem0 (x− x0) is the static solution with effective spin current vsx0 that solves Eq. 3.16 and s

is small and takes into account possible deviations from the proposed solution. Plugging the above

ansatz into the LLG Eq. 3.3, one obtains

− ṡ+ s× δH
δm0

+m0 ×
δ2H
δm2

0

s− vs∂xs =
(
vs − vsx0 − ẋ0

)
∂xm0. (3.18)

A solution of the above equation corresponds to s ≡ 0, which indicates that our initial assumption

is valid if the dynamical parameter obeys the following equation:

ẋ0 = vs − vsx0 = vs − vcs +
M2

s (vcs)
3

2γ2a4J2
x2

0, (3.19)

where we obtained vsx0 from Eq. 3.16. Therefore

t =

∫
dx0

(
vs − vcs +

M2
s (vcs)

3

2γ2a4J2
x2

0

)−1

. (3.20)

Notice that the main contribution comes from x2
0 ∼ 2γ2a4J2(vs − vcs)/[M2

s (vcs)
3] → 0. Outside

of this range the integral converges quickly. From this consideration it is justified to calculate the

total period T by integrating to infinity, even though the equation above is only valid for small x0.
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The corrections are exponentially small as (vs − vcs)→ 0. Finally. we obtain:

T =

∫ ∞
−∞

dx0

(
vs − vcs +

M2
s (vcs)

3

2γ2a4J2
x2

0

)−1

(3.21)

=

√
2πγa2J

Ms(vcs)
2

√
vcs

vs − vcs
. (3.22)

From which we deduce that, for currents just above the critical current, there is a periodic injection

of DWs in the nanowire with frequency f = T−1 ∼ √vs − vcs.

3.3 Results

This work was done in collaboration with M. Sitte, K. Everschor-Sitte, T. Vallet, J. Sinova and

my advisor A. Abanov, and published on Ref. [1]. The main result was the proof of concept of

the injection of DWs in a nanowire by all electrical means given a well defined configuration. Our

calculations were based on a minimal model and therefore, is quite general. It does not require any

"twisting" term or an assisting magnetic field. The introduction of DMI interactions, that favors

the DW formation, reduces the critical current but does not change the production mechanism. We

showed the existence of a critical current above which one obtains the periodic creation of DWs.

The period is given by a universal exponent, T ∼ (vs − vcs)−1/2.

For a typical estimative of real values, we consider for example a Permalloy with exchange

parameter J = 1.6 · 106J/m, and anisotropy strength λ = 104J/m3. With these parameters we

obtained critical current density of about 4 · 108A/cm2.
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4. DOMAIN WALL MOTION IN ANTIFERROMAGNETIC AND FERROMAGNETIC

NANOWIRES

The low energy dynamics of DWs in ferromagnets can be described in terms of just a pair of

soft modes. [33, 35, 85] This description can be extended to certain AFM materials, in which we

need two pairs of soft modes. [2] In this work, we proceeded with the analysis from Sec. 2.3.2 and

obtained a Hamiltonian formalism for the electrical current and magnetic field driven dynamics

of DWs in both FM and AFM case. The effective description is based mostly on the analysis of

symmetries and natural scales.

A strength of the Hamiltonian formalism is that it is independent of microscopic details of the

material. The complicated nature of the interactions between all the magnetic moments can be

simplified to a model for only two dynamical parameters, for which one obtains the interactions

based on stability and symmetries properties. This procedure is very powerful and rich as one

can study many known aspects of FM and AFM DW dynamics and also include in a natural way

various interactions. The formalism provides a well described phase space for the conjugated soft

modes within which it is possible to analyze the dynamics for interaction between DWs as well as

thermodynamic effects. The concrete results obtained from this work so far were the current and

magnetic field driven motion of FM and AFM DWs and a novel orientation switching mechanism

by current for AFM DWs. This mechanism can be tested with the recently discovered Néel spin

orbit torques and has potential applications to AFM DW based memory devices. We also show

that, in the considered structure for the AFM case, it is possible to include within the formalism

other effects such as different anisotropies and nanowire inhomogeneity.

This chapter is organized as follows: First, we derive the Hamiltonian formalism for FM DW

from the known soft modes, including the dissipation terms. We obtain an effective Hamiltonian

in terms of the soft modes and demonstrate how it can be derived solely by symmetry arguments.

Second, we extend the formalism to the AFM DW case. We solve certain general cases and propose

future experiments.
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4.1 Domain wall dynamics in ferromagnetic nanowires

A FM DW, as discussed in Sec. 2.2.1, is a stable topological soliton with a natural length scale,

given by the DW width ∆, and energy scale, given by the DW energy density EDW . In a nanowire

its profile is invariant under a translation of its center, X , and a global rotation around the direction

of the ground state. This means that a FM DW is well approximated by a rigid object with particle-

like behavior. [86] This approximation is also valid for the current or magnetic field driven low

energy excitation motion of the DW, since its profile can not change significantly. The excitations

modes related to a change in shape is gapped due to the presence of anisotropy. A similar gap was

derived for the ferromagnetic state in Sec. 2.3.1. The dynamics is described then in terms of the

two soft modes X , position of the center of the DW, and φ, angle of the magnetization at the center

of the DW in the plane normal to the ferromagnetic state, see Fig. 4.1.

Figure 4.1: Representation of the soft modes in the case of a) ferromagnetic state perpendicular to
the wire, and b) ferromagnetic state along the wire, this DW is also called head-to-head DW.

For a rigid DW, a variation of the magnetization m is given in terms of changes variations of

the soft modes,

dmi(x) = −dX∂mi(x) + dφεijknjmk(x), (4.1)

where n̂ is unitary and in the direction of the ferromagnetic state. Substituting this relation into

42



the definition 2.60a, one obtains that the Poisson bracket in Eq. 2.65 takes the form

{X,φ} = ±1, (4.2)

where the + and − signs depend on the directions at infinity.1 [2] This means that, as expected,

the soft modes x and φ are canonically conjugated Hamiltonian variables independent of the mi-

croscopic form of the Hamiltonian.

In order to find the total energy, E, for the system, first we notice that the microscopic Hamil-

tonianH does not depend explicitly in time. This implies that

Ė =

∫
dx

δH
δmi(x)

ṁi. (4.3)

If one substitutes the LLG Eq. 3.1 for the nanowire, we notice that the only non-dissipative term is

due to the spin current,

− vs
∫

δH
δmi(x)

∂smidx = vs∂XE, (4.4)

where X is the soft mode corresponding to the DW position. The remaining terms are first order

in dissipation α. Since, the characteristic values of the damping term are of the order α ∼ 10−3 −

10−5, we are only interested in terms that are linear in α. From the equation of motion we use that

εijkmjδH/δmk = ṁi + J∂mi and obtain

Ė − vs∂XE = −
∫

(ṁi + vs∂mi)(αṁi + βvs∂mi)dx. (4.5)

For the dissipationless dynamics, α = β = 0, we obtain the above equation is reduced to

Ė = vs∂XE. Therefore, the Hamiltonian equations of motion provide the following effective

Hamiltonian, H(X,φ), for the system with applied current,

Ė = {E,H} = vs∂XE. (4.6)

1In this chapter, we set the lattice constant to 1 and chose proper dimensions such that γ/MS = 1.
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The current pumps energy to the system. In the absence of current, the effective Hamiltonian must

reduce to the total conserved energy E(X,φ). From Eq. 4.2 and 4.6 we derive that

H(X,φ) = E(X,φ)± vsφ. (4.7)

In the Hamiltonian formalism, the above effective Hamiltonian is the only requirement to obtain

the effective equations of motion for the FM DW.

The Hamiltonian Eqs. 2.61 for the soft modes X and φ take the form

Ẋ = {X,H}+ γX , φ̇ = {φ,H}+ γφ, (4.8)

where the Poisson bracket is given by Eq. 4.2. To calculate the dissipative terms, we expand Eq. 4.5

for the DW motion to the linear order in vs

Ė − vs∂XE =− αẊ2∆−1
X + 2αφ̇ẊΓ− αφ̇2∆φ

+ (α + β)vsẊ∆−1
X − (α + β)φ̇vsΓ, (4.9)

where the constants are defined as

∆−1
X =

∫
(∂ ~m)2dx, ∆φ =

∫
(1−m2

x)dx, and Γ =

∫
[~e× ~m]∂ ~mdx.

These parameters depend only on the DW shape. In the absence of chiral interactions, for example,

Γ = 0. [86] From comparing Eq. 4.9 to the expression calculated in 4.8, one obtain the following

dissipation terms

γφ =∓ αẊ∆−1
X ± βJ∆−1

X , (4.10)

γX =± αφ̇∆φ ∓ 2αẊΓ± (α + β)JΓ. (4.11)

These dissipation terms, the Poisson bracket 4.2 and the Hamiltonian Eqs. 4.8 defines completely
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the current driven dynamics of FM DWs up to linear terms in α and β. From this powerful for-

malism, it is possible to reproduce with ease several aspects of FM DW dynamics described in the

literature. [35, 86]

4.2 Domain wall motion in an antiferromagnetic nanowires

We extend the Hamiltonian formalism of FM DW dynamics to include AFM DWs. Diverse

studies, both theoretical and experimental, of the AFM dynamics have received great attention due

to new experimental methods to detect, create and manipulate magnetic configurations in these

systems. [57, 56, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96] In Ref. [2] we addressed an important

problem of obtaining an efficient description of the current and magnetic field driven dynamics of

AFM DWs.

Figure 4.2: A sketch of antiferromagnetic domain wall as a composite of two FM DW in the
sublattices. Each FM DW is described by its own set of soft modes. One FM DW is head-to-head
(A) and the other is tail-to-tail (B).

For the description of a typical quasi-one-dimensional AFM nanowire, we considered the sep-

aration into two sub lattices according to Sec. 2.1.4. We assume that each electron lives on its own

sublattice and interacts only with the magnetization of the same sublattice. In the presence of AFM
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DW, the separation between different sublattices is not perfect. We assume, however, that the DW

width is much larger than the electronic coherence length. Thus, the corrections to this picture are

expected to be small. Even though, the potential difference in each sublattice may be the same, it is

not necessary that the current is the same, due to possible different resistivities in each sublattice.

To simplify the picture, we will assume that given the scales considered, the currents along both

sublattices is the same.

To satisfy the AFM DW picture, we need to consider that, each ferromagnetic sublattice con-

tains a FM DW. They are, however, at opposite orientations. For example, if one is head-to-head,

the other is tail-to-tail, see Fig. 4.2. In this picture, the dynamics for the DWs on each sublattice

is described by the pair of soft modes (XA, φA) and (XB, φB). The center of the AFM DW is

given by X = 1
2
(XA +XB), while XA −XB gives the total magnetization of the AFM DW along

the nanowire. Analogously, φB − φA is the angle between the directions of the local magnetic

moments at the center of the DWs. To simplify the model considered, we also assume that the

DW parameters ∆φ, ∆X , α, and β are the same for the two DWs, and that the DWs are planar, i.e.

Γ = 0.

From the above assumptions, we can write an effective Hamiltonian for the whole system given

by H(XA, φA, XB, φB). Given the Hamiltonian equations 4.8 and the Poisson bracket 4.2 for each

sublattice, with the remark that one is tail-to-tail and the other one head-to-head, we obtain the

following equations of motion:

ẊA,B = {XA,B, H} ∓ αφ̇A,B∆φ, (4.12a)

φ̇A,B = {φA,B, H} ±
α

∆X

ẊA,B ∓
β

∆X

vsA,B, (4.12b)

where upper and lower signs are for sublattices A and B, respectively. From general assumptions,

we can deduce the effective Hamiltonian H . Due to the opposite direction of the magnetizations

in the sublattices, we obtain that due to the interaction with spin current and an external magnetic
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field h, we obtain

H(XA, φA, XB, φB) = E(XA, φA, XB, φB)− hXA + hXB − vsAφA + vsBφB, (4.13)

where E(XA, φA, XB, φB) contains the coupling between the DWs and the individual energy for

each sublattice. In a translationally invariant nanowire, the coupling must be independent of

XA + XB. The picture changes if there are impurities or geometrical constraints. In the case

of a hourglass nanowire, for example, we can assume an expansion of the potential and add a term

Ω(X2
A + X2

B)/2 to the energy E, where Ω is a constant inversely proportional to the nanowire

curvature. [80]

From the antiferromagnetic exchange tendency to minimize the absolute value of the magne-

tization vector M = mA + mB, we can deduce the coupling between the DWs. The minimum

energy of the coupling is reached at XA − XB = 0 and φA − φB = π. Expanding for small

|XA −XB| and the first harmonic of the angular dependence, we find

E(XA, φA, XB, φB) =
∆1

2
(XA −XB)2 + ∆2 cos(φA − φB), (4.14)

where the constants ∆1 and ∆2 are of the order of JAF∆−2
X and JAF , respectively, and JAF is the

antiferromagnetic exchange constant. To introduce easy-axis anisotropy, it is required to add the

corresponding effective term −λ (m2
Az +m2

B z) to the energy.

With the effective Hamiltonian given by Eqs. 4.13 and 4.14, the Hamiltonian Eqs. 4.12 become

ẊA,B = ∆2 sin(φA − φB)∓ αφ̇A,B∆φ + vs, (4.15a)

φ̇A,B = ∆1(XA −XB)− h± α

∆X

ẊA,B ∓
β

∆X

vs, (4.15b)

where we assumed that the easy-axis magnetic anisotropy and the applied magnetic field h are

along the wire. The formalism, however, can incorporate different directions, given a suitable
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change of notations. The equations of motion 4.15a and 4.15b are one of the main results of this

chapter. They provide a comprehensive description of the current and field driven dynamics of

AFM DW.

For a better understanding of the influence of each interaction, we will first analyze the cur-

rent and magnetic field driven dynamics independently. For the current induced motion of AFM

configurations, many aspects are well known. [97, 98, 99] These results may be obtained naturally

from the described Hamiltonian formalism. Setting h = 0 and from a proper combination of the

Eqs. 4.15a and 4.15b we obtain

ẊA − ẊB = −α(φ̇A + φ̇B)∆φ, (4.16)

φ̇A + φ̇A = 2∆1(XA −XB) +
α

∆X

(ẊA − ẊB). (4.17)

One can solve this system up to first order in dissipation to obtain

ẊA − ẊB = −2α∆φ∆1(XA −XB). (4.18)

Which corresponds to an exponentially decaying solution forXA−XB and indicates that it evolves

to the steady state XA = XB. Also from Eqs. 4.15a and 4.15b, one obtains

φ̇A − φ̇B =
2α

∆X

Ẋ − 2β

∆X

vs, (4.19a)

Ẋ = ∆2 sin(φA − φB)− α∆φ
φ̇A − φ̇B

2
+ vs, (4.19b)

where X = (XA + XB)/2 corresponds to the position of the AFM DW. Similarly to the previous

system, by solving up to first order in dissipation, we obtain

Ẋ = ∆2 sin(φA − φB) + vs. (4.20)

The above set of equations gives the that the dynamics of AFM DW under the influence of an
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electrical current moves with constant velocity v and relative angle φA − φB given by

v =
β

α
vs, sin(φA − φB) = − vs

∆2

(1− β/α). (4.21)

There is no relative rotation between the DWs in the sublattices, i.e. φ̇A − φ̇B = 0. In this trans-

lational motion, there is a total magnetic moment perpendicular to the nanowire for the AFM

DW given by ∆Xvs/v
c
s, where vcs = α∆2

|α−β| is a critical current up to which the above solution

solution exists. This result was first reported for the case of FM DWs and motivated the mech-

anism of DW creation in FM nanowires. [1, 86, 100] This current is generally large, since ∆2 is

of the order of the exchange constant. Physically this critical current corresponds to the situation

when the magnetizations on the two sublattices rotate with respect to each other and eventually

point in the same direction due to damping. For currents above the critical current, the total mag-

netic moment perpendicular to the nanowire oscillates in time with period T = ∆X

2α∆2

2π√
(vs/vcs)

2−1
.

The velocity of the AFM DW will not be constant as well, with an average velocity given by

v̄ = βvs
α
− vs∆2

vcs

(
1−

√
(vs/vcs)

2 − 1
)

.

The dynamics of the AFM DW changes for different angles of the applied magnetic field. First

we consider a magnetic field perpendicular to the nanowire. In this case, the magnetic field does

not couple with the angles of the DWs according to the Zeeman interaction, −h(sinφA + sinφB),

where h is the product between the magnetic field amplitude and the magnetic moment of the DW.

Such term does not change the equations of motion for φ̇A and φ̇B, see Eqs. 4.15a and 4.15b. It

modifies the equations for ẊA,B by a term ±h cosφA,B. From Eqs. 4.12, we obtain

ẊA,B = ∆2 sin(φA − φB)∓ αφ̇A,B∆φ + vs ± h cosφA,B, (4.22a)

φ̇A,B = ∆1(XA −XB)± α

∆X

ẊA,B ∓
β

∆X

vs. (4.22b)

A simple solution for the steady state at small current, vs, and magnetic field, h, is given by

XA = XB = X and Ẋ = β
α
vs. This translational motion is equivalent to the one obtained by pure

49



current driven motion. For the angles, however, we obtain φA = π + φB and

cosφA = −vs
h

(1− β/α). (4.23)

From Eqs. 4.22a and 4.22b, we observe the possibility of an angle switching mechanism by switch-

ing the the current with constant applied magnetic field. Due to different observable properties of

different orientations in a AFM DW, this mechanism is relevant for possible applications to mem-

ory devices and deserves further analysis.

It is important to notice that a weak magnetic field applied parallel to the nanowire induces a

precession of the AFM DW. This precession is extremely slow with period inversely proportional

to the small applied magnetic field. We search, therefore, for a fast mechanism that combines the

use of a time dependent current along the nanowire and an applied perpendicular magnetic field.

Given an initial configuration for which XA = XB = X and φA = π − φB = φ, it is possible

to find several solutions for a time dependent current that associated to the equations of motion

(4.22a) and (4.22b) produces a flip of the orientation of the domain wall, φA,B → φB,A. A solution

of this current may be found analytically, up to linear terms in dispersion, for a defined φ evolution

is given by

vs(t) =
1

α− β

(
∆X φ̇+ α cosφ (2∆2 sinφ− h)

)
, (4.24)

where φ̇ depends on the desired movement of the DW angle. Many possible paths that allows the

switch may be conceived. For the path that minimizes the Ohmic losses and with finite time of

switching given by T , we find that the evolution of φ must follows the following equation

t =
∆X

γ

∫ φ(t)

φ0

dφ√
ET
γ2

+ cos2 φ (sinφ− sinφ0)2
, (4.25)

where γ = 2∆2α and ET = ∆2
X φ̇

2
0 is the constant related to the time of switching T by

T =
∆X

γ

∫ π−φ0

φ0

dφ√
ET
γ2

+ cos2 φ (sinφ− sinφ0)2
. (4.26)
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and sinφ0 = h
2∆2

corresponds to the initial state. The time of switching,T , is about h2 times faster

than the precession by a magnetic field parallel to the wire. For the measurement of the switch

one can consider the works in Refs. [101]. Moreover, the switching process is associated to a time

dependent total magnetic moment, see Fig. 4.3 which can also be measured experimentally and

allows for an indirect measure of the process.

Figure 4.3: A sketch of the switching mechanism. We consider the two A, B sublattices with same
applied time dependent current vs(t). As the DWs flip directions, there is the appearance of a total
magnetizationM temp in the same direction as the applied magnetic field.

In the present formulation the direction of the magnetic field in the plane perpendicular to

the nanowire is arbitrary. This is due to the rotation symmetry of the easy axis anisotropy. This

mechanism, however, can be optimized in the presence of transverse anisotropy. In this case,

the current required for the switching is influenced both by the magnitude of the current and the

magnetic field, as well as its orientation compared to the transverse anisotropy.
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5. EFFECTIVE STRING DESCRIPTION OF A DOMAIN WALL IN A FERROMAGNETIC

THIN FILM

Experiments in thin films, see Refs. [27, 102, 103, 104, 105], reveal rich configurations for DWs

including curved DWs and vortex DWs, [106], which can not be captured in the one-dimensional

description of Sec. 4. In thin films, there are two dimensions with dimensions bigger than the

DW width, ∆. For this reason, it is possible to observe new dynamics along the DWs, which

assumes a string like profile. For three dimensional materials in the absence of chiral interactions,

it was proposed by Slonczewski in 1972 a description in terms of smooth surfaces. [85] It was

not considered, however, bigger curvatures. These curvatures becomes extremely relevant in the

case of chiral materials. In these systems, there is another relevant topological objects, skyrmions,

which are stabilized by the chiral interactions. By including curvatures in DWs, it is possible to

also describe skyrmions. In order to obtain the dynamics of the extra degrees of freedom, we

extend the formalism of the previous section and describe DWs in thin films as strings.

This chapter is organized as follows: First, we present the effective description of a DW as a

string. We provide the ansatz for the DW magnetization profile as an extended object and obtain

the associated total energy. We also discuss how to include skyrmions within the description of

curved DWs. Second, we obtain the effective action that describes the dynamics in terms of the

new dynamical parameters. Finally, we consider closed DWs and obtain the excitation modes for

large skyrmions.

5.1 String domain wall description

Even though the arguments are model independent, based on scaling factors and symmetries of

the system, for a concrete approach we will consider a chiral ferromagnetic film with thickness τ ,

much smaller than the DW width, and easy axis anisotropy normal to the surface. [40, 107, 108]
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The micromagnetic Hamiltonian for such object is given by

H =τ

∫
d2x

(
J

2
|∇m̂|2 + λ(1−m2

z)

+D (mz∇ ·m⊥ −m⊥ · ∇mz)

)
, (5.1)

where m⊥ is the vector of the in-plane components of the magnetization mx,my. For D ≥

4
√
Jλ/π the ground state is given by a helix, [59] which can be viewed as a periodic structure of

DWs. In order to describe single DWs, we consider D < 4
√
Jλ/π. The contribution of the dipole-

dipole interaction is incorporated as a correction to the out-of-plane anisotropy, see Eq. 2.16.

Figure 5.1: A sketch of a DW string. The curve is given by X(s). We define a basis given by
the longitudinal vector, êl, and a normal vector, ên. The magnetization profile along the normal
direction corresponds to a rigid one-dimensional DW. The angle between the magnetization along
the curve and the normal direction correspond to the field Φ(s).

In this material, we consider an extended DW as a curve X , along which the magnetization is
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in plane,

X(s) = (x(s), y(s), 0), (5.2)

where s is a parameter along the curve. We define a local basis given by the unitary longitudinal

vector êl(s) and the unitary normal vector ên(s)

êl =
X ′

|X ′|
, ên = êl × êz, (5.3)

where for any function f(s) we define f ′ ≡ ∂sf and |X ′| =
√

(∂sx)2 + (∂sy)2. Note that ê′l =

kên, where the function k ≡ k(s) is related to the local curvature κ(s) via k = |X ′|κ. From this

assumption, there is a transformation from the Cartesian basis êx, êy into the basis ên, êl along the

curve,

x, y → n, l, (5.4)

where n, l are the coordinates along the vectors ên, êl, respectively,

n(s) = (x−X(s)) · ên(s), l(s) = (x−X(s)) · êl(s). (5.5)

Here x denotes any position in space and the parameter l takes values between zero and the length

of the extended DW. The relation between the parameters s and l are given by

dl = ds|X ′|, (5.6)

and the curvature κ is defined as

∂lêl ≡ κên =
k

|X ′|
ên, (5.7)

where in the last equality we have used Eq. 5.6.

We assume that, in the normal direction to the DW, the magnetization profile is fully described

by a rigid one-dimensional DW. Since we can associate to such DWs the soft modes X,φ, we
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Figure 5.2: Image concerning the ansatz for the DW string. It is a sketch of a smoothly curved DW
string given by the curve X(s). We assume that everywhere along the curve, the radius of cur-
vature is much bigger than the DW width, ∆. We define a basis given by the longitudinal vector,
êl, and a normal vector, ên. On the top left corner, we show a typical cross section along the curve
with the representations of X(s) and Φ(s) for each cross section. Reprinted from Ref. [3] with
permission.

generalize the soft mode description toX(s),Φ(s) as functions along the curve. The magnetization

field,m close to the DW is given by

m̂ = cos Φ(l) sin θ(n)ên(l) + sin Φ(l) sin θ(n)êl(l)

+ cos θ(n)êz, (5.8)

where θ(n(s)) corresponds to a rigid DW centered at positionX(s), see Fig. 5.1 and 5.2.

For thin films without periodic boundary conditions, one needs to consider the influence of the

boundaries into the DW profile. The DMI and dipole-dipole interactions impose extra conditions

close to the edges. In general, one can consider these conditions as perturbations to the bulk state.

The bulk state can be obtained from considering periodic boundary condition.

In this work we will neglect possible perturbations due to boundary conditions by consider-

ing only periodic boundary conditions or closed DWs. The effective energy obtained from the

Hamiltonian 5.1 with periodic boundary conditions in terms of the effective coordinates is given
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by

Heff = τ

∫
ds
(
cEE|X ′|+

cκJ

|X ′|
(Φ′ − k)

2

+D (π|X ′| − cdk) cos Φ
)
, (5.9)

where cE , cκ and cd are dimensionless constants that depend on the exact profile of the DW along

the normal direction ên. For systems in which the domain wall profile is point symmetric to

respect to the center of the domain wall, we have that cd = 0. An important feature of the effective

Hamiltonian above is that it is invariant under reparametrization. The first term in Eq. 5.9 is

proportional to the length of the DW and is minimized by a straight line. The second term describes

the fact that bending the DW leads to a changes in Φ′ and vice versa. In the absence of DMI the

energy is invariant under global rotations of the azimuthal angle of the DW. [5] The picture changes

as we include a chiral interaction. Since it breaks inversion symmetry, it directly couples the

azimuthal angle Φ with the curvature and the length of the DW curve. This feature, not considered

in previous works, makes the the dynamics of the extended DW more complex.

Within the above formalism, the Zeeman interaction due to an external magnetic field can also

be incorporated. In this case, the boundary condition will depend also on the relative positions of

the string ends. [109, 110]

As an application of the string DW configuration as specified in Eq. 5.8, we can calculate the

topological charge, see Eq. 2.44, associated to the string,

Q =
1

2π

∫
ds (k − Φ′) . (5.10)

For periodic boundary conditions, this charge must be conserved in the continuum approximation

and the integrals over Φ′ and k are quantized. The conservation is not required in the case for open

boundary conditions. [111, 112]

As we consider closed DWs, the contribution to the Eq. 5.10 from the integral over k is ±1.
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Thus, it is possible to describe smoothly deformed skyrmions, in the limit of big average radius,

R � ∆, as closed DWs, see Fig. 5.3. Other bounded magnetic configurations, including worm

domains and magnetic droplets, may be derived from different functions of Φ that satisfies the

corresponding topological charge. The solution for a closed DW that minimizes the Hamiltonian

5.1 is given by a circular skyrmion with radiusR = ∆
√

cE/(cκ − πD/E) and a constant azimuthal

angle Φ = π along the curve. [59] For the radially symmetric case, the soft mode description

reduces to two globally defined soft modes, {R,Φ}, the radius of the skyrmion and the azimuthal

angle of the in-plane magnetization along the radius. [74]

Figure 5.3: Image concerning the skyrmion as a closed DW string. In this figure, we present a
sketch between the relation of a skyrmion and a DW string with periodic boundary conditions.
Reprinted from Ref. [3] with permission.

5.2 Effective dynamics of DW strings

In order to obtain the time evolution of a DW string configuration, it is necessary to obtain

an effective description from the LLG equation. First, following the approach from Sec. 2.3.2,

we derived an effective Action for the DW string for the energy conserving dynamics. Given the

effective Hamiltonian 5.9, it is also necessary to calculate the spin Berry phase 2.28 in terms of

the soft mode fields X(s) and φ(s). From substituting the DW string ansatz 5.8 into Eq. 2.28, we
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obtain

SB = −τcγ
∫
dt

∫
ds|X ′|(Ẋ · ên) (Φ− arccos (ên · êx)) , (5.11)

where cγ = 2Ms/γ. For a better understanding of this formula, we consider a special case where

Φ is globally defined, i.e. Φ′ = 0. In this case, the Berry phase 5.11 simplifies to

SB = −τcγ
∫
dtΦȦ+ τcγ

∫
dt

∫
ds|X ′|(Ẋ · ên) arccos (ên · êx) , (5.12)

where by A we define the area of the ferromagnetic domain with mz = −1. The first term reveals

that A and Φ are conjugated soft modes. This is equivalent to a nanowire, where the area A is

given by the position of the DW. [2] The corresponding Poisson bracket is {Φ, A} = 1/(τcγ).

An important remark is that, since an external out-of-plane magnetic field couples directly to A, it

produces, as expected, a precession of the angle Φ. The second term is related to the chirality of

the magnetic moment. In the presence of a magnetic field, a magnetic moment precesses with a

well defined direction.

Given the effective Berry phase 5.11 and the effective Hamiltonian 5.9, one obtains the full

effective action 2.29 that describes the undamped motion of the magnetic texture. The undamped

effective LLG equation for the soft modes fields follows from the variational principle.

For the damped dynamics, it is necessary to also calculate the corresponding effective Rayleigh

dissipation functional 2.31. If we plug in the ansatz of the DW string 5.8 into Eq. 2.31, we obtain

R[ ˙̂m] =
ατMs

2γ

∫
dl

(
cΦ(Φ̇ +

d

dt
(arccos (ên · êx)))2 + cX

(
Ẋ · ên)2

))
. (5.13)

The constants cΦ, cX are positive and dimensionless and arise from the integration along the ên

direction, along which the rigid profile is well defined. They depend only on the specific shape of

the profile.

With Eqs. 5.11, 5.9 and 5.13, the variational principal 2.23 gives the full dynamics for the string

DW, according to the LLG equation and the micromagnetic model. For concrete results, we apply
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the effective model to a specific case of large skyrmions.

5.3 Effective dynamics of Skyrmions as closed DW strings

For the magnetic skyrmion configuration as a closed DW string we assume the following curve

X(s, t) = r(s, t)(cos(s), sin(s), 0), (5.14)

where s = [0, 2π), and r(s) is a smooth function with r(0, t) = r(2π, t). Such an ansatz includes

circular and smoothly deformed magnetic skyrmions. For a curve given by Eq. (5.14), the effective

spin Berry phase is

SB = −τcγ
∫
dt

∫ 2π

0

ds

(
Φ− arctan

(
r′

r

))
rṙ. (5.15)

The term depending on arctan (r′/r) is associated to the chiral properties of the skyrmion. For

the soft modes corresponding to the position of the skyrmion, it provides the Poisson bracket

associated to the gyrotropic motion and the Magnus force. [34] In general, considering higher order

excitation modes, this term is associated to different speeds of propagation for waves in clockwise

and counterclockwise motion.[74] The undamped equations of motion for the local radial distance

r and the azimuthal angle Φ of the closed DW are

cγrṙ =

(
2Jcκ
|X ′|

(Φ′ − k)

)′
+D sin Φ (π|X ′| − cdk) , (5.16a)

−τcγΦ̇ =
1

r

δ

δr

(
Heff − τcγrṙ arctan

(
r′

r

))
, (5.16b)

where |X ′| =
√
r2 + r′2 and k = (arctan(r′/r))′−1. These equations allows us to understand the

dynamics of skyrmions in the limit of large radius. First we notice that, if one integrates Eq. 5.16a

along the whole curve, one obtains the dynamics for the total area of the skyrmion,

Ȧ =
πD

cγ
sin Φ

(
2cd +

∫ 2π

0

ds|X ′|
)
. (5.17)

59



It is important to notice that the area of the skyrmion must be conserved in the absence of DMI.

Another property obtained from the absence of DMI is that Eq. (5.16a) has the form of a continuity

equation, i.e. ρ̇ = ∂sj. The density ρ is given by the area per unit length and the current j

corresponds to the density of topological charge per local infinitesimal length. The existence of

Bloch lines, which corresponds to a concentration of topological charge, therefore, can generate

strong deformations of the DW.

For small deformations, r, of the circular skyrmion with radius R0, R0 � r, and point-

symmetric DWs, cd = 0, Eqs. 5.16a and 5.16b provides in a natural way the excitation modes

of skyrmions. In this limit we obtain the following equations for r and Φ,

cγ ṙ +
2cκ
R3

0

(
∂sr + ∂3

sr
)

= −cκ
(

1− 1

2R2
0

)
Φ + cκ

∂2
sΦ

R2
0

, (5.18a)

R0

(
cγΦ̇ +

2cκ
R3

0

(
∂sΦ + ∂3

sΦ
))

= 2cγ∂sṙ +
cκ
R3

0

(
r + 2∂2

sr + ∂4
sr
)
, . (5.18b)

where we used that R0 = ∆
√

cE/(cκ − πD/E). We also renormalized the paratemeters such

that r and R0 are divided by DW width ∆, and are dimensionless, and cκ is divided by J . These

equations have non-trivial solutions Φ = Φ0 sin (ωnt+ ns+ η) and r = r0 cos (ωnt+ ns+ η), for

n 6= 0, if the determinant of the system of equations is zero,

(
cγωn +

2cκn(1− n2)

R3
0

)2

− cκ
(
−2cγnωn

R0

+ cκ
(1− n2)2

R4
0

)(
1 +

n2 − 1/2

R2
0

)
= 0. (5.19)

which provides the following dispersion relations

cγ
cκ
ωn ≈ −

n+ |n|
R0

∓ 1− n2 ± n|n|+ n4

2|n|R3
0

+O
(

1

R0

)
. (5.20)

As expected from the chiral properties of the skyrmion, the frequency takes different values for

positive and negative n, corresponding to counterclockwise and clockwise motion respectively. In
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these specific cases, we can write

ωn ≈


2ncκ
cγR0

, for n < 0,

cκ(1+n4)

2cγ |n|R3
0
, for n > 0,

(5.21)

which corresponds to the higher order excitation modes reported by Kravchuk et al. [75] For the

modes with n = 0, we consider only the dynamics due to a dimensionless scaling factor of the

radius and a global rotation for Φ. If the oscillations in Φ are small, one obtains the frequency

dependence as

ω ≈ c̃κ
cγR2

0

. (5.22)

This breathing mode is also in agreement with the assymptotics found from the spin wave spectrum

calculation. [75]

Figure 5.4: A sketch of the skyrmion modes. (a) represents the translational mode n = ±1, it
corresponds to the rigid motion of the skyrmion. It is a zero-mode of the system if the Hamiltonian
is invariant under translations. [4] (b) represents the breathing mode n = 0, it correspond to a
scaling dynamics of the skyrmion. In systems with no chiral interactions, this mode is also a zero
mode. [5] (c) represents the mode n = 2, it corresponds to a change in the shape of the skyrmion.
The modes with |n| > 1 assume poligonal shapes. Their dynamics correspond to a rigid rotation
around the center of the skyrmion.

The modes in equations 5.21 and 5.22 correspond to the excitation modes of the skyrmion,

see Figs. 5.4 and 5.5 . [4, 5, 73, 74, 75] The n = 0 and n = ±1 modes do not change the
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overall shape of the skyrmion, they are the breathing and translational modes. For higher |n|, one

obtain the excitation modes that change the shape of skyrmions, taking polygonal forms. These

modes are associated to bounded magnon modes. It has been shown that they can be associated

to an effective mass for skyrmions. [74, 4] The higher order modes have not been individually

observed yet experimentally and usually require sophisticated numerical methods to be obtained

analytically. The formalism presented in this chapter allows for a natural way to obtain these modes

non-radially symmetric modes. Moreover, it can be extended for the study of excitation modes of

worm domains and other structures observed in experiments.

Figure 5.5: Image concerning the higher order excitation modes of skyrmion. In this figure, we
present a sketch of the polygonal shapes of the higher order excitations. Reprinted from Ref. [3]
with permission.
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6. CONCLUSIONS

In this Thesis we analyzed the current and magnetic field driven dynamics of topological mag-

netic textures from an effective point of view. By stability, scaling and symmetries arguments, we

were able to: i) propose means to inject domain walls into ferromagnetic nanowires by all elec-

trical means with a minimal micromagnetic model; ii) propose a model independent Hamiltonian

formalism to describe the current and magnetic field driven domain wall dynamics in both FM and

AFM materials; iii) obtain an effective theory for domain walls in ferromagnetic thin films that

included the bending of domain walls. This latest formalism allowed us to unify the treatment of

large skyrmions and domain wall strings. The main feature of the presented work was to analyze

the dynamics of a highly complex non-linear, non-local equation with infinite degrees of freedom

by considering just a set of dynamical parameters. This process is independent of micromagnetic

details and fluctuations, due to a difference in the scales of the observed phenomena. The effective

description proved to be a powerful and rich method, which allows for an intuitive understanding

of the general dynamics. Well known aspects of the topological magnetic dynamics can be re-

produced in a natural way from the effective descriptions. Moreover, since it is possible to easily

introduce new interactions and consider new conditions, it permits the study of novel mechanisms.

The ideas and formalisms presented in this Thesis are crucial for the proposal of a new generation

of memory devices based on magnetic features.

The main work on this Thesis was based in three papers published on Physical Review B. [1,

2, 3] The published results have been written in Chapters 3,4 and 5. In the first paper, Chapter

3, we studied the DW injection by electrical means in a specific configuration for a ferromagnetic

nanowire with a strong pinning center. We have shown that there is a maximum current, called

critical current vcs, for which the magnetic configuration is static and stable. For currents above the

critical current there is a periodic injection of DWs into the nanowire. The period is given by a

universal exponent and, in general, is independent of microscopic details. This physics is described

in terms of the time evolution of a single parameter that defines the static configurations below
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the critical current. It is derived from a minimal Hamiltonian that does not contain "twisting"

terms or applied magnetic field. The introduction of twisting terms, however, can reduce the

critical current. In the second paper, Chapter 4, we have developed a Hamiltonian approach to

the current and magnetic field driven dynamics of both ferromagnetic and antiferromagnetic DWs.

We assume that DWs are rigid topological objects. The dynamics are obtained from a universal

set of equations in terms of phenomenological constants and pairs of dynamical parameters. The

formalism is capable to solve various problems of both FM and AFM DW dynamics on the same

footing and includes extensions to different geometries and new interactions. The Hamiltonian

formalism developed is rich and powerful. It reproduces well known dynamics and allows for a

natural way to study new phenomena. By considering the combination of perpendicular magnetic

field, anisotropy and electrical current, we obtained an orientation switch mechanism for AFM

DWs that can be experimentally measured in the future and be useful for memory devices. In the

third paper, Chapter 5, we extended the description of domain walls as one dimensional objects

to include new degrees of freedom along the DW. The string description of the DW is a powerful

method that allows for the analysis of several experimentally observed behaviors, including curved

DWs and spin wave propagation along DWs. Moreover, it unifies the description of elongated

domain walls and skyrmions in the large radius limit. We obtained an effective action for the DW

string in terms of a pair of soft mode fields, from which one obtains the full undamped dynamics.

We applied the formalism to describe the excitation modes of skyrmions. We considered only

periodic boundary conditions for the DW string. For more general dynamics of string DWs, it is

required to include boundary terms. They can be treated by adding effective potentials.

To conclude, the theory presented in this thesis is mostly independent of micromagnetic details.

It can be applied to a vast range of conditions and not only reproduces the well known physics

reported in the literature as it allows for the study of new observable behaviors. The formalisms

can be easily extended to consider new interactions and geometries. This is an essential step for

developing a new generation of memory devices based on topological magnetic textures.
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