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ABSTRACT 

Feed expenses are the largest driver of input cost in the beef industry, thus, 

increasing the genetic merit of beef cattle efficiency is an effective strategy to improve the 

environmental and economic sustainability of beef production. Residual feed intake (RFI) 

is a measure of feed efficiency independent of average daily gain (ADG) and body weight 

(BW), whereby feed-efficient animals consume less feed than expected. Numerous studies 

have documented that cattle with divergent RFI phenotypes have distinctly different 

feeding behavior (FB) patterns, demonstrating their potential as bio-markers to predict feed 

efficiency. The nexus of this research lies in the development of animal behavior tracking 

systems and understanding the relationships between FB patterns and RFI. The first 

objective of this research was to validate a high-frequency RFID system to quantify 

frequency and duration of bunk visit (BV) events in beef cattle. The accuracy of the system 

to measure these traits was determined to be 81 and 90% accuracy, respectively. The 

second objective was to develop predictive equations for feed efficiency traits using FB 

traits as independent variables. Because FB traits are highly correlated, partial least squares 

(PLS) regression was used in this study as this method is better suited to deal with 

collinearity among independent variables. This study was conducted using data collected 

from composite Angus steers (N = 508; Initial BW 309 ± 56 kg) fed a high-grain diet in 

pens equipped with electronic feed bunks (GrowSafe® Systems). Individual dry matter 

intake (DMI), FB traits, and 14-d BW were measured for 70-d, and RFI calculated as the 

residual from the regression of DMI on ADG and BW0.75. Cattle were ranked by RFI and 

assigned to 1 of 3 RFI classes based on ± 0.5 SD from the mean RFI. For each animal, 17 

FB traits were evaluated: frequency and duration of bunk visit and meal events, head-down 
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(HD) duration, time-to-bunk (TTB) interval, maximum non-feeding interval, and 

corresponding day-to-day variation (SD) of these traits. Additionally, 3 ratio traits were 

considered: BV frequency per meal event, HD duration per meal event and HD duration 

per BV event. Data analysis was conducted using a mixed-model (SAS 9.4) that included 

fixed effects of RFI class, trial and pen within trial. Feed-efficient steers consumed 16% 

less feed, while ADG and BW did not differ from high-RFI animals. Compared to high-

RFI steers, low-RFI steers had 18% fewer and 24% shorter BV events and 11% fewer meal 

events that that were 13% shorter (P < 0.01) in length. Feed efficient steers exhibited 10% 

less (P < 0.05) day-to-day variation in DMI, as well as 11 to 33% less (P < 0.05) day-to-

day variance in frequency and duration of BV and meal events. Furthermore, low-RFI 

steers had 9% longer (P < 0.05) TTB,and 7% greater (P < 0.05) day-to-day variation in 

TTB compared to high-RFI steers. Partial least squares analysis identified 9 FB traits that 

explained 42% of the inter-animal variation in RFI. These results demonstrate that feed-

efficient animals spend less time eating, visit the bunk less frequently for less total time per 

day and have more consistent day-to-day FB patterns compared to less-efficient animals. 

Further, these results indicate that FB traits may be useful as bio-marker to identify cattle 

that are more biologically efficient. 
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G:F  gain-to-feed ratio 

GLM  general linear model 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

A well-known and often quoted fact in the agriculture industry is the predicted 

explosion in human population within the next 30 years, with an expected 10 billion people 

inhabiting the planet by the year 2050 (Capper, 2011). The FAO, (2009) suggests that food 

production will have to increase by 70% over current levels to fulfill the nutrient and 

caloric demands associated with this type of population increase. However, livestock 

producers face fierce competition for a finite resource base of agricultural land, energy, 

and water which will only increase as the population grows and urban encroachment 

continues in rural areas. The need to meet society’s needs without compromising the 

ability of future generations to meet their own needs is critical as scientists work to 

develop new technology designed to increase environmental responsibility in an 

economically viable and socially acceptable manner. 

It is no secret that feed inputs comprise the greatest portion of the annual cost of 

beef production. To increase the profitability of the cattle industry, feed inputs costs must 

be reduced without significantly impacting the current level of production. Comparison of 

historical production from the year 1977 with 2007 indicates that the average beef cattle 

slaughter weight has increased from 274 to 351 kg, while growth has accelerated from 0.71 

to 1.16 kg/d (Capper et al., 2012). Increased growth has reduced animal age at slaughter 

from 608 to 485-d, resulting in an 8% reduction in energy expended for maintenance 

(Capper et al., 2012). However, unlike the poultry and swine industry which has decreased 

the actual energy required for animal maintenance, the beef industry’s reduction in total 

energy apportioned to maintenance is the result of increased growth rates and heavier 
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harvest weights, not an actual decrease in the maintenance energy requirement (Carstens, 

2006). This highlights an underlying need to select animals for efficiency of energy used 

for maintenance, independent of production traits. Thus, the identification and selection of 

animals with a favorable feed efficiency will allow the beef industry to continue the current 

trend of reducing the use of resources with minimal impact on production. 

Feed Efficiency and Feed Intake 

A complex series of independent mechanisms drive energy intake. This has led to 

at least two distinct theories yielding multiple models seeking to accurately predict feed 

intake in ruminants (Allen, 2014). Since the animals gastro-intestinal tract composes a 

constant percentage of the animal’s body weight (Demment and Soest, 1985) and the 

animals metabolism follows a fractional power of its body weight (Kleiber, 1947), it is 

obvious that the two systems interact in a concurrent manner with each other, making a 

model predicting feed intake difficult to derive. Physical limitations such as 

gastrointestinal fill, environmental temperature, and availability and physical nature of the 

feed stuff (Landers et al., 1967)  are successful when predicting intake in poor quality, 

fibrous feedstuffs, but experience limited success with energy dense feeds. Metabolic 

limitations include integrity of the hypothalamic structures, emotional and conditional 

response, metabolites, hormones as well as the age and condition of the animal (Allen, 

2014; NRC, 2000; NASEM, 2016). The unexplained variation in predicted vs. actual feed 

intake is indicative of differences in net feed efficiency, or the total amount of feed 

required for the maintenance and production of product from any singular individual 

(Meyer et al., 2008). This allows for selection of animals expressing a certain combination 
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of a multitude of traits which allow them to be more efficient, thus allowing for a decrease 

in feed inputs. 

Feed Conversion Ratios 

In meat animals, particularly those destined for the meat supply chain, gross 

efficiency ratios such as F:G (pounds of feed per pound of gain) and G:F (pound of gain 

per pound of feed) provide a simple and practical means of expressing efficiency that 

makes sense in the feedlot production scenario. The use of ratios continues into the meat 

sector, where gain can be defined as the total carcass gain or the total gain in lean muscle 

tissue (Archer A.D. et al., 1999). Brelin and Brannang, (1982) summarized 4 studies, 

indicating a strong (0.61 to 0.95) genetic correlation between growth rate and feed to gain 

ratio, leading some scientists to conclude that there is minimal need to measure intake 

since growth is a highly correlated trait indicative of overall efficiency during the feeding 

and growth phase of the animal (Korver, 1988; Mrode et al., 1990). Performance ratios are 

not truly comparative across groups, due to breed type variations, sex, and composition of 

gain. Previous plane of nutrition also becomes an important consideration when 

compensatory gain becomes a factor. Elimination of certain extraneous influence is 

possible by feeding all animals for a pre-specified period, or by feeding to a certain 

metabolic endpoint. However, all fail to meet the biological needs across various breeds 

and management systems (Archer A.D. et al., 1999). 

Feed efficiency in growing animals has been extensively described, primarily 

utilizing Feed Conversion Ratio (FCR) in feedlot situations where it is easily measured 

(Bishop et al., 1991; Arthur et al., 2001a). While FCR is shown to be a highly heritable 

trait easily measured in the feedlot, a strong correlation between FCR and increased mature 
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size threatens the efficacy of this measurement as a selection tool for breeding stock 

(Archer A.D. et al., 1999; Crews et al., 2005; Nkrumah et al., 2007b). The unintended 

increase in mature body size drastically increases cowherd maintenance requirements. 

Since the cowherd is responsible for much of the maintenance requirement of the beef 

production system (Miller et al., 2001; Capper, 2012), this results in a net negative 

movement from the intended purpose of increasing overall efficiency of resource 

utilization. Feed conversion ratios do not partition energy between maintenance and 

growth (Carstens, 2006), and improvement of FCR may not improve efficiency of 

production. Thus, the need for another metric to accurately segregate energy into proper 

partitions is required to accurately select animals with decreased maintenance 

requirements. 

Residual Feed Intake 

Residual feed intake (RFI), also known as net feed intake, gained popularity in 

recent years as a means of identifying animals excelling in genetic traits which serve to 

make an animal more feed efficient (Moore et al., 2009). Originally proposed by Koch et 

al., (1963), residual feed intake selects animals for traits independent of measured 

production outputs (Herd and Arthur, 2009). Feed intake is partitioned into two 

components, predicted feed intake based on production and a residual, or deviation from 

the predicted (Herd et al., 2003). Koch realized application of his selection concept 

required the ability to measure feed intake of every animal in the industry at large. Over 

thirty years later, technology caught up with his underlying idea and the economical 

collection of feed intake data became a reality. 
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Residual feed intake divides feed intake into two components, the predicted intake 

based upon an animal’s metabolic body weight, production variables, and the residual 

portion describing the deviation from actual versus predicted (Kennedy et al., 1993; Herd 

et al., 2003). Feed efficient animals exhibit lower or negative residuals while less efficient 

animal are identified by positive or higher residuals or consumed more feed than necessary 

for given production. This method of correcting feed intake for body size and production 

outputs yields an economically relevant index (Gibson and Kennedy, 1990) independent of 

component traits, helping mitigate indirect selection for growth and increased mature size 

or productivity (Archer A.D. et al., 1999; Basarab et al., 2003; Lancaster et al., 2009b). 

RFI seeks to reduce total feed consumption without putting negative emphasis on 

economically important traits in the offspring, making it extremely applicable to the cow-

calf sector (Arthur et al., 2004). Additionally, RFI is shown to be moderately heritable 

(0.35 to 0.45) (Arthur et al., 2001b; Schenkel et al., 2004; Lancaster et al., 2009b), 

indicating a potential for efficiency improvement via genetic selection. But given the 

numerous sources of variation within residual feed intake, and the added complications in 

accurately measuring individual forage intake in the pastoral environment, individual data 

collection primarily occurs at test facilities with expensive specialized equipment, 

increasing expressed interest in developing methodologies to accurately identify feed 

efficient animals on a large scale (Herd et al., 2003). 

Genetic Covariances 

Phenotypic RFI is the most common net feed intake index calculated given the 

relative simplicity of measuring phenotypic parameters during the growth phase. This 

creates the possibility of focusing solely upon the physical parameters associated with feed 



 

 6 

efficiency and ignoring the genetic component altogether (Kennedy et al., 1993). In 

general, the genetic covariance of RFI increases as the heritability of feed intake increases, 

becoming more positive as the correlation between production traits and feed intake 

improves. Using genetic covariance’s in the RFI model yields an index genetically 

independent from production. The utilization of genetic covariance’s is only critical when 

there is an environmental by genetic interaction in the prediction of feed intake (Kennedy 

et al., 1993). However, Archer et al. (1998) found phenotypic RFI to be independent of 

growth at a genetic level in mice even though the social litter environment was a 

significant factor. But post-weaning RFI was highly correlated (0.60) with mature feed 

intake but weakly correlated with body composition (0.17) indicating the value of post-

weaning studies and minimal effect on mature composition (Archer et al., 1998). Since 

phenotypic vs genetic residual feed intake correlated 0.98 and 0.96 post-weaning and 

mature respectively (Archer et al., 1998), the added work of using genetic covariance may 

be unnecessary, providing animals are tested in uniform cohorts to limit interactions. This 

may be preferable, as utilizing the genetic component limits the opportunity for genetic 

progress due to the controlling of the error associated with genetic make-up. 

Impact of RFI on Body Composition and Carcass Traits 

Published feed intake studies (Nkrumah et al., 2004; Robinson and Oddy, 2004; 

Schenkel et al., 2004; Lancaster et al., 2009b) analyzing associations between growth 

composition and RFI in beef cattle indicate feed efficient (low-RFI) cattle tend to deposit 

less fat than less efficient (high-RFI) cattle. Correlations between back fat thickness (BF) 

and RFI were moderately positive (Richardson et al., 2001; Nkrumah et al., 2004; 

Richardson and Herd, 2004; Lancaster et al., 2009b), but weak in beef cattle, while 
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longissimus muscle area correlations were weak but more variable, ranging from negative 

to positive (Richardson et al., 2001; Basarab et al., 2003; Nkrumah et al., 2004; Schenkel 

et al., 2004). Inclusion of carcass traits into the RFI model using multiple linear regression 

indicates that gain in BF explains the most variation in feed intake, but only had a minor 

reduction in the SD (Lancaster et al., 2009b). The consensus from the literature seems to 

suggest that selection for animals using RFI will have minimal impact on composition of 

gain, though a reduction in BF may be observed. 

Feeding Behavior and Activity 

Feed-related behavioral responses can alter physical activity and thus influence 

total energy expenditure and feed efficiency (Adam et al., 1984; Susenbeth et al., 1998). 

Time spent eating is the main predictor of energy expenditure associated with feed, an 

observation first made by Dahm (1910) and reinforced by Susenbeth et al. (1998). This 

allows not only for reduced energy expenditure by the animal via manipulating the 

presentation of the feed via milling and mixing, but can also explain the variation between 

energy requirements and feed consumption in animals who inherently vary in the time 

spent feeding (Herd et al., 2004; Richardson and Herd, 2004). 

Modern technology such as the GrowSafe® feed intake system used in most intake 

trials has made the economic collection of feeding behavior attainable for livestock 

producers. The GrowSafe® system records feeding events, meal events, and daily intake 

from raw data transmitted wirelessly from the feed bunk to a personal computer running 

the specialized data acquisition (DAQ) software. Bunk visit frequency, the count feeding 

events daily, and duration, the summation of feeding events, are summarized from the 

behavior tables into daily totals. Head down duration is an attempt to calculate the total 
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amount of time the animal had its head in the bunk and is the number of EID reads 

multiplied by the read rate of the system. Grouping of bunk visits into meals is best 

accomplished by using a Gaussian-Weibull distribution model to bunk visit behavior, 

measuring the lowest intersect between the feeding non-feeding intervals determine the 

most biologically relevant meal criterion for each animal (Bailey et al., 2012). A meal 

criterion determines the maximum time separating bunk visits which grouped into one 

biologically relevant meal event. Eating rate is derived by dividing total day feed intake by 

total daily bunk visit duration, creating a ratio grams/min (Durunna et al., 2011) and 

though phenotypically correlated with feed intake (Lancaster et al., 2009a), are more 

variable and less reliable than bunk visit frequency, bunk visit duration, and head down 

duration. 

Inclusion of feeding behavior traits in the model predicting the RFI can reduce the 

mean squared error (MSE%) and increase R2, improving the ability to account for portions 

of the variation left unexplained by metabolic BW and ADG. However, which traits are 

found to be significant and what percentage of the variation is explained varies from study 

to study. Nkrumah et al. (2014) reported 43% and 65% difference between high vs. low 

RFI class groups in bunk visit duration and bunk visit frequency behavior exhibited in 

Charolais by Angus steers. But in an earlier paper, Nkrumah et al. (2007) reported that 

more efficient heifers spent 24% less time at the bunk and Montanholi et al. (2009) stated 

that steers classified as low RFI had significantly less bunk visits with a slower eating rate 

than their less efficient mates. Basarab et al. (2003) reported a decrease of 6.67% from 

high to low RFI. However, Bingham et al. (2009) contradicted these findings, reporting 

that efficient animals had 15.06 vs. 14.75 bunk visits for high RFI animals. This may be 
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due to different genetic backgrounds as these were Brangus heifers, or gender, as Lancaster 

observed bulls and Nkrumah and Durunna reported their findings on steer studies. 

In short, feeding behavior duration, frequency and rate are moderately repeatable 

(0.37 to 0.62 (Kelly et al., 2010)), heritable (h2 = 0.28 to 0.38, (Nkrumah et al., 2007b)), 

and have moderate to strong correlations with RFI feed efficiency (Basarab et al., 2013). 

The increase in feeding activities results in a 2 -– 5% increase in energy expenditure in 

feeding activities (Herd et al., 2004; Basarab et al., 2011). However, a standardized 

methodology to analyze the importance of highly correlated traits needs to be researched to 

increase the usability of feeding behavior to identify and select more efficient animals for 

further study and production. 

Partial Least Squares Regression Analysis of Feeding Behavior Traits 

Feeding behavior has been shown to explain up to 35% of the variation associated 

with DMI in growing and finishing cattle using multiple linear regression analysis 

(Lancaster et al., 2009; Kayser and Hill, 2013). However, multiple linear regression fails to 

account for the multi-collinear nature of feeding behavior, which has limited the ability to 

utilize feeding behavior traits to explain additional variation in DMI for the base RFI 

model. Partial least squares regression analysis (PLS), also known as projection to latent 

structures, is the regression extension of principal components analysis (PCA) and 

provides a philosophically solid means of analyzing multi-factorial datasets with varying 

degrees of collinearity and deciphering complex synergistic and competitive mechanisms 

(Wold et al., 2001; Erikson et al., 2006a). Analysis begins by mean centering all variables 

with equal variance. Next, mean centered variables are projected onto new variables, 

referred to as components or as latent factors) consisting of a linear combination of the 



 

 10 

original variables with coefficients, (weights) deemed to be a good predictors of the 

dependent variable(s) (Garthwaite, 1994). These components are then used as the 

independent variables in the regression equation to predict the dependent variable(s) with 

each successive component accounting for a lower proportion of the original variance 

(Garthwaite, 1994; Wold et al., 2001; Eriksson et al., 2006a). These weights are useful in 

determining the direction and value of the modeled biological responses (Eriksson et al., 

2006a). The primary purpose of using PLS analysis is to predict biological outcomes based 

upon input from multiple highly related variables by accounting for their interaction and 

compressing them into a few relevant components (Eriksson et al., 2006b). 

As in any empirical modeling, it is critical to achieve appropriate model complexity 

by determining the appropriate number of variables and components to include in the final 

prediction equation (Wold et al., 2001). Evaluation of models containing different 

combinations of components is accomplished by using the predictive residual sum of 

squares (PRESS) statistic (JMP12 Multivariate Methods; Wold et al., 2001). Variables 

were selected if the variable of importance (VIP) score was greater than 0.8 (Wold et al., 

2001). 

There is some discrepancy in the literature pertaining to omission of original 

independent variables. Researchers have utilized the magnitude of the coefficients, the VIP 

scores above a threshold of either 0.8 (Wold et al., 2001) or 1.0 (Geladi and Kowalski, 

1986) or both to identify variables that are retained in the model. However, removal of 

predictor variables from the model often removes important information from the model, 

which may result in the model being less robust (Wold et al., 2001; Eriksson et al., 2006b). 

Thus, caution should be exercised when variables are removed from a model. In large 
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multivariate datasets, all the independent variables carry a certain proportion of the 

information about the dependent variable. Since most variables will not contain more 

information than the noise level, no or only mild reduction in goodness-of-fit results may 

be experienced due to their removal. Additionally, variable removal may result in other 

variable correlations becoming more important, further contributing to the goodness-of-fit 

characteristics as other independent variables take over the importance previously 

explained by those that have been deleted. This shift can influence the interpretation of the 

model and diminish the usability of the model for future observations that may present a 

slightly different correlation structure. One might consider the reason a variable does not 

explain a significant portion of the variation may be due to absence of variation present 

within the current dataset. However, if a future observation is a significant outlier, the 

ability to identify the outlier will be lost (Eriksson et al., 2006b). 

Partial least squares analysis has gained popularity with the accumulation of large, 

and sometimes incomplete datasets, with a multitude of variables (Eriksson et al., 2006a). 

Primary use has been in spectorial analysis, however, it has served alternative purposes, 

including the development of prediction models to determine body composition using 

ultrasound (Peres et al., 2010), particle size distribution (Blanco and Peguero, 2008) and 

chemical composition, intake and digestibility of feed (Huntington et al., 2011). 

Additionally, PLS has been used to generate predictive equations to profile nutritional 

characteristics of feedstuffs based on NIRS analysis of feeds (Huntington et al., 2011), and 

voluntary intake of cattle via NIRS analysis of fecal samples (Johnson et al., 2017).  

Few studies to date have used PLS analysis to examine the associations of animal 

behavior traits and various phenotypes. The relationship between social status and 



 

 12 

boldness in zebra fish in various environments was determined by measuring multiple 

behavior traits (Dahlbom et al., 2011). A PCA plot of the behaviors showed the degree of 

correlation between measured variables and solidified previously understood behavior 

relationships. In humans, a PLS model utilizing 18 previously described developmental 

and social behaviors was used to examine the relationship between caffeine consumption 

and impulsive behaviors (Grant and Chamberlain, 2018). In both cases, PCA and PLS 

analysis allowed for identification and selection of behavior traits pertinent to explaining 

the desired independent variable, despite autocorrelation issues within the original 

multivariate dataset. 

Montanholi et al. (2009) used PLS analysis to examine biological factors that 

explained between-animal variation in RFI. Results based on PLS analyses revealed that 

between-animals differences in feeding behavior traits, multiple infrared thermography 

measurements, and glucocorticoids concentrations accounted for 18, 59, and 7% of the 

total variation associated with RFI, respectively. These classes of traits have usefulness in 

the indirect assessment of feed efficiency in cattle. Among them, IR thermography 

appeared to be the most promising alternative to screen cattle for this feed efficiency. 

These findings might have application in selection programs and in the better 

understanding of the biological basis associated with productive performance. 

With the increasing availability of biosensor systems capable of monitoring 

individual-animal behavioral responses, there is a need to refine analytical methods of 

large databases containing multivariate behavior traits to provide more economically 

relevant information. Understanding the ability of alternative statistical methods such as 

principal components analysis and its extension, partial least squares regression, will 
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provide the industry with more tools to address these questions. However, there is a need 

to research the abilities and limitations of various behavior monitoring devices to obtain a 

better understanding as to how the behaviors are identified, and the accuracy with which a 

device is able to predict and detect an animal’s behavior. 

Behavior Monitoring 

Animal behavior offers important insight into an animal’s current metabolic state 

(Weary et al., 2009) and has been used to assess the health status (Quimby et al., 2001), 

feed intake (Tolkamp et al., 2000; Kayser and Hill, 2013), feed efficiency (Lancaster et al., 

2009; Hafla et al., 2013) and bunk competition (Devries et al., 2003). The majority of the 

commercial systems currently available are based on variants of RFID technology, with 

sensors specifically designed to capture the animal's presence or absence from a feed alley 

(Schwartzkopf-Genswein et al., 1999; Devries et al., 2003; Wolfger et al., 2015), or from 

an open (Chapinal et al., 2007; Krawczel et al., 2012) or gated feed bunk (Lancaster et al., 

2009; Mendes et al., 2011). System developers have primarily focused from on technology 

to capture both feed intake and feeding behavior, which includes the GrowSafe® feed 

intake system validated by Mendes et al. (2011), and the Insatec® system validated by 

Rushen et al. (2012). Both flagships systems are different in their inherent design, but are 

similar in function, as both record the animal’s presence at the bunk and measure feed 

disappearance while the animal is present. Recording BV events allows the computation of 

feeding behavior traits such as BV frequency and duration which are proven to be 

biologically relevant in numerous studies. 

The GrowSafe® feed intake system was validated by Schwartzkopf-Genswein et 

al. (1999) and Mendes et al. (2011) using time-lapse video recordings to obtain 
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observational data to validate the accuracy of the system to measure frequency and 

duration of BV or meal events in beef cattle. Schwartzkopf-Genswein et al. (1999) used 6 

crossbred heifers to validate the GrowSafe® system with a static 85-sec meal criterion and 

reported a total daily error rate of 6% with a correlation R2 of 0.96 between visually 

observed and electronic data for both meal frequency and duration. Mendes et al. (2011) 

evaluated 10 randomly selected animals from a group of 32 Brangus heifers during a 6-d 

period. Observed (time-lapse video) and electronic BV frequency and duration resulted in 

a coefficient of determination value of 0.68 and 0.81 respectively. Evaluation of the 

systems accuracy in determining the animal's presence or absence at a min resolution was 

86.4 and 99.6% for sensitivity and specificity, respectively. Chapinal et al. (2007) 

evaluated the accuracy of the Insentec® feed intake system using time-laps video 

recording to observe 42 Holstein cows. The coefficient of determination for BV frequency 

was 0.99, while the accuracy of the system was found to be 100 for both sensitivity and 

specificity respectively (Chapinal et al., 2007). This is notably better performance than that 

reported by the GrowSafe® feed intake system, however, the Insentec® system consists of 

an air-operated gate, which is automatically opened when the animal’s EID tag is detected 

by the system. Therefore, the system must correctly identify the animal prior to admission 

to the feed bunk, whereas the GrowSafe® system has no such means of refusing animal 

access to the feed bunk. 

Devries et al. (2003) evaluated the accuracy of the GrowSafe® feed alley 

monitoring system designed to record bunk visit behavior of dairy or beef cattle as they 

approached an open feed bunk. Systems of this type have been slower to develop due to 

issues with interference between animals and the structural components of the feeding area 
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(e.g., concrete, metal) and, their inability to measure feed intake. The accuracy of the 

system was diminished compared to the feed intake system, with sensitivity and specificity 

values of 87.2 and 99.6%, respectively. Few other systems of this sort are found in the 

literature, though Wolfger et al. (2015) evaluated the FEDO® system which utilizes a 

bracelet containing and RFID tag with an accelerometer which is worn on the front pastern 

and senses proximity to a sensor located within the feed bunk. This system reported a 

coefficient of determination for BV frequency of 99.0% and accuracy of 100 and 94% of 

sensitivity and specificity, respectively, and offers the added advantage of reporting 

additional behavior traits other than feeding behavior (Wolfger et al., 2015).  

Animal behavior is directly related to important metabolic processes that have 

varying degrees of relevance to the producer. As technology improves alongside our 

understanding of the interaction between animal welfare, efficiency and behavior, the 

opportunity to improve the industry’s production efficiency will present itself. This not 

only lies in increasing the accuracy of identifying sick animals based upon deviations from 

normal behavior, but also identifies key heritable behavior traits indicative of animals with 

higher economic value to the producer. 
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CHAPTER II  

VALIDATION OF A HIGH FREQUENCY ELECTRONIC RFID SYSTEM FOR 

MONITORING FEEDING BEHAVIOR IN BEEF CATTLE 

Introduction 

Feeding behavior data in beef cattle has traditionally been collected via time-lapse 

video or the use of expensive electronic feed bunks that limit wide spread applications in 

research or the commercial beef industry (Chizzotti et al., 2015). Understanding feeding 

behavior patterns between animals provides insight into feed intake (Tolkamp et al., 2000; 

Kayser et al., 2013), feed efficiency, (Lancaster et al., 2009; Hafla et al., 2013; Fitzsimons 

et al., 2014), and the onset of disease (Jackson et al., 2015; Quimby et al., 2001; Weary et 

al., 2009). Multiple systems based upon various RFID technologies have been developed 

to monitor feeding behavior in confined cattle, including those that measure bunk 

attendance from feed alleys (Schwartzkopf-Genswein et al., 1999; DeVries et al., 2003; 

Wolfger et al., 2015) and bunk attendance from open (Lancaster et al., 2009), or gated feed 

bunks (Chapinal et al., 2007; Krawczel et al., 2012). Further, various systems monitor feed 

intake as well as feeding behavior, including the GrowSafe® feed intake system, which 

was validated by Mendes et al. (2011), and the Insentec® system (Chapinal et al., 2007). 

While all of these systems differ slightly in their inherent design by seeking to quantify the 

frequency and duration of bunk visit (BV) events by the animal. 

However, industry adoption of these technologies has been slow because of 

infrastructure and cost limitations. Signals used to detect animal presence and transmit data 

can be lost due to interference with common obstacles such as water, concrete and steel. 

Many systems require installation of structures that alter animal behavior, limit feed bunk 
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capacity, and may present risks to their welfare. Furthermore, installing and maintaining 

this equipment can be cost prohibitive, and may not provide an economic advantage to the 

operation. Therefore, there is a need to develop new technologies that complement existing 

feed yard infrastructure while providing relevant information to the operation. Objectives 

of this study were to validate individual-animal feeding behavior data collected from the 

CattleTraq® system through comparison with time-lapse video recordings, and to 

determine if changes in the parameter settings used to define an electronic BV event affects 

the accuracy of feeding behavior data. 

Materials and Methods 

Animals and Housing 

All animal care and use procedures were in accordance with the guidelines for use 

of Animals in Agriculture Teaching and Research as approved by the Texas A&M 

University Institutional Animal Care and Use Committee. 

Five Angus-crossbred cows, with an initial BW of 537 ± 50 kg were used in this 

study. Upon arrival, cows were fitted with ultra-wideband radio frequency identification 

(RFID) ear tags (ABGI Tag and Traq®, Greeneville, TX) and a foam sticker of unique 

shape and color to allow for individual identification on the video. Cows were housed in a 

pen (9 x 26 m) equipped with a water trough, and fence line bunk (4.88 m) at the Beef 

Cattle Systems Research Center (College Station, TX). Cows were provided ad libitum 

access to a roughage-based diet fed twice daily at approximately 0800 and 1500. 

A video surveillance camera was affixed 2.89 m above and 0.91 m in front of the 

center of the bunk to record animals entering and exiting the feed bunk (Figure 2.3). A 

500-W light was placed above the feed bunk to facilitate collection of video at night. Two 
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trained observers independently observed the time-lapse video, and recorded animal 

identification number and the start and end times for each BV event using Behavioral 

Observation Research Interactive Software (Friard and Gamba, 2016). Start and end times 

for BV events were recorded when an animal’s poll had completely transverse the 

horizontal cable extending above the lip of the feed bunk. There was no attempt to quantify 

the orientation of the head during a BV event. 

The CattleTraq® System 

The electronic (CattleTraq®) system used for this study consists of a computing 

ecosystem (hardware and software) that provides real time positional information of each 

animal within the pen. The hardware consists of an ultra-wide band transmitter attached to 

the calf via an ear tag, and readers positioned around the pen and in a beacon tube (Figure 

2.3) fixed to the front face of the feed bunk that receive tag positional information at 1-s 

intervals and relays back to a central server. The beacon tubed contained 6 radio receivers 

spaced 0.91 m apart. A seventh radio receiver was affixed approximately 2.89 m above the 

center, and 0.91 m away from the front of the bunk. Computer algorithms evaluated the 

positional information of each calf and continuously recorded the presence or absence of 

an animal from the feed bunk according to various parameter settings. 

Data Analysis 

The electronic (CattleTraq®) algorithm was used to calculate the BV data 

according to the parameter settings used to define the presence or absence of an animal 

from the feed bunk. The system initiated a feeding event when it detected the ear tag of an 

animal to have crossed the lip of the feed bunk, which was defined in the computer as a 

virtual line extending along 0 according to the y axis. The computer terminates a BV event 
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when the animal is detected to have left the feed bunk, defined by the maximum distance a 

tag can be detected from the bunk on the y axis without ending the current BV. The 

purpose of the out-of-bunk parameter setting is to avoid the over or under estimation of BV 

frequency and duration due to the animal flipping the ear out of the bunk while consuming 

feed. Out-of-bunk parameter settings were computed at values of 0, 15, 25, 30, and 35 cm 

out, then electronic BV frequency and duration were compared to observed feeding 

behavior. A total of 280 animal h of observed video were decoded, and the corresponding 

electronic data captured.  

The frequency of BV events was calculated as the number of times the animal 

visited the bunk during within a h. Bunk visit duration was computed as the sum of the 

differences between the timestamp recorded as the animal entered the bunk and the 

timestamp recorded as the animal left the bunk per hour. 

Statistical and Sensitivity Analysis 

The observed or electronic data collected for each animal h was considered the 

experimental unit for all data analyzed in this study. Observed (video) and electronic 

(CattleTraq®) measurements of feeding behavior were compared using a PROC MIXED 

model (JMP, SAS Institute Inc., Cary, NC) that included treatment (0, 15, 25, 30, and 35 

cm out-of-bunk parameter setting) as a fixed effect. Observed data (dependent variables) 

were regressed on electronic feeding behavior data (independent variables) to obtain an 

estimate of precision (R2). In addition, the mean square error of prediction (MSEP), mean 

bias (MB), model accuracy (Cb), and concordance correlation coefficient (CCC) were 

computed to assess the precision and accuracy of the electronic system in predicting BV 

traits using the Model Evaluation System as described by Tedeschi (2006). As described 
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by DeVries et al. (2003), sensitivity (the likelihood that an animal present at the feed bunk 

is detected present by the system) and the specificity, (the likelihood that an animal absent 

from the feed bunk is detected absent by the system) were evaluated by determining feed 

bunk presence and absence of observed and electronic BV duration for each second of the 

day during video recording periods. 

Results 

The observed and electronic BV frequency and duration data are presented in Table 

2.1. The out-of-bunk parameter setting affected (P < 0.01) BV frequency and duration. As 

demonstrated in Figure 2.1, BV frequency decreased, and BV duration increased as the 

out-of-bunk parameter setting was increased. However, electronic BV frequency at out-of-

bunk parameter settings 0 cm out and 15 cm out were greater (P < 0.05) than observed BV 

frequency, while no differences were detected (P > 0.05) at out-of-bunk parameter settings 

25, 30, and 35 cm. Bunk visit durations at out-of-bunk parameter settings 15, 25, 30, and 

35 cm were not different from observed values (P > 0.05), whereas, electronic BV duration 

at out-of-bunk parameter setting 0 cm out was less (P < 0.01) than observed BV duration. 

The decrease in frequency and increase in duration of electronic BV events as the 

out-of-bunk parameter setting increased from 0 to 35 cm out can be explained by how this 

parameter setting is used by the computer software to determine the conclusion of BV 

events. When measuring a BV event, the end time stamp of the BV event was recorded 

when the geo-location of the tag is detected beyond the value specified by the out-of-bunk 

parameter setting. Consequently, the frequency of BV events will decrease as the distance 

from the bunk used to end a BV event is increased. Conversely, since fewer BV are 

created, the duration of BV will increase as the out-of-bunk parameter setting is increased. 
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The purpose of using the out-of-bunk parameter setting is to limit the over or under 

prediction of BV frequency and duration if the geo-location of the tag is not accurate while 

the animal is consuming feed. 

The evaluation of the goodness-of-fit of the system to predict observed BV 

frequencies and duration are summarized in Table 2.1. The out-of-bunk decision rules of 

25, 30, and 35 cm out reported higher values for precision and accuracy of the system to 

predict bunk visit frequency compared to the other out-of-bunk decision rules. This was 

determined by a greater R2 (81.0% for 25, 30, and 35 cm out, respectively) lower SD 

(11.04, 9.98, and 11.04) and less mean bias (0.07, -0.9, and 0.07) for out-of-bunk rules 25, 

30, and 35 cm, respectively. The out-of-bunk decision rules 25, 30, and 35 cm improved 

values for prediction of bunk visit duration. This was determined by a greater R2 (89.0, 

90.0, 90.0%) and less mean bias (-1.12, -0.68, -0.33) for out-of-bunk decision rules 25, 30, 

and 35 cm, respectively. This indicates that multiple out-of-bunk decision rules can 

accurately predict at the same time BV frequency and duration. 

To examine the sensitivity and specificity of the system to predict BV data, the BV 

duration was summarized using a binary coding system where an animal was considered 

either present or absent at the feed bunk for every second of the observed hour (N = 3600 

sec total) during the 280 observed h (Table 2.2). This was calculated for the out-of-bunk 

decision rules 0, 15, 25, 30 and 35 cm. The sensitivity of the system was 61.6, 76.1, 76.6, 

84.4 and 82.0% for out-of-bunk decision rules 0, 15, 25, 30, and 35 cm, respectively. The 

specificity of the system was 99.3, 98.8, 98.8 98.3, and 98.5% for 0, 15, 25, 30, and 35 cm 

out, respectively. 
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Discussion 

Results of this validation study demonstrated that the system can accurately predict 

the frequency and duration of observed BV events using an out-of-bunk decision rule 

between 25 and 35 cm. Further evaluation of the data indicates that using an out-of-bunk 

rule 30 cm is the most accurate for predicting BV frequency. However, there was no 

advantage of this rule regarding calculating and predicting BV duration. 

Previous studies have validated the use of electronic active and passive RFID-based 

systems in cattle. Bach et al. (2004) evaluated the accuracy of feeding behavior data 

collected by a gated feed intake system and reported a sensitivity and specificity of 99.6 

and 98.8%, respectively. Chapinal et al. (2007) validated the FB data collected by the 

Insentec® System, which consists of a gated feed bunk activated by an RFID tag and 

allows continuous observation of BV frequency, duration and feed intake. Due to the 

extremely structured feeding area of the Insentec® System, the study reported strong 

coefficients of determination for bunk visit (99.0%) and perfect (100%) sensitivity and 

specificity. DeVries et al. (2003) and Schwartzkopf-Genswein et al. (1999) validated an 

early version of a GrowSafe® system feed bunk monitoring system which used a mat 

attached to a standard feed bunk to record only feeding behavior. DeVries et al. (2003) 

reported sensitivity and specificity values of 87.4 and 99.2%, respectively; however, 

coefficient of determination values was not reported. The Intergado® feed intake system 

reported a coefficient of determination of 99.0% for BV duration and sensitivity, 

specificity values of 99.6 and 99.9%, respectively. Mendes et al. (2011) validated the 

GrowSafe® feed intake system and reported coefficients of determination for BV 

frequency and bunk visit duration of 68.0 and 81.0%, respectively. Sensitivity and 
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specificity were analyzed by detecting the animal’s presence on a per minute basis, 

resulting in values of 86.4 and 99.6%, respectively. Analyzing the accuracy of the system 

on a second basis as done in the current study drastically increases the opportunity for 

wrong determination. Given that the this study’s values are greater than those reported, 

these results suggest that the electronic system has the capability to accurately detect an 

animal’s presence at the feed bunk.  

Recent advances in ultra-wideband RFID and computing technologies have 

increased the availability of biosensor systems that track feeding behavior in less 

structured feed bunk systems than the feed intake systems presented previously. Brown-

Brandl et al. (2011) developed a system of passive RFID tags that communicated with 

RFID transceivers located in pipes fastened to the top of the bunk. While a 94.1 and 98.3% 

agreement with observed frequency and duration was achieved, inclement weather and 

infrastructure interference within the bunk were noted. 

Wolfger et al. (2015) reported validation statistics for the FEDO® system, which 

consists of a tracking band containing an accelerometer and a RFID tracking chip detected 

by antennae located near the bottom of the feed bunk as the animal approaches. It was 

reported that BV frequency had a coefficient of determination of 99.0%, and sensitivity 

and specificity of 100 and 94.0%, respectively. These results were better than what was 

found using the current electronic system, although it should be noted that that a 5-min 

static meal-criterion, which combined bunk-visits less than 5-min apart into one BV event, 

lowered resolution compared to the electronic system. The greater resolution of the 

electronic system increases the opportunity for inconsistencies with observed data to occur 
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since less cleaning of the data is performed creating a more precise picture of individual 

feeding behavior. 

Differences in the RFID-based systems and methodology used to evaluate the data 

should be considered when comparing each system’s ability to detect an animal’s presence 

or absence from the bunk. An open feed bunk (such as that used in this study), is standard 

in the industry and allows the animal to freely perform their individual feeding behavior 

patterns (DeVries et al., 2003), however, these types of feed bunks can increase the 

difficulty in in predicting BV events. Thus, the accuracy of the current system makes it a 

truly unique tool to monitor feeding behavior, with a wide array of applications in the feed 

lot industry. 

Implications 

The accuracy and sensitivity of the system exceeds the standards of acceptability 

set by previous technologies. The electronic system accurately measured animal presence 

at the bunk and BV frequency and duration, however, implementing the system is not 

trivial. Set-up and calibration requires substantial input and expertise, and the inherent 

nature of the RFID technology causes signals to be lost due to interference from metal and 

other objects. This technology offers the ability to better understand feeding patterns, 

which provides the opportunity to improve selection of feed efficient animals, predict onset 

of disease in animals, and facilitate improved bunk management practices to improve 

animal performance.
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Tables 

 

Table 2.1 Goodness of fit statistics between electronic and observed bunk visit (BV) frequency and 

duration at various out-of-bunk decision rules. 

Trait Mean SD R2 MSEP1 Mean Bias2 CCC3 

BV frequency, events/h 

Observed 8.65a 11.1 - - - - 

0 cm out 19.22b 24.66 71.67 388.00 10.57 0.54 

15 cm out 12.61c 16.01 76.33 88.29 3.96 0.78 

25 cm out 8.72a 11.04 81.32 25.99 0.07 0.90 

30 cm out 7.75a 9.98 81.05 22.89 -0.90 0.90 

35 cm out 8.72a 11.04 81.32 25.59 0.07 0.88 

BV duration, min/h 

Observed 6.84a 7.97 - - - - 

0 cm out 4.3b 5.51 86.07 17.28 -2.54 0.82 

15 cm out 5.03ab 6.34 87.98 10.85 -1.81 0.90 

25 cm out 5.72ab 7.08 89.24 7.40 -1.12 0.94 

30 cm out 6.16ab 7.42 89.96 6.60 -0.68 0.94 

35 cm out 6.51a 7.65 89.94 6.44 -0.33 0.95 
abc values separated by different letters with column are different P < 0.01; 1MSEP = mean squared 

error of prediction; 2Mean Bias = absolute mean difference observed – predicted; 3CCC = 

concordance correlation coefficient. 
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Table 2.2 Sensitivity, specificity, and accuracy of the electronic system to predict bunk 

attendance at the feed bunk using various out-of-bunk decision rules. 

Out-of-bunk decision rule Sensitivity1 Specificity2 Accuracy3 

0 cm out 61.60 99.30  80.45  

15 cm out 76.11 98.83  87.47  

25 cm out 76.60 98.80  87.90  

30 cm out 84.43 98.33 91.38 

35 cm out 82.09 98.52  90.31  
1Sensitivity  = true positive rate, percent of time the system correctly classified the animal as 

present in the feed bunk; 2Specificity = true negative rate, percent of time the system correctly 

classified the animal as absent from the feed bunk; 3Accuracy = overall system accuracy, the 

average of sensitivity and specificity at that out-of-bunk decision rule. 
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Figures 

 

 

 

 
Figure 2.1 Means (± SE) of electronic vs. observed bunk visit (BV) frequency and duration at 

various out-of-bunk decision rules. 
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Figure 2.2 Electronic vs. observed bunk visit (BV) frequency 

(top panel) and duration (bottom panel) at the selected out-of-

bunk decision rule (30 cm). 
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Figure 2.3 View of the feed bunk (left panel) and the beacon tube (right panel) used to capture 

electronic and observed feeding behavior in this study. 
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CHAPTER III  

PREDICTION OF FEED INTAKE AND FEED EFFICIENCY IN FEEDLOT STEERS 

BASED ON PHENOTYPIC ASSOCIATIONS WITH FEEDING BEHAVIOR AND 

CARCASS ULTRASOUND TRAITS 

Introduction 

Increasing the genetic merit of beef cattle for feed efficiency is an effective strategy 

to improve the economic and environmental sustainability of beef production. Residual 

feed intake (RFI) is a measure of feed efficiency independent of performance and body 

weight (BW), whereby feed-efficient animals consume less dry matter intake (DMI) than 

predicted (Arthur et al., 2001). Since RFI is moderately heritable (Arthur et al., 2001; Herd 

et al., 2003; Crowley et al., 2010), it is an ideal trait used to improve efficiency of feed use 

and independent of productivity traits (Carstens, 2006), it is more robust compared to other 

selection traits that are correlated with increased mature BW. However, the complex 

biological mechanism controlling feed intake have resulted in an incomplete understanding 

of the RFI (Herd and Arthur, 2009). Furthermore, the technology required to measure 

individual animal feed intake is only possible through the use of expensive equipment 

(Moore et al., 2014), limiting application in replacement females. 

Numerous studies have documented that cattle with divergent RFI phenotypes 

exhibit distinctly different feeding behavior (FB) patterns (Lancaster, et al., 2009), 

indicating that cattle feeding behavior could serve as a bio-marker for selecting for feed 

efficient animals (Hafla et al., 2013; Nkrumah et al., 2014; Wood et al., 2014). 

Historically, feeding behavior traits have been difficult and expensive to measure, 

however, advancements in high frequency RFID technology combined with improved 
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battery design and wireless data transmission systems increase the likelihood that these 

technologies designed to continuously monitor individual animal behavior will be adopted 

at the commercial scale.  

Advanced animal tracking systems have the potential to record continuous activity 

and feeding behavior. Multiple studies published in the literature identify feeding behavior 

traits such as head down (HD) duration, HD duration per meal (Kayser et al., 2013), bunk 

visit (BV) frequency (Lancaster et al., 2009), and BV duration (Fitzsimons et al., 2014) to 

be predictive of RFI. However, the signals between feeding behavior traits, performance 

and RFI are variable between studies (Kayser et al., 2013), as Nkrumah et al. (2007), 

Basarab et al., (2003), and Durunna et al., (2011) reported differences in BV frequency 

between RFI classes, while none are reported by Kayser et al. (2013), thus, isolating 

specific feeding behavior traits for use in prediction equations is difficult (Kayser et al., 

2013). Moreover, because feeding behavior traits are collinear, the use of multiple linear 

regression techniques to create prediction equations is limited. Partial least squares (PLS) 

regression is designed to create prediction equations from multivariate datasets containing 

highly collinear variables, therefore, PLS regression may be an effective method for 

predicting RFI from feeding behavior data. The objectives of this study were to examine 

the associations between RFI, FB patterns and ultrasound traits in beef steers and, to 

evaluate the variation in RFI explained by FB and ultrasound traits using PLS regression 

methods. 
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Materials and Methods 

Animals and Experimental Design 

All animal care and use procedures were in accordance with the guidelines for use 

of Animals in Agriculture Teaching and Research as approved by the Texas A&M 

University Institutional Animal Care and Use Committee.  

This study was comprised of 3 trials conducted with composite Angus steers (N = 

508; Rex Ranch, Ashby, NE), with an initial BW of 309 ± 56 kg and age of 290 ± 16 d. 

Upon arrival at the Texas A&M AgriLife McGregor Research Center (McGregor, TX), 

steers were vaccinated, dewormed and fitted with passive, half-duplex transponder ear tags 

(Allflex USA Inc., Dallas TX). Steers were randomly assigned to 1 of 2 pens (46 x 58 m) 

equipped with 10 electronic feed bunks (GrowSafe Systems LTD., Airdrie, AB, Canada) to 

measure feed intake and FB. Steers were adapted to a high-grain diet (Table 3.1) for 28 d, 

after which ad libitum feed intake and FB data were collected for 70 d. The GrowSafe® 

system consisted of feed bunks equipped with load bars to measure feed disappearance, 

and an antenna within each bunk to record animal presence by detection of the animal’s 

unique EID tag during feeding events. 

Individual feed intake was computed using a subroutine of the GrowSafe 4000E 

software (Process Feed Intakes) based on continuous recordings of feed disappearance 

during feeding events. Assigned feed disappearance (AFD) rates were computed daily for 

each feed bunk to assess data quality. Data was excluded due to equipment malfunction or 

when the average AFD rates were < 95% for the pen. For trial 1, 15 and 11 d were 

excluded for pen 1 and 2, respectively, while 22 and 4 d were excluded for trial 2, and 12 
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and 15 days were deleted for trial 3, in pens 1 and 2, respectively. The average AFD for the 

days included in analysis were 98.3, 98.8, and 97.3% for trials 1, 2 and 3, respectively. 

Feeding behavior traits evaluated in this study were based on the frequency and 

duration of individual animal bunk visit and meal events. Further, the duration of non-

feeding intervals (NFI), head down duration, latency to the bunk following feed delivery 

(TTB), and the corresponding day-to-day variation (SD) of these traits were measured for 

each animal (Table 3.2). A BV event commenced when the EID tag of an animal was first 

detected at a feed bunk and ended when either the duration of time between the last 2 

consecutive EID recordings exceeded 100-s (a parameter setting in the GrowSafe 4000E 

software [GrowSafe Systems Ltd.]), the EID tag was detected in another bunk, or the EID 

ear tag of another animal was detected at the same bunk (Mendes et al., 2011). 

Bunk visit frequency was defined as the number of independent BV events 

recorded regardless of whether feed was consumed; and BV duration was defined as the 

sum of the lengths of BV events recorded during a 24-h period (Jackson et al., 2016). The 

interval lengths between BV were defined as the non-feeding interval (NFI), and the 

maximal NFI was defined by the longest NFI within each day. Head down duration was 

computed as the sum of the number of times the EID ear tag for an animal was detected 

each day multiplied by the scan rate of the GrowSafe system (1.0 readings/s; Jackson et al., 

2016).  

A 2-pool Normal-Weibull distribution model was fitted to the feeding and non-

feeding interval data collected over the duration of the study. The intercept of the 2 

distributions was used to define meal criterion, that included the longest non-feeding 

interval that is still part of a meal (Yeates et al., 2001). Bunk visit event data was clustered 
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into meal events after meal criterion was determined for each animal using the BV events 

from the duration of the study (Bailey et al., 2012). Meal frequency was defined as the 

total number of meal events per 24-h period, and meal duration was defined as the sum of 

the lengths of meals recorded during a 24-h period. In addition, the day-to-day variation of 

individual animal BV frequency, BV duration, HD duration, TTB, meal frequency, and 

meal duration were computed as the SD of the residuals from the actual vs predicted 

values. These values were calculated by regressing trait on day of trial. Additionally, 3 

ratio traits were calculated; BV frequency per meal event, HD duration per meal event, and 

HD duration per BV event. 

During the 70-d trials, BW was measured at 14-d intervals, and ultrasound 

measurements of backfat depth, intramuscular fat, and LMA were obtained on days 0 and 

70 by a certified technician using an Aloka 500-V instrument with a 17-cm, 3.5-MHz 

transducer (Corometrics Medical Systems Inc., Wallington, CT). Diet samples were 

collected weekly and composited by weight at the end of each trial. Diet DM was 

measured by drying samples in a forced air oven for 48-h at 105 °C, while an independent 

laboratory (Cumberland Valley Analytical Services Inc., Hagerstown, MD) was used to 

conduct chemical analysis for nutrient composition. Metabolizable energy concentration 

was estimated using the Large Ruminant Nutrition System 

(http://nutritionmodels.tamu.edu/lrns.htm) which is based on the Cornell Net Carbohydrate 

and Protein System. 

Growth rates of individual steers were calculated by linear regression of serial BW 

on day of trial using the PROC GLM procedure of SAS, and the regression coefficients 

used to compute ADG, and mid-test BW0.75 (Jackson et al., 2016). Moisture analysis from 
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weekly samples were used to adjust feed intake measurements to determine daily DMI. 

Estimates for missing feed intake data were derived from linear regression of the feed 

intake on the day of trial as described in Hebart et al. (2004). 

Residual feed intake was calculated as the difference between expected and actual 

DMI from linear regression of DMI on ADG and mid-test BW0.75 (Koch et al., 1963), with 

year and pen within year included as fixed affects. Similarly, residual gain (RG) was 

computed as the residual from the linear regression of ADG on mean DMI and mid-test 

BW0.75 with fixed effects of year and pen within year (Koch et al., 1963). Within trial, 

steers were ranked by RFI and classified into one of three RFI phenotypic groups; low (< 

0.5 SD), medium (± 0.5 SD) or high (> 0.5 SD). To examine the differences of 

performance, feed efficiency, and feeding behavior traits among RFI classes, a mixed 

model (SAS Inst. Inc., Cary, NC) that included fixed effect of RFI classification, and 

random effects of year and pen within year was used. Tukey-Kramer post-hoc test was 

used to evaluate differences among treatment means. The PROC CORR procedure of SAS 

(SAS Inst. Inc., Cary, NC) was used to determine phenotypic correlation coefficients 

among FB and performance traits. 

Partial Least Squares Regression Analysis 

The PLS method was used to develop predictive equations for DMI and feed 

efficiency traits (RFI, RG) that included FB traits, with and without carcass ultrasound 

traits, as independent variables. Two validation methods (leave-one-out cross validation 

and test-set validation) were used to evaluate the accuracy of the prediction equations. 

Leave-one-out cross-validation was accomplished by iteratively removing one animal at a 

time from the database and predicting the removed observation’s value based on the 
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remaining observations in the dataset. Test-set validation was accomplished by selecting 

either a trial or a pen to serve as the validation group, and either the remaining 2 trials or 

the remaining pen were used to develop a calibration equation, which was used to predict 

the independent variable in the remaining group. 

The accuracy of the PLS models were evaluated based on: (1) standard errors of 

calibration (SEC), validation (SEV), and cross-verification (SECV), (2) coefficients of 

determination for calibration (R2C), validation (R2V), and cross-verification (R2CV), and 

(3) mean bias. Spearmans rank correlations between predicted and actual feed efficiency 

values were utilized to test the re-ranking of animals (Gomes et al., 2012). The mean 

squared error of prediction (MSEP), mean bias (MB), model accuracy (CB), and 

concordance correlation coefficient (CCC) were computed to assess the precision and 

accuracy of the PLS models. The PLS model was selected to reduce the standard error and 

MSEP while maximizing the R2 value and retain as many variables in the model as 

necessary to create useful prediction equations. 

To further evaluate the ability of the PLS model to predict RFI, animals were 

classified into RFI phenotype groups, firstly based upon their actual RFI and secondly by 

their predicted RFI. Individuals were subsequently classified as either 1) re-ranking from 

High to Low RFI, 2) re-ranking from Low to High RFI, 3) the difference between actual 

and predicted RFI classification differed by a single class (e.g., High to Medium; Medium 

to Low), or 4) the animal’s classification did not change between predicted and actual RFI 

rankings. Mean separation using Tukey Separation in PROC Mixed model SAS (SAS Inst. 

Inc., Cary, NC) was used to differentiate among the means of animals that were re-ranked 



 

 46 

to identify key phenotypical and behavioral traits indicative of animals that differ in their 

actual and predicted RFI classifications. 

The PLS regression method was used to develop predictive equations for DMI 

using FB and growth traits, with and without carcass ultrasound traits, as the independent 

variables. Two validation methods were considered when evaluating these DMI-prediction 

models. Furthermore, G:F was calculated using predicted DMI from the model developed 

using the leave-one-out cross-validation method. 

Results and Discussion 

Summary statistics for performance, feed efficiency, ultrasound and feeding 

behavior traits are presented in Table 3.3 and Table 3.4. The initial age of steers at the start 

of the trials averaged 290 ± 16 d and ranged from 280 to 313 d. The regression model used 

to compute RFI, revealed that ADG and mid-test BW0.75 accounted for 45.5% of the 

variation in DMI. St-Pierre (2001) indicated that ignoring the effect of trial by independent 

variable interactions when performing regressions across multiple trials would lead to 

possible biased estimates of regression coefficients, thereby resulting in biased estimates of 

the residual variance. Means and SD for RG and RFI were 0.00 ± 0.19 kg/d and 0.00 ± 

0.78 kg/d, with RG ranging from -0.55 to 0.57 kg/d and RFI ranging from -3.38 to 2.30 

kg/d, respectively. Performance, feed efficiency, and ultrasound traits for composite Angus 

steers with divergent RFI are presented in Table 3.3. Feed-efficient cattle consumed 16.0% 

less DMI, and 16.5% less DMI as percent of BW, while initial hip height, initial BW, and 

ADG were not different compared to high-RFI steers. Low-RFI steers exhibited greater 

RG compared to inefficient steers, and feed-efficient steers had less (P < 0.05) initial and 
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final BF depth and less final IMF compared to high-RFI steers. However, initial IMF and 

initial LM area did not differ (P > 0.14) among steers in divergent RFI classes. 

Consistently Efficient: Feeding Behavior Differences Among Feed Efficiency Classes of 

Beef Cattle 

Previous research has illustrated that cattle with divergent RFI phenotypes express 

distinctive FB patterns. Feeding behavior traits for composite Angus steers with divergent 

RFI are presented in Table 3.4 and phenotypic correlations among feeding behavior, 

performance and feed efficiency traits are reported in Table 3.6. Thirteen FB traits 

significantly correlated (P < 0.05) with RFI in a positive manner. Compared to high-RFI 

steers, low-RFI steers had 18% fewer (P < 0.01) BV events and 11% fewer (P < 0.01) 

meal events. Fitzsimons et al. (2014) reported a 24% reduction in BV frequency in low-

RFI dairy cows, which is in agreement with the 39% reduction reported by Nkrumah et al. 

(2006) in feed efficient Angus and Charolais bulls. Durunna et al. (2011b) reported a 13% 

reduction in BV frequency for low-RFI crossbred steers compared to their inefficient 

counterparts. In contrast, Kayser et al. (2013) reported no difference in BV frequency 

among RFI groups in both Hereford and Angus bulls, which is supported by results 

reported by Lancaster et al. (2009) in Angus bulls and by Hafla et al. (2013) in Bonsmara 

heifers. 

The association between the duration of BV and meal events, and RFI have been 

more consistent. In the current study, low-RFI steers had a 23.5% reduction (P < 0.01) in 

BV duration, and a 36% lower (P < 0.01) HD duration compared to high-RFI animals. 

Nkrumah et al. (2006) found that feed efficient bulls visited the bunk 35% less than the 

high-RFI group, while Durunna et al. (2011b) concluded that finishing crossbred steers 
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spent 19% less time visiting the feed bunk. Kayser et al. (2013) reported a 31% reduction 

in HD duration for both low-RFI Hereford and Angus bulls, which is in agreement with 

Lancaster et al. (2009), who found a 15.4% decrease in HD duration and 13.0% reduction 

in BV duration between feed-efficient vs. inefficient bulls. Breaking with the norm, 

Bingham et al. (2009) reported that low-RFI Brangus heifers exhibited 18.5% greater HD 

duration compared to the high-RFI group, which is in disagreement with current findings. 

However, Bingham collected his FB via time-lapse video and video observers for 

intermittent intervals throughout the study, so HD duration may not be the same trait 

measured by the GrowSafe® system. 

Efficient steers (low-RFI) took, 10 min longer (P < 0.01) on average to approach 

the bunk following feed delivery compared to inefficient steers. There was a tendency (P = 

0.07) for meal criterion to be longer in low-RFI compared to high-RFI steers, which is 

similar values calculated by Hafla et al. (2013) in Brangus heifers. Meal duration was 

weakly associated with RFI (0.26) and DMI (0.16), such that low-RFI animals had 13% 

shorter meal duration compared to high RFI animals. Average meal lengths between low-

RFI and high-RFI steers did not differ. Furthermore, feed efficient steers had 48% fewer 

BV events per meal, spent 16.8% less time in HD duration per BV duration, and had a 

26.2% shorter HD duration per meal duration when compared to high-RFI steers. 

Compared to high-RFI steers, feed efficient animals exhibited significantly less (P 

< 0.01) day-to-day variation in DMI and FB patterns. Day-to-day variation in DMI was 

9.7% lower in feed efficient steers, with a corresponding reduction of 23.5 and 13.8% in 

BV frequency and duration respectively. When considering HD duration, low-RFI steers 

spent 36% less time with their head in the bunk compared to less efficient animals. Like 
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BV traits, day-to-day variation for meal frequency and duration was 12.5% less (P < 0.01) 

for low-RFI steers. In contrast, low-RFI steers had greater day-to-day variation in both 

TTB and maximal non-feeding interval. In stark contrast, no differences between RFI 

cohorts were found for either meal length or the variation in meal length (P > 0.14). Little 

data is reported in the literature to describe this phenomenon. However, erratic FB and 

variation in daily DMI is commonly associated with sub-clinical acidosis and reduced 

performance by nutritionist and cattle feeding managers. Sub-clinical acidosis has been 

linked to reduced performance by Galyean et al. (1995), who demonstrated that artificially 

produced intake variation decreased animal gain and feed efficiency (Stock et al., 1995). 

Also, introduction of monensin into the diet reduces variation in DMI, and results in 

reduced incidence of digestive disorders (Black and McQuilken, 1980; Cooper et al., 

1997). In addition to the alteration of digestion, this change in FB patterns is attributed to 

improved performance. 

 Devries et al. (2009) reports that dairy heifers facing increased bunk competition to 

access feed offered ad libitum in Insentec® feed bunks exhibit increased variation in day-

to-day variation in feeding patterns. But despite increased competition, no changes were 

observed in mean or day-to-day variation of DMI. Moreover, Hosseignkhani et al. (2008) 

found that though eating rate was increased while BV duration was reduced due to 

increased competition, the degree of feed sorting remained the same. The combination of 

increased day-to-day variation in both DMI and FB associated with feed efficiency in the 

current study suggests that bunk competition may not be the cause. 

These values indicate a distinctive pattern arising between low-RFI and high-RFI 

steers. Low-RFI steers were more reticent in their approach to the bunk, had fewer BV and 
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meal events per day that were shorter in length. The reduction in day-to-day variation of 

the FB between steers from divergent RFI groups indicates that feed efficient animals are 

more consistent in their feeding patterns. 

Partial Least Squares Regression 

Partial least squares regression was used to analyze the variation explained in DMI, 

RFI, and RG using independent variables of feeding behavior or feeding behavior 

combined with ultrasound traits. Finally, the selected variables were used to create a 

prediction equation for DMI, RFI, or RG. For each PLS model, the optimal number of 

latent factors to be retained was determined by comparing the root mean of the predictive 

residual sum of squares (PRESS) using leave-one-out cross-validation. 

As an example, the factor selection for RFI predicted using only FB are presented 

in Table 3.8. The table details the percent variation accounted for by the factor in both the 

independent and dependent variables. The minimum PRESS value occurred at factor 9, 

with a value of 0.841. Thus, 9 latent factors explaining 99.7 and 42.1% of the variation in 

the independent (FB) and dependent (RFI) traits, respectively, were used in the PLS model 

to create a prediction equation for RFI. 

Predicting RFI, DMI, and RG with Feeding Behavior Traits 

Based on Wold’s criterion, (Wold et al., 2001), independent variables with VIP 

scores greater than 0.8 were retained in the final model. Standardized regression 

coefficients and VIP scores generated by the PLS model to predict RFI based on FB and 

FB combined with ultrasound traits are presented in Table 3.9. Nine FB traits explaining 

42.1% of the variation in RFI were selected by the PLS regression method. The PLS model 

retained BV frequency and duration, HD duration, and the day-to-day variation of these 



 

 51 

traits, as well as meal duration and ratio traits HD duration per BV duration and HD 

duration per meal duration. Inclusion of ultrasound traits in combination with FB traits 

explained 46% of the variation in RFI, which included the 9 feeding behavior traits listed 

above in addition to initial backfat depth and gain in backfat depth. A comparison of model 

fit statistics between the feeding behavior and feeding behavior combined with ultrasound 

traits indicates only a slight improvement with the additional variables. Standard error of 

cross-validation reduced from 0.60 to 0.57 by including ultrasound traits, while the MSEP 

and Mean Bias were reduced by 0.03 and 0.02, respectively. The Spearmans rank 

correlation between observed and predicted values improved from 0.59 to 0.63 with the 

addition of initial backfat depth and gain in backfat depth. Lancaster et al. (2009) used 

stepwise regression analysis and reported that gain backfat depth and final longissimus 

muscle area explained 9% of the variation in DMI in Brangus heifers. However, the 

increase seen in the current PLS model falls in line with values presented by Basarab et al. 

(2003), and Herd et al. (2003) who reported that the inclusion of carcass traits increased 

the R2 from 2 to 4 percentage points for linear regression models predicting DMI. 

The least squares means for steers categorized based on actual and predicted RFI 

phenotype groups are presented in Table 3.11, while the percentage of steers falling into 

each category, (Correct Class, low-RFI to high-RFI, high-RFI to low-RFI, or One class 

change), are presented in Table 3.12. Results showed that both PLS models using either 

feeding behavior or feeding behavior combined with ultrasound correctly assigned 57% of 

steers to the correct RFI class. Alternatively, only 5% of steers were predicted in the most 

divergent class from that observed; 2.5% were observed to be low-RFI, but predicted to be 

high, with the remaining 2.5% observed in the high-RFI group but classified as low-RFI 
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with the PLS model. A mean separation test among the categories (presented in Table 

3.11), found no significant (P > 0.14) differences, with the exception of BV duration, and 

HD duration (P < 0.01). Cattle whose feeding behavior pattern for these two traits did not 

follow that expected for low and high RFI animals were incorrectly classified by the 

model. This further demonstrates the importance of these to traits that not only had the 

highest correlation with RFI (0.52 and 0.56, respectively), but also both returned the 

highest VIP values of 1.30. 

The same approach described above was used to generate PLS prediction equations 

for both DMI and RG. For DMI and RG, 7 and 3 factors were retained for each model, 

respectively. Partial least squares regression identified 12 feeding behavior traits to explain 

28% of the variation in DMI, and 9 feeding behavior traits that explained only 8% of the 

variation in RG. The model predicting DMI selected BV frequency and duration, HD 

duration, TTB, and meal duration, the day-to-day variation for these traits and the ratio of 

HD duration per BV duration, HD duration per meal duration, and BV per meal. Partial 

least squares regression selected BV duration, HD duration, TTB, and the day-to-day 

variation of these traits, as well as meal duration and ratio traits HD duration per BV 

duration and HD duration per meal duration. These values highlight the importance of 

duration traits as they relate to both DMI and feed efficiency, and it is obvious that these 

traits will serve as focal points for any model utilizing feeding behavior as a bio-marker in 

a selection index.  

Combining feeding behavior with ultrasound traits drastically improved the 

variation explained in DMI. The PLS model selected 8 feeding behavior and 8 ultrasound 

traits, which explained 44% of the variation in DMI. The traits selected were BV duration, 
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HD duration, meal duration, the day-to-day variation in these traits, and the three ratio 

traits HD d duration per BV duration, HD duration per meal duration, and BV per meal, 

which were combined with all ultrasound variables with the expectation of initial IMF. 

Model fit was drastically improved compared to the model created using feeding behavior 

only. The SECV decreased from 0.91 to 0.79, with a corresponding decrease in Mean Bias 

and MSEP from 0.73 to 0.64 and 0.82 to 0.63, respectively. An increase in the CCC from 

0.43 to 0.61 indicated a better model fit, as well as a 15% improvement in the Spearmans 

rank correlation statistic. Inclusion of ultrasound traits in the PLS regression model 

predicting RG increased the percent of variation explained from 8 to 13% by retaining the 

same 9 feeding behavior traits in addition to initial backfat, initial IMF, and initial and gain 

in LM area. Model fit statistics for the 2 models predicting RG were the poorest among all 

three independent variables. The original model developed using only feeding behavior 

traits had an SECV of 0.17. Addition of ultrasound traits reduced the SECV to 0.16, and 

both models had identical Mean Bias, and MSEP values of 0.13 and 0.03, respectively. 

Inclusion of ultrasound traits increased the CCC from 0.15 to 0.23, and the Spearmans rank 

correlation statistic from 0.26 to 0.35, for the feeding behavior and the feeding behavior 

combined with ultrasound models, respectively.  

Predicting DMI with PLS Regression using BW, Growth, and Feeding Behavior 

Traits 

Feeding behavior was combined with BW and ADG to predict DMI using PLS 

regression. The model selected 11 feeding behavior traits that in combination with ADG 

and BW explained 67% of the variation in DMI, which is significantly improved compared 

to the linear regression model containing BW and ADG alone which only explained 45.5% 
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of the variation in RFI. Addition of feeding behavior combined with ultrasound traits 

explained 71% of the variation in DMI when used in PLS regression in conjunction with 

ADG and BW. The model fit statistics are presented in Table 3.14, and a moderate 

reduction in SECV is noted with the inclusion of ultrasound traits from 0.61 to 0.58, and in 

Mean Bias from 0.49 to 0.46. Only a slight increase was noted in both CCC and 

Spearmans rank correlation after the addition of ultrasound traits to the model. 

 This indicates the opportunity to avoid issues associated with collinearity in 

feeding behavior traits which limits their use in multiple linear regression equations. 

However, the explained variation from both the PLS and linear regression model are less 

than that reported in the literature. Durunna et al. (2009b) reported that BW, ADG, and 

initial backfat depth explained 59 and 54% of the variation in DMI during the growing and 

finishing phase for crossbred steers. Stepwise regression was used to include the feeding 

behavior traits of BV frequency and duration, and HD duration, which increased the 

explained variation to 66 and 68% for the growing and finishing phase respectively 

(Durunna et al., 2009b). However, the linear regression model explained less variation in 

DMI than reported by Lancaster et al. (2009), Durunna et al. (2011a), and Durunna et al. 

(2012), indicating that the increase in variation explained by feeding behavior is greater 

than that reported in the literature. This indicates the power of PLS regression to increase 

the accuracy of a model by accurately accounting for the collinearity among feeding 

behavior traits. 

Multiple papers have reported an improvement in explained variation in RFI by 

inclusion of feeding behaviors in the model. Durunna et al. (2011b) reported a 14% 

increase in explained variation in RFI by including feeding behavior traits BV frequency 
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and duration, and HD duration in addition to BW and ADG in finishing steers. Kayser et 

al. (2013) found that HD duration explained between 18 and 35% of the variation in DMI 

in Angus and Hereford bulls, respectively.  

Implications 

Technology improvements have made it cost effective to measure feed intake and 

feeding behavior (Kayser et al., 2013), however, the prohibitive cost of the equipment has 

reduced the number of replacement animals who are directly selected for feed efficiency. 

With the development of new technology capable of reporting individual animal behavior, 

the ability to indirectly predict an animal’s efficiency classification relative to other 

animals in the cohort may be possible. In the current study, animals in the low RFI class 

exhibited lower DMI, and improved G:F without compromising growth measures of 

performance. By using feeding behavior traits, it was possible to account for a moderate 

percentage of the variation in DMI and RFI, while only incorrectly classifying 5% of the 

animals into an RFI class greater than 2 from that originally observed. Moreover, the 

combination of easily measured BW and growth traits with feeding behavior traits 

improved the prediction of DMI to a greater degree from that expected in the literature 

using multiple linear regression. Thus, it is a safe conclusion that PLS offers the ability to 

accurately identify feed efficient animals as well improve the accuracy of predicting DMI 

when combined with growth and BW. 
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Tables 

Table 3.1 Ingredient and chemical composition of experimental diets. 

Item Year 1 Year 2 Year 3 

Ingredient composition, % as-fed 
Dry rolled corn 72.7 73.7 74.28 
Brome hay 5.5 6.0 5.44 
Cottonseed meal 8 6.0 7.82 
Cottonseed hulls 5.5 6.0 5.44 
Molasses 5 5.0 6.05 
Mineral premix1 2.5 2.5 0.23 
Urea 0.8 0.8 0.73 

Chemical analysis, % DM 
DM, % 88 90.2 88 
CP, % 11 12.6 14.9 

NDF, % 17.9 20.3 20.8 

ME, Mcal/kg 2.75 2.71 2.60 
1Mineral premix contained minimum 15.5% Ca, 2800 ppm Zn, 1200 ppm Mn, 12 

ppm Se, 14 ppm Co, 30 ppm I, 45.4 KIU/kg Vit-A, 2.3 KIU/kg Vit-D, 726 IU/kg 

Vit-E, 1200 Monensin, and 400 ppm Tylan. 
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Table 3.2 Definitions of feeding behavior traits. 

Item Definition 

Bunk Visit (BV) frequency, 

events/d 
Number of BV events recorded each day 

BV frequency SD1, events/d Day-to-day variation in BV events recorded each day 

BV duration, min/d Sum of the length of all BV events recorded each day 

BV duration SD1, min/d 
Day-to-day variation of the sum of the length of all BV events 

recorded each day. 

Head down (HD) duration, min/d 
Number of EID recordings each day multiplied by the scan rate 

of the of GrowSafe system 

HD duration SD1, min/d Day-to-day variation in HD duration for each animal 

Time to bunk, min 
Length of interval between feed-delivery and the first BV event 

following feed delivery each day 

Time to bunk SD1, min Day-to-day variation in Time to bunk for each animal 

Meal frequency, events/d Number of meal events recorded each day 

Meal frequency SD1, events/d Day-to-day variation in the meal frequency for each animal 

Meal duration, min/d Sum of the duration of each meal event recorded each day 

Meal duration SD1, min/d 
Day-to-day variation in meal duration for each animal across 

the trial period 

Max non-feeding interval 
The maximum amount of time between BV for each animal 

every day. 

HD duration per meal duration Ratio of HD duration to meal duration 

HD duration per BV duration Ration of HD duration to BV duration 

BV events per meal event Ratio of the number of BV recorded per meal 

Meal criterion, min 

Maximum time interval between bunk visits used to group BV 

into meals. Calculated using a Normal-Weibull distribution on 

the feeding non-feeding interval for each animal 
1SD = Day-to-day variation. 
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Table 3.3 Performance, feed intake, feed efficiency and ultrasound traits for composite Angus steers with divergent 

residual feed intake phenotypes. 

Item Mean SD Low RFI1 Medium RFI1 High RFI1 SE P - value 

No. of steers 508 -- 146 210 152 -- -- 

Performance and feed efficiency traits 

Initial BW, kg 309.3 56.5 310.8 308.0 309.8 22.1 0.62 

ADG, kg/d 1.71 0.27 1.71 1.71 1.71 0.73 0.99 

Mid-test BW, kg 0.75 84.1 9.1 84.3 83.9 84.0 3.4 0.71 

DMI, kg/d 10.11 1.07 9.23a 10.09b 10.99c 0.12 < 0.01 

DMI, % BW 2.77 0.34 2.52a 2.77b 3.02c 0.11 < 0.01 

DMI SD, kg/d 2.39 0.41 2.28a 2.37b 2.53c 0.78 < 0.01 

RFI1, kg/d 0.000 0.784 -0.898a 0.006b 0.870c 0.044 < 0.01 

RG2, kg/d 0.000 0.178 0.054a 0.004b -0.057c 0.014 < 0.01 

G:F 0.170 0.027 0.186a 0.170b 0.156c 0.009 < 0.01 

Initial hip height, cm 110 63 103 118 105 9 0.38 

Ultrasound traits        

Initial BF3 depth, cm 0.154 0.075 0.153a 0.166b 0.160b 0.028 0.05 

Final BF3 depth, cm 0.282 0.092 0.255a 0.289b 0.299b 0.022 0.01 

Initial IMF4, % 2.84 0.62 2.87 2.82 2.85 0.17 0.67 

Final IMF4, % 3.15 0.70 3.03a 3.16ab 3.24b 0.15 0.02 

Initial LM area, cm2 8.04 1.11 8.13a 8.05b 7.94b 0.34 0.14 

Final LM area, cm2 10.21 1.19 10.37a 10.14b 10.14b 0.25 0.09 
1RFI = residual feed intake; 2RG = residual gain; 3BF = 12th-rib fat depth; 4IMF = intramuscular fat. a,b,cMeans with 

different superscripts differ at P < 0.05. 
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Table 3.4 Feeding behavior traits for composite Angus steers with divergent residual feed intake (RFI) phenotypes. 

Item Mean SD Low RFI Medium RFI High RFI SE P - Value 

No. of steers 508 -- 146 210 152 -- -- 

Bunk visit (BV) traits        

Bunk visit (BV) frequency, events/d 48.4 12.8 43.5a 48.7b 52.8c 3.9 < 0.01 

BV frequency SD2, events/d 16.23 4.92 14.88a 16.34b 17.37c 1.07 < 0.01 

BV duration, min/d 62.5 13.0 54.5a 61.8b 71.3c 1.9 < 0.01 

BV duration SD2, min/d 18.92 3.97 17.50a 18.89b 20.30c 0.62 < 0.01 

Head down (HD) duration, min/d 44.6 14.0 35.4a 43.4b 55.1c 0.8 < 0.01 

HD duration SD2, min/d 14.09 4.14 12.09a 13.90b 16.27c 0.47 < 0.01 

Time to bunk, min 88.0 37.1 96.1a 87.0b 86.0b 10.2 < 0.01 

Time to bunk SD2, min 109.9 31.2 115.8a 109.2b 108.2b 3.2 < 0.05 

Meal traits        

Meal criterion, min 13.1 8.6 14.4a 12.6b 12.5b 1.6 0.07 

Meal frequency, events/d 6.03 2.50 5.55a 6.22b 6.24b 0.53 < 0.01 

Meal frequency SD2, events/d 2.10 1.08 1.89a 2.21b 2.16b 0.21 < 0.01 

Meal duration, min/d 123.9 25.5 115.9a 122.8b 133.2c 3.7 < 0.01 

Meal duration SD2, min/d 60.32 16.53 56.93a 59.31b 65.00c 2.39 < 0.01 

Meal length, min/event 25.2 12.2 25.1 25.3 27.2 2.1 0.14 

Meal length SD2, min/event 9.19 4.78 9.15 9.30 9.47 0.72 0.80 

Max non-feeding interval, min 663.42 77.45 670.86a 666.86a 652.56b 18.26 0.04 

Max non-feeding interval SD2, min 231.0 61.5 295.1a 292.9b 285.5c 16.7 < 0.01 

Ratio traits        

HD duration per BV duration 0.720 0.112 0.640a 0.700b 0.770c 0.020 < 0.01 

HD duration per meal duration 0.366 0.111 0.310a 0.360b 0.420c 0.014 < 0.01 

BV events per meal event 8.74 2.84 8.25a 8.66ab 9.31b 0.01 < 0.01 
2SD = day to day variation. 
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Table 3.5 Phenotypic correlations between performance, feed intake, 

and feed efficiency traits in composite Angus steers (N = 508). 

Item ADG DMI G:F RG1 RFI2 RFIc3 

Initial BW -0.38* 0.44* -0.64* -0.11* -0.01 -0.01 

ADG  0.28* 0.77* 0.66* 0.00 0.00 

DMI   -0.38* 0.00 0.74* 0.70* 

G:F    0.63* -0.49* -0.47* 

RG1     -0.30* 0.29* 

RFI2      0.96* 
1RG = residual gain; 2RFI = residual feed intake; 3RFIc = residual 

feed intake adjusted for composition; 4MBW = mid-test BW; * 

Correlations are different from zero at P < 0.05. 
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Table 3.6 Pearson correlations between performance and feed efficiency and feeding behavior traits in 

composite Angus steers. 

Item Initial BW ADG DMI DMI SD3 G:F RG1 RFI2 

Bunk visit (BV) frequency 0.40* -0.40* 0.23* 0.35* -0.52* -0.01 0.27* 

BV frequency SD3 0.18* -0.33* 0.23* 0.42* -0.38* -0.08 -0.21* 

BV duration -0.23* 0.22* 0.35 0.05 -0.03 -0.06 0.52* 

BV duration SD3 0.18* -0.22* 0.16* 0.50 -0.32 -0.09 0.25* 

Head down (HD) duration -0.06 0.05 0.40* 0.19* -0.22* -0.09 0.56* 

HD duration SD3 0.08 -0.16* 0.24* 0.44* -0.31* -0.12* 0.38* 

Time to bunk -0.37* 0.15* -0.21* -0.08 0.26* -0.17* -0.10* 

Time to bunk SD3 -0.09* 0.01 -0.15* -0.02 0.11* -0.04 -0.14* 

Meal criterion -0.20* 0.35* -0.02 -0.05 0.34* 0.13* -0.10* 

Meal frequency 0.15* -0.23* 0.05 0.13* -0.24* 0.01 0.08 

Meal frequency SD3 0.02 -0.13* 0.03 0.06 -0.14* 0.01 0.10* 

Meal duration -0.22* 0.24* 0.16* 0.02 0.12* 0.08 0.25* 

Meal duration SD3 0.04 0.02 0.16* 0.15* -0.09* -0.00 0.17* 

Max non-feeding interval -0.28* 0.02 -0.16* -0.04 0.12* -0.15* -0.08 

HD duration per meal 

duration 
0.10* -0.12* 0.31* 0.20* -0.32* -0.15* 0.40* 

HD duration per BV 

duration 
0.18* -0.21* 0.33* 0.29* -0.41* -0.11* 0.42* 

BV events per meal event 0.17* -0.08 0.15* 0.19* -0.17* -0.04 0.14* 
1RG = residual gain; 2RFI = residual feed intake; 3SD = Day-to-day variation; * Correlations are 

different from zero at P < 0.05. 

 

 

 



 

 66 

 

Table 3.7 Pearson correlations between feeding behavior traits in composite Angus steers. 
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Bunk visit (BV) frequency 0.73* 0.00 0.40* 0.19* 0.32* -0.53* -0.30* 0.46* 0.36* 0.20* 0.25* -0.38* 

BV frequency SD1  0.04 0.46* 0.17* 0.40* -0.24* -0.14* 0.33* 0.28* 0.13* 0.27* -0.29* 

BV duration   0.51* 0.87* 0.66* 0.11* -0.04 -0.04 0.03 0.46* 0.27* 0.06* 

BV duration SD1    0.51* 0.85* -0.07 0.01 0.09 0.04 0.30* 0.30* -0.09 

Head down (HD) duration     0.78* 0.01 -0.05 0.07 0.10 0.37* 0.27* -0.02 

HD duration SD1      0.01 0.03 0.09 0.08 0.28* 0.27* -0.08 

Time to bunk       0.59* -0.37* -0.32* -0.08 -0.17* 0.24* 

Time to bunk SD1        -0.29* -0.33* -0.15* -0.20* 0.15* 

Meal frequency         0.94* -0.41* -0.29* -0.66* 

Meal frequency SD1          -0.36* -0.25* -0.63* 

Meal duration           0.74* 0.60* 

Meal duration SD1            0.47* 
1SD = Day to day variation. 
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Table 3.8 Proportion of variation accounted for by feeding behavior or residual feed intake using 

partial least squares regression with the leave-one-out cross-validation method. 

Number of 

extracted 

components 

Percent variation accounted for Cross-validation 

Independent variables Dependent variable Root mean 

PRESS1 

Comparison 

P - Value Current Total Current Total 

0 0.000000 0.000000 0.000000 0.000000 1.079774 <0.01 

1 0.489762 0.489762 0.310098 0.310098 0.902203 <0.01 

2 0.099073 0.588835 0.060425 0.370523 0.869453 <0.05 

3 0.134799 0.723634 0.011246 0.381768 0.860052 0.12 

4 0.088979 0.812613 0.005386 0.387154 0.857659 0.16 

5 0.124108 0.936721 0.001898 0.389052 0.856477 0.22 

6 0.046488 0.983210 0.006078 0.395130 0.856714 0.17 

7 0.010214 0.993423 0.016971 0.412100 0.850523 0.11 

8 0.004148 0.997572 0.006263 0.418363 0.844679 0.20 

9 0.002428 1.000000 0.002669 0.421032 0.841316 1.00 
1PRESS = predictive residual sum of squares. 
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Table 3.9 Coefficient and variable of importance values for leave-one-out cross-validation 

method using feeding behavior to predict residual feed intake in composite Angus steers. 

 
Feeding behavior only 

Feeding behavior plus 

Ultrasound 

Variable Coefficient VIP2 score Coefficient VIP2 score 

Bunk visit (BV) frequency 0.25 0.80 0.23 0.81 

BV frequency SD1 0.06 0.72 0.08 0.71 

BV duration 1.50 1.30 1.39 1.32 

BV duration SD1 -0.12 0.96 -0.08 0.95 

HD duration -1.18 1.30 -1.15 1.37 

HD duration SD1 -0.14 1.08 -0.18 1.11 

Meal duration -0.15 0.70 -0.11 0.70 

HD per meal duration -0.19 0.93 -0.16 1.00 

HD duration per BV duration 0.95 1.00 1.00 1.05 

Initial BF depth -- -- 0.03 0.75 

BF depth gain -- -- 0.20 0.96 
1SD = Day to day variation; 2VIP = Variable of importance to projections. 
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Table 3.10 Summary statistics for the leave-one-out cross-validation prediction PLS models used to 

predict DMI, RFI, and RG using feeding behavior and feeding behavior combined with ultrasound 

traits in composite Angus steers. 

 Cross Validation 

Model N SECV3 R2CV4 Mean Bias5 CCC7 MSEP8 Spearmans6 

Feeding behavior only 

Dry matter intake 508 0.91 0.28 0.73 0.43 0.82 0.49 

Residual feed intake 508 0.60 0.42 0.48 0.59 0.36 0.59 

Residual gain 508 0.17 0.08 0.13 0.15 0.03 0.26 

Feeding behavior plus ultrasound 

Dry matter intake 508 0.79 0.44 0.64 0.61 0.63 0.64 

Residual feed intake 508 0.57 0.46 0.46 0.63 0.33 0.63 

Residual gain 508 0.16 0.13 0.13 0.23 0.03 0.35 
1SEC = standard error of validation; 2R2C = coefficient of determination for calibration; 3SECV = 

standard error of cross-validation; 4R2CV = coefficient of determination for cross-validation; 5Mean 

Bias = absolute mean difference between observed and predicted RFI; 6Spearmans = Spearmans rank 

correlation between observed and predicted values; 7CCC = concordance correlation coefficient 

(higher better); 8MSEP = mean squared error of prediction. 
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Table 3.11 Least squares means for composite Angus steers that changed RFI classification between 

observed and predicted RFI based on feeding behavior. 

Item 

Low to 

High 

No Class 

Change 

One Class 

Change 

High to 

Low SE P - Value 

No. of steers 13 288 195 12 -- -- 

Performance and feed efficiency        

Initial BW, kg 307 309 309 313 23.5 0.97 

ADG, kg/d 1.70 1.70 1.73 1.67 0.09 0.44 

Mid-test BW, kg0.75 83.7 83.9 84.2 84.4 3.67 0.95 

DMI percent of BW 2.58 2.78 2.78 2.93 0.13 1.00 

DMI, kg/d 9.37a 10.10ab 10.15b 10.72b 0.32 <0.01 

RFI1, kg/d -0.599a 0.017b -0.011ab 0.376a 0.209 <0.05 

RG, kg/d 0.025 -0.008 0.013 -0.046 0.040 1.00 

G:F 0.181a 0.169ab 0.171a 0.155b 0.011 <0.01 

Bunk visit (BV) traits       

Bunk visit (BV) frequency, 

events/d 50.16 48.74 47.99 45.27 4.70 0.49 

BV frequency SD1, events/d 17.43 17.27 17.13 15.85 1.72 0.76 

BV duration, min/d 73.76a 62.81b 61.73b 56.49b 3.97 0.002 

BV duration SD1, min/d 21.05 19.92 19.76 19.31 1.37 0.66 

Head down (HD) duration, 

min 56.70a 44.79b 43.82b 38.58b 4.01 0.005 

HD duration SD1, min 16.67 14.92 14.88 13.69 1.32 0.36 

Time to bunk, min 88.56 89.04 86.78 82.10 13.13 0.78 

Time to bunk SD1, min 107.85 111.40 108.11 104.29 10.24 0.55 

Meal traits       

Meal frequency, events/d 5.84 6.01 6.08 5.91 0.82 0.97 

Meal frequency SD1, 

events/d 2.03 2.10 2.12 1.99 0.34 0.96 

Meal duration, min/d 138.09 125.04 121.56 121.71 7.78 0.08 

Meal duration SD1, min/d 36.98 34.45 33.72 37.41 2.71 0.35 

Max non-feeding interval 

duration, min/d 630.42 660.77 669.31 677.29 26.07 0.14 

Ratio Traits       

HD duration per meal 

duration 0.422 0.363 0.369 0.323 0.033 0.14 

HD duration per BV 

duration 0.767 0.701 0.705 0.673 0.037 0.17 

BV events per meal event 9.55 8.81 8.61 8.18 0.85 0.54 
1RFI = residual feed intake. 
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Table 3.12 Count of class switches for composite Angus steers with change in predicted 

RFI class using feeding behavior and the leave-one-out cross-validation technique. 

Model 

Low to High 

RFI 

No Class 

Change 

One Class 

Change 

High to Low 

RFI 

RG1 FB3 8% 44% 43 % 5 % 

RG1 FB-US4 5% 44% 47 % 5 % 

RFI2 FB3 3% 57% 38 % 2 % 

RFI2 FB-US4 2% 57% 39 % 3 % 
1RG = residual gain; 2RFI = residual feed intake; 3FB = feeding behavior; 4FB-US = 

feeding behavior combined with ultrasound traits 
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Table 3.13 Coefficient and variable of importance values for the leave-one-out cross-validation 

method using feeding behavior to predict dry matter intake in composite Angus steers. 

 
Feeding behavior only 

Feeding behavior plus 

Ultrasound 

Variable Coefficient VIP2 score Coefficient VIP2 score 

ADG, kg/d 0.40 1.33 0.34 1.50 

Mid-test BW, kg 0.70 1.66 0.71 1.52 

Bunk visit (BV) frequency 0.18 0.65 0.24 0.96 

BV frequency SD1 0.06 0.64 -- -- 

BV duration 1.07 0.88 1.01 0.95 

BV duration SD1 -0.16 0.86 -0.09 0.88 

Head down (HD) duration -0.87 1.01 -0.86 1.06 

HD duration SD1 -0.06 1.02 -0.13 0.93 

Max non-feeding interval 0.14 0.73 0.15 0.78 

HD duration per BV duration 0.57 0.88 0.64 0.95 

HD duration per meal duration 0.02 0.86 0.02 0.89 

Initial BF depth -- -- 0.22 0.85 

Final BF depth -- -- -0.27 1.09 

BF depth gain -- -- 0.38 1.02 

Initial IMF -- -- -0.04 0.66 

Initial LMA -- -- -0.01 0.78 

Final LMA -- -- -0.06 0.98 

Gain in LMA -- -- 0.08 0.77 
1SD = Day to day variation; 2VIP = Variable of importance to projections. 
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Table 3.14 Summary statistics for models predicting dry matter intake 

using mid-test BW, gain and feeding behavior traits, with and without 

ultrasound traits. 

Item FB FB+ 

No. of steers 508 508 

SECV2 0.61 0.58 

R2CV4 0.67 0.71 

Mean Bias5 0.49 0.46 

CCC7 0.80 0.82 

MSEP8 0.38 0.34 

Spearmans6 0.80 0.82 
1SEC = standard error of validation; 2R2C = coefficient of determination 

for calibration; 3SECV = standard error of cross-validation; 4R2CV = 

coefficient of determination for cross-validation; 5Mean Bias = absolute 

mean difference between observed and predicted RFI; 6Spearmans = 

Spearmans rank correlation between observed and predicted values; 
7CCC = concordance correlation coefficient (higher better); 8MSEP = 

mean squared error of prediction. 
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Table 3.15 Summary statistics for trial by trial calibration-validation for dry matter intake using feeding behavior, body 

weight and gain. 

Model N SEC1 R2C3 N SEV2 R2V4 CCC7 MSEP8 Mean Bias5 Spearmans6 

Dry Matter Intake 

Trial 1 and 2, predict 3 338 0.65 0.63 338 0.66 0.60 0.77 0.43 0.54 0.77 

Trial 1 and 3, predict 2 340 0.60 0.67 168 0.66 0.60 0.79 0.39 0.52 0.79 

Trial 2 and 3, predict 1 338 0.76 0.48 170 0.75 0.46 0.66 0.57 0.59 0.68 

Pen 1, predict pen 2 253 0.58 0.70 255 0.67 0.60 0.80 0.40 0.47 0.81 

Pen 2, predict pen 1 255 0.59 0.69 253 0.69 0.58 0.79 0.41 0.54 0.81 
1SEC = standard error of calibration; 2SEV = standard error of validation; 3R2C = coefficient of determination for 

calibration; 4R2CV = coefficient of determination for validation; 5Mean Bias = absolute mean difference between 

observed and predicted RFI; 6Spearmans = Spearmans rank correlation between observed and predicted values; 7CCC = 

concordance correlation coefficient (higher better); 8MSEP = mean squared error of prediction.. 
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Figure 3.1 Fit between observed and predicted gain to feed calculated from dry 

matter intake predicted using BW, gain, and feeding behavior traits. 
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CHAPTER IV  

CONCLUSIONS 

Increasing the genetic merit of beef cattle for feed efficiency is an effective strategy 

to improve the economic and environmental sustainability of beef production. Residual 

feed intake serves as a measure of feed efficiency independent of average daily gain and 

body weight, where feed efficient animals consume less feed than expected. Studies have 

documented that divergent phenotypes for residual feed intake express distinctly different 

feeding behavior patterns. Chapter 2 reports the results of the validation study of a high-

frequency RFID system designed to capture continuous animal behavior. The CattleTraq® 

system proved it can predict bunk visit frequency and duration with coefficients of 

determination of 0.81 and 0.88, respectively. Using the appropriate bunk visit decision 

rules, the system presented sensitivity and specificity values of 82% and 99%, respectively, 

for a combined accuracy of 90%. This meets the first objective of this research project, and 

as technology continues to improve, systems capable of accurately capturing continouos 

feeding behavior will become less expensive, creating increased interest for adoption by 

the livestock industry. 

Results from chapter 3 demonstrated the distinctly different feeding behavior 

patterns expressed by cattle of divergent residual feed intake phenotypes. Feed efficient 

steers consumed 16% less dry matter feed intake than their high-RFI counterparts, while 

body weight and average daily gain were not different. Compared to high-RFI steers, low-

RFI steers had 18% fewer and 24% shorter (P < 0.01) bunk visit events, and 11% fewer 

meal events that were 13% shorter (P < 0.01) in length. Low-RFI steers took 

approximately 12% more time (P < 0.01) to approach the bunk following feed delivery 
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compared to inefficient animals. Farthermore, distinctive differences were found in the 

day-to-day variation of feeding behavior between phenotype classes for residual feed 

intake. Low-RFI steers exhibited 10% less (P < 0.01) day-to-day variation in dry matter 

intake, and 12 to 36% less day-to-day variance (P < 0.01) in head down duration, bunk 

visit frequency, bunk visit duration, and meal frequency and duration. This is a similar 

affect to that seen by the addition of monensin to diets, which has been shown to stabilize 

dry matter intake and feeding behavior, which is expressed in tandem with improved 

digestibility and feed efficiency. The similar affect expressed by feed efficient steers may 

indicate a natural biological mechanism which aids in improved feed efficiency, and 

selection for feeding behavior as a bio-marker offers promise for improving the selection 

of more efficient animals. 

Although feeding behavior may serve as a suitable bio-marker for feed efficiency, 

specifically residual feed intake, the correlated nature among feeding behavior traits limits 

their use in multiple linear regression to create prediction equations. Partial least squares 

regression was used to analyze feeding behavior variables, as this method is better suited to 

deal with collinearty among the independent variables. Partial least squares identified 9 

feeding behavior traits with variable of importance scores greater than 0.8 that explained 

42% of the variation in residual feed intake. Duration traits head down duration and bunk 

visit duration and the day-to-day variance of these traits, were the most significant 

contributers to the partial least squares prediction equation based on their their coefficients 

and variable of importance scores.  Steers were classified by the predicted residual feed 

intake calculated using the partial least squares prediction equation, then compared to 

observed residual feed intake class. The partial least squares equation correctly classified 
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44% of the steers, while an additional 43% were classified within one class of their 

observed feed efficiency class. This means that the partial least squares model correctly 

classified 95% of the steers within one feed efficiency class of observed using only feeding 

behavior traits. 

Additionally, a partial least squares prediction equation created using the 9 feeding 

behavior traits identified previously in combination with metabolic body weight and 

average daily gain predicted dry matter intake with a coefficient of determination of 0.67.  

Using partial least squares predicted intake, the calculated gain to feed reported an 85% 

accuracy with observed gain to feed, indicating the opportunity to predict efficiency using 

in pen weighing systems in tandem with a system designed to capture continuous feeding 

behavior.  

Continual improvement of technology will increase incorporation of feeding behavior 

systems in the beef industry, resulting in improved management strategies. This offers the 

opportunity to select for feed efficiency using feeding behavior as a bio-marker. One 

proposed solution to identify feed efficient animals is a two stage feeding protocol, where 

feeding behavior is tracked and cattle are sorted into either feed efficient or inefficient 

groups. Then, a second feeding period for the efficient class can be conducted, limiting the 

total number of cattle which must be fed in a feed intake system, such as GrowSafe®, 

whose initial purchase cost prohibits universal adoption by the beef industry. This strategy, 

or a strategy developed using strickly feeding behavior, offers the opportunity to increase 

the proportion of the cowherd selected for improved feed efficiency traits. 
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