
 

 

 

 

INTEGRATION OF LIDAR REMOTE SENSING FROM MULTIPLE PLATFORMS 

TO ASSESS VEGETATION BIOPHYSICAL PARAMETERS 

 

A Dissertation 

by 

NIAN-WEI KU  

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

Chair of Committee,  Sorin C. Popescu 

Committee Members, Marian Eriksson 

 X. Ben Wu 

 Anthony Filippi 

Head of Department, Kathleen Kavanagh 

 

May 2018 

 

Major Subject: Ecosystem Science and Management 

 

Copyright 2018 Nian-Wei Ku



 

ii 

 

ABSTRACT 

 

This research concentrates on using multiple platforms of lidar remote sensing 

for assessing vegetation biophysical parameters. Airborne and spaceborne light detection 

and ranging (lidar) (i.e., ICESat) remote sensing can characterize the three-dimensional 

structure of vegetation and therefore can provide useful information for assessing forest 

and rangeland woody plant biomass. The objectives of this research are 1) developing 

robust methods using airborne lidar and multispectral data to generate a local woody 

plant biomass map in northern Texas, 2) investigating the accuracy of existing global 

forest canopy height maps using airborne lidar data in multiple ecoregions in the 

southern United States, and 3) upscaling local forest aboveground biomass estimates to 

regional scale in an ecoregion. This research integrates statistical methods and remote 

sensing techniques to develop the procedure for building the regional forest aboveground 

biomass map. First, this research results in an approach for employing both airborne 

lidar and multispectral data with statistical methods to create a local scale woody plant 

aboveground biomass map in northern Texas. Then, the validation and calibration of the 

global forest canopy height map (GCHM) are used throughout rangelands and forests in 

the southern United States. A calibrated global forest canopy height map (cGCHM) 

serves as a primary data source for upscaling the forest aboveground biomass map from 

the local- to regional-scale in the South Central Plains ecoregion. In summary, the 

research utilized lidar data which was collected from multiple platforms to estimate 

aboveground biomass at multiple scales. 
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CHAPTER I 

INTRODUCTION AND BACKGROUND 

The research employs remotely sensed data to assess vegetation biophysical 

parameters on rangelands and forests. Remote sensing technology enables us to collect 

measurements across large extents and estimate the vegetation biophysical parameters 

while minimizing or avoiding the need for destructive sampling. Remotely sensed data 

have been utilized to study, among other things, forest diseases and insect prevention 

(Bhattacharya and Chattopadhyay, 2013, Olsson et al., 2012), forest fuel and wild fire 

observation (Chuvieco et al., 2010), forest carbon storage and aboveground biomass 

estimation (Watts et al., 2009, Anaya et al., 2009), and encroachment of woody plants on 

rangelands (Mohamed et al., 2011). This research utilize remotely sensed data to 

estimate the woody plant aboveground biomass of forest and rangeland vegetation in the 

southern United States  

Remote sensing technology has two main categories based on the type of sensor 

used to collect data. Passive remote sensing measures solar energy which is reflected by 

or emitted by objects of interest. For example, multispectral remote sensing instruments 

receive and record the intensity of the visible wavelengths which is reflected or emitted 

from the objects. On the other hand, active remote sensing instruments produce and emit 

energy. That energy is reflected by objects, returned back to the instrument which 

records attributes of the returned energy. An example of an active remote sensing system 
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is lidar, which transmits a low-power laser pulse to the objects and records the energy 

returned from each pulse, along with positional information, and the time of flight. This 

information can be used to infer the distance of objects from the platform. In this 

research we integrate both passive (multispectral imagery) and active (lidar data) remote 

sensing technologies for estimating forest aboveground biomass in this study. 

Mainly, this research concentrates on the applications of lidar remote sensing. 

Lidar remote sensing technology has been utilized for forest measurements (e.g., tree 

height) since the 1980s. Nelson et al. (1984) operated an airborne laser altimeter system 

to investigate the profile and explore the structure of forests. Recently, lidar remote 

sensing data has been incorporated into various forest and rangeland studies in order to 

derive tree characteristics (Hilbert et al., 2011), estimate aboveground vegetation 

biomass (Lefsky et al., 2002a, Ni-Meister et al., 2010), explore forest structure 

(Morsdorf et al., 2009), assess forest carbon storage (Asner et al., 2012), and identify 

individual trees on rangelands (Sankey and Bond, 2011).  

This research addressed three issues concerning (1) the suitability of certain 

statistical methods for aboveground woody biomass estimation, (2) the validation and 

recalibration of a global canopy height model (GCHM), and (3) the feasibility of 

mapping regional forest aboveground biomass using data obtained from the combination 

of multiplatform lidar and multispectral imaging systems. The results of our 

investigations into these issues are reported in Chapters II–IV, respectively, of this 

dissertation. In the past, most of the research into lidar-based remote sensing of 

aboveground biomass has relied on lidar-only-sensed (LOS) information (Nelson et al., 
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1988, Simard et al., 2006, Hawbaker et al., 2009, Lefsky et al., 1999a, Naesset, 2011). In 

Chapter II spatially explicit estimation of aboveground woody biomass on rangelands in 

northern Texas from airborne lidar-and-multispectral (LAMS) data is considered. While 

lidar data are used to compute various height measures, multispectral data have often 

been used to generate vegetation indices which have, in turn, been related to biophysical 

characteristics of the vegetation (Lefsky et al., 1999a, Jensen, 2007, Gartzia et al., 2014, 

Asner et al., 2015). Spatially explicit analyses allow for the mapping of predicted values. 

In addition to the considering LAMS, three different statistical methods stepwise 

regression, the least absolute shrinkage and selection operator (LASSO), and random 

forests (Random Forests™) for analyzing the data were compared. These three statistical 

methods have been applied to many remote sensing studies (Pal, 2005, Verbesselt et al., 

2009, Tian et al., 2012, Zandler et al., 2015). Besides, the woody plant aboveground 

biomass estimation was calculated by three statistical methods which are the stepwise 

regression, the least absolute shrinkage and selection operator (LASSO), and random 

forests. Thus, Chapter II investigates the appropriate combination of lidar and 

multispectral remote sensing variables with proper statistical methods for developing the 

local woody plant aboveground biomass map. 

Chapter III documents the results of our validation/recalibration effort for the 

southern United States. In this research, we validate and calibrate Simard et al. (2011) 

GCHM primarily. Lefsky (2010) created the first GCHM in 2010, and Simard et al. 

generated another GCHM in 2011. Both GCHMs integrated the data of the Geoscience 

Laser Altimeter System (GLAS) which was the sole instrument on ICESat (Ice, Cloud, 
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and land Elevation Satellite) as their primary remotely sensed data. Lefsky also 

combined The Moderate Resolution Imaging Spectroradiometer images (MODIS) and 

GLAS data using mining approach to generate a continuous GCHM. Simard et al. (2011) 

used Shuttle Radar Topography Mission (STRM), GLAS, climatic and other ancillary 

data with the regression tree method Random Forest to generate the GCHM. Then 

Simard et al. (2011) compared their GCHM to Lefsky’s and concluded that their GCHM 

covered a larger forested area than Lefsky’s because Simard’s GCHM involved mosaic 

crops, open forest, and saline flooded forests. Therefore, Simard's map reveals not only 

the tall trees in forests but also the short woody plants on the ground (Simard et al., 

2011b). Furthermore, Bolton et al. (2013) investigated the accuracy of Lefsky and 

Simard’s GCHM over Canada with airborne lidar data. Therefore, we are interested in 

validating the GCHMs with airborne lidar remote sensing data on rangelands and forests 

in the southern United States. 

The validation results from Chapter III indicated that maps produced from the 

selected GCHM would benefit from a recalibration of the model. We document our 

recalibration effort in Chapter IV where we produce a new forest aboveground biomass 

map of South Central Plains ecoregion. The random forests statistical method was used 

to develop the forest aboveground biomass map. We employed the airborne lidar data to 

create local forest aboveground biomass maps as the response variable. Then cGCHMs, 

the MODIS images, vegetation indices, and canopy cover data were used as the 

prediction variables. Finally, we compared our forest aboveground biomass map of 
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South Central Plains to United States Forest Services’ (USFS) forest aboveground 

biomass map (Blackard et al., 2008) at South Central Plains to investigate differences. 
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CHAPTER II 

A COMPARISON OF MULTIPLE METHODS FOR MAPPING LOCAL-SCALE 

WOODY PLANT ABOVEGROUND BIOMASS WITH REMOTELY SENSED DATA 

 

II.1. Introduction 

The map of woody plant aboveground biomass allows a better understanding of 

carbon stocks and fluxes in forest or rangeland ecosystems. Thus, the accuracy of the 

estimation of woody plant aboveground biomass plays a critical role. Conventionally, 

logging is the convenient method to provide reliable and accurate estimation of dried 

woody plant aboveground biomass. However, the treatment is destructive and strongly 

disturbs local vegetation ecosystems (Vashum and Jayakumar, 2012). Therefore, remote 

sensing technology provides a non-destructive method to investigate the woody plant 

aboveground biomass estimation and limit the negative impacts of destructive methods 

to prevent disturbances in the forest and rangeland ecosystems (Robert et al., 2014, 

Calders et al., 2015, Galidaki et al., 2016).  

Based on the approaches to retrieve the remotely sensed data, the remote sensing 

technically divides into passive and active remote sensing. Multispectral remote sensing 

(i.e., aerial photography and satellite imagery) passively records the spectral reflectance 

from the Earth’s surface. The intensity of the spectral reflectance displays the spectral 

features of the objects on the ground. The multispectral remote sensing can collect data 

from local to global scales. The technique is broadly employed in the studies of 

vegetation distribution (Ansley et al., 2001, Hilker et al., 2014, Dardel et al., 2014) and 
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the land cover and land use classification (Jin et al., 2013, Hansen et al., 2013). 

Moreover, multispectral remote sensing data derives vegetation indices by combining 

different spectral bands. These vegetation indices are used to calculate critical 

biophysical indicators for extracting and modeling biophysical variables of vegetation 

(Jensen, 2007). The normalized difference vegetation index (NDVI), one of the 

vegetation indices, has been known for enhancing the sensitivity of live vegetation 

analysis and related to several measurable vegetation biophysical parameters, such as 

leaf area index (LAI) (Bannari et al., 1995, Carlson and Ripley, 1997). Moreover, NDVI 

has significant relationships with vegetation greenness for improving land cover 

classification (Anderson et al., 1993, DeFries and Townshend, 1994) and with vegetation 

biomass studies (Myneni et al., 2001, Cho et al., 2007, Raynolds et al., 2012). Besides, 

Zheng et al. (2004) discovered the aboveground biomass of pine forest had a strong 

correlation to the corrected normalized difference vegetation index (NDVIc). Casady et 

al. (2013) reported that NDVI highly correlated to the shrub biomass in the Sonoran and 

Mojave Desert with both satellite and ground observation data. Kushwaha et al. (2014) 

noticed the growing stock and woody biomass, including invasive shrubs, were 

significantly correlated to NDVI. Therefore, the multispectral dataset and NDVI are 

derived and computed from the National Agriculture Imagery Program (NAIP) imagery 

for estimating local scale woody plant aboveground biomass. 

Unlike multispectral remote sensing, light detection and ranging (lidar) is an 

active remote sensing technique that generates three-dimensional point cloud data of 

target objects. The lidar point cloud data is capable of explicitly depicting the vertical 
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structure of vegetation and deriving vegetation biophysical parameters, such as tree 

height, canopy height, diameter at breast height (DBH), and tree crown width (Lefsky et 

al., 1999b, 2002b). The lidar systems are widely utilized in multiple vegetation ecology 

and ecosystem studies on various platforms (ex. terrestrial, airborne, mobile, and 

spaceborne). For instance, Riaño et al. (2007) combined airborne lidar data and color 

infrared images to identify the height and vegetation index of shrubs, but the height of 

shrubs was underestimated by the airborne lidar system. Estornell et al. (2011) 

demonstrated that the airborne lidar systems offer reliable shrub biomass estimation with 

sufficient point density. Colgan et al. (2012) also flew over South African savanna areas 

with an airborne lidar system and established a lidar-biomass regression for the savanna 

biomass estimation. Moreover, Ku et al. (2012) employed a terrestrial lidar system to 

develop lidar-biomass regressions for the available mesquite tree biomass models at a 

plot-level area in the northern Texas rangelands. Although lidar systems have proven 

their capacity for many woody plant aboveground biomass studies, considering the 

spatial scale of our research, we employed an airborne lidar system to estimate the local 

scale woody plant aboveground biomass on rangelands. 

The woody plant aboveground biomass estimation was calculated by three 

statistical methods, which are the stepwise regression, the least absolute shrinkage and 

selection operator (LASSO), and random forests. In practice, the stepwise regression is 

the most commonly used method to derive the woody plant aboveground biomass (Ku et 

al., 2012, Tian et al., 2012, Mutanga et al., 2012, Zandler et al., 2015). This regression 

method selects prediction variables based on statistical criteria like the Akaike 
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information criterion (AIC) or Bayesian information criterion (BIC). Moreover, three 

approaches, forward selection, backward elimination, and bidirectional elimination (the 

combination of forward selection and backward elimination), are utilized to conduct the 

variable selection. The multiple and adjusted R-squared values are used to analyze the 

strength of the relationship. However, multicollinearity commonly happens in stepwise 

regression, so the variance inflation factor (VIF) is used to eliminate problematical 

variables. 

The LASSO regression method is similar to the stepwise regression for 

predictive variable selection but applies the regularization to improve the prediction 

accuracy and statistical model interpretation (Tibshirani, 1996). The method uses the 

constrained form, sometimes called the penalized form, to determine a smaller variance 

of estimates and subset of prediction variables. The constrained form shrinks the nonzero 

coefficients and sets others to zero while retaining the significant features of subset 

selection and ridge regression. Because of the abilities of variable selection and 

regularization, LASSO is employed in many remote sensing research studies (Verbesselt 

et al., 2009, Kankare et al., 2013, Kantola et al., 2010). For instance, Vastaranta et al. 

(2012) selected LASSO to be the primary statistical method to find the best model and 

avoid over-fitting problems. Furthermore, Zandler et al. (2015) concluded that LASSO 

had the best performance for quantifying dwarf shrub biomass compared to stepwise 

regression and random forests methods. Therefore, LASSO is employed to create woody 

plant aboveground biomass maps and investigate the accuracy of the maps at the local 

scale.  
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The last statistical method introduced to this research is a machine learning 

method, random forests (Breiman, 2001). The method is proven to produce accurate 

predictions without overfitting the data and has been applied to many ecological studies 

(Pal, 2005, Cutler et al., 2007, Prasad et al., 2006). Random forests consists of a 

combination of decision trees, and each decision tree votes for the most popular class to 

classify training data. At the beginning of the procedure of random forests, the procedure 

utilizes the bootstrap aggregating method (Bagging) to generate the training data by 

randomly drawing with replacement samples (Breiman, 1996). Other data values which 

are not selected as training data are called out-of-bag data. The training data is randomly 

selected and employed as predictors to find the best split at each decision tree node. 

After the training data selection, the training data is drawn to construct numerous 

decision trees (500 to 2000 trees) and classified by the most popular voted class from all 

the decision trees in the forest. A large number of trees limits the generalization error 

without overfitting and increases the accuracy of the prediction. The out-of-bag data is 

not utilized in the fitting of the decision trees but is used to calculate an unbiased error 

rate and variable importance, or cross-validation. Hence, the probabilities of training 

data for the different classes are evaluated by the proportions of out-of-bag samples in 

each class.  

Also, random forests is considered a “black box” since it is difficult to examine 

the individual decision trees separately. Fortunately, the variable importance aids to 

interpret the results of random forests. However, variable importance is a complicated 

and challenging concept to define in general, because the importance of a variable 
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depends on the interaction with other variables. Therefore, the random forests method 

investigates how much prediction error increases to define the importance of a variable 

when the out-of-bag data of that variable is randomly permuted while all others are left 

unchanged (Liaw and Wiener, 2002). Moreover, the result of variable importance can 

also compare relative importance among all predictor variables.  

In this research, we attempted to calculate the honey mesquite (Prosopis 

glandulosa) aboveground biomass with the novel LASSO regression and random forests 

methods. Furthermore, we generated the mesquite aboveground biomass at a very high 

spatial resolution (1 m
2
). Therefore, this research expects to develop the mesquite 

aboveground biomass maps with novel statistical methods at a high spatial resolution. 

Three statistical methods were employed with three groups of remotely sensed 

data inputs; 1) multispectral data or NAIP imageries, 2) airborne lidar point cloud data, 

and 3) the combination of NAIP and airborne lidar point cloud data. Given the 

combination of statistical methods and remotely sensed data, the study produced 

equations of mesquite tree aboveground biomass estimation. After the comparison, the 

suitable statistical method was chosen to create a local-scale mesquite tree aboveground 

biomass map. The specific objectives of the research are to 1) investigate the mesquite 

tree aboveground biomass estimation with the three statistical methods and remotely 

sensed data, and then 2) generate the mesquite tree aboveground biomass map at a local 

scale with the most suitable combination of the statistical method and remotely sensed 

data. 
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II.2. Materials and Methods 

II.2.1. Study area and field measurements 

The study area is the Smith-Walker research unit (34˚02' N, 99˚14' W) of Texas 

A&M AgriLife Research and Extension Center at Vernon, Texas, USA (Figure 1). The 

research unit includes approximately 223 hectares (550 acres) of cultivated land and 684 

hectares (1690 acres) of rangeland. Texas Rollin Plain tall grasses (Texas wintergrass 

(Nassella leucotricha), buffalograss (Bouteloua dactyloides), vine mesquite (Hopia 

obtusa), and dropseeds (Sporobolus indicus)) and woody plants (honey mesquite 

(Prosopis glandulosa) and shinnery oak (Quercus havardii)) dominate the rangeland of 

the research unit. The tall grasses are the background vegetation with the height ranging 

from 20 cm to 180 cm and the mesquite tree dominant patches spread throughout the 

research unit. The mesquite tree patches are varied in size, where small patches contain 

only one or two trees, but large patches are comprised of hundreds of trees. The majority 

of the mature mesquite trees are located in the northern portion of the research unit while 

the young and new regrowth are found throughout.  

The mesquite tree aboveground biomass field data was collected during the leaf-

off season in December 2008, March 2009, and December 2009 from 25 study plots in 

the Smith-Walker research unit. Each study plot was 5 m wide and 20 m long within a 

similar age and height distributions of the mesquite tree. The study plots were chosen by 

the age of the mesquite trees. Hence, the study plots had from regrowth to mature 

mesquite trees and the mesquite tree height range from 1 m in regrowth study plot to 6 m 

in the mature study plot. The study plot shape and dimensions were designed to 
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efficiently field measurements and estimate standing mesquite tree biomass with an 

allometric equation (Equation 1) which relies on the basal stem diameters. The study 

plot size was also considered a right balance between a larger plot that would be time-

consuming for field measurement and a smaller plot that would be too small to capture 

sufficient represented mesquite trees. The allometric equation relates total tree mass to 

basal stem diameter at 5 cm to 15 cm height above ground (Ansley et al., 2010). The 

plot-level aboveground biomass was calculated as the sum of total tree mass per plot and 

expressed as kg/m
2
.  

Equation 1 

𝑌  = 0.34 𝑥1.73 

Where Y represents the total tree mass (kg) and the x is Basal stem diameter 

(cm). Afterward, the unit of mesquite tree aboveground biomass field data was 

converted to Mg/ha for the future calculation. The calculation of mesquite tree 

aboveground biomass field data at each1 m
2
 pixel was described in the “d. Mesquite tree 

aboveground biomass estimation” section. 
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Figure 1. The locations of all mesquite tree study plots were shown on the Smith-

Walker research unit color-infrared aerial imageries. The plot labels are displayed 

in black. The plot labels collide together due to the scale of map 

II.2.2. NAIP imagery and NDVI calculation 

Two NAIP images, southeastern Lockett and southwestern Boggy Creek, were 

requested from the Texas Natural Resources Information System (TNRIS). The NAIP 

imagery was a four-band data including three visible bands (blue, green, and red) and 

one near-infrared band (NIR) at 1 m spatial resolution. Both NAIP images were acquired 

during agricultural growing seasons (leaf-on) in 2010 and rectified in the Universal 

Transverse Mercator (UTM) coordinate system, North American Datum of 1983 (NAD 

83) in zone 14. 
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All multispectral variables for predicting the mesquite tree aboveground biomass, 

including blue, green, red, and NIR bands, were extracted from the NAIP imagery. 

Furthermore, the red and NIR bands were employed to generate the NDVI layer of the 

Smith-Walker research unit based on the following equation: 

Equation 2 

NDVI = (NIR − Red) (NIR + Red)⁄  

In Equation 2, the NIR represents the near-infrared band, and the Red represents 

the red band of the NAIP imagery. 

II.2.3. Airborne lidar data collection, preprocessing, and lidar metrics extraction  

The airborne lidar data was collected by the Riegl 560 airborne laser scanner 

during the leaf-off season in November 2010. The plane flew at an average altitude of 

600 m above ground level, and the average speed was 203.72 km/h (110 knots). A total 

of six flight lines covered the Smith-Walker research unit, and the swath width of each 

flight line is about 693 m with 50% forward overlap in a northeast to southwest 

direction. The scan angles were ±30° (cumulative 60°) from nadir, and the point density 

was approximately 3 to 4 points/m
2
. The laser pulse rate and lidar system scan rate was 

150 kHz and 90 Hz, respectively. 

The raw airborne lidar point cloud data included the terrain elevation, vegetation 

heights, and redundant (i.e., power line or power tower points) or noise (i.e., points 

beneath the ground or in the sky) points. Thus, preprocessing is essential to remove 

unnecessary information and retain useful information. First, the ground points were 

identified and used to generate a 1 m
2
 gridded digital elevation model (DEM). Then we 

acquired relative heights above ground by subtracting the terrain elevation from the raw 
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lidar point cloud data. Next, the lidar point cloud data above 7 m and below 1 m relative 

heights were removed to avoid noise, errors, tall grass, and non-vegetated structures. 

Subsequently, the final lidar point cloud data created a 1 m
2
 gridded canopy height 

model (CHM). Meanwhile, the pixel-based lidar point cloud data of the mesquite tree 

study plots were extracted from the final lidar point cloud data. 

Table 1. The list of the NAIP imagery and airborne lidar metric variables 
1) Red band 

2) Green band 

3) Blue band 

4) Near Infrared band 

5) NDVI 

6) Canopy Height Model 

7) Minimum height\Minimum value 

8) Maximum height\Maximum value 

9) Mean height\Mean value 

10) Mode height (The most count of 

returns)\mode value 

11) Standard deviation 

12) Variance 

13) Coefficient of variation 

14) Interquartile range (IQR) 

15) Skewness computed* 

16) Kurtosis computed** 

17) 1st percentile value 

18) 5th percentile value  

19) 10th percentile value 

20) 20th percentile value 

21) 25th percentile value 

22) 30th percentile value 

23) 40th percentile value 

24) 50th percentile value 

25) 60th percentile value 

26) 70th percentile value 

27) 75th percentile value 

28) 80th percentile value 

29) 90th percentile value 

30) 95th percentile value 

31) 99th percentile value 

32) Generalized means for the 2nd (Elevation 

quadratic mean) power p=2 

33) Generalized means for the 3rd (Elevation 

cubic mean) power p=3 

* The Skewness computed indicates asymmetric distribution. 

** The Kurtosis computed indicates the tail size of the data distribution. 

The lidar metrics at 1 m2 grids was derived by the FUSION/LDV version 3.60+ 

software of the US Department of Agriculture, Forest Service (McGaughey, 2016). The 

mesquite tree study plots had 413 pixels. However, the lidar metrics would not be 

computed if the numbers of points at each pixel were less than 4 points. Thus, only 330 

pixels of the field mesquite tree study pixels had the lidar metrics. The multispectral 



 

17 

 

variables of NAIP imagery and lidar metrics were the prediction variables for the 

mesquite tree aboveground biomass estimation and listed in Table 1. 

II.2.4. Mesquite tree aboveground biomass estimation 

The mesquite tree aboveground biomass in a 5 x 20 m field plot was allocated to 

each 1 x 1 m pixel corresponding to each 1 m
2
 NAIP pixel. The biomass allocation was 

weighted by the maximum height in each pixel to compensate for the unequal 

distribution of biomass throughout the 5 x 20 m field plot. Thus, pixels with higher 

maximum height had more mesquite tree aboveground biomass than the pixels with 

lower maximum height in the same mesquite tree aboveground biomass field data plot. 

The calculation of the mesquite tree aboveground biomass at each NAIP pixel is showed 

in Equation 3. 

Equation 3 

𝑩𝒊𝒐𝒎𝒂𝒔𝒔𝒑𝒊𝒙𝒆𝒍 = 𝑩𝒊𝒐𝒎𝒂𝒔𝒔𝒑𝒍𝒐𝒕 × (
𝑯𝒆𝒊𝒈𝒉𝒕𝒎𝒂𝒙

∑ 𝑯𝒆𝒊𝒈𝒉𝒕𝒎𝒂𝒙
𝒎
𝟏

) 

Where 𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑝𝑖𝑥𝑒𝑙 (Mg/ha) represents the mesquite tree aboveground biomass 

at each 1 m
2
 NAIP pixel. 𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑝𝑙𝑜𝑡 (Mg/ha) represents the mesquite tree 

aboveground biomass at each study plot. 𝐻𝑒𝑖𝑔ℎ𝑡𝑚𝑎𝑥 (m) represents the lidar metric 

maximum height at each pixel. 𝑚 represents the numbers of pixels of a study plot. 

Finally, the mesquite tree aboveground biomass at each 1 m
2
 NAIP pixel was utilized as 

the response variable for developing the local scale mesquite tree aboveground biomass 

maps. 

The three statistical methods, stepwise regression, least absolute shrinkage and 

selection operator (LASSO), and random forests were employed to develop the mesquite 
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tree aboveground biomass estimation models to generate the mesquite tree aboveground 

biomass maps. The study utilized the R programming language to process all three 

statistical methods with “glmnet” (Friedman et al., 2010) and “ModelMap” (Freeman 

and Frescino, 2016) packages. The data of prediction and response variables were split 

into 80% training and 20% testing data by simple random sampling. 

The stepwise regression method selected the prediction variables with the 

bidirectional elimination as well as the AIC criteria in this research. After the primary 

prediction variables were determined, the variance inflation factor (VIF) was used to 

investigate multicollinearity effects and remove problematical prediction variables when 

VIF was higher than 10. The surviving prediction variables would build the final 

mesquite tree aboveground biomass estimation equation. Similarly, the LASSO method 

used the “glmnet” package and set the one standard error rule to generate the most 

regularized model in this research. After both regression methods established the 

mesquite tree aboveground biomass equations, the equations were applied in ArcGIS to 

build the mesquite tree aboveground biomass maps. The testing data was utilized to 

validate the accuracy of the mesquite tree aboveground biomass maps made by stepwise 

regression and LASSO, respectively. The random forests method utilized the same 

training data and executed the ModelMap package. The ModelMap package not only 

built the random forests model to estimation mesquite tree aboveground biomass but 

also created the mesquite tree aboveground biomass maps. Thus, all prediction variables 

were converted to layers and applied to build the mesquite tree aboveground biomass 

map. The random forests method found the prediction variable importance and built the 
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mesquite tree aboveground biomass model. The out-of-bag (OOB) data of the random 

forests method was utilized to investigate the accuracy of the mesquite tree aboveground 

biomass map. To understand the accuracies of these mesquite tree aboveground biomass 

estimation equations and models, we investigated the coefficient of determination (R
2
) 

of every equation and model. Besides, for evaluating the accuracy of the mesquite tree 

aboveground biomass maps, the mean square errors (MSE) were calculated for the 

mesquite tree aboveground biomass maps' validation.  

The multispectral variables of the NAIP imagery and lidar metrics were assigned 

to three configurations of prediction variables: (1) multispectral variables of the NAIP 

imagery, (2) lidar metrics, and (3) a combined data of multispectral variables and lidar 

metrics. Nonetheless, we found the regression between the response and prediction 

variables is not linear. Hence, the logarithmic transformation was applied to all three 

statistical methods to improve the accuracy of mesquite tree aboveground biomass 

estimation. Moreover, Felker et al. (1982) applied the logarithmic transformation to 

estimate woody plant aboveground biomass and found the high R-squared value (0.9). 

After processing the combinations of three statistical methods and three configurations 

of prediction variable data, the comparison of the results reveals the most feasible 

statistical method and prediction variable for creating mesquite tree aboveground 

biomass map. Figure 2 showed the procedures for generating the local scale mesquite 

tree aboveground biomass maps of this research. 

 



 

20 

 

Figure 2. The flowchart of generating local scale mesquite tree aboveground 

biomass maps 
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II.3. Results 

II.3.1. The mesquite tree aboveground biomass estimation equations and models 

The three statistical methods result in 12 mesquite tree aboveground biomass 

estimation equations from stepwise regression and LASSO methods and 6 random 

forests models for the mesquite tree aboveground biomass estimation after computing 

with the three configurations of prediction variable data. The mesquite tree aboveground 

biomass is only estimated and mapped by the best mesquite tree aboveground biomass 

equation or model. However, the rest of mesquite aboveground biomass equations and 

models still show in the results. 

Table 2. The adjusted and multiple coefficients of determination for stepwise 

regression in mesquite tree aboveground biomass estimation  

Variable group 
Logarithm 

transformation 
Selected variable Coefficient Adj. R

2
 R

2
 

NAIP 

No 
Intercept 4.38 

0.04 0.05 
Red -0.04 

Yes 
Intercept 1.65 

0.06 0.06 
Red -0.02 

Lidar 

No 

Intercept -0.37 

0.12 0.13 
CHM -0.19 

Minimum 0.68 

Standard deviation 1.71 

Yes 
Intercept -0.29 

0.08 0.08 
CHM 0.18 

NAIP & Lidar 

No 

Intercept 1.39 

0.14 0.15 

Red -0.02 

CHM -0.21 

Minimum 0.65 

Standard deviation 1.61 

Yes 
Intercept 1.64 

0.06 0.07 
Red -0.02 
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The stepwise regression method shows the results with and without logarithmic 

transformation. The results without logarithmic transformation poorly establish the 

mesquite tree aboveground biomass estimation equations when the variables came from 

only the NAIP data groups (Table 2). When the logarithmic transformation is applied to 

the NAIP data, the R
2
 increases but not significantly. By contrast, the lidar and combined 

NAIP and lidar data groups present better R
2
 without the logarithmic transformation than 

with the logarithm transformation. However, regardless of the logarithm transformation, 

the results of all data appear to show poor R
2
 values. Overall, the best performance is the 

combined NAIP and Lidar data without logarithm transformation in the stepwise 

regression method. 

Table 3. The adjusted and multiple coefficients of determination for LASSO in 

mesquite tree aboveground biomass estimation  

Variable group 
Logarithm 

transformation 
Selected variable Coefficient Adj. R

2
 R

2
 

NAIP 

No Intercept 1.98 0.00 0.00 

Yes 

Intercept 1.49 

0.05 0.06 Red -0.01 

Green -0.00 

Lidar 

No Intercept 1.98 0.00 0.00 

Yes 

Intercept -0.32 

0.17 0.18 Maximum 0.14 

Standard deviation 0.09 

NAIP & Lidar 

No Intercept 1.98 0.00 0.00 

Yes 

Intercept -0.47 

0.25 0.27 

Red -0.01 

Blue 0.01 

Maximum 0.20 

Standard deviation 0.21 

Variance 0.00 

Kurtosis -0.01 
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The results of the LASSO method show a different perspective from the stepwise 

regression method (Table 3). The logarithm transformation is necessary because 

configurations of prediction variable data apparently appeared to display no relationship 

between the field measurement data and remotely sensed data. After applying the 

logarithm transformation, the weak correlations are found between the field 

measurement data and remotely sensed data. The combined NAIP and lidar data has the 

highest R
2
 while the logarithm transformation was applying. 

Table 4. The pseudo coefficient of determination for random forests in mesquite 

tree aboveground biomass estimation  

Variable group 
Logarithm 

transformation 
Pseudo R

2
 

NAIP 
No 0.06 

Yes 0.09 

Lidar 
No 0.04 

Yes 0.16 

NAIP & Lidar 
No 0.11 

Yes 0.37 

Random forests, the last statistical method, was also implemented with and 

without logarithm transformation and displayed the pseudo coefficient of determination 

(pseudo R
2
) (Table 4). The logarithmic transformation slightly improved the result of 

NAIP data and significantly increasing the pseudo R
2
values in lidar metric and 

combined NAIP and lidar group. Particularly, the combined NAIP and lidar data group 

with logarithmic transformation had the best performance (pseudo-R
2
 = 0.37). Therefore, 

after comparing to the rest of our results, the combined NAIP and lidar data group with 

logarithmic transformation of random forests methods is considered the best mesquite 

tree aboveground biomass model for building the mesquite tree aboveground biomass 

map. 
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The random forests method does not show the intercepts and coefficients like 

stepwise and LASSO regression. So, the variable importance (Figure 3) exhibits the 

importance of variables for building a random forests model to estimate mesquite tree 

aboveground biomass. Moreover, the pseudo R
2
 (Table 4) has shown that the combined 

NAIP and lidar data with logarithmic transformation performed the best result, so we 

exhibit the figure of the variable importance of the combined NAIP and lidar data with 

logarithmic transformation (Figure 3). The figure shows that the NDVI had the highest 

percentage of increased MSE (Figure 3 left) and generated the most numbers of decision 

trees (Figure 3 right). Furthermore, the variable importance found that the variables 

involving NAIP data are more important than the lidar metrics. However, the lidar 

metrics still have the maximum height and 99
th

 percentile height rank in the 5
th

 and 6
th

 

importance. 
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Figure 3. The variable importance of the NAIP and lidar combined data with 

logarithm transformation. 

II.3.2. The mesquite tree aboveground biomass map and validation 

The equations and models of mesquite tree aboveground biomass estimation are 

applied to build the mesquite tree aboveground biomass maps. The results of the 

mesquite tree aboveground biomass map validation are assigned to with and without 

logarithmic transformation (Table 5). When the mesquite tree aboveground biomass 

maps are calculated by stepwise regression and LASSO methods without logarithmic 

transformation, the MSEs are smaller than those with logarithmic transformation. 

However, while applying the logarithmic transformation on the random forests method, 

the MSEs are significantly smaller than the Random Forest results of validation without 
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logarithmic transformation. Furthermore, the smallest validation of the whole research is 

performed by the Random Forest method with the combined NAIP and lidar data with 

logarithmic transformation. Ultimately, the final mesquite tree aboveground biomass 

map is displayed in Figure 4. The figure merely showed and zoomed into a portion of the 

mesquite tree aboveground biomass map, because the size of the pixel (1 m x 1m) is too 

small to exhibit the full distribution of mesquite tree areas in the map.  

Table 5. The validation of mesquite tree aboveground biomass estimation  

Variable group 
Logarithm 

transformation 

Stepwise 

MSE 

(Mg/ha) 

LASSO 

MSE 

(Mg/ha) 

Random forests 

MSE (Mg/ha) 

NAIP 

No 

1.47 1.59 3.22 

Lidar 1.32 1.59 3.26 

NAIP & Lidar 1.28 1.59 3.03 

NAIP 

Yes 

1.70 1.82 1.12 

Lidar 1.62 1.69 1.11 

NAIP & Lidar 1.69 1.59 1.08 
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Figure 4. A portion of mesquite tree aboveground biomass map of Smith Walker 

Research Unit. The black box in the small map shows the location of the biomass 

map. The green color represents high mesquite tree aboveground biomass, and the 

red color represents low mesquite tree aboveground biomass at a pixel.  
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II.4. Discussions 

The results show that the mesquite tree aboveground biomass map with random 

forests method, the combined NAIP and lidar data and the logarithmic transformation 

generates the most accurate mesquite tree aboveground biomass map (MSE is 1.08 

Mg/ha, and R
2
 is 0.37) in this research study. Riegel et al. (2013) estimated vegetation 

aboveground biomass in a mixed forested wetland with ordinary least squares multiple 

linear regression models and obtained similar adj-R
2
 (0.37) with combined both NAIP 

and lidar data. They mentioned that the limit of lidar footprint samples contributes to the 

low R
2 

in their study. In our research, the R
2
 value also shows that the relationship 

between the remotely sensed data and field measurement data is not strong. The 

remotely sensed data was anticipated to have a proper correlation with the field mesquite 

tree aboveground biomass data. Nonetheless, the uncertainties of remotely sensed data 

(such as the point density and the position of Smith Walk Research Unit in the NAIP 

images) and the procedure of removing lidar point cloud data below 1 m that 

dramatically reduced the points at each pixel. Thus, these uncertainties constrain the 

statistical methods to build a good relationship between the remotely sensed data and the 

field measurement data and resulted in the low R
2
 values. Therefore, we considered the 

small MSE value to indicate the final mesquite tree aboveground biomass map is 

reasonable. 

One interesting finding is that the combined NAIP and lidar data in each 

statistical method produced better R
2
 value than the other two variable groups (the NAIP 

variables and lidar metrics, separately). Particularly, the MSE of combined NAIP and 
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lidar data displays the best result in the random forests method. The lidar metrics show 

better mesquite tree aboveground biomass estimation than the NAIP variables, but the 

low point density at every pixel constrains the abilities of lidar remote sensing to offer 

sufficient points for depicting the structure of mesquite trees. Surprisingly, when 

combining the NAIP variables and lidar metrics, the R
2
 values of equations and models 

are significantly improved regardless of the logarithmic transformation. The combined 

NAIP and lidar data provide adequate active and passive remotely sensed information to 

aid those statistical methods for better developing the equations and models for the 

mesquite tree aboveground biomass estimation. Thus, we believe the combined NAIP 

and lidar data provide adequate variables for mesquite tree aboveground biomass 

estimation. 

The results of variable selection from these three statistical methods showed that 

lidar metrics were favored by the stepwise regression and LASSO methods. However, 

the random forests method indicated NAIP data was more important than lidar metrics. 

The stepwise regression selected the red band, CHM, minimum height, and standard 

deviation without the logarithmic transformation in the combined NAIP and lidar data 

group. The LASSO method selected the red band, blue band, maximum height, standard 

deviation height, variance height, and kurtosis height with the logarithmic 

transformation in the combined NAIP and lidar data group. The CHM and maximum 

height were critical factors for estimating tree aboveground biomass. The minimum 

height, standard deviation height, and variance height, and kurtosis were considered as 

the factors to describe the distribution of tree heights in a group of mesquite trees. The 
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blue and green bands were selected from NAIP data as well as combined NAIP and lidar 

data groups in the LASSO method. Nonetheless, both blue and green bands had very 

small coefficients (-0.003 and 0.008). Moreover, the variance height had a very small 

coefficient (0.004) from combined NAIP and lidar data group in the LASSO method as 

well. On the other hand, the random forests method considered NDVI, NIR band, blue 

band, red band, and maximum height were the top five important variables in the 

permutation. Furthermore, NDVI, maximum height, NIR band, Blue band, and 99
th

 

percentile height were the top five important variables in the random forests model. The 

results of variable selection of these three statistical methods revealed that stepwise 

regression and LASSO prefer lidar metrics than NAIP data, but the random forests 

preferred NAIP data more. 

The stepwise regression and LASSO methods both recognized the red band an 

important variable while in NAIP data and combined NAIP and lidar data groups. In 

fact, it has been proven that the red edge portion of the electromagnetic spectrum (>700 

nm) can detect the canopy chlorophyll content and leaf area index (LAI). Additionally, 

several studies mentioned that the red band has a significant relationship with vegetation. 

Todd et al. (1998) found that the red band is sensitive to biomass variations for green 

vegetation. Zhang et al. (2014) used the red band to differentiate vegetated and non-

vegetated pixels according to the red spectral reflectance. Although the red band of the 

NAIP images is between 604 to 664 nm which is a shorter wavelength compared to the 

red edge portion, the NAIP images provide enough energy of red spectrum for detecting 

the mesquite trees. Therefore, the stepwise regression and LASSO methods found a 
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significant relationship between the red band and the mesquite tree aboveground 

biomass.  

Our research utilized a pixel-level processing concept to process the remotely 

sensed data at each pixel. Riegel et al. (2013) described a similar small plot concept to 

collect the vegetation measurements from 10 x 10 m plots and found the relationship 

between the plot-level vegetation aboveground biomass and remotely sensed data, 

including lidar and NAIP imageries. Similarly, we conducted all NAIP and lidar training 

and testing data to derive and calculate biomass at 1 m spatial resolution which is the 

spatial resolution of the NAIP imagery. Each pixel has its field measurement and 

remotely sensed data. Then we selected the samples by each pixel to build the mesquite 

tree aboveground biomass estimation equations and models. Although the very high 

spatial resolution causes fewer points at each pixel, the combined NAIP and lidar data 

still provides adequate information for developing mesquite tree aboveground biomass 

equations and models at such a high spatial resolution. Given this very high spatial 

specificity, as opposed to commonly plot-level aboveground biomass assessment, our 

results for scaling up to local estimations are encouraged with the similar R
2
 and low 

MSE values. 

II.5. Conclusion 

Our study found the best fitting method and remotely sensed data combination 

for the mesquite tree aboveground biomass estimation on rangelands after comparing the 

results of combined statistical methods and remotely sensed data. Ultimately, the random 

forests method with combined NAIP and lidar data provided the best result for 
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estimating the mesquite tree aboveground biomass at high spatial resolution. Not only 

did the approach select appropriate remotely sensed variables, but also built an accurate 

mesquite tree aboveground biomass model. Moreover, our study upscaled the mesquite 

tree aboveground biomass from pixel- and plot-level to create a local-scale mesquite tree 

aboveground biomass map. The procedure to build the biomass map offered a novel 

spatial explicit approach for the future biomass map development. 

Future research could use point cloud data with higher point density per square 

meters, whether lidar- or photogrammetric-derived point cloud data, and multispectral 

imagery to estimate vegetation aboveground biomass from local to regional level. For 

local-scale, future investigations could make use of structure-from-motion (SfM) point 

cloud data acquired affordably through the use of unmanned aerial systems (UAS).  Low 

altitude and cost UAS is one convenient technique for landowners to investigate their 

properties in rangelands and forests. 
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CHAPTER III 

GLOBAL FOREST CANOPY HEIGHT MAP VALIDATION AND CALIBRATION 

FOR THE POTENTIAL OF FOREST BIOMASS ESTIMATION IN THE SOUTHERN 

UNITED STATES 

 

III.1. Introduction 

The canopy height model (CHM) is the product of lidar remote sensing used to 

characterize vegetation heights above ground level for forest measurement applications 

or ecosystem studies (Popescu et al., 2002, Mustonen et al., 2008). Particularly, the 

CHM can provide individual tree measurements and biophysical variable information for 

forest aboveground biomass estimation at a plot or local scale. Thus, the CHM is also a 

critical remotely sensed variable to assess the carbon storage in forests. However, the 

majority of the CHMs covers merely local scale areas and is difficult to acquire for 

larger scale (i.e., national or continental scale) coverage. Therefore, to retrieve canopy 

information for large extents and to estimate forest aboveground biomass, there is a clear 

need for the large-scale forest canopy height map. 

The global forest canopy height map (GCHM) is one of the global products that 

could be used for estimating forest aboveground biomass at large-scale. Recently, three 

global forest canopy height maps have been generated based on the Geoscience Laser 

Altimeter System (GLAS) and other data sources and methodological approaches. First, 

Lefsky (2010) generated a continuous global canopy height map by combining GLAS 

data from the sole instrument on ICESat (Ice, Cloud, and land Elevation Satellite) and 
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MODIS images with the Cubist data mining method. The global canopy height map is 

the first to reveal the distribution of forest canopy height globally. Saatchi et al. (2011) 

investigated the tropical forest carbon stock across three continents based on Lefsky’s 

GCHM. Then Simard et al. (2011b) integrated SRTM, GLAS, climatic and other 

ancillary data with the random forests method to create the global forest canopy height 

map. The second global forest canopy height map displayed even more massive forest 

canopy coverage than the first one (Bolton et al., 2013). Moreover, Los et al. (2012) 

processed GLAS, SRTM, and MODIS data to create a coarse resolution global 

vegetation height and vegetation cover fraction product data sets as well. Bevan et al. 

(2014) applied Los’s global vegetation height map to investigate the response of 

vegetation after the 2003 European drought. Those global vegetation height maps all 

considered GLAS data as the primary remotely sensed source because of the capabilities 

for directly measured forest canopy height. Furthermore, the 60 m in diameter footprint 

on the ground offered essential forest biophysical and structure information at a large 

scale area. 

Nevertheless, Simard et al. (2011b) claimed their GCHM covered a larger area of 

forests because of involving mosaic crops, open forest, and saline flooded forests. So, 

Simard’s GCHM displays not only the tall trees in forests but also the short woody 

plants on the ground. Besides, Bolton et al. (2013) have initially investigated the 

agreement of Lefsky and Simard’s GCHM over Canada with airborne lidar data. Their 

investigation found that Simard’s GCHM has better agreement with airborne lidar data 

because of the removal of the slope-affected GLAS waveforms. Additionally, Los’s 
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GCHM has a very coarse spatial resolution (0.5° x 0.5°) and makes airborne lidar data 

difficult to use for validation and calibration. Therefore, we considered Simard’s GCHM 

is the appropriate map for the validation and calibration with airborne lidar remote 

sensing data on rangelands and forests in the southern United States. 

 Simard et al. (2011b) conducted the field validations for both GLAS estimates of 

canopy height footprints and the resultant 1 km
2
 pixel from their GCHM. Specifically, 

the 66 field measurements were collected from the FLUXNET La Thuile database 

(Baldocchi, 2008, Baldocchi et al., 2001) globally. The field validation data included the 

terrestrial or airborne lidar, laser rangefinder/clinometer, and the manual tree height 

measurement by tape measure. Only three field validation sites of the GCHM (2 sites in 

Florida and 1 site in Mississippi) were located in the southern United States. In our 

calibration study, the Simard’s GCHM was regressed against airborne lidar data. The 

calibrated GCHM (cGCHM) is expected to improve the accuracy of mapping forest 

aboveground biomass at large scale in future studies, such as for estimating canopy 

biophysical parameters, including biomass. 

This research offers more field measurements than Simard’s validations of the 

southern United States where Simard lacked the field measurements. Moreover, we 

calibrated the GCHM of the southern United States in order to use the calibrated GCHM 

for improving the future large-scale forest aboveground biomass estimation in Chapter 

IV. Thus, this research is establishing a methodology for conducting validation and 

calibration of Simard’s GCHM, or any other potential global map of vegetation heights, 

for improving potential future applications for large-scale mapping of forest biophysical 
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parameters. The specific objectives of the proposed study are to 1) validate Simard’s 

global forest canopy height map with airborne lidar metrics on rangelands and forests, 

and 2) calibrate the global forest canopy height map with the appropriate lidar metric for 

future forest aboveground biomass estimation. 

III.2. Materials and Methods 

III.2.1. Study area  

The southern United States which is defined by Census Regions and Divisions of 

the United States of the United States Census Bureau (2018) is the interest of the 

research. The southern United States includes 16 states and 1 federal district which are 

Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, 

North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, West Virginia, 

and District of Columbia. Most of the states belong to the humid subtropical climate, and 

some regions fall in the tropical (southern Florida), and arid (western Texas and western 

Oklahoma) climate according to Köppen climate classification. The average temperature 

of the southern United States ranges from 21 °C to 32 °C in summer and 40 °C to 16 °C 

in winter. Furthermore, the average annual precipitations are between 500 mm to 2000 

mm across this regional. 



Figure 5. The EPA level III ecoregions in the southern United States (Ecoregions, 

2018) 

Environment Protection Agency (EPA) had published four different hierarchical 

levels of ecoregions (Omernik and Griffith, 2014). The range was from level I with 12 

ecoregions to level IV with 967 ecoregions in the conterminous U. S. (Ecoregions, 

2018). The ecoregions were defined based on similarity in the mosaic of biotic, abiotic, 

terrestrial, and aquatic ecosystem components. Hence, the appropriate ecoregion levels 

were chosen for validating the GCHM of the southern United States. Level I (3 

ecoregions) and level II (4 ecoregions) ecoregions were eliminated because the 

ecoregions did not appear to have large extents or significant vegetation canopy (arid, 
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semi-arid, subtropical, and tropical) in the southern United States. Moreover, the level 

IV ecoregion had too many small area components when considering the spatial scale of 

the southern United States. Thus, the level III ecoregions (Table 6) were selected within 

the southern United States (Figure 5). However, the airborne lidar point cloud data was 

not available in every EPA level III ecoregion, but included 9 of these ecoregions to 

validate and calibrate the CGHM with airborne lidar point cloud data. These 9 

ecoregions included 1575 GCHM samples. 

Table 6. The number of GCHM samples with airborne lidar point cloud data in 

each ecoregion 

 

 

 

 

 

 

III.2.2. The global forest canopy height map 

The global forest canopy height map was derived by Simard et al. (2011b) 

(Figure 6) and was selected for our validation and calibration because of the proper 

spatial resolution, the large forest area that it covers, and its public availability. The 

global forest canopy height map can be downloaded from the NASA Jet Propulsion 

Laboratory website (Simard et al., 2011a). The primary data used to generate the global 

forest canopy height map was the GLAS‐derived estimate of canopy height, RH100, 

which was the distance between the beginning of laser pulse echo and the corresponding 

Name* Abbreviation Number of GCHM samples 

Unclassified  2 

27 Central Great Plains CGP 33 

30 Edwards Plateau EP 9 

63 Middle Atlantic Coastal Plain MACP 186 

73 Mississippi Alluvial Plain MAP 189 

74 Mississippi Valley Loess Plains MVLP 240 

35 South Central Plains SCEP 239 

65 Southeastern Plains SEP 161 

75 Southern Coastal Plain SCOP 454 

76 Southern Florida Coastal Plain  SFCP 62 

*The name of EPA level III ecoregion in the southern United States 
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location of the ground peak (Harding and Carabajal, 2005, Sun et al., 2008, Boudreau et 

al., 2008). The GLAS data was GLA 14 land product version of 2005 data. Additionally, 

the GCHM generation integrated climate data, i.e. the annual mean temperature and 

temperature seasonality data as well as annual mean precipitation and precipitation 

seasonality of Tropical Rainfall Measurement Mission (TRMM) from the Worldclim 

dataset, the SRTM elevation, MODIS tree cover data (MOD44 map), and protection 

status of UN World Database on Protected Areas. Then the primary data and the 

ancillary data were input to the random forests statistical method to create the global 

forest canopy height map. 
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Figure 6. The global forest canopy height map of the southern United States made 

by Simard et al. (2011b) 

III.2.3. Airborne lidar point cloud data 

The airborne lidar point cloud data was collected between 2010 and 2012 and 

acquired from (1) NASA’s Goddard’s LiDAR, Hyperspectral & Thermal Image (G-

LiHT) program; (2) National Ecological Observatory Network’s (NEON) prototype data 

sharing program; (3) NSF OpenTopography program; and (4) Lidar application for the 

study of ecosystem with remote sensing laboratory (LASERS) in the Department of 

Ecosystem Science and Management at Texas A&M University. The airborne lidar point 
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cloud data were spread out in the southern United States, including the states of Florida, 

Maryland, North Carolina, Texas, and Virginia (Table 7). Also, to provide accurate 

samples of airborne lidar point data to validate and calibrate the global wall-to-wall 

forest canopy height map, the airborne lidar point cloud data had completed coverage of 

their scanned areas as well (Table 6). 

Table 7. A list data source of airborne lidar point cloud data 

Data Source Location States Month Year 

TAMU 

LASERS Lab 

Vernon Texas November 2010 

Big Sandy Creek Texas November 2010 

Huntsville Texas November 2010 

NEON 

Ordway-Swisher 

Biological Station 
Florida September 2010 

Donaldson plantation Florida September 2010 

NSF  

OpenTopography 

Tuscaloosa Alabama December 2010 

The Meeman-Shelby 

lineament 
Arkansas-Tennessee 

July to 

September  
2010 

The Reelfoot scarp Arkansas-Tennessee 
July to 

September  
2010 

Apopka Florida June 2011 

Bald Point Florida September 2010 

Merritt Island Florida June 2008 

South Florida Everglades Florida November 2012 

Charleston South Carolina February 2010 

Canyon Lake Gorge Texas October 2010 

NASA 

G-LiHT 

Bowie Maryland June 2012 

Parker Track Virginia July  2011 

Patuxent Refuge Maryland June 2012 

Perquimans North Carolina July 2011 

Smithsonian 

Environmental Research 

Center 

Maryland October 2011 

Wallops Flight Facility Virginia September 2011 
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III.2.4. Airborne lidar point cloud data preprocessing 

Most of the airborne lidar point cloud data were raw data with unnecessary 

information, redundant points, and inaccurate points. Thus, the airborne lidar point cloud 

data were preprocessed before acquiring airborne lidar metrics. The airborne lidar point 

cloud data was subtracted from the 3 m
2
 spatial resolution digital elevation model 

(DEM) to remove the terrain height (Hodgson, 2003). Then the urban, cropland and 

water areas were visually identified and removed from the airborne lidar point cloud 

data. The distribution of the airborne point cloud data aided to distinguish urban areas, 

water body, croplands, and grasslands. The remaining airborne lidar point cloud data 

was assumed to cover woody plants and forests. After removing the significant non-

woody plant airborne lidar point cloud data, the inaccurate and redundant points below 

the ground or higher than the tallest woody plants were removed. In addition, power and 

communication towers in the forest areas were eliminated as well. The inaccurate, as 

well as power and communication towers points were removed manually. Ultimately, 

the airborne lidar point cloud data was processed to 4 different categories based on the 

height of different vegetation for investigating the potential influence of small vegetation 

point cloud data in forests, such as understory woody plants, shrubs, bushes, and grass. 

The 4 height categories of point cloud data were 1) point cloud data greater than 0 m, 2) 

greater than 1 m to eliminate open grounds and short grass in forests, 3) greater than 3m 

to trim the tall grass and small bushes off, and 4) greater than 5m to cut the shrubs and 

bushes off in forests. 
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III.2.5. Derived airborne lidar metrics at the pixel-based global forest canopy 

height map 

The outlines of every airborne lidar covered areas were co-registered with the 

GCHM. Those GCHM pixels which had more than 50% of areas covered by the airborne 

lidar data were selected. Because the spatial resolution of GCHM was about 1 km
2
, 

every selected pixel included sufficient amount of airborne lidar point cloud data for 

computing the airborne lidar metrics. The airborne lidar metrics were maximum, mean, 

mode, 50
th

 percentile, 75
th

 percentile, 90
th

 percentile, 95
th

 percentile, and 99
th

 percentile 

heights (Table 8) and computing in every height category (0, 1, 3, and 5 m). However, 

due to the short vegetation and woody plants being removed at specific height 

categories, some pixels would encounter no airborne points. Therefore, these pixels 

would be omitted from further analysis. 

Table 8. The list of airborne lidar metrics from airborne lidar point cloud data 
1. Maximum Height 

2. Mean Height 

3. 50
th
 percentile Height 

4. 75
th
 percentile Height 

5. 90
th
 percentile Height 

6. 95
th
 percentile Height 

7. 99
th
 percentile Height 

8. Mode Height 

III.2.6. Methods of validation and calibration 

The validation and calibration of GCHM were processed to the ecoregions with 

the available airborne lidar point cloud data. The ecoregions without the available 

airborne lidar point cloud data would not be validated and calibrated. Initially, the 

procedure of validation was applied to the ecoregion with the available airborne lidar 
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metrics and the entire southern United States GCHM in different height categories. The 

airborne lidar metrics was split into 80% training and 20% testing datasets. The training 

data was employed to validate the GCHM, and the testing data was employed to validate 

the calibrated GCHM (cGCHM). The bias (Equation 4) and root mean square error 

(RMSE) (Equation 5) were used to validate the GCHM.  

Equation 4 

𝑩𝒊𝒂𝒔𝒋 =
∑ (𝑮𝑪𝑯𝑴𝒊𝒋 − 𝑴𝒆𝒕𝒓𝒊𝒄𝒊𝒋)𝒏

𝒊=𝟏

𝒏
 

Equation 5 

𝑹𝑴𝑺𝑬𝒋 = √∑ (𝑮𝑪𝑯𝑴𝒊𝒋 − 𝑴𝒆𝒕𝒓𝒊𝒄𝒊𝒋)
𝟐𝒏

𝒊=𝟏

𝒏
 

Where 𝐺𝐶𝐻𝑀𝑖𝑗 denotes the pixel i of GCHM in the j ecoregion, 𝑀𝑒𝑡𝑟𝑖𝑐𝑖𝑗 

denotes the airborne lidar metrics of the correspond pixel i of the GCHM in the j 

ecoregion, 𝐵𝑖𝑎𝑠𝑗 denotes the average of total bias in the j ecoregion, and 𝑅𝑀𝑆𝐸𝑗 denotes 

the RMSE in the j ecoregion. 

After the validation of GCHM, the appropriate lidar metric would be selected to 

calibrate the GCHM. The appropriate lidar metric selection was not only determined by 

the smallest RMSE and bias, but also referred to several previous studies (McGaughey et 

al., 2010, Drake et al., 2002, Bolton et al., 2013, Means et al., 2000, St‐Onge et al., 2008, 

Alexander et al., 2014). The calibration regressed the selected lidar metric against the 

GCHM to acquire the calibration equation of every ecoregion and entire GCHM 

(Equation 6). 

Equation 6 

𝑴𝒆𝒕𝒓𝒊𝒄𝒊𝒋 = 𝜶 + 𝜷 ∙ 𝑮𝑪𝑯𝑴𝒊𝒋 
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Where 𝐺𝐶𝐻𝑀𝑖𝑗 denotes the pixel i of GCHM in the j ecoregion, 𝑀𝑒𝑡𝑟𝑖𝑐𝑖𝑗 

denotes the airborne lidar metrics of the correspond pixel i of the GCHM in the j 

ecoregion, α denotes the intercept and β denotes the coefficient. 

The coefficient of determination (R
2
) was used for examining the discrepancies 

of canopy height between the airborne lidar metrics and GCHM. Sequentially, the 

calibration equations were employed to calibrate each ecoregion and entire GCHM. The 

testing data then validated the cGCHM for the accuracy and displayed the validation 

results with RMSE and bias as well. All validation and calibration procedures were 

implemented in the R programming language. ArcGIS was utilized with the calibration 

equations to generate cGCHMs. The flowchart (Error! Not a valid bookmark self-

reference.) shows the general concept of GCHM validation and calibration at one of the 

ecoregions. 
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ALS scanned 

coverage 
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cloud data 
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Creating point cloud data in 
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1. Above 0 m 

2. Above 1 m and below 3 

m 

3. Above 3 m and below 5 

m 

4. Above 5 m 

Validate GCHM 

Calculate 

lidar metrics 

at GCHM 

grids 

Simple random 

sampling 

(SRS): Training 

and Testing 

data 

Validation: 

Bias & RMSE 
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 &95
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 percentile 

height was selected for 

the GCHM calibration  

Generating 
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(cGCHM) 

Validation: Bias 

& RMSE 

Global forest canopy 

height map (GCHM) 

Simple linear 
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GCHM calibration 
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2
) 
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g 

Testing 
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ALS scanned 
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Apply the calibration 

equations on GCHM 

Validate cGCHM 

Figure 7. The flowchart of the general concept for validating and calibrating GCHM 
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III.3. Results 

III.3.1. The results of the GCHM validation 

The results of the GCHM validation display the bias (Figure 8) and RMSE 

(Figure 9) between the GCHM and airborne lidar metrics (the max, mean, mode, 50
th

, 

75
th

, 90
th

, 95
th

, and 99
th

 percentile heights). The bias and RMSE are computed in each 

ecoregion at 4 height categories. After the comparison of bias and RMSE by the airborne 

lidar metrics in the ecoregion, the nearest zero bias and smallest RMSE in each 

ecoregion is highlighted with bold and underlined. In Table 9, MACP, MAP, MVLP, 

SCEP, SEP, SCOP, and Total Points have the nearest zero bias at the 90
th

 percentile 

height at 0 m height category. CGP has the nearest zero bias at the 99
th

 percentile height, 

EP has the nearest zero bias at mean height, and SFCP has the nearest zero bias at max 

height at the 0 m height category. In summary, the majority ecoregions (7 of 10 

ecoregions) have the nearest zero bias at the 90
th

 percentile height at 0 m height category 

(Figure 8A).  

At the 1 m height category, MACP, MVLP, SEP, SCOP, and Total Points have 

the nearest zero bias at the 75
th

 percentile height. CGP has the nearest zero bias at the 95 

percentile height. EP has the nearest zero bias at the mode height. MAP has the nearest 

zero bias at the 50
th

 percentile height. SCEP has the nearest zero height at the 90
th

 

percentile height. SFCP has the nearest zero bias at the max height. Thus, the majority 

ecoregions (5 of 10 ecoregions) have the nearest zero bias at the 75
th

 percentile height at 

the 1 m height category (Figure 8B). 
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Figure 8. The bias results of GCHM validation: (A) 0 m, (B) 1 m, (C) 3 m, and 

(D) 5 m height category. Total… represents Total Points. 
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At the 3 m height category, MACP, MVLP, SEP, SCOP, and Total Points have 

the nearest zero bias at the 75
th

 percentile height. CGP and SCEP have the nearest zero 

bias at the 90
th

 percentile height. EP and MAP have the nearest zero bias at the mode 

height. SFCP has the nearest zero bias at the max height. Totally, the majority 

ecoregions (5 of 10 ecoregions) have the nearest zero bias at the 75
th

 percentile height at 

the 3 m height category (Figure 8C). 

Table 9. The bias results of validation in every ecoregion and entire GCHM (Total 

point) 

    Bias 

Ecoregion Height Max Mean Mode P50 P75 P90 P95 P99 

CGP 

0 m 

-10.85 5.59 5.92 5.84 5.75 5.03 4.06 1.98 

EP -20.54 0.33 3.29 2.34 -1.74 -5.41 -7.35 -10.96 

MACP -14.92 10.50 18.10 12.53 5.28 -0.14 -2.78 -6.75 

MAP -23.45 6.70 10.40 9.65 4.70 -1.57 -5.10 -11.27 

MVLP -21.45 13.71 20.17 18.43 8.61 0.50 -3.51 -9.44 

SCEP -14.69 12.67 21.96 13.96 6.48 1.02 -1.72 -5.91 

SEP -19.19 10.19 19.06 12.21 4.13 -2.08 -5.07 -9.60 

SCOP -15.63 7.14 12.46 9.11 3.23 -0.99 -3.33 -7.20 

SFCP -0.68 12.63 15.10 13.31 11.52 9.09 7.38 4.80 

Total Points -17.20 9.60 15.86 11.94 5.30 -0.17 -3.04 -7.58 

CGP 

1 m 

-10.85 3.17 4.89 3.52 2.44 1.26 0.54 -2.05 

EP -20.54 -3.01 0.53 -2.64 -5.06 -7.60 -9.24 -12.48 

MACP -14.92 6.30 10.16 6.50 1.41 -2.48 -4.46 -7.74 

MAP -23.60 -1.05 6.61 -0.51 -6.18 -10.63 -12.95 -16.66 

MVLP -21.45 7.70 19.17 8.54 0.69 -4.80 -7.50 -11.73 

SCEP -14.69 8.85 13.71 9.01 3.69 -0.65 -2.96 -6.69 

SEP -15.63 2.73 4.77 2.91 -0.63 -3.71 -5.50 -8.66 

SCOP -19.19 5.65 10.84 6.09 0.16 -4.42 -6.80 -10.67 

SFCP -0.68 10.26 13.11 10.68 8.43 6.36 5.10 3.22 

Total Points -17.20 4.70 9.85 5.07 0.01 -3.98 -6.08 -9.59 

* Total Points combines all ecoregion airborne lidar point cloud data 

 

 



Table 9. Continued. 

Bias 

Ecoregion Height Max Mean Mode P50 P75 P90 P95 P99 

CGP 

3 m 

-9.51 1.98 3.27 2.39 1.56 0.47 -0.94 -3.93

EP -20.54 -3.93 -2.15 -3.37 -5.61 -8.05 -9.64 -12.85

MACP -14.92 4.57 5.91 4.55 0.15 -3.34 -5.13 -8.18

MAP -23.59 -2.71 1.34 -2.40 -7.49 -11.50 -13.64 -17.09

MVLP -21.45 4.65 13.40 4.85 -1.32 -5.98 -8.38 -12.30

SCEP -14.69 7.71 11.78 7.88 3.07 -1.06 -3.28 -6.89

SEP -15.63 1.87 3.39 2.13 -1.16 -4.11 -5.82 -8.89

SCOP -19.19 4.69 9.20 5.15 -0.40 -4.77 -7.07 -10.84

SFCP -0.68 8.56 10.17 8.88 7.02 5.15 4.19 2.59

Total Points -17.10 3.28 6.84 3.53 -0.93 -4.56 -6.54 -9.88

CGP 

5 m 

-9.51 -0.22 1.37 0.49 -1.02 -2.88 -4.11 -6.46

EP -20.54 -5.03 -2.25 -4.39 -6.45 -8.76 -10.29 -13.44

MACP -14.92 3.55 4.74 3.66 -0.44 -3.70 -5.40 -8.39

MAP -23.59 -3.95 -1.25 -3.64 -8.32 -12.08 -14.10 -17.37

MVLP -21.45 3.34 7.39 3.57 -2.06 -6.43 -8.73 -12.53

SCEP -14.69 6.69 10.00 6.97 2.52 -1.44 -3.56 -7.07

SEP -15.63 0.91 2.57 1.27 -1.77 -4.55 -6.21 -9.17

SCOP -19.19 3.61 7.85 4.06 -1.08 -5.20 -7.41 -11.06

SFCP -0.68 7.07 8.64 7.33 5.65 4.21 3.41 2.03

Total Points -17.10 2.16 4.81 2.46 -1.64 -5.07 -6.97 -10.18

* Total Points combines all ecoregion airborne lidar point cloud data

At the 5 m height category, MACP, MVLP, SCOP, and Total Points have the 

nearest zero bias at the 75
th

 percentile height. CGP and SEP have the nearest zero bias at 

the mean height. EP and MAP have the nearest zero bias at the mode height. SCEP has 

the nearest zero bias at the 90
th

 percentile height. SFCP has the nearest zero bias at the 

max height. Finally, the majority ecoregions (4 of 10 ecoregions) have the nearest zero 

bias at the 75
th

 percentile height at the 5 m height category (Figure 8D).

In the RMSE table (Table 10), MACP, MVLP, SCEP, SEP, SCOP, and Total 

Points have the smallest RMSE at the 90
th

 percentile height at the 0 m height category. 

CGP has the smallest RMSE at the 95
th

 percentile height. EP has the smallest RMSE at

50 
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the mean height. MAP has the smallest RMSE at the 75
th

 percentile height. SFCP has the 

smallest RMSE at the max height. Therefore, the majority ecoregions (6 of 10 

ecoregions) have the smallest RMSE at the 90
th

 percentile height at the 0 m height 

category (Figure 9A). 

At the 1 m height category, MACP, MVLP, SEP, SCOP, and Total Points have 

the smallest RMSE at the 75
th

 percentile height. CGP has the smallest RMSE at the 95
th

 

percentile height. EP has the smallest RMSE at the mode height. MAP has the smallest 

RMSE at the mean height. SCEP has the smallest height at the 90 percentile height. 

SCOP has the smallest RMSE at the max height. Thus, the majority ecoregions (5 of 10 

ecoregions) have the smallest RMSE at the 75
th

 percentile height at the 1 m height 

category (Figure 9B). 

At the 3 m height category, MACP, MVLP, SEP, SCOP, and Total Points have 

the smallest RMSE at the 75
th

 percentile height. CGP and SCEP have the smallest 

RMSE at the 90
th

 percentile height. EP has the smallest RMSE at the mode height. MAP 

has the smallest RMSE at the 50
th

 percentile height. SFCP has the smallest RMSE at the 

max height. In summary, the majority ecoregions (5 of 10 ecoregions) have the smallest 

RMSE at the 75
th

 percentile height at the 3 m height category (Figure 9C). 
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Figure 9. The RMSE results of GCHM validation: (A) 0 m, (B) 1 m, (C) 3 m, and 

(D) 5 m height category. Total… represents Total Points. 
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At the 5 m height category, SEP, SCOP, and Total Points have the smallest 

RMSE at the mean height. CGP and MAP have the smallest RMSE at the 50
th

 percentile 

height. EP has the smallest RMSE at the mode height. MACP and MVLP have the 

smallest RMSE at the 75
th

 percentile height. SCEP has the smallest RMSE at the 90
th

 

percentile height. SFCP has the smallest height at the max height. Finally, the majority 

ecoregions (3 of 10 ecoregions) have the smallest RMSE at the mean height (Figure 9D). 

Table 10.The RMSE results of validation in every ecoregion and entire GCHM 

(Total point) 

    RMSE 

Ecoregion Height Max Mean Mode P50 P75 P90 P95 P99 

CGP 

0 m 

13.84 6.51 6.82 6.74 6.66 6.06 5.31 3.98 

EP 21.89 5.48 6.20 6.01 6.32 7.70 9.17 12.50 

MACP 16.76 12.15 19.30 14.10 8.90 7.01 7.56 10.03 

MAP 26.50 11.15 14.89 13.80 9.39 10.62 12.55 16.57 

MVLP 22.32 14.99 21.62 19.73 10.62 6.08 6.78 11.04 

SCEP 16.03 12.95 22.19 14.46 7.54 4.11 4.53 7.31 

SEP 21.42 13.22 20.34 15.22 10.91 10.16 11.01 13.55 

SCOP 17.59 9.66 14.34 11.22 7.86 7.40 8.03 10.27 

SFCP 6.66 13.96 16.56 14.67 12.92 11.14 10.04 8.30 

Total Points 19.66 11.91 18.00 14.24 9.00 7.63 8.47 11.34 

CGP 

1 m 

13.84 4.61 5.93 4.82 4.16 3.89 3.71 4.63 

EP 21.89 5.80 5.42 5.62 7.05 9.13 10.67 13.87 

MACP 16.76 9.30 14.16 9.73 7.58 7.89 8.85 10.96 

MAP 26.68 9.24 12.64 9.26 11.47 14.71 16.65 19.98 

MVLP 22.32 10.38 20.69 11.28 6.90 8.10 9.87 13.36 

SCEP 16.03 9.33 15.46 9.58 5.04 3.99 5.09 7.92 

SEP 17.59 7.34 9.49 7.42 6.94 7.93 8.98 11.30 

SCOP 21.42 10.13 14.78 10.82 9.45 10.47 11.65 14.24 

SFCP 6.66 12.09 14.82 12.52 10.80 9.28 8.54 7.50 

Total Points 19.68 8.99 13.95 9.33 7.94 9.12 10.36 12.94 

* Total Points combines all ecoregion airborne lidar point cloud data 
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Table 10. Continued. 

RMSE 

Ecoregion Height Max Mean Mode P50 P75 P90 P95 P99 

CGP 

3 m 

12.85 3.49 4.43 3.78 3.29 2.92 3.77 6.33 

EP 21.89 6.40 5.71 6.06 7.51 9.55 11.07 14.25 

MACP 16.76 8.48 10.83 8.67 7.62 8.42 9.36 11.33 

MAP 26.53 9.63 10.69 9.52 12.19 15.27 17.09 20.24 

MVLP 22.32 8.20 16.77 8.41 6.69 8.75 10.51 13.86 

SCEP 16.03 8.21 13.47 8.41 4.59 4.06 5.27 8.08 

SEP 17.59 6.92 8.19 6.99 6.88 8.05 9.13 11.44 

SCOP 21.42 9.78 14.43 10.42 9.47 10.63 11.82 14.38 

SFCP 6.66 10.64 12.16 10.94 9.56 8.42 7.88 7.13 

Total Points 19.56 8.24 11.88 8.42 7.88 9.29 10.54 13.07 

CGP 

5 m 

12.85 3.02 3.22 2.90 3.69 5.15 6.34 9.08 

EP 21.89 7.15 5.80 6.70 8.19 10.23 11.71 14.84 

MACP 16.76 7.98 9.92 8.22 7.55 8.59 9.51 11.45 

MAP 26.53 10.07 10.43 9.88 12.69 15.68 17.45 20.48 

MVLP 22.32 7.49 12.37 7.64 6.81 9.06 10.79 14.07 

SCEP 16.03 7.26 11.60 7.55 4.26 4.19 5.47 8.24 

SEP 17.59 6.69 7.46 6.73 6.94 8.25 9.35 11.66 

SCOP 21.42 9.29 13.80 9.82 9.41 10.76 11.98 14.52 

SFCP 6.66 9.57 10.90 9.83 8.73 7.89 7.47 6.91 

Total Points 19.56 7.86 10.42 8.00 7.97 9.52 10.78 13.28 

* Total Points combines all ecoregion airborne lidar point cloud data

Our results indicated that 90
th

 percentile at 0 m height category has the minimal

bias and RMSE in most ecoregions (7 of 10 ecoregions). Our research is in agreement 

with the Means et al. (2000) results, which predicted the forest stand height with 90
th

percentile height. However, many previous studies (McGaughey et al., 2010, Drake et 

al., 2002, St-Onge et al., 2008, Alexander et al., 2014) recommend that 95
th

 percentile

heights airborne lidar metric, with or without ground points, is highly correlated to the 

field tree heights, and represent the field tree height. Therefore, to have comprehensive 
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results, the airborne lidar metrics of 90
th

 and 95
th

 percentile heights at 0 m height 

category are both applied to calibrate the GCHM. 

III.3.2. The parameters for GCHM calibration 

After the GCHM validation with airborne lidar metrics, the 90
th

 and 95
th

 

percentile heights at 0 m height category created the simple linear regression equations 

with the GCHM ecoregions in order to calibrate the GCHM. The equations of the 

GCHM calibration (Table 11) employ the airborne lidar metrics as the dependent 

variable and the GCHM as the independent variable. In the Table 11, two equations of 

the GCHM ecoregions (CGP and EP) display high p-value and the coefficient of 

determinations are very low in the both 90
th

 and 95
th

 percentile height calibrations. The 

other equations of the GCHM ecoregions, including the entire southern United States, 

have shown the range of R
2 

values from 0.00 to 0.53 and the range of adjusted R
2
 values 

from -0.20 to 0.52 in the 90
th

 percentile height. Moreover, the range of R
2 

values is from 

0.02 to 0.52 and the range of adjusted R
2
 values is from -0.18 to 0.52 in the 95

th
 

percentile height. Among the equations of the GCHM ecoregions, the MVLP ecoregion 

has the highest R
2
 and adjusted R

2
 in the both 90

th
 and 95

th
 percentile heights. Figure 10 

shows the corrected GCHM (cGCHM) of the southern United States by the 90
th

 and 95
th

 

percentile height lidar metrics without water bodies and the original GCHM with water 

bodies. In Figure 10, the maximum height of Simard’s GCHM is much higher than our 

cGCHMs. Moreover, the cGCHM by the 90
th

 percentile height corrected appears lower 

minimum height than the cGCHM by the 95
th

 percentile height corrected. The both 
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cGCHMs are validated by the airborne lidar metrics again to understand how the 

procedure of calibration improves the accuracy of the cGCHMs. 

Table 11. The parameter, coefficient of determination, and p-value of GCHM 

calibration at 0 m height category 

Ecoregion 
Percentile 

Height 
Intercept Coefficient R

2
 Adj R

2
 p-value 

CGP 

90 

0.70 0.03 0.02 -0.03 0.54 

EP 8.63 0.02 0.00 -0.20 0.90 

MACP 12.79 0.30 0.13 0.12 0.00 

MAP 6.47 0.53 0.27 0.27 0.00 

MVLP 3.69 0.79 0.53 0.52 0.00 

SCEP 4.38 0.75 0.28 0.27 0.00 

SCOP 10.11 0.27 0.12 0.12 0.00 

SEP 24.00 -0.15 0.03 0.03 0.04 

SFCP 0.03 0.40 0.23 0.21 0.00 

TOTAL 7.00 0.57 0.35 0.34 0.00 

CGP 

95 

1.33 0.09 0.04 0.00 0.33 

EP 10.43 0.06 0.02 -0.18 0.77 

MACP 16.87 0.23 0.09 0.08 0.00 

MAP 10.05 0.52 0.23 0.22 0.00 

MVLP 8.91 0.73 0.52 0.52 0.00 

SCEP 8.20 0.71 0.23 0.23 0.00 

SCOP 12.63 0.25 0.11 0.11 0.00 

SEP 27.09 -0.16 0.04 0.03 0.02 

SFCP 1.86 0.39 0.19 0.18 0.00 

TOTAL 9.92 0.57 0.32 0.32 0.00 
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Figure 10. The global forest canopy height map and corrected global forest canopy 

height maps in the southern United States. The global forest canopy height map by 

Simard et al. (2011b) (Top), the 90
th

 percentile height calibrated global forest 

canopy height map without water bodies (Middle), the 95
th

 percentile height 

calibrated global forest canopy height map without water bodies (Bottom). 
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III.3.3. 90
th

 and 95
th

 percentile cGCHM validation 

The new cGCHMs of the southern United States are validated with the testing 

data from the airborne lidar metrics which the training data were employed to validate 

the GCHM. Every ecoregion are calibrated by the 90
th

 and 95
th

 percentile heights 

respectively and validated by the testing data. The results of the cGCHMs validation 

display bias (Figure 11) and RMSE (Figure 12) between the cGCHMs and airborne lidar 

metrics (the max, mean, mode, 50
th

, 75
th

, 90
th

, 95
th

, and 99
th

 percentile heights). The 

nearest zero bias and smallest RMSE among each ecoregion are highlighted with bold 

and underline. In Table 12, EP, MACP, MVLP, SCEP, SCOP, and Total Points have the 

nearest zero bias at the 90
th

 percentile height in the calibration by the 90
th

 percentile 

height. CGP, MAP, and SEP have the nearest zero bias at the 95
th

 percentile height. 

SFCP has the nearest zero bias at the 75
th

 percentile height. The nearest zero bias ranges 

-1.73 m to -0.27 m and the majority ecoregions (6 of 10 ecoregions) have the nearest 

zero bias at the 90
th

 percentile height in the calibration by the 90
th

 percentile height 

(Figure 11A). 
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In the calibration by the 95
th

 percentile height, CGP, EP, MAP, MVLP, SCEP,

SEP, SCOP, and Total Points have the nearest zero bias at the 95
th

 percentile height.

MACP and SFCP have the nearest zero bias at the 90
th

 percentile height. The nearest

zero bias ranges -1.57 m to 1.44 m and the majority ecoregions (8 of 10 ecoregions) 
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Figure 11. The bias results of cGCHM validation: the cGCHMs were calibrated 

by (A) 90
th

 and (B) 95
th

 percentile heights



have the nearest zero bias at the 95
th

 percentile height in the calibration by the 95
th

percentile height (Figure 11B).  

Table 12. The bias validation results of cGCHM 

Bias 

Ecoregion 
Percentile 

Height 
Max Mean Mode P50 P75 P90 P95 P99 

CGP 

90 

-13.55 0.67 0.92 0.84 0.77 0.42 -0.24 -2.52

EP -19.24 5.53 8.87 7.70 3.13 -0.68 -2.94 -6.81

MACP -15.66 9.80 18.30 11.71 3.69 -1.73 -4.03 -7.49

MAP -20.94 7.28 9.26 9.09 6.68 3.19 -0.27 -7.11

MVLP -24.01 11.39 17.34 16.00 7.15 -1.68 -5.75 -11.68

SCEP -15.79 11.46 20.46 13.24 5.17 -0.59 -3.43 -7.72

SEP -15.80 13.51 21.24 16.18 8.09 1.59 -1.55 -6.10

SCOP -14.57 7.53 12.98 9.71 3.52 -0.80 -3.00 -6.71

SFCP -13.18 2.63 5.35 3.89 2.06 -2.89 -5.17 -7.72

Total Points -16.55 9.58 15.84 11.95 5.11 -0.27 -3.01 -7.31

CGP 

95 

-12.53 1.70 1.95 1.87 1.79 1.44 0.79 -1.49

EP -16.91 7.86 11.20 10.04 5.46 1.65 -0.61 -4.47

MACP -13.00 12.46 20.95 14.37 6.35 0.93 -1.37 -4.83

MAP -17.95 10.27 12.25 12.08 9.67 6.18 2.72 -4.12

MVLP -19.83 15.57 21.52 20.19 11.33 2.50 -1.57 -7.49

SCEP -13.01 14.24 23.24 16.02 7.95 2.19 -0.65 -4.94

SEP -12.81 16.50 24.23 19.17 11.08 4.58 1.44 -3.12

SCOP -12.31 9.80 15.24 11.97 5.79 1.47 -0.73 -4.44

SFCP -11.46 4.36 7.08 5.61 3.79 -1.17 -3.45 -6.00

Total Points -13.80 12.33 18.59 14.71 7.86 2.48 -0.26 -4.55

In Table 13, CGP, EP, MACP, MAP, MVLP, SCEP, SCOP, and Total Points 

have the smallest RMSE at the 90
th

 percentile height in the calibration by the 90
th 

percentile height. SEP has the smallest RMSE at the 95
th

 percentile height. SFCP has the 

smallest RMSE at the mean height. The smallest RMSE ranges from 0.66 m to 7.27 m 

and the majority ecoregions (8 of 10 ecoregions) have the smallest RMSE at 90
th 

percentile height in the calibration by the 90
th

 percentile height (Figure 12A).
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In the calibration by the 95
th

 percentile height, CGP MAP, MVLP, SCEP, SEP, 

SCOP, and Total Points have the smallest RMSE at the 95
th

 percentile height. EP and 

MACP have the smallest RMSE at the 90
th

 percentile height. SFCP has the smallest 

RMSE at the mean height. The smallest RMSE ranges from 1.25 m to 8.60 m and the 

majority ecoregions (7 of 10 ecoregions) have the smallest RMSE at 95
th

 percentile 

height in the calibration by the 95
th

 percentile height (Figure 12B). 
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Figure 12. The RMSE results of cGCHM validation: the cGCHMs were 

calibrated by (A) 90
th

 and (B) 95
th

 percentile heights 



Table 13. The RMSE validation results of cGCHM 

RMSE 

Ecoregion 
Percentile 

Height 
Max Mean Mode P50 P75 P90 P95 P99 

CGP 

90 

15.88 0.69 0.93 0.85 0.77 0.66 1.04 2.98 

EP 19.33 5.53 8.87 7.75 3.13 2.20 4.47 8.51 

MACP 16.56 10.29 18.43 12.59 6.25 5.03 6.59 9.55 

MAP 23.11 8.67 11.11 10.87 8.18 7.27 7.78 12.63 

MVLP 24.90 12.94 18.88 17.44 9.30 6.66 8.65 13.30 

SCEP 16.39 11.72 20.66 13.77 6.06 3.43 5.02 8.78 

SEP 16.31 14.08 21.26 17.11 10.19 6.01 5.72 8.00 

SCOP 15.85 8.40 13.33 10.66 6.62 5.58 6.20 8.57 

SFCP 14.82 3.72 5.60 4.71 4.26 6.77 8.66 10.43 

Total Points 18.43 10.75 16.75 13.23 8.10 7.03 7.83 10.43 

CGP 

95 

14.96 1.71 1.97 1.88 1.81 1.53 1.25 2.10 

EP 17.01 7.87 11.20 10.07 5.46 2.70 3.46 6.83 

MACP 13.96 12.81 21.02 15.08 8.11 4.63 5.17 7.45 

MAP 20.28 11.74 14.11 13.89 11.18 9.46 8.60 11.30 

MVLP 20.76 16.55 22.60 21.17 12.65 6.68 6.39 9.60 

SCEP 13.72 14.43 23.40 16.45 8.55 4.02 3.69 6.45 

SEP 13.43 16.97 24.25 19.96 12.70 7.39 5.69 6.04 

SCOP 13.86 10.58 15.60 12.84 8.19 5.88 5.64 7.06 

SFCP 13.30 5.08 7.26 6.21 5.31 6.22 7.74 9.22 

Total Points 16.06 13.37 19.47 15.86 10.20 7.62 7.40 8.85 

 In summary, the results of the cGCHM validation indicate that the calibration 

improve the accuracy of GCHM. The nearest zero bias of GCHM validation ranges -2.08 

m to 1.02 m at the 90
th

 percentile height in the 0 m category. Nevertheless, the nearest 

zero bias of cGCHM validation ranges -1.73 m to -0.27 m at the 90
th

 percentile height in 

calibration by the 90
th

 percentile height. Moreover, the smallest RMSE of GCHM 

validation ranges 4.11 m to 10.16 m at 90
th

 percentile height in the 0 m category. After 

the calibration, the smallest RMSE of cGCHM validation ranges 0.66 m to 7.27 m. 
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Therefore, both bias and RMSE results show that the cGCHM has better accuracy than 

the GCHM. 

III.4. Discussions 

From the results of GCHM validation, the 90
th

 percentile height at 0 m height 

category had the nearest zero bias and smallest RMSE with the GCHM. Similarly, 

Means et al. (2000) found that the 90
th

 percentile height correctly predicted the forest 

height with airborne lidar point cloud data. Nevertheless, several research groups have 

mentioned using the 95
th

 percentile height as the feasible lidar metrics to represent the 

forest canopy height of the field measurement (McGaughey et al., 2010, Drake et al., 

2002, St-Onge et al., 2008, Alexander et al., 2014). Thus, Bolton et al. (2013) used the 

95
th

 percentile height to investigate the agreement between the GCHM of Canadian 

forest and airborne lidar point cloud data above 2 m. In our study, the airborne point 

cloud data was conducted to different height categories (0, 1, 3, and 5 m), and the 95
th

 

percentile height rarely demonstrated nearest zero bias and smallest RMSE in any height 

conditions. Moreover, the GCHM represented the estimated forest canopy height with 1 

km
2
 spatial resolution. GLAS and other climate data calculated the estimated forest 

canopy heights through the GLAS maximum height (RH100). Meanwhile, the procedure 

of creating the GCHM did not remove the remotely sensed information below specific 

height category. Thus, the GCHM underestimated the forest canopy height, because the 

GCHM included the understory vegetation, grass, and climate information when 

estimating the forest canopy heights. 
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The coefficient of determinations (R
2
) of the GCHM calibration equations 

appears to describe weak or moderate relationships. The R
2
 of GCHM with 90

th
 

percentile height is between 0.00 to 0.53 and the R
2
 of GCHM with 95

th
 percentile 

heights is between 0.02 to 0.52. Bolton et al. (2013) described similar weak and 

moderate correlations (0.18 ~ 0.61) between Simard’s GCHM and airborne lidar data as 

well. Weak correlations between the airborne lidar metrics and the GCHM can arise 

from the following reason: the airborne lidar metrics were derived at 1 km
2
 pixel, but the 

GCHM was the estimated forest canopy height by using GLAS and ancillary data.  

Nonetheless, the validation of cGCHM significantly reduced bias and RMSE comparing 

to the validation of GCHM. Moreover, the calibration equations of 90
th

 and 95
th

 

percentile heights shorten the difference between the airborne lidar metrics and the 

cGCHMs. Therefore, the GCHM calibration equations improved the results of cGCHM 

validation despite low R
2
s. 

The comparison of Bolton’s research and ours differ in the coverage of the 

airborne lidar point cloud data. Bolton et al. (2013) retrieved the airborne lidar data on 

average 700 m width flight lines, whereas we downloaded and collected the airborne 

lidar point cloud data wall-to-wall. Bolton’s airborne lidar point cloud data flight lines 

only cover a partial GCHM pixel, so the airborne lidar point cloud data had the 

opportunity to over- or under-estimate the forest canopy height. In contrast, the wall-to-

wall airborne lidar data offered more accurate characterization of the forest canopy 

height in a GCHM pixel.  
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Building GCHMs from the integration of the ICESat GLAS and other ancillary 

data allow the estimation of global forest aboveground biomass. The global forest 

canopy height information of GCHMs was crucial for estimating the forest aboveground 

biomass in previous studies (Lefsky et al., 2002b) and for investigating drought and 

climate change effects on vegetation (Bevan et al., 2014). However, ICESat GLAS 

failed in 2009 and was retired in 2010. Therefore, the GLAS data of its use for deriving 

GCHMs suggest the need for a successor mission to provide spaceborne lidar data with 

global coverage. Fortunately, the ICESat-2 and Global Ecosystem Dynamics 

Investigations Lidar (GEDI) missions are set to launch in 2018 and 2019, respectively. 

The newest photon lidar system, Advanced Topographic Laser Altimeter System 

(ATLAS), would board on ICESat-2. Furthermore, GEDI would be installed on the 

International Space Station (ISS). Both lidar systems were anticipated to provide high-

resolution lidar data, therefore improving the accuracy of future GCHMs. 

III.5. Conclusions 

The results of GCHM validation found that GLAS and other ancillary data have 

underestimated the GCHM. The 90
th

 percentile height of airborne lidar metrics at the 0 

m height category verified that the GCHM is affected by short vegetation heights as 

well. In addition, the results of GCHM validation bring up differences among the 

ecoregions and created difficulties to validate the GCHM with only one airborne lidar 

metric. Therefore, the GCHM validation and calibration are highly necessary for 

improving maps of vegetation biophysical parameters and each ecoregion should employ 

the most feasible airborne lidar metric for validation. 
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The results of GCHM calibration encouraged us to consider more specific 

calibration efforts to improve the accuracy of GCHM. The cGCHMs were considered to 

provide more accurate forest canopy height data than the GCHM though the R
2 

values 

for validation/calibration are low. However, the results of cGCHM validation indicated 

that the airborne lidar metrics are useful and significant variables to improve the height 

discrepancies in the original GCHM. Besides, GCHM has the potential to be used as 

benchmark map for global forest aboveground biomass estimations and our 

investigations paved the methodology for large scale validation and calibration studies 

with potential usefulness for future satellite missions and their vegetation products, such 

as ICESat-2 and GEDI.  
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CHAPTER IV 

REGIONAL SCALE FOREST ABOVEGROUND BIOMASS ESTIMATION OF 

SOUTH CENTRAL PLAINS WITH CALIBRATED GLOBAL FOREST CANOPY 

HEIGHT MAP 

 

IV.1. Introduction 

Forests contain 80% of Earth’s terrestrial biomass (Kindermann et al., 2008) and 

are the largest terrestrial carbon sinks (Houghton, 2002) though ocean has been 

considered the largest carbon sink on Earth. Also, the estimation of terrestrial forest 

aboveground biomass is critical to understand the global carbon balance (Houghton, 

2005). Not only human activities but also natural disasters directly influence the 

terrestrial forest aboveground biomass. Notably, the deforestation and intense 

urbanization with increasing human population imperatively threaten natural terrestrial 

ecosystems and the forest aboveground biomass. Therefore, the estimation and 

monitoring of forest aboveground biomass with effective methods offers the quantitative 

means to investigate the dynamics of terrestrial forest carbon.  

United States Forest Service (USFS) published a contiguous U.S. forest biomass 

map (Blackard et al., 2008), and Woods Hole Research Center (WHRC) built a national 

biomass and carbon dataset (Kellndorfer et al., 2012) as well. The U.S. forest biomass 

map was derived by using field forest inventory data of the USFS Forest Inventory and 

Analysis program (FIA), Moderate Resolution Imaging Spectrometer (MODIS)-derived 

images, and National Land Cover Dataset (NLCD). Comparably, the WHRC national 
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biomass and carbon dataset combined FIA field forest inventory data with 

Interferometric synthetic-aperture radar (InSAR) data of the Shuttle Radar Topography 

Mission (SRTM) and the remotely sensed data of enhancing thematic mapper plus 

(ETM+) on Landsat 7. However, either the MODIS-derived images or the NLCD data of 

USFS forest biomass map merely offered the passive spectral and two-dimension 

information which overlooked measurements of forest structures. Also, although the 

Woods Hole’s biomass data incorporated the InSAR data with the ETM+ images to 

provide the vegetation canopy height information, the remotely sensed data are dated to 

before 2002. Therefore, there is a clear need for an updated and accurate national scale 

forest biomass map. 

The global forest canopy height map (GCHM) which was produced using 

spaceborne lidar and spectral remotely sensed data provided height information for 

large-scale forest aboveground biomass estimation. The lidar data was able to depict the 

structure of the forest and forest biophysical parameters, such as tree height, canopy 

height, diameter at breast height (DBH), and tree crown width (Lefsky et al., 1999b, 

2002b). Thus, three global forest canopy height maps have been published (Lefsky, 

2010, Simard et al., 2011b, Los et al., 2012). The primary data of the GCHMs was the 

Geoscience Laser Altimeter System (GLAS) which was the sole instrument on Ice, 

Cloud, and land Elevation Satellite (ICESat) and other ancillary data depended on the 

demands of the developers. Simard et al. (2011b) found more substantial coverage of 

forests than the other two GCHMs because the mosaic crops, open forest, and saline 

flooded forests were also considered as woody plant areas. However, Simard’s GCHM 
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underestimated the forest canopy height which was proven in Chapter III research. 

Therefore, the calibrated GCHM (cGCHM) from Simard’s GCHM was selected for 

estimating the regional forest aboveground biomass. 

Due to the growing amount of remotely sensed data, machine learning algorithms 

were introduced to rapidly and conveniently process large remotely sensed data. Pal and 

Mather (2005) concluded that support vector machines produced better classification 

accuracy than conventional classifiers. Moreover, Duro et al. (2012) found no significant 

preference between the machine learning algorithms, but the pixel-based processing 

required less time than object-based classification. Besides, Blackard et al. (2008) 

utilized the tree-based Cubist approach to build the forest biomass model. In this 

research, we applied a machine learning algorithm, random forests (Breiman, 2001), to 

create the regional forest aboveground biomass map. 

Random forests provide accurate predictions without overfitting the data (Cutler 

et al., 2007, Prasad et al., 2006). The machine learning algorithm comprised of the 

combinations of decision trees to classify the training data. Furthermore, random forests 

utilizes the bootstrap aggregating method (Bagging) randomly drew with replacement 

samples to generate the training data (Breiman, 1996). After Bagging selected the 

training data, the original data which was not selected would be placed as the out-of-bag 

data (OOB). The training data employed as predictors and built the predictive model 

according to the response variable. The OOB data was used to calculate an unbiased 

error rate and variable importance, or cross-validation. Ultimately, random forests 
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investigates the increases of the prediction error to determine the variable importance 

(Liaw and Wiener, 2002).  

This research is the first application of the cGCHM to generate the regional scale 

forest aboveground biomass map. Furthermore, the new regional scale forest 

aboveground biomass map was compared to the existing forest aboveground biomass 

map at the same ecoregion. The new regional scale forest aboveground biomass map 

was created by using the cGCHM, which is a lidar product, but the existing forest 

aboveground biomass map was created using optical remotely sensed data and 

traditional field inventory. Thus, we anticipate that the cGCHM is able to improve the 

accuracy of large-scale forest aboveground biomass maps. 

This research generated a regional forest aboveground biomass from local scale 

forest aboveground biomass maps in the South Central Plains ecoregion. The local scale 

forest aboveground biomass maps were generated from 2010 airborne lidar data in east 

Texas. The objectives of the research are to 1) generate a regional forest aboveground 

biomass map of the South Central Plain ecoregion, and 2) validate and compare the 

regional forest aboveground biomass map with the USFS forest aboveground biomass 

map. 

IV.2. Materials and Methods 

IV.2.1. Study area 

The South Central Plains (Figure 13) ecoregion, as defined by Environment 

Protection Agency (EPA), was selected to be the study area of this research. The land 

surface of the ecoregion is an irregular plain with the dominant vegetation species, oaks, 
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hickories, and pines (Omernik, 1987). The ecoregions’ land cover types are composed of 

woodlands and forests with croplands as well as pasture. The forests and woodlands 

were mostly used for grazing by livestock. The primary soil type of the ecoregion is 

moist ultisols. Moreover, the ecoregion covers areas across multiple states, including 

southwest Arkansas, west Louisiana, a small part southeast Oklahoma, and partial east 

Texas. 

 

Figure 13. The area of South Central Plains (Ecoregions, 2018) 
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IV.2.2. The cGCHM of local scale forest aboveground biomass estimation 

The airborne lidar point cloud data was provided by the Lidar Applications for 

the Study of Ecosystems with Remote Sensing Laboratory (LASERS) in the Department 

of Ecosystem Science and Management at Texas A&M University, College Station, 

Texas, USA. The locations of the airborne lidar data were Sam Houston National Forest 

near Huntsville, TX and Big Sandy Creek unit near Livingston, TX. The data was 

acquired by the Optech 3100EA airborne laser scanner system in November 2010. Both 

locations are in the South Central Plains ecoregion. The point density of the airborne 

lidar data was approximately 3 to 4 points/m
2
. The laser pulse rate and lidar system scan 

rate were 150 kHz and 90 Hz, respectively. 

The airborne lidar data was used to estimate the local scale forest aboveground 

biomass maps, along with National Agriculture Imagery Program (NAIP) images, and 

field tree measurements. To estimate the forest aboveground biomass, the airborne lidar 

data was converted to a 1 m spatial resolution canopy height model (CHM). We used the 

methodology described in Popescu (2007) to derive individual tree biomass using 

airborne lidar data and field measurements, for both pine and deciduous trees. 

Meanwhile, the NAIP images were classified by maximum likelihood classification to 

separate pine and deciduous trees. Then the classified pine and deciduous maps were 

aligned with the CHM to extract the pine and deciduous CHMs. After the extractions, 

TreeVaW (Popescu et al., 2004) was applied on the CHMs to map individual tree 

locations and measure the crown size. However, the diameter at breast height (DBH) of 

each tree was unknown. Hence, the predictive DBH (pDBH) was calculated based on the 
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regression of tree crowns and the field tree DBH measurements. Subsequently, the 

Jenkins’s national level allometric equations (2003) were employed to compute each tree 

aboveground biomass according to the pDBH. After acquiring all individual tree 

aboveground biomass, the individual tree aboveground biomass was aggregated into 

each pixel of the cGCHM. Finally, the cGCHM and the local scale forest aboveground 

biomass maps at San Houston National Forest and Big Sandy Creek Unit were used for 

estimating regional forest aboveground biomass. 

IV.2.3. The prediction variables and filters  

IV.2.3.1. Corrected global forest canopy height map (cGCHM) 

The cGCHMs were calibrated by the 90
th

 and 95
th

 percentile heights of airborne 

lidar data in the previous chapter. The GCHM (Simard et al., 2011b) was generated 

using multiple data sources, including 2005 ICESat GLAS, 2005 MODIS MOD44B, 

2000 SRTM GTOPO elevation, 2010 protection status and auxiliary data (annual mean 

precipitation, precipitation seasonality, and annual mean temperature). The previous 

chapter found that the GCHM underestimated the forest canopy height which was 

similar to the 90
th

 percentile height. Thus, the corresponding airborne lidar metrics aided 

to improve the calibrated GCHM. Additionally, the 95
th

 percentile height was considered 

to represent the real canopy heights (McGaughey et al., 2010, Drake et al., 2002, St-

Onge et al., 2008, Alexander et al., 2014). Therefore, both the 90
th

 and 95
th

 percentile 

height lidar metrics were applied to calibrate the GCHM for the South Central Plains 

ecoregion, as well as create 90
th

 and 95
th

 percentile height cGCHMs for providing more 

accurate estimations of the forest aboveground ground biomass. 
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IV.2.3.2. 2010 MODIS monthly vegetation indices and near-infrared 

images 

MODIS is a valuable instrument aboard the Terra and Aqua satellites for 

atmosphere, land and ocean observations. The instrument is acquiring images of the 

entire Earth's surface every 1 to 2 days in 36 spectral bands. Moreover, the spatial 

resolutions of MODIS are 250 m, 500 m, and 1 km. Thus, MODIS images are valuable 

remotely sensed data for the regional forest aboveground biomass estimation. The 

MODIS remotely sensed data used in our study are two vegetation indices and the near-

infrared image (NIR). The vegetation indices and NIR image were acquired from 2010 

MODIS MOD13A3 and 2010 MODIS MOD13A3NIR reflectance (Band 2). The two 

vegetation indices were normalized difference vegetation index (NDVI) and enhanced 

vegetation index (EVI). The 2010 MODIS MOD13A3 product has 16 days 250 m 

NDVI, 16 day and monthly 1 km NDVI and EVI, and 16 day and monthly 25 km NDVI 

and EVI for different spatial and temporal application. Therefore, the monthly 1 km 

2010 MODIS MOD13A3 product was used because the product matched the spatial 

resolution of cGCHM and the temporal resolution was proper for understanding the 

forest dynamics monthly. 

IV.2.3.3. Forest canopy cover data and mask data 

The forest canopy cover data was acquired from the LANDFIRE program (LF) 

and National Land Cover Database 2011 (NLCD2011). The LF program is a shared 

program between USDA FS, Wildland Fire Leadership Council (WFLC) of United 

States Department of Interior. At the time of completing this study, the NLCD 2011 was 
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the most recent national land cover product created by the Multi-Resolution Land 

Characteristics (MRLC) Consortium. The LF program offered 2010 and 2012 forest 

canopy covers and NLCD data provided 2011 canopy cover. All three forest canopy 

cover data sets were at 30 m spatial resolution. Thus, all of the forest canopy cover data 

had to be resampled to match the spatial resolution of the cGCHM. Besides, NLCD 2011 

and the National Hydrography Dataset (NHD) were applied to mask non-forest and non-

woodland pixels. The response and prediction variables are shown in Table 14. 

Table 14. The list of response and prediction variables 

Variable Name Source 

Response 
Sam Houston National Forest biomass map 

Big Sandy Creek Unit biomass map 

Airborne 

lidar 

Prediction 

cGCHM 90PH 

(0, 1, 3, and  5 m height conditions) Calibrated 

GCHM 
cGCHM 95PH 

(0, 1, 3, and  5 m height conditions) 

Enhance vegetation index (EVI) 

(January - December) 

MODIS 
Normalized difference vegetation index 

(NDVI) (January - December) 

Near Infrared images (NIR) 

(January - December) 

2010 vegetation canopy cover 
LANDFIRE 

2012 vegetation canopy cover 

2011 vegetation canopy cover NLCD 

IV.2.4. The estimation of regional forest aboveground biomass process 

The process for developing the regional forest aboveground biomass is shown in 

Figure 14. The process was assembled in three phases, 1) response and prediction 

variables preprocessing 2) modeling and mapping regional forest aboveground biomass 
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estimation and 3) the regional forest aboveground biomass map post-processing. The 

first phase was to create and modify the response and prediction variables. The response 

variable was the local scale forest aboveground biomass in the cGCHM pixels. The Sam 

Houston National Forest and Big Sandy Creek Unit forest aboveground biomass maps 

were aligned to the cGCHM. Because the spatial resolution of forest aboveground 

biomass maps were 1 m
2
 and the cGCHM was about 1 km

2
, the local scale biomass 

maps were aggregated into the cGCHM 1-km pixels. The local scale forest aboveground 

biomass maps were covered by 83 cGCHM pixels. Thus, the 83 cGCHM pixels were 

served as the response variable for estimating regional forest aboveground biomass. 

Furthermore, the prediction variables, NIR, NDVI, EVI, and canopy covers, were 

extracted and processed to spatially match the same pixels of cGCHM. Moreover, the 

layers of prediction variables were extracted from the South Central Plains ecoregion as 

well. Finally, the response and prediction variables were split into 80% training and 20% 

testing data by simple random sampling. 

The second phase utilized the random forests algorithm to model and mapped the 

regional forest aboveground biomass map. After the response and prediction variables 

were prepared, the ModelMap package of the R programming language employed the 

response and prediction variables to build the random forests model to estimate the 

forest aboveground biomass. Subsequently, ModelMap made use of the layers of 

prediction variables to build the forest aboveground biomass map of the South Central 

Plain ecoregion based on the model of forest aboveground biomass. Meanwhile, the 

prediction variable importance and OOB data were utilized to understand the prediction 
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variables and to validate the forest aboveground biomass map. The MSE and pseudo-R-

squared were obtained after the OOB validation. 

The third phase was resampling and extraction of the regional forest 

aboveground biomass map to compare it with the USFS forest aboveground biomass 

map. The spatial resolution of the USFS forest aboveground biomass map was 250 m, so 

the regional forest aboveground biomass map was converted from 1 km to 250 m spatial 

resolution through resampling. The forest and woody plant areas were extracted from the 

regional forest aboveground biomass map depending upon NLCD 2011 data. Moreover, 

the water bodies were removed based on the national hydrology database (NHD) as well. 

The number of pixels, areas, total biomass, maximum biomass, minimum biomass, and 

standard deviation from both forest aboveground biomass maps were computed to 

understand the differences between our map and the USFS biomass map. 
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Figure 14. The flowchart of the forest aboveground biomass map development 
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IV.3. Results 

IV.3.1. The South Central Plains forest aboveground biomass map 

Both of our and USFS forest aboveground biomass maps of South Central Plains 

are shown in Figure 15, with blank areas within the ecoregion indicating non-woody 

plant areas. Our forest aboveground biomass map (Figure 15 left) displays more areas 

with forest aboveground biomass on the north and west South Central Plains. Notably, 

the northwest areas of South Central Plains in the USFS forest aboveground biomass 

map appear to have less forest aboveground biomass than our forest aboveground 

biomass map. Moreover, the northeast areas of South Central Plains on our forest 

aboveground biomass map appear to have significantly more forest aboveground 

biomass along the streams. Comprehensively, our forest aboveground biomass map 

exhibits larger forest aboveground biomass areas than the USFS forest aboveground 

biomass map. 
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Figure 15. The forest aboveground biomass maps in South Central Plain ecoregion. 

The final forest aboveground biomass map (Left). The forest aboveground biomass 

map from USFS (Blackard et al., 2008) (Right). 

IV.3.2. The comparison of forest aboveground biomass maps in South Central 

Plains

The comparison of both USFS and our final forest aboveground biomass maps is 

displayed in Table 15. Apparently, the coefficient of determination (R
2
) of our forest

aboveground biomass map is much higher than the USFS forest aboveground biomass. 

Statistically, according to the descriptive statistic in Table 15, our forest aboveground 

biomass map displays larger forest aboveground biomass areas than USFS forest 

aboveground biomass map. In fact, the differences of the forest aboveground biomass 



areas are also observed by visualizing the maps. However, our total and maximum forest 

aboveground biomass is lower than USFS’s. Additionally, the standard deviation of our 

forest aboveground biomass map is smaller than USFS forest aboveground biomass 

map.  

Table 15. The comparison of USFS forest aboveground biomass map and the final 

forest aboveground biomass map 

USFS biomass map Final biomass map 

R
2

0.06* 0.34 

RMSE (Mg/ha) N/A 27.85 

Spatial resolution (m) 250.00 250.00 

Number of pixels 4373746.00 4406398.00 

Area (km
2
) 273359.13 275399.88 

Total biomass (Mg/ha) 127905656.49 106587371.15 

Minimum biomass (Mg/ha) 0.00 21.91 

Maximum biomass (Mg/ha) 226.09 116.82 

Standard deviation 36.75 15.96 

* The mapping zone 37 (Blackard et al., 2008)

IV.4. Discussions

The cGCHM represents the canopy height in 1 km
2
grid cells, but the canopy 

height values are not indicative of the forest types. Thus, the ecoregion was critical to aid 

the forest type information for the forest aboveground biomass estimation. In this 

research, the South Central Plains ecoregion is covered by mixed forests with diverse tree 

species and varying tree heights. The dominant species in the South Central Plains were 

oaks, hickories, and pines.  

Despite the fact that our forest aboveground biomass map showed higher R
2 

value 

than USFS forest aboveground biomass map, the R
2
 value of our forest aboveground 

biomass map was still lower than 0.5. Several strategies for the forest 
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aboveground biomass estimation were considered to improve the accuracy of the forest 

aboveground biomass map. First, the forest aboveground biomass was influenced by 

many environmental factors. In this research, we selected the vegetation indices, canopy 

height, near-infrared image, and canopy cover percentage to estimate the forest 

aboveground biomass. However, the climate, soil, hydrological and other ancillary data 

are influencing forest growth as well. Thus, more suitable prediction variables could 

assist random forests to estimate the forest aboveground biomass in the proper 

environment condition. Second, the improvement of cGCHM accuracy was critical 

because the canopy height directly affected the accuracy of forest aboveground biomass. 

The cGCHM was obtained after the calibration of Simard’s GCHM (Simard et al., 

2011b). Simard et al. built the GCHM with ICESat GLAS data, a mission that was 

retired in 2010. Therefore, newer spaceborne lidar data, like the data from ICESat-2 and 

Global Ecosystem Dynamics Investigation (GEDI), are expected to generate updated and 

more accurate GCHM. Third, the availability of a local forest aboveground biomass map 

generated with airborne lidar data was an important factor in our methodology for 

upscaling the biomass values to larger extents. Our research areas only covered two local 

biomass maps that are representative for East Texas pine and deciduous species, but the 

sampling process with random forests is therefore localized and not spread throughout 

the South Central Plains. Therefore, more maps estimating local-scale forest 

aboveground biomass spread in our region of interest could aid in improving the 

accuracy of deriving regional forest aboveground biomass maps. 
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The comparison between the USFS forest aboveground biomass map and our 

forest aboveground biomass map showed that our map was more accurate, though the R
2
 

was low. The USFS forest aboveground biomass map used passive remotely sensed data, 

MODIS, as the primary data, and did not involve any active remotely sensed data with 

canopy height information. Although optical remotely sensed data are well known to 

classify conifer and deciduous trees (Key et al., 2001, Haala and Brenner, 1999), the tree 

physical measurement information (height, DBH, and crown width) is needed for more 

accurate aboveground biomass estimation. Our forest aboveground biomass map not 

only used the lidar data for the response variable but also included cGCHM to estimate 

the forest aboveground biomass. cGCHM provided the canopy height parameter which 

was critical for improving the estimates of the forest aboveground biomass.  

In addition, the USFS maximum forest aboveground biomass (226.09 Mg/ha) 

was much higher than our maximum forest aboveground biomass (116.82 Mg/ha). 

Moreover, USFS forest aboveground biomass map displayed the minimum forest 

aboveground biomass as 0 Mg/ha, but our minimum forest aboveground biomass was 

21.91 Mg/ha. The USFS maximum forest aboveground biomass was almost two times 

larger than ours. Brown et al. (1999) found that the hardwood forest biomass was lower 

than 100 Mg/ha in Iowa, Missouri, Oklahoma, and Texas. Additionally, Schroeder et al. 

(1997) studied the temperate broadleaf forest aboveground biomass in the U.S. and 

indicated that the aboveground biomass of both oak-hickory and maple-beech-birch 

forests were between 28 to 200 Mg/ha. The maximum broadleaf forest aboveground 

biomass was lower than 200 Mg/ha as well. Therefore, our forest aboveground biomass 
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map was more reasonable than USFS forest aboveground biomass map. Nevertheless, 

USFS forest aboveground biomass map had high correlation coefficients (0.73) in the 

Pacific Northwest regions (Blackard et al., 2008). Temperate rainforest covered the 

Pacific Northwest regions with ocean climate in coastal areas and Alpine climate in the 

high mountains. The most forest types were conifer forest in Pacific Northwest regions 

whereas the forest types were a mixed forest in South Central Plains. Thus, the USFS 

forest aboveground biomass map apparently had better estimation in the conifer forests. 

Furthermore, the USFS estimated the forest aboveground biomass nationally.  

IV.5. Conclusions 

This research concluded that the random forests method for building our forest 

aboveground biomass map shows stable and reasonable forest aboveground biomass 

estimation. Although the R
2
 of our forest aboveground biomass map was low, the 

amount of forest aboveground biomass was close to previous studies. In addition, 

cGCHM was able to build a regional scale forest aboveground biomass map. Therefore, 

the random forests method and cGCHM could create a reliable regional forest 

aboveground biomass map.  

In the future, ICESat-2 and GEDI will offer better spaceborne lidar data for 

developing more accurate GCHM than ICESat GLAS. Although GCHM is necessary to 

be calibrated, we expect that a new cGCHM will assist to create more accurate regional-

scale and larger-scale forest aboveground biomass maps. Accurate forest aboveground 

biomass maps would improve estimation and monitoring of terrestrial carbon storage
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CHAPTER V 

CONCLUSIONS 

 

Chapter II found the best fitting method and remotely sensed data combination 

for the woody plant aboveground biomass estimation on rangelands. The random forests 

method with combined NAIP and lidar data performed the best result for adequately 

estimating the woody plant aboveground biomass. Moreover, the pixel-based of local 

woody plant aboveground biomass map offered a novel spatial explicit approach for the 

future biomass map development. 

Chapter III research showed that GLAS and other ancillary data had 

underestimated Simard's GCHM because of GCHM including short vegetation heights. 

Also, the research also concluded that the 95
th

 percentile height among the airborne lidar 

metrics was not the best lidar metric to validate tree height in various ecoregions. 

Therefore, the GCHM validation is mandatory, and each ecoregion should be validated 

with the feasible airborne lidar metric. Furthermore, the GCHM calibration was 

necessary for the future forest and carbon cycle studies. 

Chapter IV research concluded that the random forests method is the suitable 

statistical method to build reasonable forest aboveground biomass maps. Besides, the 

research has proven that cGCHM is an appropriate spaceborne lidar product to generate 

a regional scale forest aboveground biomass map. Therefore, the random forests method 

associate with GCC indeed creates a reliable regional forest aboveground biomass map.  
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In the future, ICESat-2 and GEDI are anticipated to create updated and accurate 

GCHMs. Such global canopy height products are expected to estimate regional and 

larger-scale forest aboveground biomass more accurately and improve estimation and 

monitoring of terrestrial carbon storage.  
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