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ABSTRACT 

 

The roughness of sea ice can affect its bidirectional reflectance distribution 

function (BRDF) thus influencing retrieval of its physical properties from satellite. We 

leverage WorldView-1 and Multi-angle Imaging SpectroRadiometer (MISR) remote 

sensing data sets collected over sea ice and the adjacent McMurdo Ice Shelf in proximity 

to McMurdo station to first characterize the roughness of sea ice and other snow surfaces 

and then examine the effects of surface roughness on satellites images of varying spatial 

resolutions. First, high resolution DEMs were created from stereographic WorldView-1 

image pairs with NASA stereo imagery processing tool Ames Stereo Pipeline (ASP). A 

variety of geomorphometric measures of roughness, including roughness index, were 

characterized from the high resolution DEMs. Following adequate characterization of 

sea ice roughness, its impact on surface reflectance derived from optical satellites 

spanning a range of spatial resolutions was assessed.  
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1. INTRODUCTION 
 

Sea ice covers five percent to eight percent of the global oceans and is an 

important parameter in the global climate system and has significant influence on 

climate change. Different from sea ice, ice sheets are more constant, both in the 

morphology and motion. Ice sheets contain large amount of frozen water and cause 

rising sea level when they melt. Primarily located in polar areas, the monitoring and 

studying of sea ice and ice sheets are largely dependent on remote sensing technology. 

These ice surfaces are rough and variable in their structure. A typical form of 

rough structure on ice surface is sastrugi. Sastrugi is decimeter-scale longitudinal ridges 

frequently formed by erosional process of katabatic winds (Herzfeld et al., 2000). 

Surface roughness of ice has an influence on remote sensing results such as the spectral 

albedo which can be further used for retrieving the value of physical properties of ice 

and snow. The sunlight reflection pattern on the surface of ice can be examined by 

bidirectional reflectance distribution function (BRDF). Surface roughness was identified 

as an important factor that influence the BRDF firstly by Warren et al. (1998) and 

Leroux et al. (1998). 

Sea ice and ice sheet roughness will be characterized from high resolution 

topographic data and impact on ice surface BRDF will be examined in this thesis. More 

specifically, this study will examine how the rough surface structures manifest 

themselves in optical satellite images such as MISR (Multi-angle Imaging 

SpectroRadiometer). In order to complete this research, rough ice surface structure will 
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be modeled and several metrics for characterizing the surface roughness will be 

examined. Furthermore, this research will quantify the relationship between the surface 

roughness and bi-directional reflectance of the sea ice and ice sheets measured from 

commonly used optical remote sensing satellites. This research will help understand 

what kind of and to what degree the impact of surface roughness would have on the 

radiation transmit process. The scale of the rough surface structure would also be of 

significance to the reflectance model. Thus, this study will be conducted on satellite 

images with a range of spatial resolutions and examine how surface roughness manifests 

itself across various spatial scales. 

It was suggested by Herzfeld et al. (1999) that the information about the ice 

dynamical processes and its interaction with climate processes may be contained in 

spatial surface pattern of snow and ice. The research on the sea ice surface roughness 

provides opportunity to evaluate and quantify the surface structure of the sea ice that is 

crucial to BRDF and the derived Albedo of sea ice. If we lack of the information about 

the surface of sea ice, the retrieval of physical parameters would contain significant error 

which will further impede the estimating and monitoring of sea ice concentration, snow 

albedo, and subsequently the energy interaction between ocean and atmosphere and the 

influence of polar area on climate change. 

How radiation transmit on the surface of sea ice and what kind of influence it 

would have on the image pixel value and further on the snow and ice property retrieval 

are of great significance to quantitative remote sensing. Failing to consider the surface 

roughness in the model for measuring snow albedo could result in retrieval errors 
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(Kuchiki et al., 2011). The study on surface roughness can also help to classify the sea 

ice since the surface roughness varies with different type of sea ice (Nolin, 2007). 

Surface roughness is also one of the criteria to identify the stages of sea ice development 

in aging and melting process (Rivas et al., 2006). 

Two alternative research hypotheses are derived and listed below: 

i. There is no measurable difference in the observed bi-directional 

reflectance of sea ice and ice sheets for areas with measured differences in surface 

roughness in the McMurdo Sound region of Antarctica.  

ii. As the measured surface roughness increases, the influence of sastrugi 

and other roughness elements exhibit an increasing influence on the bi-directional 

reflectance of ice surfaces. 

In order to test theses hypothesis, the following objectives must be accomplished: 

i. Quantify surface roughness of sea ice and ice sheet surfaces in Antarctica 

near McMurdo station by using high resolution (2 meters or better) DEMs generated 

from satellite Imagery stereo pairs. 

ii. Quantify the impact of surface roughness on the bi-directional reflectance 

of sea ice and ice sheets across multiple spatial scales. This multi-scale examination will 

include quantify surface roughness in various scales and compare with moderate 

resolution Multi-angle Imaging SpectroRadiometer (MISR). This will lead to a better 

understanding of how surface roughness variations manifest themselves in satellite 

images from a multi-scale perspective.  

iii. Examine the specific effects of sastrugi (as identified in the DEMs) on the 
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measured bi-directional satellite reflectance. 
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2. LITERATURE REVIEW 
 

2.1 Snow Surface Roughness and Angular Distribution of Reflectance 

Polar sea ice is an important component of the global climate system and affects 

the earth’s environment in many ways. It is one of the most reflective surface type on 

Earth. Thus spectral albedo and directional reflectance of snow and sea ice surface in 

polar area plays a significant role in the study of global climate and energy transfer 

(Zhou, 2003). The main source of energy for ice sheet ablation during summer comes 

from the absorption of solar radiation (Braithwaite, R. J., & Olesen, E. B., 1993). The 

surface albedo of snow and ice stands for the ratio of reflected radiation to incident solar 

radiation and is considered an important parameter in predicting ice sheet melting rate 

and the flow dynamics of outlet glaciers (Nolin and Payne, 2007). Surface roughness of 

the snow and ice allows the estimation of 3D structure of surface material and is 

important for surface classification in identifying snow and ice near retreating glaciers 

and at the boundaries of freezing or melting zone. 

Because of the difficulty in collecting consistent snow reflection measurements, 

remote sensing with accessibility of visible and near-infrared wavelengths has becoming 

a desirable technique for monitoring snow physical parameters. A correction for 

Advanced Very High Resolution Radiometer (AVHRR) imagery was developed over 

sea ice by incorporating surface roughness and grain scale factors (Jin and Simpsin, 

1999, 2000). Dozier and Painter claimed that incomprehension of several factors may 

introduce errors in remote sensing of snow properties which includes variation of 
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atmospheric conditions, impurities and snow wetness, grain radius, surface roughness, 

and vegetation canopy, etc. (Dozier et al.., 2004). Monitoring snow properties from 

space requires an accurate knowledge of its bidirectional reflectance factor (BRF) 

(Stroeve and Nolin, 2002; Stroeve et al., 2005; Stamnes et al., 2007; Scambos et al., 

2007; Painter et al., 2009; Lyapustin et al., 2009).  

2.1.1 BRDF Models 

The bidirectional reflection distribution function (BRDF) is defined as the ratio 

of radiance reflected into a particular direction (Ir, W m-2 sr-1 µm-1) to the incident 

radiance (Fo, W m-2 µm-1) in a particular direction by Nicodemus et al. 1977. A surface 

where BRDFs do not change with geometry of observation is termed a Lambertian 

surface. However, the observations in the past few decades demonstrated that the vast 

majority of Earth’s surfaces are not Lambertian. An important property of Earth surface 

object, albedo, can be computed by integrating the BDRFs over the upper hemisphere. 

Many BRDF models have been proposed by researchers since 1990. The number 

of parameters in these models varies from two or three parameters in simple models (e.g. 

Wanner et al., 1995, martonchik et al., 2002) to ten or more parameters in complex ones 

(e.g. Li and Strahler, 1992). The Rahman-Pinty-Verstraete (RPV) model calculates the 

bidirectional reflectance factor (BRF) of a surface as a function of the geometry of both 

illumination and observation (Rahman et al., 1993). I It is a non-linear empirical model 

with three independent free parameters explaining the anisotropy of the surface. The 

RPV model is a three-parameter model based on a consideration of main aspects of 

BRDF shapes. The parameter accounting for hotspot effects is set to a fixed value in 
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some cases or forced to be equal to overall amplitude of reflectance level and noted as 

r0; Parameter k is used to quantify the degree by which the observed bidirectional 

reflectance factors data represent the bowl or bell shape of the surface anisotropy; b 

controls the asymmetry of backward and forward scattering via a Henyey-Greenstein 

function in RPV model and replaced by an exponential scattering angle in modified 

Rahman-Pinty-Verstraete (mRPV) model (Liang, 2008). 

The RPV model is useful in manifesting the structure of target feature since the 

anisotropy characteristic has relationship with the presence of shadows in complicated 

environments. The k parameter is derived from the Minneart function that describe the 

general shape of the angular distribution of reflectance: either increase with the 

illumination or observation zenith angle when k < 1 (“bowl shaped”) or decrease with 

the illumination or observation zenith angle when k > 1 (“bell shaped”) (Nolin, 2004). 

Therefore, k is frequently used to represent the degree of reflectance anisotropy by 

calculating the convexity or concavity of the bowl or bell shapes. Pinty et al. (2002) and 

Widlowski et al. (2001) have discovered that the anisotropic reflectance pattern is 

greatly affected by sub-pixel vegetation structure and density. They found that the 

presence of medium-to-high tree densities creates a bell-shaped angular signature, while 

homogeneous vegetation creates a bowl-shaped pattern on the bright soil substrate. 

2.1.2 BRDF from Satellite Data 

With the ability of the satellite sensors to acquire data in multiple bands and 

multiple viewing angle, more attention has been paid to multi-angle observations on the 

BRDF property at pixel scale. MODIS, Multi-angle Imaging Spectro-Radiometer 
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(MISR), Polarization and Directionality of the Earth’s Reflectance (POLDER) are the 

most widely used remote sensing data for measuring BRDF. In particular, MISR is on 

board the NASA Earth Observing System (EOS) Terra satellite which was launched on 

December 18, 1999. MISR simultaneously measures the Earth in four spectral bands at 

nine widely spaced viewing angles (0, ±26.1, ±45.6, ±60.0, ±70.5)  as illustrated in 

Figure 1. Derived geophysical products such as top-of-atmosphere (TOA) albedos, 

tropospheric aerosol optical depth, TOA and surface bidirectional reflectance factors 

(BRF), and other related parameters (Diner et al., 1999) are publicly available.  

 
Figure 1 MISR on the EOS-Terra satellite views land surface at nine angles: 26.1 
(A), 45.6 (B), 60 (C), 70.5 (D) in forward (f) and afterward (a) directions. All nine 
cameras view a single location within approximately seven minutes (reprinted from 
Diner et al., 1999) 

Chen et al. (2009) compared MISR and MODIS BRDF products at four land 

cover types and discovered that both BRDF models have better representation on 

directional reflectance at some viewing angles, and representation of both BRDF 
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products tend to be impaired with an increase viewing zenith angle. Wu et al. 

demonstrated that the BRDF model parameters derived from MISR multi-angle 

reflectance data are useful in vegetation mapping. Wu et al (2011). explores snow BRDF 

over snow covered regions using MODIS and MISR surface reflectance products by 

utilizing linear Ross-Li model and nonlinear modified Rahman model respectively (Wu 

et al., 2011). They discovered that the angular distribution of reflectance in different 

bands are similar and the minimum reflectance occurs in the nadir region and its 

extension in backward direction.  

2.1.3 BRDF from in situ Measurements 

The ability of satellites to provide multi-angular observations at regional or 

global scale can be restricted by a satellite orbit and by its sampling capability (Zhang et 

al., 2015). Therefore, field experiments covering sufficient angular observations have 

been conducted to estimate anisotropic reflectance for decades. Initially, the snow BRDF 

was simulated by using radiative transfer equation (RTF) in a horizontally homogeneous 

model (Wiscombe and Warren, 1980). However, the measured bidirectional reflectance 

can markedly differ from model results obtained with the assumption of a flat snow 

surface (Painter and Dozier, 2004). The calculation of snow BRDF is suggested to 

include the roughness of the snow surface to improve the agreement between theoretical 

and experimental results. The alteration of snow BRDF caused by presence of surface 

roughness can be a possible cause of error for remote sensing of snow parameters 

(Kuchiki et al., 2011). 

The influence of snow roughness on bidirectional reflectance has been 
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investigated in several researches.Kuhn (1974) noted that the shading influence of the 

sastrugi introduces a daily variation if albedo of about two percent (Kuhn, 1974). By 

measuring anisotropy reflectance from a 22 m tower at South Pole (Warren et al., 1998). 

Warren et al. (1998) demonstrated that sastrugi can alter the reflectance pattern 

significantly relative to a flat surface, particularly at large viewing angles and especially 

in the forward scattering direction with measuring normalized BRDF, or “anisotropic 

reflectance factor” R They proposed two reasons that sastrugi alter albedo andthey 

recommend near-nadir views for accurate remote sensing over snow when inferring 

properties of the surface or planetary albedo. Leroux and Fily (1998) found that the 

sastrugi in their model caused the albedo at 900 nanometers to drop from 0.90 for a flat 

surface to 0.85 when sastrugi is parallel to the solar incident direction or 0.81 when 

sastrugi is perpendicular to solar incident direction. They also discovered a dependence 

of the directional reflectance on the orientation of rough surface features. Zhuravleva et 

al. (2011) examined sastrugi effects on snow-reflected solar radiation with a statistical 

approach and discovered that neglecting  snow surface roughness in the SRF (snow 

reflection function) calculations may bias snow grain size retrievals Kuchiki et al. (2011) 

accessed variation of snow grain size (typically 50-1000	��) retrieved from MODIS by 

assuming a flat snow surface and the result implies that the assumption caused a retrieval 

error up to several hundred micrometers at band2 (0.86 µm) and a few tens of 

micrometers in band 6 (1.64 µm).  

Surface roughness is also known for its significantly impact on microwave 

emission of the sea ice/snow surface in estimating sea ice concentration and extent 
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(Sungwook, 2009). Hong developed a method to estimate the small-scale roughness of 

sea ice using the polarized reflectivity from characteristics of the incident angle of 

AMSR-E data (Hong, 2010). Stroeve demonstrated that small scale roughness (i.e., 

millimeter to meter scale) significantly impact the observed Polarimeric Scanning 

Radiometer (PSR) brightness temperatures (Tbs) and polarization ratios (PRs) decreases 

as the surface become more ridged (Stroeve et al., 2006). They proved that knowledge of 

surface roughness can improve snow depth and sea ice concentration retrievals from 

passive microwave Tbs. 

2.1.4 Normalized Difference Angular Index (NDAI) 

NDAI was first proposed by Nolin et al. (2002) to characterize angular scattering 

of snow and ice surface. The index was applied to MISR atmospherically corrected bi-

directional reflectance (for top-of-atmosphere) or hemispherical-directional reflectance 

(for surface quantities) measured from corresponding forward and backward camera. 

The forward scattering indicates generally smooth surfaces while backward scattering 

suggests rough surface. Therefore, a positive value of NDAI indicate backward 

scattering exceeds forward scattering and the surface is relatively rougher. 

The research conducted by Nolin et al. (2007) suggested that NDAI images along 

with the NIR albedo images has significant potential to improve unsupervised 

classification of ice sheet surface type. By comparing the NDAI with the pre-computed 

airborne LiDAR-derived surface roughness data, they also demonstrated the existence of 

strong correlation with r = 0.89 when LiDAR traversing the glacier from east to west. 

Shi et al. utilized NDAI as one of three features in classification algorithms to detect 
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clouds and in polar regions. NDAI is selected to differentiate cloud and clear region 

because cloudy area tends to be much brighter than clear area in forward scattering 

direction (2004). 

2.2 Surface Roughness Characterization 

Surface roughness discussed in this study is defined as the topographic 

expression of surface at horizontal scales of centimeters to a few meters. The most 

representative surface structure that we are interested in is sastrugi. There is no standard 

method for quantitatively characterizing sea ice surface roughness, and the snow and ice 

surface roughness has been characterized and examined in many experiments with a 

variety of measurement techniques. The selection of the roughness metrics applied in the 

research depend on purpose of the experiments. Kuchiki et al. measured bidirectional 

reflectance for rough surface artificially produced with sastrugi-like linear ridges in 

2009. The surface roughness with sastrugi is characterized by the H (height of ridge)/W 

(width of ridge) and relative sastrugi azimuth angle from the solar azimuth.  

For large scale sea ice roughness, airborne and space-borne methods are 

preferred comparing to field measurement. Terrestrial light detection and ranging 

(LiDAR) is one of the technologies that commonly used in measuring and understanding 

sea ice surface topography. Landy et al. developed a numerical model with LiDAR 

observations to measure the centimeter scale surface roughness of sea ice (Landy et al., 

2015a). The surface roughness is characterized by root-mean-square (RMS) roughness 

height, correlation length, and autocorrelation function. Most of the surface roughness 

measurements using terrestrial laser scanning system are based on 1-D profile analysis. 
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The 1-D measurements are not stationary when roughness vary a lot between adjacent 

profiles or large sampling interval and sample length exist (Landy et al., 2015b). Thus 2-

D measurements of surface roughness is considered to be more precise than the 1-D 

profile-based analysis. 

A variety of roughness metrics developed to evaluating roughness of a surface 

are based on autocorrelation analysis. Fassnacht mentioned three common sets of 

roughness metrics: random roughness (RR), auto-correlation (AC), and variogram 

analysis (Fassnacht et al., 2015). The random roughness is calculated as the standard 

deviation of the elevations from the detrended surface (mean surface). The random 

roughness doesn’t take into account the spatial structure of roughness but the effect on 

detrended surface. The auto-correlation also use the detrended surface data and and is 

calculated as correlation coefficient of each sample along the surface with respect to the 

previous sample on a regular interval. Variogram analysis considers the spatial structure 

of the surface and has no requirement for continuous dataset or regular interval data. The 

elevation variance between each pair of locations is calculated as a function of the 

distance between points. 

Many metrics for characterizing surface roughness in terms of the variability of 

elevation values in DEM have also been proposed to quantify spatial variability of 

morphometric parameters over a particular scale. Terrain analysis can be easily 

performed in a GIS environment by converting the DTM to a raster grid. For example, 

Weiss presented Topographic Position Index (TPI) to characterize watersheds in 2001. 

TPI compares the elevation of each cell in a DEM to the mean elevation of a 
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neighborhood with any reasonable shape. Melton proposed a Melton Ruggedness 

Number (MRN) to model flow accumulation related index. The index is calculated as 

the ratio of difference between maximum and minimum elevation and square root of 

basin area size (Melton, 1965). Riley et al. developed Terrain Ruggedness Index (TRI) 

calculated as difference between the value of a DEM cell and the mean of surrounding 

cell in a neighborhood window (Riley et al., 1999). Nolin et al. examined the surface 

roughness of western Greenland by calculating the root mean squared deviation of the 

surface from a best fitting plane (Nolin et al., 2007). She also demonstrated that MISR 

(multi-angle imaging SpectroRadiometer) data can be used as a proxy to characterize 

roughness of sea ice and ice sheets over Greenland and Antarctica by calculating a 

normalized difference angular index (NDAI). Grohmann et al. derived the surface 

roughness from absolute standard deviation of all values within a window and as the 

deviation from a best fit plane (Grohmann et al., 2009). Trevisani and Rocca developed 

a multi-scale and directional image texture analysis operator (MAD) to offer a robust 

description of surface texture, including surface roughness (Trevisani et al., 2015). MAD 

takes residual DTM calculated as subtracting the smoothed DTM from the original DTM 

as input.  

2.3 DEM Generation From High Spatial Resolution Satellite Images 

More and more space-borne optical remote sensing satellite sensor are capable of 

producing high spatial and radiometric resolution stereoscopic images pairs. Comparing 

with time-consuming traditional terrestrial surveying methods and GPS techniques, 

satellite images provide wide (> 10 km) swath widths and frequent repeats (Noh et al., 
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2017). What’s more, the ability of accessing data in remote and impassable place makes 

it the best choice for DEM generation in polar area. Different algorithms of extracting 

DEM from those very high resolution (VHR) images have been developed alongside the 

satellite improvements. 

The workflow for DEM generation from stereoscopic images can be summarized 

as follow steps (Shin et al., 2003): 

• Feature selection in one of the stereo-pair 

• Identification of the conjugate feature in the other scene 

• Intersection procedure 

• Point densification 

A fully-automated DEM extraction algorithm named Surface Extraction with 

TIN-based Search-space Minimization (SETSM) for processing large numbers of stereo 

pairs is developed by Noh (2015). Their algorithm only requires sensor model 

information along with the satellite image and has no need of other priori knowledge for 

the target. NASA also provided an automated, open source software Ames Stereo 

Pipeline (ASP) to help people generating DEM from very-high-resolution (VHR) 

commercial imagery of the Earth. Shean et al. outlined a processing workflow for 

DigitalGlobe WordView-1 and WorldView-2 stereo image. They evaluated ASP 

correlator options, benchmark test results and two case studies of DEM accuracy.  

2.4 Accuracy Assessment of Generated DEM 

A lot of studies has been carried out to evaluate the accuracy of resulting DEM 

from VHR optical remote sensing stereo image pairs. Evans et al. assessed the accuracy 
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of DEM generation from Cartosat-1 data with three different DEM derived from 

National Elevation Dataset (NED), ASTER, and ARTM (Evans et al., 2008) by using 

PCI software and ENVI DEM module. The results indicate approximately 5 m 

horizontal accuracy and average 4 m vertical accuracy. Buyuksalih et al. reached a 

vertical accuracy of 3.2 m corresponding to an x-parallax of 0.33 pixels in DEM 

generation with automatic image matching method by checking against a reference DEM 

from topographic maps 1:25000 (Buyuksalih et al., 2004).  
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3. METHODOLOGY 
 
3.1 Study Area and Satellite Dataset 

Scientists divide the Antarctic ice pack into five sectors for better study of sea ice 

patterns and trends: The Weddell sea, the Indian Ocean, the western Pacific Ocean, the 

Ross Sea and the Bellingshausen and Amundsen seas. Antarctic sea ice extent typically 

reaches its maximum in September and minimum in February. This study investigates 

sea ice in the Ross Sea which is one of the three main sources of Antarctic Bottom 

Water, a major component of the global ocean circulation system (Johnson, 2008). 

Because of this and proximity to McMurdo Station, the logistical hub of United States 

Antarctic Science, many studies has been done conducted to understand the underlying 

physical mechanisms of sea ice including by remote sensing. This work attempts to 

contribute to our understanding of sea ice, and to a lesser extent ice shelf reflectance in 

the Ross Sea as manifests itself in multiple satellite images.  

The satellite dataset used to derive high resolution DEM is Digital Globe 

WorldView 1. After the DEM was generated, several remote sensing datasets from 

MISR were selected that cover the area of the DEM. 

In order to avoid the computational difficulty on per pixel analysis and model 

application over the entire image, several representative locations are selected to 

investigate reflectance based on the roughness map and local understanding of sea ice 

and the McMurdo ice shelf. A description of the generation of the roughness map and 

the criteria for the selection of specific locations will be elaborated in the following 

sections. 
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3.1.1 MISR Specification and Processing with MISRToolkit 

The Multi-Angle Imaging Spectroradiometer (MISR) is one of the sensors flown 

aboard the NASA’s Earth Observing System (EOS) Terra satellite. MISR has nine 

cameras pointed at 9 fixed discrete angles. One nadir and four viewing angles in both 

forward (f) and afterward (a) direction along the track of satellite. It provides a series of 

geophysical products by simultaneously viewing the Earth in four wavelengths (446, 

558, 672, and 866 nm) at nine angles (0°, ±26.1°, ±45.6°, ±60.0°, ±70.5°). The MISR 

sensor has high radiometric resolution and a wide dynamic range which is desirable for 

snow-covered surface detection. MISR data is distributed in HDF-EOS data format and 

use Space Oblique Mercator (SOM) projection with a spatial sampling of 257 meters in 

the red bands and nadir bands, and 1100 meters in all the other bands. Globally, there are 

233 distinct but overlapping MISR paths that comprise one scan of the entire Earth. Data 

are collected by the MISR sensors from the 223 paths repeatedly in every 16 days. The 

revisit time for a particular location under a variety of angular conditions is about 9 days 

at the equator and 2 days at polar areas. The Terra platform that carries MISR revolves 

once around the planet in 98.88 minutes and each complete revolution is called an orbit. 

The orbit number increases by 1 after each orbit and was labeled as 1 at launch. 

Therefore, while a path number can determine the geographic location of MISR products 

an orbit number is required for knowing the acquisition date of an image along a certain 

path (Tao Shi and Bin Yu, 2004). 

Because of our focus on the surface angular signature, it is critical to have a 

precise understanding of how the solar zenith and azimuth are defined in MISR data. 
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Different from the conventional definition in some radiative transfer models, solar 

azimuth angles measured by MISR instruments are measured clockwise from the local 

north to the direction pointing away from the Sun, rather than toward it. So MISR a sun 

azimuth is 0° when the sun is due south of the ground point. Figure 2 indicates the solar 

illumination geometry in MISR imagery acquisition.  

  

Figure 2 Sun angles defined in MISR 

This study used MISR path 59 data acquired on 29 December 2013 from block 

154 on orbit 074640. Three specific MISR data products were used: 1) the MISR Level-

1B2 Ellipsoid-projected Radiance product (MI1B2E); 2) the MISR Level-1B2 

Geometric Parameters product (MI1B2GEOP); and 3) the MISR Level-2 Land Surface 

product (MIL2ASLS). MI1B2E contains TOA (top-of-atmosphere) radiances that are 

calibrated, geometric corrected, and projected to a Space Oblique Mercator grid. The 

MI1B2GEOP dataset provides information about the solar and view geometry and 
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geolocation information in data acquisition at 17,600 m spatial resolution. Three model 

parameters (r0, k and b; a.k.a. BRFModParam1, BRFModParam2, and BRFModParam3) 

required for the modified RPV (MRPV) model (Diner et al., 2008) and the measure of 

the fit residual (Δ) are directly archived in the Level 2 land surface product for all 

available wavelengths. Figure 3 illustrates the solar position at the time of each MISR 

acquisition and the geometry of its nine sensors. The forward-pointing sensors and the 

nadir sensor are marked in red and aft pointing sensors are marked in blue. The flight 

direction is runs in a direction from the forward-pointing sensors to the aft-pointing 

sensors. As we can tell from Figure 3, path 59 is descending path over Antarctica. 

Considering the sun position along with the sensor direction, the forward viewing 

cameras measure backward scattering and the afterward cameras are measuring the 

forward scattering.  

 

Figure 3 Forward (Df, Cf, Bf, Af, An) cameras (red) and Backward (Aa, Ba, Ca, 
Da) Cameras (blue) (i.e. data acquisition) and sun geometry in MISR path 59, orbit 
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074640, block 154. All the angles are average value calculated from MISR Level-
1B2 Geometric Parameters product 

 Because of the original MISR datasets are distributed in HDF-EOS stacked-

block grid format and in the Space Oblique Mercator (SOM) map projection, specialized 

tools are required to access and process them. The MISR Toolkit (MTK) is a 

programming interface to the Python programming language to access and manipulate 

MISR Level1B2, Level2, and ancillary data products. MISR data products are accessed 

in an HDF file structure of file containing grid (band), field (Radiance, RDQI, DN, 

Equivalent Reflectance), region (region defined by path and block number), and data 

planes (numpy array). MTK Python bindings were used to read MISR images based on 

geographic extent of the study area as numpy arrays. Further processing was conducted 

based on the resulting numpy arrays. MTK also provided a crucial function to perform 

coordinate conversions between latitude/longitude and SOM x/y, block/line/sample in 

grid. 

3.2 DEM Generation from WordView1 

A Digital Elevation Model (DEM) is one of the fundamental components of the 

terrain analysis. Besides the traditional surveying methods, very high resolution (VHR) 

remote sensing images acquired in stereo pairs have become popular in DEM generation. 

Since a DEM is the primary input in the following surface roughness index calculation, 

it is critical to produce reliable high resolution DEMs over our study area. 

3.2.1 WorldView Stereo Imagery 

Digital Globe’s WorldView 1 stereo image products with 2-meter spatial 
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resolution are ideal for users to generate VHR DEMs. These products are orthorectified 

in the GeoTIFF format and are ready to use as the input for DEM generation procedures.  

This research utilizes WorldView 1 Level 1B satellite images and the 

corresponding XML file which contains both the exact linear camera information 

(named as dg in ASP) and its RPC approximation (named as rpc in ASP). The 

WorldView1 images used in this research were provided by the Polar Geospatial Center 

and figure 4 shows the images and where they are located relative to McMurdo station 

and Ross island.  

Figure 4 Subsets of two WorldView1 products 

3.2.2 NASA Ames Stereo Pipeline 
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The Ames Stereo Pipeline (ASP) is an open source 3D surface construction and 

visualization command-line program developed by the Intelligent Robotics Group (IRG) 

at the NASA Ames Research Center. At first, it was designed to process non-terrestrial 

imagery, but it is now being widely used to process Earth imagery from commercial 

providers that provide RPC camera models for their products. There are four key steps in 

the DEM generation procedures, 1) handling CCD boundary artifacts, 2) map-projecting 

the images, 3) stereo correlation, 4) point cloud alignment, 5) converting point cloud to 

DEM.  

In order to avoid the discontinuities in the DEM resulted from subpixel artifacts 

in WordView images during DEM generation, a tool called wv_correct was utilized. 

Then the corrected images along with the low-resolution reference DEM are used as 

input for mapproject tool prior to stereo. The reference DEM selected was the Radarsat 

Antarctic Mapping Project Digital Elevation Model, Version 2 (RAMPv2) with pixel 

size of 200 m in binary grid format referenced to WGS84 datum ellipsoid. As a pre-

processing step, the objective of map projecting is to roughly align the stereo pair by 

mapping left and right images onto the low-resolution smooth terrain. In this case, we 

used RPC approximation (-t rpc) camera model which is accurate enough while being 

much faster than an exact linear camera model. 

Stereo correlation is the core function of ASP and it works by matching a 

neighborhood of each pixel in the left image to a similar neighborhood in the right one. 

Because of the cloud noise in our WorldView images, the pixels covered with cloud 

were missing in the output DEM. The parameter corr-kernel was set to be 15 as it 
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determines the size (in pixels) of the correlation kernel. Increasing the kernel size helps 

fill in regions where no match point was found but requires longer processing time. After 

the disparity map was initialized, every pixel will have either an estimated disparity 

value or be marked as invalid. All the valid pixels are then adjusted by a Bayes EM 

weighted affine adaptive window correlator which we set as subpixel-mode to 2. This 

method produces very high quality stereo matches with limited image noise.  

The point2dem program produces a DEM from the point cloud file derived from 

stereo step. The resulting DEM file is in GeoTIFF format with georeferencing 

information and the projection is manually set to be EPSG 3031 Antarctic Polar 

Stereographic. No data pixels are set to -9999.0 and dem-hole-fill-len is set to 50, so the 

holes less than 50 m on the output DEM are filled. 

Due to the very high resolution of WorldView 1 images and the resulting large 

data size (about 500 MB for one subset of a product), as well as the complexity of the 

stereo pipeline algorithms, it takes a large amount of CPU computational power and 

considerable time to process even a small image. For example, a pair of stereo images 

with size of 991.8 MB and 845.2 MB respectively, took 12 hours to process on a MacOS 

operation system with 2.7 GHz processor and 8 GB memory. To complete the task more 

efficiently, ASP was run on a Linux virtual machine provided by with an allocation of 8 

virtual CPUs and 16 GB memory. 

3.3 DEM Registration 

Because of the inherent inaccuracies originating from the original data that were 

used to generate the DEM and errors in the DEM generation process, the point cloud 
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derived from WV1 stereo pairs was aligned point cloud data from a different source to 

diminish the potential biases by pc_align program.  

The LiDAR data used in this study was downloaded from Operation IceBridge 

Data Portal with the spatial searching box same as the boundary of the DEM and 

temporal filter is set to a range less than 30 days to the date of WorldView images used 

in DEM creation was acquired (December 27, 2013). Eventually, 11 tracks with 22 files 

are qualified for further study. All the LiDAR data are IceBridge ATM L1B Elevation 

and Return Strength Version 2 with the dataset ID of ILATM1B. Every LiDAR data file 

is in hdf5 format and has an associated xml file providing metadata containing ancillary 

information, such as sensor name, date of survey and spatial coverage. The average point 

density of ATM LiDAR dataset used in this study is one laser shot per 10 m2. The 

information required for DEM registration were latitude, longitude, and elevation. The 

elevation is referenced to the WGS84 ellipsoid (ellipsoid height). A python script was 

written to automatically loop through all relevant IceBridge files, extract longitude, 

latitude, and elevation and write this information to new comma separated value (csv) 

files as three fields. This information was used as a more accurately positioned (~0.1-0.2 

m vertical accuracy) elevation source for the DEM generated from World View 1. The 

input other than latitude, longitude, and elevation that required by pc_align program is a 

priori guess for the maximum displacement expected in the alignment process, i.e. the 

maximum distance those points are allowed to move. This parameter is set to 500 in this 

study. Figure 5 illustrated the track of LiDAR dataset and the DEM converted from it. 
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Figure 5 ATM LiDAR dataset selection (pink) over the study site 

3.4 Surface Roughness Characterization 

As discussed by Smith (2014), varying metrics exist for characterizing surface 

roughness. In this study the TRI (Terrain Ruggedness Index) is computed as the mean of 

the absolute differences between the value of a cell and its neighboring cells by 

summing the squared difference in elevation between a center grid cell and its 

neighboring cells, and then taking the square root of the sum. The computation strategy 

of TRI is illustrated in figure 6. This index was first proposed by Riley and others (Riley 

et al. 1999) to quantify topographic heterogeneity. Before that, most researchers describe 

terrain mainly in qualitative terms which is undesirable for more complex scientific 
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analysis. TRI was adopted in this study because it merely relies on DEM and relatively 

easy to understand and calculate. As a pixel-based index, it is also very flexible at 

detecting roughness at various spatial scales and different directions. Normally the 

surface roughness should be calibrated to contain the ice surface height only to remove 

the effect of longer-wavelength variations in terrain. However, as the study area of 

interest is mainly covered by sea ice and ice shelf, it is reasonable to extract surface 

roughness directly from DEM elevations. 

TRI index was applied to DEM we generated from WorldView 1 stereo image 

pairs by running a series of Python scripts. DEM in GeoTiff raster format was read in as 

2D numpy array by functions provided by GDAL (Geospatial Data Abstraction Library). 

The geographic transformation information including x and y coordinate of upper left 

corner of the upper left pixel, pixel width and pixel width (equal to pixel width since 

DEM pixel is square) were stored in variables and was assigned to the resulting array 

from TRI index calculation. The weight for each surrounding pixel in non-directional 

TRI is set to 1. Four directional TRI indexes were also computed by changing the weight 

of cells in corresponding direction and the weight matrixes are illustrated in figure 7. 

The cell size in denominator of the function serves for the purpose of normalization and 

comparability between various spatial scales. 
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Figure 6 Cell location coding and TRI calculation function 

 

Figure 7 Weight matrixes in TRI index computation 

3.4.1 Scale Effects 

The window size of the statistical unit (moving window) is very important. 

According to previous research, some principles must be followed. The optimum 

window size should match the scale of surface structure of concern to keep its integrity 

and be adaptable to any variation form in our study site (Zhou et al., 2008).  
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To evaluate appropriate scale of representing roughness on Antarctic sea ice, the 

selected surface roughness metrics were applied on DEMs with increasing moving-

windows sizes of 3x3, 5x5, 7x7, 9x9, 11x11, 13x13, 15x15, 17x17, and 27x27 

increasing up to 117x117. With the window size increases, the statistics changed rapidly 

at the beginning where the window size was on the spatial scale of sastrugi and other 

roughness elements on the sea ice and ice shelf.  

3.5 Snow BRF from MISR 

Remote sensing of land material and atmospheric aerosol, cloud, and trace gases 

in cryosphere from satellites relies on thorough knowledge of the snow angular 

reflectance (Kokhanovsky et al., 2012). Typically, the snow exhibits a directional 

scattering signature that is very different from other land surface because of its 

maximum reflectance in forward scattering (Arnold et al., 2002). 

To examine the influence of sea ice and ice sheet roughness on snow angular 

reflectance, multi-angle remote sensing observation data from the Multi-Angle Imaging 

SpectroRadiometer (MISR) was utilized.  

While the widely used Ross-Li model is designed to simulate the radiance 

transfer of the vegetation canopy, it is not ideal for capturing snow’s BRDF features 

because of strictly defined coefficients. Therefore, the Rahman-Pinty-Verstraete (RPV) 

model model was used to study the BRDF of snow on sea ice and an ice shelf over the 

study region. In contrast to kernel driven models, the RPV model is a semi-empirical 

model with three parameters (RPV3P) or four parameters (RPV4P). The RPV4P model 

has improved ability to model bidirectional reflectance when hotspot effects (a peak in 
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reflected radiation from a target in the retro-illumination direction) are prominent 

(Koukal et al., 2010). The PRV model adopted by MISR data product can be described 

by the following equation (Diner et al., 1999, Rahman et al., 1993): 

𝑅#$%&' = )𝑟+ 	×	
-$./012-$.3012

(-$./5-$.3)210
7 × exp[𝑏	 × 	𝑝(𝛺)] × 	ℎ(𝜃, 𝜗, ∅)           (1) 

In equation (1), 𝑟0, k, b are three free parameters. 𝜃 and ϑ represent the 

observation zenith angle and solar illumination zenith angle. ∅ is the relative azimuth 

angle between the solar and the sensor. ∅ is equal to zero when the illumination source is 

behind the observing sensor. Because how solar azimuth angle is provided in MISR 

follows a different rule to some other radiative transfer models, ∅ is calculated as the 

difference between solar azimuth angle having 180º deducted and camera azimuth angle. 

The function 𝑝(𝛺) is assumed to depend on scattering angle 𝛺	only which is the angle 

between the incident and reflected radiance directions. It can be calculated as the 

function of 𝜃, ϑ and ∅： 

𝑝(Ω) = 	cosΩ = 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜗 + 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜗𝑐𝑜𝑠𝜙     (2) 

The function h is a parameter to describe the hot spot: 

ℎ(𝜃, 𝜗, ∅) = 	1 +	 RSTU	
R5V(/,W,∅)

                       (3) 

𝐺(𝜃, ϑ, ∅) = [𝑡𝑎𝑛𝜃[ +	𝑡𝑎𝑛ϑ[ + 2(𝑡𝑎𝑛𝜃𝑡𝑎𝑛ϑ)𝑐𝑜𝑠∅]R/[       (4) 

R0 describes the overall amplitude of reflectance level; k is used to quantify the 

degree by which the observed bidirectional reflectance factors data represent the bowl or 

bell shape of the surface anisotropy; b accounts for the predominance of backward and 

forward scattering. 
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Three model parameters (𝑟0, k, b) values are available from MISR standard level 

2 land surface product. Three parameters are used in forward mode in the angular 

function of MRPV model to calculate the reflectance of any view angle (𝜃, ϑ, ∅). The 

definition of the angular geometry of illumination and observation used in BRDF model 

are defined is illustrated in figure 8. 

 

Figure 8 Geometry of illumination and observation 

This study examined k parameter and the MRPV model derived from it with 

other parameters over the rough sea ice/ice shelf areas and investigated the effects of 

surface roughness on the angular signature of snow and ice on sea ice and the McMurdo 

Ice Shelf. For each MISR waveband, pixels were selected and compared with TRI 

surface toughness map to examine possible relationships between the MISR angular 

measurements and surface roughness.  

3.6 Feature Selection 
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One of the main objectives of this research is to identify the difference in the 

pattern of anisotropic reflectance over snow and ice surfaces of varying roughness. The 

angular reflectance of a pixel relies on both the intrinsic anisotropic scattering pattern of 

the components in that pixel and the arrangement of those components in three-

dimensional structure (Nolin, 2002).  

Thanks to the innovative multi-angle remote sensing instruments like MISR 

angular reflectance information of the remote locations can be examined on a large 

scale. According to the spectral signature of snow and ice, the four bands provided by 

MISR (Red, Blue, Green, NIR) have similar characteristics. In the visible and near 

infrared wavelengths, new snow typically has an albedo (reflected solar radiation/ 

incoming solar radiation) around 90%. Old snow or multi-year snow that are aged and 

contain accumulated dust can have albedo as low as 40% (Foster et al., 1987). In this 

study, the red band was selected to investigate snow and ice angular signature as the red 

band radiances have the highest spatial resolution (275 m) in all the observation angles. 

The radiance acquired from the eight off-nadir angles and nadir angle cameras on MISR 

were plotted. From these two features that are able to capture the characteristics of 

radiance variations manifested in the plot were determined in the following section, the 

rationale of why these features were selected and how NDAIs capturing these features 

were computed are explained.  

Multiple sites are selected with a prior knowledge to represent representative 

surface types in our study area on sea ice and ice shelf with snow or snow free, and one 



 
 

 33 

glacier. The geographic locations of those sites are indicated in the figure 10 and detailed 

information about those sites are listed in the Table 1.  

3.6.1 Normalized Differential Angular Index (NDAI) 

Most of the remote sensing experiments measure the spectral information to infer 

physical properties of Earth surface and atmosphere. However, unique angular scattering 

information of the sea ice and ice sheet surface can be acquired from multi-angle 

satellite images. Normalized Differential Angular Index (NDAI) was used as a proxy for 

glacier surface roughness calculated as combination of forward and backward radiation 

scattering (Nolin et al., 2002). The normalization effectively eliminates the atmospheric 

influence and isolates the contribution of the directional impact of each band. 

Considering Sun azimuth angle during daylight in Antarctica area, forward scattering is 

recorded by afterward pointing cameras and the backward scattering is measured from 

forward cameras. Positive NDAI value indicate the dominance of backward scattering 

and by inference relatively rougher surfaces while negative values suggest that forward 

scattering is greater than forward scattering corresponding to a smooth surface 

conditions. 

NDAI = 	 bcdSbef	
bcg5hij

         (5) 

The dataset used for computing NDAI was MISR Level-1B2 Ellipsoid-projected 

top-of-atmosphere unscaled radiance data. All the satellite datasets was georeferenced 

and atmospherically corrected.  

3.6.2 Band Ratios 
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To provide a more straightforward conception of how radiance varies over 

changing camera viewing angle, the radiance value obtained from MISRs nine cameras 

over eleven sites are plotted together on the same graph (figure 9) and organized by 4 

MISR spectral bands. The positive zenith angles stand for forward cameras and negative 

values are for backward cameras. 

 

Figure 9 MISR Radiance value in nine viewing angles from site 1 to site 11 

As can be seen from the figure 9, radiances decrease as the wavelength increases 

which is consistent with the known spectral properties of snow and ice. The radiance 

varies greatly by the camera observing zenith angles. The shape of the radiance curve 

indicates strongly antistrophic reflectance at each site. The ratios proposed in this study 
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is able to identify the distinct shape with focus on the difference between forward, 

backward and nadir scattering. Here An, Da, Df stand for camera zenith angle equal to 

0º, -70.5º, and 70.5º respectively. 

BandRatio1 = 	 bef	
2
r(bcg5hsd)

       (6) 

 

BandRatio2 = 	 bctSbef	
bcgShij

                                                         (7)  
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4. RESULTS 
 

4.1 DEM Generated from WorldView Stereo Image Pair 

To ensure the consistent condition of the resulting DEM and have an adequately 

sized study area. Two sets of product that acquired by WorldView-1 satellite sensor with 

time disparity less than 2 hours on December 27, 2013 were used. The stereo image pairs 

were referenced to Radarsat Antarctic Mapping Project Digital Elevation Model Version 

2 (RAMPv2_wgs84_200m.tif) with spatial resolution of 200 m and elevation relative to 

the WGS84 ellipsoid. The final DEM product and eleven study sites that used in the 

following study are listed in Table 1. Because of the presence of cloud, there are some 

regions with no valid elevations causing holes in the resulting DEM which were 

excluded from analysis. 

Table 1 Surface type and coordinates of 11 study sites 

SITE NUMBER SURFACE TYPE LATITUDE LONGITUDE 
1 Sea Ice -77.68303103 165.9223516 
2 Sea Ice -77.73801679 165.8389805 
3 Sea Ice -77.77187272 166.0635656 
4 Sea Ice -77.71767917 164.8384062 
5 Sea Ice -77.66772316 164.4420813 
6 Ice Shelf - Snow Typically -77.83684324 165.8690605 
7 Ice Shelf - Snow Typically -77.87512575 165.8858435 
8 Ice Shelf - Snow Free -77.94628258 166.1086155 
9 Ice Shelf - Snow Free -78.0227833 166.1246517 
10 Ice Shelf - Snow Free -78.0324312 165.9251359 
11 Glacier -78.02752968 164.8274685 
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Figure 10 Final DEM generated from WorldView-1 stereo image pairs 

4.2 DEM Elevation Accuracy 

The DEM created using the Ames Stereo Pipeline was compared with near-
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concurrent airborne LiDAR data acquired by the Airborne Topographic Mapper (ATM). 

From the original ATM LiDAR products, a DEM with 2 m resolution was generated.  

Three transects over the ATM and Worldview 1 DEMs were selected for 

comparison and are indicated with different colors in figure 11. Elevations were 

extracted respectively from our generated DEM and the ATM LiDAR along the 

transects and the direction is same as the travel of airborne LiDAR. The first 500 pixels 

along each transect were selected and plotted against the distance from the start of the 

transect. The Root mean square error (RMSE) of first 500 pixels of DEM relative to 

LiDAR on transect 1, 2, 3 were 0.608, 0.751, and 0.610 m respectively. The comparison 

of elevation from the DEM generated from WorldView 1 and from ATM LiDAR  are 

shown in figure 12. RMSE was computed as 

𝑅𝑀𝑆𝐸 =	xR
f
	∗ ∑ (𝑥| − 𝑥)[f

~�R        (8) 

where n is the number of samples, 𝑥 ′ is the elevation value from DEM generated 

by stereo image pairs and 𝑥 is the elevation converted from ATM LiDAR data. The 

visual inspections and low RMSE indicate that the quality of the WorldView 1 DEM as 

sufficient for investigating surface roughness variations across our study site. 
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Figure 11 Location of three transects on track of airborne LiDAR over the DEM 
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Figure 12 Comparison of absolute elevation value between DEM we generated from 
stereo satellite images and airborne LiDAR. Panel (1), (2), (3) are comparison based 
on first 100 pixels from transect 1, transect 2, and transect 3 respectively.  

(1) 

(2) 

(3) 
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4.3 TRI Roughness Index  

TRI surface roughness index was calculated on the DEM using various window 

size with both non-directional and directional kernels. Figure 13 shows the TRI index 

map when processing window size equals to 30 m and do not consider directionality. 

High elevations on the west side of the study area were excluded in the TRI computation 

because the emphasis of this study is small-scale surface roughness over relatively flat 

sea ice and McMurdo ice shelf. Figure 14 displays the comparison of four partial 

directional TRI maps which measure the elevation differences in four different 

directions: north-south, east-west, northwest-southeast, and northeast-southwest 

compared to the center pixel. 
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Figure 13 Terrain Ruggedness Index when processing window size is 30 m 



 
 

 43 

 

Figure 14 Partial Terrain Ruggedness Index with 234 m cell size in four directions. 
Upper left: north-south, upper right: east-west, lower left: northwest-southeast, 
lower right: northeast-southwest 

The changes of the TRI with the increasing window size in selected sites are 
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shown in the Figure 15. Since the variation of TRI becomes more significant at larger 

window sizes, TRI variations as a function of window size were also investigated as a 

function of the natural logarithm of window size as illustrated in Figure 16.  An 

exponential function was fit to the TRI with increasing window size using a one 

parameter function with an intercept at (0, 0) to keep the function as parsimonious a s 

possible: 

y = exp(k ∗ 	x) − 	1         

      (9) 

 

Figure 15 Un-normalized TRI roughness change with calculation window size 
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Figure 16 Normalized TRI roughness change with calculation window size 

It is clear that the k in function 9 parameter captures differences in how TRI 

changes with increasing pixel size which is in turn related to surface type (Table 1). The 

k parameter in equation 9 for each site from site 1 to site 11 are 0.33112469, 

0.33778873, 0.29007223, 0.33438777, 0.33021749, 0.43583286, 0.30300383, 

0.45657646, 0.56558668, 0.60790733, and 0.32215089.  

One thing need to be motioned here is the computation strategy difference of 

non-directional TRI and directional TRI. When calculating the non-directional TRI 

surface toughness index, the resulting TRI map has the spatial resolution same as the 

calculating window size since all the pixels inside the moving window produce one 

shared value. When it comes to directional TRI, original DEM was resampled to the 
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desired cell size. As the moving window shifted from left to right and top to bottom 

pixel by pixel, TRI map was generated with the same spatial resolution as resampled 

DEM for the calculated TRI was assigned to center pixel only in the moving window.  

4.4 MRPV BRDF Model 

The mRPV model was built to describe the anisotropic scattering of target sites. 

Three parameters (r0, k, b) explain the anisotropy of target required by mRPV model are 

obtained from MISR Level-2 Land Surface product. Another important parameter, solar 

zenith angle is acquired from MISR Level-1B2 Geometric Parameters product. MRPV 

model is able to approximate the Bidirectional Reflectance Factor (BRF) for any given 

viewing zenith angle and azimuth angle relative to the sun. Figure 17, 18, and 19 

illustrate the BRF value at site 6, 9, and 10 simulated by mRPV model in blue, green, 

red, and NIR band respectively. 
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Figure 17 MRPV model for site 6 in MISR blue band (a), green band (b), red band 
(c), NIR band (d) 

 

Figure 18 MRPV model for site 9 in MISR blue band (a), green band (b), red band 
(c), NIR band (d) 
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Figure 19 MRPV model for site 10 in MISR blue band (a), green band (b), red band 
(c), NIR band (d) 

4.5 MISR NDAI and Other Angular Ratios 

In order to minimize the disturbance of atmosphere on surface BRFs, a cloud free 

condition is required. MISR images from path 59 was selected for its least cloud 

percentage of all MISR images studied. All the examinations on angular distribution of 

surface scattering over study area were performed on images from path 59, block 154 

and orbit 074640 acquired on December 29, 2013.  

Figure 20 indicates the top of atmosphere radiance in nine different viewing 

angles over eleven sites with various surface conditions in four bands. The average solar 

zenith angle of the whole entire is about 61.3º. The definition of relative azimuth angle 

in MISR product is the view azimuth angle with respect to the Sun position in reference 
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to ellipsoid system and value is 0º when the Sun is behind viewing camera. It is easy to 

infer from the ancillary data that forward cameras (positive zenith angles in the figure 3) 

captured backward scattering and afterward cameras indicate forward scattering at this 

specific illumination and observation geometry.  

 

Figure 20 Radiance value in various viewing angles: 0 º (An), 26.1 º(A), 45.6 º(B), 60 
º(C), and 70.5 º(D) in forward (f) and afterward (a) directions. 

In order to have a better understanding of anisotropic scattering pattern in study 

area, we compared radiance in An and Da angle and calculated correlation in Figure 21. 

If the study site is an ideal isotropic scattering object, the radiance value in An and Da 

should be identical. Again, the MISR red band was selected since it has highest spatial 
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resolution. The points in the scatter plot are obtained from a 7*7 window surrounding 

the selected study pixels. 

Figure 21 Scatter plot illustrating correlations between MISR An and Da cameras 
radiance value in 11 sites. Plots from top to bottom and left to right represent site 1 
to site 11.  

Figure 22 visualizes the radiance change with surface roughness index by 

plotting the two radiance ratios proposed in this study against k parameter value of the 

fitted function 9. 
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Figure 12 Scatter plots of TRI roughness fitted function k parameter against band 
ratio 1 (upper) and 2 (lower) 

BandRatio1 = 	
𝜌𝐴𝑛	

1
2 (𝜌𝐷𝑎 + ρDf)

 

BandRatio2 = 	 bctSbef	
bcgShij
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5. DISCUSSION 
 

 
5.1 DEM Extraction from WorldView-1 Stereo Image Pair 

This study demonstrated the potential of very high spatial resolution WorldView-

1 stereo satellite images in mapping topographic roughness at large scale in a remote 

polar area across sea ice and ice shelf surfaces. The resulting DEM processed form 

Ames Stereo Pipeline has the same 2 me grid size as the WorldView-1. The DEM 

product in this study has the highest spatial resolution in the study area comparing with 

other available elevation data sources. Despite the advantage of stereo image pairs in 

large scale mapping application, the existence of cloud and ice surface lacking of large 

scale features limit the performance of generating DEM. 

Due to the lack of ground control points (GCPs), preliminary DEM product 

obtained from stereo was aligned to a terrain converted from ATM LiDAR data. 

Although LiDAR has a centimeter level of error in vertically, it is better than the 

uncorrected DEM from ASP program with meter scale vertical error.  

5.2 DEM Accuracy Assessment 

The ATM LiDAR data was divided in two groups. One set of LiDAR was used 

as control data in the process of DEM generation, we compared another set of LiDAR 

data for DEM accuracy elevation. LiDAR data are acquired over the same time period as 

the acquisition of WorldView satellite images. The Root Mean Square Error (RMSE) for 

the three transects we selected along the LiDAR data footprints are quite low (0.608, 

0.751, and 0.610 meters, respectively). These low RMSE values demonstrated a great 

improvement on the vertical accuracy after the DEM registration. Transect 1 and transect 
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3 are over sea ice and have a relatively smooth surfaces, while transect 2 is over the ice 

shelf with snow which is a rougher surface. It is easy to notice by visual comparison that 

the track crossing a relatively smooth portion of ice (track 1 and track 3) shows a weaker 

correlation in elevations between the Worldview 1and LiDAR DEMs but a relatively 

small difference in less difference in absolute elevations. The LiDAR data in transect 2 

displays a larger variation in elevation and the DEM generated from WorldView-1 

stereo images has a stronger correlation with LiDAR elevations. However, the absolute 

elevation difference between DEM and LiDAR is much greater in transect 3 than the 

other two transects as measured by RMSE. The difference in performance over smooth 

and rough surface can be explained by how ASP generating topography. The correlation 

step is performed in a two-step pyramid algorithm in ASP. The low resolution version of 

the input stereo images is created first and the disparity map is found. Then the disparity 

map is refined by increasing the input images to higher resolution (ASP book). This 

approach works better for rocky terrain but may fail for snowy surface, which only has 

features with small-scale sastrugi or ridges shaped by wind. Thus small structures may 

disappear at low resolution and the information may get lost in the first step of 

correlation algorithm. So the ability of generating topography at smooth surface is not as 

good as the surfaces with greater relief. However, it is important to note that the local 

roughness features on transect 3 were only on the order of 2 meters, so while the 

WorldView DEM appears to differ from the LiDAR DEM for very smooth surfaces with 

local roughness of approximately a meter, it appears to do well in capturing variations in 

surface roughness of more than a meter 
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5.3 TRI Roughness Map Evaluation 

The resulting DEM created by the Ames Stereo Pipeline is the only input for 

calculating Terrain Ruggedness Index (TRI). TRI is an index widely used in quantifying 

landscape roughness by computing the average change in elevation between a center cell 

and its surrounding cells within the moving window. By dividing the average change by 

the calculating window size, the value of index is normalized and the magnitude 

difference caused by number of pixels in calculation is eliminated.  

It is evident in Figure 15 that TRI values do not change significantly when the 

window size is very small (less than 20 m) on these sea ice and ice shelf surfaces. As the 

window size increase to larger than 20 m, TRI values experience a great increase at sites 

9 and 10 which are located on ice shelves with very rough surfaces. It is possible to infer 

that the spatial scale of the peak roughness structure is around 20 m at site 9 and 55 m at 

site 10. Combined with the WorldView-1 high resolution satellite images, it is easy to 

discover that ice shelves have multi-year ice without snow are rougher than the ice 

shelves covered with snow. And the McMurdo Ice shelf is in general are rougher than 

sea ice. Older sea ice is rougher than first year sea ice which are closer to the open water 

in our study area.  

5.4 MRPV BRDF Model 

BRDF angular distributions simulated with mRPV model are illustrated in 

hemispherical space at site 6, 9, and 10 in Figure 17, 18, and 19. Overall, snow and ice 

has very high BRF because they are highly reflective at visible wavelength. In site 6, 

BRF values are greater than 0.55 in visible bands except the NIR band with lowest BRF 
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value at 0.4. As we can see from three BRF model figures, BRF generally decreases with 

the increase of wavelength from blue, green, red, to NIR which is in accordance with 

spectral signature of snow and ice. The model is simulated with solar zenith angle value 

to be 60.605º, 60.667 º, 60.742 º at the time of MISR data acquisition in site 6, 9, and 10 

respectively. A relative azimuth of 180º and viewing zenith angle of 60º has the highest 

BRF which indicates the domination of forward scattering over study area. Minimum 

reflectance occurs around the nadir zenith angle and the distribution shape is similar to 

bowl which is in accordance with MISR 9 cameras radiance in figure 20. The center of 

low BRF values moves from nadir to backward direction from blue band to NIR band. 

At the same time, a new region of low BRF values occurs at the forward direction when 

view zenith angle is extremely large (greater than 75º).  As the surface roughens from 6 

to 9 and finally 10, the forward scattering peak is weakened and the geometry of BRDF 

model becomes more symmetrical which means the reflectance is more isotropic. 

5.5 Angular Scattering Signature of Antarctica Snow and Ice 

 BRDF model provides information about how surface reflect illumination and 

energy in a hemispherical space and continuous BRF values are accessible in all 

directions. However, the BRF calculated from the model are estimated values under 

ideal environmental conditions. Thanks to the angular information provided by MISR 

multi-angle cameras, actual reflectance captured by satellite sensors are able to be used 

in analysis. Examination of surface roughness and its influence on angular scattering 

pattern was performed on 11 sites in this study.   

When we plot the radiance values from Da, Ca, Ba, Aa, An, Af, Bf, Cf, Df 
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cameras against viewing zenith angle as shown in Figure 20, lower radiances are found 

near nadir (An) and higher values at the extreme forward and aft view angles (Af, Df). 

Extreme angle reveals a bowl-shape scattering pattern caused by higher radiances from 

the forward and aft cameras compared to the nadir views. With increasing wavelength, 

both the absolute radiance and depth of bowl shape decrease.  

The change of shape across camera view angles with increasing wavelength 

again evidences an increase in forward scattering with wavelength expected for snow 

and ice. Sites 1 to 5 have higher value in aft camera which indicates forward scattering 

because they are relatively smooth and forward scattering prevail in the scattering 

signature. For site 6-8, the forward scattering and backward scattering are more similar. 

For sites 9 -11 forward cameras and backward scattering dominate from these rougher 

sites.  

Besides the comparison of radiance value in nine different zenith angles, we have 

also examined the correlation between nadir and off-nadir bands for each site. Under an 

ideal circumstance where scattering of solar energy are exactly the same in all direction, 

radiance value in An and Da bands should be the same for every single pixel. Sites 6-10 

are highly correlated in the red band An and red band Da with Pearson correlation 

coefficient greater than 0.9. Sites 3 and 4 exhibit the lowest correlation between 

scattering in An and Da angles. 
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6. CONCLUSION AND FUTURE WORK 

 

This research demonstrated the ability of high spatial resolution Worldview 1 

stereo images pairs to produce DEMs that capture spatial variability on low relief sea ice 

and ice shelf surfaces in the Ross Sea region. These DEMs compare favorably to 

LiDAR-derived profiles acquired near the same time.  As one of the main methods 

people used to collect elevation data, satellite imagery stereo pairs should be highly 

regarded for their convenience in data acquisition and high spatial resolution at large 

scale.  

This study also investigated the scattering pattern of snow and ice surfaces on sea 

ice in McMurdo Sound and adjacent portions of the McMurdo Ice Shelf by simulating 

the Bidirectionall reflectance factor (BRF) with the mRPV semi-empirical model. Three 

independent parameters (r0, k, b) are provided by MISR surface product. Along with the 

information of sun position, we are able to retrieve the reflectance under any viewing 

geometry. To test the reliability of mRPV model, we take advantage of multi-angle 

observing ability of MISR sensors and evaluated the anisotropic scattering over study 

area by several normalized index of difference between backward-scattered radiance and 

forward-scattered radiance. We demonstrated that surface condition has influence on 

reflectance pattern on snow and ice in Antarctica where satellite pixels are pure and are 

not contaminated by other features. A smooth snow surface has a reflectance peak in the 

forward direction, while rough surface structures weaken the forward scattering 

characteristics of snow and ice and has further impact on pixel values on satellite 
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images.  

Future work will focus on quantify the influence of surface roughness on the 

BRDF model and improve the model to have more accurate simulation on the scattering 

signature of snow and ice. None of the BRDF model currently used by researches 

incorporates surface roughness. If the impact of small surface structures are considered 

in the model, the estimation accuracy of ground object characteristic with quantitative 

remote sensing approach will be significantly improved. 
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