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ABSTRACT 

The general proliferation of technology including smartphones and sensors present 

both an opportunity and a challenge for the construction industry. On the one hand, it 

creates an opportunity for improved efficiency via greater data-driven decision-making, 

but on the other hand, presence of noise and uncertainty in the captured data (due to the 

dynamic and intermittent nature of construction processes), pose significant hurdles to 

widespread adoption and utilization. Moreover, there is a dearth of domain-specific 

research concerning the systematic treatment and elimination of such noise. This can have 

significant impact in the output. As the chaos theory explains, initial noise (even in small 

portions) can prove to be detrimental to the overall efficacy of a system due to the volatility 

induced by propagation of such noise through the system. Most natural systems, however, 

maintain stability and improve over time. In particular, species have improved with 

evolution, and complex biological information have been preserved and transferred 

through DNA coding and utilized effectively across generations. Thus, the hypothesis of 

this research is that methodologies based on principles of natural phenomena can enable 

reliability of the collected sensor data. This hypothesis is validated by processing data 

through genetic algorithms (GA), sequence alignment (SA), and multi-dimensional 

sequence alignment (MSA), all rooted in nature. Processed data is then used to create key 

input for simulation models describing the real system. Findings of this work is sought to 

provide project managers and stakeholders with better insights into the nature of crew 
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activities and interactions, and help select the most effective combination of resources 

while reducing the amount and frequency of rework.   
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NOMENCLATURE 

 

ACD  Activity Cycle Diagram 

AEC/FM  Architecture, Engineering, Construction/Facility Management 

CCM  Cumulative Confusion Matrix  

CI  Confidence Interval 

DES  Discrete Event Simulation 

DNA  Dependency Network Assimilator/ Deoxyribonucleic Acid 

FDs  False Detections 

FP  False Positive 

FN  False Negative 

GA  Genetic Alignment 

GFP  Global Fitness Parameter 

HAR  Human Activity Recognition  

HMM  Hidden Markov Model 

HPRC  High Performance Research Center 

MSA  Multi-Dimensional Sequence Alignment 

RNA  Ribonucleic Acid 

SA   Sequence Alignment 

TP  True Positive 

TN  True Negative 
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INTRODUCTION 

I.1 Background 

The construction industry is one of the major sectors of the U.S. economy with the 

total spending of the industry estimated to be approximately $1.2 billion in 2017 (U.S. 

Census Bureau 2017). It also employs about 9 million workers accounting for about 6% 

of the entire U.S. workforce (CPWR 2016). Despite this enormous footprint in the nation’s 

economy, the construction industry has traditionally been very slow to adapt to and utilize 

new technology advancements, and incorporate new knowledge areas into its business 

practices (Becerik-Gerber et al. 2011; World Economic Forum 2016), causing this 

industry to lag behind in efficiency and productivity growth (U.S. Department of 

Commerce 2014). Furthermore, recent studies have shown that about 75% of construction 

projects fail to finish on time and within budget (KPMG 2015). Among other reasons, this 

could be due to the fact that most construction schedules are subject to uncertainties in 

durations or activity sequences. Such variability in schedule and resource availability leads 

to work interruptions, inefficient processes and workflows, and redundancy of effort due 

to rework and imperfect information (Assaf et al. 1995; Rosenfeld 2014). While each 

project is different, studies suggest that about 37% of the assumptions made in the initial 
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planning phases of a construction project turn out to be invalid once the project is launched 

(Gao et al. 2013). 

In the past few decades, simulation modeling has been proposed as a remedy to 

help identify project uncertainties and their impact on the overall project execution. 

Simulation models allow project planners to run a large number of possible scenarios, 

identify the best and worst cases, and design and implement appropriate contingencies for 

each case ahead of time, all in advance of committing real resources to the project. In order 

to utilize simulations in the uncertain, dynamic, and transient environment in which the 

majority of construction projects takes place, it is imperative to use the most reliable input 

information in order to increase the reliability and applicability of the simulation results. 

To this end, there is a need for a practical approach to timely collection of data describing 

the true status of a project, efficiently processing and simulating such data, and 

meaningfully presenting the results to project stakeholders to support data-driven 

decision-making. Such an integrated framework would also enable project managers to 

select the most effective combination of resources (i.e. equipment, labor, and materials) 

while reducing the amount and frequency of rework.  

While simulation has been traditionally utilized for various applications in the 

project planning and design (Carr 1979; Martinez and Ioannou 1994), pre-construction 

(Azhar et al. 2008; Portas and AbouRizk 1997), and operation and maintenance 

(AbouRizk et al. 2011; Marzouk and Moselhi 2003), its implementation in the 

construction phase has to a large extent remained limited. Previous studies as well as the 
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author’s investigation of the root causes of this issue have revealed that the constantly 

evolving ground truth in active construction sites is a major impediment to robust and 

timely data collection, a key precursor of data-driven simulation modeling (Akhavian 

2015; Leite et al. 2016; Shrestha and Behzadan 2017).  

In light of these challenges, the major theme of this Thesis is the utilization of 

advances in mobile sensing and data mining to facilitate simulation-based decision-

making in construction. In a nutshell, this document will report on a systematic study 

conducted by the author to utilize built-in smartphone sensors for continuous field data 

collection, eliminate and/or reduce unwanted noise in collected data using techniques 

inspired by data-intensive natural systems, recognize human activities through data 

mining, and use the results to generate simulate models describing field activities with 

improved accuracy.  

This Chapter introduces some of the concepts used to build a framework for data 

processing that primarily deals with noise.  

I.2 Sensors and simulations in construction  

Advances in data capturing, processing, and transmission technologies in recent 

years have proliferated the number and types of sensors available for general use. The 

processing capabilities of computers have also expanded significantly. Among various 

types of sensors, wearable (i.e. mobile) sensors are being increasingly used for their 

ubiquity, affordability, unobtrusiveness, and ease of use (Chen and Khalil 2011). 
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Prior to the invention and widespread use of sensors and mobile technology at the 

consumer level, simulation systems had been used as a medium to model the variability 

and dynamic nature of engineering systems. Within the construction domain, process 

simulation has been used for project scheduling (Martinez and Ioannou 1994), 

productivity  analysis (Portas and AbouRizk 1997), and mitigating operational conflicts 

(AbouRizk et al. 2011). By simulating the various possible combinations of events, worst-

case scenarios and best-case strategies can be identified. As new data become available, 

such simulations can be updated and appropriate plans of action adapted to yield better 

results. More recently, computational frameworks that take advantage of sensor data 

collection and processing, data mining, and simulation modeling have been proposed as a 

promising solution to some of the long-standing decision-making problems in 

construction, such as the inability to integrate execution-phase data into decision-making 

(Akhavian and Behzadan 2013a; RazaviAlavi and AbouRizk 2016). 

I.3 The problem of noise in sensor data 

The proliferation of sensors has led to great quantities of collected data with 

different quality, resolution, and attributes. Surprisingly, this abundance in data quantity 

has also led to gaps in data utilization, overlooking useful data, or reaching contradicting 

conclusions depending on how data from different sources are interpreted by the end user 

based on his/her perception, bias, expectations, skills, or training. In addition, not all 

collected data is of expected quality and resolution. The relatively high upfront investment 
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(procurement, installation, and maintenance) cost of sensing technologies often 

encourages only the adoption and use of low-cost sensors, especially in industries with 

narrow profit margin such as construction. A major implementation challenge in working 

with data particularly as related to harsh and dynamic construction environments is the 

uncertainty inherent to the collected data, which is inevitable in low-cost sensor networks.  

To the most extent, generated data is not fully utilized due to issues such as the 

lack of computationally efficient processing frameworks, high upfront costs, data loss, 

latency, and reliability issues (Islam et al. 2012), as well as noise and human errors in data 

collection and mining  (Zamalloa and Krishnamachari 2007). 

In particular, noise in the collected data reduces the reliability of the conclusions 

drawn from data and thus, increases the hesitancy to use that information to base decisions. 

Therefore, with the objective of enabling greater utilization of sensor data in simulation 

modeling, the research conducted in this Thesis aims at designing a scientific methodology 

that helps increase the reliability of sensor data through a systematic approach to noise 

reduction and/or elimination.  

I.4 Propagation of noise in sensor readings through the lens of chaos theory 

The resulting volatility from imperfect sensor data can be described using the 

chaos theory, which is the study of complex, nonlinear, dynamic systems (Lorenz 1963). 

Chaos theory is a branch of mathematics that deals with systems that have the appearance 

of being deterministic (e.g. a construction schedule) but can experience chaotic events 
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(e.g. random variations). The theory explains that despite its deterministic nature, a 

dynamic system that is highly sensitive to initial conditions can behave in a very 

unpredictable (i.e. chaotic) manner. The presence of this chaos was first observed in the 

“Lorenz” system which was a set of three ordinary differential equations that described 

atmospheric convection. Despite their simple form with a determined solution, it was 

found that the final result varied significantly due to changes in the initial conditions. This 

variation is the reason why even with the most powerful computers, future patterns in 

weather systems cannot be predicted beyond a limited time frame. Similarly, other natural 

phenomena also incorporate elements of chaos. For example, the loose dependence of 

discrete population models on the initial conditions has been explained by Liz and Ruis-

Harrera (2012) as an implementation of chaos theory. 

Within the scope of this work, the implication of chaos theory is that if uncertain 

data from a sensor network is used to build models of a dynamic construction system (even 

if the actual system appears linear and deterministic), the performance of the model can 

randomly change with a small variation in initial conditions (i.e. accuracy of sensor 

readings). 

I.5 Natural phenomena that deal with noisy data 

In order to achieve the goal of utilizing collected data despite the presence of 

inherent noise, various algorithms from other domains that deal with noise in data are 
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examined in this research. In particular, phenomena in nature are of interest due to the 

unmatched capability of (data-intensive) natural systems to thrive amidst significant noise. 

I.5.1 Genetic algorithms 

Genetic algorithms (GAs) (Reeves 2003) is a general name given to a family of 

evolutionary data processing algorithms inspired by the natural selection process observed 

during biological evolution. Like in the nature, a GA gradually improves the overall 

population characteristics by invoking operations such as selection (of the best species), 

crossover (of two or multiple species), and mutation (of parts of a species). GAs have been 

used in the past in different disciplines such as water contamination characterization (Preis 

and Ostfeld 2008), evaluating construction plans using data environment analysis (Torabi 

and Mahlooji 2017), site layout planning for construction projects (RazaviAlavi and 

AbouRizk 2016), and speech recognition based on random projections (Kataoka et al. 

2016). 

In general, a GA-based method uses five key operations to reach an optimal 

solution from a number of possible (but not optimal) solutions (Poli et al. 2008). First, the 

initial population is taken as the mother generation. After selecting a predetermined 

portion of this population, the daughter generation is produced through mating among the 

mother species. The daughter species are evaluated using a predefined fitness function, 

and this iterative process continues until a desirable stopping condition is met. These 

principles are adapted and combined with simulations in the context of this research, with 

findings discussed in detail in Chapter II of this Thesis.    



 

 

8 

 

 

 

I.5.2 Sequence alignment 

Sequence alignment (SA) is a well-established technique in bioinformatics for 

analyzing deoxyribonucleic acid (DNA), ribonucleic acid (RNA), or protein sequences 

and identifying regions of similarity. The main goal of SA is to discover relationships 

between strings of data by deploying a series of heuristic or probabilistic methods to align 

a new string (e.g. DNA of a new species) with an existing string (DNA of a known 

species). SA has also been used sporadically in linguistics (Barzilay and Lee 2003), social 

sciences  (Abbott and Tsay 2000), and human resource functions (Blair-Loy 1999). 

Traditional quantitative measures such as data clustering use a point-by-point approach to 

analyze sequences (Abbott 1995). This, however, can quickly turn into an exponentially 

complex problem as each new data point is possibly a point of diversion where a new 

parallel problem with equal complexity is created. The SA technique tries to remedy these 

issues by dealing with sequences as a whole. SA measures the degree of similarity between 

two sequences (a.k.a. “source” and “target” sequences), using three basic operations, 

namely deletion (where an element is removed from the target sequence), insertion (where 

an element is added to the target sequence), and substitution (where two elements are 

switched in the target sequence) (Shoval and Isaacson 2007).  

I.5.3 Multi-dimensional sequence alignment (MSA) 

Multi-dimensional sequence alignment (MSA) is an expanded form of SA where 

the sequences are simultaneously compared across several attributes. In general, data 

streams are evaluated against the ground truth considering their multiple dimensions (e.g. 
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three in case of a three-dimensional data point), in a multi-dimensional holistic 

comparison scheme. Potentially, this can increase the depth of insights garnered from a 

multi-dimensional dataset (Elias 2006), as it opens the door to incorporating more 

contextual information when making a determination about the fitness of individual data 

points contained within a much larger dataset. Moving from traditional SA to MSA also 

enables the transition from activity-level data (post-processing) to sensor-level data (pre-

processing), where multiple distinctive data features can serve as dimensions for SA 

analysis.  

I.6 Research objectives and contributions 

Despite unparalleled improvements in computing and sensor technologies, the 

presence of noise in captured data is still preventing the full utilization of sensors in 

architecture, engineering, and construction (AEC) domains. In general, the current body 

of knowledge does not support a comprehensive framework that correctly identifies and 

processes data while dealing with the inherent noise. In order to help mitigate this gap in 

knowledge, a comprehensive data processing framework that can handle noise in the data 

collected is required. Thus, the working hypothesis of this research is that nature-inspired 

techniques can improve current methods of generating discrete event simulation (DES) 

input models from raw sensor data beyond what is currently achievable by pure 

computational methods such as human activity recognition (HAR). Such improvement 

can be described in terms of better quality of simulation input data, closer resemblance of 
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simulation output to ground-truth information, decreased algorithm processing time, 

ability to factor in domain-specific parameters and constraints, or a combination of these 

measures. In particular, two major categories of natural phenomena are investigated in this 

research, with results documented in this Thesis. These include evolutionary techniques 

(i.e. genetic algorithms) and SA (both pairwise and multi-dimensional).  

This Thesis introduces and validates several algorithms that can be implemented 

in order to achieve this objective. Natural phenomena, despite being data-intensive, have 

been successfully dealing with imperfections and noise in data, and producing improved 

overall populations across multiple generations. The applicability of such nature-inspired 

methods to refine imperfect sensor data captured by mobile devices (i.e. smartphones) is 

demonstrated in this Thesis, with the ultimate goal of promoting simulation-based 

decision-making by reducing the technical expertise and upfront cost of data acquisition 

using consumer-grade sensors.  

While GA techniques have been studied (in other contexts) rather extensively 

within the AEC domains, the depth and breadth of the body of knowledge around newer 

methods such as SA and MSA is almost non-existent. In line with this, the materials 

presented in Chapters II, III and IV of this Thesis specifically seek to create and test new 

methods that allow for a high-fidelity transformation of raw sensor data into contextual 

knowledge. Such knowledge can be in part used to describe the status and sequence of 

activities that take place in a dynamic engineering system, while also providing a basis for 
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performance benchmarking and identifying areas of waste, mistakes, and inefficiencies 

within the system. 

Overall, this Thesis contributes to the body of knowledge and practice in the 

construction domain by introducing and validating a host of algorithmic approaches for 

transforming imperfect raw sensor data into contextual knowledge, incorporating such 

computer-interpretable knowledge into data-driven simulation models, and generating 

high-fidelity outputs for better and more reliable execution-phase decision-making.  

I.7 Organization of the thesis  

This Thesis is divided into five main Chapters. A brief introduction of each 

Chapter is provided in the following paragraphs.  

Introduction. In this Chapter, the problem statement, background information, 

research motivation, and research objectives are described. 

Improving activity recognition using genetic algorithms. In this Chapter, the 

collection of human time-motion data from a warehouse operation experiment using built-

in smartphone sensors (accelerometer, linear accelerometer, and gyroscope) is described. 

Collected data is first processed through a HAR algorithm to identify transitions between 

successive activities. Next, results are compared with the ground truth and errors are 

significantly reduced using a GA-enabled simulation model.  

Improving activity dependency data using sequence alignment. Similar to the 

methodology used in the previous Chapter, this Chapter describes the post-processing of 
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sensor data using SA. In particular, human time-motion data is first processed through 

HAR to recognize field activities. Results (which contain errors) are then used as input to 

SA which in turns uses ground truth data as a template to eliminate and/or reduce 

inconsistencies in activity sequences.  

Refining sensor level data using multi-dimensional sequence alignment 

(MSA).  This Chapter describes the implementation of MSA algorithm applied directly to 

raw sensor readings. Traditional SA (that is best suited for one-dimensional data stream 

comparison) fails to work with raw sensor data, as each data point spans over multiple 

dimensions. In contrast, MSA enables pre-processing of sensor data as it simultaneously 

processes multiple dimensions of each data point. 

Conclusions and future work. This Chapter summarizes the materials and 

discussions presented in this Thesis, articulates key findings of this research, and provides 

closing remarks on the contributions of this study to the body of knowledge and practice, 

as well as potential directions of future work.  
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IMPROVING ACTIVITY RECOGNITION USING GENETIC 

ALGORITHMS* 

II.1 Introduction 

II.1.1 Value of simulation to project planning  

In most projects, the exact sequence of tasks (or events) cannot be predetermined 

as only the general precedence logic is known and the execution of tasks is subject to 

variation and interchanges due to a number of factors. For example, finishing tasks in 

construction is a large family of activities without co-dependencies. As an example, while 

flooring and painting cannot be conducted simultaneously at the same location, their order 

is interchangeable. This inherent variation can have large implication in the overall project 

execution and performance. According to Park (2006), factors such as overtime, change 

orders, material management, weather, and human factors cause productivity and schedule 

variations and create uncertainties in in project performance. In order to mitigate the 

difficulty of representing the effect of these factors, DES was introduced as an effective 

solution to deal with the complexity of mathematical modeling and representation of the 

                                                 

* Parts of this chapter have been previously published in “Chaos Theory–Inspired Evolutionary 

Method to Refine Imperfect Sensor Data for Data-Driven Construction Simulation” by Prabhat Shrestha and 

Amir H. Behzadan, Journal of Construction Engineering and Management, 3, 144, Copyright [2018] by 

ASCE, and have been reused with permission from ASCE. This material may be downloaded for personal 

use only. Any other use requires prior permission of the American Society of Civil Engineers. This material 

may be found at https://ascelibrary.org/doi/10.1061/(ASCE)CO.1943-7862.0001441 
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dynamic environments. (Lin and Ying 2002). DES has been used as an effective tool in 

modeling uncertainties for better project planning and implementation (Martinez and 

Ioannou 1997). In addition to construction domain-specific platforms, simulation tools 

have also been widely used in defense, operations research, and logistics (Law et al. 1991). 

The value of DES is borne out of its ability to produce models that can mimic complex 

dynamic systems, (Lin and Ying 2002; Skoogh et al. 2012). This is of great use in 

construction where the start and end times of activities are discrete events with intrinsic 

uncertainty (AbouRizk et al. 2011; Akhavian and Behzadan 2016; Jang and Skibniewski 

2009; Nath 2017). 

Despite the great benefits that can be harnessed from it, simulation-based decision-

making is often underutilized in practice. Factors such as lack of flexibility (a.k.a. rigidity) 

of the simulation model, user incompetence, and specificity of the simulation environment 

(Hajjar and AbouRizk 2002) prevent full use. This is compounded by the need for time 

and effort in initial conceptualization and formulation of simulation models (Oloufa et al. 

1998) and inability of most models to receive and process live construction phase data 

(Leite et al. 2016). This proliferates the impression that simulation models are difficult to 

set up while providing limited benefits.  

With the advent of faster and more reliable data collection and processing, the 

integration of field data into simulation models has been investigated actively in recent 

years. Such studies, however, have been mostly carried out in fields outside architecture, 

engineering, construction, and facility management (AEC/FM). Akhavian and Behzadan 
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(2013b) identify some of the efforts in dynamic data-driven application simulation 

(DDDAS) as used in traffic engineering (Lin et al. 2010), railway engineering simulation 

(Huang and Verbraeck 2009), and supply change modeling in aerospace engineering 

(Tannock et al. 2007). Furthermore, the work also describes limited efforts in construction 

on data-driven simulation. These approaches are to a large extent focused on equipment 

location data (Song and Eldin 2012).  

In this regard, innovative applications of merging live information with dynamic 

simulations are being explored as well. Ideas include harnessing the potential of big data 

and multi-modal sensing (Blasch et al. 2013), integrating sensor network with atmospheric 

dispersion models to simplify the processing (Ritter et al. 2016) and limited applications 

in construction. For instance, Akhavian and Behzadan (2015) created data-driven models 

for equipment activity recognition, and Vasenev et al. (2014) proposed a data collection 

framework for decision-making.  

This review of literature shows that within the AEC/FM domain, current 

simulation methodologies do not facilitate the integration of sensor data into simulation 

components. In addition, due to the lack of universally accepted framework for the use of 

sensing and data collection technologies in AEC/FM seamless adoption of simulation-data 

integration protocols is hindered. The following Sub-section explores one of the chief 

barriers in this integration process: the inherent noise in sensor data. 
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II.1.2 Inherent noise of sensor data   

In recent years, every aspect of the AEC/FM lifecycle has been examined as 

possible phases of improvement with advanced data sensing, computing technology, and 

information modeling (Golparvar-Fard et al. 2011; Leite et al. 2016). Functions such as 

improved project planning and delivery in construction, monitoring and control and 

establishing new industry standards and paradigm shifts for major decision-making have 

been explored by various researchers (Spencer Jr et al. 2004). For instance, work by 

Bathula et al. (2009) in transportation project monitoring, Chae et al. (2012) in structural 

health monitoring, Razavi and Hass (2010) in on-site material tracking, and Choe et al. 

(2014) in construction site safety have all demonstrated the versatile applications of these 

new technologies.  

Given the complexity of tasks (i.e. multiple resources of different types) and the 

diversity of workforce (i.e. various trades each operating within their own physical spaces 

and constraints) involved in construction, producing a comprehensive picture of the 

project status requires incorporation of more than one type or class of sensors be deployed 

in form of a sensor network (a.k.a. grid) (Estrin et al. 2001). Khaleghi et al. (2013) defines 

this fusion as “the study of efficient methods for automatically or semi-automatically 

transforming information from different sources and different points in time into a 

representation that provides effective support for human or automated decision-making”. 

This network comprises of a sensor (data collector), a processor (data handler), and a 

communication unit (data transmitter) in each node and the real-time data collected from 
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the project environment is transferred to central workstations for further analysis or as 

input to a decision support system. This process can culminate both on or off-site.  

This proliferation of the type and quantity of sensors available is bound to produce 

an abundance of data, however, this may lead to a gap in data utilization as useful data is 

overlooked and contradictions are created in the interpretation based on end user’s 

perception, expectations, or skillset and training. In addition, not all collected data is of 

expected quality and resolution. Further compounding this messy picture is the propensity 

towards low quality sensors due to high costs (procurement, installation, and maintenance 

costs) of high quality systems and significant noise in the data collected due to the harsh 

and dynamic environment of construction. Quality is further compromised in transmission 

of the collected data due to loss, latency, and reliability issues (Islam et al. 2012). Thus, 

the current status of sensor technology inhibits the collection of high quality data thus 

creating reliability issues in application. Zamalloa and Krishnamachari (2007) identified 

several factors that cause this variation and uncertainty in sensor reliability. This 

uncertainty is mainly a product of three related causes: human or machine error producing 

spurious readings, physical limitations of the sensors producing measurement errors such 

as approximation or truncation error, extraneous measurements collecting background 

data. These factors are further compounded by the stochastic nature of most data 

processing systems that increase the fuzziness in the data. (Colubi and González-

Rodríguez 2015). These identified issues are considered as the chief barriers to adoption 

of new technology in the construction industry. since handling, cleaning, and post-
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processing of raw sensor data requires special training and skills that are otherwise not 

expected from a trained construction engineer or project manager (Lee et al. 2013). 

Further review of the literature also reveals another major obstacle to the 

widespread adoption of data capture technologies: transformation of raw data to 

information useful in decision-making requires significant processing. In this regard, 

Various data processing algorithms have been proposed as solutions. For example, Blasch 

et al. (2013) used data-driven simulation with applications in object tracking and traffic 

simulation to reduce uncertainty in data by analyzing trends in previously collected data. 

Hidden Markov models (HMMs) have been also used to detect anomalies in complex 

datasets (Flores et al. 2009) which are then removed or modified to reduce uncertainty. 

Some other algorithms dealing with noise have been proposed in general literature. For 

instance, Yang (2013) presented a decision tree algorithm to classify data into a 

hierarchical format, thus reducing the complexity of the data structure. However, the 

available solutions are mostly focused in dealing with continuous data streams and wide 

networks such as traffic systems, energy simulation, computer data streams, and anomaly 

in fluid flows. Processes to reduce data quality issues in discrete systems with defined start 

and end events are still limited as the discrete environment present unique challenges such 

as the great variation among the different instances of the same event. For instance, Ye et 

al. (2010) proposed a specification-based approach to identify isolated instances (with 

predetermined start and end times) of simple discrete human activities through matching 

extracted features with a standard vocabulary of previously extracted features. However, 
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this approach suffered from high volatility when dealing with uncertainty in the collected 

data.  

II.2 Chaos theory and imperfect sensor data 

As previously stated, most of the data collected by sensors is not crisp and well 

differentiated: the collected data represent an imperfect manifestation of the real world 

with uncertain progressions and states (Izadi et al. 2015). This imperfection in the data 

available creates significant volatilities which can be explained using chaos theory. Chaos 

theory is the study of complex, nonlinear, dynamic systems (Lorenz 1963) that deals with 

systems that appear to be deterministic (e.g. a construction schedule) but can experience 

chaotic events (e.g. random variations). It illustrates mathematically that even 

deterministic systems can beave very unpredictably (i.e. chaotically). Thus, the dynamic 

interactions within result in hyper-sensitivity to the initial conditions overall. Lorenz 

(1963) expressed this succinctly as “the present determines the future, but the approximate 

present does not approximately determine the future”. In common parlance, this 

phenomenon is widely known as the butterfly effect, a term first coined by Lorenz (1963), 

popularized by Gleick (1987), and later given a full mathematical treatment in the context 

of uncertainty in deterministic dynamic systems by Werndl (2009). With time, chaos 

theory has been expanded far beyond pure science (Levy 1994) with applications even in 

the social sciences (Kiel and Elliott 1996). Most application deal with dynamic systems 

that were beyond the theoretical frameworks available before chaos theory. 
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Within the scope of this Thesis, the implication of chaos theory is that if uncertain 

data from a sensor network is used to build a model of a dynamic construction system 

(even if the actual system appears linear and deterministic), the performance of the model 

can randomly change with a small change in initial conditions (i.e. accuracy of sensor 

readings). This proposition can be better explained using the activity networks in Figure 

II-1.  

 

Figure II-1 Sample non-deterministic network 
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Figure II-1(a) represents a deterministic system where activity transitions are 

predetermined (no uncertainty). In contrast, Figure II-1(b) shows a non-deterministic 

(dynamic) system in which the transition from one activity to another is probabilistic. In 

this Figure, double arrows imply that the resource on a link can travel either way. It is 

worth noting that the activity network in Figure II-1(b) can be derived from the activity 

network in Figure II-1(a) essentially through introducing uncertainty in activity 

transitions. As a general rule, in order to derive the activity network in Figure II-1(b) from 

the one in Figure II-1(a), for any given Activity i (i = 1, 2, 3), the probability of the default 

succession (a.k.a. link strength value) is reduced by 20% (30%, for Activity 4), and a new 

arrow is added to connect Activity i to the remaining two activities (remaining two 

activities and the End node, for Activity 4). For instance, Activity 1 in Figure II-1(b) is 

80% (rather than 100%) likely to be followed by Activity B, 10% likely to be followed by 

Activity 3, and 10% likely to be followed by Activity 4. Applying this rule to all activities 

in Figure II-1(a) generates the non-deterministic activity network in Figure II-1(b). 

Evidently, using the abovementioned succession alteration rule on only a subset of all 

activities can result in hybrid activity network which contain both deterministic and non-

deterministic activity transitions.   

Now, let’s assume that the goal of each network is to move 100 items from Activity 

1 to Activity 4. For simplicity, let’s also assume that processing a single item in each 

activity in Figure II-1(a) and Figure II-1(b) costs $1. Since the activity network in Figure 

II-1(a) is predetermined, the total operation cost of moving 100 items in this network is 
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always equal to $400 (100 items multiplied by 4 activities at $1 per activity). Next the cost 

of moving 100 items in the network represented by Figure II-1(b) is examined and listed 

in Table II-1. In this Table, each iteration represents a hybrid activity network derived 

from Figure II-1(a) in which strength values (model input) of a random subset of links are 

altered by 10% within that subset. As results in Table II-1 indicate, even a slight alteration 

in the input creates a large volatility in the total operation cost (model output). For 

instance, the only difference between iterations 0 (benchmark) and 3 is that the strength 

value of the link connecting Activities 1 and 2 was changed from 1.0 in iteration 0 to 0.9 

in iteration 1, resulting in an overall 5% change in the network strength values. However, 

this single alteration in the input results in a 25% increase in the output. Using elasticity 

terms, the cost is 5 times more elastic than the network strength values (i.e. a 1% change 

in network strength values changes the cost by 5%). 

Table II-1 Volatility in network output due to change in input 

Iteration Overall change in 

network strength 

values 

Total cost 

($) 

Overall 

change in 

cost  

0 - 400 - 

1 5% 500 25% 

2 5% 470 18% 

3 10% 558 40% 

4 10% 556 39% 

5 15% 798 100% 
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II.3 Research objective and contributions  

As highlighted above, the combination of sensor data collection, processing 

imperfect data, and simulating heuristic systems is a nascent field with limited foundation 

but great potential. The body of work so far has been limited to isolated applications and 

lacks the specific knowledge required to transform the state of data-driven construction 

simulation modeling. The work presented here is motivated by the need to bridge these 

gaps by designing a scientific methodology, inspired by chaos theory and built upon an 

evolutionary algorithm, capable of refining imperfect (noisy) sensor data and generating 

clean datasets that can be used for simulation input modeling. The practical contribution 

of this work is that the output is not bound to the limitations in commercial sensing 

technology, thus allowing the use of low-cost sensors for data collection while minimizing 

the impact of inaccurate sensor readings on the overall quality of the simulation model. 

Ultimately, this approach is sought to promote simulation-based decision-making by 

reducing the upfront cost of data acquisition.  

II.4 Methodology  

In this Chapter, different steps of the designed methodology of refining imperfect 

sensor data for simulation input modeling are explained.  
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II.4.1 The design of the box moving experiment used to collect ergonomic sensor 

data 

The experiment conducted in this research represents a warehouse operation in 

which workers transport boxes one by one from a loading area to an inspection area, 

inspect each box, and if the content is approved, move the box through the system to a 

designated unloading area. As shown in Figure II-2, the cyclic operation starts with a 

worker loading a box onto a cart and then pushing it to the inspection area. Next, an 

inspector lifts the box and inspects it. During inspection, the worker waits in the inspection 

area. After inspection, the inspector either accepts the box or rejects it. Upon acceptance, 

the worker lowers the box onto the cart, pushes it to the unloading area, unloads the box 

and then pulls the empty cart back to the loading area. If the box is rejected, however, the 

worker pulls back to the loading area with an empty cart. In both cases, the worker moves 

back to the loading area and the cycle starts over.  
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Figure II-2 Schematic workflow of the warehouse operation 

This operation is performed for 15 cycles with worker W1 and inspector I1, and 

then repeated with worker W2 and inspector I2 for another 15 cycles. Two smartphones 

are mounted on each performer's body (one on upper arm and another on waist) for time-

motion data collection.  

II.4.2 Human activity recognition (HAR) algorithms to identify activities 

In order to perform HAR, built-in sensors of each smartphone (accelerometer, 

linear acceleration, and gyroscope) are used to collect data at a frequency of 180 Hz with 

a 2-second window (Nath 2017). Here, accelerometer measures the acceleration force 
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including gravity, gyroscope measures the angular velocity and linear accelerometer 

measures the acceleration force excluding gravity. Accelerometer and gyroscope are 

hardware sensors, whereas linear accelerometer is a software sensor. Details of the data 

collection and preparation process are summarized in Table II-2. 

Table II-2 Summary of the data preparation process 

Category Summary 

Collected Sensor Data 
Accelerometer (X, Y, Z), Linear-Accelerometer (X, Y, Z), 

Gyroscope (X, Y, Z) 

Extracted Sensor Data 

Accelerometer-Jerk (X, Y, Z), Linear-Accelerometer-Jerk (X, 

Y, Z), Gyroscope-Jerk (X, Y, Z), Accelerometer-Magnitude, 

Linear-Accelerometer-Magnitude, Gyroscope-Magnitude, 

Accelerometer-Jerk-Magnitude, Linear-Accelerometer-Jerk-

Magnitude, and Gyroscope-Jerk-Magnitude. 

Sampling Rate 180Hz after processed into time series of uniform interval. 

Window Size 360 data points (2 seconds) 

Statistical Features 

Mean, Maximum, Minimum, Standard Deviation, Mean-

Absolute Deviation, Interquartile Range, Skewness, Kurtosis, 

Autoregressive Coefficients. 

No. of Extracted 

Features 
576 

No. of Selected 

Features 
125 for Worker, 84 for Inspector 

Feature Selection 

Algorithm 
ReliefF 

Classifier Algorithm Multi-class Support Vector Machine 

 

 

Following data collection, a series of machine learning algorithms is used to 

transform pure sensor data to discrete activity sequences. This pre-processing phase 
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produces activity sequence duration information for each worker and inspector. Given the 

presence of noise and errors in collected data and HAR algorithm implementation, a post-

processing stage is necessary to further improve the accuracy and consistency of the 

resulting information.  

In general, three main sources of error exist in the collected data. First, sensor 

under-sampling (freezing) where a sensor stops working for a few seconds causing gaps 

in data. Second, sensor oversampling which normally occurs after a period of sensor 

freezing, and causes the sensor to collect data at a faster rate to compensate for the missing 

data points during the freezing period, thus creating redundancy in collected data. These 

first two errors are normally compensated using linear interpolation, and by removing 

redundant data points. The third type of error, unlike the other two is human error which 

occurs when the person from whom training data is collected for HAR, performs activities 

other than those planned, thus creating subsets in training data that cannot be correctly 

classified (Nath 2017). Resolving this error is more complicated since training subjects 

behave differently, and there is no single formula that can handle all such erroneous 

instances (Akhavian et al. 2015). It is imperative that the presence of these systematic and 

human errors impact the accuracy of HAR. For instance, as reported in Nath (2017), while 

some activities are recognized with good accuracy (ranging from low 80% to 99%), there 

is still significant confusion between specific activities (e.g. ‘load’ and ‘unload’) which 

reduced the overall fidelity of HAR process. 
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II.4.3 Simulation input modeling 

The activity sequence identified by the HAR algorithm is used to generate an 

activity transition matrix, hereinafter referred to as the dependency network assimilator 

(DNA). Elements of this matrix help identify the sequence of activities as occurred in the 

real system and captured by sensor data. However, it must be noted that according to chaos 

theory, the activity level discrepancies between the actual and identified activity 

sequences, if used as input in a larger system such as a simulation model representing 

complex and dynamic environments, the model would quickly accrue significant 

inaccuracies in output (e.g. completion time, projected cost, productivity). Thus, in order 

to maintain the reliability of the system, it is important to minimize the error.  

The discrepancy between ideal and extracted DNA matrices is illustrated through 

the example presented in Figure II-3 which shows sample observed (ground truth) and 

extracted (imperfect) DNA matrices for a project consisting of three activities. The 

observed DNA matrix of Figure II-3(a) shows that Activity X is proceeded three times by 

Activity Y, and eight times by Activity Z. Similarly, Activity Y is followed five times by 

Activity Z and nine times by Activity X. Finally, Activity Z is proceeded two times by 

Activity X and eleven times by Activity Y. In comparison, Figure II-3(b) shows that the 

extracted DNA matrix of the same project, obtained from the output of HAR using raw 

sensor data, contains erroneous activity sequences. Such errors can be attributed to 

inherent inaccuracies in sensor readings and the limitations of the HAR algorithm in 

correctly identifying activities from sensor data. 
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Figure II-3 Activity sequence matrix (DNA) as described by (a) ground truth, and (b) 

extracted HAR information 

For example, the extracted DNA matrix identifies two instances of Y-Y transition 

and three instances of Z-Z transition, which are all incorrect. Moreover, in certain cases, 

while correct activity transitions are detected, the number of such transitions is not 

correctly identified. For example, according to the extracted DNA matrix, 11 X-Y 

transitions (instead of 3) and 8 Z-X transitions (instead of 2) are detected. This example 

makes it clear that the final results obtained from a simulation model will vary based on 

whether the ideal or extracted DNA matrix is used as the basis of the activity cycle diagram 

(ACD) and the corresponding simulation model. While it is preferable to use the ideal 

DNA matrix, this matrix can be extracted only under perfect conditions with sensor data 

that is 100% accurate, and through the use of highly-trained (error-free) HAR algorithms. 
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However, achieving 100% accuracy is almost impossible (for reasons discussed above). 

Therefore, the challenge is to use the extracted DNA matrix (with intrinsic fuzziness) to 

create a simulation model that can still closely mimic the real system and predict its 

performance with high fidelity. In this Chapter, an evolutionary approach combined with 

simulations is proposed and tested to achieve this goal. Figure II-4 shows the main 

building blocks of the designed methodology. 

 

Figure II-4 Block diagram of designed sensor data refinement methodology 

This block diagram illustrates the path of progression of the algorithm from the 

initial data collection to initial activity recognition through HAR and the use of the HAR 

results to create a probabilistic ACD of the operation. This representative ACD is 

implemented as a DES model in Stroboscope. Stroboscope is a programmable and 

extensible simulation authoring system designed for modeling complex construction 

operations (Martinez 1996). Several iterations of the model are run and given the 
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probabilistic (uncertain) nature of the ACD, it is expected that each iteration results in a 

new (and slightly different) DNA matrix (a.k.a. children population in genetic algorithm 

or GA). This new pool of DNA matrices is subsequently used in an evolutionary process 

to generate a cleaner DNA matrix. In each step, the generated DNA matrix undergoes 

fitness evaluation, and then fed to the DES model. This process repeats until results 

converge. The combination of simulation and GA enables the production of a refined DNA 

matrix from the noisy sensor data. The following Sub-sections contain detailed discussions 

about this process. 

II.4.4 The deterministic simulation model 

As illustrated earlier, the warehouse operation experiment consists of independent 

activities, each with discrete start and end times. These activities can be defined as separate 

nodes in a DES network connected by links carrying resources (i.e. worker, inspector, 

boxes) which are defined and stored in queues.  

II.4.4.1 DES model with clean activity transitions 

The ACD shown in Figure II-5 illustrates the deterministic DES model of the 

warehouse operation experiment with clean (ideal) transitions between successive 

activities. This model is validated through a point-by-point comparison with the video 

recording of the real experiment at random times, thus ensuring that it was an accurate 

representation of the real system in terms of the operation logic and activity durations. The 

correct validation of this model also guarantees that transitions between successive 
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activities are deterministic (non-probabilistic), thus yielding an ideal DNA matrix. As 

previously described, each element in the DNA matrix represents the strength (i.e. 

likelihood) of transitioning from a preceding activity to a succeeding activity.   

 

Figure II-5 ACD Diagram of the cyclic warehouse operation 

It should be noted that while most activities shown in Figure II-5 qualify as both 

preceding and succeeding activities, some are only of one type; for instance, Activity 

‘load’ is only a preceding activity as it starts a cycle, whereas Activities ‘unload’ and 

‘remove’ are only succeeding activities as they end the cycle. Therefore, the DNA matrix 

does not contain an equal number of preceding and succeeding activities, and 

consequently may not necessarily be a square matrix. This clean DNA matrix, as shown 
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in Figure II-6 shows ideal transitions between activities in each sequence. Rows represent 

preceding activities and are sequentially numbered (i = 1 to n), whereas columns represent 

succeeding activities and are sequentially numbered (j = 1 to m). As expected, almost all 

rows hold binary (single non-zero) values since each activity is only followed by one 

succeeding activity. The only exception to this rule is Activity ‘inspect’, which depending 

on the outcome of the inspection, can be followed by either Activity ‘lower’ or Activity 

‘reject’. 

 

Figure II-6 Clean (ideal) DNA matrix (ground truth) of the warehouse operation 
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0 0 29 0 0 0 0 0 0 1 0 0 Push to inspect

0 0 0 28 0 0 0 0 1 0 0 0 Lift to inspect

0 0 0 0 20 10 0 0 0 0 0 0 Inspect

0 0 0 0 0 0 18 0 0 0 0 0 Lower

0 0 0 0 0 0 0 0 0 0 10 0 Remove

0 0 0 0 0 0 0 18 0 0 0 0 Push to unload
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0 2 0 0 0 0 0 1 0 0 0 0 Pull after unload

0 2 0 0 0 0 0 1 0 0 0 0 Pull after remove

30 0 0 0 0 0 0 0 0 0 0 0 Ready to load
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II.4.4.2 Activity duration modeling in Stroboscope 

The DES model requires a specified activity duration distribution in order to run 

realistic simulation. Thus, experimental results are used to extrapolate the activity duration 

distribution for each of the activities in order to build a representative model. As 

enumerated by to Law et al. (1991), experimental data can be used in three ways in a 

simulation: selecting one of the observed data points every time, randomly using a sample 

from collected model, and fitting a theoretical data to the model. The first two methods 

have been invalidated by previous research as an ineffective input method to build a 

dynamic simulation model (Akhavian 2015), thus, in order to incorporate the rage and 

variability of the dataset the third method is chosen for this implementation.. Stroboscope 

can model Scaled Beta, Erlang, exponential, Gamma, Normal, PERT Beta, triangular, and 

uniform distributions (Martinez and Ioannou 1994). In this research, these distributions 

are tested for goodness of fit in describing extracted activity durations using three tests: 

Chi-Square, Kolmogorov-Smirnov (K-S), and Anderson-Darling (A-D) (Banks 1998). 

Table II-3 shows the results of the goodness-of-fit tests, their rankings, and the numerical 

total of the ranks for Activity ‘unload’. Since the Normal distribution results in the best 

total ranking, it is ultimately selected to describe the duration of Activity ‘Unload’ in the 

simulation model. Similar analyses are conducted for all other activities. 
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Table II-3  Ranking of the best fitted probability for Activity ‘Unload’ 

Distribution 
K-S A-D Chi-Squared 

Sum of Ranks 
Statistic Rank Statistic Rank Statistic Rank 

Beta 0.28296 2 11.422 8 N/A 10 

Erlang 0.37122 6 2.6008 3 0.31304 3 12 

Exponential 0.55156 8 6.1967 5 1.7434 6 19 

Gamma 0.32795 4 2.1805 2 0.20342 1 7 

Normal 0.30586 3 1.6871 1 0.219 2 6 

PERT 0.27188 1 9.3159 7 0.38599 4 12 

Triangular 0.42002 7 6.964 6 1.2962 5 18 

Uniform 0.34273 5 5.6715 4 N/A 9 

 

 

The selected distribution and its parameters for each activity is shown in Table 

II-4. In addition, classification results are used to determine the probability of a box 

accepted or rejected. For instance, it is found that 29 instances of Activity ‘load’ followed 

Activity ‘pull’ which implies that in total, 29 boxes are moved in the system. Similarly, 

20 instances of Activity ‘unload’ followed Activity ‘push’ which means that 20 boxes are 

accepted by the Inspector. Therefore, it can be inferred that the ratio of accept/reject is 

20:9. 
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Table II-4 Selected distributions and their parameters for activity durations 

  Activity Distribution Parameters 

Worker 

Load Gamma 
a = 22.57 

b = 0.28418 

Unload Scaled Beta 

Low = -29.258 

High = 21.09 

α1 = 196.84 

α2 = 92.451 

Lower Normal 
μ = 1.3086 

σ = 6.4737 

Push to Inspect Gamma 
a = 120.05 

b = 0.08776 

Push to Unload Uniform 
Low = 11.709 

High = 19.291 

Pull after Reject Normal 
μ = 3.7786 

σ = 12.5 

Pull after Unload Normal 
μ = 6.3539 

σ = 28.091 

Inspector 

Lift Normal 
μ = 0.91676 

σ = 3.0741 

Inspect Normal 
μ = 4.4341 

σ = 14.375 

Reject Uniform 
Low = 1.6515 

High = 3.5487 

 

 

II.4.4.3 Model validation 

The next step in the implementation workflow is to test the validity of the model 

build as a representation of the experiment. In particular, the robustness, the scalability 

and activity level accuracy is tested. In Simulation 1, the scalability of the model is tested 

by running the model 30 times with 1 worker and 1 inspector moving 30 to 900 boxes. 

Results in terms of ratio of expected (from real system) and obtained (from simulation) 
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total time, inspector’s idle time, and worker’s idle time are shown in Figure II-7. This 

Figure shows that the obtained time is within 10% of the experimental results for all three 

parameters thus validating the scalability of the model. 

 

Figure II-7 Ratio of expected and simulation times for simulation 1 

The robustness of the model is tested in simulation 2 by running the model 1000 

times with 30 boxes. Figure II-8 shows that in terms of the total time of the operation and 

idle time of the inspector, on average, simulation results are 6% lower than experimental 

results. This can be attributed to the seamless transition between simulated activities 

unlike in the real system where transitions take time. Furthermore, the activity recognition 
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algorithm removes false detections (FDs) from the data, thus contributing to the slight 

difference by weeding out the extreme values. 

 

Figure II-8 Simulation robustness in estimating total time and inspector’s idle time 

Finally, the validity of the activity duration is examined in simulation 3 by moving 

1,000 boxes. The ratios of the average activity durations between the real world and 

simulation results are computed and shown in the radar chart of Figure II-9. As seen in 

this Figure, while the ratio of the durations from simulation model and durations from 

HAR is the most accurate of the three ratios, which highlights the validity of the simulation 

model, the least accurate ratio is the ratio of durations from HAR and observed durations, 

suggesting deficiencies in the quality of collected sensor data. Also, the ratio of durations 
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from the simulation model and the observed durations is on average 90%, which is a 

decent approximation of the real world by the developed simulation model.  

 

Figure II-9 Simulation robustness in estimating activity durations 

II.4.5 The non-deterministic simulation model 

II.4.5.1 DES model with probabilistic activity transitions  

As previously discussed, the output of the HAR algorithm contains noise due to 

imperfect sensor data and/or inaccuracies in the HAR algorithm. Thus, in the ACD 

diagram generated using this output, each activity can be followed by a number of other 

activities even though that might not be the case in the real system. Hence, the DES model 

built on this dataset is probabilistic (non-deterministic) where each activity can be 

followed by any other activity. A hypothetical scenario showing a non-deterministic ACD 
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with four activities was illustrated in Figure II-1(b). Similarly, the precedence logic 

obtained for the warehouse operation experiment results in the extracted DNA matrix of 

Figure II-10. In contrast to the clean DNA matrix in Figure II-6, some rows in the extracted 

DNA matrix contain multiple non-zero values indicating varying degrees of noise. For 

instance, the extracted DNA matrix includes multiple transitions from Activity ‘load’ to 

Activity ‘unload’, Activity ‘lower’ to Activity ‘lift to inspect’, or Activity ‘push to unload’ 

to Activity ‘pull after unload’. However, neither of these transitions did occur in the real 

system, indicating that these and similar elements in the extracted DNA matrix have 

resulted from error propagation through sensor data collection and HAR algorithm. 

 

Figure II-10 Extracted (noisy) DNA matrix of the warehouse operation 
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0 26 2 0 0 0 0 2 0 0 0 0 Load

2 0 23 0 0 0 0 0 2 2 0 0 Push to inspect

0 0 0 25 0 0 0 3 2 0 0 0 Lift to inspect

0 0 0 0 20 10 0 0 0 0 0 0 Inspect

0 0 2 1 0 0 15 1 1 0 0 0 Lower

0 0 0 0 0 0 0 0 0 0 10 0 Remove

0 0 0 0 0 0 0 16 2 2 0 0 Push to unload

1 0 3 4 0 0 4 0 0 0 0 20 Unload

0 2 0 0 0 0 1 4 0 0 0 0 Pull after unload

0 2 0 0 0 0 0 2 0 0 0 0 Pull after remove

30 0 0 0 0 0 0 0 0 0 0 0 Ready to load
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II.4.5.2 Modeling probabilistic activity transitions in Stroboscope 

Obtaining reliable results from simulation requires that the real system be modeled 

with sufficient accuracy and fidelity. In order to model the uncertainties in the precedence 

logic (such as those shown in the extracted DNA matrix of Figure II-10), the deterministic 

DES model needs to be expanded with new capabilities. For this reason, a standard 

modeling element called fork is added to each of the Activities in the DES model. In 

Stroboscope, fork elements are probabilistic elements that connect an activity with several 

other Activities with links having numerical strength (weight) values. During execution, 

an outgoing link is picked on a random basis by considering the designated relative 

strength values of the outgoing links (Martinez 1996). In the context of the warehouse 

operation experiment, strength values were defined using values from the extracted DNA 

matrix of Figure II-10. This enabled the DES model to allow multiple outgoing links from 

each activity, thus resembling the fuzzy behavior. 

To implement this fuzzy DES model, and given the specific syntax of Stroboscope, 

three types of Activities with different implementation mechanisms must be defined: 

initiation activity, simple activity, and termination activity. An initiation activity is used 

to start a new cycle (e.g. box moving cycle), a termination activity is used to end a cycle, 

and a simple activity is used in all other cases. Figure II-11 shows a partial ACD diagram 

in which these activities are implemented. The cycle starts with initiation Activity 1, 

proceeds to simple Activity 1, continues onto simple Activities 2, 3, or 4, or ends in 

termination Activity 1 (on a random basis), which then closes the cycle and releases 
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resources back to initiation Activity 1. As a convention, a solid link represents 

deterministic flow and a dotted link shows probabilistic (fuzzy) flow. To comply with 

Stroboscope syntax, as illustrated in Figure II-11, an initiation activity has one or more 

preceding queues that feed in resources, is proceeded by a fork with a single outgoing link 

to a queue, and ultimately connected to another Activity in the network. The subsequent 

activity (e.g. simple Activity 1 in Figure II-11) is then followed by a fork that provides 

necessary connections to successive Activities (through queues). As previously 

mentioned, the selection of the outgoing link from this fork is random and is based on the 

strength values of all outgoing links from that fork. Ultimately, when a resource arrives at 

a termination activity, it is simply forwarded to the following queue causing the cycle to 

close. In case a resource needs to be regenerated at the closure of a cycle, an action event 

can be invoked in Stroboscope. This is shown as the bold dashed line outgoing from 

termination Activity 1 to the ‘worker ready’ queue in Figure II-11. More details about 

action events and resource generation are beyond the scope of this Chapter and can be 

found in Martinez (1996). In particular, the non-deterministic model created in 

Stroboscope to represent the warehouse operation experiment contains 1 initiation activity 

(modeling the beginning of the loading cycle at Activity ‘load’), 7 simple Activities 

(modeling Activities ‘push to inspect’, ‘lift to inspect’, ‘inspect’, ‘lower’, ‘push to unload’, 

‘pull after unload’, and ‘pull after remove’), and 2 termination Activities (modeling the 

end of the cycle at Activities ‘remove’ and ‘unload’). 



 

 

43 

 

 

 

 

Figure II-11 Partial fuzzy ACD diagram illustrating different activity types 

II.4.6 Refining the extracted activity transition matrix  

II.4.6.1 Implementation of evolutionary algorithm 

A new evolutionary GA-Based technique is designed and implemented to reduce 

the errors in the extracted DNA matrix and transform it to a refined (close to ideal) DNA 

matrix. GA has been applied extensively in a wide range of fields including water 

contamination characterization (Preis and Ostfeld 2008), evaluating construction plans 

using data environment analysis (Torabi and Mahlooji 2017), site layout planning for 

construction projects (RazaviAlavi and AbouRizk 2016), and speech recognition based on 

random projections (Kataoka et al. 2016). In general, a GA-implementation is based on 

five key operations to iteratively improve the solution and eventually reach an optimal 

solution from a number of possible (not optimal) solutions (Poli et al. 2008). In this 

research, these five principles are implemented to refine the extracted DNA matrix, as 

shown in Figure II-12 and briefly described in the following paragraphs.  
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 Stage 1 – Define the mother species: The extracted DNA matrix generated by the HAR 

algorithm is designated as the initial mother species in the implementation. The value 

of each element in the mother matrix is taken as the strength value of the link and is 

represented by γ(ij), where i is the row index and j is the column index. This matrix is 

thus used to generate the first generation of daughter matrices.  

 Stage 2 – Create population of daughters: As discussed previously, the non-

deterministic DES model is built and run several times, each producing a new daughter 

matrix. In each iteration, forks are evaluated given the strength values of their outgoing 

links. This results in anomalies in activity transitions leading to a population of 

daughter DNA matrices with inherent uncertainty. This intentional uncertainty helps 

create the population of daughter matrices and perfectly represents the natural 

uncertainty in transitions. 

 Stage 3 – Evaluate fitness: In this stage, the fitness value of the each of the daughter 

DNA matrices are assessed by predefined fitness criteria. If the fitness value of a 

daughter matrix meets the criteria of acceptance, it will be chosen as the final matrix. 

In terms of GA workflow, this is termed the stopping condition. 

 Stage 4 – Create mating pool: The daughter matrices are ranked based on the value of 

their fitness parameter ω, and a subset of the available daughter matrices is selected to 

generate the next group of mother matrices. This subset is also known as the mating 

pool of daughter matrices.  
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 Stage 5 – Produce a new generation: Once the mating pool is selected, a new 

generation of mother DNA matrices are created by implementing crossover, elitism, 

and mutation on the daughter matrices of the mating pool (Davis 1991; Reeves 2003). 

Crossover combines parts of two or more daughter matrices, mutation changes random 

parts of certain daughter matrices, and elitism simply carries on daughter matrices that 

meet certain criteria to the next generation (Srinivas and Patnaik 1994). 
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Figure II-12 GA workflow to refine the extracted DNA matrix 

II.4.6.2 Fitness function 

The fitness function is unique to each GA implementation. In the context of the 

warehouse operation experiment, this function is formulated based on the expected 

relationship between initial (extracted) and final (refined) DNA matrices. In particular, 

several field observations are made to reduce the complexity of the invoked GA functions, 
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and help translate and preserve the physical constraints in the intermediate transition 

matrices generated by the GA. These logical rules are referred to as hard constraints (Chan 

et al. 1996; Yu and Buyya 2006), and are listed below: 

 Rows in the ideal (clean) DNA matrix are binary (only one non-zero element in 

each row) except where a determination is to be made as to where to move a 

resource after a decision activity (e.g. inspector station). In that case, there may be 

more than one non-zero element in a single row. Thus, an overall binary matrix 

was taken as the final goal of the experiment. For exceptions to this rule, see the 

note below. 

 The activities in which a decision is to be made is called a chance node. In each 

stage of the GA implementation, strength values of the outgoing links from a 

chance node are assumed to be known. For instance, in the warehouse operation 

experiment, Activities ‘inspect’ is classified as a chance node; here, the inspector 

makes a decision on whether to accept or reject a box. Thus, in the row of the DNA 

matrix corresponding to this node, the number of accepted vs. rejected boxes (as 

observed in the experiment and recognized by the HAR algorithm) were inserted 

as non-zero elements. In particular, the HAR algorithm identified 20 instances of 

Activity ‘lower’ (conducted by the worker immediately after the box was 

approved) and 10 instances of Activity ‘reject’ (conducted by the inspector 

immediately after the box was rejected). Thus, 20 and 10 were used in the 

corresponding row of the extracted DNA matrix. 
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 Once a resource completes an activity, it moves to the next activity. In GA 

implementation, this translates into the rule that once a resource leaves an activity, 

it does not immediately return to that activity. As a practical matter, this is an 

acceptable assumption since having a short loop (a loop starting and ending in the 

same activity) is not likely to happen in an ACD. This logical observation can be 

used to infer that in a DNA matrix, diagonal elements must be zero.  

The mathematical boundaries governing the processing of transition matrices 

during the GA are based on the hard constraints discussed above. Moreover, it is assumed 

that despite the presence of noise in individual data, in the context of large datasets, the 

data collected by sensors and processed through HAR algorithm is reasonably reliable. 

This foundational assumption is used in the analysis of the extracted DNA matrix where 

the strongest links (large non-zero values in the matrix) are assumed to be more likely to 

be statistically reliable, and thus should to the most extent preserved (and not utterly 

diminished) during the GA implementation. Considering these arguments and given the 

hard constraints described above, 𝛾(𝑖) is defined as the strength value of row i in a 

daughter matrix, and 𝛾(𝑖𝑗) as the strength value of a particular transition from Activity i 

to Activity j in a daughter matrix. Equation II-1 shows the formulation of the fitness 

parameter of each row based on these principles. This parameter is defined as the ratio of 

the maximum strength value in that row to the sum of all strength values in the same row. 

𝜔𝑑(𝑖) =  
max(𝛾(𝑖))

∑ 𝛾(𝑖𝑗)𝑛
𝑗=1 

                                                     (II-1) 
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Additionally, the overall fitness parameter of the matrix, shown in Equation II-2 is 

calculated as the arithmetic average of the fitness parameters of all rows. 

𝜔𝑑 =  ⋁ 𝜔𝑑(𝑖)̂𝑛
𝑖=1      (II-2) 

Next, the objective function of the GA is defined as the maximization of this 

overall fitness parameter. In this work, an average value of 0.95 is selected as a good 

benchmark. This is represented mathematically by Equation II-3. 

𝑍 =  max 𝜔𝑑                 (II-3) 

Moreover, owing to constraints of time in practical applications and the ultimate 

goal of near-instantaneous updating of the model, the number of generations can be altered 

to maintain processing efficiency. For the warehouse operation experiment, 10 generations 

are deemed to be sufficient to produce stable results. These constraints define the stopping 

condition as shown in Equation II-4. 

𝑍 > 0.95 OR generation number = 10   (II-4) 

II.4.6.3 Parameters of the GA  

The parameters used to produce a feasible solution mainly depend on the quality 

of input data, expected accuracy of the final results, available computation time, and 

processor quality. Considering these criteria, the following parameters are chosen for the 

warehouse operation experiment discussed in this paper: 

 No. of mothers in each generation: 3 

 No. of daughters generated by each mother: 5 
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 No. of daughters in each generation: 15 

 No. of generations: 10 

 Acceptable parameter of fitness: 0.95 

The number of mother and daughter matrices, as well as the number of generations 

are directly proportional to the complexity of the GA implementation, and the time 

budgeted for processing. Thus, increasing either of the parameters can improve overall 

accuracy. Also, the number of generations is often the best way to control the overall 

computation time. Finally, since it is not possible to achieve the ideal (clean) DNA matrix, 

an acceptable parameter of fitness is specified to select the best possible refined DNA 

matrix that resembles the clean DNA matrix to the most extent possible. Once this fitness 

is achieved, the GA implementation is terminated. It must be noted that the criteria and 

the values specified here are a result of a mainly qualitative process and are thus expected 

to vary depending on the application and context.  

II.5 Results and analysis 

II.5.1 Evaluating the effectiveness of GA implementation 

The extracted DNA matrix shown in Figure II-10, is used as the initial mother 

matrix in the implementation of the developed GA-Stroboscope model. Initially, the 

model is run with the same initial mother matrix 3 times to obtain the first generation of 

mother matrices and henceforth, the model is launched 5 times for each of the mother 

matrices to obtain the 15 daughter matrices. After evaluation and selection, this process is 
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repeated 10 times representing the 10 generations. Thus, the refined DNA matrix shown 

in Figure II-13 is obtained upon termination of the process. The refined DNA matrix is 

observed to resemble the clean DNA matrix in Figure II-6 more closely than the extracted 

DNA matrix of Figure II-7. For instances, the 17 erroneous transitions from the extracted 

DNA matrix have been treated and reduced to only four fuzzy transitions (from Activities 

‘pull after remove’ and ‘pull after unload’ to Activity ‘unload’, from Activity ‘push to 

inspect’ to Activity ‘pull after remove’, and from Activity ‘lift to inspect’ to Activity ‘pull 

after remove’). Moreover, the extracted DNA matrix contained only 4 perfectly binary 

columns which was increased to 11 out of 12 in the refined DNA matrix.  

 

Figure II-13 Refined (final) DNA matrix of the warehouse operation 
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0 30 0 0 0 0 0 0 0 0 0 0 Load

0 0 29 0 0 0 0 0 0 1 0 0 Push to inspect

0 0 0 28 0 0 0 0 1 0 0 0 Lift to inspect

0 0 0 0 20 10 0 0 0 0 0 0 Inspect

0 0 0 0 0 0 18 0 0 0 0 0 Lower

0 0 0 0 0 0 0 0 0 0 10 0 Remove

0 0 0 0 0 0 0 18 0 0 0 0 Push to unload

0 0 0 0 0 0 0 0 0 0 0 20 Unload

0 0 0 0 0 0 0 1 0 0 0 0 Pull after unload

0 0 0 0 0 0 0 1 0 0 0 0 Pull after remove

30 0 0 0 0 0 0 0 0 0 0 0 Ready to load
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As previously stated, the overall fitness of the entire matrix (representing the 

binary nature of the matrix) is a key evaluation parameter of matrices in each generation. 

In essence, this parameter provides an indication of the percentage of correct transitions. 

In the extracted DNA matrix, this value was only 0.74 whereas in the refined DNA matrix 

it increased by 30% to 0.96 (as shown in Figure II-14), which is sufficiently close to the 

clean (ideal) DNA matrix fitness parameter of 0.97. Another indicator of the effectiveness 

of the GA implementation is that the average of the fitness parameter steadily increases 

with each new generation of daughter matrices. Figure II-14 demonstrates that each 

iteration improves the fitness of the transition matrix. 

 

Figure II-14 Average fitness parameter of the resulting DNA matrix after each 

generation 
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II.5.2 Investigating the impact of DNA refinement on DES results 

Overall, the ultimate goal of implementing the GA-Stroboscope model to refine 

the imperfect sensor data is to produce a more reliable input for simulation models of the 

experiment. Thus, the three DNAs (clean, extracted and refined) are used to create a DES 

model of the warehouse box moving experiment to test this proposition. After running the 

model with each of the three DNAs and comparing the results, it can be concluded strongly 

that in fact, the DES model built using the refined DNA resembles the real system more 

closely than the DES built with extracted DNA. This comparison is tested using three 

quantifiable parameters (i.e. time to inspect each box, variation in unit cost, and the 

inspector’s idle time) and the results are illustrated in Figure II-15 through Figure II-17. 

The cost to calculate the variation in unit cost in Figure II-16 is calculated by considering 

the total labor cost (one worker and one inspector) according to the Bureau of Labor 

Statistics (BLS) (2015) data at $15.34/hour for worker and $33.92/hour for inspector.  

The improvement in the output of the simulation model built from refined DNA as 

opposed to the one built using extracted DNA can be seen clearly in Figure II-15 through 

Figure II-17. For instance, per Figure II-15, the average discrepancy in inspection time 

(seconds) per box reduces from 23.8 between clean and extracted DNAs to only 7.4 

between clean and refined DNAs. Similarly, as seen in Figure II-16, the discrepancy in 

unit cost is reduced from 52.8% (using extracted DNA) on average to 16.5% (using refined 

DNA). Both parameters show major improvement in the accuracy of the simulation output 

compared to ground truth values. 
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Figure II-15 Analysis of inspection time per box obtained from clean, extracted, and 

refined DNAs 

 

Figure II-16 Analysis of unit cost discrepancy obtained from extracted and refined 

DNAs 
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Figure II-17 Analysis of inspector’s idle time obtained from clean, extracted, and refined 

DNAs 

Finally, Figure II-17 shows a slight improvement in the inspector’s idle time. In 

particular, while the simulation model built from the clean DNA shows that the inspector 

is idle 65.31% of the time, this value is calculated as 75.73% and 72.93% from the 

simulation models built from extracted and refined DNAs, accordingly. This is due to the 

fact that in the refined DNA the strength values of links associated with inspector activities 

did not significantly change during the optimization process compared to the extracted 

DNA, since most of the erroneous transitions took place while the inspector was idle and 

the worker was active. 



 

 

56 

 

 

 

II.6 Summary and conclusions 

In construction projects, unforeseen site conditions, as well as the presence of other 

external factors such as such as adverse weather, change orders, lack of coordination, and 

resource misallocation often cause planned activity sequences and workflows to be 

altered. In order to incorporate these dynamic changes, DES modeling has evolved as a 

promising technique to formulate and study uncertainties in activity sequences and 

resource flows. However, DES tools often suffer from rigidity, user incompetence, and 

specificity of solutions, which prevent them to be widely adopted as reliable decision 

support systems. Moreover, most simulation systems cannot adapt to changes in project 

conditions as there is no systematic way to fully capture and incorporate heterogeneous 

process-level data into a simulation model. 

In recent years, new opportunities to deal with this gap has been created with the 

advancement of sensing technology and increase in the amount of data available at project 

sites via the use of smart sensor grids. However, this new technology and the increased 

data is often unused despite great potential in project planning, implementation, 

monitoring, and control functions. The gap between data collection and data utilization 

remains significant and is further compounded by the noise inherent in sensor data. If used 

to create simulation inputs, this built-in noise can potentially propagate in the model and 

result in volatile outputs, further contributing to unreliable and inaccurate simulation 

results. 
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The work discussed in this Chapter aimed at investigating whether low quality 

sensor data captured by consumer-grade sensors can be still reliably used to generate 

stable simulation input models. In particular, sensor readings were processed first through 

a machine learning framework to detect activity sequences in a warehouse operation 

experiment, then the results were improved using an evolutionary algorithm. While 

activities (e.g. load, unload, lift, push, and pull) and their sequence in this experiment were 

relatively simple, it is worth noting that activities of this type are also the main building 

blocks of a large family of complex construction operations. For instance, a typical 

concrete placement operation involves activities that result in the formwork to be secured 

in place. In particular, formwork elements are first loaded on to a crate, pushed along a 

certain path, unloaded and then lifted to position. Similarly, in concrete placement, 

workers push and pull a concrete bucket, and screed the surface. Thus, activities used in 

the experiment presented in this paper belong to a representative subset of construction 

activities.  

By coupling evolutionary methods (i.e. GA) and DES modeling, the uncertainty in 

activity precedence logic was refined, which in turn increased the fitness of activity 

transition matrix (a.k.a. DNA) from 0.76 to 0.96 (compared to the ground truth value of 

0.97). thus, this validates that processing activity transition data through evolutionary 

algorithms can improve construction simulation models. The validity of this improvement 

was illustrated through the use of obtained refined data as inputs of a simulation model 

describing the operation. The output of this model was compared with the ground truth 
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using three metrics, namely total time to inspect each box, variation in unit cost, and 

inspector’s idle time. Results showed that when the refined DNA was used as input, the 

simulation input was significantly improved than when the extracted DNA was used. In 

particular, improvements were seen in terms of time, cost, and productivity measures. 

Improvement in these and other parameters can significantly improve functions such as 

project scheduling and budgeting while providing clearer insight into the real system, 

potentially that can potentially improve the quality of workplace decisions impacting 

safety and health, ergonomics, resource allocation, and jobsite layout. 

In the experiment presented in this paper, only one decision activity (i.e. inspection 

station) was used. In reality, however, construction operations may involve multiple 

decision-making points and more sophisticated activity transitions and resource 

interactions. For instance, a typical concrete operation involves several quality inspection 

stages (e.g. testing of concrete ingredients, rebar arrangement, formwork). Moreover, in 

this Chapter, it was presumed that the correct activity transition (benchmark), is the 

transition that was detected with the highest probability from the output of HAR. This was 

rooted in the basic assumption that sensor outputs are reliable to the most extent. However, 

in real world, there may be cases where a specific sensor or a subset of a larger sensor 

network are faultier than expected. As such, a better strategy must be established to 

identify the benchmark sequence from sensor readings 

The main contribution of the work presented in this Chapter to the body of 

knowledge is a scientific methodology that facilitates the improvement of imperfect 
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(noisy) sensor data to cleaner datasets to increase stability of simulations that represent 

real engineering systems better. While a specific scenario was used to validate the 

developed methodology, the foundational mathematical and theoretical concepts can be 

adapted to other cases where sensor readings are needed to create input models for 

decision support systems and other modeling techniques in addition to DES. For instance, 

better data helps increase the R2 value in regression analysis, improve the accuracy of 

extracted features in activity recognition, and reduce trajectory prediction error in path 

planning algorithms.  

This framework has been shown to be effective in dealing with data on transition 

between different activities. However, its application is limited in the context of activity 

recognition in sequence of activities. Thus, the following Chapters deal with the 

improvement in activity recognition in the context of the larger sequence of activities, thus 

expanding the scope of application in natural phenomena in enabling greater use of 

simulations.  
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IMPROVING ACTIVITY DEPENDENCY DATA USING 

SEQUENCE ALIGNMENT 

III.1 Introduction 

Sequence alignment (SA) is a technique for evaluating the degree of similarity 

between two strings of data by using a series of heuristic or probabilistic methods to align 

one sequence with another (Rosenberg 2009). This approach was developed in the 

bioinformatics domain in the 1980s to enable the comparison of long deoxyribonucleic 

acid (DNA), ribonucleic acid (RNA) and protein sequences which could not be efficiently 

processed by using conventional algorithms. Given the complexity of biological data, the 

ability to determine the degree of similarity of a pair of biological sequences is of great 

importance in answering questions such as inferring the function or source organism of an 

unknown gene sequence, developing hypotheses about the relatedness of organisms, or 

grouping sequences from closely related organisms (Copasaro 2018). SA primarily relies 

on a series of applied mathematical algorithms (Sankoff and Kruskal 1983) for holistic 

sequential analyses that could provide insight into long sequences of protein and DNA. In 

a nutshell, the SA algorithm compares a target sequence (e.g. unknown data sequence) 

with a source sequence (e.g. known data sequence). The use of SA was expanded to other 

domains in the late 1990s (Abbott and Tsay 2000; Wilson 1998) primarily by social 

scientists (Abbott and Forrest 1986) to advance the analysis of socio-economic data by 
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producing normalized data trends and comparing each data point to the trend. Other 

applications of SA include the development of  linguistics algorithms to generate sentence-

level paraphrases from unannotated corpus data (Barzilay and Lee 2003), and tools for 

analyzing the sequential aspects within the temporal and spatial dimensions of human 

activities (Shoval and Isaacson 2007), all in an effort to transition from unitized analysis 

to contextual understanding that explores connections rather than attributes (Abbott 1995). 

Another application of SA was demonstrated in studying dynamic human interactions by 

Huang et al. (2010) who used passive radio-frequency-identification (RFID) data from 

objects (describing parameters such as location, motion, and orientation) to train a model 

to recognize various daily human activities in a home environment. The variations 

between different instances of the same person and different people performing same 

activities were dealt with by using flexible SA to recognize common patterns of change 

for each activity.   

Along with the evolution of SA techniques, the need for dynamic programming 

platforms was recognized and fulfilled by solutions including Clustal (Higgins and Sharp 

1988) which was later expanded to ClustalX for multi-dimensional alignment and 

ClustalG for social science data (Wilson et al. 1999). Each new solution not only did add 

and adapt features helpful to the application area of interest but also dealt with 

computational challenges both in processing time, and space and time required to run the 

alignment algorithms. For instance, while in 1988, aligning 4 sequences was deemed 

beyond the capability of the available hardware (Higgins and Sharp 1988), by 2004, 
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improvements in hardware and evolution of heuristic algorithms enabled aligning up to 

1,000 sequences of an average length of 282 in only 21 seconds (Edgar 2004). 

As discussed in the previous Chapter, despite the rapid advancement of sensing 

technology and vast availability of data in AEC/FM, data-driven decision-making is still 

in nascent stages mainly due to issues such as data quality, reliability, and timeliness, 

which are mainly rooted in the lack of processing framework, high upfront costs,  and data 

loss and latency (Islam et al. 2012), noise and human errors  (Zamalloa and 

Krishnamachari 2007), and the complex nature of many projects. Moreover, most 

applications tend to be inflexible to changes in ground conditions.  

While the previous Chapter illustrated the potential of a new GA-simulation hybrid 

framework to improve the reliability of activity transition data,  continuing along the path 

of adapting phenomena from nature to improve data quality, the research presented in this 

Chapter vies to explore and assess SA as an alternative approach to processing and 

recognizing patterns in collected data sequences, by deploying holistic measures of 

comparison between datasets instead of merely relying on attributes of individual data 

points. 

III.2 Basics of the sequence alignment (SA) algorithm 

Traditional quantitative measures such as data clustering that are used to compare 

sequences are based on Euclidian distance measurements (Abbott 1995). These measures 

use a point-by-point approach to analyze sequences, which can quickly turn into an 
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exponentially complex problem as each new data point is possibly a point of diversion 

where a new parallel problem with equal complexity is created. These methods also 

require the grouping of similar features that are often defined subjectively and do not 

evolve over the course of the analysis. In addition, any small shift in the elements of a 

sequence could produce different results. In contrast, SA deals with data sequences as a 

whole. As shown in Figure III-1, SA measures the degree of similarity between two 

sequences (a.k.a. “source” and “target” sequences), using three basic operations: deletion 

(where an element is removed from the target sequence), insertion (where an element is 

added into the target sequence), and substitution (where two elements are switched in the 

target sequence) (Shoval and Isaacson 2007).  
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Figure III-1 The three primary operations in SA algorithm 

In basic terms, the number of operations required to produce identical sequences 

is inversely related to the degree of similarity between the two sequences. In the example 

shown in Figure III-1, the two simple sequences are shown to vary in three elements. To 

produce identical sequences, these discrepancies are treated using the three operations of 

SA applied to the source sequence: deletion is used to remove the extra Activity 

‘downstairs’, insertion is used to input a missing Activity ‘walk’, and the mismatch of 

Activities ‘lift’ (in the source sequence) and ‘jump’ (in the target sequence) is dealt with 

by substitution. 

The platforms made to run SA are oriented primarily toward applications in 

bioinformatics and are thus mostly limited to 20 characters (corresponding to the number 
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of amino acids in human DNA) (Shoval and Isaacson 2007). Existing SA algorithms can 

be designed to converge globally (a.k.a. global alignment) or locally (a.k.a. local 

alignment). While the former aligns entire sequences, the latter considers regions of 

similarity in globally differing sequences and can thus be more resource intensive 

(Polyanovsky et al. 2011).  

III.3 Research objective and contributions 

While SA has been quite extensively used in other domains, its potential in 

AEC/FM in areas such as jobsite and facility management, building operations, energy 

performance, and fleet management remains limited. Operations within these dynamic 

systems can largely benefit from robust optimizations that target the detection and 

classification of complex, versatile, and spatiotemporal interactions between humans, 

equipment, and tools that together influence the overall efficiency of the process. Even 

with the proliferation of data, sensors, and reality capture tools, detecting such interactions 

with high fidelity for reconstruction in computer interpretable formats (e.g. simulations) 

is time consuming, inaccurate, and complex. Current methods such as RFID tracking, 

image and video recognition, manual inspection, barcodes tracking, and laser scanning 

require extensive initial investment for setting up and calibration, and call for advanced 

expertise for proper operation and maintenance (Kiziltas et al. 2008; Kopsida et al. 2015). 

Moreover, these methods may not support (near) real time processing (Park et al. 2013) 

which can negatively impact the timeliness and/or accuracy of resulting decisions. This 
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issue has been cited as a major obstacle to the widespread adoption of data-driven 

decision-making tools in construction (Becerik-Gerber et al. 2013). In light of this, the 

work presented in this Chapter seeks to create and test a new method that allows for a 

high-fidelity transformation of raw sensor data into contextual knowledge in order to test 

the hypothesis that the overall accuracy of activity recognition can be improved through 

sequence alignment. Such knowledge can be useful to describe the status/sequence of 

activities in a dynamic system, while also providing a basis for performance benchmarking 

and identifying areas of waste, mistakes, and inefficiencies. 

III.4 Methodology 

The experiment considered for illustrating the designed SA technique is a lab floor 

with multiple individuals labeled as W1, W2, W3, and W4 each wearing a smartphone on 

their dominant arm. Built-in smartphone sensors are used to collect time-motion data 

while subjects perform six activities, namely ‘walk’, ‘lift’, ‘squat’, ‘walk upstairs’ (or 

‘upstairs’ in short), ‘walk downstairs’ (or ‘downstairs’ in short), and ‘jump’. For each 

person, a complete cycle consisted of each of these activities performed in an arbitrary 

order. However, the first cycle was designated as the control cycle and the order of the 

activities performed was predetermined as ‘walk’, ‘upstairs’, ‘downstairs’, ‘squat’, 

‘jump’, and ‘lift’ (which can be represented as a w-u-d-s-j-l sequence). Each person 

completed 4-6 cycles. The goal of this experiment is twofold: (1) collect and process time-

motion data (acceleration, linear acceleration, and gyroscope) to identify activities 
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performed by each person using HAR, and (2) improve the accuracy of results by post-

processing the output of HAR using the SA algorithm. A description of each step is 

provided in the following Sub-sections.   

III.4.1 Human activity recognition (HAR) 

The application of HAR techniques has been recently explored by some 

researchers in the construction domain (Golparvar-Fard et al. 2013; Yang et al. 2014; 

Akhavian and Behzadan 2016) to identify instances of major events (e.g. human activities) 

from sensor data using a host of machine learning (ML) algorithms. This identification 

takes place in training and testing phases (Dunham 2006; Harrington 2012) where an 

initial dataset is used to identify distinct features of the different classes (activities) and 

manually label them. Next, identified features are used to classify the testing dataset. A 

detailed account of the HAR step can be found in Nath (2017). 

As related to the lab floor experiment described above, the dataset that contains 

one cycle of activities of a single subject (in this case, first cycle of W1) is considered as 

the training dataset while all other datasets (i.e. remaining 5 cycles of activities for W1, as 

well as all cycles of activities for W2, W3, and W4) are considered as testing datasets. This 

approach was chosen considering a key practical limitation in data collection; it may not 

be possible to collect enough training data from each and every participant, especially 

when the operation takes place in a large system with constantly changing spatiotemporal 

properties. Instead, it is more practical to collect training data from a small subset of 
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participants, train the classifier model using this sample dataset, and later apply the trained 

model to the entire group. 

III.4.2 SA 

The HAR algorithm is designed in a parallel study (Shrestha et al. 2018) to provide 

four elements as outputs: the source (ground truth) and target (recognized) activity 

sequences for the control cycle (i.e. first cycle of each person), the confusion matrix which 

is obtained by comparing the source and target sequences, and the activity sequence 

recognized for the remaining cycles for each person. 

By nature, the confusion matrix is a proportional representation of different 

instances where an activity is either classified properly or miss-classified as another 

activity. This is illustrated by the two sample sequences shown in Figure III-2, and the 

resulting confusion matrix of Figure III-3(a). Rows in a confusion matrix represent ground 

truth activities whereas columns represent recognized activities. For instance, per Figure 

III-3(a), Activity A is identified correctly twice, Activity B is identified correctly twice, 

and Activity C is identified correctly 5 times. These instances are reflected in the diagonals 

of the corresponding confusion matrix of Figure III-3(a). The sum of non-diagonal 

elements in this matrix equals 9 which indicates that overall, activities are not identified 

correctly in 9 instances. For example, Activity C is misidentified as Activity A twice (in 

instances 6 and 12, as marked in Figure III-2). For simplicity, once the confusion matrix 

is built, values are expressed as percentages of the total instances of each activity. This 

representation is shown in Figure III-3(b) 
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Instance 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Actual (ground truth) 

activity 
C A A B A C B B C C C C A C C 

 | | | | | | | | | | | | | | | 

Identified 

(recognized) activity 
C A B B A A C B C C B A C C C 

                

  X 
Correctly 

identified 
  X Misidentified 

Figure III-2 Results of a hypothetical activity recognition scenario 

 

  A B C    A B C 

A 2 1 1 8                                  A 50% 25% 25% 

B 0 2 1  B 0% 67% 33% 

C 2 1 5  C 25% 12% 63% 

                         (a)  (b) 

Figure III-3 Sample confusion matrix showing (a) absolute values, and (b) percentages  

The output of HAR is very likely to contain errors due to various factors including 

inaccurate sensor readings, heterogeneous actions by workers, and classifier drift (e.g. due 

to under-fitting or over-fitting). This erroneous output comprises the input of the designed 

SA algorithm as shown in Figure III-4. 
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Figure III-4 Workflow for post-processing HAR results using SA 

As Figure III-4 shows, in the initial SA algorithm, the source and target sequences 

are aligned in the ‘sequence calibration engine’. This is done using a dynamic 

programming application known as the Smith-Waterman local alignment (Smith and 

Waterman 1981). This algorithm is based on the Needleman-Wunsch global alignment 

(Needleman and Wunsch 1970) focusses on comparing subsequences of all possible 

lengths and finding the optimal combination to maximize the similarity measure.. Each 

pair compared is classified as a match or a mis-match. In case of a match, a positive score 

is assigned to the pair whereas in the case of a mis-match, a negative score is assigned. 

The magnitudes of both scores are predetermined in the scoring matrix and can vary across 

the different pairs. These scores are cumulated across the different pairs and the highest 

scores in the matrix is determined to be the overall score of the alignment.  
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In the case of this application, in order to assign a numerical value to each match, 

the probability of the match from the confusion matrix is used as the basis for computation. 

In essence, the numerical score for a particular combination of activities is inversely 

proportional to the probability in the confusion matrix of the activity being identified 

correctly. Given the complex comparisons and possibilities of SA, the developed 

technique performs normalization of scores obtained from different alignments according 

to length. This is an important consideration in producing reliable results as different 

people may perform identical tasks at their own pace, thus resulting in sequences of 

unequal length that represent the same set of activities. The SA algorithm is run separately 

for each of the four instances of source and target sequences producing four individual 

scores. These scores are fed to the ‘matrix calibration engine’.  For each instance i, there 

is now a score (i) and a confusion matrix (i). These two datasets are used to create a 

cumulative confusion matrix (CCM) with element in the jth row and kth column calculated 

by Equation III-1. 

𝐶𝐶𝑀 (𝑗, 𝑘) =  
∑ 𝑠𝑐𝑜𝑟𝑒 (𝑖) ∗𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛_𝑚𝑎𝑡𝑟𝑖𝑥(𝑗,𝑘,𝑖) 4

1

∑ 𝑠𝑐𝑜𝑟𝑒 (𝑖)4
1

       (III-1) 

 

In order to increase the accuracy of target sequences, the ‘sequence calibration 

engine’ identifies anomalous activities and replaces them with more probable substitutes. 

In this process, the percentage of instances in which other activities are misidentified as 

the anomalous activity is taken into account using the percentages in the confusion matrix. 
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These percentages are then used as weights to probabilistically pick the replacing activity. 

The higher the rate of confusion, the higher the chance of the corresponding activity being 

picked as the replacing activity. This cycle of alignment, calibration, and replacement is 

continued for several generations. In each iteration, the global fitness parameter (GFP) is 

calculated, as shown in Equation III-2.  

 

𝐺𝐹𝑃 =  
∑ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑐𝑦𝑐𝑙𝑒 1 𝑡𝑜 6

∑ 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑐𝑦𝑐𝑙𝑒 1 𝑡𝑜 6
        (III-2) 

 

III.5 Results and analysis 

The initial output of HAR classification is shown in the confusion matrix of Figure 

III-5. Here, Activities ‘idle’, ‘walk’, and ‘squat’ are classified with more than 90% 

accuracy, while Activity ‘downstairs’ is predicted with the least accuracy (45%) mainly 

because it involves physical movements like those of activities ‘upstairs’ and ‘walk’. 

 

 

  Idle Walk Upstairs Downstairs Squat Jump Lift 

Idle 97% 1% 1% 0% 1% 0% 0% 

Walk 0% 91% 8% 1% 0% 0% 0% 

Upstairs 0% 31% 61% 3% 0% 5% 0% 

Downstairs 0% 10% 35% 45% 2% 8% 1% 

Squat 2% 0% 5% 0% 92% 0% 0% 

Jump 1% 1% 2% 5% 2% 86% 2% 

Lift 1% 9% 2% 13% 0% 0% 76% 

Figure III-5 Initial confusion matrix from HAR classification 
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Next, GFP was recalculated for 25 generations, as plotted in Figure III-6. While 

the probabilistic elements of the designed SA process produce some variability in the 

results, the value of GFP improves gradually. The best result, obtained in generation 24 

achieved a GFP of 87.25% improving upon the initial value of 85.7% calculated directly 

from the confusion matrix produced by the HAR classifier model.  

 

Figure III-6 Variation in global fitness parameter (GFP) over several generations 

Figure III-7 shows several improvements in the confusion matrix. In essence, the 

rate of correct activity detection for ‘walk’ is increased by 4 % (from 91% to 95%), 

‘upstairs’ is increased by 6% (from 61% to 67%), ‘downstairs’ is increased by 2% (from 

45% to 47%), ‘jump’ is increased by 5% (from 86% to 91%), and ‘lift’ is increased by 1% 

(from 76% to 77%). 

 



 

 

74 

 

 

 

  Idle Walk Upstairs Downstairs Squat Jump Lift 

Idle 94% 1% 1% 1% 1% 1% 1% 

Walk 0% 95% 4% 1% 0% 0% 0% 

Upstairs 0% 26% 67% 0% 0% 5% 2% 

Downstairs 0% 5% 35% 47% 1% 8% 4% 

Squat 0% 0% 3% 5% 91% 0% 1% 

Jump 1% 2% 1% 4% 1% 91% 1% 

Lift 0% 6% 1% 14% 0% 2% 77% 

        

Figure III-7 Improved confusion matrix after SA implementation 

III.6 Summary and conclusions 

This Chapter presented SA, a bioinformatics technique, as an alternative post-

processing approach to refining imperfections resulted from using raw sensor readings for 

HAR. The process started with data collection during which time-motion (acceleration, 

linear acceleration, and gyroscope) data were collected from built-in sensors of 

smartphones worn by several individuals who performed six common activities including 

‘walk’, ‘lift’, ‘squat’, ‘walk upstairs’, ‘walk downstairs’, and ‘jump’. Raw data was then 

used as input of HAR to train and test classifier models. The output of HAR was 

consequently used as input to SA, to further refine resulting confusions in activity 

recognition, and improve the overall fitness of the HAR results. In general, the accuracy 

in predicting five of the seven activities was significantly improved (as shown by the 

diagonal elements of confusion matrices in Figure III-5 and Figure III-7). In addition, the 

GFP (overall measure of fitness) of HAR results increased after the application of SA.  



 

 

75 

 

 

 

The work presented in this Chapter expands the scope of application of phenomena 

in nature to improve the utility of sensor data as input for construction simulation. 

Improved accuracy of activity recognition increases the stability and reliability of 

simulation models and thus their use in the decision-making process. However, in its 

current application the algorithms is limited to improving the output obtained from HAR 

algorithm, thus maintaining the need for a two-step process.  In the following Chapter an 

exploration of an expanded version of SA is presented with the goal of integrating the 

HAR and SA process in a multi-dimensional sequence alignment (MSA) process that 

performs both functions.  
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REFINING SENSOR LEVEL DATA USING MULTI-

DIMENSIONAL SEQUENCE ALIGNMENT 

IV.1 Introduction  

Multi-dimensional sequence alignment (MSA) is an expanded form of sequence 

alignment (SA) in which the various attributes (i.e. dimensions) of source and target 

sequences are compared separately and an aggregation of the scores calculated from 

comparison in each of the attributes is used in the classification process. Similar to 

previous Chapters, this implementation is also inspired by phenomena found in nature and 

aims at streamlining the previously developed two-step human activity recognition (HAR) 

coupled with SA (a.k.a. HAR-SA) discussed in Chapter III, by proposing a single-step 

processing workflow to process raw body-mounted sensor data. With the expansion of 

computing capabilities and scope of SA beyond bioinformatics, researches have recently 

sought new methods to adapt the powerful concepts of sequential data comparison into 

novel applications. In this regard, MSA was proposed as a way to apply SA to datasets 

with more than one relevant attribute. Moreover, while applying individual SA to each 

attribute gives researchers useful yet partial information, combining and relating the scores 

obtained from SA in a multi-dimensional framework provides a more extensive picture 

(Joh et al. 2002).  
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With this in mind, the objective of the work presented in this Chapter is to 

investigate whether the process of generating simulation input models from raw sensor 

data can be further improved through a single-step MSA implementation without 

compromising the reliability of the generated simulation input models. This proposition is 

evaluated in the context of the results obtained from simulation models built from the two 

approaches (HAR-SA and MSA) and comparing them to the simulation results obtained 

using the ground truth information as input.   

IV.1.1 Comparing the classification principles of MSA and HAR  

The process of classifying activities using MSA shares several of the same steps 

successfully implemented in supervised (inductive) machine learning (ML); in principle, 

both algorithms use previously labeled data to classify unlabeled data. In Chapters II and 

III, HAR was successfully implemented using the principles of supervised learning (Nath 

2017). However, the main point of divergence from HAR in MSA implementation lies in 

how prior knowledge is utilized in the identification. In particular, HAR is based on the 

discovery and selection of a variety of features that can differentiate between various 

classes in any given feature window. It posits that this feature space, defined in the context 

of a window, can be representative of the various classes and thus differentiation is 

possible. On the other hand, MSA is based on the principle that the information in data in 

a sequence of windows is representative of the various classes. Thus, MSA posits that the 

relationship between the different elements of the sequence being classified can be a basis 

of categorization. The similarities and differences between the two implementations can 
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be better described using the hypothetical comparison in Figure IV-1. In this Figure, a 

target sequence is compared against a source sequence using both HAR and MSA. For 

HAR, three features are shown to have been extracted from the source sequence and the 

target sequence, whereas for MSA the continuous sensor amplitude data from both 

sequences is first discretized and then compared. In this process, both algorithms involve 

the extraction of information from raw sensor data. However, while in HAR the identified 

features have a constant value throughout the window, in MSA the variation in the 

sequence within the window is harnessed. Thus, while HAR requires the computation of 

a large number of features to correctly identify class labels, MSA does not require the 

extensive feature extraction as comparisons are implemented directly on the discretized 

sensor data. One major advantage of this difference in approach is that while the size of 

the windows, the starting point of each window and the degree of overlap among windows 

is pre-determined in the HAR implementation, the starting point in time (t = 0) for each 

comparison in MSA can be easily altered. In the case of HAR, changing the starting point 

or the overlaps would require a re-extraction of features with different window starting 

points and lengths.  
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Figure IV-1 Illustration of the similarities and differences between HAR and MSA  

Furthermore, as both HAR and MSA are supervised ML algorithms, they require 

the conversion of continuous sensor data to a discrete feature space (Dougherty et al. 

1995).In the case of HAR this is achieved by applying statistical operations to data points 

within a particular window, whereas in the case of MSA, frequency-based binning is used 

in the context of the entire dataset, as better explained in the following Sections.  
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IV.2 Research objectives and contribution 

As highlighted above, MSA is a promising framework for processing multi-

dimensional data with a number of attributes. However, the applications of MSA is yet to 

be explored as a potential framework of processing data and supporting data-driven 

decision-making in the construction domain, as its existing applications have been very 

limited in scope. Thus, this Chapter seeks to develop a novel utilization of the MSA 

technique where different streams of raw sensor data are processed directly to identify the 

activities performed. This application not only does expand the general scope of MSA, it 

also simplifies the overall framework by eliminating the need for pre-processing in the 

algorithm relied upon in previous Chapters. Furthermore, the contribution is not limited 

to the pre-processing stage, since the proposed framework also enables the post-processing 

comparison (following HAR) of activity sequences using more than one (as was the case 

in simple SA) attributes of data.  

IV.3 Methodology 

In general, MSA is implemented in order to tag an activity label to an unknown 

sequence of raw sensor data. This is achieved by aligning the new (unknown) data 

sequence with several data sequences each representing a known activity, as schematically 

represented in Figure IV-2. Both the data stream representing the unknown activity (a.k.a. 

target sequence) and the data streams of known activities (a.k.a. source sequences) are 

assumed to have k dimensions. In the context of sensor data, a dimension refers to a 
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specific sensor reading along a certain axis (e.g. accelerometer readings along the x axis; 

gyroscope readings along the y axis). Using this convention, since an accelerometer 

collects data along x, y, and z orientations, its data is said to be three-dimensional. If built-

in smartphone sensors are used to collect time-motion data, the number of dimensions in 

collected data can be calculated by multiplying the number of sensors by the number of 

axes along which data are collected. For example, if a smartphone’s accelerometer, 

magnetometer, and gyroscope (3 sensors) are used to collected data in x, y, and z directions 

(3 axes), then the data is said to have 9 dimensions. Clearly, if more than one data 

collection unit is used, the number of dimensions will increase accordingly. For instance, 

Barshan and Yuksek (2014) used five sensor units mounted on the torso, left arm, right 

arm, right leg, and left leg, and collected data from accelerometer, gyroscope, and 

magnetometers, thus resulting in a dataset with 45 dimensions (5 multiplied by 3 

multiplied by 3).  
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Figure IV-2 General schematic representation of MSA workflow 

During the alignment process, data from each dimension of the target sequence is 

compared against the data from the respective dimension in all of the source sequences. A 

sequence alignment score is obtained from each comparison, and all scores are collectively 

used to evaluate the activity of the target sequences. For instance, if k-dimensional data is 

used, there are l seconds of sources sequence data available for each of the x possible 

activities and each comparison window is s seconds long, in total (k×l×x)/s comparisons 

are made to identify the target sequence window. The details of how the scores are 

calculated and assessed are elaborated later in the following Sub-sections.  

Figure IV-3 provides an overview of the steps involved in the classification of the 

unknown target sequences. In the discussion that follows the methodology is divided into 

two main phases: the training phase where the parameters of comparison are identified 

using the known sequences, and the testing and classification phase where the unknown 

sequences are classified.  
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Figure IV-3 Detailed illustration of the phases of MSA workflow 

IV.3.1 Training phase 

IV.3.1.1 Building a repository of source sequences 

The first step in the testing phase of MSA implementation is to build a repository 

of reference sensor data information for use in deriving the source sequences. This is done 

by collecting multi-sensor time-motion data from experiments in controlled settings where 

subject(s) perform a series of activities. Since the ground truth is known, collected data 

can be labeled accurately and used later as benchmark information.  
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IV.3.1.2 Normalization of raw continuous data collected from sensors  

The information collected from the sample experiments consist of continuous raw 

sensor data which expresses the amplitude recorded by sensors in each of the dimensions. 

This presents two problems. First, the application of SA is based on the principle that the 

overall nature of activities (i.e. the ergonomic motions during the activities and thus the 

trends in the slope of the data collected by various sensors) remains the same even when 

performed by different people under different circumstances. However, amplitude data 

collected from sensors are susceptible to significant variation due to sensitivity to the 

intensity and manner in which different people perform even similar activities. The second 

problem is borne out of the fact the SA is primarily an ordinal comparison algorithm, 

making it unsuitable in its original form to be applied to the continuous sensor data.  

In order to address these two issues, the raw sensor data is put through a series of 

steps intended to normalize the variations in amplitude and discretize the sensor data so 

that it can be used in SA. First, the general trend in the data is incorporated by calculating 

the slope (of amplitude over time) between successive data points (i and i - 1) using the 

formula shown in Equation IV-1 This formula is applied to all data points across all 

dimensions and activities.  

𝑆𝑙𝑜𝑝𝑒 (𝑖) =  
𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 (𝑖)−𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 (𝑖−1)

𝑡(𝑖)−𝑡(𝑖−1)
    (IV-1) 
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IV.3.1.3 Discretization of the continuous sensor data 

The second problem mentioned above is dealt with by building a representative 

dataset of categorical data. This is achieved by a process known as discretization which 

enables the quantization of continuous attributes. (Liu et al. 2002). Discretization is used 

extensively in ML in order to reduce data while improving the prediction accuracy of the 

algorithms, especially in inductive (supervised) learning applications. 

 Liu et. al. (2002) provides an overview of different discretization methods used in 

data science for different purposes. In this research, for implementing MSA at raw sensor 

level data and given the structure of the available datasets, a global discretization in a 

direct equal-frequency splitting framework is implemented. Global discretization 

incorporates all the information (e.g. equal-interval-width discretization, equal-frequency-

per-interval discretization, minimal-class-entropy discretization) available in the entire 

space, thus resulting classification can be reliably evaluated in the context of the entire 

dataset (Chmielewski and Grzymala-Busse 1996). Moreover, frequency splitting is 

appropriate in negating the skewing of weighted measures that outliers can cause. 

Frequency splitting uses measures that rely on positional information such as percentiles 

to determine cut-off points between categories. Furthermore, the number of discrete 

categories is predetermined as 20 in the algorithm designed and implemented in this 

research. Therefore, a direct method of discretization in which the number of categories is 

specified is used for implementing MSA in this Chapter. Overall this framework can be 

classified as binning; it essentially discretizes the data into 20 separate bins by examining 
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the rank of each data point in the context of all available sample data. This implementation 

of univariate discretisation (i.e. discretization using the information available within one 

attribute of data) has been validated as a method of data pre-processing in ML by a robust 

body of work that has evaluated the final results obtained using the discretized input, even 

in noisy environments (Han and Kamber 2011; Kotsiantis et al. 2006; Liu et al. 2002; 

Pfahringer 1995).  

Using the foundation laid above, percentile ranks are used as cut-off points in the 

discretization of the data points. For each data point in a particular dimension, the 

percentile rank is assigned by comparing that data point against all available data points 

in that particular dimension. This process minimizes the role the outliers play in defining 

the overall nature of the distribution while bridging the gap between continuous data and 

discrete data. Finally, each data point in the dataset is classified as one of 20 possible 

categories based on the percentile rank, which each category consisting of 5 percentile 

ranks. For instance, the first category includes data in the 0th to the 5th percentiles, the 

second category includes data in the 6th to 10th percentiles, and so on. The number of 

categories is limited to 20 since existing SA algorithms were originally designed for 

bioinformatics applications to compare sequences of amino acids. Since most organic 

matter is made up 20 basic amino acids (Simoni et al. 2002), current SA applications are 

limited to an alphabet representing the 20 amino acids. Consequently, in this research, all 

data points are classified into one of the 20 ordinal categories each represented by its own 

symbol.  
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IV.3.1.4 Identification of optimal parameters of SA through cross validation  

Various parameters affect the scores obtained from each SA comparison and this 

in turn affects the accuracy of classification of the activities. Thus, the selection of the 

optimal combination of parameters is important in achieving the required accuracy in 

classification in order to produce reliable simulation input models. Robust results in the 

testing phase can be achieved by choosing a set of parameters that perform best across 

different datasets, thus, a cross validation is run among the source repository. The 

dimension of cross validation (i.e. the number of folds), is a function of the type of 

classification (subject-dependent vs. subject-independent) and the structure of the dataset. 

Details are discussed in later Sections.  

In each iteration of the process, a portion of the data is designated as test sequences 

and compared against the rest of the data. Within each iteration, the SA algorithm is run 

with a series of combinations of different parameters and the accuracy of the activity 

classification is recorded. At the conclusion of the cross validation, the combination of 

parameters which produced the highest average accuracy is selected. The parameters that 

can be varied are enumerated below. 

 The time interval of a single window which affects the number of data points in a 

sequence can be altered. For instance, in a 25 Hz dataset, a window spanning 1 second 

will have 25 data points whereas a window of 3 seconds will have 75 data points. In 

order to allow for the different cycle times of each activity, the time windows within 

each activity can be altered separately as well.  
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 The values in the scoring matrix (i.e. scores) can also affect overall accuracy. A score 

generally increases for a positive match and decreases in case of a negative match. 

Here, a number of different combinations in the ratios of positive and negative matches 

can be tested. Moreover, since the comparison is based on categories derived from 

continuous data, the distance between the various categories also has significant 

implications in terms of the general trend. For instance, a mismatch between categories 

representing the 4th percentile and 6th percentile would have minimal significance 

when compared to a mismatch between categories representing the 5th percentile and 

97th percentile. Thus, the negative score assigned to the former mismatch would 

presumably be different than the one assigned to the latter mismatch. A variety of 

techniques can be used to examine the best relationship between the magnitude of 

negative scores for the various mismatches and the magnitude of positive scores for 

the various matches.  

 The number of source sequences against which a target sequence is compared is also 

examined. While intuitively having more information by comparing the target 

sequence with all of the available source sequences might be deemed better, this can 

also be tested mathematically as in theory, comparing against less than the maximum 

number of available sequences could as well produce better results.  

  In a dataset collected from an uncontrolled environment, it is difficult to 

computationally identify when a new activity cycle begins or even how long a typical 

cycle of an activity is. Moreover, this can vary across instances and among different 
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people. In order to minimize the effect of out-of-phase SA comparisons, overlaps 

between different comparison windows can be used to reduce the number of such 

comparisons. This process is also essential to identify the most useful metric of 

overlap.  

IV.3.2 Testing and classification phase 

The MSA phase of the workflow shown in Figure IV-3, is performed in order to 

identify the alignment scores between the target sequence of an unknown activity and the 

source sequences of known activities.  

Before this phase is conducted, the target sequence is normalized using slope 

values calculated by Equation IV-1, and subsequently categorized into 20 ordinal 

categories using the same methodology used for the source sequences, as discussed in 

Sub-section IV.3.1.3. The only difference in the implementation of the process arises when 

determining the percentile ranks of the target sequence slope values. Since the algorithm 

is designed with the assumption that the target sequence is classified continuously (i.e. as 

new data on the target sequences comes in, it is classified in near real time). This implies 

that at the time of the target window classification, the data available for target sequence 

window can be limited to a only few windows. Thus, due to this limited size, the available 

target sequence dataset cannot be relied upon to provide an accurate assessment of the 

percentile ranks of the unseen data points. Thus, the percentile ranks of the target sequence 

data points are identified in the context of the available source sequence values.  
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Each target sequence window of a specified time interval (determined using cross 

validation within the source repository) is compared against several source sequences 

windows in each dimension using simple SA, with each comparison producing an 

alignment score. The number of scores obtained is a function of several parameters 

discussed in the previous Sub-section. Assuming that for each activity, x, l seconds of data 

is available in each dimension, k, and that the ideal window size is determined to be s 

seconds (s < l), the total number of available source sequence windows (Nss) is given by 

Equation IV-2. 

𝑁𝑠𝑠 =  
∑ 𝑙×𝑘𝑥

𝑠
        (IV-2) 

In this case, each SA comparison is conducted with sequences of s×f data points 

(f: data collection frequency), and corresponding scores (Sx,n,k) are used to generate a three-

dimensional matrix where each cell represents a particular activity, x, a particular window, 

n in the source sequence, and a particular dimension, k. Next, for each pair of x and n, the 

dimension sum score (SSk) is calculated by summing individual scores across all 

dimensions. This is shown in Equation IV-3  

𝑆𝑆𝑥,𝑛
𝑘 =  ∑ 𝑆𝑥,𝑛,𝑘𝑘      (IV-3) 

This process has also been illustrated Figure IV-4 which shows a particular target 

sequence window being compared against a particular source sequence window. Each of 

these comparisons is repeated for each of the activities and dimensions to obtain a score 

matrix for that particular target sequence window and source sequence window across all 
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the activities and dimensions. Figure IV-4 illustrates a scenario where there are five 

possible activities and the data has five dimensions.  

 

Figure IV-4 Illustration of formulation of the score matrix containing SA scores for a 

particular target and a particular source window across activities and dimensions 

Continuing from Figure IV-4, the sum of the scores across the different dimensions 

yields SSk, as illustrated in Figure IV-5. The calculation of SSk is done for every labeled 

window of each activity (in each of the source sequences). Using this holistic picture of 

the relationship between the source sequence window and the target sequence window, 

the comparison yielding the highest SSk determines the activity label of the unknown 
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window in the target sequence. Since, there are Nss source sequence windows for each 

activity in the comparison, this step identifies Nss activities, one for each of the source 

sequence windows. Finally, windows (out of a total of Nss) bearing the same label are 

counted, and the activity (out of all possible candidates) with the highest count is selected 

as the label for the target sequence window. Alternatively, the counts can also be used in 

expressing the probabilities of the target sequence window being of a particular activity. 

In this regard, the count of windows with similar label divided by Nss, expresses the 

probability of the target sequence window being of that label. For example, if all Nss source 

sequence windows are identified as Activity 2, then according to the scores, the probability 

of the target sequence window being Activity 2 is 100%. However, if only 75% of 

windows are identified as Activity 2 and the remaining 25% are identified as Activity 5, 

then it can be stated that there is a 75% chance that the target sequence window is Activity 

2, whereas there is a 25% chance the target sequence window is Activity 5. 
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Figure IV-5 Classification of the target sequence window through calculation of SSk and 

classification with respect to each source sequence window 

IV.4 Results and analysis 

IV.4.1 Description of the input dataset used 

The methodology developed in the previous Section is tested using a publicly 

available dataset (Barshan and Yüksek 2014) available from the University of California 

Irvine (UCI) Machine Learning Repository (Lichman 2013), containing sensor recordings 

collected for general applications in HAR. The dataset comprised of data from 8 subjects 

(4 male and 4 female, between the ages of 20 to 30) who performed five daily activities, 

namely ‘standing’, ‘walking upstairs’, ‘walking’, ‘running on a treadmill’, and ‘jumping’ 

in indoor (a sports hall, building) and outdoor areas at Bilkent University, Turkey. 

Each activity was performed for 5 minutes by each subject and the data was 

collected at 25 Hz using 5 sensor units for each person mounted on the right arm, left arm, 

left leg, right leg, and torso. Each sensor unit collected accelerometer, gyroscope, and 
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magnetometer data along x, y, and z orientations.  The main features of the dataset are 

summarized in Table IV-1. 

Table IV-1 Summary of the different parameters of the input dataset 

Category Count Description 

Activities 5 standing, walking upstairs, walking, running on a 

treadmill, jumping 

Subjects 8 4 males, 4 females, 20-30 years old 

Data units 5 Mounted on right arm, left arm, right leg, left leg, and 

torso 

Sensor types 3 accelerometer, gyroscope, and magnetometer 

Orientation 3 along x, y, and z axes 

Dimensions 45 5 data units × 3 sensor types × 3 orientations = 45 

Frequency 25 Hz 
 

Data duration 5 min. Per activity per person 

Total data 

points 

300,000 8 people × 300 sec. × 25 Hz × 5 activities = 300,000 

 

 

IV.4.2 Evaluating the effectiveness of MSA for activity identification  

The UCI dataset is used to evaluate the effectiveness of MSA to identify activities 

under two conditions: subject-dependent classification, where the training sample and 

testing sample are collected from the same subject, and subject-independent classification 

in which the training sample and testing sample are collected from different subjects. The 

algorithm was implemented Texas A&M University High Performance Research 

Computing (HPRC) clusters. In particular, the Ada cluster which comprises of an Intel 



 

 

95 

 

 

 

x86-64 Linux cluster with 852 compute nodes with each node containing an Intel Xeon 

2.5GHz E5-2670 v2 10-core processor was utilized (HPRC 2018). In this implementation, 

up to 20 cores are used simultaneously.  

IV.4.2.1 Subject-dependent classification  

The data available for each subject is first divided into a training sample and a 

testing sample. In particular, 60% of the available data is designated as training sample, 

whereas the remaining 40% is used as testing sample. Considering the attributes of the 

UCI dataset as listed in Table IV-1, this translates into 15 minutes of training sample, and 

10 minutes of testing sample for each subject.  

The training sample is then used to identify the proper parameters for testing. At 

this stage, a 5-fold cross validation is implemented to identify the optimal combination of 

scoring matrix and the window length using data from each possible combination of 

sensors. Next, the identified parameter combination is used to classify the testing sample 

for each of the subjects. The confusion matrix incorporating the results obtained for all 

subjects in a 45-dimensional MSA using data from all 5 sensors is presented in Figure 

IV-6. As this Figure shows, Activities ‘standing’, ‘walking upstairs’, ‘walking’ and 

‘running’, are classified with very high accuracy (100%, 99%, 100%, and 100%, 

respectively) whereas the accuracy with which Activity ‘jumping’ is classified is slightly 

lower, since this activity was confused with Activity ‘walking upstairs’ in ~6% of 

instances.  
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  Standing 
Walking 

Upstairs 
Walking Running Jumping 

Standing 100% 0% 0% 0% 0% 

Walking Upstairs 0% 100% 0% 0% 0% 

Walking 0% 1% 99% 0% 0% 

Running 0% 0% 0% 100% 0% 

Jumping 0% 6% 0% 0% 94% 

Figure IV-6 Confusion matrix obtained for subject-dependent MSA activity recognition 

using data from all 5 sensors in a 45-dimensional SA 

The variation in the computation time required to implement the algorithm with 

the number of dimensions used in SA is also investigated in conjunction with the variation 

in the accuracy of the classification. In essence, data from various available sensors is used 

in different combinations to examine a total of 31 unique combinations, as tabulated in 

Table IV-2. Among these 31 combinations, 5 include data from 1 sensor, 10 include data 

from 2 of the 5 sensors, another 10 include data from 3 of the 5 sensors, 5 include data 

from 4 of the 5 sensors, and finally the last combination include data from all 5 sensors. 

Table IV-2 Number of combinations using data from a given number of sensors and the 

dimension of SA performed 

Number of sensors used Number of combinations  Dimensions of SA 

1 5 9 

2 10 18 

3 10 27 

4 5 36 

5 1 45 
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The results of this examination of the variation in the combination of sensors and 

the accuracy of classification obtained from classifying the target sequences is presented 

in Figure IV-7. In this Figure, the dashed line represents the average accuracies obtained 

for a particular sensor combination across the subject dependent classification of 8 

subjects. Moreover, the bold line represents the average accuracy of classification 

obtained across the different sensor combinations that use the same dimensional SA. For 

instance, sensor combinations 1 through 5 used data from one sensor or 9-dimensional 

data each, hence, the value of the bold line (i.e. 95.5%) at combinations 1 through 5 

represents the accuracy of classification using 1 sensor across all 8 subjects. It can be 

observed that changing the sensor combinations induces variation in the accuracy of 

classification, even when using data from the same number of sensors. For example, while 

sensor combinations 1 and 2 used data from one sensor each, the accuracy of classification 

is more than 98% for the former and less than 91% for the latter. Further, it is observed 

that the volatility decreases when the average accuracy of classification across the 

different dimensional SA is considered as a measure of performance. For instance, Figure 

IV-7 shows that while the accuracy of classification obtained from data of all 5 sensors is 

98.3%, this value decreases by only 2.4% when using data from only one sensor.  
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Figure IV-7 Accuracy of classification of target sequence activities with different 

training samples and SA data dimensions for subject-dependent classification 

Next, the variation of accuracy of classification among different subjects is 

examined to obtain granular observations. For each of the subjects, the combinations 

enumerated in Table IV-2 are used and the obtained average accuracy of classification for 

each number of sensors is displayed in Figure IV-8. In this Figure, dashed lines represent 

the accuracy of classification for each subject while the solid line represents the average 

accuracy of classification for all subjects. Results indicate that in most cases, the accuracy 

of classification is quite high, and a high average accuracy is maintained. For instance, the 

average accuracy of classification across different subjects remains above 95% for each 

of the number of sensors, and in 212 out of the 248 total combinations examined (31 

combinations for each of the 8 subjects), the accuracy of classification is more than 90%. 

However, for a small number of subject-sensor data combinations, accuracy is low. For 
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instance, the accuracy of classification for subject 2 is 73% when using data from sensor 

2 as opposed to 91% overall for all subjects using data from the same sensor.  

 

Figure IV-8 Accuracy of classification of target sequence activities with different 

subjects and SA data from different number of sensors for subject-dependent 

classification 

The findings presented in Figure IV-9 also reveal that the computation time 

increases linearly in relation to the number of dimensions of comparison, however, the 

variation in accuracy (vertical bars in Figure IV-9) is less uniform. In this Figure, the right 

vertical axis shows time taken by the algorithm to train 120 minutes of data and 

subsequently classify 80 minutes of data using the identified parameters. According to 

results, while an increase in the number of dimensions generally improves the 
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classification accuracy, the improvement is minimal as the accuracy obtained when using 

only 9 dimensions is already quite high at 95.9%. Using all possible 45 dimensions, this 

accuracy increases only by 2.4% to a new value of 98.3%.   

 

Figure IV-9 Accuracy of classification of target sequence activities and the average 

computation time required with different SA data dimensions for subject-dependent 

classification 

IV.4.2.2 Subject-independent classification  

The validity of the designed methodology is also tested for subject-independent 

activity classification using a similar breakdown of training and testing data as used in the 

previous Sub-section. In particular, data from 4 of the 8 subjects are designated as the 

training sample, whereas the data from the remaining 4 subjects are designated as the test 
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sample. The selection of the four test and training subjects is done randomly and different 

combinations of 4 people in the training sample are evaluated. In total, this process is 

conducted for 8 different combination of training and test samples. The confusion matrix 

incorporating the results obtained for all subjects in a 45-dimensional SA using data 

collected from all 5 sensors, in all of the combinations of testing and training subject 

groups is presented in Figure IV-10.  

 

 

  Standing 
Walking 

Upstairs 
Walking Running Jumping 

Standing 100% 0% 0% 0% 0% 

Walking Upstairs 0% 100% 0% 0% 0% 

Walking 0% 8% 92% 0% 0% 

Running 0% 0% 0% 100% 0% 

Jumping 0% 2% 9% 0% 89% 

Figure IV-10 Confusion matrix obtained for subject-independent MSA activity 

recognition using data from all 5 sensors in a 45-dimensional SA 

Comparisons between the results obtained from subject-independent classification 

(Figure IV-10) and subject-dependent classification (Figure IV-6) indicate that for most 

activities, the classification accuracies are comparable, whereas the accuracy decreases in 

the case of subject-independent classification for some of the activities. For example, 

Activities ‘standing’, ‘walking upstairs’, and ‘running’ are classified with extremely high 

accuracy in both scenarios, however the accuracy of classification of Activity ‘walking’ 

and ‘jumping’ decreases by 7% (from 99% to 92%) and 5% (from 94% to 89%), 
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respectively in subject-independent classification. This can be attributed to the variation 

in how different subjects performed the same activities. This decrease also reaffirms that 

variations in how subjects perform activities can affect the overall accuracy of activity 

classification.  

Next, in order to examine the effect of the variation among different subjects, the 

algorithm is run several times with different combinations of training and test samples, 

using data collected from different combinations of sensors, as shown in Table IV-2. The 

accuracy of classification using data from each sensor combination is presented in Figure 

IV-11. In this Figure, the dashed line represents the average accuracy of classification 

across the 8 combinations of training and testing sequences, and the solid line represents 

the average accuracy of classification for each number of dimensions. For instance, only 

1 sensor is used in combinations 1 through 5, which results in a 9-dimensional SA. For 

these combinations, the average classification accuracy is 88.2%.  



 

 

103 

 

 

 

 

Figure IV-11 Accuracy of classification of target sequence activities with different 

training samples and SA data from different number of sensors for subject-independent 

classification 

The major conclusion that can be drawn from Figure IV-11 is the fact that changing 

the combination of sensors even within the same number of dimensions causes variations 

in the classification accuracy. For example, sensor combinations 9 and 10 use data from 2 

sensors each; however, due to the difference in the sensors chosen, the average 

classification accuracy is 15% less when using data from sensor combination 10 than 

sensor combination 9 (i.e. it decreases to 85% from 100%). Furthermore, it can be 

concluded that an increase in the number of sensors generally increases the average 

classification accuracy. This can be visually confirmed in Figure IV-11 by tracking the 

gradual upward trend of the bold line. Overall, this amounts to a cumulative increase of 
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9.3%, from the initial value of 88.2% when using only 1 sensor to a final value of 97.5% 

when using all 5 sensors.  

In order to present findings with greater granularity, the classification accuracy for 

different training and testing combinations across various sensor combinations is also 

examined and presented in Figure IV-12. In this Figure, dashed lines represent the 

classification accuracy obtained for each of the training and testing combinations, whereas 

the bold solid line shows the average classification accuracy for a given number of sensors, 

across all training and testing combinations. Similar to the conclusion drawn from the 

investigation of subject-dependent classification, while a high accuracy is maintained in 

most combinations, in some cases the classification accuracy is relatively lower. Naturally, 

due to the variations in how individual subjects perform their activities, the number of 

combinations with classification accuracy of more than 90% decreases from 212 out of 

248 (85% of the combinations) in subject-dependent classification to 188 out of 248 (75% 

of the combinations) in subject-independent classification. However, as Figure IV-12 

indicates, the average accuracy across all the training and testing combinations is above 

90% when using 2 or more sensors.  
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Figure IV-12 Accuracy of classification of target sequence activities with different 

training samples and over different dimensional SA in subject-independent classification 

Finally, as shown in Figure IV-13, the computation time required to perform 

subject-independent classification increases linearly in relation to the number of 

dimensions of comparison, while the variation in accuracy (vertical bars in Figure IV-13) 

is more random. In this Figure, the right vertical axis shows time taken by the algorithm 

to train 100 minutes of data and subsequently classify 100 minutes of data using the 

identified parameters. Among all training and testing combinations, the highest accuracy 

of 97.5% is achieved with 45-dimensional SA.  
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Figure IV-13 Accuracy of classification of target sequence activities and computation 

time required with different training samples and SA data from different number of 

sensors for subject-independent classification 

IV.4.3 Comparing the effectiveness of MSA and HAR in generating simulation input 

models  

Results obtained from processing raw time-motion sensor data with MSA are then 

used to assess whether the designed single-step MSA could produce equally or more stable 

simulation input models compared to the two-step HAR-SA scheme described in Chapter 

III. For this purpose, a sequential discrete event simulation (DES) model consisting of 5 

activities is used, as shown in Figure IV-14. In this Figure, links having a 100% weight 

value represent clear transition paths between successive activities (i.e. deterministic 

model). Three copies (A, B, and C) of this model are then created which vary only in how 

their input models are generated. The simulation input parameters are obtained from the 
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ground truth information (activity labels as reported in the UCI dataset) in copy A, from 

the results of the two-step HAR-SA algorithm in copy B, and from the results of the single-

step MSA algorithm in copy C. For consistency, identical training and testing 

combinations are used for both algorithms in each of the 100 sequences tested.  

 

Figure IV-14 Deterministic form of the simulation model (copy A) 

In order to run a statistically significant sample, 100 sequences comprising of 25 

minutes of activity sensor data is chosen from the testing dataset. The first two target 

sequences are illustrated in Table IV-3. 

Table IV-3 Different activity sequence tested 

Sequence no Activity 1 2 3 4 5 

1 

Subject 1 4 7 6 5 

Activity Walking 
Walking 

upstairs 
Sitting Standing Running 

2 

Subject 5 7 2 8 2 

Activity Running Standing Sitting 
Walking 

upstairs 
Walking 
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In order to compare the variation in results obtained from models A, B, and C, all 

three copies are first run several times for each of the 100 sequences of activities. While 

in copy A, activity transitions are deterministic (Figure IV-14), in copies B and C these 

transitions are treated as probabilistic where the probabilities depend on extracted activity 

transition information reported by HAR-SA and MSA algorithms. In Chapter II, it was 

explained how these transitions are extracted from raw time-motion data, and later used 

to create a matrix called the dependency network assimilator (DNA) matrix. The 

incorporation of the extracted DNA into the simulation input model results in a non-

deterministic model illustrated in Figure IV-15. 

 

Figure IV-15 Non-deterministic form of the simulation model (copies B and C)  

The first cost metric (i.e. objective function) of the simulation model is defined as 

a measure of the effort required to perform various activities. When an individual performs 

an activity, energy is consumed by the body to produce work. This energy is commonly 

measured in terms of calories. By definition, 1 calorie is the amount of energy required to 
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raise the temperature of 1 gram of water by 1 °C (Hargrove 2006). Naturally, calorie 

requirement varies with the different activities being performed and the physical traits of 

the performer such as age, gender, height, and health status. In the context of this research 

and to have a realistic benchmark for comparing copies A, B, and C of the simulation 

model, the number of calories expended in performing each activity for a specified 

duration is used to calculate the overall effort needed to complete a particular activity 

sequence. Since the specifics of the physical characteristic of the subjects in the UCI 

dataset are unknown, the calories burned by an average 20-30-year-old person while 

performing the activities are used to calculate the effort needed to perform those activities. 

These values are listed in Table IV-4. 

Table IV-4 Average calories consumed for various activities (for subjects aging between 

20 and 30 years) 

Activity Calorie count per hour Source 

Standing 140 (Buckley et al. 2014) 

Walking upstairs 563 (Wisconsin DHHS 2017) 

Walking 280 (US DHHS and NIH 2006) 

Running 590 (US DHHS and NIH 2006) 

Jumping 704 (Wisconsin DHHS 2017) 

 

 

The second cost metric (i.e. objective function) takes into account the effort 

required to transition between different activities, as illustrated by Figure IV-16. Values 

in this Figure are expressed in relative terms, with value 0 as a benchmark. For instance, 
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while transitioning from an ‘standing’ position to another ‘standing’ position requires zero 

effort, transitioning from ‘standing’ to ‘walking upstairs’ requires that 4 effort units are 

consumed. Similarly, a transition from ‘walking upstairs’ to ‘running’ is costlier and 

requires 12 units of effort. It is worth noting that although the values presented in Figure 

IV-16 are currently chosen by intuition, they can be linked to factors such as muscle strain 

and joint fatigue that may result from sudden transition from one activity to another. While 

exploring and quantification of these relationships is beyond the scope of this Thesis, it 

can be a potential direction for future work in this area.  

 

 

  Standing 
Walking 

Upstairs 
Walking Running Jumping 

Standing 0 4 3 5 5 

Walking Upstairs 3 0 3 12 16 

Walking 3 3 0 10 15 

Running 5 7 5 0 25 

Jumping 5 8 5 20 0 

Figure IV-16 Relative costs (effort) of transition between different activities 

IV.4.3.1 Data input modeling for non-deterministic DES model validation 

As discussed, two sets of non-deterministic input are generated and used to 

validate the performance of the designed MSA methodology as applicable to DES input 

modeling. Here, the efficacy of the algorithm is evaluated using the global fitness 

parameter (GFP) formulated in Equation III-2 which expresses the ratio of correctly 

identified activity instances to the total number of activity instances. Using this 
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convention, the GFP of MSA is calculated as 96.1% (C.I. [95.3% 97.0%], α = 0.05 with σ 

= 4.3%) with an interquartile range of 6%. Similarly, for HAR-SA, the GFP is obtained 

as 97.15% (C.I. [96.2% 98.0%], α = 0.05 with σ = 4.45%) with an interquartile range of 

5%. It can thus be inferred that the classification accuracy achieved from both methods 

are similar with a significant overlap in the 95% C.I. of the GFP values. Moreover, the 

performance of classification using MSA and HAR is evaluated using measures of 

precision and recall. These measures are more sensitive to the error of classification and 

incorporate the fact that the cost of misclassification can vary among different scenarios 

(Nath 2017). Mathematically, precision and recall are expressed by Equation IV-4 and 

Equation IV-5, respectively, in which TP, FP, and FN indicate true positive, false positive, 

and false negative instances in activity recognition. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝐹𝑃
              (IV-4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                          (IV-5) 

 

To calculate precision and recall values for MSA and HAR, corresponding activity 

recognition confusion matrices, as illustrated in Figure IV-17 and Figure IV-18, are used. 
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  Standing 
Walking 

Upstairs 
Walking Running Jumping 

Standing 100% 0% 0% 0% 0% 

Walking Upstairs 4% 94% 3% 0% 0% 

Walking 0% 3% 97% 0% 0% 

Running 0% 0% 0% 100% 0% 

Jumping 1% 1% 3% 5% 90% 

Figure IV-17 Confusion matrix obtained for classification of 100 testing sequences using 

MSA  

 

  Standing 
Walking 

Upstairs 
Walking Running Jumping 

Standing 100% 0% 0% 0% 0% 

Walking Upstairs 0% 96% 4% 0% 0% 

Walking 0% 0% 100% 0% 0% 

Running 0% 0% 0% 100% 0% 

Jumping 0% 1% 2% 1% 96% 

Figure IV-18 Confusion matrix obtained for classification of 100 testing sequences using 

HAR-SA  

The calculated precision and recall values are listed in Table IV-5, which indicates 

that both HAR-SA and MSA algorithms yield high precision and recall. For instance, the 

precision and recall of classification is at least 95% and 90%, respectively for all activities 

in both classification algorithms. Overall, these observations confirm the high reliability 

of both classification algorithms. Moreover, while both classification algorithms achieve 

high precision and recall, for some activities, HAR-SA classification achieves marginally 

better precision and recall than MSA classification. For example, for activity ‘walking 
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upstairs’ the precision of classification using MSA is 95% whereas this value is 99% for 

HAR-SA. Similarly, the recall of classification for this activity is 94% using MSA 

classification compared to 96% for HAR-SA.  

Table IV-5 Precision and recall of different activities using MSA and HAR-SA 

Measure 
Classification 

algorithm 

Activities 
Weighted 

average Standing 
Walking 

Upstairs 
Walking Running Jumping 

Precision 
MSA 95% 95% 95% 95% 100% 96% 

HAR 100% 99% 95% 99% 100% 98% 

Recall 
MSA 100% 94% 97% 100% 90% 96% 

HAR 100% 96% 100% 100% 96% 98% 

 

 

Next, the extracted DNA matrix and the average duration of each activity for both 

classification methods are derived for each of the target sequences, and this information 

is used as input for generating the non-deterministic DES models (copies B and C). 

IV.4.3.2 Analysis of the output of the non-deterministic DES model  

All three copies of the simulation model (copy A generated from the ground truth, 

copy B from HAR-SA, and copy C from MSA) are then launched for each of the 100 

sequences. In analyzing the results, the total cost and the transition cost derived from 

model A is regarded as benchmark, with the total costs and transition costs derived from 

models B and C being compared against this benchmark. The percentage difference in the 

total cost from model A to the total cost derived from models B and C for each of the 100 
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sequences is shown in Figure IV-19, and the percentage difference in the transition costs 

derived from model A to the transition cost derived from model B and C for each of the 

100 sequences is shown in Figure IV-20.  

 

Figure IV-19 % difference in the total cost derived from model A (ground truth) to 

models B (HAR-SA) and C (MSA)  
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Figure IV-20 % difference in the transition cost derived from model A (ground truth) to 

models B (HAR-SA) and C (MSA)  

Further analysis reveals that on average the percentage discrepancy in the total cost 

derived from model C (MSA) was 24% (C.I. [19.2% 28.4%], α = 0.05 with σ = 23.2%)  

of the total cost derived from model A (ground truth), whereas the same ratio was 29%  

(C.I. [24.3% 33.1%], α = 0.05 with σ = 22.1%)  between model B (HAR-SA) and model 

A. Moreover, the percentage discrepancy in the transition cost derived from model C 

(MSA) was 63% (C.I. [58.4% 68.3%], α = 0.05 with σ = 24.8%) of the total cost derived 

from model A (ground truth), whereas the same ratio was 56% (C.I. [50.5% 61.6%], α = 

0.05 with σ = 27.8%) between model B (HAR-SA) and model A. The overlap in 95% 

C.I.’s of the mean discrepancy between the costs derived from Model A and Model B, and 

Model A and Model C suggest that, overall both algorithms have similar efficacy of 
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classification. Moreover, in the terms of the percentage discrepancy of total cost from the 

ground truth, model C yielded closer results in 53 out of the 100 sequences, whereas in 

terms of discrepancy of transition costs from the ground truth model C yielded closer 

results in only 39 of the 100 sequences. These observations provide a statistical validation 

of the hypothesis that using the performance of MSA to generate simulation input models 

can match (if not exceed) the performance of HAR-SA.  

IV.5 Summary and conclusion 

In this Chapter, the MSA technique was explored as a possible bridge between raw 

sensor data and simulation model inputs. In a nutshell, MSA operates by comparing 

various attributes of sequences of multi-dimensional data and forming conclusions by 

aggregating the scores obtained from the various comparisons to produce an activity 

classification with high fidelity. In comparison with traditional HAR techniques (as 

described in Chapter II), MSA allows for more flexibility as it (i) considers trends between 

individual data points, (ii) is not limited to specific window sizes for activity recognition, 

and (iii) can be applied to sequence of activities at once while incorporating key 

information about underlying activity dependencies among others.  

An exploration of HAR and MSA operations showed that while both rely on 

simplification of the available data by deriving representatives for particular subsets of the 

data, HAR uses statistical features whereas MSA is based on categorical representation. 
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The derivation of categorically representing continuous sensor data is a widely validated 

approach, and commonly used in supervised ML applications.  

The designed MSA algorithm was systematically examined as an alternative to the 

previously developed HAR-SA framework. It was found that MSA not only did reduce a 

two-step activity classification process to a single step implementation, it also expanded 

the possibility of using prior knowledge describing the sequences of and relationships 

among activities. It was further concluded that while MSA can be used as a substitute to 

HAR for pre-processing of ergonomic (time-motion) data, it can be also incorporated with 

HAR to improve the overall activity classification performance in the presence of non-

ergonomic data. For example, sequences of activities identified via HAR can be further 

aligned with the available data on cost and quality to identify anomalies in the 

classification results.  

The developed methodology in this Chapter followed an integrated process of data 

categorization, determination of parameters through cross validation using available 

labeled data and new unlabeled sequences. This framework was implemented for a 

publicly available dataset with the objective of correctly classifying the activities from the 

raw sensor data. The dataset consisted of 8 subjects performing 5 activities for 5 minutes 

each while data was collected by 5 sensor units in a total of 45 dimensions.  

The MSA algorithm was applied to both subject-dependent and subject-

independent scenarios. After several iterations, the average accuracy of activity 

recognition was found to be 98% and 97% for subject-dependent and subject-independent 
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classification, respectively, when all 45 dimensions were used. The output of the subject-

independent activity recognition was then used as input for a non-deterministic DES 

model. The same model was also built using output from HAR-SA algorithm. Simulation 

outputs (measured in terms of the calories burned and the energy expended in transition 

between activities) form these two inputs were compared against the simulation output 

using the ground truth in order to establish the validity of MSA as a means to generate 

reliable simulation input models. Results showed that in 53 out of 100 sequences the 

output of MSA outperformed the output of HAR-SA in terms of total cost, while this 

number was 39 out of 100 for activity transition cost.  

These findings confirm that MSA is a viable alternative to HAR-SA while 

expanding the scope of prior information. While the current implementation focusses on 

recognizing the patterns within the activities, it can be also adapted for recognizing 

patterns across sequences. For instance, when data describing different attributes in 

different instances is available, MSA can be used to compare across those instances. 

Moreover, input data may be ordinal as well as continuous. For example, if data on costs, 

activities, and schedule is available, a 3-dimensional SA can be adopted and used to 

classify and compare activity sequences and identify anomalies.  

It must be noted that the current implementation of MSA is limited to an alphabet 

of 20 characters due to the fact that sequence alignment applications were developed 

primarily for bioinformatics applications which require representation of only the 20 basic 

amino acids that make up most of biological matter. Future work in this area will mainly 
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focus on expanding the range of categories beyond the existing 20 characters. It is 

expected that with greater granularity in the categorical information, the accuracy can be 

improved thus providing greater stability of resulting simulation input models.  
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CONCLUSIONS AND FUTURE WORK 

V.1 Conclusions  

The general advancement in technology over the past few years has created 

significant opportunities of efficiency improvement in the construction industry, as one of 

the most important sectors of the global and U.S. economy. Such improvement is expected 

to enable the industry to shed its traditional mantle as it slowly adopts to technological 

advances to overcome current stagnant low productivity rates. In particular, with the 

proliferation of data, data-driven discrete event simulation (DES) modeling has been 

proposed as a potentially effective platform to examine the uncertainties in project 

planning and execution, and accelerate the adoption of data-driven decision-making 

during project lifecycle. However, despite the availability of large and diverse volumes of 

data, the integration of data-enabled techniques such as data-driven simulation has been 

hindered due to the presence of noise in the collected input data, which in turn deteriorates 

the reliability and fidelity of simulation output. Moreover, there is a lack of comprehensive 

frameworks that can process raw process-level data to increase the general reliability and 

stability of model outputs.  

In light of these fundamental challenges, the work presented in this Thesis aimed 

at filling existing gaps in knowledge and practice by examining the hypothesis that 

techniques derived from key natural phenomena that deal with noise can improve the 
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quality of input modeling in DES systems. This was objectively evaluated using 

comparisons in the context of resemblance of simulation output to ground truth 

information, ability to factor in domain-specific parameters and constraints, or a 

combination of these measures. In particular, two major categories of natural phenomena 

were investigated in this Thesis; evolutionary techniques, also known as genetic 

algorithms (GA), and sequence alignment (SA) (both pairwise and multi-

dimensional). Work presented in this Thesis validated the central hypothesis through 

improvement in the resemblance to results from ground truth. In the discussion that 

follows, the validation of the hypothesis using each of the three major techniques (GA, 

SA and MSA) is summarized.  

Chapter II dealt with the improvement of activity recognition transition data by 

using GA, an evolutionary technique with roots in nature. In the framework illustrated in 

this Chapter, human time-motion data was collected from a warehouse operation 

experiment using built-in smartphone sensors (accelerometer, linear accelerometer, and 

gyroscope). Collected sensor readings were first processed through a machine learning 

(ML) framework, focused on human activity recognition (HAR) algorithms. The output 

of HAR was then used to extract and refine activity transition information, and document 

this information in a dependency network assimilator (DNA) matrix form. The fitness of 

the generated DNA matrix was improved in an iterative GA-DES process from 0.76 to 

0.96 (compared to the ground truth value of 0.97). This improvement was further validated 

by using the obtained activity transition information as input of a simulation model, and 
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assessing the quality of output in terms of the total time used to inspect and process each 

box, variation in the unit cost, and inspector’s idle time. This increased resemblance of the 

simulation results to the ground truth provided clearer insight into the real system, 

potentially improving the quality of decision-making with regards to safety and health, 

ergonomics, resource allocation, and jobsite layout. 

The work presented in Chapter III expanded the refinement of activity transition 

data laid out in Chapter II through the use of SA. This Chapter primarily dealt with the 

errors in the activity recognition output of HAR and used the principles used in the 

comparison of deoxyribose nucleic acid (DNA) sequences in bioinformatics to detect and 

correct potential anomalies in activity sequences. In particular, the global fitness 

parameter (GFP) which expresses the overall accuracy of activity recognition improved 

from 85.7% before the implementation of SA to 87.25% after the implementation of SA.  

The algorithms presented in Chapter II and Chapter III helped make improvements 

in the quality of the raw data available as simulation input. However, both were limited to 

improving the output obtained from classic HAR algorithms, thus necessitating a two-step 

process (i.e. HAR, followed by either GA or SA). To eliminate this need, the potential of 

MSA in recognizing activities directly from raw sensor data (without the need of running 

HAR algorithms) was explored in Chapter IV. MSA expands upon the principles of SA 

by simultaneously comparing data from several attributes. Like HAR, this algorithm 

simplifies continuous data, however, unlike HAR, MSA relies on categorical 

representation of data as opposed to statistical features. The designed MSA algorithm was 
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validated by implementing it in an openly available human time-motion dataset which 

contained information collected from 5 sensors (mounted on different body parts) and 8 

subjects (both male and female). After several iterations, the average accuracy for subject-

dependent activity recognition (for 45-dimensional SA) was calculated as 98%, compared 

to 97% in subject-independent classification. Further validation was derived by using the 

outputs of MSA and HAR-SA to generate two separate input models for a 5-activity DES 

model, and testing the resemblance of simulation results to the ground truth. Results 

showed that in terms of total cost, in 53 out of 100 sequences MSA outperformed HAR-

SA, while in 39 out of 100 sequences MSA outperformed HAR when activity transition 

cost was considered as a metric. These findings revealed that MSA is a viable alternative 

to HAR-SA while expanding the scope of prior information.  

Overall, the work presented in this Thesis contributes to the body of knowledge 

and practice by introducing and validating a general framework of sensor data processing 

inspired by natural phenomena. The algorithms designed and implemented in this Thesis 

not only do expand the scope of data processing in construction applications but can 

collectively facilitate a paradigm shift from computationally intensive synthetic data 

processing techniques to more robust methods of noise refinement in large datasets with 

built-in dependencies among individual data points.  

At a practical level, these methodologies facilitate and ultimately automate the 

tedious process of collecting, processing, and integrating time-stamped human motion 

data, for easier and more reliable recognition of performed activities. In achieving this 
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improvement some priori knowledge is assumed about the system to facilitate greater 

understanding of the situation. Incorporating certain priori knowledge to produce more 

insightful posteriori knowledge is a well utilized technique in construction research. For 

instance, in order to discover process-level knowledge of construction activities, Akhavian 

and Behzadan (2018), assumed knowledge on the number of subjects, the activities 

performed, the number of work cycles, and the operational dependencies between the 

different activities. Similarly, in a system developed with the objective of improving safety 

performance by detecting and documenting near-miss falls in construction sites using 

semi-supervised learning algorithms, Yang et. al. (2016) assumed that the number of 

subjects, the dimensions of the steel frame, the duration of the activity and the start and 

end timestamps were known. Furthermore, in order to enable more efficient work 

sampling, Joshua and Varghese (2010) implemented an automated activity recognition 

system that utilized priori knowledge such as the components of the bricklaying activity 

performed and the number of subjects.  

Similar priori knowledge was assumed in the algorithms implemented in this 

Thesis as well. In particular, in the implementation of GA (Chapter II), it was assumed 

that in the modeled system 8 activities were performed, the transition from any given 

activity to succeeding activities could be determined probabilistically or deterministically 

(e.g. the inspection station node was a probabilistic node, whereas other nodes were 

deterministic as shown in the DNA matrix of Figure II-6), the experiment was repeated 

for 30 cycles, and that each activity was discrete and not immediately followed by another 
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instance of the same activity. Similar assumptions were made in the implementation of 

SA as well (Chapter III). For instance, it was assumed that 6 activities were performed for 

6 cycles by 4 subjects. Moreover, the ground truth of the first cycle was assumed to be 

known, while the ground truth of the other cycles remained unknown and random. 

Likewise, the assumptions made during the implementation of the MSA (Chapter IV) 

involved knowing that there were 5 activities, performed by 8 subjects with the data 

collected by 5 sensor units in 45 dimensions or attributes.  

In the methodologies developed and implemented in this Thesis, the assumptions 

that were made and utilized provided a foundational understanding of the framework of 

the system involved: the specifics were understood only after the implementation of the 

pre-processing, post-processing, and simulation models for several iterations. The 

conclusions drawn from these frameworks provided the foundation for data-driven 

decision-making. For instance, results of the GA enabled recognition of the actual 

transitions between activities (shown in the DNA matrix of Figure II-13), and more 

accurate assessment of the cost and time required to move a certain number of boxes in 

the system (shown in Figure II-16 and Figure II-17). Similarly, incorporating data 

refinement (pre- and post-processing) steps inspired by SA (Section III.5) and MSA 

(Section IV.4) techniques increased the understanding of the system though increased 

accuracy of activity recognition in the system within the context of other information 

available about the system. In particular, in SA, the sequence of activities in cycle 1 was 

evaluated to provide insights about the rest of the system, and in MSA, the sensor 
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information available from the source sequences was used to recognize unknown 

sequences.  

In general, the contributions of SA and MSA were not limited to the specific 

system being evaluated, as the output can be used to assess other systems as well.  For 

example, the process laid out in Sub-section III.4.2 to assess the reliability of HAR in 

identifying a particular activity can be valuable in other applications involving similar 

activities. Taking this further, collection of similar observations can also help improve the 

heuristics generally used in data science. For instance, let us assume the commonly used 

value for one heuristic is 10 seconds but repeated simulations through data collected in 

experiments and project settings reveal the heuristic to perform better with a different 

value, for example, 8.8 seconds. Moreover, while the current implementation of MSA 

focusses on recognizing the patterns within activities, it can be easily adapted to be utilized 

in recognizing patterns across sequences. For instance, given data on different attributes 

in different instances, the information can be used to compare across those instances. In 

fact, this comparison in many ways is simpler as available data can be ordinal as well as 

continuous. For example, since data on cost, activities, and time (schedule) in many 

projects are available, a 3-dimensional SA can be conveniently used to compare the 

sequences and identify anomalies. Overall, this alternative approach to pre-processing and 

post-processing increases the richness of the conclusions derived. Ultimately this will 

contribute to the generation of more realistic inputs for simulation modeling of real world 

operations, thus supporting the prospect of data-driven decision-making. 
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V.2 Directions for future work  

In the future, the nature-inspired methods presented in this Thesis will be expanded 

and improved to ensure easier implementation in the field while producing greater value 

thorough simulations.  

In particular, with further research the use of the coupled GA-DES framework will 

be expanded to cover more sophisticated scenarios where larger numbers of entities 

interact in more complex settings beyond the controlled experimental scenario used in this 

Thesis. Specifically, the number of decision points (i.e. forks) will be expanded to increase 

resemblance to real construction scenarios. Moreover, further research will minimize the 

issues that arise in scaling this algorithm to greater scope and complexity. 

In addition, the scope of MSA will be expanded beyond the current 

implementation to enable the recognition of more diverse, multi-attribute activity 

sequences with better computational efficiency. In essence, the algorithm will be utilized 

to recognize patterns across sequences with numerical and non-numerical attributes. For 

example, given project-specific data such as cost, schedule, and activity dependencies, a 

3-dimensional alignment can be used to compare the sequences and identify the 

anomalies. Furthermore, the current implementation of MSA is limited to an alphabet of 

20 characters, which places an artificial constraint on the implementation. Thus, future 

work will focus on expanding the range of categories beyond the current limit of 20. It is 

expected that with greater granularity in the categorical information, the accuracy is 

improved while computational requirements are reduced, thus improving the overall 
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stability of resulting simulation input models. Overall, these improvements are expected 

to facilitate greater degree of near-real time feedback minimizing the time lapse between 

data collection and data-driven decision-making.  
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