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ABSTRACT

The Higgs boson discovery was announced on July 4th, 2012. It was measured to have a mass
of 125.7 £ 0.3 (stat) £ 0.3 (syst) GeV and since then boson has been seen in many decay paths,
including the H—~~, H—ZZ—41, H—77, and H-WTW~ —lvlv channels. However, no one has
looked for the boson at this mass using the H-WTW~—1vjj decay channel. This dissertation
presents a search for the ~125 GeV Higgs in semi-leptonic W decays using both traditional kine-
matically discriminating variables as well as a matrix element technique. The data for this analysis
was collected in 2012 by the Compact Muon Solenoid (CMS) experiment at the Large Hadron
Collider (LHC) and amounts to 19.7 fb~! of proton-proton collisions at a center of mass energy of
8 TeV. Although this analysis presents a step forward in complexity, we were still not able to see a
significant excess above the standard model background prediction. However, we were able to set
an upper limit of 5.4 on o /oy at the 95% confidence level for the semi-leptonic W decay of the

Higgs boson. These represent some of the first such limits recorded.
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NOMENCLATURE

AOD Analysis Object Data
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DAQ Data Aquisition
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HF HCAL Forward

HLT High-Level Trigger
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ISR Initial-State Radiation

JEC Jet Energy Correction

JER Jet Energy Resolution

L1 Level 1

L1A Level-1 Accept

L2 Level 2
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L3
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LHCb
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LSP
MB
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MET
MIP
MVA
NDF
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NLO
NNLL
NNLO
NPV
PAG
PD
PDF
PF

PMT

Level 3

Large Electron-Positron Collider
Large Hadron Collider

Large Hadron Collider beauty
Leading Log

Leading Order

Lightest Supersymmetric Particle
Muon Barrel

Monte Carlo

Muon Endcap

Matrix Element Method

Missing Transverse Energy
Minimum lonizing Particle
Multivariate

Number of Degrees of Freedom
Neutral Hadron

Next-to-Leading Order
Next-to-Next-to-Leading Logarithmic
Next-to-Next-to-Leading Order
Number of Primary Vertices
Physics Analysis Group

Primary Dataset

Parton Distribution Function
Particle Flow

Photomultiplier Tube
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POG Physics Object Group

PS Proton Synchrotron

PSB Proton Synchrotron Booster
PU Pileup

QCD Quantum Chromodynamics
QED Quantum Electrodynamics
RF Radio Frequency

RMS Root Mean Square

RPC Resistive Plate Chamber
SM Standard Model

SPS Super Proton Synchrotron
SUSY Supersymmetry

TAMU Texas A&M University
TCS Trigger Control System
TEC Tracker End Cap

TIB Tracker Inner Barrel

TID Tracker Inner Disks

TOB Tracker Outer Barrel

TPG Trigger Primitive Generator
TTC Timing, Trigger and Control
UE Underlying Event

VEV Vacuum Expectation Value
VPT Vacuum Phototriode

WIMP Weakly Interacting Massive Particle
WLS Wavelength-Shifting
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1. INTRODUCTION

Particle physicists seek to understand the building blocks of the universe and how they interact.
An understated search to characterize the fundamental constituents of nature which can be built up
into the world we see. In this quest there has been no better tool than the synchrotron, a circular
accelerator which collides particles at speeds approaching that of light. As the accelerators reach
higher and higher energies, physicists are able to probe smaller distance scales and even create
heavy, short lived particles which are otherwise inaccessible. The standard model (SM) of particle
physics is the codification of such constituents over a century of study. It describes all of the
observed elementary particles, their properties, and the electromagnetic, weak, and strong forces
through which they interact. The standard model, a specific framework born out of quantum field
theory (QFT), has predicted quantities and been proven accurate time and time again. Yet until
recently it remained an incomplete model, at least experimentally.

One of the primary missions of the Large Hadron Collider (LHC), the worlds highest energy
particle accelerator located at the European Organization for Nuclear Research (CERN), was to
search for a long theorized missing piece to the SM. On July 4th, 2012 the ATLAS (A Toroidal
LHC Apparatus) and CMS (Compact Muon Solenoid) collaborations at the LHC simultaneously
confirmed the discovery of a new boson [30, 26]. Since its discovery, the particle has been shown
to be consistent with the hypothesized scalar Higgs boson, said to give mass to itself and all of the
other fundamentally massive particles through the process of electroweak symmetry breaking. It
took almost 50 years for experimentalists to confirm the existence of the boson first proposed in
1964 as the spin zero mediator to the standard models only scalar field.

Using 19.7fb™! of 8 TeV data from the CMS experiment at CERN, the Higgs boson mass
was measured to be 125.7 £ 0.3 (stat) & 0.3 (syst) GeV'? by five major decay modes: H — 7,

H — 77, H = bb, H — ZZ—4l, and H - WW — Ivlv [32]. Since then, the experiment has

'Unless otherwise indicated this document will use natural units, where ¢ = /i = 1.
This measurement has subsequently been improved by combining the ATLAS and CMS measurements. The
measured Higgs mass as of 2015 was 125.09 £ 0.21 (stat) &= 0.11 (syst) GeV [31].



entered a phase of intense study of the new particle. Every property of the new boson and all of its
decay channels must be studied in great detail to confirm that it is indeed the SM Higgs boson and
not a different particle with similar characteristics. Currently the properties of the new boson are
consistent with those predicted by the SM, but any deviation from the SM predictions could point
to some new, as yet unexplored physics.

This dissertation will present a search for the 125 GeV Higgs boson in the the
H—WW —lvjj decay channel using 8 TeV proton-proton data collected by the CMS detector. Al-
though the H—W W —lvjj channel was used in the original combined limit, the previous search
was not sensitive to the “low mass” Higgs, but only to My > 2My [33].> Because the Higgs mass
1s less than two times the mass of the W boson, at least one of the W bosons must be created “off-
shell”, meaning that its measured mass is not ~ 80 GeV. On top of that, the presence of a neutrino
makes it a challenge to fully reconstruct the initiating particle. For these reasons the WIWW — [viv
decay channel was the most sensitive of the W channels during the 2012 combination. Never-
theless this analysis will search for the low mass Higgs boson in the semi-leptonic channel using a
matrix element (ME) technique to boost the signal extraction sensitivity.

This dissertation will be organized in the following way. Section 2 will present an overview
of the standard model, the Higgs mechanism, and a brief introduction to how the Higgs can point
to physics beyond the standard model (BSM). The LHC and CMS will be described in section 3.
Section 4 describes the reconstruction of an event at CMS and all of the final physics objects.
Section 5 discusses the analysis work-flow from data samples used to signal extraction techniques

while the results are presented in section 6. Section 7 gives my concluding remarks.

3The lowest search mass was My = 170 GeV.



2. THEORETICAL FRAMEWORK

Since the mid-1970s, the Standard Model (SM) of particle physics has been the leading theory
describing three of the four known fundamental forces (not including gravity) as well as classifying
all of the known elementary particles. Even during it’s formative years, the SM’s success at pre-
dicting new particles (i.e. the top quark in 1995) and describing the properties of known particles
(i.e. W* to Z° mass ratio) was undeniable. The model’s roots can be traced back to 1930 when
Herman Weyl was able to describe electromagnetism as a local symmetry represented by the Lie
group U (1) [34]. In 1954 Yang and Mills created a theory which tried to extend the idea of gauge
theory to non-abelian groups [35]. This laid the ground work for Sheldon Glashow to combine
the electromagnetic and weak interactions in 1961 [36]. This combined interaction is described
by the SU (2) xU (1) group. In 1967 Steven Weinberg and Abdus Salam [37, 38] continued this
work by adding in the Higgs mechanism first proposed by Robert Brout and Francois Englert [39],
Peter Higgs [40, 41], and Gerald Guralnik, Carl. R. Hagen, and Tom Kibble [42, 43]. Although all
of these theorist contributed to this advancement, the mechanism eventually became known as the
Brout-Englert-Higgs (BEH) mechanism. The model entered its current form around 1964 with the
introduction of the strong force and quantum chromodynamics (QCD) [44, 45, 46, 47, 48]. The
initial theory by Gell-Man and Zweig only included the up, down, and strange quarks and was in-
complete until the introduction of the color charge by Greenberg [49]. The full theory is described
by the symmetry group

SU (3)@SU (2), ®U (1)y 2.1

where SU (2), ®U (1), is the electroweak (EW) symmetry group describing both the electro-
magnetic and weak interactions and SU (3), is the symmetry group describing the strong interac-
tion [50, 51].

The rest of this chapter will discuss the standard model, both its structure and some of its

mathematical underpinnings, in more detail. Section 2.1 will introduce the particle content of



the SM. The QFTs that govern the SM interactions will be discussed in sections 2.2 to 2.5. In
section 2.7 we will briefly reference how Higgs physics can relate to physics beyond the SM. More

information about the history of the standard model can be found in appendix A.
2.1 The Standard Model

The standard model is a locally gauge-invariant quantum field theory (QFT) in four-dimensional
Minkowski space [50, 52]. The structure and particle content of the SM can be found in fig. 2.1.
The SM is composed of 12 fermions, the particles that make up matter, and 4 gauge bosons, the
force-carrying particles which mediate the electromagnetic, weak, and strong interactions. On its
own, the basic symmetries of the standard model require that the gauge bosons (W=,Z,7,gluons)
be massless. However, we know that this is not true as experiments have shown that the W and Z
bosons have relatively large masses. The aforementioned Higgs mechanism takes care of this by
spontaneously breaking the electroweak symmetry, giving mass to the quarks, the leptons, and the
W and Z bosons [37, 38, 53].

Fermions are particles which obey Fermi-Dirac statistics and the Pauli exclusion principle,
meaning that no two fermions may occupy the same quantum state within a given quantum system.
These particles have half-integer spin, often denoted as spin-1/2, which means that their intrinsic
angular momentum is /1/2. For every fermion f in the SM there exists an anti-fermion f, which
has oppositely signed quantum numbers, but the same mass. The fermions in the SM are separated
into six leptons and six quarks with these further separated into 3 generations of pairs of particles.
Each subsequent generation is ostensibly a heavier version of the previous generation, with the
same quantum numbers.!

Each generation of lepton can be broken down into a charged and neutral lepton. For instance,
the first generation is composed of the electron (e), with charge —e, and the electron neutrino ().
The second and third generations contain the muon (x) and tau (7) along with their associated
neutrinos. Although the SM specifies that the neutrinos are massless, experiments have shown that

this is not true. While their exact masses are still unknown, upper bounds have been places on these

IThe neutrinos may have a different mass ordering.
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Figure 2.1: The Standard Model of particle physics. The model includes three generations of mat-
ter particles (leptons and quarks) as well as the gauge and Higgs bosons. Included in this drawing
are the particle names, symbols, masses, spin, electric charge, and color charge, if applicable.

and can be seen in fig. 2.1. Each generation of lepton has an associated quantum number, called the
lepton number, defined as L, = ny — nj. First generation leptons have quantum numbers L, = +1
and L, = L, = 0 while the second and third generations have value +1 for their associated
lepton number and zero otherwise. The antileptons have oppositely signed lepton numbers. The
lepton numbers are a conserved quantity in the SM, which means that only lepton-antilepton pairs
can be created or destroyed. That being said, neutrino oscillations, the phenomena of neutrinos
changing flavor from one generation to the next, has been observed [54]. While this violates the
conservation of lepton numbers within a generation, the total lepton number L=L, + L, + L, may
still be conserved. All leptons interact through the weak interaction, but only the charged leptons

interact using the electromagnetic interaction. Because leptons lack the color charge they do not



interact using the strong force.

Like the leptons, the three generation of quarks can be broken into one up-type quark and
one down-type quark, categories which gain their name through the content of the first generation
containing the up (u) and down (d) quarks. The second generation is made up of the charm (c)
and strange (s) quarks while the third is made up of the top (t) and bottom (b) quarks. The up-type
quarks have fractional electric charge of () = +2¢/3 and the bottom-type quarks have electric
charge Q = —e/3. As in the case of the leptons, the quarks have an associated baryon quantum
number, B. This quantity is conserved in all SM interactions and no exception has every been
seen. This means that only quark-antiquark pairs may be created or destroyed and also results
in the stability of the lightest baryon, the proton. Baryon number is defined as B = % (ng — ng),
where, for example, the baryon number for a quark is +1/3 and —1/3 for an antiquark. Quarks may
interact through the electromagnetic and weak interactions, but unlike the lepton, quarks can also
interact via the strong force. This is because quarks also have color charge, which can have three
values referred to as red, green, or blue. Antiquarks may contain charges of anti-red, anti-green, or
anti-blue. In the SM colorless particles are forbidden from existing on their own, which means that
individual quarks, often referred to as bare quarks, have never been seen in nature. Rather, quarks
are always found as constituents of bound states called hadrons. This group of composite particles
may be further divided into mesons, bound states of a quark-antiquark pair, and baryons, bound
states of three quarks and antiquarks. The hadrons contain quark and antiquark combinations such
that the bound state is a color singlet, often referred to as being colorless. Mesons contain color-
anticolor pairs while baryons consist of red, green, and blue charged quarks. The masses of the
quarks are hard to measure due to their confinement in hadrons, however, global averages have
been made.

So far the particle content of the SM has been introduced along with the various force carri-
ers. The next few sections will go into greater detail about the specifics of the particle-particle
interactions. It will be helpful to keep in mind fig. 2.2, which shows all of the leading order SM

interactions.
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Figure 2.2: A diagram illustrating the leading order interactions between particles in the standard
model, including self-interactions. Reprinted from [1].

2.2 Quantum Electrodynamics & the Electromagnetic Interaction

Quantum electrodynamic (QED) is a quantum field theory which describes the dynamics of
the electromagnetic interaction and corresponds to the Ugys (1) group. In a QFT, particles are
represented by fields, which are in turn represented mathematically by Lagrangian densities L.

QED was formulated to described the interactions of spin-1/2 particles, namely leptons and quarks.



Like a classical field theory, the interactions and equations of motion of a quantum system are

described by a Lagrangian. QED is described by the Dirac Lagrangian density

L = ipy" Oy — mapp (2.2)

where v a four-component column vector representing the wave function of a spin-1/2 particle?,
~A* are the four Dirac gamma matrices, ) = 11+, and m is the mass of the particle.
In order for QED to be gauge invariant it must be invariant under both local and global gauge

transformations. Let there exist a global U (1) transformation

b= = (2.3)

with constant .. Then ¢/ in the Lagrangian 2.2 can be replaced by equation 2.3, which means that
L — L' = L. Therefore QED is invariant under this type of transformation. If instead we have
a — «a(x) where « is allowed to vary as a function of space-time, then equation 2.3 becomes a

local U (1) transformation. Therefore equation 2.2 becomes

L— L =L+ Py (0,0 () (2.4)

and is thus not invariant under the local transformation as is. To return the gauge invariance we

can replace the partial derivative in the Lagrangian density by a covariant derivative

D, =9, +igA, 2.5)

, where ¢ = —e is the electron charge, in case of an electron, and A,, is a new gauge field repre-
senting the photon, the mediator of electromagnetic interactions. This new gauge field transforms
as

Au—n% =A,+0,x (x) (2.6)

24) is a field known as a Dirac spinor.



, where () is an arbitrary function of space-time. By applying the transformation in equation 2.3
to a lepton field, the photon field transforms as in equation 2.6, and x (z) = « () /¢, the covariant
derivative transforms in the same way as ¢ (z), namely D, — (D) = e™*D,. After the

changes listed above, equation 2.2 will be locally gauge invariant and take the form
Ty (7~ 1 1%
L =1 vy'D, —m)y — ZF F 2.7)

where

Fr = (9" AY — §¥ AM) (2.8)

is the electromagnetic field strength tensor.

Notice that in equation 2.7 does not contain a mQAuA“ term, which would be the mass of the
gauge field. This fits with experimental observations given that the photon is massless and thus
the electromagnetic interaction has an infinite range. Lagrangian 2.7 does introduce lepton-photon
interactions and does contain an £/~ interaction and a term quadratic in the field strength tensor,
which is the photon kinetic energy. The complete QED Lagrangian can be created by generalizing

to all leptons by ¢ — 1); and summing over all leptons ¢ = e, i, 7, u, d, ¢, s,t, b as in equation 2.9.

) 1
L= [ ("D, — mi) ] — L (2.9)

2.3 Electroweak Interaction

As mentioned in sec 2, the electromagnetic and weak interactions can be unified into a single,
non-abelian gauge theory, work started by Yang & Mills and then completed by Glashow, Wein-
berg, and Salam [53]. In order to explain this unification, we will first work with a fermionic

doublet representing and SU (2) symmetry. A doublet of Dirac fields can be represented as

b= Y1 () (2.10)

Yo ()



The doublet will transform under the three dimensional rotation

W — exp <za%>¢ @.11)

This is again a global transformation, but note that by generalizing to higher order interaction we
must use matrices instead of a local « () function to describe dynamics. These matrices, o', are
the Pauli sigma matrices shown in equation 2.12 and satisfy the identity 0’07 = §% +ie¥/*o* where

i

€% = +1 and where € is an antisymmetric tensor.

ol = L0 = 00 = (2.12)

As in sec 2.2 we can turn equation 2.11 into a local transformation by having o — o (z) and
thus
5

W (@) >V (2) 8 (2), where V () = exp (mi (z) 5) 2.13)

Still, the Lagrangian must be invariant under this transformation and in order to do this we intro-

duce three vector fields AL (), where i = 1, 2, 3. We once again use a covariant derivative

i

. GO
D,=0,— ZgA“E (2.14)
, which means that the newly introduced fields transform as

Al (x) %%v () (A; () 2 + é@) V() (2.15)

Unfortunately, this transformation is not trivial to calculate given that the Pauli matrices do not

commute. By assuming infinitesimally small transformations and expanding V' () to first order in

10



« we obtain the simpler form

jot o 1 no' [ ot ot

With the above ingredients the covariant derivative will transform as

i

D— (1 + m%) D, 2.17)
and the field strength tensor will be
F., = 0,A, — 0,Al + ge7* A A} (2.18)

Given all of the above, the Yang-Mills Lagrangian will be

1, . (. Lo
L= 1 (F;w)2 + 1 (z*y“@u — ZgA“E) (0 (2.19)

Given the above process from Yang-Mills theory, we can now show how to obtain the elec-
troweak interaction, which is based on a local SU (2); xU (1), gauge symmetry. This process
will follow what was done in section 2.2 in that requiring a local invariance will lead to the in-
troduction of new gauge fields and determine their interactions. It is also important to note that
SM fermions can be grouped based on their chirality, which is a fundamental property of a particle
and describes how the particles wave function will behave under rotation. Spin-1/2 particles will
pick up a minus sign under a 27 rotation, but left-chiral (left-handed) particles will go one way
around the complex plane while right-chiral (right-handed) particles will go the opposite direction.
In the SM, the left-handed up- and down-type quarks form a weak doublet ¢;, and the left-handed
charged leptons and neutrinos form a separate weak doublet ¢;. The right-handed particles form
weak singlets, but right-handed neutrinos and left-handed antineutrinos don’t exist in the SM.

Given the prerequisites, an explanation of electroweak unification can now be made. This ex-

11



planation will start by using the first generation of leptons as an example, but will then generalize
to more particles. The SM contains an SU (2) doublet of the left-handed components of the elec-
tron neutrino and electron. The SU (2) invariant right-handed component of the electron is placed

in a singlet.
VL
L= y ER (2.20)
€L
The kinetic energy term of electroweak Lagrangian for the first generation leptons takes the

form

¢p = L1540, L, + ehotio,en (2.21)

where 0 = (0%, 01, 02,0%), 6 = (0%, —0!, —0?, —0?), 0¥ is an identity matrix, and o are again

the Pauli matrices. Equation 2.21 is invariant under the global SU (2); xU (1),  transformation
given by
L—L'=e¢UL V §€R (2.22)

ep—ep =e*er ¥V AR (2.23)

-k k
where U = e¢7"@°

and of is a real number. However, if 6 and o are allowed to vary as a
function of space-time, then the Lagrangian will not be invariant under a local SU (2), xU (1),
transformation.

To make Lagrangian 2.21 invariant we construct a U (1) gauge field B, (x) and three SU (2)

gauge fields W, (z) = W} () o}, which transform as

B, (x) —>BL () = B, (x) + %8;10 (x) (2.24)
W, (x) =W, (z) = U (2) W, (2) U (z) + % (0,U (2)) UT () (2.25)

where g; and g are dimensionless coupling strengths of the interactions. The covariant derivatives

12



are then

D,L. = (aﬂ + z’%YB# + ig—;ywu> L. (2.26)
Duen = (0 + @'%YBu) er 2.27)

where Y is the hypercharge operator. The weak hypercharge can be calculated as Y = 2 (Q — T3),
where 75 is the third component of the weak isospin quantum number 7'. A notable property of
the weak interaction is that it only acts on particles with weak isospin 7" and that 73 is conserved
in all interactions. The SM gauge fields and their associated electric and hypercharge values can
be found in table 2.1. Combining the kinetic and gauge interaction terms of the Lagrangian yields

1

L= Lxg+ Loguge = L16"iD, L. + ehotiD,er — 1

B, B" — i iwﬁyww” (2.28)
i=1
where B, = 9,B, — 0,B, and W, = [0, + (i%) W,| W, — [0, + (%) W, ] W,, are the field
strength tensors. This Lagrangian, without any mass terms, is now locally invariant. The addition
of the mass terms and electroweak symmetry breaking (EWSB) will be covered in section 2.5, but
given that the mediators of the weak force are massive, its range is limited to about 10~'* m.
The observed electroweak gauge bosons are actually combinations of the B and W fields as

shown in equation 2.29

Wl 'W2
wk = Zet (2.29)
V2
gW3 — g2 B .
Z, =" T = W2 cos () — Bysin (6w) (2.30)

Y VE T

. glws + g2Bu

N

, where 6y is the Weinberg angle defined as sin (fy) = ¢1/1/97 + g5. Note that W, and W,

A = W) sin (6w ) — B, cos (Ow) (2.31)

are electrically charged while W5 and B are electrically neutral. Given equation 2.28, the W+
will only couple to the left-handed doublets while the Z and photon (A) will couple to both the

left- and right-handed leptons in the SM. Lagrangian 2.28 can be generalized to include the other

13



generations by appropriately summing over all leptons as in equation 2.32.

L= (LL&%DMLGHQMDM@R)

leptons

3
1 v 1 ) ynz
= BB =) W, W (2.32)
=1

These ideas can be extended to the quarks by making a doublets out of the left-handed up- and

down-type quarks and singlets out of the right handed components, as in 2.33.

ur,
Qu = , Ur, dp (2.33)
dr
A similar kinetic component to the lepton Lagrangian in 2.21 can also be formed
L — Qf 54iD, Q. + uho"iDyug + dyotiD,dg (2.34)

As we saw with the leptons, the W will only couple to the left-handed quark doublets while the

Z and photon will couple to both the left- and right-handed quarks.

Particle-Type Q 15 Y B | L
w=(a), | ()| ()| o] e

Quarks a), [\~173) | \~1/2
. 2/3 0 | 4/3|1/3] 0
dp ~1/3 0 | —2/3]1/3]0

(v, 0 1/2
Leptons gL_(e)L (—1) (—1/2) —bp ol
€R —1 0 —2 01

Table 2.1: The quantum numbers of the SM fermions grouped by chirality and particle-type, inde-
pendent of generation. The various particle-types in the SM are up-type quarks, down-type quarks,
charged leptons, and neutrinos.
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Adding equation 2.34 to equation 2.32 gives the full electroweak Lagrangian as
LW = LI 1 LR 4 L ouge (2.35)

This Lagrangian exhibits an invariance to the U (1) transformation L,—¢'“L,, eg—¢e'®ep, which
leads to conservation of electron number. There is a similar invariance to transformations using
the muon and tau fields. The Lagrangian is also invariant to another U (1) transformation where
all negatively (positively) charged fields are multiplied by ¢** (e~**). This invariance leads to
the conservation of electric charge. However, the electroweak Lagrangian is not invariant under
charge conjugation or a parity transformation. Charge conjugation is when the sign of all quantum
numbers is changed, which can also be thought of as exchanging all particles (antiparticles) for
antiparticles (particles). Parity transformations occur when the sign of the spacial coordinates are
flipped as in »— — r. Interactions mediated by the photon and Z boson, also known as neutral
current interactions, are invariant under the combination of charge and parity transformations,
known as CP invariance. On the other hand, interactions involving quarks which are mediated by

the W= bosons are not invariant under a CP transformation [55].
2.4 Strong Interaction

Quantum Chromodynamics (QCD) is the theory that described the interaction between quarks,
the strong interaction, and is represented by a local SU (3), gauge symmetry. As described in
section 2.1, quarks contain any one of three color charges (C); red, green, or blue. Only color
neutral (colorless) hadrons are allowed in nature, which requires that a baryon contain equal parts
of each color and that a meson contains a color-anticolor pair. Because of this each quark is

represented as a color triplet

Uy
G = |u, (2.36)

Up
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The mediator of the strong force, the electrically neutral gluon, must then contain two color charges
in order to conserve color. The eight known color combination for the gluon will represented by
the eight gauge fields introduced below.

A QCD Lagrangian which is globally SU (3) invariant can be represented as

6
Lohop = D 6" 0t (2.37)

i=1

where ¢; represents one of the six quark flavors. This Lagrangian will be invariant under a trans-
formation of the form ¢;—¢; = Ug; where U is a member of SU (3). When using a local SU (3)
transformation where U—U (x), Lagrangian 2.37 is no longer invariant. To return invariance, we
must introduce eight gauge fields (G, (x)), which represent the gluons, and the appropriate co-
variant derivative. The transformation of the gauge fields and the covariant derivative will take the

form

G,—G, = UGU + — (8,U) U’ (2.38)

s

where g is the dimensionless coupling strength of the color interaction and whose value can be

seen in fig. 2.3 where g, = «,. The field strength tensor for QCD is
G =0,G, —0,G, +1iy9s (G,G, — G,G,,) (2.40)

and the locally SU (3) gauge invariant QCD Lagrangian is given as
6 1 8
Lohop = ) (@i Dugi) = 7 ) G, G" (2.41)
i=1

=1

There are a few interesting facts about the strong interaction which must be noted. In contrast

to the electroweak interaction C, P, and T are all conserved. Additionally, the strong force has a
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Figure 2.3: Summary of measurements of o, as a function of the energy scale (). The respective
degree of QCD perturbation theory used in the extraction of ay is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to leading order; res. NNLO: NNLO matched with
re-summed next-to-leading logs; N3LO: next-to-NNLO). Figure and caption reprinted from [2].

range of about 10~'° m, which is enough to act on nucleons, i.e. protons and neutrons, to form
atomic nuclei. Lastly, QCD is a strongly coupled theory at low energies and large distance scales
and weakly interacting at high energies and small distance scales. Quarks are confined particles,
meaning that the attractive force between them does not decrease as they move farther apart. In-
stead the force decreases as the particles move closer and increases as they move farther apart,
a behavior called asymptotic freedom [56]. When in the high energy regime the typical pertur-
bative calculation can be made?, but in the low energy regime theorists must use more advanced

techniques such as lattice gauge theory [57].

3The leading order (LO) terms can be calculated perturbatively. Corrections must be added to account for the next-
to-leading order (NLO) effects, with further corrections for the next-to-next-to leading order (NNLO) effects, and so
on.

17



2.5 Brout-Englert-Higgs Mechanism & The Higgs Boson

The EW and QCD Lagrangians covered in sections 2.3 and 2.4 contain no mass terms, which
means the bosons within the SM should be massless. However, we know from experiments at
CERN that the W* [58] and Z [59] bosons do indeed have mass. The method by which mass is
added to the SM while maintaining the necessary gauge invariance is the BEH mechanism [39, 40].
This is accomplished by adding one or more complex scalar fields, the Higgs field(s), to the SM
Lagrangian. These fields will acquire a vacuum expectation value (vev) which will spontaneously
break the symmetry of the Lagrangian. The Goldstone theorem tells us that for every spontaneously
broken continuous symmetry there will be a new massive scalar “Goldstone” boson. So the number
of Goldstone bosons will be equal to the number of broken generators of the symmetry group. The
massless standard model bosons then acquire mass by absorbing these Goldstone bosons. So the
number of massive SM bosons will be equal to the number of broken generators.

Remember from section 2.3 there are four massless electroweak gauge bosons, W1, W2, W3,
and BY. The experimentally observed bosons, however, are the massless photon () and three
massive bosons (W*, Z). We also know that the electric charge Q is conserved in electroweak
interactions. This means that the SU (2), xU (1), electroweak theory is broken such that a new
U (1) z,, symmetry group is formed which corresponds to electromagnetism. In order for three
gauge bosons to acquire mass they must absorb three Goldstone bosons. The simplest method to
accomplish this is to introduce a complex, scalar SU (2) doublet & with hypercharge Y = 1.

N
P = ¢ (2.42)

¢0
The part of the SM Lagrangian which includes the electroweak gauge bosons and the leptons can
be written as

1

4BWB“” + L; (iD,~A") Li + eri (iD") er. (2.43)

1
Loy = —ZWZ,W;“’ -
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where ¢ runs over the three generations, ¢ and v are Lorentz indices, and a runs over the generators

in the gauge group. The field strengths are given by

Wi, = 0. We — O, W + gae™™WIWS (2.44)

B, =90,B, - 0,B, (2.45)
and the covariant derivatives for the left- and right-handed leptons are

DLy, = (0, —igo:TuWy —igiY B,,) Ly, (2.46)

D,er = (0, —ig:1YB,) er (2.47)

where 7, are the generators of the SU (2), gauge group and gy, g2 are the coupling constants for
the electroweak interaction.

By adding the scalar field in equation 2.42 we must add an additional scalar part to the La-
grangian

Ls = (D*®)" (D, ®) — V (D) (2.48)

where the first term is the kinetic term and the second term is the scalar potential, also known
as the “Mexican Hat” potential. While the form of the scalar potential is not known from first
principles, we can make the assumption that it takes the simplest form possible which has the

desired properties of spontaneous symmetry breaking and the ability to be renormalized
V(®) = 12010 + A (0T0)” (2.49)

The value of \ must be positive in order for the vacuum to be stable. The sign of 12 specified one

of two cases for the potential, both of which are illustrated in fig. 2.4. When p? > 0, the potential

19



V (@) is always positive and has a minimum at
0
(0] @0) = ®o = (2.50)

where no spontaneous symmetry breaking can occur. In contrast, when p? < 0 the potential takes
its namesake “Mexican hat” shape with a minimum value not located at the origin. In this case,
the neutral component of the scalar field can acquire a vacuum expectation value (vev) v, a process
known as electroweak symmetry breaking (EWSB).
1 (0 —p?

0|®10) =Py = —= , V=1 —— (2.51)

o0 == | !
By only adding a vev to the neutral component of the scalar field electromagnetism is unbroken
and the U (1) ,, symmetry keeps a conserved electric charge of () = T5 + %

At this point we can expand the scalar field ¢ around the minimum @, to get

1 0
O (r)=— (2.52)

V2 v+ h(z)

where h () is a new scalar field. Next we insert this field into the kinetic part of the Lagrangian 2.48

and redefine the gauge fields as

1
+ 1 1172
Wy = 7 (WaFiw?) (2.53)
1
Zy = ——o (¢uW? — 4B (2.54)
I g% _I_g% ( 12 U)
A=t (92W, + 91B,,) (2.55)
©no M :
Voitag "
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Figure 2.4: (Top) The scalar potential when p? > 0. In this case the potential will always be pos-
itive and its minimum value will be at the origin. The vacuum expectation value for this potential
is zero. (Bottom) When p? < 0 the potential will take the shape of a “Mexican Hat” with its
minimum value being in a degenerate ring around the origin. As soon as the scalar field has moves
away from the origin and closer to the minimum the symmetry has been spontaneously broken
and will acquire a non-zero vev. Because the scalar field picked a particular direction when falling
towards the minimum, it is no longer invariant under a rotation. Reprinted from [3].

which correspond to the observed gauge bosons. After this the covariant derivative becomes
1 1 1
|D,®|> = 5 (0,H)? + §g§ (v+ H)?W, W + S+ ) (g2 +¢3) 2,2" (2.56)

From this we see that the photon A, remains massless, but that the mass terms for the W and Z

bosons take the general forms M7, W, W* and 1 M72Z,Z" respectively. Thus the masses of the
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electroweak gauge bosons are

1

1
My = 51}\/‘(]% + g3 (2.58)
My=0 (2.59)

Three of the degrees of freedom from the scalar field, which would have been two charged and
one neutral Goldstone boson, have been absorbed by the gauge bosons in order to give them mass.
These appear as flat directions in the scalar potential. There is one remaining degree of freedom,
an oscillation in the radial direction, which corresponds to the neutral Higgs boson and can be seen

in fig. 2.5 where the potential is concave.

A4 Vig)

| ©©
A N/

~\ Re ¢

Im ¢

Figure 2.5: The Higgs boson corresponds to an oscillation of the scalar field in the radial direction.
Reprinted from [3]
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Several relationships can be formed between the various bosons. The Weinberg angle also

known as the weak mixing angle 6y, defined as sin 6y, = 921+ ~, can be used to describe the
91793

photon an Z as
A, = cos Oy B, + sin GWWlf’ (2.60)
Zu

= —sinOw B, + cos HWWj’ (2.61)

Equation 2.62 shows a relationship between the masses of the W and Z at tree level, which is one

reason why measurements of their masses are so important.

M
LU N——- (2.62)

Mz /gl + g3

There also exists a relationship between the coupling strength of the weak and electromagnetic

interactions which makes use of the weak mixing angle,
e = go sin Oy (2.63)

By substituting equation 2.52 into Lagrangian 2.48, using v? = —“72, and looking at only the
pieces involving the Higgs we can study the mass and couplings of the Higgs itself. This section

of the Lagrangian will take the form

1
Ly = 3 (0,H) (0"H) — \*H* — \uH? — 21{4 (2.64)

Since scalar masses have the general form %m¢2 we find that the Higgs boson mass is
my = 2 \? = —2°, (2.65)

where A, and thus the Higgs mass, needs to be determined experimentally. We can also see that the

Higgs couples to vector bosons, fermions, and itself, all interactions which are shown in fig. 2.6.
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Figure 2.6: Tree level Feynman diagrams showing how the Higgs couples to vector bosons (a,b),
fermions (c), and to itself (d).

Besides having massive bosons, the SM also has a whole host of massive fermions. These
particles can be shown to acquire mass by adding Yukawa couplings between the fermion fields
and the scalar field to the SM Lagrangian. The part of the Lagrangian that corresponds to the first

generation fermions is given by
Lr=—G.LPep — GuQPdr — G,QPur + h.c. (2.66)

where ® = i, ®* is the conjugate of ® with negative hypercharge. There are additional terms

added to the full Lagrangian which correspond to the second and third generations which are not
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shown here. By substituting equation 2.52 into Lagrangian 2.66 we find

1 0 B 0
Lrp=——7 |G, (Eé) er + Gy (ﬂd) dr
2 L\v+ H L\v+h
(2.67)
B v+ h
+G, (a d) ugp| + h.c.
L 0
1 _
= — — (U + h) (GeéLGR + Gudrdgr + GuﬂLuR) + h.c. (2.68)

V2

where h.c. is a placeholder for the hermitian conjugate terms. The fermion masses take the form
mfr fr + h.c., which means that the fermion masses for the first generation are

G.v G,v Gqv
Me = My = mg = ——
T2

7

(2.69)

The second and third generations have similar mass terms. Since there is no right handed neutrino
in the SM the neutrinos that do exist remain massless. As the coupling constants, G, and the

fermion masses are not predicted by the SM they must be measured and added to the model.
2.6 Higgs Production in a Proton-Proton Collider

The Higgs boson has several accessible productions mechanisms at a proton-proton collider.
Fig. 2.7 shows the 8 TeV production cross sections for the five production modes at the LHC. The
production mode with the highest rate, by far, is the gluon-gluon fusion process shown in the blue
curve, often abbreviated as ggH. Since gluons are massless so they can’t couple directly to the
Higgs boson. Instead, this production mode proceeds through a fermion loop as shown in 2.8a.
The Higgs couplings to fermions goes as gy ;= %, where v is the vacuum expectation value for

V2 246 GeV, where G'r is the Fermi coupling determined by muon

the Higgs field, v = (v/2Gp)
decay measurements [60]. This means that the coupling is directly dependent upon the fermion
mass and because of this the fermion loop in the gluon-gluon fusion diagram is dominated by top

quarks, the heaviest of the fermions in the standard model. The cross section for this production
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mechanism at /s = 8 TeV and assuming a 125 GeV Higgs is
Oger = 19.27772% (QCD Scale Unc.)*/ 5% (PDF + a5 Unc.) pb~! (2.70)

where QCD Scale uncertainty refers to the next to next to leading order (NNLO) radiative correc-
tions and PDF + ag uncertainty refers to the uncertainties on the parton distribution function and

strong coupling parameters.

LHC HIGGS XS WG 2012

o(pp — H+X) [pb]

107

10-2|III|III|III|III|III|III|
80 100 120 140 160 180 200

M, [GeV]

Figure 2.7: Higgs production cross-sections at the LHC for 8 TeV proton-proton collisions.
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The production mechanism with the next highest cross section is the vector boson fusion (VBF)
process (fig. 2.8b) where either two oppositely charged W bosons or two 7 bosons merge and
produce a Higgs boson. The final state particles for this process are those from the Higgs decay
as well as the two initial quarks, which will preferentially be found in the forward regions of the
detector, which is why this process is often abbreviated as qqH. The production cross section in

this case is
over = 1.653743% (EW Unc.) 057 (QCD Scale Unc.) 2 0% (PDF 4 ag Unc.) pb~!  (2.71)

where the electroweak uncertainty is calculated at next to leading order (NLO).

The other processes found in fig. 2.7 can all be grouped as associated production mechanisms.
The Higgs is produced along with either a W* boson, Z° boson, or a tt pair, often abbreviated
as WH, ZH, or ttH. The first two cases, seen in fig. 2.8c, are also referred to as “Higgsstralung”
because the Higgs can be seen as being radiated from the vector bosons, similar to how a photon is
radiated by an electron during bremsstrahlung. The latter case is seen in fig. 2.8d. The associated

production cross sections are

own = 0.7046*19% (QCD Scale Unc.)*23% (PDF + ag Unc.) pb™!

oz = 0.4153*31% (QCD Scale Unc.) 3% (PDF + ag Unc.) pb™! (2.72)

on = 0.1293738% (QCD Scale Unc.)"§ |7 (PDF + o Unc.) pb™!

Just as the Higgs boson can be produced in several ways it can also decay in many ways.
Fig. 2.9 shows the Higgs decay branching ratios (BR) as well as ¢ x BR for final states containing
four fermions. It is clear from fig. 2.9a that the WW decay has one of the highest branching ratios
and from fig. 2.9b that the lvqq final state has the highest 0 x BR.

Given the production cross sections and branching ratios discussed above, fig. 2.10 shows the
dominant Feynman diagram searched for in this analysis, the gluon-gluon fusion production and

semi-leptonic W decay mode. Nevertheless, we search for a given final state and not an exact
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Figure 2.8: Feynman diagrams for the four Higgs production mechanisms at the LHC.

production and decay chain, so there are several branching ratios which are useful to this analysis
and are listed in table 2.2. The H — ZZ and H — bb BR are included because they can produce
a lvqq final state given a mis-identification or mis-reconstruction issue. The signal cross sections
used in this analysis are listed in table 2.3 and present a couple of insights into our signal makeup.
First is that the gluon-gluon fusion process is indeed dominant with ~10 times higher of a cross
section than the other channels. Additionally, the WH channel where H — bb is non-negligible
and comparable in size to the VBF production mode, even though this is not the decay channel we
are looking for. By using some cuts to remove b-jets I will later show how to remove this signal
contamination.

In addition to the true signal events, volunteer signal events (i.e. H — bb), this analysis must

content with several other standard model processes which can produce a lvqq final state. These
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Decay BR

H—-WW 0.21575 25
Wl 0.3257
W—qq 0.676
WW — lvqq 0.2203
H— 77 0.02461535%
H — bb 0.57733%

Table 2.2: Useful Higgs and W branching ratios

Channel o X BR
ggH, where H - WW — lvqq 1.823pb~!
qqH, where H - WW — lvqq  0.1493 pb ™!

WH, where H - WW 0.1515pb™!
ZH, where H - WW 0.08929 pb !
ttH, where H — WW 0.0278 pb~!

WH, where H — bb — lvqq 0.1324pb™!
ttH, where H — bb — lvqq 0.0746pb™"

WH, where H — Z7Z 0.01860 pb ™!
ZH, where H — 77 0.01096 pb~!
ttH, where H — Z7Z 0.00341 pb~!

Table 2.3: A table of 0 x BR for the lvqq final state resulting from any Higgs production mode
and several decay channels.
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Figure 2.9: The dominant Higgs decay modes at the LHC. The vertical, dashed red line indicates
a Higgs mass of 125 GeV.

background events can even have rates several orders of magnitude higher than that of our signal.
There are two varieties of backgrounds which will be encountered, reducible and irreducible. The
irreducible backgrounds, like the SM WW process, will exactly produce the lvqq final state. On
the other hand, reducible backgrounds produce slightly different final states, but may still enter the
signal region for a variety of reasons. An example of a reducible background is the tt process,
which will have extra (b-)jets that may be removed through additional cuts.

The backgrounds considered in this analysis are as follows:

e W-jets: This is the production of a single W* boson in association with final state quarks
or gluons. If the W* decays leptonically then the final state will match that of our signal.
This process has an extremely high cross section and is thus the dominant background in the

analysis.

e Drell-Yan Z/~v*+ jets: In this case a Z or ¥ boson is produced in association with final state
quarks or gluons. In order for this process to mimic the signal one lepton from the boson

decay must be lost due to being outside the acceptance region or due to some reconstruction
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Figure 2.10: Feynman diagram for the gluon-gluon fusion SM Higgs production process where the
Higgs decays semi-leptonically to two quarks, one lepton, and one neutrino.

(a) Z° production in association with jets (b) W production in association with jets

Figure 2.11: Example Feynman diagrams for the standard model V + jets process decaying to the
lvjj final state.

inefficiency. Although this process also has a high cross section, the requirement of having

only one lepton reduces the prevalence of these processes in our signal region.
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(a) W+W ™ pair production (b) Z boson pair production (c) Production of a W and Z
boson

Figure 2.12: Example Feynman diagrams for the standard model diboson processes decaying to
the (v jj final state.

vy

(a) (b)

Figure 2.13: Two possible tt Feynman diagrams which could have final states similar to the Higgs
signal. Lines in gray are either mis-reconstructed or missing.

e Diboson: It is possible to mimic the final state signature with decays from several non-
resonant diboson processes. The WW process 1s an irreducible background as it can exactly
mimic our signal. The WZ process can produce the lrqq final state in two ways: either the
W decays leptonically and the Z decays hadronically or the W decays hadronically and one
of the leptons from the Z decay is lost. The ZZ process is similar in that one lepton from the

leptonic Z must be lost in order for the event to make it into the signal region.
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(a) Production of a single top (b) Production of a single top (c) Production of a single top
quark via the s-channel quark via the t-channel quark via the tW-channel

Figure 2.14: Example Feynman diagrams for the standard model single top processes. The final
state particles are not pictured here.

e tt: The tops will each decays to a bquark and a W boson via the weak interaction. If the W
bosons decay semi-leptonically then the final state will be very similar, save for the presence
of two additional b-quarks. If the b-jets can be identified then the events can be removed.
Still, due to inefficiencies in identifying the b-quarks some tt may still pass all selection

requirements.

e Single Top: There are three production channels for this type of process: s-channel, t-
channel, and the tW-channel. These processes have low cross sections and can produce

reducible signatures.

e Multi-jet: This is the production of n jets where one jet is mistakenly identified as a lepton
and the jet energies are mis-reconstructed enough to produce a sufficient imbalance in the
event to mimic the neutrino. While this might seem improbable, the QCD cross section is

quite large and thus this become a non-negligible background for this analysis.
The Feynman diagrams for all of these backgrounds, except for QCD, can be found in figs. 2.11, 2.12,2.13,
and 2.14.
2.7 Beyond the Standard Model

While the standard model has been an incredibly successful theory (see appendix A), it too has

limitations. These shortcoming manifest themselves as either observations which are not covered

33



by SM or characteristics of SM for which there is no fundamental explanation. In order to combat
these shortcomings, a plethora of new theories have been created with the guiding principle that
the new theories must be a superset of the standard model. That is, they must be able to reproduce
all of the SM observations that have been so thoroughly tested. The following is a non-exhaustive

list of shortcomings.

e Gravity is not included as either a field or particle within the Standard Model. In addition,
there is no explanation as to why gravity is a much weaker force when compared to the
electroweak or strong forces. Nevertheless, we expect that quantum gravity effects will
become important at the Planck scale, mp ~ 10'° GeV. There have been attempts to create
supergravity theories [61, 62, 63], but these have not yet been unified with the rest of the
Standard Model. Most of these theories include a particle called the graviton, which is the

quantum of a spin-2 field.

e According to cosmological experiments such as Planck, the universe is made of only about
5% ordinary, visible matter. Part of this remainder, about 26%, is made of what is termed
dark matter (DM) [64, 65]. We know that this gravitationally interacting substance must
exist because of astrophysical measurements of galactic rotation curves and galaxy cluster
collisions [66, 67]. Still, the Standard Models does not provide any particle candidate. While
the exact nature of DM is unknown, we do know that any DM particle must be stable, elec-
trically neutral*, weakly interacting, and a have a reasonably large mass. While this may
sound like the SM neutrino, we already know that neutrino masses are too small [68]. This
type of particle has been termed the WIMP or weakly interacting massive particle [66], but

other candidates have been proposed as well [60].

e Besides visible and dark matter, the universe contains 69% of something else which has been
termed dark energy and is not included in the Standard Model. Scientists know very little

about dark energy other than that it seems to be causing the acceleration of universal expan-

4The term “dark” comes from the fact that DM does not interact with photons and therefore is not visible to the
human eye.
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sion, an action which could not come from any of the SM particles. Planck measurements
indicate that dark energy is consistent with the theory of a cosmological constant. However,
when there have been attempts to calculate the cosmological constant in terms of vacuum

energy there have been mismatches of 100 orders of magnitude.

e Physicists expect that equal amounts of matter and antimatter were created during the Big
Bang. Nevertheless the visible universe is filled with matter, but contains very little anti-
matter. The Standard Model offers no explanation for this discrepancy unless some of the
symmetries were violated (i.e. baryon number conservation, CP invariance, and C conserva-

tion) [69, 70].

e As explained in section 2.5, Standard Model neutrinos are massless because they have no
chiral right-handed counterparts and no Yukawa coupling with the scalar Higgs field. At the
same time, there have been observations of neutrinos oscillating between flavors, which
can only occur if at least two of the three neutrino types have mass [71, 72, 73, 74, 75].
To complicate matters, the physical neutrino eigenstates are mixtures of mass eigenstates
(v1, V2, v3), which cannot be measured directly. There have been no direct measurements of
the neutrino masses to date, but there have been upper limits placed on the masses and the

squared mass differences are known.

e Studies of the Z boson have shown that no fourth generation of fermions with light neutri-
nos exists [76]. However, there is nothing in the Standard Model which forbids a fourth

generation. Could there be a fourth family of fermions with heavy neutrinos?

e [s there a reason for the Standard Model fermion couplings to the Higgs boson? In other
words, why do the fermion masses vary over five orders of magnitude from 0.511 MeV for
the electron to 173 GeV for the top quark? This is sometimes called the fermion mass

hierarchy problem.

e Baryon and lepton conservation are accidental symmetries without enforcement by a local
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gauge symmetry. Are these really conserved quantities?

e Why is the ;2 from the Higgs potential negative? It needs to be negative to ensure EWSB,

but there is no other compelling reason.

e We know that there are different mass scales in the universe. The Standard Model is effec-
tive at the electroweak scale of O (100 GeV). However, at the Planck scale, O (10" GeV),
the model starts to break down and requires quantum gravity effects to be valid. As a con-
sequence of the different scales, the bare parameters of the SM can differ from their renor-
malized values by several orders of magnitude. This in and of itself will not invalidate the
model, but one would need to accept some amount of “fine tuning”. These types of prob-
lems are called “hierarchy problems”. There is one problem in particular, however, which
is known colloquially as the hierarchy problem. Observed particle masses are a combina-
tion of the “bare” mass at tree level and the radiative corrections from loop diagrams. The
problem comes from loop corrections to the Higgs mass parameter . = my,/ /2 introduced
in section 2.5. The Higgs mass can be written in terms of the bare mass parameter (i, and
radiative corrections du

p? = pg 4 o (2.73)

The largest correction comes from the one-loop diagrams dealing with the top quark, the
heaviest particle in the Standard Model. The one loop corrections to Higgs are shown in
fig. 2.15. While fermions and bosons are protected from these divergences, scalars like the
Higgs have a large dependence on the ultraviolet (UV) cutoff. This means that while the
observed Higgs mass is ~ 125 GeV, radiative corrections should drive ;2 and thus the mass
up to very large values. If the bare mass and radiative corrections happened to cancel at
such a precise level as to lead to the observed mass it would be and unnatural amount of
fine tuning [77]. Fine tuning problems like this have traditionally been interpreted as the

existence of new physics [66].

In order to answer the open questions or provide a more complete theory, there have been
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Figure 2.15: Feynman diagrams for the one-loop corrections to the Higgs boson mass. From left
to right: contribution from the Yukawa interaction; two contributions from the gauge interaction;
contribution from the Higgs self-interaction.

numerous models of beyond-the-SM (BSM) physics developed. While some of these models are
still being tested by the LHC and other experiments, some previous BSM models were ruled out
by Higgs discovery [78]. Below I list a small selection of BSM models which have been proposed

as extensions to the SM.

e There are a whole host of little Higgs theories proposed [78, 79, 80]. In these models the
Higgs boson is seen as the pseudo-Goldstone boson of a global symmetry broken around
10 TeV. In addition to the current array of SM particles, a little Higgs model would include
new particles with the same spin as the SM particles. An additional symmetry called T-parity
would be introduced, which says that particles must be introduced in pairs. This implies that

the additions to the SM would only impact observables at the loop-level.

e Models of extra spatial dimensions say that the electroweak scale is the only fundamentally
short distance scale and that loop corrections to the Higgs mass cut off at the electroweak
scale and not the Planck scale [81]. The reduction in the cutoff scale leads to less fine tuning.
A key feature of these models is that gravity, but not the other gauge interactions, permeates
the new dimensions, which is why it is seen as being much weaker than the other forces. The
Planck scale in (4 + n) dimensions is assumed to be on the order of the electroweak scale.
For n > 2 the size of the new dimensions is sub-millimeter, which is a scale where gravity

has not been thoroughly tested.

e Supersymmetry (SUSY) was first proposed by Miyazawa in 1966 in order to relate mesons

and baryons for hadronic physics [82, 83]. In the 1970s it was rediscovered as a QFT by
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several groups. In short SUSY introduces a new space-time symmetry that relates fermions
to bosons and immediately provides a solution to the hierarchy problem [84, 85, 86, 87,
88, 89, 90, 91]. Each SM particle has a SUSY partner that differs in spin by 1/2. The
coupling of the particles are chosen so that the Higgs mass does not diverge due to loop
corrections. Additionally, SUSY causes EWSB in a different way that does not require
negative p?, answering another question left by the SM. Although SUSY models can cause
protons to decay, many introduce R-parity to prevent this. If R-parity conserved then the
lightest supersymmetric particle (LSP) is stable (i.e. the LSP can’t decay without violating
R-parity). SUSY is a appealing model because the LSP also provides a DM candidate as the
particle would be heavy and weakly interacting. While the theory has significant promise,
SUSY has not yet been observed. This however, does not mean that SUSY is wrong. It
simply means that the masses of the supersymmetric partners are not the same as their SM

partners (i.e. SUSY is broken somehow).
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3. THE LHC AND CMS DETECTOR

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [92] is, in many people’s estimation, the largest and most
complex machine ever built by humanity. The main accelerator at the European Organization for
Nuclear Research (CERN), the LHC is located both in France and Switzerland due to its enormous
size (Fig. 3.1). It was built between 1998 and 2008 and installed in the 26.7 km tunnel dug for
its predecessor, the Large Electron-Positron Collider (LEP), which is located between 50 m and
170 m underground. It is the highest energy collider in the world, eclipsing the previous record
holder, the Tevatron at Fermilab in Batavia, IL. The following section is a description of the LHC
and CERN accelerator complex, a more detailed description can be found in [92] and [93].

The LHC provides beams for several experiments located along its beam line, though we will

only concern ourselves with the four highest profile experiments (Fig. 3.1):

e The CMS (Compact Muon Solenoid) [12] and ATLAS (A Toroidal LHC ApparatuS) [94]
experiments are both general purpose detectors. Their goals include precision measurements

to test the Standard Model and searches for new physics, including the Higgs boson.

e LHCD (Large Hadron Collider beauty) [95] was designed to do precision measurements of

CP-violation and the physics of B-mesons.

e ALICE (A Large Ion Collider Experiment) [96] studies heavy ion collisions.

The LHC was designed to collide two beams of protons (pp), heavy ions (PbPb), or a combi-
nation of the two (pPb) at specific interaction points around the beam line. For the purposes of this
thesis we will only cover proton-proton collisions from this point forward. The protons come from
a single bottle of hydrogen gas, which is then disassociated and stripped of electrons to form a pro-
ton beam. Interestingly, only 1 ng of hydrogen is required per day in order to form the LHC beams.

The protons next travel through the Linac2 machine where they are bunched by radio frequency
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FRAMNCE

SWITZERLAND

Figure 3.1: Overhead view of CERN and its main experiments, CMS; ATLAS; LHCb; and ALICE,
as well as two of the larger accelerators, the LHC and SPS. The schematic is overlaid on a map of
Switzerland and France. Reprinted from [4].

(RF) electromagnetic fields and are accelerated to 50 MeV. This chain continues through the Pro-
ton Synchroton Booster (PSB), the Proton Synchrotron (PS), and the Super Proton Synchrotron

(SPS) where the protons are accelerated to 1.4 GeV, 26 GeV, and 450 GeV respectively (Fig. 3.2).
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After being accelerated in the SPS, the proton bunches are injected into the two LHC beam
pipes, which were designed to accelerate the two proton beams to 7 TeV (Fig 3.3). Size limitations
in the tunnel dictated that the the beam lines be formed by twin bore magnets. Each magnet is
formed by a single mechanical structure and cryostat while containing two coils and two beam
channels. The coils are made out of superconducting NbTi Rutherford cables cooled to 1.9 K by
120 t of superfluid helium. This forms the 8.33 T magnets necessary for bending the 7 TeV protons
(Fig. 3.4). The LHC contains 1232 superconducting dipole magnets for bending the protons and
392 superconducting quadrupole magnets for focusing the beams. The beam line also contains
sextapole, octopole, and decapole magnets, which are also used to focus and correct the direction
of the beams. The original LHC design calls for a bunch spacing of 25 ns, 10!! protons per bunch,
and 2808 bunches per beam.

The original plan was to start the LHC accelerator complex in September 2008. However, due
to a catastrophic incident damaging the machine, the startup was delayed until November 23, 2009;
even then colliding beams only had a center-of-mass energy of 900 GeV. From March 30, 2010
through the end of 2011 the LHC operated with a center-of-mass energy of 7 TeV. Then in 2012
the energy was again increased to 8 TeV (4 TeV per beam), which is the energy of the beams during
the data-taking period focused on by this thesis. It is important to note, though, that the machine
has continued to operate after the 2012 data taking period and increased the center-of-mass energy
to 13 TeV starting in 2015 (there was a planned shutdown from 2013 through early 2015).

In addition to the center-of-mass energy, collider physicists are interested in the rate at which
a specific physics process occurs. This in turn is related to the cross sections, the probability that
two particles will collide and react a certain way, and the luminosity. The rate of events is given
by equation 3.1, where L is the collision luminosity and o is the cross section for a given physical

process.

dN/dt = L-o (3.1)
The luminosity as it is described here is often called the “instantaneous luminosity” as this
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Figure 3.3: A diagram of the LHC beams along with the four major experiments. Reprinted
from [7].

value can change from moment to moment. The “integrated luminosity” is then a measure of the
total amount of data collected. The instantaneous luminosity itself depends upon the parameters
of the LHC beams and the optical properties of the focusing system at the interaction point. This

information is summed up in equation 3.2 [97]:
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Figure 3.4: A diagram of an LHC dipole magnet and cryostat. Reprinted from [8].

(3.2)

where:

N: protons per bunch

np: bunches in the LHC ring

f: frequency of bunch revolutions around the ring

~v: relativistic factor for the protons

e ¢,: normalized emittance of the proton beams
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e [3*: beta function at the interaction point

e [: geometrical reduction factor due to the crossing angle of the beams

The maximum design luminosity of the LHC is 1 x 103 cm~2s~!. During the 2010 and
2011 run periods (7 TeV center-of-mass energy) the instantaneous luminosity increased from 1 x
1022cm™2s7 ! to 5 x 103 cm™2s~!. During the 2012 data-taking period, the peak instantaneous
luminosity was 7.67 x 10?3 cm~2 s~! with a bunch spacing of 50 ns, a maximum number of bunches
of 1380, and ~ 2.2 x 10'* protons per beam (~ 1.6 x 10! protons per bunch). The LHC delivered
23.30fb~! of integrated luminosity to the CMS detector of which 21.79 fb™" was recorded. As of
the end of 2017, the LHC is still running at 13 TeV (6.5 TeV per beam) with a peak luminosity of
2.04 x 10** cm~2 57!, 1868 bunches, and 1.25 x 10! protons per bunch [98, 9]. Figures 3.5 and 3.6
show the total integrated luminosity delivered by the LHC and recorded by the CMS experiment

for the various data-taking periods [9].
3.2 The CMS Detector

The CMS experiment is one of two general purpose detectors at the LHC tasked with a wide
variety of physics analyses. The goals of the physics program range from precision Standard
Model measurements to the search for physics beyond the Standard Model and even includes a
hugely successful heavy ion program. The detector itself is located 100 m underground near Cessy,
France on the opposite side of the LHC from the main CERN site in Meyrin (see fig. 3.1). It was
largely built on the surface and then lowered into the collision cavern in 15 pieces, which then had
to be assembled. The detector has a cylindrical design which is 22 m in length, 15 m in diameter,
and weights 14000 tonnes. The shape and positioning of the detector around the interaction point
(IP) gives the experiment nearly 47 coverage of the proton-proton collisions. In total, there are
~108 data channels checked in each bunch crossing owing to the high granularity of the CMS sub-
detectors. The layout of the detector can be seen in fig. 3.7. The following sections will describe

each of the sub-detectors and its properties [12].
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Figure 3.5: Total integrated luminosity versus time delivered to the CMS experiment for the 2010,
2011, 2012, 2015, 2016, and 2017 p-p data-taking periods. Reprinted from [9].

3.2.1 Coordinate System

The IP is at the center of the detector and is the origin of the right-handed coordinate system
used to describe the detector and the physics being measured (location and direction). The z-
axis is defined along the LHC beam line. Instead of using the polar angle, #, which would go
from 0° along the positive z-axis to 90° pointing straight up from the interaction point, collider
physicists use the quantity pseudorapidity defined as 7 = —In [tan (6/2)]. The benefits of using
the pseudorapidity are that differences in this coordinate, A, are invariant under boosts in the
z-direction and particle production is roughly uniform in 7. The z- and y-axes form the plane

perpendicular to the z-axis, where positive = points to the center of the LHC ring and positive
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CMS Integrated Luminosity, pp, 2012, Vs = 8 TeV
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Figure 3.6: Total integrated, offline luminosity versus day in 2012. The blue graph shows the de-
livered luminosity while the orange graph shows the luminosity recorded by the CMS experiment.
This graph shows only the luminosity collected for p-p collisions during stable beams. Reprinted
from [9].

y points upward. The azimuthal angle, ¢, and radial coordinate, r, are also defined in this same
plane. It is sometimes more useful to use ¢ and r due to the bending of the particles in the magnetic
field. Lastly, this paper will often refer to the quantity pr, which is the magnitude of the component
of the momentum vector in the transverse plane. A schematic of the coordinate system described

above is shown in fig. 3.8.
3.2.2 Tracker and Pixel Detector

The CMS all-silicon tracker is the closest sub-detector to the LHC beam pipe. Its purpose is

twofold; to determine the charged-particle direction at its production vertex and to measure the
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CMS DETECTOR

STEEL RETURN YOKE
Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERS
Overall diameter :15.0m Pixel (100x150 pm) ~16m* ~66M channels
Overall length :28.7 m Microstrips (80x180 ym) ~200m? ~9.6M channels
Magnetic field  :3.8T
SUPERCONDUCTING SOLENOID
— Niobium titanium coil carrying ~18,000A

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

PRESHOWER
Silicon strips ~16m? ~137,000 channels

FORWARD CALORIMETER
. Steel + Quartz fibres ~2,000 Channels

CRYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PbWO, crystals

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels

Figure 3.7: A view of the CMS detector with major sub-detectors labeled and notable facts. A
human silhouette is included for scale. Reprinted from [10].

momentum of charged particles. In the later case, the tracker is far superior to the calorimeter
systems for p up to several hundred GeV. The sub-detector is 5.8 m long and 2.5 m in diameter,
covering a pseudorapidity range of || < 2.5. It is, by necessity, highly granular, to keep the
occupancy low, and relatively radiation hard. The tracker is exposed to extreme doses of radiation
ranging from 0.18 to 84 Mrad after 500 fb~' of data. The radiation tolerance was a key factor in
determining the materials and design of the sensors and on-board electronics of the tracker. To
keep the radiation damage as low as possible, among other benefits, the tracker is kept at —10 °C.
For non-isolated particles of 1 < pp < 10GeV and || < 1.4, the track resolutions are typically
1.5% in pr and 25-90 (45-150) pm in the transverse (longitudinal) impact parameter. On the other
hand, isolated particles of pr = 100 GeV emitted at || < 1.4 have track resolutions of 2.8% in

pr and 10 (30) um in the transverse (longitudinal) impact parameter [99]. At higher 7 the reduced
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Figure 3.8: Schematic of the CMS coordinate system. Reprinted from [11].

transverse depth of the tracker degrades the resolution (particles traverse fewer layers). Fig. 3.9
shows the layout of the tracker and its subsystems. The tracker is formed by two major subsystems,

the pixel detector and the silicon strip tracker.
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The pixel detector is made up of three barrel layers, called the BPIX, and two endcap layers
called the FPIX. The BPIX contains 48 million pixels and the FPIX contains another 18 million
pixels. In total it consists of 1440 hybrid silicon detector modules, each with a dimension of
100 x 150 yum?. The small pixel size enables track resolutions of 10 zm in the transverse plane
and 20 pm in the z-direction. The pixel detector is what gives CMS its excellent secondary vertex
tagging ability in addition to producing seed tracks for the strip tracker and the high level trigger.

Just as the pixel detector was made up of the BPIX and FPIX subsystems, the silicon strip
detector is made up of four subsystems. The Tracker Inner Barrel (TIB) has four layers of 320 ym
strips. At each end of the TIB is a three-layer Tracker Inner Disks (TID), which contains strips
of the same thickness. The Tracker Outer Barrel (TOB) is the six layer system which surrounds
the TIB/TID. The first four layers of the TOB use 500 pm thick strips, and the last two layers
use 122 pm thick strips. The Tracker EndCaps (TEC) are on either side of the previous setup and
contains nine disks with up to seven layers of strips. These strips are 320 ym thick in the inner
four rings and 500 pm thick in the outer three rings. In total, the strip detector contains 9.3 million
silicon strips (15 148 modules).

The 2012 LHC run was an excellent year for the tracker. The BPIX maintained 97.7% of
its channels operational while the FPIX had 92.8% of its channels operational. The reconstruc-
tion efficiencies were also quite high, 99.5%, for each later of the pixel detector (>99.2% for the
first layer). The strip detector maintained 97.5% of its channels active and had a reconstruction

efficiency greater than 99% for each layer[100].
3.2.3 Electromagnetic Calorimeter

The electromagnetic calorimeter (ECAL) is a homogeneous detector consisting entirely of
75 848 lead tungstate crystals (PbWQO,). The detector is divided up into two sections which pro-
vide coverage in pseudorapidity |n| < 1.479 in a barrel region (EB) and 1.479 < |5| < 3.0 in two
endcap regions (EE). There are also preshower detectors (PS) in each of the endcaps, in front of
the EE, which cover a pseudorapidity range of 1.653 < |n| < 2.6. Fig. 3.10 shows the structure of

the detector with the key 7 values labeled.
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Figure 3.10: A schematic of the CMS ECAL detect with labeled subsystems and key 7 ranges
marked.

The barrel region of the ECAL consists of 61 200 crystals with a tapered shape arranged in a
projective geometry. Each crystal is about 0.0174 x 0.0174 in 7 — ¢, which corresponds to 22 x 22
mm? at the front face and 26 x 26 mm? at the back face. Each crystal has a depth of 230 mm,
which for PbWO, corresponds to 25.8 radiation lengths (X;). The scintillation light produced
in the crystals is read out by avalanche photodiodes (APDs), which produce approximately 4.5
photoelectrons per MeV at 18 °C. The dark current of the APDs is sensitive to radiation exposure.
During the 2012 run, the dark current ranged from 0.13 to 1.3 £A on average, which corresponds
to an average noise of 47 to 57 MeV [101].

The EE contains 14 648 PbWO, crystals arranged in a non-projective z — y geometry (see
fig. 3.10). The crystal dimensions are 28.62 x 28.62 mm? at the front face and 30 x 30 mm? at the
back face with a depth of 220 mm or 24.7 X,. Instead of using APDs link in the EB, the EE uses
vacuum phototriodes (VPTs) to read out the scintillation light. Again holding the photodetectors
at 18 °C, the phototriodes produce 4.5 photoelectrons per MeV. The average noise in the VPTs for
2012 was 180-200 MeV, but it could reach 600 MeV at high 7 due to the higher radiation doses in

the more forward regions [101].
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The ES is located in front of each of the EE detectors. It consists of two planes of silicon strip
sensors interleaved with a total of 3.X of lead absorber (2 X for the first layer and 1 X, for the
second layer). The silicon strips are 320 pm thick and can collect 3.6 fC of charge from a minimum
ionizing particle (MIP).

One of the main goals of the CMS experiment was to discover the Higgs boson. Because of
its low irreducible standard model background, the /' — 7~ channel was considered the “golden
channel”. Due to this, a significant amount of money and time was spent on the design and the
materials for the ECAL. PbWOy is a great choice for an ECAL because its properties, listed in
table 3.1, lead to a precision energy measurement for EM objects (by this I mean a fine small

resolution).

Property Value
Peak emission wavelength | 425 nm
High density 8.28 g/cm’
Short radiation length 0.89cm
Short Moliere radius 2.2cm
Fast decay time 6 ns

Table 3.1: PbWO, properties and their measured values

The energy resolution, o, of deposits in the ECAL vary as a function of energy (£) (in units of

GeV). This is typically modeled using an NSC function as in equation 3.3:

BROREA

where N is the noise term, S is the stochastic term, and C' is the constant term. Typical values for
these terms come from test beam studies and are listed in table 3.2 [101]. In the barrel section of the
ECAL, an energy resolution of about 1% is achieved for unconverted or late-converting photons in
the tens of GeV energy range. The remaining barrel photons have a resolution of about 1.3% up

to a pseudorapidity of |n| = 1, rising to about 2.5% at || = 1.4. In the endcaps, the resolution of
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unconverted or late-converting photons is about 2.5%, while the remaining endcap photons have a

resolution between 3% and 4% [102].

Term | Typical Value
N 12%

S 2.8%

C 0.30%

Table 3.2: Typical values for the noise, stochastic, and constant terms of the ECAL energy resolu-
tion function. These values are obtained from test beam studies.

3.2.4 Hadron Calorimeter

The CMS hadron calorimeter (HCAL) is, as its name suggests, designed to measure the energy
of hadrons. This is especially important for neutral hadrons which leave no tracks and, to a large
extent, do not register in the ECAL. The HCAL is a sampling calorimeter, meaning that is contains
both an active, energy measurement material as well as a material which induces the hadrons to
shower. The HCAL is made up of four subsystem: HCAL barrel (HB), HCAL endcap (HE),
HCAL outer (HO), and HCAL forward (HF). The HB, HE, and HO subsystems all use the same
technology, while the HF uses a different technology. Fig. 3.11 shows the structure and position
of the HCAL subsystems. When both the ECAL and HCAL work together, the CMS calorimeters
can measure a charged pion with a resolution of o/F ~ 100%//E[GeV] @ 5%, where E is the
jet energy.

The HB occupies the region |n| < 1.3 and contains alternating layers of brass and scintillator.
The number of nuclear interaction lengths (o) ranges from 5.82 at n = 0 to 10.6 at n = 1.3.
Additionally the EB, which is directly in front of the HB, has 1.1y and can measure a portion
of early developing hadronic showers, though not as accurately. The properties of the brass used
can be found in table 3.3 while the layer thicknesses and materials can be found in table 3.4.
Most of the plastic scintillating layers are 3.7 mm thick, but layer 16 is 9 mm thick so that it can

sample more from late developing showers. There is also an additional 9 mm thick layer O before
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Figure 3.11: A schematic of the CMS HCAL detector with its major subsystems labeled: HB, HE,
HO, and HF.

the first absorbing layer to catch the showers which are initiated in the dead material between the
EB and HB. The scintillating tiles are arranged in a projective geometry (pointing close to the
nominal interaction point) with the tiles occupying 0.087 x 0.087 in 1 — ¢. For |n| < 1.479, the
HCAL cells map on to 5 x 5 arrays of ECAL crystals to form calorimeter towers. Within each
tower, the energy deposits in ECAL and HCAL cells are summed to define the calorimeter tower
energies, subsequently used to provide the energies and directions of hadronic jets. The scintillator
1s separated into 16 7 section and 36 ¢ sections with almost 70000 tiles used. The light is collected
by wavelength shifting (WLS) fibers that encircle the tiles. Fibers from several layers are read out
by one hybrid photodiode (HPD), which are used for their large dynamic range and low sensitivity
to magnetic fields.

In the central region of the detector there are too few A, to fully contain a hadronic shower. For
this reason the HO system was added as a scintillating tile extension to the HB. The HO consists

of five rings, each with a width of 2.536 m in the z-direction. The most central ring, Ring 0, has
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Property Value

Materials Brass (70% Copper and 30% Zinc) or Steel
Density 8.53 glcm® %

Radiation Length 1.49cm

Nuclear Interaction Length 16.42cm

Table 3.3: Properties of the brass absorber used for the CMS HB.

Layer number(s) | Material | Thickness ( mm)
1 Steel 40

2-9 Brass 50.5

10-15 Brass 56.5

16 Steel 75

Table 3.4: Absorbing layer thicknesses and materials for the CMS HB

two scintillating layers, one inside the solenoid and one outside the solenoid. The other rings have
only one layer outside of the solenoid, which acts as a 19.5 cm iron absorber layer. This addition
to the HB brings the total depth of the CMS calorimeter systems to 11.8),.

The HE, a 17 layer sampling calorimeter, covers the 1.3 < |n| < 3.0 region. It consists of
79 mm brass absorbing layers and uses the same scintillating material as is used in the HB, but
contains only 20916 tiles. Within |7| < 1.6 the granularity of these tiles is the same as for the HB,
but at higher 7 the approximate granularity becomes 0.174 x 0.174 in n — . Like the HB, the
HE also has a layer 0. However, unlike the HB, the scintillating layers in the HE are grouped into
“depths” before the light reaches the HPDs. Fig. 3.12 shows a schematic of the CMS HCAL system
where the different colors corresponds to the various depths. This depth segmentation allows for
a more precise recalibration of the HE, which receives a higher radiation dose than the HB. When
combined with the EE, this section of the detector corresponds to a length of 10.

The HF uses steel as an absorber and embedded quartz fibers as the sensitive material. The rea-
son for the change in technology is that the HF needs to be able to withstand at least 100 Mrad/year.
The two halves of the HF are located 11.2 m from the interaction region, one on each end, and to-

gether they provide coverage in the range 3.0 < |n| < 5.2. Unlike the other hadronic calorimeter
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Figure 3.12: A schematic of the HB and HE depth segmentation.

systems, the HF does not have a piece of the ECAL in front of it. Each HF calorimeter consist of
432 readout towers, containing almost 1000 km of 800 ym diameter long and short quartz fibers
running parallel to the beam with a granularity of 0.175 x 0.175 in 7 — ¢. The long fibers run
the entire depth of the HF calorimeter (165 cm, or approximately 10 interaction length), while the
short fibers start at a depth of 22 cm from the front of the detector. By reading out the two sets
of fibers separately, it is possible to distinguish EM showers generated by electrons and photons,
which deposit a large fraction of their energy in the long-fiber calorimeter segment, from those gen-
erated by hadrons, which produce on average nearly equal signals in both calorimeter segments.

The fibers make use of Cherenkov light read out by photomultiplier tubes (PMTs), which receive
approximately 1 photoelectron for every 4 GeV of deposited energy.

3.2.5 Solenoid

One of the namesake features of the CMS apparatus is a superconducting solenoid of 6 m
internal diameter, providing a magnetic field of 3.8 T. The solenoid thus surrounds both the barrel

and endcap parts of the silicon pixel and strip tracker, the ECAL, and the HCAL. The high magnetic

field allows CMS to have a relatively small size while also having sufficiently high bending of the

high energy charged particles to measure their momenta in the tracker.

56



The magnet itself is made up of a 4-layer winding of reinforced NbTi superconductor cooled
to 4.5 K. Like the rest of CMS, this system needed to be modular and is constructed of 5 rings of
equal length. The cold mass of the magnet is 220 tonnes and it stores 2.35 GJ when the current is

fully on. Fig. 3.13 shows an artist’s rendering of the solenoid.

Figure 3.13: An artists rendering of the CMS solenoid. The five superconducting rings can be seen
inside the cryostat and support structure. A human figure is shown for comparison.

3.2.6 Muon System

Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside
the solenoid in the pseudorapidity range || < 2.4, with detection planes made using three tech-

nologies: drift tubes (DTs), cathode strip chambers (CSCs), and resistive plate chambers (RPCs).
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The barrel region of the detector contains DTs and RPCs, while the endcap region contains CSCs
and RPCs. The layout of the muon system can be seen in fig. 3.14. The iron yoke not only returns
the flux from the solenoid, but also shields the muon chambers from stray hadrons. The entire
muon detection system has nearly 1 million electronic channels and weights in excess of 10000
tons. The muon system on its own has a resolution of 15-40% depending on |7|. Matching muons
to tracks measured in the silicon tracker results in a relative transverse momentum resolution for
muons with 20 < pr < 100 GeV of 1.3-2.0% in the barrel and better than 6% in the endcaps. The

pr resolution in the barrel is better than 10% for muons with p up to 1 TeV [103].
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Figure 3.14: Layout of the muon system with the three different detector technologies labeled.

The DTs are divided into four stations named MB1 through MB4 (Muon Barrel), starting

radially from the center of the detector outward. The first three stations contain 12 chambers
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divided into three groups of four. Two of the groups measure the » — ¢ coordinates of the muon
while the third group measures the z coordinate. However, MB4 does not have a group of chambers
which measured the z coordinate. The four stations contain 250 DTs in total with a collective
172000 sensitive wires, covering an 7 range of || < 1.2. The chambers themselves contain a
gas mixture of 85% Ar and 15% CO, and have gold-plated, stainless steel anode wires with a
diameter of 50 ym. Within |n| < 0.8, the MB stations can reconstruct a high-pt muon track with
an efficiency greater than 95%. The global r — ¢ resolution is 100 pm. Fig. 3.15 gives a transverse
view of the DTs in one of the five wheels of CMS.

The CSCs are separated into four stations as well, names ME1 through ME4 (Muon Endcap),
and cover 0.9 < |n| < 2.4. MEI has three groups of 72 CSC, ME2 and ME3 each have one
group of 36 CSCs and one group of 72 CSCs, and ME4 has one group of 36 CSCs. Thus each
endcap contains 468 CSCs total. Within a CSC the cathode strips are arranged radially in order to
measure the » — ¢ coordinate of the muon. The anode wires are then arranged perpendicular to the
strips in order to measure the 7 coordinate. The cathode strips themselves are made of a fiberglass
and epoxy material called FR4, which is coated with 36 um of copper. The anode wires are gold-
plated tungsten with a diameter of 50 ym (the first group of ME1 uses 30 um wires). There are
approximately 220000 cathode strip readout channels and 180000 anode wire readout channels in
total. Each CSC contains a gas mixture of 40% Ar, 50% CO,, and 10% CF,.

The RPCs are meant to aid in triggering on muons. They cover out to || < 1.6 and can
provide information to the trigger system much faster than the DTs or CSCs. The time resolution
for the RPCs is less than 3 ns, whereas the DTs and CSCs have a maximum drift time of 400 ns and
60 ns, respectively. With such a small time resolution, the RPCs can precisely identify the bunch
crossing time of a muon candidate. MB1 and MB2 have one internal and one external group of
RPCs, relative to the DTs. MB3 and MB4 each have two internal groups of RPCs. This amounts
to 480 RPCs for the barrel. The endcap has 3 stations of RPCs, 144 chambers in total, arranged in
concentric circle on the iron return yoke. The RPCs are a type of parallel plate detector with a gas

mixture of 96.2% C,H,F,, 3.5% C,H;(, and 0.3% SF.

59



== - B~ -

, . X
»‘* 2
@@% b, & Towards

Z+ Center of LHC

OL/piZ'an

Figure 3.15: Transverse view of one of the five wheels of the CMS detector. The DTs and their
layout can be clearly seen. Reprinted from [12].

3.2.7 Trigger

In order to provide as many collisions as possible to the experiments, the LHC must operate at
a high luminosity (see sec. 3.1). At the proposed LHC center-of-mass energies the p-p collision
cross section is about 100 mb. This, combined with the luminosity, gives us a collision rate of

approximately 1 MHz. At this rate it would be impossible for the experiment to store and process
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all of the raw information coming from the detector. A trigger system is implemented to reduce
this rate and keep only the most interesting, and hopefully relevant, events. CMS has implemented
a two-tiered trigger system [104]. The first level (1), composed of custom hardware processors,
uses information from the calorimeters and muon detectors to select events at a rate of around
100 kHz within a time interval of less than 4 us. The second level, known as the high-level trigger
(HLT), consists of a farm of processors running a version of the full event reconstruction software

optimized for fast processing, and reduces the event rate to less than 1 kHz before data storage.
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Figure 3.16: The architecture of the L1 trigger system.

The L1 trigger is is composed of custom built, programmable electronics including field pro-
grammable gate arrays (FPGAs), memory lookup tables (LUTSs) and application specific integrated

circuits (ASICs). The components of this trigger system are arranged so that there can be local,
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regional, and global decision making (see fig. 3.16). Most of the sub-detectors send information to
this trigger system, but due to the algorithmic complexity of track finding, the process would take
too long if the tracker was included in the decision making process. A new “track trigger” system
is in the process of being developed, which would allow tracking information to be included in the
L1 trigger decision making process.

The calorimeter side of the L1 trigger system starts with the Trigger Primitive Generators
(TPG), which are constructed from energy deposits in the ECAL, HCAL, and HF. These are then
combined in the Regional Calorimeter Trigger (RCT), which groups the calorimeter towers into
regions. A region is defined as four towers for the barrel and endcap and one tower for the HF. The
regions are used to find photon and electron candidates, measure transverse energy sums (X FEr),
and determine tau-jet vetoes. The RCT also sends information to the Global Muon Trigger (GMT)
about energy deposits to help determine if a muon candidate is isolated. The information is then
sent to the Global Calorimeter Trigger (GCT), which determines the jet candidates, providing up
to four jets and four tau-jets from the central HCAL and four jets from the HF. The GCT also
calculates the Er, K1, and Hr, which is calculated as ¥ E for all jets above a certain threshold.

Each of the muon sub-detector’s technologies (DT, CSC, and RPC) has a local trigger system.
The Regional Muon Trigger (RMT) takes the local trigger information from the DT and CSC and
makes tracks using the DT and CSC Track Finders (DTTF and CSCTF). In contrast, the RPCs are
a form of dedicated trigger due to their small time resolution. The Global Muon Trigger (GMT)
combines the information from the RMT and RPCs to produce up to four muon candidates in each
of the barrel and endcap regions. The GMT also contains information about the pr, charge, 1, ¢,
quality, MIP, and isolation of each of the muon candidates.

Finally, the Global Trigger (GT) combines the GCT and GMT information to decide whether
or not to store the event; a decision which is called a Level-1 Accept (L1A). The GT also makes use
of information about the sub-detector readouts and DAQ systems from the Trigger Control System
(TCS). The L1A is returned to the sub-detectors by the Timing, Trigger, and Control (TTC) system.

This entire process takes 3.2 us, an equivalent of O(100) bunch crossings, which means that the
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data must be pipelined in order to synchronize the steps in the trigger system. Meanwhile, the high
resolution data used for offline analysis is stored in memory. In 2012, the L1 Trigger rate was as
high as 100 kHz with a dead time of only 3% [105].

After the L1A decision, the High Level Trigger (HLT), a farm of more than 13000 central
processing units (CPUs), further analyzes the events. The HLT system uses a form of the full
offline reconstruction algorithms described in section 4, but also includes several optimizations
to make the process faster. This is needed because, in contrast to offline processing, the HLT is
limited by the number of events that can be stored in the pipeline. These optimizations include
making the fasted algorithm run first, skipping a trigger path after the first failing quality filter, and
considering smaller regions of the detector based on the L1 candidates. The menu of triggers to be
run changes as the LHC and Monte Carlo (MC) simulation conditions change, even while CMS is
operational. In 2012, the HLT had an output rate of 100 kHz and took 200 ms per event, O(100)
times faster than the offline reconstruction [106]. Events that pass the HLT are then sorted into

primary datasets (PDs) according to the passed triggers with as little overlap as possible.
3.2.8 Luminosity Measurement

Besides measuring the kinematics of each of the particles traversing the detector, CMS must
also measure the instantaneous luminosity delivered by the LHC. Both the pixel detector (sec-
tion 3.2.2) and the HF (section 3.2.4) are able to measure the luminosity to varying degrees of
accuracy.

The pixel detector has a very small granularity, which means that any given pixel is activated
by at most one track per bunch crossing. We can then create cluster by grouping nearby activated
pixels, with the typical cluster containing an average of 5 pixels. A minimum bias event typically
creates 200 clusters [107]. Even for events with 100 pileup (PU) interactions, a number signifi-
cantly higher than was reached in 2012, the total pixel detector occupancy could be as low as 0.1%.
This means that the number of pixel hits should scale linearly with the number of interactions per

bunch crossing, which is shown in equation 3.4 [108].
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Here the luminosity, £, is proportional to average number of pixel clusters, (n). The other
parameters are the LHC revolution frequency, v = 11246 Hz and the visible cross section, oy,
as calibrated by a Van der Meer scan [109]. In 2012 this technique was used to measure the total
integrated luminosity with a systematic uncertainty of 2.6%.

Another method to measure the luminosity makes use of the HF, but due to some sever limita-
tions in its accuracy, this measurement is only used as a cross-check for the pixel counting method.
What makes the HF suitable for this type of measurement is that it can safely be run during unsta-
ble beams [108]. The average transverse energy per tower can be directly related to the luminosity
or the average fraction of empty towers can be related to the mean number of interactions per
crossing, which is more of in indirect measurement. The benefit of using the HF is that it can make
an online determination of the luminosity within 1s to an accuracy of 1%. One downside is that
even in 2012 the levels of pileup made the luminosity relationship non-linear. Additionally, the

calibration of this measurement can change due to drifts in the gains of the HF PMTs [110].
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4. EVENT RECONSTRUCTION

The CMS detector is designed to identify the various particle species which travel through
it after a proton-proton collision. As discussed in section 3, the sub-detector technologies were
chosen so that particles could be identified by where they deposit their energy as well as how their
trajectories change in a magnetic field. Fig. 4.1 shows how various types of particles interact within
the CMS sub-detectors. All of the charged particles (i.e. electrons, muons, and charged hadrons)
will deposit some energy in the tracker, while neutral particles (i.e. photons and neutral hadrons)
will not. Electrons and photons will deposit all of their energy inside of the ECAL while hadrons,
both charged and neutral, will deposit most of their energy in the HCAL. Muons are the only
visible particle which will be able to travel to the muon chambers. Neutrinos will pass through
all layers of the detector unseen and their presence must be inferred by missing transverse energy
(E®ss or F); the idea being that if the sum of the transverse momentum is not conserved, then
that missing momentum must correspond to at least one unseen particle.

The process of translating abstract detector objects to physical particles takes several steps
within the CMS software framework (CMSSW). The first of this process is local reconstruction,
where the various subsystems of each sub-detector create what are called reconstructed hits, or
RecHits for short. RecHits in the tracker contain information about the position of energy clusters
(groups of contiguous strips or pixels which contain a signal) as well as energy deposition infor-
mation which aids in particle identification. The muon RecHits ostensibly contain information
about the position of the signal. However, the RecHits from the DTs and CSCs can be combined
to form three-dimensional track segments, which also provide directional information. The ECAL
and HCAL RecHits contain information about the energy deposited, the position of those deposits,
and the time at which they occurred.

The next step is to process this information in a global manner, where the subsystems within
each sub-detector are combined. Pattern recognition algorithms are run on the tracker RecHits

to reconstruct the path that the particles take through the sub-detector (a.k.a tracks). The ECAL
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Figure 4.1: Cross-sectional view of the CMS detector with all of the sub-detectors labeled.The
colored lines correspond to different particle species, which interact with different pieces of the
detector and may or may not be bent by the magnetic field. Reprinted from [13].

and HCAL RecHits within a tower are summed to form “CaloTowers” which have a projective
n — ¢ geometry. The muon system creates “standalone” muons by associating RecHits and track
segments with compatible radial trajectories. This process takes into account the bending a muon
undergoes before reaching and within the muon system due to the magnetic field.

At this point, all of the reconstruction information is combined to form particles that can be
used for physics analysis. The process of reconstructing and classifying every stable particle is
called Particle Flow (PF) and will be discussed further in section 4.2. This analysis focuses on
electrons, muons, jets, b-jets, and K, the reconstruction of which will be described in the following
sections. Additional information about the reconstruction process beyond the scope of this thesis

can be found in [111].
4.1 Tracks and Vertices

While CMS analyses cover a wide range of final states, a majority of them will include jets

in some fashion, including this one. It’s important that the particle flow algorithm identify and
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measure each particle inside a jet in order to improve the jet energy response and resolution. Sec-
tion 4.5 will cover the reconstruction and properties of jets in more detail, but it is important to
note that two thirds of the constituents inside of a jet are charged particles. This motivates the need
for excellent tracking capabilities. Tracks are created from the RecHits using the Combinatorial
Track Finder (CTF) algorithm, which is an iterative process [99]. This process seeks to find the

appropriate balance between high reconstruction efficiency and low fake rate (see fig. 4.2) [14].

. ' Reconstruction Efficiency
. l Fake Rate

Figure 4.2: A diagram showing the goals of the iterative tracking process.

The track finding procedure begins by finding track seeds using only a few hits and very tight
criteria. A track is built by extrapolating from the trajectory of the seed and adding new hits
that match this trajectory, keeping in mind that charged particles will bend in the presence of the
magnetic field. The tight requirements on this first step lead to a moderate tracking efficiency and
a vanishingly small fake rate. After a track is found, all of the hits are used in a fit to determine the
track parameters (i.e. pr, X2, etc.), which are then used to judge the quality of the track. If a track
doesn’t meet certain quality requirements on the pr, the transverse impact parameter dy, and the
longitudinal impact parameter d., it isn’t kept. Additionally, a trajectory cleaning step to remove
duplicate tracks is applied to each iteration and to the final track collection. A duplicate track can
form either from different seeds or from the same seed which forms two very similar tracks. If a
pair of any two tracks share more than 19% of hits as determined by equation 4.1, where N/

and N2 are the number of hits used in forming the tracks and 19% is an empirically determined
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value, then the track with the fewest number of hits or the largest x? is removed. The hits which
are unambiguously assigned to the tracks are removed from consideration in the next iteration and
their tracks saved for later use.

hits
M, hared

S

fshared = (41)

min (Nlhits, Nghits)

particle track

R: bending radius

Figure 4.3: Schematic view of a particle track with hits labeled.

In each subsequent iteration the track seeding criteria is loosened and the same procedure oc-
curs. The looser seeding requirements boosts the tracking efficiency, while the removal of the hits
from the previous iteration keeps the fake rate low due to the reduced combinatorics. The specific
seeding criteria for each iteration can also be found in table 4.1. After three iterations, 90% of
charged hadron tracks within jets are reconstructed and 99.5% of muons in the tracker acceptance
are found. Subsequent iterations loosen the constraints on the origin vertex, which allows for the
reconstructions of tracks associated with a secondary vertex (i.e. v —e™e™ conversions, long-lived
particles, nuclear interactions in the tracker material). Tracks meeting this set of criteria can be re-

constructed with as little as three hits, a pr as low as 150 MeV, and a vertex more than 50 cm away
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from the beam axis. Nevertheless, the fake rate is still kept on the order of 1% [14].

step seed type seed sub-detectors  pr [GeVic] dy [em] |z

0 triplet pixel >0.6 <0.02 <4.00
1 triplet pixel >0.2 <0.02 <4.00
2 pair pixel >0.6 <0.015 <0.09cm
3 triplet pixel >0.3 <1.5 <2.50
4 triplet pixel/TIB/TID/TEC >0.5-0.6 <1.5 <10.0cm
5 pair TIB/TID/TEC >0.6 <2.0 <10.0cm
6 pair TOB/TEC >(0.6 <2.0 <30.0cm

Table 4.1: The seed criteria used in each iteration during the 2012 run. The seed types, pair and
triplet, indicate if two or three RecHits are used, respectively. The o in the zj criteria indicated the
length of the beam spot in the z-direction as determined by a Gaussian fit [29].

The tracks found will have a helical shape of with a given radius of curvature as in fig. 4.3. The
softest, low pr particle trajectories can form small rings, while the higher pr particles will be bent
less. The momentum of each track can be extracted from the radius of curvature (R), given by a
circular fit to the track, the magnetic field strength, as well as 77 and ¢ of the track at the interaction
point!. The following system of equations can be used to determine the particles 3-momenta at the

interaction point:

Pz = Pr COS QY
Py = prsing
4.2)
Pz =DPr Siﬂh??
pr=03-B-R

After the collection of high purity tracks is created, CMS uses these to reconstruct the location
of the vertices where proton-proton interactions occurred [99]. The vertex finding algorithm is
agnostic to whether or not the vertices come from the main hard scatter vertex of interest or any of
the pileup vertices from additional proton-proton interactions. However, there is a need to select

prompt tracks occurring near the interaction point instead of tracks from secondary vertices. CMS

I'The 7 of the track is determined as if the interaction point was at the center of the detector.

69



requires that the significance of the transverse impact parameter dy, < 5, the number of pixel hits
be > 2, the number of pixel and strip hits be > 5, and the track x? < 20. Once there is a collection
of prompt tracks they are clustered together in z at their closest approach to the beam spot. A
balance must be struck between vertex finding efficiency and the splitting of good vertices. To do
this, a deterministic annealing (DA) algorithm is employed and is useful in cases where one wants
to find the approximate global minimum of a problem with many degrees of freedom; specifically
where an approximate global minimum is preferred over a more accurate local minimum. More
information about DA can be found in [112], but simply put the process is similar to what happens
when one heats a system and then slowly cools it to minimize the “free energy,” which in this
analogy is the x? of the vertices. In this case there is a system of z! with uncertainty o7 and an
unknown number of vertices 2} . There is a probability 0 < p;; < 1 for any track i to be assigned
to vertex k and in the beginning, the algorithm assumes that every possible assignment is equally
likely. The free energy to be minimized can be found in equation 4.3, where p; is a constant weight
for each tracks representing their consistency with originating from the beam spot and 2, are the

vertices with weights py.

#tracks #Huvertices

F=-T Y plog > prexp
i k

1 (e —2)
_f(zo——;k)] (4.3)

The number of vertices can be arbitrarily large, but any extra vertices used in the method will
overlap with the effective vertices already found at distinct positions. The probability that a given

track corresponds to a specific vertex is given by equation 4.4.

P = (4.4)

At high temperature all tracks belong to a single vertex and all p;; are equal. As 7" — 0 each
track becomes compatible with exactly one vertex. The number of vertices grows each time the

temperature falls below the critical temperature of a given vertex, 7%, given by equation 4.5, where
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that vertex is replaced by two nearby vertices. As this happens the tracks are reassigned according
to their probabilities before the temperature is lowered again. The starting temperature of the whole
process is chosen to be above the first critical temperature where p; = p;; = 1. The temperature is
lowered by a cooling factor of 0.6 down to 7;,,;,, = 4, which balances the need to resolve all true

vertices with the risk of splitting a true vertex.

e T_ .,V ey
Th — 2; P;?;k (zl Uisz ) / i pgz?;k .5)
By the time the 7,,,;, condition is reached it is still possible for a track to be assigned to multiple
vertices. Thus, for the final track assignment, the temperature is cooled to 7' = 1, without more
splitting of the vertices. For a track to be assigned to a given vertex it must have a minimum
probability of 0.5 and have passed the outlier mitigation criteria.

After all of the candidate vertices are found using the DA method, the candidates with at least
two tracks assigned to them are passed through the adaptive vertex fitter (AVF) to compute all of
the vertex parameters. Key among those parameters are the spacial coordinates and the number of
degrees of freedom given by equation 4.6, where w; is a weight, between 0 and 1, given to each
track depending on the likelihood that the track actually belongs to that vertex. Additional quality
requirements for a good track are ng,r > 4 (at least four associated tracks), |2| < 24 mm, and
|p| < 2mm, where p is the transverse position of the vertex [113]. If the track x*/N,; < 20, then

the track is matched to that vertex and only that vertex [16].

#iracks

Moy = —3+2 Y w (4.6)

i=1

As mentioned before, a single vertex is classified as the “primary” vertex, with all other proton-
proton collisions being classified as secondary, pileup vertices. The leading vertex is the one with
the greatest sum of the squares of the associated tracks’ transverse momenta (Y [piFack|?).

The methodology above is a simplification of the actual track and vertex finding algorithms,

but is sufficiently detailed for the purposes of this document. The subsequent sections will discuss
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how the RecHits, tracks, and vertices are used to reconstruct particles.
4.2 Particle Flow

The CMS experiment has decided to use a holistic approach to reconstructing the event pro-
duced by a proton-proton collision. The particle flow (PF) event reconstruction algorithm uses in-
formation from all of the sub-detectors in order to identify as accurately as possible each individual
particle in the event as described in the first part of this section [14, 114] and to reconstruct their
direction and energy. Other quantities that can be determined from a particle level reconstruction
algorithm are the charged lepton isolation and the likelihood that a jet was initiated by a B hadron.
The CMS detector is ideally suited for a particle flow approach because of its extremely granular
sub-detectors and high magnetic field. This approach has been validated in [115, 116, 117, 118],
where an improvement over simpler techniques was shown each time. The output of the PF algo-
rithm is a list of particles known as “PF candidates,” which are used to build the higher level objects
that physicists analyze, such as jets, taus, and E%i“. Because the CMS detector is so granular, the
occupancy and event complexity play almost no role in the PF algorithm efficiency. With the cur-
rent algorithm, charged-particle tracks out to || < 2.6 can be reconstructed even with a pr as low
as 150 MeV, all while maintaining a high reconstruction efficiency and low fake rate. The algo-
rithm can even identify the difference between photons and charged-particles in high multiplicity
environments like jets. This is largely due to the tracking information, which more accurately de-
termines the pr than the calorimeter system for for charged particles up to several hundred GeV.
Additionally, the tracker can measure the direction of a charged particle before its trajectory can be
changed in the magnetic field. Fig. 4.1 shows, in graphical terms, how the reconstruction algorithm
can classify a particle based on the sub-detectors with which it interacts.

The inputs to the PF algorithm come from the local reconstruction products, RecHits, as de-
scribed at the start of section 4. More specifically the RecHits are turned into either tracks or energy
clusters, which are then used by the algorithm. The tracks may come from the tracker, as described
in section 4.1, or from the muon system. The clusters are created by the calorimeter RecHits and

are treated slightly different than the CaloTowers previously discussed. A local energy maxima
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above a threshold value, also known as a “cluster seed,” is chosen as the beginning of a calorimeter
cluster. From there “topological clusters” are grown by adding neighboring hits above a two stan-
dard deviation threshold energy set by the subsystem to remove photo-detector noise in the ECAL
(i.e. 80MeV in the barrel and up to 300 MeV in the endcaps) or HCAL (i.e. 800 MeV). Some
clusters are removed if its characteristics match those of an expected noise source, but otherwise
a topological cluster will will create as many “particle-flow clusters” as there are seeds. Energy is
shared among the cells in the cluster according to the cell-cluster distance.

Once all of the tracks and clusters have been found, the two collections are associated using
a “linking algorithm” to create “blocks.” First, the track is extrapolated from its last hit in the
tracker subsystem to the two layers of the PS, the ECAL at a depth corresponding to the expected
maximum of a typical electron shower, and to the HCAL at a depth of one interaction length. A
link is made if this extrapolated position is within the cluster boundaries, which can be enlarged by
one cell size in each direction to account for non-instrumented areas, multiple scattering of low-
momentum charged particles, and the uncertainty in the position of the shower maximum. This
linking algorithm is based on minimizing the  — ¢ distance (AR = \/An — Ayp) between the
track and cluster. As an additional complication, tangents are drawn from the intersection between
the track and the tracker layers to the ECAL. If one of these tangents falls within an ECAL cluster
then the cluster is marked as a potential Bremsstrahlung photon. Linking between calorimeter
systems (i.e. HCAL and ECAL or ECAL and PS) is done similarly, but the cluster position in the
more granular system must be within the envelope of the less granular system. A track and muon
track are linked when an acceptable 2 is returned by a global fit between two tracks. If there are
multiple track matches for a single muon track, then the match with the minimum ? is chosen to
form a “global muon.” Fig. 4.4 shows a graphical representation of what the linking algorithm sees

and how the links between tracks and clusters are made.
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Figure 4.4: These three figures show a representation of how the PF algorithm sees a hadronic jet.
(a) An (z,y) view of the detector with elements from the tracker, ECAL, and HCAL shown. The
ECAL and HCAL surfaces shown in (b) and (c) are represented by the concentric circles centered
around the interaction point in (a). (b) shows the energy clusters from the K?, 7—, and the two
photons from the 7° decay. While the 7 doesn’t deposit any energy in the ECAL, it does show up
as a cluster in the HCAL along with the 7~ (c). The tracks from these charged particles show up
as vertical lines in the (7, ) plane, but as curved lines in the (z, y) plane. The cluster positions are
represented by dots, the simulated particles by dashed lines, and the position at which the particles
impact the calorimeter surfaces by the open marker. Reprinted from [14].
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The blocks are classified as a specific type of particle based on which sub-detectors were linked
and then removed from the list of unclassified blocks to prevent double counting. To begin with, if
the momentum of the combined charged-particle and muon tracks is equal to the momentum of the
charged-particle track alone, then the particle is classified as a PF muon. The minimum ionization
energy expected to be deposited by a muon is subtracted from the remaining clusters. The other
charged-particle tracks are checked to see if they match the properties of an electron, which is
to say that electrons tend to radiate energy via bremsstrahlung, which causes the curvature of the
tracks to increase as they move away from the interaction point. A Gaussian Sum Filter (GSF)
is used to match these tracks with ECAL clusters and a successful match is classified as a PF
electron. More information about the GSF and its improvements over the standard CMS tracks
finding algorithms can be found at [119].

Tracks which aren’t matched to muons or classified as electrons are matched to clusters, if
possible, and form PF charged hadrons. In this case the total cluster energy must be similar to, but
smaller than, the total track momentum. Only the closest cluster may be linked to any given track,
but a given cluster may have multiple track links due to the large granularity of the calorimeters.
The energy of charged hadrons is determined from a combination of the track momentum and
the corresponding ECAL and HCAL energy, corrected for zero-suppression effects and for the
response function of the calorimeters to hadronic showers. Any excess energy remaining after
removing the track energy from the clusters is assumed to come from neutral particles. If this
excess energy is in the ECAL then the neutral particle is classified as a PF photon and its energy
is directly obtained from the ECAL measurement, corrected for zero-suppression effects. After
the removal of the PF photons, the remaining excesses are classified as neutral hadrons and their
energy is obtained from the corresponding corrected ECAL and HCAL energy. Clusters which are
not matched to any tracks are used to make PF photons in the ECAL and neutral hadrons in the

HCAL.
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4.3 Electrons

Broadly speaking, the PF electron candidate identification process discussed in section 4.2 can
be considered “tracker-driven” [120]. This method is ideal for low-pr electrons and electrons in
high multiplicity environments like jets. On the other hand, high pr electrons need an “ECAL-
driven” approach. In this case the ECAL clusters are grouped into “superclusters” for the purpose
of trying to capture energy from two sources, photons produced due to bremsstrahlung and the
spread of energy in ¢ due to the magnetic field [121]. These superclusters are then matched to
track seeds and a GSF is used to reconstruct the track trajectory. The GSF is necessary to account
for changes in direction due to bremsstrahlung [119]. After the ECAL-driven list is created it can
be compared to the list of PF electron candidates to prevent double counting.

The electron four momentum is estimated by combining the energy measurement in the ECAL,
the momentum measurement in the tracker at the main interaction vertex, and the energy sum of
all bremsstrahlung photons attached to the track. The momentum resolution for electrons with
pr ~ 45GeV from Z — ee decays ranges from 1.7% for non-showering electrons in the barrel
region to 4.5% for showering electrons in the endcaps. The di-electron mass resolution for Z — ee
decays when both electrons are in the ECAL barrel is 1.9%, and is 2.9% when both electrons are
in the endcaps. [122].

Only electron selection has been discussed so far. However, once there is a complete list
of electron candidates, quality cuts are imposed to identify genuine electrons [123, 124, 125].
There are two similar methods for evaluating these quality requirements. One is a purely cut
based technique and the other merges these requirements, plus some additional variables, into a
single MVA based training. This analysis used the MVA based training in order to extract as
much performance from the selection cuts as possible. However, it is still informative to list the
cut based requirements since they are all used inside of the MVA training. The 7 width of the
supercluster, o;,;,, 1s taken from the covariance matrix of a weighted difference between the 7
positions of the crystals and the seed cluster. A modified 7 is used in this calculation to account

for the crystal spacing and each crystals contribution is weighted by log (Ec ystar/ Esc) [126]. Two
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additional variables are calculated as the differences between the positions of the supercluster,

extrap extrap

(Mse, sc), and the extrapolated track, (nf. "%, 2" "), thus defined as |An;,| = |15 — 75" **| and
|AGin| = |@se — |, The ratio of the leakage energy, H, in the HCAL tower behind the ECAL
seed cluster is compared to the energy of that seed cluster in the variable H/E. The transverse and
longitudinal impact parameters compared to the associated vertex, d5** and d°**, and a comparison
of the electron energy and momentum, |1/FE — 1/p|, are used. Both identification schemes also
make use of the PF based isolation variable shown in equation 4.7. However, rather than using the
base isolation value, the relative isolation I’F/pS, is used. The isolation variable is simply the sum
of the pr of the charged hadron (CH), neutral hadron (NH), and photon () PF candidates within a
cone of AR < 0.3 around the electron candidate. The expected amount of energy due to pileup is

then removed by multiplying the median energy density by the electron effective area, A.;, but it

is protected from becoming a negative value.

=3 p(TCH)—I—max< S Y pQ)—pAeff,o> 4.7)

AR<0.3 AR<0.3 AR<0.3

A set of values for the identification requirements is called a working point (WP) and there
are several WP based upon the desired identification efficiency and fake rate. This analysis makes
use of the tight working point for the selected electron and the loose working point to veto on
additional electrons. Table 4.2 lists the cut based identification requirements for the tight and loose
WP. Similarly, table 4.3 lists the requirements for the MVA based identification. In addition to
the identification requirements, selected electrons must have a pyr > 30 GeV and be in the barrel,
Insc| < 1.4442, or endcap, 1.566 < |ns| < 2.5. They must also pass a conversion veto to make
sure the aren’t produced by a converted photon. Loose electrons have the same 7 and conversion
requirements, but are only required to have a pr > 15GeV. The pr requirements are selected to

match the HLT requirements of the PD listed in section 5.1.1.
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Cut Value

Cut Variable Tight Loose
Barrel Endcap Barrel Endcap
1PF /9 < 01 0.1 0.15 0.15
Tinin < 0.01 0.03 0.01 0.03
|Apin| < 0.03 0.02 0.8 0.7
| AR | < 0.004  0.005 0.007 0.01
H/E < 0.12 0.1 0.15 0.07
|dgt| < 0.02 0.02 0.04 0.04
|dv'| < 0.1 0.1 0.2 0.2

I1/E—1/p|< 005 005 - -

Table 4.2: Cut based electron identification requirements for the tight and loose working points.

Cut Value
Supercluster Pseudorapidity Tight Loose
MVA  IPF/p MVA - 1PF )
Ins| < 0.8 >0977 <0.093 >0.877 <0.426
0.8 < |ns| < 1.479 >0.956 <0.095 >0.811 <0.481
1.479 < |ns| < 2.5 >0.966 <0.171 >0.707 <0.390

Table 4.3: MVA based electron identification requirements for the tight and loose working points.
The tight MVA requirements were trained using triggering electrons whereas the loose MVA re-
quirements, usually used as a veto, were trained on non-triggering electrons.
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4.4 Muons

In addition to using the PF algorithm to identify muon candidates, CMS uses two supplemen-
tary methods to identify high and low-momentum muon candidates [127]. The union of these
collections will me used for the final muon reconstruction. To capture the low-momentum muons,
charged particle tracks which have a pr and p above a threshold are extrapolated out to the muon
sub-detector. If the track position matched a track segment in the muon sub-detector, then the track
is made into “tracker muon.” The other method, able to capture the high-momentum muons, is to
find a match in the tracker for the standalone muons made by the muon sub-detector, which is the
reverse of the previous method. If a match is found, then the candidate is considered a “global
muon” and a global fit of the two tracks is made to improve the momentum measurement and res-
olution. The global muons, tracker muons, and standalone muons are then combined into a single
collection which avoids double counting.

Just like for the electrons, there are identification requirements which each muon must pass.
This helps to remove cosmic ray muons, muons from heavy flavor decays, and leakage from
hadronic showers which may enter the muon collection. Just like the electrons, the the distance
between the primary vertex and the transverse and longitudinal impact parameters, dj** and d***,
are used. Additionally, there are requirements on the number of hits in the muon system, the num-
ber of stations used in the muon system, the number of pixel hits in the tracker, the overall number
of tracker hits, and the reduced x? of the global muon fit. The isolation, which can be seen in

equation 4.8, is calculated using the PF candidates within a cone of AR < 0.4 around the muon.

L= p(TCH)+maﬂ:< P D0 Y - As Y p(TPU)’()) (4.8)
AR<0.4

AR<0.4 AR<0.4 AR<0.4

The variable is very similar to the one used for electrons except that instead of an effective area
pileup correction, the muons use a pileup correction based on the sum pr of the charge particles
which don’t come from the same vertex as the muon candidate. The Af term is set to 0.5 and is

the ratio of charged to neutral particles in pileup [115].
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The identification requirements for muons also relies on two WP, a set of tight cuts to select
for muons to use in the analysis and a set of loose cuts to veto on additional muons. One again,
additional pt and 7 requirements are imposed on the tight and loose muons to ensure that they
match the requirements of the PD as stated in 5.1.1. The tight muons must have pr > 25 GeV and
be within || < 2.1 whereas the loose muons must have pp > 10 GeV and be within |n| < 2.5. The

cuts used to identify good, prompt muons are listed in table 4.4.

. Cut Value
Cut Variable Tight Toose
Is PF muon True True
Muon category Global muon Global muon OR tracker muon
IPF p) < 0.12 0.2
|dyt| < 0.02 -
|dv| < 0.5 -

Global track fit x?/ng.r < 10 -
Global track fit nmuon segment > 0 -

Nhits (pixel) > 0 i}
Niayers (tracker) > 5 B
Nstations (muon) > 1 -

Table 4.4: Cut based muon identification requirements for the tight and loose working points.

4.5 Jets

The protons that make up the LHC beams are bound states of quarks and gluons, which are
particles that carry color charge. If, during a proton-proton collision a quark or gluon is freed, it
must create other colored particles to combine with and form color singlet bound states, hadrons,
in a process known as hadronization. This is because a colored state cannot exist alone due to
QCD confinement, which only allows for free colorless states. The cascade of particle production
will continue until there are no free color states and there is not enough energy in the gluon field to
continue hadronizing. The hadronization products themselves may still decay into other particles,

including colorless leptons and photons. The CMS detector will not see the initiating parton, but it
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will certainly measure this cascade of particles as a narrow cluster of tracks and energy, which are
collectively referred to as a jet [128]. While this is the behavior of most light quarks and gluons,

top quarks are so heavy that they decay into a W boson and a b quark without hadronizing first.

Figure 4.5: Different views of the same 115 GeV PF jet are shown with varying amounts of infor-
mation displayed. The panels are ordered sequentially from left to right and top to bottom where
each subsequent panel includes additional information. The image is of a jet with its (a) tracks,
(b) ECAL deposits, (c) photon candidates, (d) neutral hadrons. Panel (e) shows the jet with its
charged hadrons, but replacing the ECAL deposits for the HCAL deposits. Panels (f)-(h) show
various views of the same jet with all of its constituents, while panel (i) shows the jet as it would
appear in the CMS detector. The distance between the primary vertex and the interior of the red
muon chambers is 7.5 m and the calorimeter deposits are scaled to about 10 GeV/m. Reprinted
from [15].
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While the best way to cluster the cascade is still an open topic of discussion?, this analysis
clusters PF candidates using the anti-kr algorithm [17] as defined in the FASTJET package [129]°.
The anti-ky is a sequential recombination clustering algorithm which is both infrared and collinear
safe. Infrared safety means that the jet clustering algorithm is insensitive to the emission of soft,
wide angle particles. In other words, the jet is invariant under p; — p; + pj, where the particle
with momentum pj is split into two particles, each carrying momentum p; and pj, respectively. As
an example, two jets should not be merged together just because one of them produced a 1 GeV
particle between them. Collinear safety means that if there is a splitting which results in two
parallel high-py particles, a single jet is produced and the jet properties will not be different from
a jet where this splitting did not occur. When an algorithm obeys these two properties, they are
referred to as being IRC safe. Simply put, the anti-ky algorithm results in jets which have physical
properties (i.e. pt, mass, etc.) that are representative of the partons in the event.

The use of PF candidates, with their built in tracking information, provides a huge benefit to
the reconstruction and clustering of jets in CMS. About 65% of the energy within a jet is carried
by the charged particles and thus a lot of information about a jet comes from the tracker.* An
alternative to clustering PF candidates is to cluster the energy deposits in the calorimeter towers,
but that provides both less spacial information as well as a lower response, where jet response
is defined as ((pFe° — p&™) /p&") and p e (p&™) is the reconstructed (generated) pr. Fig. 4.6a
shows a comparison of the PF based jet response (PF jets) versus calorimeter based jet responses
(calo jets). The use of tracking information also improves the jet resolution, where typical values
for a PF jet are 15% at 10 GeV, 8% at 100 GeV, and 4% at 1TeV. This is compared to about
40%, 12%, and 5% when using calo jets [14]. A comparison of the resolution curves can be see in

fig. 4.6b.

Before clustering the PF candidates, a pileup mitigation algorithm called charged hadron sub-

ZResearchers are constantly asking themselves, "What is a jet?" The question is referring more to the idea of how
to reconstruct a jet rather than the concept of a jet.

3In addition to providing fast, sequential clustering algorithms, the FASTJET package is able to calculate the jet
area, which is a non-trivial quantity [130].

425% of the energy is carried by photons and the remaining 10% is carried by neutral hadrons.
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Figure 4.6: Jet response (left) and resolution (right) as a function of pr for jets made by clustering
PF candidates and those clustering calorimeter towers. These figures were made using a MC
sample with a center-of-mass energy of 10 TeV, requiring the jets’ pr to be less than 750 GeV, and
that the jets are within |n| < 1.5. Reprinted from [14].

traction (CHS) is performed. As discussed in section 4.1, CMS can associate a track to a specific
vertex. If these tracks are unambiguously associated to a pileup vertex, they are removed from
the collection of PF candidates used to cluster jets and calculate the ET- As shown in fig. 4.7, the
CHS algorithm is able to remove about 50% of the pileup energy produced during the same bunch
crossing as the primary vertex. Any remaining energy from charged hadrons is coming from tracks
that are not associated with a high quality vertex or which simply have too large a x*/Ny, ;. Some
of this is explained by the vertex reconstruction and identification inefficiency of about 30% [16].

Like most other clustering algorithms (i.e. kp, Cambridge/Aachen, SisCone, etc.), anti-kr is
iterative, wherein at each iteration two distance parameters are calculated. d;; and d;p, as defined
in equation 4.9, are the distance between two entities (PF candidates or existing clusters) and
the distance from any one entity and the beam, respectively. y is the rapidity and R is a radius
parameter, which is 0.5 in this analysis. The anti-kt algorithm is achieved when p = —1, whereas
if p = 1 (p = 0) the kr (Cambridge/Aachen) algorithm is used instead. If d;; < d;p, then
entity ¢ and j are combined vectorially. However, if d;; > d;p, then entity 7 is classified as a jet

and is removed from further clustering. This process continues until all PF candidates have been
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Figure 4.7: Pileup energy within a jet per additional proton-proton interaction (u) separated by
type PF type. The fraction labeled “charged hadrons” will be removed by the CHS algorithm. The
ratio of the data to the simulation is shown in the lower panel. Reprinted from [16].
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clustered [17] and the momentum of the jet is the vectorial sum of all of the PF candidate momenta.

The result of this process can be seen in fig. 4.8.

dip = pT?p (4.92)

(yi — y;)* + (91 — ;)
R2

(4.9b)

dij = min (pT?p,PT?p)

anti-k,, R=1

Figure 4.8: Jets clustered from generator level partons using the anti-kr algorithm. This produces
roughly circular jets with stable areas that are insensitive to additional soft particles. Reprinted
from [17].

After CHS and the clustering procedure, the momentum and energy of the jets still might not
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be the same as those from the initial parton, whether because of pileup or detector effects. To
correct for this, CMS uses a factorized approach, wherein each level of correction targets a specific

effect and each correction is applied in order. The goal is to make sure each jet has a relative

T
Pt reco ref

response (R, = RelRsp = pefo ) of 1.0, where p7° is the reconstructed jet pr and pi7" is the true
T

or reference pr of the jet without all of the deleterious effects. This type of scaling is commonly
referred to as a jet energy correction (JEC)®. The first level of correction, commonly referred to
as the L1FastJet corrections, starts by removing any remaining pileup® or electronic noise energy
that may have made it into the jet reconstruction. This multiplicative correction will only remove
energy from within the jet and will take the form in equation 4.10, where p is the median energy
density of the event, A is the jet area, and f is an estimate of the offset inside the jet per unit of jet

area [131, 132].
A
L1Corrected _ p%ncorrected . <1 —A M ) (4.10)

Pr uncorrected
bt

The L2Relative correction seeks to correct for the non-linearity in the jet response as a function
of 1 while the L3Absolute correction does the same thing as a function of pr. These are again
multiplicative corrections that can either increase or decrease the energy of the jet. All three
corrections are applied to both data and simulation. An additional level of correction, termed
L2L3Residual, is applied only to data to correct for the difference in scale between the data and
simulation.

A final level of modification to the reconstructed objects is an 77 dependent smearing factor ap-
plied to the jet 4-momenta coming from the MC samples. The distribution of jet energies within the
MC simulation tends to be more sharply peaked and less broad than the same distribution in data.
In other words, the MC has a smaller jet energy resolution (JER) than we can realistically measure
using the CMS detector. The deterministic “smearing” method recommended by CMS seeks to

make the jet energy resolution in MC match the jet energy resolution in data. The reconstructed jet

>The terms p and energy will be used interchangeably only when discussing the jet energy corrections. This is
because the corrections will affect both the energy and pr terms within the jet 4-momentum.

®CHS was able to remove pileup energy coming from charged hadrons, but not energy added to the jet from, for
example, neutral hadrons or photons as seen in fig. 4.7.
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pr is scaled by a correction factor C;jgr as determined in equation 4.11, where C), is a correction
factor derived as a function of  whose values can be found in table 4.5. The multiplicative JER

correction factor is then used to modify the jet 4-momentum as in equation 4.12.

o 5
Cyer = mazx (0-0, ~rEco T On - (1 - m)) (4.11)
pr br
XcJog;"ected — CJER'X§£CO (412)

Although the reconstruction of the ET object will not be discussed until section 4.7, it is important
to note that its value is intrinsically tied to that of the jets. Any modification to the jet energies must
also be propagated to the ET- The propagation of the corrections due to the JER scaling is shown
in equations 4.13 and 4.14. The propagation of the JEC, on the other hand, will be discussed in

section 4.7 [133].

)((:orrected — (1 _ CJER) Jeth'C’O 4 EEECO (413)
E;orrected — (1 . CJER) Jet:{fECO + E}?ECO (414)
In| Correction Factor C,
<0.5 1.05270013 (stat.) o8 (syst.)

>0.5& < 1.1 105770912 (stat.) F0028 (syst.)
>11&< 1.7 1.0969017 (stat.)*3993 (syst.)
> 1.7& < 2.3 1.13470033 (stat.) 75 087 (syst.)
>23& <50 1.28870 5 (stat.)™0 133 (syst.)

Table 4.5: Jet energy resolution (JER) scale factors.

A set of quality cuts, collectively called PF jet identification, are applied to the resulting collec-
tion of jets to ensure that only real, hard scatter PF jets are used during the analysis [134]. Several
working points are defined at varying levels of efficiency and purity, but this analysis makes use

of the loose criteria shown in table 4.6 [135]. The variables used in these cuts include the fraction
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of neutral hadrons in the jet fy g, the fraction of neutral EM particles f,, the fraction of charged
hadrons fop, the fraction of charged EM particles fg)s, the number of constituents n.constituentss
and the multiplicity of charged particles n¢pqrgeq- All cuts on the jet energy fractions are made on
the raw jets, before any energy correction are applied. In addition to the PF jet quality cuts, this
analysis requires that all jets be within 2.4 < |n| <, the leading jet has a pr > 30 GeV, and all
other jets have pr > 25 GeV. Additionally, all jets are required to be at least A R(jet, lepton) > 0.3

away from any isolated, selected lepton.

Cut Variable M
Loose

fCH > 0.0

fye < 0.99

fy < 0.99

fem < 0.99

Necharged > 0

Nconstituents = 1

Table 4.6: Cut based PF jet identification requirements for the loose working point.

4.6 b-tagging

Bottom quarks are interesting because they are often associated with the decays of the top quark
and the Higgs boson. The experimental signature of a hadronizing bottom quark will be a b-jet.
This flavor of jet is identifiable because of the unique decay kinematics of b hadrons, including
their long lifetime (1.5 ps = ¢7 ~ 450 pm) and high pr decay products [2, 136]. Additionally, b
hadrons have a relatively large mass (~ 5 GeV), which means they have a higher track multiplicity
than other quark jets, about 5 on average. The displaced tracks will form a secondary vertex
with a large impact parameter which can be measured by the tracking sub-detector. CMS uses
the Combined Secondary Vertex (CSV) algorithm to tag jets as either being initiated by a bottom

quark or some other parton (u, d, s, ¢, and g) [137, 138].
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In order to identify secondary vertices, the algorithm starts from a subset of well-reconstructed
tracks. These tracks must have a pr greater than 1 GeV, x?/Ny,; < 5, a transverse (longitudinal)
impact parameter less than 0.2 cm (17 cm), and a A R to the jet axis less than 0.3. Each track is also
required to have at least 8 hits in the tracker, of which 2 must be from the pixel detector. To reduce
the effects of pileup the track’s distance of closest approach to the jet axis (primary vertex) must
be less than 700 pm (5 cm). Once the tracks are selected, the secondary vertices are reconstructed
using the AVF described in section 4.1. At each iteration, if the track weight is greater than 0.5 the
track is removed and the iterations continue until no more secondary vertices are found. In order
to increase the purity of the secondary vertices they are required to share no more than 65% of
their tracks with the primary vertex, to be more then 30 away from the primary vertex in the 7 — ¢
plane, and the AR between the vertex and the jet direction must be less than 0.5. A secondary
vertex candidate is also rejected if its radial distance to the primary vertex is greater than 2.5 cm
and its invariant mass is close to that of the K. The jets are then assigned as being associated to
a real secondary vertex, a pseudo-vertex, or no vertex. A pseudo-vertex if created when the AVF
fails to find a secondary vertex, but there are at least two tracks with S;, > 2, where .S, is the
significance of the track’s impact parameter defined as the value of the impact parameter divided
by its uncertainty.

The following are used as inputs to the CSV tagger:

e The significance of the flight distance in the transverse plane between the secondary and

primary vertices.

e The invariant mass of the secondary vertex (the mass of all of the tracks associated with that

vertex).
e The number of tracks associated to the secondary vertex.

e The ratio of the energy carried by the tracks associated to the secondary vertex and all tracks

in the jet.

e The An between the jet axis and the tracks associated to the secondary vertex.
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e The transverse impact parameter significance of the tracks which raises the invariant mass
above 1.5 GeV, the charm threshold. The tracks are ordered by decreasing significance and

combined one-by-one until the charm threshold is met.
e The number of tracks in the jet.
e The three-dimensional impact parameter significance of each track.
e The secondary vertex category (real, pseudo, or none).

All of the inputs are computed for jets with at least one associated real secondary vertex. The
first input is not computed for jets with only a pseudo-vertex because it doesn’t have a well-defined
position. Only the last three inputs, which are track based, are computed when no secondary vertex
is found for the jet.

The inputs to the algorithm are combined using a likelihood-based discriminator, where the

likelihood is defined in equation 4.15.
Lot = fret () x T foo (x:) (4.15)

Here b,c, and ¢ = {u,d, s, q} are the flavor of the jet, « is the vertex category, f>7(«) is the
probability density function (PDF) for the jet of a given flavor to have a vertex of category «, z;
is one of the inputs, and > (x,) is the PDF for z; given the jet flavor and vertex category. The
discriminator is then defined in equation 4.16.

£b Lb

m + fBG (Q) m (4-16)

desv = fea (¢)

In this case, fpg (¢) = 0.25 and fpe (¢) = 0.75 are weights that approximate the expected back-
ground (BG) composition.
Working points for this discriminator are defined using probability to mis-identify a light quark

or gluon jet as a b-jet [18]. The loose, medium, and tight working points have a 10%, 1%, and
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0.1% mistag rate, respectively. This analysis uses the medium working point (dcgy > 0.679),
which has a tagging efficiency of > 60% as shown in fig. 4.10. For example, a b-jet with a pp of
80 GeV has a tagging efficiency of 75%. Fig. 4.9 shows the CSV discriminator distribution in both
a QCD dominated and tt dominated sample. The MC simulation is separated by jet flavor to show

the discrimination power of the CSV algorithm.

CMS Preliminary, 19.8 fo™ at {s = 8 TeV. CMS Preliminary, 19.8 fb™ at Vs = 8 TeV.
- [%)
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Figure 4.9: The dcgy distribution in a (left) QCD dominated sample and (right) a tt dominated
sample. Reprinted from [18].

4.7 Missing Transverse Energy

While CMS is designed to detect as many particles as possible, some particles may be outside
of the detector acceptance, may be mis-measured, or may simple not interact with the detection
elements. Examples of this are a particle which is beyond an 7 of 5.0 or a neutrino, which will
make it through the detector without ever interacting or a BSM particle which do not interact with
the detector. Furthermore, there may be additional particles in the event due to pileup which can
can lead to fake ET due to calorimeter thresholds and response nonlinearities. Because the proton
beams have near zero momentum in the = and y directions, only traveling in the z direction, any
imbalance in the momentum in the transverse plane indicates additional, missing, or mis-measured

particles. This imbalance is called missing transverse momentum and is the negative vector sum
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Figure 4.10: The b-tagging efficiency as a function of the CSV discriminator (d¢ sy ) value for both
data and MC. The lower panel shows the ratio of the data and MC efficiencies and the arrows along
the x-axis show the loose, medium, and tight working point values. Reprinted from [18].

of pr for all PF candidates in the event as seen in equation 4.17. The magnitude of this quantity
is known as missing transverse energy and is represented as [ [139]. A schematic of these two

quantities is shown in fig. 4.11.

E’}fncorr. _ Zﬁ% (4.17)

Because the ET is affected by every visible particle in the event, meaning particles which in-
teract using the electromagnetic or strong forces, it is particularly sensitive to minimum energy
thresholds in the calorimeters, inefficiencies and pr thresholds in the tracker, and the non-linear,
non-compensating response of the ECAL and HCAL. While electrons and muons have a very good
resolution and are typically measured correctly, composite objects like jets have a non-negligible

affect on the ET and the bias due to these effects can be reduced by correcting the jets and prop-
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Figure 4.11: A schematic of the ET and K quantities Reprinted from [19].

agating those corrections to the ET- Unfortunately the corrections discussed in section 4.5 are
applied to the composite object and not the the individual constituents’. The jet energy corrections
are therefore propagated to the ET with the requirements that fpy, < 0.9 and pr > 10GeV so
as to exclude electrons which may sometimes produce a non-genuine jet. This type of correction

is called Type-1 corrected ET and is what is used in this analysis as a proxy for the undetected

7 A method which is being actively worked on.
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neutrino coming from the decay of one of the W boson.

et = = " fri— Y b (4.182)

i€jets idjets
J— —UNCOIT. —
= = Prjet — E DTi (4.18b)
Jet i¢jets
o —AINCOIT. —NCOIT. —
- Z PTjet  — E Prjet  — E DT,i (4.18c¢)
jet Jet idjets
Pt jer >10GeV P25 <10 GeV
= SL1 ~UNCOIT. 11
- Z P, jet — § : (pT,jet —pT,jet)
Jet jet
pL123 1123
DT je > 10 GeV P 3o >10GeV
(4.18d)
“AINCOIT. —
- § : D1 st — E Dr,i
Jet i¢jets
P35, <10Gev
7Type—1 _ 4,123 E : —UnCorT. 1,1
T - Z pijet - (pT,jet _pTMjet)
Jet jet
Pil5e>10GeV 2123 >10Gev
(4.18¢)
—ANCOIT. —
- § : D1 st — E Dt,i

Jet i¢jets

P33, <10 GeV

Equation 4.17 shows the simplified and uncorrected model of ET which can be broken into
two categories, those particles which are contained in jets and those which are not. This is shown
in equation 4.18a, but can be simplified further to equation 4.18b by noting that the first term is
simply the sum of py for the uncorrected jets. In equation 4.18c the jets are further broken into
two classes based on their corrected pr and in equation 4.18d the jets are broken into the pileup
corrected jets term and a term for the pileup itself, where (ﬁllfnfgg T — ﬁ%l jet) is the additional energy
due to pileup (offset). Now that the ETis fully broken down it can be corrected by replacing ]5%1 et
in the first term with ﬁlflfg’t to give equation 4.18e. This is a correction on the clustered energy in
the event above a given threshold [19].

An additional modification to the ET to remove a modulation in the ¢ component is also used.

—

Fr should be independent of ¢ because the proton-proton collisions are rotationally symmetric
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around the beam axis, so any asymmetry must be due to an error in the simulation or reconstruction.
However, we observed a sinusoidal modulation of period 27 in the [+ for both data and simulation
after reconstruction, as can be seen in fig. 4.12a. This effect can be caused by an anisotropic
detector responses, inactive calorimeter cells, detector misalignment (for even one of the sub-

detectors), or a displacement of the beam spot. All of these will cause the same effect.
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Figure 4.12: (a) Distribution of the K. for data (black) and simulation (red). Only the W + jets
simulation is shown here, although all of the simulations suffer from the same modulation. (b)
Distributions of F , as a function of the number of primary vertices. The black and red markers
represent the z and y distributions for simulation, respectively, while the blue and green markers
are for data.

While the exact cause of the modulation might be unknown, we do know that the amplitude of
the modulation increases linearly with the number of proton-proton interactions as each additional
particle in the event will increase the o asymmetry.® The dependence on the number of primary
vertices can be seen in fig. 4.12b, which shows the x and y components of the K1 4-vector as a
function of the number of primary vertices. Without first correcting this modulation, any cut on

the pr of the r would preferentially select events on a specific side of the detector. Luckily, the

8 Assuming the additional particles are created isotropically.
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amplitude of the modulation can be reduced by using the transformation in equation 4.19.
Py — Py —¢ (4.19)

Thus the ET becomes:

%y - _Z(ﬁT,i_S)

i€all

= _ZﬁT,i+Zg

icall icall (4.20)
— B2 4 né
_ _"15‘[‘aw + C_'?
However, instead of applying this correction based on the number of particles, the correction is pa-
rameterized based on the number of vertices as a proxy for the number of particles. The correction

as a function of the number of vertices is:
CY = Cp + Ny 4.21)

where ¢4 and Cp are constant vectors and 7, is the number of reconstructed primary vertices.
Practically this corrections is accomplished by fitting the distributions in fig. 4.12b with a first
order polynomial to obtain ¢4 and ¢p. Those coefficients can be found in table 4.7. Then we use

equations 4.22 and 4.23, which differ from equation 4.20 only due to the sign of the coefficients.

}(;orrected _ )l?LECO o ([O]x 4 [1]X'NPV) (422)
E}C]orrected _ E}l}ECO . ([O]y T [1]y'NPV) (423)

The results of this correction are shown in fig. 4.13, where both the modulation in ¢ and the slope
as a function of Npy are gone. From here we can place a cut on the pr of the ET object without
biasing our selection.

In this analysis the resulting [t is required to have at least 25 GeV in order to reduce the QCD
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Coordinate  Parameter O Parameter 1

Data
T 2.0105F — 01 4.2663F — 01
Y —9.1350F — 01 —2.3120F — 01
MC
T 2.9059F — 01 —3.5293F — 03
Y 3.0183F — 01 —1.9974F — 01

Table 4.7: The fit parameters for the Ef corrections.

MET ¢ Modulation in MC and data | Wists._partt MET,, Vs NPV in data and MC —MET®
0.02 o T 20 —MET,®
F >
0.018— N O, 15 = —MET;
et Fot i + + toy + E MET?
o-meiﬁﬁfﬁt PR Rt b ojof

0.014

0.012 5

t

0.0

=

o

0.008

.
o

TTTT [ TTT T TTTT
—

0.006

o
=]

0.004

a
o

0.002

s A |
MET ¢ npv

(a) (b)

ST T
3
n
o
w
o
IS
o

uk
)
'

4

=)

-
)
S

Figure 4.13: (a) Distribution of the [, for data (black) and simulation (red) with the correction for
the modulation applied. Only the W +jets simulation is shown here, although all of the simulations
suffer from the same modulation. (b) Distributions of %\ yas a function of the number of primary
vertices after the ¢ modulation correction has been applied. The black and red markers represent
the = and y distributions for simulation, respectively, while the blue and green markers are for data.

events making it through the selection process. A pileup correction to the ET was also available,
but was not implemented in this analysis. It is nevertheless discussed in appendix B.1. In addition
to propagating the JEC to the ET, CMS also filters events and or ET contributions which might
introduce noise from the calorimeters or beam halo [140]. These filters are discussed further in

appendix B.2.
4.8 Event Generation

In the search for new physics, a signal will generally appear as a small deviation from the

SM prediction. In order to disentangle the SM background from a rare signal, the SM and new
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physics predictions must be extremely accurate. These predictions are ensembles of simulated
events made by Monte Carlo (MC) event generators which are broken up by physics process and
final state and then recombined during the analysis [20, 141, 142]. These generators are able to
simulate a full event (bunch crossing) at the parton level, which is nicely illustrated in fig. 4.14.
The image shows a tth final state including final state gluons (QCD) and hadronization. While
the entire event from hard scatter production to hadronization cannot be described using pertur-
bation theory, the hard process can be calculated using fixed order perturbation theory and matrix
elements (ME). The parton showers, red lines in fig. 4.14, then connect the hard process with the
hadronization scale. Phenomenological models are used to simulate the hadronization into stable
particles and the underlying event (UE), which is the usually softer interactions by the constituents
of the protons which did not take part in the hard scatter process. Photon and gluon emission from
the initial protons and final state partons, respectively called initial state radiation (ISR) and final
state radiation (FSR), must also be simulated.

Because protons are not elementary particles, it is important to discuss these interactions in
terms of the partons inside the proton. Hadrons, like the proton, are made up of valence quarks,
sea quarks, and gluons®. In essence, the simulation of a proton-proton hard scatter interaction is
the calculation of a cross section for an N-particle final state, seen in equation 4.24, where a (b) is

a parton carrying a fraction of the momentum z, (x;) for hadron A (B).

ajé,B (s) = /da:ad:cbfa (:ca, /f) 1o (xb,uz) 698 (§, /f) (4.24)

The parton distribution function (PDF) of the form f,; (x4, #*) gives the probability density of
finding such a parton with momentum fraction z, , renormalized to scale y*>. PDFs cannot be ob-
tained using perturbative nor lattice QCD calculations. Instead they are measured within the resolu-
tion of the existing experiments. CMS makes use of the Martin-Stirling-Thorne-Watt (MSTW) [21]
and Coordinated Theoretical-Experimental Project on QCD (CTEQ) PDFs. Fig. 4.15 shows the

NLO MSTW PDFs calculated for two different momentum scales. Other terms include the center-

“More precisely, protons are a bound state of two up quarks and a down quark.
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Figure 4.14: A graphical representation of a tth event as seen by a MC event generator. The hard
scatter interaction is represented by the red circle being produced by the two gluons coming of the
incoming protons. The three small red dots represent the top quarks and the Higgs boson which
then decay to additional hard QCD radiation. The underlying event is represented by the purple
shapes and lines while the light green shapes are the final-state partons, which then hadronize and
decay into the dark green circles. The yellow lines show the photon radiation which can occur at
any state in the event generation process. Reprinted from [20].

of-mass energy of the interaction V3 = ,/Z,z;s where /s is the center-of-mass energy of the

proton-proton system and G, x (8, %), which is the cross section for having a given set of initial
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state partons. The full form of the partonic cross section is given by

(2m)* S

oN = / oy = X
cuts 4\/( 2 20112

D1 ']72) — mims
/ ﬁ &g,
cuts | ;-4 (271’) 2E

where p; are the four-momenta of the incoming partons, ¢; and E; are the outgoing particle four-

(4.25)

<p1 +p2 — Z%) 1p2_>{q—}’2

momenta and energies, S is the product of 1/j! for j identical particles in the final state, and

Mab is the ME associated to the kinematic configuration p;p, — {¢} with initial partons

pip2—{q}
a and b [20, 143]. In order to evaluate the parton level ME the event generator must either have
the ME hard coded or it must be able to compute all of the Feynman diagrams associated with
a given process. A good example of this type of calculation can be found in Table 1.1 of [20].
While the number of diagrams for a 2 — 2 or 2 — 3 process is limited and can be built and
computed automatically, the problem becomes much more difficult for next to leading order (NLO)
computations as the number of diagrams grows factorially [144]. The growth of the number of
diagrams can be seen in fig. 4.16. In many cases the LO MEs and PDFs are used to generate events
and a K-factor is used to scale the events to their NLO or NNLO predictions. Besides computing
the MEs, the the multi-dimensional phase space integration is quite complicated and requires the
use of Monte-Carlo integration techniques [145].

The parton shower takes the partons created by the hard process and UE and perturbatively
evolves them down to the hadronization scale, at which point they form colorless hadrons. The
partons are initially produced at a scale ¢’ and the parton shower determines the scale ¢t < ¢’ at
which the parton should branch into two daughter particles, selecting the kinematics and flavors
of those new particles. This process continues recursively and only ceases once the hadronization
scale is reached, O (GeV), where o, becomes large and perturbative methods are no longer ap-
plicable. Generators make use of any number of phenomenological models, including the cluster
hadronization model [146, 147] and the Lund string model [148, 149], to turn this list of colored

partons into colorless hadrons. No matter the model used, the hadrons which result from these
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Figure 4.15: The MSTW PDFs calculated to NLO as a function of the momentum fraction for two
different interaction momentum scales Q2. In the case of synchrotron collisions (? is the square
of the total four-momentum of the proton-proton interaction. The right plot shows the momentum
scale more commonly found at the LHC. Reprinted from [21].
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Figure 4.16: The number of diagrams which must be calculated to fully calculate the gg — ng
amplitude. Reprinted from [20].
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models are often unstable and will be forced to decay into stable hadrons, which are defined to
have a mean lifetime above a given threshold as defined by the experiment.

Various generators are used in this analysis, each with their own benefits and drawbacks.
PYTHIA [150] is a general purpose event generator capable of handling many 2 — 1, 2, 3 pro-
cesses. It is capable of handling all of the needed generation steps including generating the
hard scatter process, parton showering to the leading log (LL) level, hadronization, and the UE
simulation. PYTHIA makes use of the Lund string model for hadronization and describes the
UE as additional, but not quite independent perturbative 2 — 2 scatterings. Another genera-
tor used is MADGRAPH [151], which more accurately simulates hard parton emission (i.e. ISR
and FSR), but must be interfaced with PYTHIA for showering soft and collinear radiation. The
POWHEG [152, 153] generator uses NLO matrix elements and PDFs and then matches this with
a modified shower simulation. Both MADGRAPH and POWHEG are interfaced with PYTHIA for
hadronization. For more accurate tau lepton decays CMS often uses the TAUOLA [154] software

package.
4.9 Detector Simulation

Event generation simulates the particle kinematics for a given event, but doesn’t examine how
the particles will interact with the detector and it’s constituent materials or how the readout elec-
tronics will behave. To simulate the response of the CMS detector, the generators are interfaced
with a sophisticated detector simulation based on the GEANT4 [155, 156] software package, which
takes into account the exact detector geometry as well as all materials used. The alignment, cali-
bration, and other conditions which may change over time are periodically checked and are stored
in a database. These conditions are used both for offline simulation and reconstruction as well
as for online activities. A snapshot of the conditions at some point in time is called a global tag.
For reference, this analysis uses the GR_R_53_V10 and STARTS53_V7A global tags for data and
simulation, respectively [157]. The final state particles from the event generator are sent to the de-
tector simulation, which tracks the particles as they move through the detector depositing energy

into what are called simulated hits (SimHits). While the models of electromagnetic interactions
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are extremely precise, the hadronic interactions have a greater uncertainty associated with them.
The simulation goes through the data acquisition process, event simulating the responses of the
photodetectors and readout electronics. The resulting information is then analyzed by the same
reconstruction process that the real data goes through and is stored using the ROOT [158] software

library.
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5. HIGGS ANALYSIS

This thesis presents a search for the SM Higgs boson decaying to the lvjj final state making
use of data collected by the CMS detector at the LHC. To study the efficacy of various object and
event selection criteria we make use of signal and background MC simulations. While the signal
samples are fully MC based, some of the background samples use data-driven techniques, which
will be discussed later in this chapter. The matrix element probabilities for an event final state
being created by a specific diagram are computed. Several multivariate techniques are studied
and used to distinguish between signal-like and background-like events. We use the discriminator

outputs from these multivariate classifiers to set limits on the SM H — WW cross section.
5.1 Data and Monte Carlo Samples
5.1.1 Data

As mentioned previously, this analysis makes use of the full 2012 CMS dataset of 8 TeV data.
Fig. 5.1 shows the cumulative delivered, recorded, and validated luminosity versus time. Only
fully validated data, where both the LHC and CMS are completely operational, are use used
for CMS analyses [9]. Table 5.1 shows the data samples used for this analysis, which corre-
sponds to ~19.2fb~'. The datasets are split by the two HLT paths used, one which selects for
a single high pr electron and one for a single high pr muon. These two separate PDs corre-
spond to the HLT_Ele27_WP80_v* and HLT_IsoMu24_eta2pl_v* trigger paths, respectively. The
HLT_Ele27_WP80_v* path requires a reconstructed electron with pp > 27 GeV along with sev-
eral other criteria grouped into a working point with 80% efficiency of selecting true electrons.
The HLT_IsoMu24_eta2pl_v* criteria requires an isolated, reconstructed muon with pp > 24
GeV within |n| < 2.1. The luminosities listed in the table are associated with a 2.6% uncertainty

as specified in [107] and were collected using the HF luminosity measurements [108].
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CMS Integrated Luminosity, pp, 2012, Vs = 8 TeV
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Figure 5.1: Cumulative day-by-day integrated luminosity in 2012 delivered by the LHC (blue),
recorded by CMS (dark orange), and validated for physics use (light orange). Reprinted from [22].

5.1.2 Monte Carlo

This analysis makes use of MC simulation to study the background processes which have
similar final states to that of the H — WW — lvjj signal. Both the kinematic distributions and
the final yields are extracted from these samples. The MC simulation is used for all backgrounds
except for the multijet process, where a data-driven approach is used instead. The process of
developing this sample is described in detail in the section 5.1.3. The signal sample kinematics and
yields are also taken from MC. Tables 5.2 and 5.3 list all of the MC sample for the Higgs signals
and SM background processes, respectively. The SM background and volunteer signal samples

are centrally produced by the CMS collaboration. The ggH samples were produced specifically for
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Dataset Run Range Integrated Luminosity

/SingleMu/Run2012A-13Jul2012-v1/AOD 190645-196531  0.809fb !
/SingleMu/Run2012A-recover-06Aug2012-v1/AOD 190782-190949  0.082 b~
/SingleMu/Run2012B-13Jul2012-v1/AOD 193834-196531  4.383fb ™!
/SingleMu/Run2012C-24Aug2012-v1/AOD 198022-198523  0.489 b~
/SingleMu/Run2012C-PromptReco-v2/AOD 194631-203002  6.285fb ™!
/SingleMu/Run2012D-PromptReco-v1/AOD 194480-208686  7.231fb~!
Total SingleMu 190645-208686 19.279fb "
/SingleElectron/Run2012A-13Jul2012-v1/AOD 190645-196531  0.809fb !
/SingleElectron/Run2012A-recover-06Aug2012-vl1/AOD  190782-190949  0.082fb !
/SingleElectron/Run2012B-13Jul2012-v1/AOD 193834-196531  4.336fb~!
/SingleElectron/Run2012C-24Aug2012-v1/AOD 198022-198523  0.489fb~!
/SingleElectron/Run2012C-PromptReco-v2/AOD 194631-203002  6.194 b~
/SingleElectron/Run2012D-PromptReco-v1/AOD 194480-208686  7.238fb !
Total SingleElectron 190645-208686 19.148fb !

Table 5.1: The datasets analyzed for this analysis.

this analysis. All of the samples, regardless of who produced them, are stored in a database called
the Data Aggregation System (DAS) and organized by the “Dataset Name” field. The backgrounds
were modeled by MC samples generated with MADGRAPH [151] and PYTHIAG6 [150]. The signal
MC samples were also generated by PYTHIAG. Tables 5.3 and 5.2 list all of the MC for the Higgs
signal and SM background processes, respectively.

The tt, W + jets, and Z + jets SM background samples are generated using MADGRAPH
v5.1.3.30 [151]. The tt sample is inclusive, meaning that it includes all decay modes of the W
boson coming from the top decay. The W + jets and Z + jets samples are also inclusive, but in this
case it means that in addition to the leptonic decay of the boson there are any number of final state
jets. The single top quark samples are modeled using the POWHEG 1.0 r138 [159, 160, 161]
generator. The diboson processes use the PYTHIA v6.4.24 generator [150]. The cross sections for
the tt and single top quark processes are calculated at next-to-next-to-leading logarithmic (NNLL)
accuracy [162] while the inclusive W +jets and Z +jets processes are calculated at next-to-next-to-
leading order (NNLO) accuracy [163]. The diboson cross sections are calculated at next-to-leading
order (NLO) accuracy [164].

The H — WW signal samples are generated with PYTHIA v6.4.24 [150], where one W is
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required to decay leptonically while the other is required to decay hadronically. The cross sections
for the Higgs production are calculated at NNLL QCD and NLO EW accuracies. The calculations
for gluon-gluon fusion and VBF production cross sections use the complex-pole-scheme (CPS)
while the associated production cross section are calculated with the zero-width-approximation
(ZWA) [165]. These samples were privately produced because the centrally produces samples did

not include enough events and had large statistical fluctuations.
5.1.3 Multijet-QCD Background

It is well known that the QCD process is difficult to model to the desired level of accuracy.
Additionally, the event selection in this analysis requires two isolated jets and an isolated lepton,
which vastly reduces the number of QCD MC events that pass the selection criteria. Although the
probability to mis-reconstruct a jet as a lepton is fairly low, the production cross section for the
multijet process is extremely high and thus cannot be ignored. When using the MC samples we
are left with a statistically limited sample that is almost useless for describing this background.

Rather than relying on MC for the QCD background sample, a data-driven sample was created
by using the same trigger requirements as the data, but removing the isolation requirement for the
lepton and inverting the lepton particle flow isolation cut during selection. The main idea of the
method is to utilize differences in lepton identification properties that separate prompt, isolated
leptons from W and Z decays, also known as “real leptons,” from non-prompt, non-isolated lep-
tons, also known as “fake leptons.” The normal signal selection requires an isolated lepton, without
other particles around it, to limit this sort of “fake lepton,” but this is exactly the type of property
we want to select for when forming a QCD sample from data. This process provides a completely
orthogonal sample of QCD events from data that won’t, and shouldn’t be used for signal extraction.
Since we make use of the entire 2012 dataset!, we end up with statistically rich samples containing
lots of mis-identified leptons.

A complete description of the event selection will be discussed in section 5.2, but here I will

just talk about the isolation requirements. The loosest lepton PF isolation requirement used to

'The QCD events are scaled slightly to account for failed jobs (missing luminosity) during processing.
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determine the signal region is Isolationpr < 0.2, which is used to veto on “loose” or question-
able leptons. The assumption is that any lepton with Isolationpr > 0.2 is a mis-reconstructed
lepton coming from QCD. For electrons we must also turn off the MVA-based identification re-
quirements as they are stringent enough that they won’t allow for any fake leptons to pass our
selection. As mentioned before, the electrons must still pass the “HLT_Ele27_WP80_v*” electron
trigger used for the data containing our signal. On the other hand, the muon trigger is changed to
be “HLT_Mu24_eta2pl_v*” to remove the isolation requirement that was included in the trigger
used to select for the signal.

In order to gain greater separation from the signal selection to ensure as little non-QCD con-
tamination as possible, we actually use a minimum isolation requirement of Isolationpg > 0.3. We
also put an upper limit on the PF isolation value to keep the sample from having a bias towards
high nPV values. For electrons the upper limit was 0.7 and for muons it was 2.0. The 1o systematic
uncertainty bands for electrons (muons) were selected to be 0.2 < Isolationpr < 0.3 on the low
side and >0.7 (2.0) for the high side Fig. 5.2 shows the pf isolation values contained in the electron

multijet and data samples as a function of 7.
5.2 Event & Object Selection

As described in section 4, CMS provides to every analysis a list of reconstructed objects (i.e.
jets, electrons, etc.) which may be used. However, these reconstruction algorithms are inten-
tionally generic so that the objects they return are applicable to a wide array of physics analyses.
Specific groups within CMS called physics object groups (POGs) are responsible for developing
object quality criteria which must be implemented by each analysis to prevent fake or poorly re-
constructed objects. This section will discuss the object selection criteria used to identify vertices,
electrons, muons, jets, and ET, which all meet or exceed the object requirements as set by the rel-
evant POGs. Only events which contain objects of the right quality and multiplicities will be used
in the analysis.

Like most analyses, this one selects for a single good quality primary vertex, although the

presence of additional vertices (pileup) does not disqualify the event. The primary vertex must
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Figure 5.2: The PF isolation for the electron channel as a function of n (left) with and (right)
without the lepton isolation and electron MVA-based identification requirements.

pass certain additional quality criteria. There must be at least four degrees of freedom used to find
the vertex, the absolute value of the z-coordinate of the vertex must be less than 24 cm, the absolute
value of the p-coordinate (cylindrical coordinate system) must be less than 2.0 cm, and the vertex

must not be identified as a fake vertex. These criteria are summarized in table 5.4.

Cut Value
Npor >4

|2 <24cm
ol <2.0cm

Table 5.4: The primary vertex selection requirements for this analysis.

As mentioned before, this analysis selects for the presence of one lepton, either an electron or
muon, at least two jets, and some amount of ﬁT. In practical terms this means that we select for one
tight electron (muon) as defined in section 4.3 (4.4) and veto the event if there are any additional

tight or loose electrons and muons (muons and electrons). Some additional cuts beyond those
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of the identification requirements are imposed to cut out some of the background events while
maximizing the number of signal events we could use for the multivariate analysis techniques.
The additional pt and 7 requirements as specified in the same sections are also applied. For the
tight electrons this meant raising the p requirement from 27 GeV to 30 GeV, which avoids using
events right on the trigger turn on threshold while only removing ~5% of signal events, as seen in
fig. 5.3. Because muon reconstruction and identification in CMS is very good, we only raised the

pr requirement to 25 GeV from 24 GeV.
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Figure 5.3: Histograms of the electron pr distribution where the gluon-gluon fusion signal is in
green and the W 4 jets background is in blue. The histograms are normalized to unit area. The red
line show the cut on electron pr where 5% of the signal is lost.
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Beyond the lepton requirements, this analysis selected for any number of jets as long as they
pass the selection criteria found in section 4.5. As the hadronic W decay will have at least two jets,
that is the minimum number of jets needed to make it into the signal region, but we do not veto on
additional jets which might come from ISR or FSR. The requirement of the leading jet having a
pr > 30 GeV was implemented to reduce the impact of the multijet background while minimally
impacting the signal. Besides the logical splitting of events based on lepton flavor, we also split
events into three categories based on the number of jets in the event; exactly two jets, exactly three
jets, and four or more jets. As stated in section 4.7 we also require at least 25 GeV of ET.

Given that our signal has only one hadronic W boson, we don’t expect the W — bb branching
fraction to contribute much to our signal. However, we also want to remove as many tt or single top
events as possible, which are commonly associated with bquarks. Thus we decided to veto events
with b-tagged jets in order to reduce our backgrounds as much as possible. An additional reason
to do this is to keep the orthogonality between this analysis and another CMS analysis which was
looking at the VH production channel where H — bb. That analysis uses the same final state as
this one, but requires two b-tagged jets [166]. To prevent overlap, we only ever considered events
with one or fewer b-tagged jets and then we separate the events into two categories based on the
number of b-tags. The zero b-tag events are used for signal extraction while the one b-tag events,
which have a much larger impact from tt and a higher H — bb signal yield, are used for validation

purposes and to check the volunteer signal contribution.
5.3 MC Corrections

Although a significant amount of work and time goes into making sure the MC simulation prop-
erly models the data, there can still exist discrepancies between the observed data and simulation
Often this occurs because the exact data taking conditions are not known in advance, like the pileup
conditions that will exist. Another reason the MC might not exactly mimic the data is that even
state of the are generators are limited in their precision; much of the physics of hadronization is
still unknown and hard physics processes can often only be computed up to NLO precision. Data,

on the other hand, contains all hadronization effects and all orders of precision. I have already
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discussed some object specific corrections like the jet energy corrections, jet energy resolution,
and ET corrections in sections 4.5 and 4.7. For other discrepancies it is often necessary to reweight
the full event rather than a specific object.

Broadly speaking these corrections can be separated into two categories: those which are com-
mon to all CMS analyses and those which are specific to this analysis. The first category includes
the b-tagging CSV discriminant weights and top quark pr spectrum weights for the tt simulation
while the second category includes the weights for our multijet sample. These event weights are

applied after selecting for the events as they do not change the object kinematics.
5.3.1 Pileup Reweighting

Pileup is an important quantity as it can affect the reconstruction efficiency and even the ob-
served kinematics of all the objects used in this analysis. Up to this point it has been described
as additional proton-proton interactions within an event, besides the interaction that produced the
physics objects we are interested in studying. There are several other properties of pileup which are
worth noting. I have so far either referred to pileup in a general sense or as relating to additional ob-
jects (tracks or energy) which might be found in the same bunch crossing as the event under study.
In reality there are two different categories of pileup. There is indeed the pileup which comes from
additional proton-proton interactions within the same bunch crossing, known as “in-time” pileup.
There is also energy from pileup added to objects because it was left in the sub-detectors from
bunch crossings before or after the current one. This is known as “out-of-time” pileup and comes
about because the integration window of the sub-detectors can be larger than 25 ns. An additional
property is somewhat obvious in that the true number of proton-proton interaction within an event,
1, 1s related to the instantaneous luminosity, which can vary within any given data taking period
and even within a luminosity section (LS). As a benchmark, the average number of proton-proton
interactions per bunch crossing in 2012 was 21 [9].

The MC samples used in CMS are usually generated before the data is taken and are thus
created with an assumption of what the pileup conditions will look like in data. A broad distribution

of 1 values, the number of min-bias pileup events overlaid on the hard scatter event, is generally
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Figure 5.4: The mean number of interactions per bunch crossing in 2012. The min-bias cross
section used for the calculation is 80 mb.

chosen so as to cover all pileup conditions which might be experienced over the course of a data
taking period. Somewhat unsurprisingly the anticipated p distribution rarely matches the one one
observed in the data and thus the MC must be reweighted such that the p distributions match [167].
To generate a histogram for the average number of interactions per bunch crossing coming from
data we make use of the approved pileupCalc tool provided by CMS. This tool takes as input the
total inelastic cross section Cipelasic = 69.3 mb?, a file in JSON format with every run number and
luminosity section matched to a given average instantaneous luminosity and integrated luminosity
for that given LS, and another JSON formatted file with the run numbers and LS used in the given

analysis®. All of the MC samples used contain the same p distribution scenario denoted by the

2This is the CMS approved best fit value, not the theoretical value.
3This analysis uses the full 2012 “golden” JSON file called
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“S10” notation in the dataset name. The per event weights as a function of y are created by dividing
the normalized distribution from data by the normalized MC based distribution. The weights are
then applied to each MC event by looking up the weight for the mean number of pileup interactions
used to generate that specific event [168]. The distributions of pileup interactions in MC and data
a well as the corresponding pileup weights can be seen in fig. 5.5. Unfortunately, because the
weights are not at unity, the statistical precision of the MC samples is reduced. Fig. 5.6 shows the
data to MC comparison of the Npy distribution before and after the pileup reweighting scheme has

been applied.
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Figure 5.5: (a) Distributions of the number of pileup interactions in data and in simulation. (b) The
derived pileup weights as a function of the number of interactions.

While this methodology is sufficient for the simulated backgrounds, it does not work for the
data-driven multijet background. As can be seen from figs. 5.7a and 5.7c, the distributions for the
number of primary vertices between data and the QCD samples do not match, indicating some

bias due to the selection. Since the QCD sample does not contain the truth level number of pileup

Cert_190456-208686_8TeV_PromptReco_Collisions12_JSON.txt.
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Figure 5.6: Comparison of the number of primary vertices (Npy) in data and in MC (a) before the
the pileup weights are applied and (b) after the weights are applied. These distributions correspond
to the 19 fb~" collected during the 2012 data taking period and include both the electron and muon
categories.

interactions, this is data after all, it would be improper to look up pileup weights using the same
weight distribution as for simulation. Instead, a new set of weights is derived using the number
of primary vertices for data in the signal region and anti-isolated region, assuming that the vertex
finding efficiency is the same in both regions and only the selection of the lepton changes. These

weights can be seen in figs. 5.7b and 5.7d and are applied in the same manner as before.
5.3.2 CSV Reweighting

Section 4.6 introduced the criterion for tagging a jet as being produced by a bquark and the
use of the Combined Secondary Vertex (CSV) discriminant. The derivation of this discriminant

is described in [137, 138]. This analysis relies heavily on the identification of bjets to veto the tt
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Figure 5.7: Distribution of the number of primary vertices for data and QCD (a,c) and the associ-
ated weights (b,c). Figures (a) and (b) show the electron channel while figures (c) and (d) show the
muon channel.

background, so it is absolutely crucial that it behave the same in both data and MC and accurately
describe the rate of observing a bjet. [169] notes that the tagging efficiency in data is not the same
as that in MC, so a correction to the CSV discriminant must be made. The corrections described
there both correct the rate of observing a jet in MC with a CSV value above a given threshold as
well as the general shape of the CSV distribution. If at the end of the procedure the shape of the
data and MC distributions agree, then they will also properly assess the rate of events passing a

given CSV threshold.
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The method is based on calculating a scale factor for both heavy and light flavor quarks which
is parameterized by the CSV value, jet pr, and, in the case of light flavor quarks, jet . We first
retrieve the truth level jet flavor in order to determine the correct category: bjet, cjet, or light
flavor (anything else). The cjets are given a flat scale factor of 1, meaning that there is no need
to correct the CSV value for this flavor. The bjet scale factors are divided into five pr bins of
pr < 40GeV, 40GeV < pr < 60GeV, 60GeV < pr < 100GeV, 100GeV < pr < 160 GeV, and
pr > 160 GeV. The light flavor scale factors are divided into only three pr bins of pr < 40GeV,
40GeV < pr < 60GeV, and pr > 60GeV, but are also divided into three eta bins of || < 0.8,
0.8 < |n| < 1.6, and 1.6 < |n| < 2.4. An individual scale factor is retrieved for each jet, which is
then combined as in equation 5.1 in order to create an event weight.

ijets

SFiotat = | [ SFiet, = SFiet, S Fiety - (5.1)

The CSV value for each jet is unchanged, but the event is weighted by S Fiota1.
5.3.3 tt Reweighting

Differential top-quark-pair analyses have shown that the shape of the pp spectrum for top
quarks is softer in data than predicted by simulation [170, 171]. Although it has been shown
that NNLO predictions show reasonable agreement [172], this analysis must correct for the dis-
crepancy in the tt simulation. Events are reweighted based on the pr of the generator level tand

tin only the tt simulation. The weight Wroppy 18 calculated as:

WTopPt = V SFtSFE (52)

SF (p&™) = exp (a + bp&™) (5.3)

with a = 0.156 and b = —0.00141. Fig. 5.8 shows the distribution of weights for electron and
muon events separately. The bulk of the weights are centered around 1, indicating that no correc-

tion is necessary, with a long low side tail, indicating that a good fraction of events require the top
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pr to be scaled down. Some events do require that the top pr be increased.
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Figure 5.8: Top pr weight distributions for (a) electrons events and (b) muon events.

5.3.4 cos(theta;) Reweighting

A linear trend in the data to MC comparison of the cos (6))variable was discovered, indicating
a mis-modeling problem in the simulation. cos (#))is one of the angular variables involved in the
WW system and is the cosine of the angle between the daughter lepton and the WW decay plane,
which corresponds to cos (6s) in fig. 5.22. Fig. 5.9a shows this trend in the two jet bin, though the
trend is the same in the other jet bins.

We correct for the trend in the W + jets MC as this is the biggest background and correcting
it will improve the overall agreement. We create the corrections in the one b-tag control region
shown in fig. 5.9b so as to not bias our backgrounds in the signal region. It’s clear from fig. 5.9 that
the trend in the one b-tag region is the same as the trend in the signal region. Although the regions
are similar, the tt MC plays a much larger role in the control region because it contains two real
bjets. Therefore we subtract the expected tt yield from the data before creating the weights. The
new weights shown in fig. 5.10a are combined multiplicatively with the pileup and CSV weights

for the W + jets sample. The corrected distribution is shown in fig. 5.10b where it is clear that the
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Figure 5.9: Distribution of cos (6;)for data and MC in the two jet bin for (a) the signal region and
(b) the one b-tag region. The top of each figure shows the data and MC expectations while the
bottom shows their ratio with a clear linear trend.

trend has been removed.
5.3.5 QCD Reweighting

As stated in section 5.1.3, the QCD sample is obtained by selecting on anti-isolated leptons,
as opposed to the isolated signal selection. Although these regions are similar kinematically, the
ratio of the number of events in the signal region to the number of events in the anti-isolated region
changes significantly as a function of 7. This effect was first noticed in MC, which was used
to check the anti-isolation procedure despite its limited statistics in the low pr-binned samples.
Fig. 5.11 shows the suspect ratio as a function of 7 in the different QCD pr bins. The effect seems
to be particularly large in the endcap regions (|n| > 1.3). A weighting procedure is necessary to
make sure that the expected yield as a function of 7 for the data-driven QCD sample is correct
when used in the signal region.

To derive the weights we use the one jet control region separated into 13 (12) bins of lepton
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modeling. (b) cos (6, )distribution in the signal region after applying the weights.

|leta| for the electron (muon) channel. We want to find the scale factor Sqcp such that:

NP (1) Sacp (1) = Nt region (1) (5.4)

anti—isolated signal region

where Nﬁﬁ?isolawd and NS%ES region TE€PTesent the number of events in the anti-isolated and signal
regions, respectively, given the same luminosity in both. In order to determine the scale factor
needed to to modify the QCD contribution in each bin, we perform a fit to the data using the
distribution. The QCD and W + jets contributions are allowed to float while the contributions from
all of the other backgrounds are fixed to their SM expectations. The [ distributions post-fitting
as well as the x?/NDF for all of the fits are shown in fig. 5.12. The fit returns both the scale
factor Sqcp as well as a scale factor for the W + jets, Swjes, Which are shown in fig. 5.13. The
shape of the weights follows very closely the shape of the ratio in MC from fig. 5.11, which is a

very good indication that we are indeed correcting for the intended effect. The same procedure

is performed for the muon events, yielding the weights shown in fig. 5.14. Note that the absolute
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Figure 5.11: The ratio of the number of events in the signal region to the number of events in the
anti-isolated region for six QCD pr bins. The total number of events in the two regions is shown
in parentheses along the y-axis. The first plot is empty due to the low number of MC events which
pass the selection criteria.

value of the scale factors is not what matters, only their relative values, as the sample will undergo
an additional normalization in order to obtain the correct yield.

As an additional cross check, the same procedure was done to the >2 jets bin to see if the
distribution of weights was similar to that of the control region. From figs. 5.15 and 5.16 we see
that the procedure, done on the signal region, does indeed return similar scale factors to those
found in the one jet control region. This gives us high confidence that the scale factors from the
one jet bin will correct the shape of the QCD distributions in the signal region.

The right plot of fig. 5.16 shows that the W + jets normalization also needs to be measured as a
fit to the ratio of measured events and expected event yields. This ratio has a value of 0.953+0.008,

which is not consistent with the 2.56% error on the theoretical cross section. To find the correct
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last pad in the plot show the x?/N DF of the fits.

W + jets and QCD normalizations a two component fit to the [ distribution of the data is used,
allowing only the W + jets and QCD fractions to float. The expected yields of the other SM
backgrounds are held constant during the fit. A Gaussian constraint is imposed on the W + jets
scale factor because its theoretical cross section uncertainty is known. The derived scale factors
are shown in table 5.5 and the Frdistribution for data and MC after the reweighting can be seen in

fig. 5.17.
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Figure 5.14: Sqcp (left) and Syyjes (right) scale factors as a function of lepton |n| derived in
the muon channel for the one jet bin. The green band indicates the uncertainty on the W + jets
expectation due to the theoretical uncertainty in the SM cross section.

125



B 7 Ql7acn<0348 i 0522500696 —r
45000f= —- pata S0000F — pata 50000 —~+-pata
a0000F- [ = B oco

as000f- 0 waets 40000 B0 wiets

30000~ I Others

30000}
25000

20000~
15000

20000}

10000
s000f

10000]

60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200
MET MET MET MET

20 40 60 80 100 120 140 160 180 200

0.696<1<0.879 0.879<11<1.044. 1.044<n<1.218 1218<n<1.392
LA Mt Aaa aeat At T T T T TR

—+-Daa S0000F —-pata 50000F —-Data ] s0000F —+-Dpata

s0000f-
B oo @8 oco @8 oco @8 oco

40000~ M wiets 0000F B waets 40000 0 woets 40000 W wiets
@ others

30000} 30000 30000} 30000)

20000) 20000] 20000 20000|

10000) 10000] 10000) 10000}

E 20 40 60 80 100 120 140 160 180 200

60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200

20 40 60 80 100 120 140 160 180 200

MET MET MET MET
1.302<1<1.566 1,566<1<1.740 1.740<1<1.930 1,930<<2.172
ot e 40000} e 45000 M E 50000 ™
—- Data 20000 —4-Data
14000 8 oco 25000 @ oco 40000}
12000) 0 waets 3 0 woets
30000

@ others @B others

25000F 30000}

20000

20000}

15000~

10000
5000

10000]

X?INDF
—_—
_*_

Figure 5.15: The [ distributions in the >2 jet bin used to derive the QCD weights in the 13
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Lepton Category W + jets SF QCD SF
Electron 1.04515 £ 0.00509474  0.248858 +0.0131115
Muon 0.969517 + 0.00442517  0.145418 £ 0.00669525

Table 5.5: W + jets and QCD scale factors as derived from a two component fit to the K distribu-
tion.
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5.4 Data-to-MC Comparisons & Yields

After applying all of the object and event selections, object corrections, and event weights we
can now look at the expected yields for the simulated signals and backgrounds. Table 5.6 shows
the event yields for our signal selection separated by jet bin, but combining the electron and muon
categories. Table 5.7, on the other hand, shows the percentage yields where the numbers from
table 5.6 have been normalized to the sum of the events in background and signal sections. In both
tables, Higgs events where the Higgs boson does not decay to two W bosons are referred to as
’volunteer signal’. This is in contrast to true H — WW events, which we sometimes refer to as
‘true signal’. Both of these categories are normalized to the H — WW yields in order to be able
to compare the volunteer signal contamination to the true signal.

It is clear from these tables that the dominant background for all jet bins is W + jets. Its
expected yield is by far much larger than all of the other backgrounds. From table 5.7 one can
also see that the sum of the volunteer signal is at most 7% of the H — WW signal, which means
the b-tag cut is keeping the non-H — WW contamination to a minimum. If the b-tag cut was
not used the tt background would become much more significant, even becoming the dominant
background in the >4 jet bin. Additionally, the volunteer signal would become as high as 87% of
the H — WW signal, which means that there would be a lot of overlap between this analysis and

other CMS analyses. Comparison plots for several kinematic variables can be found in appendix C.
5.5 Multivariate Analysis

One of the problems of past analyses, such as cut-and-count experiments, is that they ignore
the additional information that comes from using the many correlated bins of a shape analysis.
By doing a cut-and-count experiment across many bins an analysis is able to gain in discrimina-
tion power. That being said, it would be wasteful and suboptimal to use a single discriminating
kinematic distribution, which means the discrimination power of the unused variables is missed.
This analysis uses the output of a boosted decision tree (BDT) classifier as the template used for

limit setting, choosing to combine the discrimination power of several kinematic variables. This
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Process 2 Jets 3 Jets >4 Jets

Diboson 0.011 0.016 0.015
W + jets 0.845 0.796 0.703
7 + jets 0.066 0.073 0.073
tt 0.006 0.029 0.116
Single t 0.004 0.008 0.011
Multijet 0.068 0.078 0.082
Total Background 1.000 1.000  1.000
ggH, H - WW My =125 GeV 0.695 0.606 0.571
qqH, H - WW My =125 GeV 0.134 0.151 0.126
WH_ZH_TTH, H — WW Myz =125GeV  0.171 0.242  0.304
Total H - WW 1.000 1.000 1.000
WH_ZH_TTH, H — 77 My =125 GeV 0.013 0.015 0.017
WH, H — bb My =125GeV 0.057 0.041  0.028
ttH, H — bb My =125 GeV 0.001 0.004 0.027
Total Volunteer/Total H - WW 0.071 0.060 0.072

Table 5.7: Expected percent yields for both the electron and muon categories separated by jet
bin. The background samples are normalized by the total background, while the H — WW and
volunteer signal samples are normalized by the H — WW total. The Dominant background in all
jet bins, W + jets, is highlighted in green. This table contains the percent yields for the zero b-tag
category.

type of multivariate analysis (MVA) is useful in quantifying the separation of the signal samples

(H — WW) from the background samples.
5.5.1 Boosted Decision Tree

Multivariate techniques are used to model the dependence of one or more target variables on a
set of input variables. Boosted decision trees are a more robust alternative to artificial neural net-
works and were first introduced to the high energy physics (HEP) community by the MiniBooNE
collaboration [173]. This machine learning (ML) technique has since been used countless times
throughout the HEP community. This analysis makes use of the BDT algorithm implemented in
the ROOT TMVA package [174]. The key ingredient here is the boosting technique, which helps
to mitigate the problem of “overtraining,” which is common to ML algorithms, and increases the
overall performance of the algorithm [175]. The issue with overtraining is that the output of the

ML algorithm becomes overly dependent on the multivariate inputs. In other words this means
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that a small change in the input variable z—x + dx can cause a large change in the output of the
algorithm f (z + 0x) — f () > e. The ML algorithm may be picking up on minute changes in the
simulation or statistical fluctuations, both of which are not true features of the target classification.
While these jumps may seem to indicate a higher amount of discrimination power in the training
sample, they are not indicative of the underlying physics being modeled and must be suppressed.
The BDT algorithm train many weak decision trees, which are then combined using the namesake
“boosting algorithm.” This algorithm “boosts” the events that are misclassified in the previous tree
so that each successive generation of tree contains fewer misclassified events. Some of the benefits
of boosting are that weak or less discriminating input variables will have a reduced impact and that
many input variables can be included to improve the overall classification performance. This sec-
tion will describe the general process of training of a BDT classifier while the subsequent sections
will explain how the BDTs were trained for this analysis.

A decision tree is a binary tree structure made up of nodes which are meant to provide higher
purity samples of signal and background at each subsequent layer of the tree. A set of input
variables is chosen by the analyzer before the start of the training sequence. The higher purity
is achieved by placing a cut on the single input variable which will achieve the best separation

(highest purity) at any given node. This can be thought of as each node creating a boundary

L(t]S5)

t (x) in multi-dimensional space and estimating the likelihood ratio Z(1B)

in a small portion of
that space. The input variables should be chosen for their discrimination power, which can be
quantified at each stage of the tree as S/ (S + B). The signal purity P, on the other hand, is
defined at every node as the number of signal events divided by the total number of events in the
sample, both signal and background. For purity P, a cut value can be chosen to minimize the
Gini Index Gini = Gt + Grighr, Where G = P (1 — P) and Gyq. is calculated one both sides
of the cut. This cut will then define the population of signal and background for two nodes in
the next layer. A perfect cut which completely separates signal from background will achieve
Gint = Giesg = Ghrigne = 0 while any impurity will mean Gini # 0. The Gini Index will reach

a maximum when the samples are fully mixed. For training purposed, the starting node will have
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the same mixture of signal and background as the training sample, while each successive cut level
will reduce the impurity as shown in figs. 5.18 and 5.19. It can be seen from both figures that a
single variable may be used to define a cut at more than one node in the tree, as in the jet2dRLep
variable in fig. 5.19. It is also possible that a variable will not be used at all. The granularity of the
cuts tested by the algorithm is a user specified parameter, which must be wisely chosen to allow
for flexibility in the cut space, but not so granular as to adversely increase the computing time. The
stopping point of the algorithm can be based on the minimum number of training events remaining
in each node, the maximum number of layers from the root node, a requirement on the purity, or
a combination of two or more of those criteria. At this point the multi-dimensional space is split
into many regions, which are classified as either signal or background depending upon the purity
level of the final node. A purity > 0.5 is classified as signal and a purity < 0.5 is classified as
background [174].

Training many independent decision trees without boosting will not prevent overtraining as
each tree would have a different misclassification rate. The boosting algorithm solves this by
combining many decision trees (a “forest” of trees) to minimize the ensemble misclassification
rate. This analysis makes use of the adaptive boost (AdaBoost) procedure, which weights higher
in subsequent trees events which are mis-classified in the current tree [176]. The event weights are
initialized to 1, but change after the first tree. Nevertheless, the weights in each tree are always
normalized such that the sum of the weights remains constant. The events in each new tree are
weighted by multiplying the previous event weights by a boost weight & common to the tree. « is
defined as:

_L—err

a=—"" (5.5)

err

where err is the mis-classification rate of the previous tree. The weighted sum of the tree outputs

is given by:

1 M

Ypoost (X) = > " In(am) b (), (5.6)

m=0

where there are m trees, x are the input variables, and h (x) € {—1, 1} is the single event classifier
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. Signal fraction e Cut chosen to minimize:

GLeft+GRight
Background ptPholso/phoPt> 0.11 for G=p(1-p) p=S/(S+B)
fraction /
S/(S+B)=0.722 GLeft=0.20 - S/(S+B)=0.018
pfChglso/phoPt>0.0679 GRight=O 01 fPholso/phoPt> 0.22
S/(S+B)=0.835 S/(S+B)=0.084 S/(S+B)=0.062

S/(S+B)=0.000
HoverE>0.0499 r9<0.933 r9< 0.93

RN AR NI ARN

S/(S+B)=0.882 S/(S+B)=0.302 S/(S+B)=0.350 S/(S+B)=0.049 S/(S+B)=0.305 S/(S+B)=0.043

Figure 5.18: Example BDT classifier tree showing the cut optimization procedure to separate
signal and background events. The colors within each node represent the purity p. The root note
contains equal amounts of signal and background, but after the first layer the right-most node
contains almost pure background while the left-most node contains 70% signal. The base of the
tree provides a node with more than 80% signal purity.

indicating if the event is signal, i (x) = 1, or background, / (x) = —1. The resulting discriminant
on the event at the end of the training, ypoos; (X), is a number in the range [1, —1], where 1 is most
signal-like and -1 is most background-like.

The AdaBoost procedure is ideal for use with shallow trees with two or three levels each,
leaving a relatively large population of events in each of the final nodes. These are also known as
weak classifiers and provide little discrimination power on their own. The benefit to using these
is that they are much less prone to overtraining, but they can be grouped together, through the
boosting procedure, to provide good discrimination power. Had the trees been allowed to reach
a state where a single event was left in a node, this would imply that there was a cut sequence
that would lead to perfect signal versus background classification, a practical impossibility. It

is therefore important that the analyzer keep this in mind when specifying the stopping hyper-
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Signal Leaf Nodes |ept0n Pt> 60.1

SI(S+B)=0.431 el T 3
e

Pttt g(S+B)=0.460 S/(S+B)=0.318
ht_lep> 141 jet2dRLep> 1.58

S/(S+B)=0.490 S/(S+B)=0.400 S/(S+B)=0.497 S/(S+B)=0.240
jetidRLep> 1.28 jet2dRLep> 1.78 jet2dRLep> 1.09 jetidRLep> 1.3

S/(S+B)=0.473 S/(S+B)=0.486 S/(S+B)=0.557 S/(S+B)=0.569
S/(S+B)=0.593 S/(S+B)=0.322 S/(S+B)=0.416 S/(S+B)=0.233
lepMT> 59.2 PtinujjLep< 39.6 lepMT< 46 ht_lep> 228

Figure 5.19: An example decision tree used by this analysis. This tree will be combined with a
forest of other trees using the boosting algorithm. The bottom nodes are defined as being more
signal or background like based on the majority population left in the node.

parameters. One of the other hyper-parameters specific to the AdaBoost procedure is the boost
weight exponent, where a—a”. By changing 3 one can slow down the learning rate, allowing for

a larger number of boost iterations. The list of tunable hyper-parameters is as follows:

e NTrees: The number of trees in the forest.
e nEventsMin: The minimum number of events allowed in a node after the splitting.
e MaxDepth: The maximum number of levels in the tree aside from the root node.

e BoostType: The boosting method to use. This analysis used the adaptive boost (AdaBoost)

method, but other options are available.
e AdaBoostBeta: The exponent of the AdaBoost weight. This analysis used 5 = 0.5.

e SeparationType: While this analysis used the Gini Index there are other choices for measur-

ing the separation of signal and background.
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e nCuts: The number of steps available for a single variable when determining the cut value.
Increasing this number leads to finer granularity, the benefit of which was not seen by this

analysis. We chose to use a step size of 20.

e PruneMethod: It is possible to prune away some branches to increase performance. This was

unnecessary for this analysis as it used a boost procedure which limited the size of the tree.

e NodePurityLimit: This parameter determines at which purity (P > NodePurityLimit) the

final node is considered a signal node. This analysis used a value of 0.5.

As an additional way to check for overtraining, one can reserve a set of events to use as a test-
ing sample to check the efficacy of the classifier response. The amount of signal and background
to split off is tunable, but this analysis used half of the events for training and the other half for
testing. When comparing the training and testing distributions the Kolomogrov-Smirnoff test* is
used to determine their compatibility. For this analysis a separate BDT is trained for each jet cat-
egory and is individually optimized based on the chosen input variables and the hyper-parameters
of the training algorithm. Section 5.5.2 will discuss the selection of the potential kinematic vari-
ables while sections 5.5.3 and 5.5.4 will discuss the optimization of the inputs and parameters,

respectively, for the individual trainings.
5.5.2 Kinematic Variable Selection

While it may be tempting to use the 4-vectors of the final state objects as inputs to the BDT,
shallow networks, like the ones used here, are not very good at learning the intricacies necessary
to discriminate physics processes based on simple inputs. Conversely, networks can be subject
to sever overtraining if too many high level variables are used as input. Instead, the user must
choose a select set of input distributions to use, preferably ones that already has some separation
between the signal(s) and background(s). It is also a good idea to provide the BDT only the

dominant signal and background to train on, so as to develop a classifier with the maximal amount

4The value returned by this test is the probability that the two distributions originated from the same probability
distribution.
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of separation power. Given table 5.6, we used the normalized W + jets background and H - WW
signal MC as input samples. A list of variables with possible separation powers was then created.
Each variable’s separation power was quantified using the two figures of merit (FOM) listed in

equation 5.7 and 5.8, where ¢ denotes the bin number in the distribution.

nBins
FOM1 = Z (signal — background)? (5.7)
i=1
o (signal — background)?
Fom2= Y % st (5.8)
‘' (signal + background)

Fig. 5.20 shows several of these distributions with their associated figures of merit.

An additional method for determining useful variables is to calculate the cumulative distribu-
tion function (CDF) for each of the variables being tested. The CDF histograms are built bin-by-
bin from the nominal distributions of each variable. The contents of any given bin in the CDF are
equal to the sum of that bin and all of the previous bins in the nominal distribution as shown in
equation 5.9. ‘

CPF — i: (Cnominal (5.9)
bin=0
Fig. 5.21 shows the PDF for the lepton py variable and the corresponding CDF. We are looking for
variables which maximize the difference between the signal and background curves. To this end
we also calculate FOM1 and FOM2 for the CDF distributions.

The variables were then ranked based on these four FOM values, separately for each jet bin, and
only the top 20 variables in each jet bin were chosen to move on. The final ranking was achieved
by averaging the rankings of the four methods, the purpose of which was to remove any undue
method bias. Section 5.5.3 will discuss the specific variables chosen for each jet bin. However, a
list of all variables considered can be found in table 5.8. The lepton and jet 4-vectors are denoted

with 1 and j, respectively, with the jets sorted in order of descending pr. Some of the variable

definitions are listed below:

e pr,: The pr of object x in the event.

137



FOM1 = 2.520 FOM2 = 50.866

0.035

0.03

0.025

0.015

0.01

i

0.005

— HWW125
W+Jets

I
C

i

N
4
-
A
N

(a)

FOM1 = 17.75 FOM2 = 75.810

01

0.08

0.06

0.04

0.02

NN =NNT RN 1 =S
OD 100 200 300 400 500 600 700 800 900 1000

— HWW125
W+lets

Mass (GeV)

(©)

FOM1 = 14.07 FOM2 = 99.636

0.045
0.04 — HWW125
0.035 W+Jets
0.03
0.025
0.02
0.015
0.01

0.005 i

= T R ;
% 05 1 15 2 25 3 35 4 45 5
jet2 drR
(b)
FOM1 = 2.748 FOM2 = 20.825 I
0.03
N n —— HWW125
E n
0.025 [ U_UJ WJets
.02

0.015

F N
0.01—

0.005 LL
j—\_
—\\\‘\\\‘\I\‘I\\l\\|||||||||||||||||||||
4 08 06 -04 0.2 0 02 04 06 08 1

cos(0)

(d)

Figure 5.20: Example distributions used to examine possible input variables to the BDT trainings.
The ggH (black) and W +jets (green) samples are both unit normalized. The two FOMs calculated
are shown, but since these are normalized distributions the resulting numbers would be quite small.
Thus the FOM have been multiplied by 10° for ease of reading. The four distributions are (a) lepton
n, (b) AR (1, jet2), (c) M, and (d) cos (6;).

N

P

: The 1 of object x in the event.

: The ¢ of object x in the event.
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M;: The transverse component of the mass of the leptonically decaying W boson.

AR (1,j;): The distance in R between the lepton and the highest pt jet (AR = /A®? + An?).



FOM1 = 20.03 FOM2 = 146.87 - FOM1 = 36.42 FOM2 = 5.0782
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Figure 5.21: (a) Nominal and (b) CDF distributions for the lepton pr variable. The signal is shown
in black and the background in green.

e HT': The scalar sum of the lepton pr and the Er of all jets in the event

o M, ;: The 4-body mass defined as the mass of the vector sum of the lepton, ET’ and the two

highest pr jets in the event.

e pry,;: The pr of the 4-body system created by summing the 4-vectors of the lepton, ET, and

the two highest p jets in the event.

e AR(Ljj): The AR, as defined above, between the lepton and the di-jet system formed by

the two highest pr jets in the event.
e Ay (ET, j): The Ay between the leading jet and the ET-
e Ay (j,j): The Ay between the two highest pr jets in the event.
® Ay (1,j): The smallest Ay between the lepton and any of the jets in the event.
e A7 (j,j): The n between the two highest pr jets in the event.

e CSVisc (j;): The CSV discriminant value for jet i.
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cos (APwy) cos (ADww)
cos (6;) cos (6h)
cos (Ow) An(j,J)
ApGii)  Ap (i)
Mg (Brl) AR
1(,) HT
CSVdiSC. (J]) CSVdisc. (.]2)
AR(1,j1) AR(lj2)
AR (LJS) AR (17J4)
Uit Ui
SOJ'E QOJ%
pr (1) pr (j2)
Charge, m
Charge, x 1, Py
ET Pk
A(,Omin (17 J) A(JOmin (ET7 J)
M;; My
M; nBTagqqy,
nj njlow
Npy PTujj
> Er; Prj;

Table 5.8: A list of all of the kinematic variables considered for inclusion in the BDT training. The
variables are listed in no particular order and thus placement within the table is unimportant.
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In additions to the definitions listed above, the are a whole host of angular variables which
in part specify the kinematics of the Higgs and W boson decays. When defining these variables,
much of which was done in [177], it will help to refer to the diagram in fig. 5.22. To start with,
a kinematic fit is used to calculate the longitudinal momentum of the neutrino, p., and to also
constrain the invariant mass of the leptonic W, M),,. Because the angle definitions are agnostic as
to the type of particle decaying, the initiating particle will be referred to as particle X. The angles

are as follows:

e 0* is the polar angle between the collision axis z and the X decay axis 2z’ as defined in the

rest frame of particle X.

®, is the azimuthal angle between the 2z’ plane and the decay plane of the hadronic W.

® is the angle between the decay planes of the WW system in the rest frame of particle X.

01 is the angle between the 2’ axis the highest p jet, defined from O to 7.

0, is the angle between the 2’ axis and the lepton.

Rather than using the bare angles, we have chosen to use the cosine of the angles and have thus

named them as:

o &— cos (ADww)

®;— cos (A(I)WH)

o 1— cos(6;)

Os— cos (6))

e 0*— cos (Own)
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Figure 5.22: Planes and angular variables in the H - WW — lvqq decay process [23].

5.5.3 BDT Input Optimization

Remember that only the W + jets sample is being used to represent the background while a
combination of the three H — WW samples is being used to represent the signal. When training a
BDT the absolute normalization of the signal samples is not what is important. Instead, they must
be normalized to their expected fractions relative to each other. Thus, the two other samples are
normalized to the ggH — WW sample as shown in table 5.9. After setting up the samples the
BDTs in each jet bin had to be optimized. The procedure in section 5.5.2 was used to select the

individual variables with the most discrimination power. This section will describe how that list of
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input variables was optimized for the BDT trainings in each jet bin.

Process 2Jets 3Jets >4]ets
ggH; My = 125GeV, H - WW — lvjj 1.0 1.0 1.0

qqH; My = 125GeV, H - WW — 1vjj 0.195 0.248 0.239
WH, ZH, ttH; My = 125GeV, H - WW 0.256 0416 0.608

Table 5.9: The scale factors used to normalize the input signal samples for the BDT trainings.

To begin with, a BDT was trained using the best 20 variables specified in the previous section.
After that, the BDT was checked for redundant variables by looking at the input variable correlation
plots and for overtraining by using the Kolmogorov-Smirnov values between the training and test
samples. If the Kolmogorov-Smirnov score was too low, this setup was rejected as it would indicate
that the training and test samples didn’t come from same underlying PDF, which they must. The
variables used to train the BDT were also ranked by TMVA in order of their importance, which
is measured by how much a given variable was used to discriminate signal from background. On
the next iteration the two lowest performing variables were removed and the BDT was retrained.
This process continued until only three input variables remained. Fig. 5.23 contains an example
response curve examining overtraining as well as the correlation plots for signal and background.
Based on the minimal correlation shown, none of the 11 variables are redundant in this training.

To quantitatively compare the various trainings we made use of their respective receiver operat-
ing characteristic (ROC) curves, an example of which is shown in fig. 5.24a. These curves measure
the performance of a binary classification system by testing the signal efficiency and background
rejection assuming a cut is placed on the classifier output. There are several ways of using the ROC
curve to test the overall performance of any one BDT training. While a common method is to use
the area under the ROC curve (greater area means better performance), we chose to use a different
measure. Since the point (1,1) represents perfect signal acceptance and background rejection, that

is the ideal point. A training with a ROC curve whose distance to that point is minimized will
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Figure 5.23: Example validation plots after the BDT training. (a) The response distributions for
signal and background for both the training (markers) and test samples (filled histograms). The
Kolmogorov-Smirnov value is used to decide how much overtraining has occurred. The correlation
matrices of the input variables for the (b) signal and (c) background samples.

perform better than any other training. Thus we chose to use this distance as our FOM between the
various trainings.

The ROC curves from the multiple trainings were compared as seen in fig. 5.24b. Although
reducing the number of variables can help to prevent overtraining, there comes a point when this

process begins to negatively impact the performance of the BDT. By comparing the ROC curves
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Background rejection versus Signal efficiency
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Figure 5.24: Example ROC curved produced after the BDT training. (a) A standard ROC curve
produced by TMVA. (b) ROC curves from multiple trainings with their associated distances of
closest approach calculated. The training using 11 input variables showed the most discrimination
power.

we were able to identify the trainings with the best performance. The variables used in these
trainings are identified in table 5.10. The validation plots for the input variables can be found in

appendix D.1.
5.5.4 BDT Parameter Optimization

Besides the number of input variables, there are several hyper-parameters for the BDT trainings
which must also be optimized to extract the maximum amount of performance and reduce the
amount of overtraining. These hyper-parameters include the maximum number of trees to using in
the training (nTrees), the value of /3 used in the boosting procedure (adaBoostBeta), the maximum
depth allowed for each tree (MaxDepth), the minimum number of events allowed to remain in a
node after splitting (nEventsMin), and the fraction of signal versus background events used during
training. The trainings optimized for the input variables were used as a baseline for these next
trainings. Each hyper-parameter was varied individually to see its effect on the performance of the
BDT.

The ROC curves and overtraining plots for the tests on the MaxDepth parameter are shown

in fig. 5.25. Although increasing the depth of the trees results in improved performance, it also
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Variable 2Jets 3Jets >4]Jets
DT * v
Charge, x n, v v
M;
P
My
HT
AR (17 J 1 )
AR (17 JZ)
AR (1,j3)
)

SO SEN

1Js
AR(Ljj
ASomin (Lj)
An (j,j)

—

AN NN

AN NN 2N

v
I v v
v v
cos (60;) v

Table 5.10: A list of the input variables chosen for each BDT training. The variables are optimized
separately in each jet bin. The check marks denote the chosen variables for each jet bin while the
stars denote the the best performing variable.
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Figure 5.25: (a) The ROC curve used to test the performance of five different values of the
MaxDepth parameter. The overtraining plots showing the BDT response for MaxDepth values
of (b) 3 and (c) 9. The Kolmogorov-Smirnov scores for a MaxDepth of 3 are far superior to those

for a MaxDepth of 9.

significantly increases the overtraining. Thus we chose the largest MaxDepth value that didn’t
result in overtraining. The ROC comparisons for the parameters adaBoostBeta and nTrees is are
shown in fig. 5.26. In these cases, the default values turned out to be the best performing. The
final hyper-parameter values used for our trainings can be found in table 5.11. We also found that
using the maximum possible amount of signal and background events was best, meaning we fed

the trainings all the events that we had. The events were then split evenly between the test and

0.4 0.6
BDT response

0.4
BDT response

(©

training samples. The resultant BDT classifier distributions are shown in appendix D.2.
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Figure 5.26: The ROC curves used to test the performance of different values of (a) the adaptive
boost factor S and (b) the number of trees used in the trainings. The best performing value is
represented by the dark blue curve.

Hyper-Parameter 2 Jets 3 Jets >4Jets

MaxDepth 4 3 3

nTrees 850 850 850
adaBootBeta 0.5 0.5 0.5
nEventsMin 100 100 100

Table 5.11: Hyper-parameters used for the BDT trainings.

5.6 Matrix Element Analysis

Table 5.6 clearly shows that the total signal, in every channel, is at least an order of magnitude
smaller than even the statistical uncertainty of the background. A simple cut and count experiment
will not lead to any significant results. The previous H —W W —[vjj analyses have performed a
fit to sensitive distributions like the 4-body mass, the mass of the system made out of the two jets,
lepton, and [, which is sensitive to the Higgs mass peak. However, this approach only includes
a small amount of available information, leaving out additional sensitive kinematic distributions.
It is also felt that a BDT analysis using only kinematic variable would be sub-optimal because

shallow classifiers are not robust against non-linear correlations and are only as good as the input
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variables chosen. While the BDT classifiers described in the last section show a good amount of
signal to background discrimination, there is another method which can also be used to separate
signal from background. Instead, this analysis uses a matrix element method (MEM), which starts
from the differential cross section calculation from quantum field theory to classify how likely and
event is to come from a given process [178, 24].

The output of the MEM will be a set of differential cross sections, correct up to a normalization
factor. The original application of this technique was in [178], where the outputs were referred to
as probabilities. Because the only purpose of these outputs is to construct a discriminant between
signal and background, it is inconsequential whether we call them probabilities or likelihoods.

Therefore, I will refer to the outputs as probabilities in keeping with tradition.
5.6.1 Differential Cross Section

The probability P (z;«) = P.,, of a signal is proportional to the differential production cross
section, where « is the parameter we wish to measure, like the mass of the Higgs boson, and x
is a set of physical variables. This is true if the detector resolution is sufficiently small and the
beam energies are well known, as it is in the case of CMS. For the scattering of two particles the

differential cross section can be written as [2]:

2m)" M2

4@’ = mim,

where |M)| is the Lorentz invariant matrix element (ME) [143]; ¢1, ¢2 and m;, msy are the 4-
momenta and masses of the incident particles; p; are the 4-momenta of the n final state particles;

and d®,, is the n-body phase space. The phase space term is written as:

n n d3p
d®,, (q1 + q2: Py vy py) = 6 +q2 — ; — 5.11
(¢1 + G2; 1, s D) <Q1 e ;p> E (27)° 2E; ey

If CMS could measure all of the final state particles with 100% accuracy, no detector effects

or uncertainties, and all of the information about the initial state particles was known - including
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the energy, momentum, and particle type - we could analytically solve this equation and normalize

it to the total cross section to define an event probability P.,; ~ ‘{7". Using the differential cross
sections for each of the processes being tested we could create a perfect discriminant for each
event. Unfortunately, this is not the case and there are several unknowns which must be accounted

for:

1. Some particles involved in the ME are either not measured at all or not fully measured.
The initial state partons are held within protons, making their exact energies unknown. The
neutrino in the final state is not fully measured by CMS. We use the [t as a proxy for the

neutrino, but we can’t measure the p, component of its momentum vector.

2. The partons in the final state are only measured after showering and hadronizing to form
jets. While every effort is taken to measure the jet energies with great accuracy, this is no

substitute for the parton level energies.
3. The energy resolution of the CMS sub-detectors cannot be ignored, especially for jets.

4. For practical reasons the ME cannot be exactly calculated. The more precise a probability
one wants to calculate, the more diagrams one must include in the ME calculation. This
increases the computational complexity of the problem significantly. That is why this anal-
ysis used mainly tree-level diagrams, with some sub-leading diagrams for our biggest back-

ground, W + jets.
Despite our best efforts, each of these effects leads to some loss in sensitivity.

5.6.2 Parton Distribution Functions and Phase Space

if final state fully known (momenta and energies), then can calculate the initial state momenta
and energies from conservation of energy and momentum, assuming the transverse momentum
of the initial state particles is zero (a fairly good assumption). Without knowing the full final
state, a set of PDFs will determine the likelihood of a given initial state configuration. The PDF

scale varies with the process dependent momentum transfer Q?. For W + jets, for example, Q* =
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2
M3, + (Zjets pT> while for Drell-Yan scattering Q> = § = |q; + ¢2|%, where ¢, and ¢, are 4-
vectors of the initial state quarks. Because Q? comes from perturbative calculations and cannot be
measured, its value is not well defined [24].

Taking this into account, the differential cross section calculation becomes:

(2n)" IMP?

4\/((]1 . Q2>2 - mﬁlmi

do = [ (z1) f(z2) dPy (g1 + q25 1,5 -1 Dn) (5.12)

where f (x;) are the PDFs for the incoming protons and x; = E,/Ejeqn is the fraction of the

proton momentum carried by the incident parton .

The differential cross section can be further simplified by using \/ (@1 -q2)2 —m2m2 ~2F, E,.

In other words by considering the input partons to be massless and ignoring any small transverse

momentum they may have we arrive at:

f(z1) f(22)

do = 27| M|?
[Eal Bl

5.6.3 Transfer Functions

While leptons in CMS can be measured with a high degree of accuracy, the lepton resolution
is relatively small, the jet energies are not the same as the energies of their initiating partons. Even
worse are the neutrinos which pass all the way through the CMS detector without being mea-
sured. The solution is to use a transfer function, which maps between the energies and momenta
of the final state partons to those of the measured objects. Adding a transfer function W into the

differential cross section calculation we find:

f T f T Njets
dU = 2W4|M’2ﬁ ( 2)M/ZS (pl?plmeas) Wl? (pV’meeas) H Wi?) (pi?pimeas) dén (Q1 + qQ;pl’ "'7pn)

|EQ1 | |EQ2 | i=1
(5.14)

Here T3 refers to the three transfer functions necessary to map the energy, polar angle, and az-

imuthal angle of the parton to the observed quantity.
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Luckily we can start making some simplifications right off the bat. The lepton quantities and
jet angles are assumed to be measured well enough that the transfer function approaches a Dirac
delta function. Even if this isn’t exactly true it would only reduce the sensitivity of the analysis and
would not affect the final result. Thus those terms will disappear from the equation. Unfortunately,
the same assumptions cannot be made about the jet energies. The jet energy transfer functions are
modeled as a ten parameter double Gaussian fit to the difference in parton and jet energies from
a MC sample. The underlying distribution of energies can be seen in fig. 5.27a. While matching
parton energies and jet energies might sound a lot like the L5Flavor corrections in CMS, the JEC
only correct the jet energies back to the most probable value. By using a transfer function we
can integrate across all possible jet energies to extract more information. Although the transfer
functions will vary across 77 we had limited statistics available in out MC sample used to derive
these and thus were forced to use a single bin of || < 2.4. Three different sets of TF were derived
for b quark jets, light quark jets, and gluon jets as seen in fig. 5.27b. All three types of jets will

have different kinematics and thus will produce different transfer functions.
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Figure 5.27: (a) The distribution of parton energy versus jet energy in Monte Carlo events for light
flavored jets. (b) Distributions of the difference in parton energy and jet energy for different kinds
of jets. This shows that a separate transfer function is necessary for each flavor of jet.

As stated before, the neutrino momentum is not measured; nor can the z component of the neu-
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trino momentum cannot be calculated. This stems from the fact that the longitudinal momentum
of the initial state partons is not know, only the momentum of the protons. We don’t know how the
momentum is split between the various partons that make up the proton. During the computation
of the differential cross section we integrate over the unknown quantities, which includes the neu-
trino’s longitudinal momentum. The momentum is allowed to vary from 0 GeV to 4 TeV, the beam
energy, which is motivated by the conservation of energy and momentum. At this point, assuming
a choice for neutrino p, and jet energies, the x and y components of the neutrino momentum as
well as the z component of the momenta for the initial partons can be derived from conservation
of energy and momentum.

After accounting for all the simplifications, the PDFs, and the transfer functions the differential

cross section becomes:

f(zy) ﬁ Ez, Ezms) S (i + @ —pi—pw — D pi)

— 2 4 2
o= [ dp- 2w 1M Enl \Eq EiE,

=1
(5.15)
As you can see all of the parton level quantities have been replaces by their measured counterparts,

which allows us to perform the calculations with the measurements taken by CMS. This equation

can then be normalized to the total cross section to form an event probability:

oy L 1 n g2 (@) f (@2)
P(x,oz)—a/ M| Bl |Eq2|W(y,x)d<I>4qulqu2 (5.16)

where f (x;) are the PDFs, z; = E,/Ejpcan is the fraction of the proton momentum carried by
the incident parton ¢, and W (y, ) is the transfer function mapping measured jet energies x to the
parton energies y. For simplicity the equation has been returned to a more compact form. At this

point we can use numerical integration to calculate the the probability densities of interest.
5.6.4 Matrix Elements

As I alluded to before, no analytic form for a scattering process matrix element to all orders

exists. On top of an already computationally difficult problem, the loop corrections in higher-
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order calculations become too costly, which is why we chose to use mostly leading order diagrams
(except for W + jets). The matrix elements were generated by MADGRAPH in FORTRAN and
then converted by C++ to speed up computation.’ MADGRAPH makes use of a library called
HELAS [179] to do the leading-order matrix element calculations. Each matrix elements can have
contributions from multiple subprocesses (i.e. pp - WW — 1vjj includes diagrams from uu —
etv.ud, ui — e voud, dd — e T.ud, etc.). Additionally, each subprocess can be generated from
a number of diagrams as seen in fig. 5.28 for the gd — e~V ug process.

Matrix elements were calculated for all of the major signals and background in this analysis.
There were 15 matrix elements which were eventually used: WW, WZ, WZbb, WLg, WLg
(second order), Wgg, WLL, WLb, Wbb, ZLight, Single Top t-channel, Single Top s-channel,
QCD, ggH (My = 125GeV), and WH (My = 125 GeV). While some matrix element diagrams
may be left out, the purpose of calculating the probabilities is to discriminate a signal event from
a background event. The loss of a diagram will simply reduce the sensitivity of the classifier, not
change the answer. The some of the Feynman diagrams used for calculating the matrix elements
can be found in figs. 5.29 and 5.30.

Diagrams with more than two jets present a problem for the matrix element calculations be-
cause they doesn’t have the same final state as the signal. As was stated in section 2.6, for a tt
event to pass as a two jet event it must mean that some of the jets are missed. This can happen in
two different ways; either both W bosons decay leptonically and one lepton is not detected or one
of the W bosons decays hadronically and two of the four jets are missed. If we really confine the
matrix element to two jets, then we can use the diagram with one leptonically decaying W boson
where the other W is simply not observed (i.e. it decays outside our acceptance). In this case there
are three additional unknown momentum components coming from the W boson which must be
integrated over. If a third jet were allowed, then the the typical semileptonic W boson decay is used
and one of the light quarks is assumed to be missed. This also adds three additional integrations

to the calculation. Although it would have been nice to include a tt matrix element probability for

3Only the leading diagrams were converted. The C++ code was then run alongside the FORTRAN code to compare
the outputs.
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Figure 5.28: Feynman diagrams from the gd — e~ 7, ug process.
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Figure 5.29: Feynman diagrams used to calculate the matrix element probabilities for the ggH and
WH signals for two-jet events.

discrimination purposes, the additional integrals proved too costly to compute. Each tt probability
took over two minutes to compute, even using accelerated numerical integration packages. There-
fore we did not compute the tt probability and we rely on the signal probabilities being relatively

low for tt events.
5.6.5 Combinatorial Considerations

An ambiguity arises when there are multiple jets in the final state of the diagram. Therefore,
we take the sum of the differential cross section for all combinations of matched partons and jets.
We can reduce the number of combinations and increase the sensitivity of the computation when
there is a b-tagged jet in the event and a bottom quark in the diagram. In general, when there is
an ambiguity all of the various parton-jet combinations are used. However, in the case of the tt
diagram there are enough combinations to make this methodology computationally impractical.
Therefore, only the two combinations where b-tagged jets are assigned to the two bottom quarks

are used.
5.6.6 Numerical Integration

Obviously the differential cross section must be calculated many times for every value of the

differential variables in both the data and MC samples. The integration is performed over the neu-
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Figure 5.30: A sampling of Feynman diagrams used to calculate the W + jj matrix element prob-
abilities for two-jet events.
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2-jet top pair 3-jet top pair

Figure 5.31: Feynman diagrams used to calculate top pair probabilities for two- and three-jet
events. The circled particles are assumed to be unobserved and an integral is taken over their
momenta. Figure and caption from [24].

trino longitudinal momentum, the jet energies, and in some cases over the momenta of missing
particles, as in the case of tt. The result is an integral with dimensionality of anywhere between
three and seven dimensions; six in the case of top pair production with a two-jet final state. These
types of equations can’t be solved analytically, so we must instead use numerical integration tech-
niques.

For the simpler cases involving three integrals and without any missing particles integration
is performed using the adaptive quadrature [180] method based on the CERNLIB [181] RAD-
MUL [182] routine, adapted for ROOT [183], then adapted again for the CDF single top analy-
sis [24]. The algorithm iteratively divides the n-dimensional region to be integrated into equal-
sized regions. At each iteration the uncertainty in each region is estimated and the region with the
largest uncertainty is divided in half. The iterations continue until all of the regions have an error
less than a user specified amount. In this analysis we used 1% for all of the matrix elements except
for ZLight, where a 5% uncertainty is allowed. After the stopping condition is met, the integral
in each region is estimated and returned. The benefit of using this method is that it is stable and

its answers are reproducible; its calculations are deterministic and do not reply on pseudo ran-
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dom number generators (PRNG). Table 5.12 lists the computation times for each matrix element

averaged over 1000 events computed in both the W + jets and ggH samples.

Diagram W + jets Sample [s] ggH My = 125 GeV Sample [s]
ggH 2.9 3.2
WH 4.5 3.8
QCD 0.4 0.5
Single Top s-channel 4.2 43
Single Top t-channel 2.9 33
Whbb 1.9 1.3
WLL 7.4 4.8
WLb 2.9 2.3
WLg (LO and NLO) 3.5 2.7
WW 1.5 1.1
WZ 3.9 2.9
WZbb 2.5 1.9
ZLight 39.1 26.3
Total 77.7 58.5
Total (ggH x 35, WH x 14) 233.7 2179

Table 5.12: The computations times for each probability averaged over 1000 events and computed
in both the W + jets and ggH samples. The Wgg diagram was not included in this test. The
integration for each of these probabilities was performed using the ROOT integrator.

Although the ROOT integrator is deterministic and stable, good qualities in a numerical inte-
grator, it starts to become prohibitively slow for higher dimensional integrals. Ref. [24] performed
a test on the tt computation and the ROOT integrator did not converge for a single integration
even after running for an entire day. Instead, we used the DIVONNE Monte-Carlo integration
algorithm from the CUBA library [184], which is based on CERNLIB’s DIVON4 [185] function.
The algorithm first uses stratified sampling, a method by which a population is subdivided into
homogeneous, mutually exclusive®, and collectively exhaustive’ subpopulations. Sampling the in-
dividual subpopulations improves the representativeness of the estimate and reduces the variance

and sampling error. In practical terms, the DIVONNE algorithm uses this type of sampling by

®Each element is assigned to one region.
"No element from the larger population is excluded.
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partitioning the integration region into sub regions. Each subregion is required to have an equal
value of the spread s, defined as:

() = %v (r) (maxf(X) ~ min f(X)) | 5.17)

Xer Xer

where V () is the multi-dimensional volume of region r and f (X). is the value of the function in
the subregion. The Koksma-Hlawka inequality [186, 187, 188] shows that the variance is bounded
by 5. Therefore the borders of each subregion are adjusted to reduce the spread and thus reach the
user requested variance. Once the subregions are set, the integral is estimated summing the values
of randomly selected points within each subregion. Once this first stage of integration is complete,
the algorithm uses these results to estimate the number of samples necessary to reach the desired
accuracy. Once the second of the two samples is chosen for a particular subregion, a x? test is used
to check if the samples averages are consistent within errors. If a subregion fails this test, then it
is either subdivided again or more sampling points are used, depending upon the settings. In a test
of 1000 events performed by [24], the DIVONNE algorithm returned results compatible with the

RADMUL algorithm and was also stable to within 0.001%.

Diagram W + jets Sample [s] ggH My = 125 GeV Sample [s]
Single Top tW-channel 100.9 68.0
tt 134.7 133.6
Total 235.6 201.6

Table 5.13: The computation times for the unused single top and tt diagrams. Including these
would have doubled the overall computation time. The integration for each of these probabilities
was performed using the DIVONNE integrator.

Even with the DIVONNE algorithm, the computation times for the tt and single top tW chan-
nel ME probabilities were prohibitively large (see table 5.13) and were thus dropped from the list
of computations. Besides the My = 125 GeV ggH and WH diagrams, 34 additional ggH and 13

additional WH probabilities were calculated corresponding to different Higgs mass hypotheses. In
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the end, however, these probabilities were not used. The total computation time for a single event
was around four minutes, give or take some time for computing cluster overhead. This computation
is by far the most time consuming aspect of this analysis, especially with tens of millions of events
to process. The total computation time ended up costing ~12 million CPU hours and spanned over
1.5 years, requiring the work of several analyzers and the entire Worldwide LHC Computing Grid

(WLCG).
5.6.7 Standalone Matrix Element Based BDT

The fifteen probabilities P(x; «), corresponding to the leading order diagrams of the major
background and signal processes, were computed for each event in both data and MC. Now that all
of the leading order kinematics are encoded in these 15 numbers, they must be combined in order
to discriminate signal from background. A BDT was used rather than combining the ME into a
likelihood as in the Matrix Element Likelihood Analysis (MELA) used by H — Z7Z — 4l or the
event probability discriminants (EPD) used by the single top analysis done by CDF [24]. Three
new BDTs were trained using the same settings as the BDTs with kinematic variables used as
inputs. However, this time the inputs consisted of the 15 matrix element probabilities. The output
discriminant distributions can be found in appendix D.2. Unfortunately, these BDTs (MEBDT),
on their own, did not out perform the kinematic variable based BDTs (KinBDT). This might be
due to the fact that we only used leading order diagrams (not even all of the diagrams), it might
have to due with the combinatorics of the jets and partons, or it could have to do with sub-optimal
transfer functions. However, by comparing the KinBDT to the MEBDT, we found that they had

complimentary information.
5.6.8 Combined BDT

In order to combine the complimentary information from the kinematic variables and the MEs,
with the purpose of discriminating a Higgs event from a background event, we combined the two
sets of variables. An initial BDT was computed which combined the information from 15 of

the computed MEs, as noted above. This gives a less discriminating shallow network the ability
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to create a better performing network because the inputs are already non-linear variables. The
output of this BDT, along with previously selected kinematic variables, is then used as the input
to a new BDT in order to combine all of this complimentary information. The combined BDT
(KinMEBDT) has more discrimination power than either the MEs or the kinematic variables alone.
Images of the output discriminant can be found in appendix D.2. Additionally, the ROC curves
used to compare the various BDTs can be found in appendix D.4. Table 5.14 shows the FOM used
to compare the BDTs.

The distribution of the KinMEBDT discriminant was chosen as the template for our limit set-
ting procedure. However, before actually processing the limits, which will be discussed in sec-
tion 6, the best way to bin the templates needed to be determined. There are two conditions which

needed to be satisfied for for every bin:

1. There cannot be a bind which contains an observed count, but no background estimation.
This would lead to an artificially high significance and an artificially low upper confidence

level.

2. The sum of the background templates must have a statistical uncertainty of <10% in each

bin. This limits the effects of statistical fluctuations in any one bin.

To accomplish this optimization, we first started with a finely binned KinMEBDT distribution,
bounded between -1 < KinMEBDT < 1. Starting with the lowest bin, we checked that each bin
passed the two aforementioned conditions. If a bin failed either condition, then that bin and the
next highest bin were merged. If both conditions were met, then the next highest bin was checked.
The process continued until reaching the last bin, which could be merged into the previous bin
if necessary. This resulted in leaving the maximum number of variable width bins reasonably
allowable, a desirable property which leads to having the greatest discrimination power possible.
Additionally, there were a different number of bins for each of the BDT trainings; 37, 29, and 20

bins for the two-jet, three-jet, and four of more jet categories, respectively.
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BDT Input Variables 2 Jets 3 Jets >4 Jets

Kin 0.7569 (0.4418) 0.7970 (0.3948) 0.7759 (0.4150)
ME 0.6568 (0.5497) 0.6698 (0.5321) 0.6598 (0.5462)
KinME 0.7581 (0.4402) 0.7983 (0.3926) 0.7973 (0.4051)

Table 5.14: The figures of merit (FOM) used to evaluate the various BDT trainings for the three jet
bins and the three sets of input variables. The values outside of the parentheses are the areas under
the curve (AUC) while the values in the parentheses are the shortest distances on the curve to the
point (1,1).

5.7 Systematic Uncertainties

The input to the statistical analysis is a set of BDT discriminant histograms and their associated
systematic uncertainties. Given that this is a shape analysis, it is important to consider systematic
uncertainties that may change the expected yields (rate changes), the shape of the discriminating
variable, or both. We consider many sources of uncertainty on both the background estimation
and the signal normalization. Table 5.15 summarizes all of the systematic uncertainties considered
for this analysis, with one systematic per line. The largest uncertainty comes from the W + jets
normalization stemming from the QCD and W +- jets rate estimation. Each source of systematic

uncertainty will be described in more detail in the sections below.
5.7.1 LHC Luminosity

A flat rate uncertainty of 2.6% is applied to all of the simulated samples to account for the

uncertainty on the LHC luminosity and thus the simulation normalizations [108].
5.7.2 Sample Cross Sections

The uncertainties on the theoretical cross sections used for the normalizations of the back-
ground simulations are taken from [189]. Likewise, the signal cross sections, branching ratios, and
uncertainties are taken from CERN Yellow Report 3 [190]. The uncertainties on the background
sample cross sections ranged from 3-5.7% while the signal cross section uncertainties range from
10-11% (PDF & QCDScale). The theoretical cross section uncertainties on the signal are broken

into two components, the uncertainty on the QCD renormalization and factorization scales and the
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uncertainty on the PDFs. Table 5.16 shows a summary of the uncertainties used. An additional
uncertainty of ~0.5% is assigned to the W + jets backgrounds due to the uncertainty from the fit

when determining the QCD sample normalization.
5.7.3 MET Uncertainty

With respect to K, this analysis follow along the same line as the high mass lvjj group. Al-
though we lowered the cut to be Kt > 25 GeV, the uncertainty on the Kt should be similar. Thus

we applied the same conservative estimate of a 0.2% uncertainty.
5.7.4 Lepton Selection and Trigger Efficiency

This analysis makes use of the single lepton triggers and requires a tight electron or muon in
the event. Consequently we must account for any mis-modeling of the lepton identification or
trigger efficiencies. A flat 1% uncertainty on the trigger efficiency is applied per [33]. A flat 2%

uncertainty is applied for the lepton selection.
5.7.5 Pileup Weights

The necessity of the pileup weights were discussed in section 5.3.1. The number of pileup

interactions in a single bunch crossing is given by:

E * Uminimum bias
N, = #) (5.18)
Vorbit

where L is the instantaneous luminosity, o yinimum bias 1S the total minimum bias cross section for
an event at the LHC, and v,,;; is the LHC orbit frequency (11246 Hz). In this calculation and the
calculation of the pileup weights the minimum bias cross sections is used, but it’s true value is not
known.

In order to asses the effect of a systematic uncertainty due to choice of T pinimum bias = 69.3 mb,
a +7% variation was used and the pileup weights were recalculated. Once that was done, the
BDT templates were created again. As it turns out, the shape changes were negligible, but the rate

changes due to this shift can be seen in table 5.17.
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Process 2 Jets 3 Jets >4 Jets

Diboson 25%  3-6% 3.57%
W + jets 3% 4% 4%
7 + jets 78%  1-8%  1-8%
£t 2% 2% 2%
Single t 13%  28%  2:9%
Multijet 0-2%  0-3%  0-4%
goll; My = 125GeV, H — WW 2-3% 3% 3.5%
qqil; My = 125GeV, H - WW 053% 135% 2.5-4%

WH, ZH, ttH; My = 125GeV,H - WW  0-3% 1-3% 2-3.5%
WH, ZH, ttH; My = 125GeV, H — ZZ 0.5-3% 2-4% 2-4%
WH; My = 125GeV, H — bb, W — v 0.5-3% 2-4%  3.5-4.5%
ttH; My = 125GeV, H — bb 1.5-4.5% 0-2.5% 2-4%

Table 5.17: Change in the expected yields due to the pileup weight uncertainties.

5.7.6 Jet Energy Scale (JES)

The jet energy corrections used to correct the jet energy scale back to the particle level were
discussed in section 4.5. The uncertainty on this correction originates from several uncorrelated
sources, but for simplicity we use the total combined uncertainty. For M uncorrelated sourced the

total uncertainty S (pr,n) is given by:

M
> st (prom), (5.19)

where s; (pr,n) is the uncertainty for a single source i. The JES uncertainty varies as a function of
pr and 7 and is <4% in all regions of phase space [16]. To evaluate the effect this uncertainty has
on the BDT discriminant we create the same distribution, but with the jet energies shifted by +10
using the procedures given in [191, 192]. This is done before placing a cut on the py of the jets so
as to allow for migration of events between jet bins. Some jets that once failed the pr cut may not
pass and some jets might then fail the pr cut. Fig. 5.32 shows the the type of variations expected
for the signal (ggH) and background (W + jets) samples. Additionally, table 5.18 lists the size of

the yield uncertainty within each jet bin due to the JES.
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Figure 5.32: Combined kinematic and ME BDT discriminant distributions in the 2 jet, electron bin
for the (a) ggH and (b) W + jets samples. The black line shows the nominal yield while the red
and blue lines show the change in shape if the JES is scales up and down by 1o, respectively. The
yields for the shifted samples are normalized to that of the nominal yield.

5.7.7 CSV Weights

Recommendation for how to treat the systematic uncertainties on the CSV weights were given
by [169], which also details their derivation. In this analysis, however, the CSV weights were
found to be very small and any change in them would have a negligible impact. It was decided to
use a much simpler, yet conservative approach by. We overestimated the error by using weight” as
the +1o0 variation and the unweighted distributions as the —1o variation. The changes to the rate

due to this methodology can be seen in table 5.19.
5.7.8 Top pr

As discussed in section 5.3.3, the top-quark-pair cross section analyses found that the pr spec-
trum of top quarks in data is softer than those in simulation. Thus we needed to reweight the top
quark pr spectrum in the tt sample. In order to fully cover any uncertainty on the weights a 100%

uncertainty is assumed. This means the one standard deviation up and down variations on the

168



Process 2 Jets 3Jets >4 Jets

Diboson 1-2% 2% 2%
Z + jets 0-5.5% <1% <1%
tt 8-19% 4-7% 2-4%
Single t 2-0% <1% <1%
gegH; My = 125GeV, H - WW 0-5% 0-2% 0-3%
qqH; My = 125GeV, H - WW <1% 4% 7%

WH, ZH, ttH; My = 125GeV, H - WW  2-3% 0-5% 5-8%
WH, ZH, ttH; My = 125GeV, H — ZZ 1.5% 0-6% 4-5%
WH; My = 125GeV, H — bb, W — v 89% 1-10% 2-13%
ttH; My = 125GeV, H — bb 4-17% 11-24% 18-21%

Table 5.18: Change in the expected yields due to the JES uncertainties.

Process 2 Jets 3 Jets >4 Jets
Diboson 0.5-2% 1-3.5% 1-5%
W + jets 0-3% 0-55% 0-8.5%
Z + jets 2-5% 0-5.5% 2-5%
tt 5-11%  6-14% 6-17%
Single t 4-9% 4-12% 5-16%
ggH; My = 125GeV, H - WW 1-3% 1-5% 1-7%
qqH; My = 125GeV, H - WW 0-2% 1.5-25% 2-4%

WH, ZH, ttH; My = 125GeV, H - WW  <1% <1% <1%
WH, ZH, ttH; My = 125GeV, H — 77 <1% <1% <1%
WH; My = 125GeV, H — bb, W — v <1% <1% <1%
ttH; My = 125GeV, H — bb <1% <1% <1%

Table 5.19: Change in the expected yields due to the CSV weight uncertainties.
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weights are taken to be:

+lo: Wyp = WTopPt* WTopPt, (5.20)

—10 : Wyown = 1. (5.21)

This was the recommendation as provided by the TOP PAG [171] and results in an uncertainty of

0.5-2.1% on the tt yield.
5.7.9 cos (6)) Weight Uncertainty

Once again we assumed a 100% uncertainty on the cos (6;)weights. The one standard deviation

up and down variations on the weights are taken to be:

+1o: Wyp = Weos(6;) Weos(6)) (522)

—10 1 Waown = 1. (5.23)

These weights are then used as an uncertainty for the W + jets sample. As this is not a cut on the
events and no change in selection has been made, this does not correspond to a change in the rate,

only the W + jets shape.
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Figure 5.33: Changes to the shape of the BDT discriminant for the W+-jets sample due to variations
on the cos (f))weights for the (a) 2 jets bin, (b) 3 jet bin, and (c) >4 jet bin.
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5.7.10 W + jets Shape Uncertainties

In order to take into account variations on the Q* scale and matrix element parton matching
new samples are generated, since these uncertainties cannot be applied after the generation stage.
The samples used are listed in table 5.20. Since W —+ jets is our dominant background in all jet
and lepton bins, it was deemed sufficient to apply the Q* and matching uncertainties only for this
sample; generating new samples and/or processing existing large samples for all of the signals and
backgrounds would be time consuming and would result in little to no change in the results.

The centrally produced W + jets events were generated using MADGRAPH, a matrix element
level generator, which was then interfaced to PYTHIA to model the parton shower with its soft
and collinear radiation. Because MADGRAPH generates tree-level diagrams a variation of the
factorization and renormalization scales has a significant impact on the simulation. In this case the
scales were varied by a factor of two.

Once the four samples listed in the table were processed, they went through the same selection
and weighting procedure as the nominal W + jets sample. The new template histograms include

only shape changes as the rate uncertainty for the nominal W + jets same is included in a different

source.
Sample Dataset Name Cross Section
ME Matching Up /WletsToLNu_matchingup_8TeV-madgraph-tauola 37509 pb
ME Matching Down /WlJetsToLNu_matchingdown_8TeV-madgraph-tauola 37509 pb
Q? Scale Up /WletsToLNu_scaleup_8TeV-madgraph-tauola 37509 pb
Q? Scale Down /WletsToLNu_scaledown_8TeV-madgraph-tauola 37509 pb

Table 5.20: Samples used for W + jets systematic shape uncertainties. Each dataset name is
appended with /Summer12_DRS53X-PU_S10_STARTS53_V7A-v1/AODSIM.

5.7.11 QCD 7 Weights Uncertainty

The uncertainty on the weights as a function of 7 for the data-driven QCD sample have to do

with the choice of selection criteria, which was first discussed in section 5.1.3. The motivation
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for the chosen isolation windows was more practical than due to some deeper, underlying physics.
Therefore the uncertainties for the weights are generated by varying the isolation criteria and cre-
ating alternate QCD samples with a modified set of events. One side of the isolation region was
relaxed at a time to generate four new samples, two each for the electron and muon channels.
These samples were then used to generate four new sets of weights, just as done in section 5.3.5.
The resulting samples lead to a small variation in the QCD template shapes, but also lead to an

uncertainty on the QCD yield of 6-30% and on the W + jets yield of 0.1-0.5%.
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6. RESULTS

The KinMEBDT distributions showing the background predictions and the observed data are
shown in fig. 6.1. The Higgs signal hypothesis with My = 125 GeV is enlarged and shown using a
red line to indicate where in the distribution the signal would lie. There is good agreement between
the observed data and simulated background estimate; certainly well withing the systematic errors
shown using the gray hashed areas. These distributions contain one histogram for each signal,
background, and data sample. These template histograms are used as the input for our shape based
limit setting procedure, each bin acting as a counting experiment, but with correlated systematics
across bins.

I start by reporting an upper bound on o /ogy, which is the ratio of the observed cross section
to the SM production cross section, at the 95% confidence level (CL), made by using the modified-
frequentist limit setting method with the CLg test statistic [193, 194, 195]. Although it is more
rigorous to use the toy-based frequentist limit setting procedures, these methods are known to take
an exceedingly long time to converge. However, when not in a low statistics regime, the toy-
based methods and the asymptotic approximation return roughly equivalent answers. Therefore,
we used the asymptotic approximation as we do indeed have copious amounts of background and
data in our templates. The computations were done using the Higgs Combine Tool [196], which
is a RooStats [197] based limit setting package. A detailed discussion on the computation of CLg
limits can be found in [110, 198]. The expected and observed upper limits on o /ogy are shown in
fig. 6.2, with the actual values listed in table 6.1.

If the sensitivity of the analysis were to increase, the expected limits (yellow and green bands)
should approach and eventually cross the o /osm = 1 boundary. That boundary denotes the nominal
point at which we have the sensitivity to exclude the production of the Higgs boson as predicted
by the Standard Model. If the particle we are searching for didn’t exist, then the observed value
would also cross the boundary at one and we could say the boson was excluded within the Standard

Model. However, we have the benefit of of knowing the Higgs boson exists and indeed decays to
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Figure 6.1: The KinMEBDT distribution in Monte Carlo (filled histograms) and data (black mark-
ers). The H — WW signal is shown by red line while the systematic uncertainties are shown by
the hashed areas. The plots are ordered by jet bin from left to right, with the leftmost plot being
the two-jet bin and the rightmost plot being the greater than or equal to four-jet bin. The top row
contains the electron channel plots while the bottom rows contain the muon channel plots.

174



Category Observed Expected

>4 Jets (e) 88.0 50.5% %%
3 Jets (e) 20.6  18.9%13
2 Jets (e) 70 74730
>4 Jets (1) 194 126739
3 Jets (1) 8.0  9.3%5%
2 Jets (1) 112 888
Combined 54 34753

Table 6.1: Observed and median expected and 95% CLs upper limits on p calculated with the
Asymptotic CLg method. The +10 confidence interval is quoted for the expected limits.

WW.Therefore, as analysis get more sensitive we expect that the background-only expected bands
cross the o /osy = 1 boundary, but the observed limit will lie well above this, making exclusion
of the signal using upper limits impossible. At that point it will make sense to measure the result
not in upper limits, used to exclude that a particular particle may exist, but to test the strength of
the evidence that the alternative hypothesis (i.e. the Higgs boson exists) is valid when compared
to the null hypothesis (i.e. that the Higgs boson does not exist). To test the strength of the result
we compute the p-value. Under the assumption that the null hypothesis is true, the p-value is the
percentage of pseudo-experiments that are at least as extreme (signal like) as what was observed.
A p-value which is low means that it is highly improbable that the observation occurred due to a
statistical fluctuation. As a general rule in the physics community a p-value of 0.003 is required
to claim “evidence of a particle” and a p-value of 3 x 107 is needed to claim “discovery.”! We
can also convert the p-value to the significance level of the result, which is the number of standard
deviations o from the mean of the null hypothesis, and which quantifies the risk of claiming a
significant result when when none exits.? Both of these values are listed in table 6.2. Additionally

fig. 6.3 has a graphical representation of the p-values.

I'This corresponds to a 1 in 3.5 million chance that if the Higgs does not exist we would still see a result due to
background fluctuations as extreme as we did.

2 A significance of 3¢ is generally considered evidence of a new particle while a 5¢ significance is required to claim
the existence of a new particle.
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Figure 6.2: Median expected and observed 95% upper confidence level on the cross-section ratio
to the expected Standard Model Higgs cross-section (i1). The green and yellow uncertainty bands
represent the 68% and 95% CL intervals on the expected limit, respectively. The values were found
using the Asymptotic CLg approximation.
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Category A-priori Expected A-posteriori Expected Observed
>4 Jets (e) 0.045 (0.482) 0.011 (0.496) 2.647 (0.004)
3 Jets (e) 0.104 (0.459) 0.096 (0.462) 2.014 (0.022)
2 Jets (e) 0.178 (0.430) 0.191 (0.424) 0.531 (0.298)
>4 Jets (1) 0.192 (0.424) 0.153 (0.439) 1.190 (0.117)
3 Jets () 0.218 (0.414) 0.207 (0.418) 0.000 (0.500)
2 Jets () 0.208 (0.418) 0.195 (0.423) 0.000 (0.500)
Combined 0.569 (0.268) 0.547 (0.292) 0.903 (0.183)

Table 6.2: Expected and observed statistical significances as well as their associated p-values. The
a-priori expected significances are computed before the background fits to the data. For the two
and three jet muon bins the significance is zero because the minimum of the likelihood is for a
signal strength < 0.
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Figure 6.3: The a-priori expected (red square), a-posteriori (blue triangle), and observed (black
circle) p-values found in each category.
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7. CONCLUSIONS & FUTURE POSSIBILITIES

This dissertation has presented a search for the 125 GeV Standard Model Higgs boson in th the
H — WW — lvjj decay channel. The search used 19.7 fb~' of 8 TeV proton-proton collision data
from the CMS experiment collected during the 2012 run of the LHC. The background predictions
used in the analysis were derived from both simulation and data-driven techniques and a significant
amount of time was put into validating the background modeling. The event selection was chosen
based on the signal kinematics, but kept relatively loose to ensure enough of a training ensemble
for an analysis using a boosted decision tree (BDT). In addition to a BDT based discriminant, a
matrix element method was used to increase the sensitivity of the analysis. No direct observation
of the Standard Model Higgs boson can be made at this time in this particular channel, though
limits on its production cross section have been made at the 95% confidence level using a modified
frequentist approach. A limit of 5.4 times the standard model cross section was set after combining
all lepton and jet categories. This limit is the first to be set in the H — WW — 1vjj channel for a
Higgs mass of My = 125 GeV at either the CMS or ATLAS experiments.

Already Run 2 of the LHC has collected significantly more data at the higher center of mass
energy of /s = 13 TeV, enabling a future version of this analysis to have significantly greater sen-
sitivity. This increase in energy corresponds to an increase in gluon-gluon fusion Higgs production
of approximately 2.4 times [199], while the production cross section of the main background,
W + jets, will only increase by approximately 1.7 times [200]. This will lead to a higher signal
fraction, which should be visible given improvements in background modeling and reconstruc-
tion techniques. Even now there have been advances in high performance computing which will
reduce the time to perform a matrix element analysis by orders of magnitude [201]. Addition-
ally, advances in machine learning will significantly speed up analyses relying on Monte Carlo
integration techniques [202].

This analysis now serves as a benchmark for future H - WW — 1v/jj analyses and also shows

how a matrix element method can be successfully implemented in semi-leptonic channels. While
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the time investment in performing a similar analysis in the future is large, the benefits of increased
discrimination by using ever more advanced analysis techniques could be well worth the wait. I
am optimistic that even more stringent measurements of this Higgs decay channel can and will be

made in the coming years.
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APPENDIX A

HISTORY OF THE STANDARD MODEL

During its tenure, the standard model has provided a remarkably accurate description of results
from both accelerator and non-accelerator experiments. In fact, all of the standard model particles
shown in 2.1 have been observed and measured, most of these discoveries taking place in the last
sixty years. The original quark model proposed by Gell-Mann and Zweig in 1964 only included
the up, down, and strange quarks. The up and down quarks were later observed by deep inelastic
scattering experiments at the Stanford Linear Accelerator (SLAC), which by extension proved the
existence of the strange quark. The charm quark was proposed by Bjgrken and Glashow also in
1964 [203], but is credited to Sheldon Lee Glashow, John Iliopoulos, and Luciano Maianiafter they
proposed the Glashow-Iliopoulos—Maiani (GIM) mechanism in 1970 [204]. The charm quark was
later observed in J/i) decays by SLAC [205] and Brookhaven National Laboratory (BNL) [206].
The invariant distribution presented in the original BNL paper can be found in fig. A.1a. The
bottom or beauty quark was later proposed by Kobayashi and Maskawa in 1973 [207] and observed
by the E288 experiment led by Leon Lederman at the Fermi National Accelerator Laboratory
(FNAL) in 1977 [208]. Kobayashi and Maskawa were trying to describe CP violation in the weak
interaction, finally earning a Nobel prize for their work in 2008.

Following this flurry of quark discoveries, the W and Z bosons were observed at CERN in
1983 in proton-antiproton collisions of /s = 540 GeV at the Super Proton Synchroton (SPS). This
was research lead by Carlo Rubbia using the UA1 experiment [59] and Pierre Darriulat on the
UA2 experiment [209]. The invariant mass of the Z boson as seen by UA2 is shown in fig. A.1b.
While an insufficient number of W bosons were observed to make precision measurements, this

was accomplished using Large Electron-Positron Collider (LEP) experiment, also at CERN, where
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the W and Z masses were measured to be:

My = 91.1875 + 0.0021 GeV
(A.1)

My = 80.376 £ 0.0033 GeV

Finishing off an amazing 30 years of discoveries and completing the third and final generation of
quarks predicted by Kobayashi and Maskawa, the top quark was jointly discovered in 1995 by the
CDF [210] and DO [211] experiments at FNAL using the /s = 1.4 TeV Tevatron accelerator. Its
mass was measured to be M; ~ 176 GeV.

At this point in time, the Higgs boson was the final particle left to be discovered. Both LEP and
the Tevatron failed to observe the particle, though CDF and DO were able to exclude all masses
for the Higgs boson except in the ranges 115 < My < 155 GeV and My > 176 GeV as seen in
fig A.2a [25]. The 2012 Higgs boson discovery was jointly announced by the CMS and ATLAS
collaborations at CERN [26, 30]. By combining the 5.1 fb™" of 7 TeV data and 19.7 fb~" of 8 TeV
data, CMS was able to uses the H—vy and H—ZZ*—4/ channels to measure the mass to be
125.37035 (stat.) ™0 }2 (syst.) GeV as shown in fig. A.2b [27]. Figs. A.2c and A.2d show the invariant
mass distributions for the diphoton and four-lepton systems obtained by the CMS experiment. The
cross section o was found to be consistent with that of the standard model such that the signal

strength at the measured mass was found to be

—7 = 1.00 £ 0.09 (stat.)*% (theory) = 0.07 (syst.) (A.2)
Osm

A graphical representation of this can be found in fig. A.3. Measurements of other properties
such as spin, parity, production rates, and the ratio of couplings to fermions and vector bosons are
discussed in [27].

In the past, the experimental measurements of electroweak precision observables at LEP, SLAC,
the Tevatron, and the LHC have been paired with very accurate theoretical predictions. The benefit

of these observables is that they can probe energy scales beyond what is capable through direct
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Figure A.1: Invariant mass distributions from the discoveries of the J/i) meson and Z boson.

measurements by accounting for the effects of higher order corrections. Free parameters in the
Standard Model could be constrained by doing global fits of the electroweak sector. Now that the
Higgs boson has been found, and assuming this is the SM Higgs boson, the fit is over-constrained
because all parameters used in the fit are known. Instead of constraining the free parameters we

are now able to test the consistency of the Standard Model and even predict some parameters to
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Figure A.2: Key figures showing the Higgs boson discovery in two high-resolution channels. (a)
The combined CDF and DO exclusion plot for the Higgs mass before the discovery, reprinted
from [25]. (b) The best fit mass results from the vy and ZZ decay channels at CMS. (c) The
diphoton invariant mass distribution. The black markers represent the data, the solid and dashed
red lines represent the fitted signal and background, and the colored bands represent the +1 and +2
standard deviation uncertainties in the background estimate. The major canvas shows each event
weighted by the HLB value of its selection category. (d) The four-lepton invariant mass distribution
where the black markers are the data, the filled histograms show the background estimates, and the
open histogram shows the background plus signal expectation for a Higgs boson mass of My =

125 GeV. Figs. (b)-(c) are reprinted from [26].
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Figure A.3: Best-fit 0 /o), grouped by predominant decay mode. The vertical band is the overall
combined analysis value and the horizontal bars show the +1 uncertainties (statistical and system-
atic). Reprinted from [27].

higher precision than we are currently able to measure.
These complicated fits are performed by several groups [212, 213, 214, 215], but only the
results from the GFitter group [28, 216] will be used here. Some of the measurements included

in the fits are of the mass of the Higgs boson, the mass and widths of the W and Z bosons, the
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masses of the top, botton, and charm quarks, the strong coupling constant, the weak mixing angle,
among others. Fig. A.4 shows the comparison of the fit results with the direct measurements
of the parameters, all of which agree to within 30. A common test of the Standard Model is
to independently measure the top quark and W boson masses. Fig. A.5a shows the 68% and
95% confidence level intervals obtained for My, versus M, for the case where the direct Higgs
mass measurement is included (blue) and excluded (grey). In both cases the fits agree with the
direct measurements shown in the green bands and ellipses. Fig. A.5b shows the corresponding
plot for the W boson mass and the effective weak mixing angle. In all cases the fit procedure
agrees with the direct measurements, showing the consistency of the Standard Model within current

experimental precision.
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Figure A.5: Contours at 68% and 95% confidence level obtained from scans of My versus M,
(top) and My versus sin? (Gle 7 f) (bottom), for a fit including My (blue) and excluding My (grey),
as compared to the direct measurements (vertical and horizontal green bands and ellipses). In
both figures, the corresponding direct measurements are excluded from the fit. Figure and caption
from [28].



APPENDIX B

'y PERFORMANCE AND CORRECTIONS

B.1 Type-0 ET Correction

Pileup interactions typically produce visible particles, with only a few processes, like neutrinos
from Kaon decays, producing invisible particles. If CMS were able to perfectly measure all of
the visible particles then pileup would have little effect on the ﬁT reconstruction. However, as
discussed in section 4.7, the ET reconstruction does degrade as the number of pileup interactions
increases. The type-0 correction is an attempt to remove this pileup effect for the ET calculated
using PF candidates, as opposed to calorimeter towers or tracks.

In essence, the type-0 correction is an application of CHS (see 4.5 for a discussion of CHS),
but also removes a portion of the ET estimated to come from neutral pileup. The neutral pileup
estimate is necessary because removing only charged particles might cause the ET to move further
from its true value. In this section the pileup particles will be broken up as being neutral (neuPU) or
charges (chPU). Furthermore, the correction makes three assumptions about the pileup particles as
spelled out in equation B.1. The first assumption is that the sum of pr for the neutral and charged
components of the ET due to pileup are equal and opposite. At the truth level this cancellation is
very nearly exact. The part of B.1 says that the charged particles can be measured exactly, which is
also a good assumption for low pr tracks. The last assumption says that the direction of the neutral
pileup can be measured exactly, but that the energy is off by the same amount for each particle. The
directionality is measured using the position of the calorimeter cells, but the energy measurement

calibration was done using high pr particles so that the system systematically mismeasures low pr
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particles.

Yo Y Ay =0

i€neuPU i€chPU
—~true __ —
E Pri = E pr,i (B.1)
i€chPU i€chPU
— 0 —
g pr,i = R E Pr,i
i€neuPU i€neuPU

The assumptions can then be combined into equation B.2.

> Pri=-R" > pri (B.2)

i€neuPU 1€chPU

The raw ET components can be broken up as coming from either the hard scatter (HS) vertex
or from pileup (PU) interactions. The pileup can then be further boken down into the neutral and

charged components as previously specified. This categorization is shown in equation B.3.

_»raw g =
T - _E pT,i_E Pr,i

i€HS i€PU
(B.3)
= _ZPT,i— Z pr,i — Z pr,i
1€HS i€neuPU 1€chPU

CHS is able to remove the third sum, but is not able to separate the first and second sums.
The type-0 corrections is the estimate of the neutral pileup shown in equation B.2 plus the sum

over the charged particles from pileup.

Cr7=(1-R") > prs (B.4)

i€chPU

This corrections added to the raw ET yields the type-0 corrected ET- To also propogate the JEC to
the pileup corrected ET one can add type-1 correction to the type-0 corrected ET- This process can

be seen in equation B.5.
7 Type—0 A SType—0
T = Fr" +Cr
(B.5)

7 Type—0—1 _ 7 Type—0 SType—1
T s + CT
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B.2 ET Filters

Besides interesting physics processes, high values of Frcan be caused by cosmic rays, detector
noise, and particles from the beam-halo. In addition to the previous corrections used to make sure
the JZT is reconstructed correctly, CMS has also developed several algorithms for identifying and
removing sources of fake ET- False ET is a problem because is causes a discrepancy between the
data and MC, where the sources of fake ET are not explicitly simulated. After several of these

filters are used this agreement will typically improve.
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Figure C.1: Data-to-MC comparison plots for the 2-jet electron channel.
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Figure C.2: Data-to-MC comparison plots for the 2-jet electron channel.
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Figure C.3: Data-to-MC comparison plots for the 3-jet electron channel.
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Figure C.4: Data-to-MC comparison plots for the 3-jet electron channel.
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Figure C.5: Data-to-MC comparison plots for the >4-jet electron channel.
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Figure C.6: Data-to-MC comparison plots for the >4-jet electron channel.
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Figure C.7: Data-to-MC comparison plots for the 2-jet muon channel.
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Figure C.8: Data-to-MC comparison plots for the 2-jet muon channel.
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Figure C.9: Data-to-MC comparison plots for the 3-jet muon channel.
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Figure C.10: Data-to-MC comparison plots for the 3-jet muon channel.
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Figure C.11: Data-to-MC comparison plots for the >>4-jet muon channel.
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Figure C.12: Data-to-MC comparison plots for the >>4-jet muon channel.
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APPENDIX D

BOOSTED DECISION TREES
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Figure D.1: Inputs used to train the BDTs with kinematic variables in the 2 jets bin.
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Figure D.2: Inputs used to train the BDTs with kinematic variables in the 3 jets bin.
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D.2 Outputs

TMVA response for classifier: BDT
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Figure D.4: (a) The BDT response plot from TMVA for the training with only kinematic variables
in the 2 jet bin for the combined lepton channel. Validation plot for the BDT in the 2 jet bin for the
(b) electron and (c¢) muon channels. Only statistical uncertainties are shown in the validation plots.
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Figure D.5: (a) The BDT response plot from TMVA for the training with only kinematic variables
in the 3 jet bin for the combined lepton channel. Validation plot for the BDT in the 3 jet bin for the
(b) electron and (c) muon channels. Only statistical uncertainties are shown in the validation plots.
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Figure D.6: (a) The BDT response plot from TMVA for the training with only kinematic variables
in the >4 jet bin for the combined lepton channel. Validation plot for the BDT in the >4 jet bin for
the (b) electron and (c) muon channels. Only statistical uncertainties are shown in the validation
plots.
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Figure D.7: (a) The BDT response plot from TMVA for the training with only matrix element
probabilities in the 2 jet bin for the combined lepton channel. Validation plot for the BDT in the 2
jet bin for the (b) electron and (c) muon channels. Only statistical uncertainties are shown in the

validation plots.

TMVA response for classifier: BDT

S o T A A N
67Z}Background

-leoson -H(125) >ZZ q
@Single Top -H$125g
[ mH

SWW- 1

: 2 jets, 0 b-tags -QCD - H(125)->WW 1

Z+Jets (x5600)

-W+Jets ~+ Data

->pb

£ CMS EISmgle Top -HE125;
o mH

E 21ets 0 b-tags -QCD

b
SWW.

—

-

Data/MC

o?.n_x'ml\: ' P
T B LI I i o o A

Data/MC

o'cn..'uwl\)

L
1 08060402 0 02040608 1
MEBDT

(b)

19.15 0" (8 TeV)

1 080604020 02040608 1
MEBDT

19.28 b (8 TeV)

Events

(UN) dN/ dx

(a)

Figure D.8: (a) The BDT response plot from TMVA for the training with only matrix element
probabilities in the 3 jet bin for the combined lepton channel. Validation plot for the BDT in the 3
jet bin for the (b) electron and (c) muon channels. Only statistical uncertainties are shown in the

validation plots.

ASea T T T

6 2771 Background

AN AR R RN AR RAAN SN AARRARE
-glbolso_rll mH(125)->Z2Z :
L Prehmmary Eﬁmge °p =H§‘2§} >bb

[ 3jets, 0 b-tags EIQCD = H(125)- >ww
[ ol ags W Z+Jets (x3100)
EW+Jets  + Data -

Events

EISmgle Top -HE125; E
oy (1252 Ww 3
3Jets 0 b-tags -QCD

Data/MC

Data/MC

(b)

230




TMVA response for classifier: BDT
T Sigha” T

(UN) dN/ dx

8
7
6
5
4F
3
2
1
0

771 Background

(a)

0.1

0.2
BDT response

40x103 1915fb (8TeV) 103 19 28 fb (8TeV)

» S RRRRE: o 0 » RRRRS o Z

2 1] ]

c CMS -leoson -H(125) >ZZ 1 = CMS Ileoson -H(125) >ZZ ]
Single T 3 Single T

2 35F Preliminary E o =H€1253 i\%’W*  5of Preliminary E noee =HE125; is\t’)W;

W Eo>ajets, ObtaggQCJ[;ts - HU2SLWW 3 W > ajets, Oblag!QCJ'gts S hlEsWW

= — - Z+ 4

30 L MW+Jets  +Data 40 r EW+Jets  +Data I

25 B b E

- 30 =

20 E

10~ .

Q 2 Q 2 ]

= 150 = 150 E

R I |

T & 5 & s ]

0O 0.5¢ 0 05¢ E

0

NIRRT IR
-1 -0.8-0.6-0.4-0.2 0 02040608 1

MEBDT
(b)

P P PO U PO BT U I P
-1 -0.8-0.6-0.4-0.2 0 0.20.40.6 0.8 1

MEBDT
(©)

Figure D.9: (a) The BDT response plot from TMVA for the training with only matrix element
probabilities in the >4 jet bin for the combined lepton channel. Validation plot for the BDT in the
>4 jet bin for the (b) electron and (c) muon channels. Only statistical uncertainties are shown in

the validation plots.
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Figure D.10: (a) The BDT response plot from TMVA for the training with the kinematic variables
and the ME BDT in the 2 jet bin for the combined lepton channel. Validation plot for the BDT in
the 2 jet bin for the (b) electron and (c) muon channels. Only statistical uncertainties are shown in

the validation plots.
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Figure D.11: (a) The BDT response plot from TMVA for the training with the kinematic variables
and the ME BDT in the 3 jet bin for the combined lepton channel. Validation plot for the BDT in
the 3 jet bin for the (b) electron and (c¢) muon channels. Only statistical uncertainties are shown in

the validation plots.
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Figure D.12: (a) The BDT response plot from TMVA for the training with the kinematic variables
and the ME BDT in the >4 jet bin for the combined lepton channel. Validation plot for the BDT in
the >4 jet bin for the (b) electron and (c) muon channels. Only statistical uncertainties are shown

in the validation plots.
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D.3 Correlations
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Figure D.13: Correlation plots for (a) signal and (b) background for the BDT trained with only
kinematic variables in the 2 jet bin.
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Figure D.14: Correlation plots for (a) signal and (b) background for the BDT trained with only
kinematic variables in the 3 jet bin.
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Figure D.15: Correlation plots for (a) signal and (b) background for the BDT trained with only
kinematic variables in the >4 jet bin.
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Figure D.16: Correlation plots for (a) signal and (b) background for the BDT trained with only

matrix elements variables in the 2 jet bin.
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Figure D.17: Correlation plots for (a) signal and (b) background for the BDT trained with only
matrix elements variables in the 3 jet bin.
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Figure D.18: Correlation plots for (a) signal and (b) background for the BDT trained with only
matrix elements variables in the >4 jet bin.
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Figure D.19: Correlation plots for (a) signal and (b) background for the BDT trained with both the
kinematic variables and the ME BDT in the 2 jet bin.
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Figure D.20: Correlation plots for (a) signal and (b) background for the BDT trained with both the
kinematic variables and the ME BDT in the 3 jet bin.
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Figure D.21: Correlation plots for (a) signal and (b) background for the BDT trained with both the
kinematic variables and the ME BDT in the >4 jet bin.
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D.4 ROC Curves
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Figure D.22: The receiver operating characteristic (ROC) curves for the various BDT trainings.
The plots are ordered by jet bin from left to right, with the leftmost plot being the two-jet bin and
the rightmost plot being the greater than or equal to four-jet bin. The top row contains the KinBDT
plots while the middle and bottom rows contain the MEBDT and KinMEBDT plots, respectively.

238



	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Theoretical Framework
	The Standard Model
	Quantum Electrodynamics & the Electromagnetic Interaction
	Electroweak Interaction
	Strong Interaction
	Brout-Englert-Higgs Mechanism & The Higgs Boson
	Higgs Production in a Proton-Proton Collider
	Beyond the Standard Model

	The LHC and CMS Detector
	The Large Hadron Collider
	The CMS Detector
	Coordinate System
	Tracker and Pixel Detector
	Electromagnetic Calorimeter
	Hadron Calorimeter
	Solenoid
	Muon System
	Trigger
	Luminosity Measurement


	Event Reconstruction
	Tracks and Vertices
	Particle Flow
	Electrons
	Muons
	Jets
	b-tagging
	Missing Transverse Energy
	Event Generation
	Detector Simulation

	Higgs Analysis
	Data and Monte Carlo Samples
	Data
	Monte Carlo
	Multijet-QCD Background

	Event & Object Selection
	MC Corrections
	Pileup Reweighting
	CSV Reweighting
	TTbar Reweighting
	CosThetaL Reweighting
	QCD Reweighting

	Data-to-MC Comparisons & Yields
	Multivariate Analysis
	Boosted Decision Tree
	Kinematic Variable Selection
	BDT Input Optimization
	BDT Parameter Optimization

	Matrix Element Analysis
	Differential Cross Section
	Parton Distribution Functions and Phase Space
	Transfer Functions
	Matrix Elements
	Combinatorial Considerations
	Numerical Integration
	Standalone Matrix Element Based BDT
	Combined BDT

	Systematic Uncertainties
	LHC Luminosity
	Sample Cross Sections
	MET Uncertainty
	Lepton Selection and Trigger Efficiency
	Pileup Weights
	Jet Energy Scale (JES)
	CSV Weights
	Top pT
	CosThetaL Weight Uncertainty
	W +jets Shape Uncertainties
	QCD eta Weights Uncertainty


	Results
	Conclusions & Future Possibilities
	REFERENCES
	APPENDIX History of the Standard Model
	APPENDIX MET Performance and Corrections
	Type-0 MET Correction
	MET Filters

	APPENDIX Comparison Plots
	APPENDIX Boosted Decision Trees
	Inputs
	Outputs
	Correlations
	ROC Curves


