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ABSTRACT

This dissertation includes three chapters on microeconometrics with applications to social net-

work. In the first chapter, we study identification and estimation of peer effects in a game the-

oretical social interaction model with incomplete information. We show that players’ equilib-

rium choice probabilities and peer effects can be identified in the presence of measurement errors

in network connections by exploiting the nonparametric methodology developed for nonclassical

measurement error models. Based on the identification methodology, a semiparametric estimation

method is established and applied to study the peer effects on youth alcohol drinking behaviors

using data of adolescents in the United States, our empirical findings show that peer effects will be

significantly underestimated if measurement errors are ignored.

In the second chapter, we study strategic social interaction among economic agents that are

connected through the phenomena of homophily. In particular, we measure homophily effects by

the differences between players’ socioeconomic characteristics. Under the symmetric equilibrium

selection mechanism, we establish a nonparametric approach to identify the structural model and

propose a computationally feasible two-step estimation procedure. The asymptotic properties of

the two-step estimator are derived under context of “large games", i.e., the number of players going

to infinity. Finally, we apply the identification and estimation methods to study the peer effects on

youth smoking behaviors using data of adolescents in the United States, our empirical findings

show positive and statistically significant peer effects and demonstrate the empirical importance of

including homophily effect in our model.

In the third chapter, we study bandwidth selection method for the smoothed maximum score

estimator. The smoothed maximum score estimator is a semiparametric estimator for binary re-

sponse model, which is very useful for many economics and statistics applications. The method

for selecting the smoothing parameter (bandwidth) in smoothed maximum score estimator is anal-

ogous to the plug-in method in kernel density estimation. It requires initial “pilot" values of the

bandwidth to obtain the optimal bandwidth. The method has the disadvantage of not being fully
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data-driven. In this paper, we propose a data-driven bandwidth selection method by minimizing

a cross-validated criterion function. Simulation results show that our proposed method performs

better than existing methods.
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1. INTRODUCTION

This dissertation develops microeconometric methods to nonparametrically identify and esti-

mate peer effects in social networks. In particular, the peer effect is modeled as strategic effect in

an incomplete information game with large number of players.

In the first chapter, we study identification and estimation of peer effects in a game theoretical

social interaction model with incomplete information. This paper is motivated by the fact that

econometric analysis of networks has long suffered the issue of measurement errors, usually in

the form of missing or spurious data in network connections. The presence of measurement errors

mainly results from the sources of network data, which predominantly are surveys and question-

naires soliciting self-reports ([1]). Applied researchers typically construct network from data and

naively treat this network as the true network of interest, ignoring the problem of measurement

errors. The main objective of this essay is to develop an econometric framework to identify and

estimate peer effects in the presence of measurement errors in network data. The identification

proceeds in two steps. In the first step, we show that under semi-anonymously symmetric equi-

librium, the CCPs can be nonparametrically identified when the number of players is fairly large.

Specifically, we prove that the game theoretical model can be fitted into the measurement error

models as proposed in [2] and [3] and then provide two different methods to identify the CCPs.

The first (point) identification method is implemented by incorporating an instrumental variable

and applying a spectral decomposition technique to the observed distributions in data and is also

the method used in the empirical application. The second (partial) identification method is devel-

oped in the case when a valid instrumental variable is not available in the data and follows the

direct misclassification proposed in [3]. After the identification of the CCPs, the second step is to

identify payoff primitives, which are shown to be point-identified using standard techniques as in

[4] and [5]. The estimation method developed in this paper is similar to [2] and is a directly ap-

plication of the semiparametric sieve maximum likelihood estimator (MLE) framework developed

in [6]. Applying the methodology developed in this paper to study adolescent behaviors in United
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States, we estimate the peer effects of teenagers’ alcohol drinking behaviors using the data from

the National Longitudinal Study of Adolescent an Adult Health (Add Health). In the empirical

application, we estimate peer effects on adolescent alcohol drinking behaviors using two methods:

the first one is the usual MLE ignoring measurement error and the second one is the proposed

sieve MLE. Our results indicates that when the measurement errors in network data are ignored,

the peer effects estimated using MLE are statistically significant and qualitatively similar to those

empirical results in [7] and [8], who use Add Health data and the National Education Longitudinal

Study (NELS) to study peer effects on youth behaviors. However, the estimate for peer effects is

biased in the presence of measurement errors. Using the proposed sieve estimator, we find a signif-

icant and much larger (nearly 100%) estimate of peer effects on youth alcohol drinking behaviors.

Therefore, our work also contributes to the empirical literature studying peer effects by providing

empirical evidence of the existence of measurement error in Add Health data and illustrating the

consequences when ignoring it.

In the second chapter, we study strategic social interaction among economic agents that are

connected through the phenomena of homophily. In particular, we measure homophily effects by

the differences between players’ socioeconomic characteristics. In sociology, homophily is the

principle that a contact between similar people occurs at a higher rate than among dissimilar peo-

ple. Therefore, intuitively we would expect that for a particular player, the strategic effect from

another player’s action will be strong if they are similar to each other in terms of socioeconomic

attribute. The similarity between two players is represented by a social distance function, which

measures the difference between two players’ socioeconomic characteristics, and we restrict the

strategic effect to be decreasing as the social distance between two players increases. Motivated

by the commonly adopted data structure in the social interaction literature, the identification and

estimation strategies in this paper are developed under “a large game" setting, meaning that the

number of players in a network is fairly large. The identification proceeds in two steps. The first

step is to identify the equilibrium conditional choice probabilities (CCPs), which is guaranteed by

the symmetric equilibrium selection mechanism and conditional independence assumption. The

2



second step is to identify payoff primitives. Specifically, we extend the method proposed in [9]

to the context of game theoretical models in order to identify the deterministic part of the payoff

function as a whole. The key is to establish a rank ordering property regarding CCPs, which means

that actions with higher deterministic payoffs are more likely to be chosen by players. Then by

exploring the variation of CCPs and homophily effects, direct utility and strategic effect can be

identified separately. Based upon the identification methodology, we propose a computationally

feasible two-step method to nonparametrically estimate the model primitives and establish its con-

sistency. In the empirical application, we apply our methods to study the peer effects on youth

smoking behavior using the Add Health data. We find positive and statistically significant peer

effects for all schools, which is similar to other empirical findings of peer effects on youth smok-

ing behavior using different datasets. See e.g., [10] and [11]. Our empirical finding indicates that

smoking behavior from a student’s schoolmates will make that student more likely to consume

cigarette. We also compare the empirical results with and without imposing the homophily effects,

the comparison indicates that without considering the homophily effects, most of the estimated

peer effects become insignificant, which demonstrates the empirical importance of including ho-

mophily effects in our model.

In the third chapter, we study bandwidth selection method for the smoothed maximum score

estimator. The smoothed maximum score estimator is proposed by [12] and is a semiparametric

estimator for binary response model. Binary response models are very useful for many economics

and statistics applications. See [13] for a review of econometric applications of binary response

models. In this model, we do not impose parametric assumptions on the distribution of the error

term. Therefore, the parameter of interest cannot be estimated by maximum likelihood method

that has been widely used for probit and logit models. If the error term and covariates are inde-

pendent of each other, various semiparametric methods (e.g., [14], [15], [16] and [17]) can be used

to obtain a consistent estimator of β. The maximum score estimator (MS) of [18, 19] allows for

the dependence of the distribution of u on x in an unknown and general way (heteroskedasticity of

an unknown form). However, since the objective function is discontinuous, the convergence rate

3



of the maximum score estimator is n−1/3, and its limiting distribution is non-standard ([20]). [12]

develops a smoothed version of Manski’s maximum score estimator, which is asymptotically nor-

mal and has a faster convergence rate. The convergence rate could approach n−1/2, depending on

the strength of certain smoothness conditions. The idea of Horowitz’s smoothed maximum score

estimator (SMS) is analogous to the nonparametric estimation of cumulative distribution function

(CDF), and involves replacing the indicator function by a continuously differentiable function in

the objective function of the maximum score estimation. The continuously differentiable function

retains the essential features of an indicator function. It is generally acknowledged that kernel

smoothing method can be very sensitive to the selection of bandwidth. Different bandwidths can

lead to completely different results. In terms of bandwidth selection, [12] proposes a method that

is analogous to the plug-in method in kernel density estimation.The method requires initial “pilot"

values of the bandwidth to compute the SMS estimator, and then uses this estimator to obtain the

optimal bandwidth. This method has the disadvantage of not being fully data-driven, since the es-

timated optimal bandwidth depends on the initial selection of bandwidth. In this paper, we propose

an alternative method to obtain the bandwidth. Unlike the conventional plug-in method, we choose

the bandwidth by minimizing a cross-validated criterion function. It is completely data-driven and

does not require the selection of the initial bandwidth. We use Monte Carlo simulations to examine

the finite sample performance of our proposed method. The results show that our proposed method

performs better than existing methods.
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2. IDENTIFICATION AND ESTIMATION OF PEER EFFECTS IN MIS-MEASURED

SOCIAL NETWORKS

2.1 Introduction

In recent years, a growing body of literature studies social networks and their implications for

economic outcomes, see e.g., [21] for an extensive review of the literature. A social network is

represented by network graph, which contains a set of connections (edges) among a collection

of economic agents (nodes). For instance in a school-based friendship network, nodes will be

students and edges may represent friendship connections among them. This paper is motivated

by the fact that econometric analysis of networks has long suffered the issue of measurement

errors, usually in the form of missing or spurious data in network connections. The presence of

measurement errors mainly results from the sources of network data, which predominantly are

surveys and questionnaires soliciting self-reports ([1]). Applied researchers typically construct

network from data and naively treat this network as the true network of interest, ignoring the

problem of measurement errors. The main objective of this article is to develop an econometric

framework to identify and estimate peer effects in the presence of measurement errors in network

data.

Ever since the seminar work of [22], network-based peer effects have been studied extensively

in econometrics, see, e.g., [23], [24], [25], [26], [27] and so forth. However, most of the previous

work assumes that the observed network in data represents the true network structure. A few ex-

ceptions include [28] and [29]. Nevertheless, the difference between their work and ours is that

their methods can only handle the missing data problem by restricting the measurement errors to

be “one-sided", meaning that if two nodes are connected according to the data, then the econo-

metrician knows there are no measurement errors. However, as is mentioned in [30], in surveys

respondents sometimes reports relations that are not actually present and hence lead to spurious

network connections in the data. Our work, on the other hand, provides a unified approach to solve
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both the missing and spurious problem in network data. To the best of our knowledge, our paper

is the first to address these two problems simultaneously.

The model studied in this paper is an incomplete information game theoretical model with

binary choice. Each player’s payoff function consists of three components: direct utility from the

chosen action, peer effects from socially connected players’ actions and a stochastic component

representing payoff shocks. The payoff shocks are players’ private information with commonly

known distribution. The three components are assumed to be additively separable, similar payoff

structure has been studied in [31]. The game studied in this paper belongs to the semi-anonymous

graphical game discussed in [21] and [32], in the sense that player’s choice is influenced mainly

by the relative population of a given action among his or her neighbors and does not depend on the

specific identities of the neighbors who take the action.

It is well known that identification and estimation of empirical game with incomplete infor-

mation can be difficult when multiple equilibria exist. This is because the usual identification

and estimation methods are developed under the many-game paradigm, which requires observing

many repetitions of the same n-player game in order to identify and estimate the equilibrium condi-

tional choice probabilities (CCPs) and payoff primitives. Therefore, multiple equilibria will cause

problem under many-game setting since different equilibria may exist among the repetitions of the

same game and simply pooling those repetitions together can only allow us to identify a mixture

of CCPs under different equilibria, making it hard to recover payoff primitives from CCPs ([33]).

The identification and estimation methods in this paper are developed under the large-game setting,

i.e., the number of players going to infinity. Under the setup of large game, multiple equilibria will

no longer be problematic because we do not need to pool information cross-sectionally. At the

first glance, large-game setting makes identification and estimation of CCPs impossible since we

can only observe a single action of each player and hence do not have enough variation to identify

CCPs. The solution in this paper is to focus on the equilibria that are semi-anonymously sym-

metric, meaning that players with same characteristics and relative proportion of a given action

among her neighbors will have same (ex-ante) probabilities for choosing an action in equilibrium.
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Consequently, players with same characteristics and relative proportion of a given action among

his or her neighbors can be viewed as same-type players and equilibrium actions of those players

will generate variations that can help identify the CCPs.

The identification proceeds in two steps. In the first step, we show that under semi-anonymously

symmetric equilibrium, the CCPs can be nonparametrically identified when the number of players

is fairly large. Specifically, we prove that the game theoretical model can be fitted into the measure-

ment error models as proposed in [2] and [3] and then provide two different methods to identify

the CCPs. The first (point) identification method is implemented by incorporating an instrumental

variable and applying a spectral decomposition technique to the observed distributions in data and

is also the method used in the empirical application. The second (partial) identification method is

developed in the case when a valid instrumental variable is not available in the data and follows

the direct misclassification proposed in [3]. After the identification of the CCPs, the second step is

to identify payoff primitives, which are shown to be point-identified using standard techniques as

in [4] and [5].

It is worth mentioning that the identification of CCPs does not trivially follows [2] and [3]

because in our model, the CCPs are conditional on all player’s characteristics and the network

structure. The network structure is represented by an n× n random matrix, where n is the sample

size. Therefore, the dimension of measurement errors will also be n × n, resulting in a high

dimensionality problem and the results in [2] and [3] cannot be directly applied since their methods

requires the dimension of measurement errors to be fixed. Recent development in high dimensional

measurement errors models all focus on linear models , see, e.g., [34] and [35]. Hence neither can

their methods be applied to the nonlinear model in this paper. In this paper, we solve the high

dimensionality problem by requiring all equilibria to be semi-anonymously symmetric and prove

that as long as the number of players is fairly large, the CCPs are asymptotically equivalent to the

ones that are only conditional on each player’s own characteristics and a scalar valued function

summarizing actions of her neighbors. Similar idea has been proposed in [36] and [37] in studying

network formation models. We extend their ideas to the context of our model by allowing the
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CCPs to be conditional not only players’ own characteristics, but also a scalar valued function for

the actions of their neighbors in the network.

The estimation method developed in this paper is similar to [2] and is a directly application

of the semiparametric sieve maximum likelihood estimator (MLE) framework developed in [6].

Under the setup of our model, the observed data is weakly dependent conditional on all public

information in the game. We show that the sieve MLE framework developed in [2] under inde-

pendent and identical distributed (i.i.d) data context can be extended to the (conditional) weakly

dependent case and establish its consistency and asymptotic distribution. The Monte Carlo exper-

iments demonstrate that our proposed estimator performs well in finite samples.

Applying the methodology developed in this paper to study adolescent behaviors in United

States, we estimate the peer effects of teenagers’ alcohol drinking behaviors using the data from

the National Longitudinal Study of Adolescent an Adult Health (Add Health). The Add Health is a

longitudinal study of a nationally representative sample of adolescents in grades 7-12 in the United

States during the 1994-95 school year (Wave I). The instrument variable we use are obtained from

second wave survey, which was conducted one year after Wave I. Given that the Wave II data

was surveyed after one year of Wave I, it is convincing that the measurement errors in the two

waves are independent with each other, conditioning on the latent true value of network. Hence the

exclusion restrictions for identification are satisfied. In the empirical application, we estimate peer

effects on adolescent alcohol drinking behaviors using two methods: the first one is the usual MLE

ignoring measurement error and the second one is the sieve MLE. Our results indicates that when

the measurement errors in network data are ignored, the peer effects estimated using MLE are

statistically significant and qualitatively similar to those empirical results in [7] and [8], who use

Add Health data and the National Education Longitudinal Study (NELS) to study peer effects on

youth behaviors. However, the estimate for peer effects is biased in the presence of measurement

errors. Using the proposed sieve estimator, we find a significant and much larger (nearly 100%)

estimate of peer effects on youth alcohol drinking behaviors. Therefore, our work also contributes

to the empirical literature studying peer effects by providing empirical evidence of the existence of
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measurement error in Add Health data and illustrating the consequences when ignoring it.

Recently there has been some studies in measurement error issues of social network. However,

little work has been done in developing methods to identify and estimate network-based peer ef-

fects in presence of measurement errors. [30] characterize different forms of measurement errors

in network data and studies the sensitivity of network statistics to those measurement errors. [38]

study a Manski-type linear-in-means model and applies their method to investigate the peer effects

using Add Health data, which is one of the most commonly used dataset in network econometrics.

They find that even though the structure of the friendship network tends to change substantially

between two waves of the survey, the estimated peer effects are qualitatively similar. Based on

this finding, they cast doubt about relying on self-reported friendship links to study peer effects.

Nevertheless, their method can not solve the problem caused by measurement errors. [28] pro-

poses a method to point-identify the peer effects in a complete information game that also allows

the existence of measurement errors in network connections. The difference between his work and

ours is that he restricts the measurement errors to be “one-sided", meaning that if two players are

connected according to the data, then no measurement errors will exist. Consequently, his method

can not deal with the case of spurious data. [29] provide analytical and numerical examples to

illustrate the severity of the biases in estimated peer effects caused by measurement errors and pro-

pose a two-step graphical reconstruction procedure to correct the biases. Nevertheless, in order for

the graphic reconstruction procedure to be valid, the measurement errors still need to be one-sided.

Our method, on the other hand, allows the measurement errors to be two-sided, making it unique

and novel in the literature of network econometrics.

The rest of the essay is organized as follows. Section 2.2 presents the setting and basic as-

sumptions of our model. Section 2.3 provides the (point) identification method with the help of

instrumental variable. Section 2.4 discusses the (partial) identification method without instrumen-

tal variable. Section 2.5 discusses the estimation method and establishes the asymptotic behavior

of our proposed estimator. Section 2.6 illustrates the finite sample performance of the proposed

estimator by conducting several Month Carlo experiments. Section 2.7 contains empirical analy-
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sis of peer effects on youth alcohol drinking behaviors and Section 2.8 concludes. All proofs are

provided in Appendix A.1, and Appendix A.2 contains additional simulation results.

2.2 Model Setup

We consider a simultaneous-move incomplete information game played in a social network1.

There are n players indexed by i ∈ N , where N ≡ {1, 2, . . . , n} is the set of all players. In this

game, each player simultaneously chooses a discrete action Yi ∈ A ≡ {0, 1}. Let Xi ∈ X ⊂ Rd

be the vector of player i’s socioeconomic characteristics. Also let G∗ij = 1 if player i nomi-

nates j as her friend and G∗ij = 0 otherwise. Note that the edges in the network graph are di-

rected, which implies that friendship need not be symmetric, i.e., G∗ij 6= G∗ji is allowed. We use

G∗i = (G∗i1, G
∗
i2, · · · , G∗i,i−1, G

∗
i,i+1, · · · , G∗in)T ∈ {0, 1}n and G∗ = (G∗T1 , G∗T2 , · · · , G∗Tn )T ∈ G to

denote the network connections for player i and the network structure in this game, respectively.

Note that we use the superscript “ ∗ ” to emphasize that G∗ represents the true network structure

without measurement errors, which is observed by all players but remains unknown to econome-

tricians because of measurement errors. Then player i’s payoff function for choosing action 1 is

specified as

Ui1 = α(Xi) +W (YN∗i , G
∗
i )β(Xi)− εi, (2.1)

where N∗i = {j|G∗ij = 1} is the set of friends of i and YN∗i denotes the vector of actions taken

by friends of i. Following the literature in empirical game with binary actions, we normalize the

payoff for action 0 to be zero, i.e., Ui0 = 0. Note that the cardinality of N∗i , denoted as |N∗i |, is

called the degree of player i. In this payoff function, W (YN∗i , N
∗
i ) =

∑
j∈N∗i

Yj/|N∗i | ∈ [0, 1] is

a continuous and bounded function summarizing the average actions of player i’s friends and is

assumed to be known by both players and econometricians. To simplify notation we use W ∗
i to

denote W (YN∗i , N
∗
i ). Note that this game is a semi-anonymous graphical game in the sense of [39]

and [21], i.e., the player’s choice is influenced mainly by the relative population of a given action

among his or her neighbors and is not dependent on the specific identities of the neighbors who

1Based on the empirical data that will be used, the social network we considered here is friendship network.
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take the action. εi is the payoff shock, which is assumed to be private information with commonly

known distribution. Let Xc ≡ (XT
1 , X

T
2 , · · · , XT

n )T ∈ X n be the matrix collecting all players’

characteristics. In order to characterize the equilibrium we first impose some assumptions

ASSUMPTION 2.2.1. (i) {εi}i∈N is i.i.d with an absolutely continuous cumulative distribution

function (CDF) Fε(·) and bounded probability density function (PDF) fε(·). (ii) {Xi}i∈N is i.i.d

with compact support X . (iii) The support of W ∗
i is compact.

Assumption 2.2.1 is commonly imposed in the literature on identification and estimation of

static games with incomplete information and social interaction models (see, e.g., [31], [40] and

[27]). Condition (i) ensures the continuity of player’s equilibrium choice probabilities, which is a

necessary condition for the existence of equilibrium. Conditions (ii) and (iii) are used to establish

the uniform convergence of the large game, which will be discussed in Section 2.3.

Since the payoff of action 0 has been normalized to be zero, in this incomplete information

game player i will choose action 1 if the expected utility of action 1 is positive, where the ex-

pectation is conditional on all the public information (Xc, G∗) and her private information εi.

Therefore, any Bayesian Nash Equilibrium (BNE) can be characterized by a profile of strategies

{Yi(Xc, G∗, ·)}i∈N such that for all i and εi,

Yi(X
c, G∗, εi) = 1 {εi ≤ α(Xi) + β(Xi)E[W ∗

i |Xc, G∗, εi]} , (2.2)

where 1(·) is the indicator function. By Assumption 2.2.1, Yi and Yj will be conditionally inde-

pendent with each other for all i 6= j, and then

E[W ∗
i |Xc, G∗, εi] = E[W ∗

i |Xc, G∗].

As a result, in any BNE the joint distribution of YN∗i conditional on i’s information (Xc, G∗, εi)
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takes the form

Pr(YN∗i = yN∗i |X
c, G∗) =

∏
j∈N∗i

pj(X
c, G∗)y

∗
j (1− pj(Xc, G∗))1−y∗j (2.3)

and pi(Xc, G∗) ≡ Pr{εi ≤ α(Xi) + β(Xi)E[W ∗
i |Xc, G∗]|Xc, G∗} is i’s equilibrium probability

of choosing 1 given Xc and G∗. Following the literature of empirical game with incomplete infor-

mation, instead of pure strategies we use players (ex-ante) conditional choice probabilities (CCPs)

to characterize the Bayesian Nash Equilibrium:

Definition 2.2.1. Given Xc and G∗, the Bayesian Nash Equilibrium (BNE) is a collection of CCPs

{pi(Xc, G∗)}i∈N satisfying the following conditions:

pi(X
c, G∗) = Pr{εi ≤ α(Xi) + β(Xi)E[W ∗

i |Xc, G∗]|Xc, G∗}

for all i = 1, 2, · · · , n.

The CCPs can be computed as the fixed point of the correspondence with each coordinate-

function component given by Definition 2.2.1. The fixed point is guaranteed to exist by Kakutani

Fixed-point Theorem. In general, the fixed point may not be unique so we may have multiple fixed

points and hence multiple equilibria. In this paper, the identification and estimation strategies are

developed under the “large game" setting as in Leung (2015), meaning that the number of players

in the game is approaching infinity and we do not need to pull different observations of the same

game for the purpose of identification and estimation. Therefore, multiple equilibria will no longer

be problematic and the CCPs can be identified directly from the equilibrium actions in the data if no

measurement errors are present, and payoff primitives can be identified accordingly, using standard

argument as in [40] and [27]. However, with measurement errors in the network structure, point

identification of CCPs requires additional information, which will be discussed in Section 2.3.

In this paper, we focus on equilibria that are symmetric in player’s characteristics X and W ∗,

which summarizes the actions of her friends. Specifically we introduce the definition of semi-
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anonymously symmetric equilibrium:

Definition 2.2.2. The conditional choice probabilities {pi(Xc, G∗)}i∈N are semi-anonymously

symmetric if Xi = Xj and W ∗
i = W ∗

j implies that

pi(X
c, G∗) = pj(X

c, G∗) for all i, j ∈ N.

This definition implies that two players will have same (ex-ante) conditional choice probabil-

ities of choosing action 1 if they have similar characteristics and the proportion of a given action

among their neighbors are the same. Under the setup of large game, it makes sense to assume sym-

metric equilibria because otherwise we will not have sufficient variation in the data to help identify

CCPs. In semi-anonymously symmetric equilibria, players with same X and W ∗ can be viewed as

same type players and the CCP for each player can be identified by exploring the variations gen-

erated by the equilibrium actions of players sharing the same type. Therefore, the assumption of

semi-anonymously symmetric equilibria will be crucial for identification and estimation as we as-

sume only one large game is observed. In this paper, we will focus on studying semi-anonymously

symmetric BNE2.

To ensure that the semi-anonymously symmetric equilibria exist under the large game setting,

we impose the following assumptions

ASSUMPTION 2.2.2. (i) |N∗i | → ∞ as n → ∞ for all i ∈ N ; (ii) There exists a Cβ < ∞ such

that |β(Xi)| ≤ Cβ for all Xi ∈ X and all i ∈ N .

Under Assumption 2.2.2 (i), the degree of each player is unbounded, meaning that the number

of neighbors for each player goes to infinity as n → ∞. Condition (ii) requires the peer effect

β(·) to be bounded. Then the following lemma shows that W ∗
i and its conditional expectation are

asymptotically equivalent.

Lemma 2.2.1. Under Assumptions 2.2.1-2.2.2, W ∗
i − E(W ∗

i |Xc, G∗) = op(1).

2Formally as in [36], an equilibrium selection mechanism should be imposed in order for us to focus on semi-
anonymously symmetric equilibria, we omit this part for notational simplicity.
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Lemma 2.2.1 indicates that under the large game setting, the endogenous variable W ∗
i ([22])

becomes exogenous since Xc and G∗ are independent with εi. Then the following proposition

shows that there will always exist a semi-anonymously symmetric equilibrium in the large game.

Proposition 2.2.1. Under Assumptions 2.2.1-2.2.2, there always exists a semi-anonymously sym-

metric BNE for any Xc ∈ X n and G∗ ∈ G under the large setting.

2.3 Identification with Instrumental Variable

In this section, we identify model elements {{pi(Xc, G∗)}i∈N , α(·), β(·)}. In the data the

econometrician will observe players’ equilibrium actions {Yi}i∈N 3, their socioeconomic charac-

teristics Xc and a contaminated measurement G for G∗. As is discussed in Section 2.1, the mea-

surement errors in G are caused by the missing or spurious data in network connections. Figure

2.1 below provides an graphical illustration of the missing data problem in network analysis. In

this figure, each blue node represents a player and the line (edge) connecting two nodes represents

their friendship connections. Because of missing data, the econometrician may analyze the net-

work structure in (a) even though the true network is the much more complicated one in (b), and

obviously econometric analysis based on these two structures will give us very different results.

Similarly the spurious data case can be illustrated by reversing (a) and (b) in Figure 2.1. The identi-

fication method proceeds in two steps: first we identify CCPs by exploring additional information

provided by an instrumental variable, and then in the second step we identify payoff primitives

α(·) and β(·).

2.3.1 Conditional Choice Probabilities

Since G∗ij and its counterpart Gij in the contaminated measurement G are binary, the mea-

surement errors will be nonclassical in general. Therefore, the identification of CCPs requires the

availability of an instrumental variable G′ (maybe a repeated measurement of G∗). The technical

challenge we will encounter when identifying the CCPs is the high dimensionality problem: the

dimensions of Xc and G∗ are d × n and n × n respectively, where n is the sample size. So the

3We assume that coordination failure of the equilibrium never happens in the data.

14



Figure 2.1: Missing Data

(a) Network with measurement errors (b) True network

dimensions of Xc and G∗ will increase as the sample size increases. Consequently, the first step

of identification cannot directly follows the technique introduced in Hu & Schennach (2008) for

nonclassical measurement errors with fixed dimensions. Furthermore, our model is nonlinear, so

neither will recent development in the literature of high dimensional measurement error (see e.g.,

[34] and [35]) be used since they all focus on linear models. In this paper, we propose a difference

method to solve the high dimensionality problem,

The idea of our identification method is to explore the asymptotic behavior of the n-player

game when n approaches infinity. Thanks to the semi-anonymously symmetric equilibria, we can

show that the CCP of an individual converges to some limiting CCP that conditional on her own

characteristics and a scalar valued function of her friends’ behaviors. This asymptotic feature is

crucial for applying the results in [2].

From Definition 2.2.1 the probability that player i select action 1 conditional on characteristic

profile Xc and true network structure G∗ is

pi(X
c, G∗) = Pr{εi ≤ α(Xi) + β(Xi)E[W ∗

i |Xc, G∗]|Xc, G∗} (2.4)

where the probability operation is calculated with respect to εi. Under the semi-anonymously
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symmetric BNE, we expect pi(Xc, G∗) converges to a limit given by

pi(Xi,W
∗
i ) = Pr{εi ≤ α(Xi) + β(Xi)W

∗
i |Xi,W

∗
i }. (2.5)

We refer pi(Xi,W
∗
i ) as the CCP derived from a “large game" with infinite number of players. In

this game, conditional on her own characteristics Xi and a function W ∗
i summarizing her friends’

actions, player i will choose actions myopically, without considering all other public information

in this game. The limiting CCPs can be computed as the fixed point of the correspondence with

each coordinate-function component given by (2.5). The following proposition establishes the

convergence result:

Proposition 2.3.1. Under Assumptions 2.2.1-2.2.2, supi∈N |pi(Xc, G∗)− pi(Xi,W
∗
i )| = op(1).

The intuition behind Proposition 2.3.1 is that under the semi-anonymously symmetric BNE,

players with same characteristics X and relative proportion of a given action among her friends

W ∗ can be viewed as same-type players. Consequently, for player i, her CCP pi(Xc, G∗) can be

identified by exploring the variations of equilibrium actions from players sharing the same type

with her. Under the large game setting, the information provided those variations turns out to be

the limiting CCP pi(Xi,W
∗
i ). Therefore, under the large game setting instead of pi(Xc, G∗) we

can identify pi(Xi,W
∗
i ), which can be done by using the technique in [2]. Let Wi = Wi(YNi , Gi)

and W ′
i = Wi(YN ′i , G

′
i), where Ni and N ′i are defined analogously to N∗i , as the set of friends for

i under G and G′, respectively. Let Y ,W ,W∗ andW ′ denote the supports of the distributions of

the random variables Y , W ∗, W and W ′ respectively. We consider W ∗, W and W ′ to be jointly

continuously distributed and impose the following assumptions:

ASSUMPTION 2.3.1. The joint density of Y and X , W ∗, W , W ′ admits a bounded density with

respect to the product measure of some dominating measure µ (defined on Y) and the Lebesgue

measure on X ×W ×W∗ ×W ′. All marginal and conditional densities are also bounded.

We use the notation fA|B(·) to denote the density of random variable A conditional on random

variable B and use lowercase letter a and b to denote the realized value for A and B. Besides, we
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use A and B to denote the support of A and B. To state the identification result, we first make

some assumptions about the conditional densities.

ASSUMPTION 2.3.2. (i) fY |X,W ∗,W,W ′(·) = fY |X,W ∗(·) and

(ii)fW |X,W ∗,W ′(·) = fW |W ∗(·) and fW ∗|X,W ′(·) = fW ∗|W ′(·) for all (Y ,X ,W ∗,W ,W ′) ∈ Y × X ×

W ×W∗ ×W ′.

Assumption 2.3.2 (i) indicates that W and W ′ do not provide any additional information about

Y than W ∗ already provides while Assumption 2.3.2 (ii) specifies that W ′ and X does not provide

any more information about W than W ∗ already provides and X does not provide any more in-

formation about W ∗ than W ′ already provides. These assumptions can be interpreted as standard

exclusion restrictions. Note that Assumption 2.3.2 is general enough to include both the classical

and nonclassical measurement error cases. If W ′ is a repeated measurement of W ∗, this assump-

tion can be implied by that the two measurements W and W ′ be mutually independent conditional

on W ∗.

To state the next assumption, it is useful to define an integral operator LA|B, which maps G(A)

to LA|Bg ∈ G(B) defined by

[LA|Bg](a) ≡
∫
fA|B(a|b)g(b)db,

where G(A) and G(B) are spaces of g(·) with domains A and B, respectively.

ASSUMPTION 2.3.3. The integral operators LW |W ∗ and LW ′|W are injective.

The operator LA|B is said to be injective if its inverse L−1
A|B is defined over the range of the

operator LA|B. Intuitively it means that there is enough variation in the density of A for different

values of B. A simple example where LA|B is not injective is when fA|B(·) is fixed on A for any

B ∈ B. Injectivity assumption is weak and commonly imposed in the literature of nonparametric

IV methods. As pointed out in [2], under Assumption 2.3.1, a sufficient condition for the injectivity

of Lb|a is the bounded completeness of fA|B(·). Formally fA|B(·) is bounded complete if the only
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solution δ(a) to ∫
A
δ(a)fA|B(a|b)da = 0 for all b ∈ B

is δ(a) = 0 for all bounded δ(a) ∈ L1(A). Primitive conditions for bounded completeness can be

found in [41] and are fairly weak.

ASSUMPTION 2.3.4. For all X ∈ X , the set {Y : fY |X,W ∗(·) 6= fY |X,W̃ ∗(·)} has positive proba-

bility for any W ∗ and W̃ ∗ ∈ W∗ such that W ∗ 6= W̃ ∗.

Assumption 2.3.4 will be violated if the distribution of Y conditional on X and W ∗ is identical

at two different values of W ∗. Since Y is binary, this assumption is equivalent to a monotonicity

assumption on p(X,W ∗). For example if p(X,W ∗) is strictly monotone in W ∗, this condition will

be satisfied.

ASSUMPTION 2.3.5. There exists a known functional M such that M [fW |W ∗(·)] = W ∗ for all

W ∗ ∈ W∗.

M is a very general functional that maps a density to a real number and that defines some

measures of location. As is mentioned in [2], examples of M include, but are not limited to, the

mean, the mode, and the τ th quantile. Then following the insight in [2], we have the following

result of identification.

Proposition 2.3.2. Under Assumptions 2.3.1-2.3.5, given the true observed density fYW |X,W ′ , the

equation

fYW |X,W ′(y, w|x,w′) =

∫
W∗

fY |X,W ∗(y|x,w∗)fW |W ∗(w|w∗)fW ∗|W ′(w∗|w′)dw∗ (2.6)

admits a unique solution (fY |X,W ∗ , fW |W ∗ , fW ∗|W ′) for all y ∈ Y , x ∈ X , w ∈ W and w′ ∈ W ′.

We provide a heuristic argument of the proof here, detailed explanation can be found in [2].

Equation (2.6) can be established by Assumption 2.3.2 and then shown to define the operator

equivalence relationship

LY ;W |X,W ′ = LW |W ∗∆Y ;X,W ∗LW ∗|W ′ , (2.7)
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where LY ;W |XW ′ is defined similarly to LW |W ′ and ∆Y ;X,W ∗ is the operator mapping the function

g(W ∗) to the function fY |X,W ∗(·)g(W ∗) for given Y ∈ Y and X ∈ X . Note that by Assumption

2.3.2 and integrating (2.7) over all Y ∈ Y , we can obtain another equivalence relationship

LW |W ′ = LW |W ∗LW ∗|W ′ . (2.8)

Then by Assumption 2.3.3, equation (2.8) and rearranging terms in (2.7), we can obtain

LY ;W |X,W ′L
−1
W |W ′ = LW |W ∗∆Y ;X,W ∗L

−1
W |W ∗ ,

which means that LY ;W |X,W ′L
−1
W |W ′ admits an eigenvalue-eigenfunction decomposition with eigen-

values fY |X,W ∗(·) and eigenfunctions fW |W ∗(·). The uniqueness of this decomposition follows

from combining technique in spectral analysis with Assumptions 2.3.4 and 2.3.5.

By Proposition 2.3.2 we have identified fY |X,W ∗(·). Since for each i ∈ N ,

fY |X,W ∗(Yi|Xi,W
∗
i ) = pi(Xi,W

∗
i )Yi(1− pi(Xi,W

∗
i ))1−Yi , (2.9)

pi(Xi,W
∗
i ) is identified. Hence by Proposition 2.3.1, the conditional choice probability pi(Xc, G∗)

is identified under the large game setting.

2.3.2 Payoff Primitives

In this subsection, we identify payoff primitives α(·) and β(·). The idea of identification is

to first identify v(Xi,W
∗
i ) = α(Xi) + β(Xi)W

∗
i , and then α(Xi) and β(Xi) can be identified

separately by exploring the variation of W ∗
i . Note that

pi(Xi,W
∗
i ) = Pr[α(Xi) + β(Xi)W

∗
i − εi ≥ 0|Xi,W

∗
i ]

= Fε|X,W ∗ [α(Xi) + β(Xi)W
∗
i ], (2.10)

where and Fε|X,W ∗(·) is the conditional CDF of εi and we assume that it is strictly increasing.
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Let V denote the set to which the function v(·) belongs, and let F denote the set to which

Fε|X,W ∗(·) belongs. The identification of v(·) does not directly follows the identification of CCPs

because different values of v(·) may still lead to the same CCP, providing the existence of such

distribution functions for ε. Consequently, if for any two functions v and v′ in V , we can find

distributions Fε|X,W ∗ and F ′ε|X,W ∗ in F such that the pairs (v, Fε|X,W ∗) and (v′, F ′ε|X,W ∗) generate

the same conditional choice probability pi(Xc, G∗), v and v′ are said to observationally equivalent.

Definition 2.3.1. Any two functions v(·) and v′(·) in V are said to be observationally equiva-

lent if there exist Fε|X,W ∗(·) and F ′ε|X,W ∗(·) in F such that for all X ∈ X and W ∗ ∈ W∗,

Fε|X,W ∗ [v(X,W ∗)] = F ′ε|X,W ∗ [v
′(X,W ∗)]

Definition 2.3.1 implies that the set of functions indistinguishable from v(·) is

Vo.e ≡ {v′ ∈ V : ∃ Fε|X,W ∗ , F ′ε|X,W ∗ ∈ F s.t. F ′ε|X,W ∗ [v
′(X,W ∗)] = Fε|X,W ∗ [v(X,W ∗)]}. (2.11)

Following the insight in [4], we provide a lemma that shows what properties V has to satisfy to

guarantee the identification of v(·) ∈ V .

Lemma 2.3.1. Vo.e = {v(X,W ∗)} if and only if there does not exist a strictly increasing function

g : v(X ,W∗) 7→ R such that v′ = g ◦ v on X ×W∗.

Lemma 2.3.1 implies that the function v is identified up to a monotone transformation, g. For

example the ratios of derivatives of v are identified. In order to identify v we can either restrict

the function g for the purpose of normalization or the set of functions v in such a way that no

two different functions in this set can be strictly increasing transformation of each other. As is

mentioned in [4], one of the normalizations is that for some given value X ∈ X ,

g(v(X,W ∗
i )) = W ∗

i . (2.12)

This type of normalization can be viewed as the generalization of the identification method pro-

vided in [19]. Examples of restrictions on the set of function v include homogeneity and additive
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separability. Specifically suppose for some X ∈ X , some W
∗ ∈ W∗ and all λ > 0,

v(λX, λW
∗
) = λδ (2.13)

where v(X,W
∗
) = δ for some δ ∈ R. Then following the arguments in [9], we can show that it

is impossible to write two different functions in the set of v as strictly increasing transformation of

each other. Besides, if economic theory indicates that

v(Xi,W
∗
i ) = r(Xi) +W ∗

i (2.14)

where r(X) = δ for some X ∈ X and δ ∈ R, then again one can prove that no two different

functions v can be written as strictly increasing transformation of each other.

After the identification of v(Xi,W
∗
i ), since v(Xi,W

∗
i ) = α(Xi) + β(Xi)W

∗
i and α(·), β(·)

only depend on Xi, we can separately identify the structural functions α(·) and β(·) by relying on

the information provided by two individuals with same characteristics X but different W ∗.

Theorem 2.3.1. Under Assumptions 2.2.1-2.3.3, the CCPs {pi(Xc, G∗)}i∈N and the payoff primi-

tives α(·) and β(·) are nonparametrically identified.

2.4 Partial Identification without Instrumental Variable

The identification argument in the previous section depends on the availability of an instrumen-

tal variable G′. Sometimes we may not be able to find such a variable, and therefore in this section

we discuss the identification without using the instrumental variable and show that in this case the

CCPs will be partially identified.

2.4.1 Conditional Choice Probabilities

Similar to the previous section, we focus on semi-anonymously symmetric equilibrium and the

first step is to identify the limiting CCP p(X,W ∗). The identification method in this section is

closely related to the direct misclassification approach in [3], which requires the support of W ∗

to be discrete. Since W ∗ ∈ [0, w] is continuous, following An (2017) we can discretize it by the
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following method of discretization:

W ∗
d =



1 if W ∗ ∈ [0, w(1)],

2 if W ∗ ∈ (w(1), w(2)],

· · ·

M if W ∗ ∈ (w(M − 1), w],

where the support of W ∗ is divided into M (M ≥ 2) intervals by the M − 1 cutoff points

w(1), w(2), · · · , w(M − 1) and satisfy 0 < w(1) < w(2) < · · · < w(M − 1) < w. Simi-

larly we can also discretize W into Wd. Both W ∗
d and Wd take values fromM ≡ {1, 2, · · · ,M}

but the cutoff points for discretizing W ∗ and W can be different. By Proposition 2.3.1 we need to

identify the discretized limiting CCP p(X,W ∗
d = j), j ∈M.

Specifically we characterize the relationship between the observable conditional distribution of

Wd and the unobservable conditional distribution of W ∗
d as


Pr(Wd = 1|X)

...

Pr(Wd = M |X)

 =


Pr(Wd = 1|X,W ∗

d = 1) · · · Pr(Wd = 1|X,W ∗
d = M)

... . . . ...

Pr(Wd = M |X,W ∗
d = 1) · · · Pr(Wd = M |X,W ∗

d = M)



Pr(W ∗

d = 1|X)

...

Pr(W ∗
d = M |X)

. (2.15)

Let PW denote the column vector [Pr(Wd = j|X), j ∈ M], PW ∗ denote the column vector

[Pr(W ∗
d = j|X), j ∈ M] and Ξ∗ be the matrix of elements {Pr(Wd = i|X,W ∗

d = j), }i,j∈M.

Then (2.15) can be written compactly as

PW = Ξ∗PW ∗ (2.16)

Let H[Ξ∗] be the identification region of Ξ∗, which is of central importance in our identification

method and will be characterized by probabilistic constraints and constraints coming from valida-

tion studies and theories developed in economics. Examples of those constrains include restricting

Pr(Wd = j|X,W ∗
d = j) to be constant and known, requiring Pr(Wd = j|X,W ∗

d = j) to be
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monotonic in j and imposing a lower bound on Pr(Wd = j|X,W ∗
d = j).

The intuition of identification can be summarized as follows: first notice that the discretized

CCP p(X,W ∗
d = j) is related to Pr(Wd = i|X,W ∗

d = j) through the law of total probability:

p(X,W ∗
d = j) =

∑
i∈M

Pr(Y = 1|X,Wd = i,W ∗
d = j) ·Pr(Wd = i|X,W ∗

d = j), j ∈M. (2.17)

In order to characterize the identification region of Pr(Y = 1|X,W ∗
d = j), we need to first

identify Pr(Y = 1|X,Wd = i,W ∗
d = j), which is related to the observed CCP p(X,Wd = i) and

Pr(W ∗
d = j|X,Wd = i) through the following relationship:

p(X,Wd = i) =
∑
j∈M

Pr(Y = 1|X,Wd = i,W ∗
d = j) · Pr(W ∗

d = j|X,Wd = i), i ∈M. (2.18)

Therefore, if we can identify Pr(W ∗
d = j|X,Wd = i), then by (2.18) we can identify Pr(Y =

1|X,Wd = i,W ∗
d = j). Consequently, the identification of p(X,W ∗

d = j) follows directly from

(2.17) and information contained in H[Ξ∗].

Following the intuition above we need to first identify Pr(W ∗
d = j|X,Wd = i). If we can

solve the system of equations in (2.16) and uniquely recover PW ∗ , then Pr(W ∗
d = j|X,Wd = i)

can be identified by combining the information in H[Ξ∗] with PW ∗ and the observed probabilities

PW . Solving (2.16) requires the matrix Ξ∗ to be full rank. Therefore, without loss of generality

we impose the following assumption

ASSUMPTION 2.4.1. For all j ∈M, P(Wd = j|X,W ∗
d = j) > 1

2
.

Assumption 2.4.1 requires the probability of “correct reporting" to be greater than 1
2

for each

of the values that W ∗
d can take. Validation studies indicate that this requirement is often satisfied in

practice. This assumption implies that for any Ξ ∈ H(Ξ∗), it is strictly diagonally dominant and

hence non-singular (Theorem 6.1.10 in [42]). Consequently, we have

PW ∗(Ξ∗) = (Ξ∗)−1PW , (2.19)
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where the parenthesis is to emphasize that PW ∗ depend on the information from Ξ∗. Let PWj (Ξ∗)

denote the jth element of PW ∗(Ξ∗) and similarly define PW ∗i and Ξ∗ij , and then the identification

results are given in the following proposition:

Proposition 2.4.1. Given the set H(Ξ∗), the sharp lower and upper bounds for the discretized

CCP p(X,W ∗
d = j), j ∈M are given respectively by

Lj = inf
Ξ∈H(Ξ∗)

M∑
i=1

Pr(Y = 1|X,Wd = i)− [1− ςji(Ξ)]

ςji(Ξ)
· Ξij

and

Uj = sup
Ξ∈H(Ξ∗)

M∑
i=1

Pr(Y = 1|X,Wd = i)

ςji(Ξ)
· Ξij,

where

ςji(Ξ) =
ΞijPWj (Ξ)

PW ∗i

, i, j ∈M.

2.4.2 Payoff Primitives

After the partial identification of the discretized CCPs, we need to identify the function v(·).

By Proposition 2.4.1, Lj ≤ Fε|X,W ∗ [v(X,W ∗
d = j)] = p(X,W ∗

d = j) ≤ Uj . Therefore, another

function v′(·) ∈ V will be observationally equivalent to v(·) if the induced CCP by v′(·) will also

fall between these lower and upper bounds. Formally the set of functions indistinguishable from

v(·) is

Vo.e ≡ {v′ ∈ V : ∃F ′ε|X,W ∗ ∈ F s.t.F ′ε|X,W ∗ [v
′(X,W ∗

d = j)] < Lj orF ′ε|X,W ∗ [v
′(X,W ∗

d = j)] > Uj}.

(2.20)

We characterize the sufficient condition for identification of the function v(·) in the following

lemma:

Lemma 2.4.1. If for any v′(·) ∈ V with v′(·) 6= v(·) and any distribution function F ′ε|X,W ∗(·) ∈ F ,

Pr[Lj ≤ F ′ε|X,W ∗ [v
′(X,W ∗

d = j)] ≤ Uj] = 0, then Vo.e = {v(X,W ∗
d = j)}.

If the sufficient condition in Lemma 2.4.1 is satisfied, v(X,W ∗
d = j) will be point-identified,
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then the payoff primitives α(·) and β(·) can be separately identified by using a similar argument as

in Section 2.3.2.

2.5 Estimation

Based on the identification equation (2.6), we propose a semiparametric sieve maximum like-

lihood estimator for the unknown parameters. The density function fY |X,W ∗(y|x,w∗) will be

parametrized as fY |X,W ∗(y|x,w∗; θ0), where θ0 ∈ Θ ⊂ Rd+1 is a finite-dimensional parameter

vector and the subscript “0" means the true value of the parameter. We assume that θ is identified

if fY |X,W ∗(·) is identified so the parametrization does not include redundant degrees of freedom.

The unknown density functions fW |W ∗ and fW ∗|W ′ will be estimated by nonparametric method.

Specifically we will approximate fW |W ∗ and fW ∗|W ′ by truncated series and estimate all parame-

ters within a semiparametric maximum likelihood hood framework.

As in [43], we impose standard smoothness restrictions and assume that the unknown functions

fW |W ∗ and fW ∗|W ′ belongs to a Hölder space. For any d × 1 vector a = (a1, a2, · · · , ad)T of

nonnegative integers, let |a| =
∑d

k=1 ak and for any u ∈ U ⊂ Rd, we denote the |a|-th derivative

of a function h : U 7→ R as

∇ah(u) =
∂|a|

∂ua11 · · · ∂u
ad
d

h(u).

For some ξ > 0, let ξ be the largest integer smaller than ξ and let ‖ · ‖E denote and Euclidean

norm. The Hölder space Λξ(U) of order ξ is a space of functions h : U 7→ R such that the first ξ

derivative is bounded and the ξ=th derivative is Hölder continuous with exponent ξ − ξ ∈ (0, 1],

i.e.,

max
|a|=ξ
|∇ah(u)−∇ah(u′)| ≤ const.(‖u− u′‖E)ξ−ξ

for all u, u′ ∈ U and some constant. The Hölder space becomes a Banach space when endowed

with the Hölder norm as follows:

‖h‖Λξ = sup
u∈U
|g(u)|+ max

|a|=ξ
sup
u6=u′

|∇ah(u)−∇ah(u′)|
(‖u− u′‖E)ξ−ξ

.
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The Hölder ball (with radius c) is defined as Λξc(U) ≡ {h ∈ Λξ(U) : ‖h‖Λξ ≤ c ≤ ∞}. It is

well known that power series, splines, Fourier series and wavelets all can approximate functions in

Λξc(U) well.4

ASSUMPTION 2.5.1. (i) fW |W ∗ ∈ Λξc(W ×W∗) with some ξ > 1 and
∫
W fW |W ∗(w|w

∗)dw = 1

for all w∗ ∈ W∗; (ii) fW ∗|W ′ ∈ Λξc(W∗ ×W ′) with some ξ > 1 and
∫
W∗ fW ∗|W ′(w

∗|w′)dw∗ = 1

for all w′ ∈ W ′.

To simplify notations we use f1 and f2 to denote fW |W ∗ and fW ∗|W ′ , respectively. We assume

that the unknown functions f1 and f2 belongs to the sets F1 and F2 defined below:

F1 = {f1(·) : Assumptions 2.3.3, 2.3.5 and 2.5.1 (i) hold} ,

F2 = {f2(·) : Assumptions 2.3.3 and 2.5.1 (ii) hold} .

By Proposition 2.3.2 and Kullback-Leibler information criterion, the true value of parameters γ0 =

(θT0 , f1, f2)T can be solved by

γ0 = argmax
γ=(θT ,f1,f2)T∈Γ

E
[
ln

∫
W∗

fY |X,W ∗(y|x,w∗; θ)f1(w|w∗)f2(w∗|w′)dw∗
]
,

where Γ = Θ × F1 × F2. Let {pknj (·), j = 1, 2, · · · } be a sequence of known basis functions

(power series, splines, Fourier series, etc.). To approximate f1 and f2, we use a tensor-product

linear sieve basis, denoted as pkn(·, ·) = (pkn1 (·, ·), pkn2 (·, ·), · · · , pknkn(·, ·))T . The integer kn is the

smoothing parameter, which is required to grow with n so that the approximation error decreases

to zero. To conduct sieve approximation we replace F1 and F2 by sieve spaces F1n and F2n where

F1n =
{
f1 : f1(w|w∗) = pkn(w,w∗)Tµ, ∀ µ s.t. Assumptions 2.3.3, 2.3.5 and 2.5.1 (i) hold

}
4Note that we assume the support of W , W ∗ and W ′ are bounded, in case of unbounded support we need to use

a weighted Hölder ball Λξ,ωc (U) with some weighting function ω(·) to facilitate the treatment of functions defined on
unbounded domains, see [44] for details.
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and

F2n =
{
f2 : f2(w∗|w′) = pkn(w∗, w′)T ζ, ∀ ζ s.t. Assumptions 2.3.3 and 2.5.1 (ii) hold

}
.

Then we estimate γ0 by γ̂ = (θ̂T , f̂1, f̂2)T as

γ̂ = argmax
γ∈Γn

1

n

n∑
i=1

ln

∫
W∗

fY |X,W ∗(Yi|Xi, w
∗; θ)f1(Wi|w∗)f2(w∗|W ′

i )dw
∗,

where Γn = Θ × F1n × F2n. In practice, this integration can be conveniently implemented by

different numerical techniques including Simpson’s rules, Gaussian quadrature and so forth.

We apply the result in [45] to establish consistency of the sieve estimator γ̂ for γ0 under a norm

‖ · ‖s, which is defined as below:

‖γ‖s = ‖θ‖E + ‖f1‖∞ + ‖f2‖∞

for Euclidean norm ‖ · ‖E and sup norm ‖ · ‖∞.

In general, conditional onXc andG∗,Wi ⊥⊥ Wj ifNi∩Nj = ∅, i.e., players i and j do not share

common friends according to the observed data5. To ensure the consistency of the sieve estimator,

the interdependence of {Wi}i∈N should disappear as n → ∞. If the social network has a “circle"

structure, as is illustrated in Figure 2.2 (b), {Wi}i∈N will be independent, conditioning on Xc and

G∗. However, assuming the observed network is a circle is too restrictive and will ignore many

interesting network structures. Let Ci ≡ {j ∈ N\{i} : Ni∩Nj 6= ∅} denote the set of players that

share common friends with i. If we can bound the number of players who share comm friends in

the large network, then it is easy to verify that {Wi}i∈N will have finite dependence. To formalize

this intuition, define C = ∪i∈NCi to be the set of players sharing common friends in the network.

We need to bound the cardinality of C: if there exists a m < ∞ such that C <≤ m, then it is

5Since Wi contains information about player i’s friends’ actions, and their actions are independent with each other
when conditioning on Xc and G∗, therefore if i and j share common friends, then those friends’ actions will enter
both Wi and Wj , making Wi and Wj dependent with each other.
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straightforward to verify that conditional on Xc and G∗, {Wi}i∈N will be m-dependent. Similar

logic also applies to {W ′
i}i∈N . Therefore we impose the following assumption:

Figure 2.2: Illustration of Observed Network Structures

(a) Common friends (b) Circle

Remark. Figure 2.2 provides a graphic illustration of our notations. In Figure 2.2 (a), i and k are

friends with each other and they share a common friend j, therefore Ni ∩ Nk = {j}, Ci = {k},

Ck = {i}, Cj = ∅ and C = {i, k} in this 3-players network. In Figure 2.2 (b) i, j and k do not

share a common friend with each other and hence Ci = Cj = Ck = C = ∅.

ASSUMPTION 2.5.2. {Wi}ni=1 and {W ′
i}ni=1 are m-dependent and identically distributed, condi-

tional on Xc and G∗.

By Assumption 2.5.2, the observed data {(Yi, Xi,Wi,W
′
i )
n
i=1} is weakly dependent (m-dependent)

and identically distributed, conditional on Xc and G∗.

As in [2], we also define the projection of γ ∈ Γ onto the space Γn as

Πnγ ≡ argmax
γ=(θT ,f1,f2)T∈Γn

E
[
ln

∫
W∗

fY |X,W ∗(y|x,w∗; θ)f1(w|w∗)f2(w∗|w′)dw∗
]

and impose the following assumption:

ASSUMPTION 2.5.3. ‖Πnγ0 − γ0‖ = o(n−1/4) as kn →∞ and kn/n→ 0.
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Assumption 2.5.3 implies that the sieve can approximate the true value γ0 arbitrarily well and

guarantee that the number of terms in the sieve grows slower than than the sample size so that

the bias and variance of sieve approximation can be controlled. It can be satisfied by using many

commonly used sieve functions such as power series, splines and so forth.

ASSUMPTION 2.5.4. (i) Θ ⊂ Rd+1 is compact; (ii) θ0 ∈ int(Θ).

Assumption 2.5.4 (i) ensures that the parameter space Γ is compact under the pseudo norm

‖ · ‖s and is commonly imposed in the nonparametric and semiparametric econometrics literature,

see [46] for detailed discussion about this condition. Assumption 2.5.4 (ii) is standard and requires

θ0 to be an “interior" solution.

Define D = (y, x, w, w′) for y ∈ {0, 1}, x ∈ X , w ∈ W and w′ ∈ W ′ and follow [2], we also

impose the following restrictions on the log-likelihood function:

ASSUMPTION 2.5.5. (i) E[(ln fYW |W ′,X(D, γ))2] is bounded; (ii) ln fYW |W ′,X(D, γ) is Hölder

continuous in γ.

Assumption 2.5.5 guarantees a Hölder continuity property for the log-likelihood function,

specifically it imposes an envelope condition on the derivative of the log-likelihood function and

will be used to characterize a stochastic equicontinuity condition in [47]. With previous assump-

tions, we establish the consistency of γ̂ in the following theorem:

Theorem 2.5.1. Under Assumptions 2.2.1-2.3.5 and 2.5.1-2.5.5, we have ‖γ̂ − γ0‖s = op(1).

Theorem 2.5.1 provides the consistency result under the norm ‖·‖s. Nevertheless, it is relatively

difficult to derive the asymptotic normality and
√
n consistency result under ‖ · ‖s since it is too

strong to obtain a convergence rate faster than n−1/4. Following [43], we employ a weaker norm

‖ · ‖ to establish the asymptotic normality of θ̂.

Before introducing the norm ‖ · ‖, we first review the concept of pathwise derivative, consider

γ1 and γ2 ∈ Γ , and assume the existence of a continuous path {γ(τ) : τ ∈ [0, 1]} in Γ such that

γ(0) = γ1 and γ(1) = γ2. Also assume that Γ is convex at the true value γ0 in the sense that for
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any γ ∈ Γ and τ ∈ (0, 1), (1− τ)γ0 + τγ ∈ Γ . If ln fYW |W ′X(D, (1− τ)γ0 + τγ) is continuously

differentiable at τ = 0 for almost all D and any γ ∈ Γ , the first pathwise derivative of ln fYW |W ′X

at γ0 evaluated at the direction [γ − γ0] can be defined as

d ln fYW |W ′X(D, γ0)

dγ
[γ − γ0] ≡

d ln fYW |W ′X((1− τ)γ0 + τγ)

dτ

∣∣∣∣
τ=0

a.s. D.

We define the inner product 〈γ, γ〉 as

〈γ, γ〉 = E

[(
d ln fYW |W ′X(D, γ0)

dγ
[γ]

)2
]

with the induced Fisher norm ‖γ‖ defined as
√
〈γ, γ〉. Now we derive the asymptotic distribution

of θ̂. As before we must first introduce some notations. Let Γ = Rd+1 × F with F = F1 ×F2 −{
(fW |W ∗ , fW ∗|W ′)

T
}

denote the closure of the linear span of Γ − {γ0} under the norm ‖ · ‖ and

define the Hilbert space (Γ , ‖ · ‖). Then we can write

d ln fYW |W ′X(D, γ0)

dγ
[γ − γ0] =

d ln fYW |W ′X(D, γ0)

dθ
[θ − θ0] +

d ln fYW |W ′X(D, γ0)

df1

[f1 − fW |W ∗ ]

+
d ln fYW |W ′X(D, γ0)

df2

[f2 − fW ∗|W ′ ].

For each component θj of θ, j = 1, 2, · · · , d+ 1, let m∗j ≡ (f ∗1j, f
∗
2j)

T ∈ F denote the solution to

min
mj∈F

E

{(
d ln fYW |W ′X(D, γ0)

dθj
−
d ln fYW |W ′X(D, γ0)

df1

[f1j]−
d ln fYW |W ′X(D, γ0)

df2

[f2j]

)2
}
.

Define m∗ = (m∗1,m
∗
2, · · · ,m∗d+1),

d ln fYW |W ′X(D, γ0)

df
[m∗j ] =

d ln fYW |W ′X(D, γ0)

df1

[f ∗1j] +
d ln fYW |W ′X(D, γ0)

df2

[f ∗2j],

d ln fYW |W ′X(D, γ0)

df
[m∗] =

(
d ln fYW |W ′X(D, γ0)

df
[m∗1], · · · ,

d ln fYW |W ′X(D, γ0)

df
[m∗d+1]

)T
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and the column vector

Gm∗(D) =
d ln fYW |W ′X(D, γ0)

dθ
−
d ln fYW |W ′X(D, γ0)

df
[m∗]. (2.21)

In order to show that θ̂ has a multivariate normal distribution asymptotically, we instead can show

that λT θ̂ has a normal distribution for all λ ∈ Rd+1. Following Ai & Chen (2003) for s(γ) = λT θ

with λ 6= 0, which is a linear functional on Γ , we have

sup
06=γ−γ0∈Γ

|s(γ)− s(γ0)|2

‖γ − γ0‖2
= λT

(
E{Gm∗(D)Gm∗(D)T}

)−1
λ.

Therefore, in order for the functional s(γ) to be bounded, E{Gm∗(D)Gm∗(D)T} has to be positive

definite. Then by Riesz representation theorem, there exists a representer γ∗ such that

s(γ)− s(γ0) = 〈γ∗, γ − γ0〉 for all γ ∈ Γ, (2.22)

where γ∗ = (γ∗θ , γ
∗
f ) ∈ Γ with γ∗θ = (E{Gm∗(D)Gm∗(D)T})−1λ and γ∗f = −m∗γ∗θ . (2.22) implies

that under suitable conditions, it is sufficient to find the asymptotic distribution of 〈γ∗, γ̂ − γ0〉 to

obtain that of s(γ̂)− s(γ0) = λT (θ̂ − θ0).

Define

N0n = {γ ∈ Γn : ‖γ − γ0‖s = o(1), ‖γ − γ0‖ = o(n−1/4)}

and define N0 the same way with Γn replaced by Γ . For γ ∈ Γn, let γ∗(γ, εn) = (1 − εn)γ +

εn(γ∗+ γ0) with εn = o(n−1/2) be a local alternative value and denote Pnγ∗(γ, εn) by a projection

of γ∗(γ, εn) onto Γn. The following conditions are sufficient for the
√
n-normality of θ̂:

ASSUMPTION 2.5.6. (i) There exists a measurable function c(D) with E[c(D)4] < ∞ such that

| ln fYW |W ′X(D, γ)| ≤ c(D) for allD and γ ∈ Γn; (ii) ln fYW |W ′X(D, γ) ∈ Λξc(Y×W×W ′×X )

for some constant c > 0 with ξ > dD/2, for all γ ∈ Γn, where dD is the dimension of D. (iii) Γ

is convex in γ0 and fY |W ∗,X;θ is pathwise differentiable at θ0; (iv) There exists c1 and c2 > 0 such
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that c1KL(γ, γ0) ≤ ‖γ − γ0‖2
s ≤ c2KL(γ, γ0) holds for all γ ∈ Γn with ‖γ − γ0‖s = o(1), where

KL(γ, γ0) ≡ E
[
ln

fYW |W ′X(D,γ0)

fYW |W ′X(D,γ)

]
is the Kullback-Leibler information.

Assumption 2.5.6 (i) and (ii) impose an envelope condition and a smoothness condition on the

log likelihood function. Condition (iii) ensures that the Fisher norm ‖ ·‖ is well defined. Condition

(iv) guarantees that the population criterion function can be approximated locally by ‖γ − γ0‖2.

Assumption 2.5.6 together with Assumption 2.5.3 ensure that under the weaker norm ‖ · ‖, the

sieve estimator will converge at the rate n−1/4, which is a prerequisite to derive the asymptotic

distribution of θ̂.

ASSUMPTION 2.5.7. (i) E{Gm∗(D)Gm∗(D)T} is bounded and positive-definite; (ii) There exists

a γ∗n = Pnγ
∗(γ, εn) ∈ Γn − {γ0} such that ‖γ∗n − γ∗‖ = o(n−1/4); (iii) For all γ ∈ N0n,

KL(γ, γ0) = 1
2
‖γ − γ0‖2(1 + o(1)).

Assumption 2.5.7 (i) implies that θ0 is locally identified. Condition (ii) requires that the Riesz

representer v∗ can be approximated well by the sieve space, which is necessary to ensure that

the bias of the sieve estimator is asymptotically negligible. Condition (iii) indicates that KL(·, ·)

is locally equivalent to ‖ · ‖2, which characterizes the local quadratic behavior of the criterion

difference, i.e., Condition B.2 in [47]. By checking conditions in Theorem 2 of [47], we show that

the estimator for the structural parameter θ0 is
√
n consistent and follows an asymptotic normal

distribution.

Theorem 2.5.2. Under Assumptions 2.2.1-2.3.5 and 2.5.1-2.5.7,
√
n(θ̂ − θ0)

d−→ N(0, V ), where

V =
[
E{Gm∗(D1)Gm∗(D1)T}

]−1

+ 2
m∑
j=1

E
{[

E{Gm∗(D1)Gm∗(D1)T}
]−1

Gm∗(D1)Gm∗(Dj)
T
[
E{Gm∗(Dj)Gm∗(Dj)

T}
]−1
}
.
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2.6 Monte Carlo Simulations

This section illustrates the finite sample performance of the proposed estimator using simulated

data. Specifically we consider a simple binary game with linear payoff:

Ui1 = α0 + α1Xi + βWi(YN∗i , G
∗
i )− εi

with

Wi(YN∗i , G
∗
i ) =

∑
j∈N∗i

Yj∑
j 6=iG

∗
ij

representing the proportion of player i’s friends that will choose action 1. We assume that ε|X,W ∗ ∼

N(0, 1) so that the density f(Y ∗i |Xi,W
∗
i ) will have the form

f(Y ∗i |Xi,W
∗
i ) = Φ(α0 + α1Xi + βW ∗

i )Y
∗
i [1− Φ(α0 + α1Xi + βW ∗

i )]1−Y
∗
i ,

where Φ(·) is the CDF of standard normal random variable.

In the simulations, the payoff covariate Xi is randomly drawn from a standard normal distribu-

tion. Furthermore, we generate the latent random social network as follows: the whole sample is

divided into 20 equally sized subnetworks with each having n/20 players and those subnetworks

are placed on a line, indexed as 1, 2, · · · . For any two players i and j, i 6= j within the same sub-

network, the true network connections G∗ij ∈ {0, 1} is drawn independently from the probability

mass distribution (1 − 20
n
, 20
n

), specifically G∗ij = 1(ηg∗ > 1 − 20
n

) for ηg∗ ∼ U(0, 1). Moreover,

G∗ii = 0 for all i ∈ N . To ensure the weak dependence of network data, we require that for players

in different subnetworks l andm, if |l−m| = 1,G∗ij = 1(ηg∗ > 1− 20
n
· 1

10
); If |l−m| > 1,G∗ij = 0.

The instrumental variable G′ are generated as G′ij = 1(0.6ηg∗ + 0.4ηz > 0.2), where ηz ∼ U(0, 1)

for players within the same subnetwork and G′ij = G∗ij for players in different subnetworks. The

correlation between G∗ and G′ is captured by ηg∗ .

The distribution of the measurement error is specified in the matrix PGij |G∗ij with Pr(Gij =

k|G∗ij = k′) for k and k′ ∈ {0, 1} in each entry. The specification uses the constant misclassifica-
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tion probabilities for players in the same subnetwork as follows:

PGij |G∗ij =

Pr(Gij = 0|G∗ij = 0) Pr(Gij = 0|G∗ij = 1)

Pr(Gij = 1|G∗ij = 0) Pr(Gij = 1|G∗ij = 1)

 .
Note that the elements on the diagonal of PGij |G∗ij represent the probability of correct reporting. For

a given value of G∗ij , the value of Gij is generated according to PGij |G∗ij and another independent

random variable ηg ∼ U(0, 1) as Gij = 1(ηg > 1 − Pr(Gij = 1|G∗ij)) for players in the same

subnetwork and Gij = G∗ij for players in different subnetworks. The values of PGij |G∗ij will be

specified for the experiment. In the current experiment we choose

PGij |G∗ij =

0.2 0.8

0.8 0.2

 .
Simulation results under different specifications of PGij |G∗ij are provided in Appendix B. We have

performed several experiments with the number of players n = 1000. In each iteration of the

experiment, we first compute the semi-anonymously symmetric BNE by solving the fixed point of

the equilibrium mapping given the underlying parameter value α0 = 1, α1 = 1 and β = 1. With

the numerical solution in hand, we can simulate the equilibrium actions Y for each player.

Regrading estimation, we consider three maximum likelihood estimators: (i) the inconsistent

estimator obtained when we ignore measurement errors and treat G as the true network, (ii) the

infeasible estimator obtained using the latent true network graph G∗ and (iii) the proposed sieve

estimator using the IV G′. According to Assumption 2.3.5 the identification restriction imposed

for the sieve MLE is the zero mode assumption, i.e., M [f ] = argmaxx∈X f(x). The sieves of

unknown functions f1 and f2 are constructed through tensor product bases of truncated univariate
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trigonometric series. Since Wi,W
∗
i and W ′

i ∈ [0, 1] for all i ∈ N , we have

fW |W ∗(w|w∗) =
in∑
i=0

jn∑
j=0

µijqi(w − w∗)qj(w∗)

=
in∑
i=0

jn∑
j=0

[µ1ij cos(iπ)(w − w∗) + µ2ij sin(iπ)(w − w∗)] cos(jπ)w∗

and

fW ∗|W ′(w
∗|w′) =

in∑
i=0

jn∑
j=0

ζijqi(w
∗ − w′)qj(w′)

=
in∑
i=0

jn∑
j=0

[ζ1ij cos(iπ)(w∗ − w′) + ζ2ij sin(iπ)(w∗ − w′)] cos(jπ)w′,

where

qi(w − w∗) = (cos(iπ)(w − w∗), sin(iπ)(w − w∗))T and qj(w∗) = cos(jπ)w∗,

qi(w
∗ − w′) = (cos(iπ)(w∗ − w′), sin(iπ)(w∗ − w′))T and qj(w′) = cos(jπ)w′,

and µij = (µ1ij, µ2ij), ζij = (ζ1ij, ζ2ij). As in [2], it is fairly straightforward to show that the

restriction
∫
W f1(w|w∗)dw = 1 implies that µ100 = 1

2
and µ10j = 0 for all j = 0, 1, · · · , jn

and similarly
∫
W∗ f1(w∗|w′)dw∗ = 1 implies ζ100 = 1

2
and ζ10j = 0 for all j = 0, 1, · · · , jn.

Furthermore, the zero mode restriction implies that
∑in

i=1
(−1)i

i
µ2ij = 0 and

∑in
i=1

(−1)i

i
ζ2ij = 0

for all j = 0, 1, · · · , jn. We will incorporate these restrictions when maximizing the sieve MLE

objective function.

The implementation of the sieve method requires appropriate selection of the smoothing pa-

rameter kn = (in + 1)(jn + 1). A formal selection method for kn and proof its asymptotic validity

is beyond the scope of this paper. However, since it is well known that the asymptotic distribution

semiparametric sieve estimators is identical in a wide range of smoothing parameter sequences,

following [2] and [48] we choose the smoothing parameter by locating a range of values where the
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estimates are not very sensitive to small variations in in and jn in simulations.

The simulation results are provided in Table 2.1. For each estimator, we report the mean, the

standard deviation (Std.dev), and the mean squared error (MSE) of the estimators averaged over

all 500 replications. The simulation results indicate that if we ignore the measurement errors and

naively conduct MLE, the estimated peer effects will be severely biased. On the other hand our

proposed Sieve MLE performs well in reducing the bias and MSE caused by the presence of mea-

surement errors for the parameter of interest β, which represents the peer effects. Furthermore, our

method can also reduce the bias and MSE in estimates of α0. We change the values of smoothing

parameters and the sieve estimates are not very sensitive those changes and hence suggests that the

selected smoothing parameters are valid. In Appendix B we provide additional simulation results.

Table 2.1: Simulation Results

Parameter(=True Value)
α0 = 1 α1 = 1 β = 1 (Peer Effects)

Mean Std.dev MSE Mean Std.dev MSE Mean Std.dev MSE
Ignoring meas. error 1.4023 1.1326 1.4420 0.9114 0.0744 0.0134 0.0560 1.3149 2.6166
Accurate data 1.0096 0.0890 0.0080 1.0144 0.0818 0.0069 1.0093 0.1363 0.0186
Sieve MLE 0.9824 0.2682 0.0721 0.9137 0.1097 0.0195 1.0862 0.5406 0.2991
Smoothing parameters: in = 2, jn = 3 in f1; in = 2, jn = 3 in f2.

Ignoring meas. error 1.4099 1.1298 1.4418 0.9092 0.0745 0.0138 0.0398 1.3119 2.6396
Accurate data 1.0078 0.0871 0.0076 1.0095 0.0857 0.0074 0.9983 0.1404 0.0197
Sieve MLE 1.0055 0.2581 0.0665 0.9063 0.0927 0.0174 1.0077 0.5464 0.2980
Smoothing parameters: in = 3, jn = 4 in f1; in = 3, jn = 4 in f2.

Ignoring meas. error 1.3307 1.1168 1.3541 0.9056 0.0772 0.0149 0.1300 1.2997 2.4428
Accurate data 0.9991 0.0916 0.0084 1.0079 0.0837 0.0071 1.0112 0.1316 0.0174
Sieve MLE 0.9879 0.2552 0.0651 0.9104 0.1030 0.0186 1.0554 0.5576 0.3134
Smoothing parameters: in = 2, jn = 3 in f1; in = 6, jn = 4 in f2.
n=1000, replication=500

2.7 Empirical Application

In this section, we use our proposed method to analyze the peer effects on youth alcohol drink-

ing behaviors. Recently, there is a growing body of empirical literature on studying the peer effects
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on adolescents behaviors, see e.g., [8], [10], [7], [38] and references therein. The data we used is

obtained from the National Longitudinal Study of Adolescent to Adult Health (Add Health), which

is a database designed to investigate the relationship between the social environment and adoles-

cents’ behaviors. The Wave I data contains a nationally representative sample of more than 90,000

students in grades 7-12 from 80 high schools and 52 middles schools in the United States during

the 1994-1995 school year and the second wave surveyed almost 15,000 of the same students one

year after Wave I. In the data every student was asked to complete a questionnaire to provide in-

formation about his or her socioeconomic characteristics as well as school-related behaviors and

friendship network.6

A unique feature of the Add Health data is that it contains information about respondents’

social network information. In the survey questionnaire, each student is asked to provide his or

her friendship information by nominating at most five male and female best friends. However,

the restriction on the number of friends to be nominated can plausibly lead to measurement error

because students with more than 10 friends will not be able to provide information on all his or

her friendship network. [38] compare peer effects by using Wave I and Wave II network data and

find qualitatively similar peer effects, despite the fact that in the data friendship network tend to

change substantially between two waves. Based on this empirical finding, they cast doubt about

the accuracy of self-reported friendship links.

Our empirical strategy is to use the Wave II network data as the instrumental variable for the

Wave I network G. Given the fact that the Wave II data was surveyed after one year of Wave I,

it is convincing that the exclusion restrictions in Assumption 2.3.2 are satisfied. Following the

literature, the covariates we used include age, GPA, race information, gender and family income

with sample size n = 1, 528. The summary statistics for variables used in our empirical analysis

are presented in Table 2.2.

We use a similar specification of the payoff function and sieve basis functions as in the sim-

ulation and the smoothing parameter kn is also selected by finding a range of values where the

6See the Add Health website (http://www.cpc.unc.edu/projects/addhealth) for a detailed description of surveys and
data.
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Table 2.2: Descriptive Statistics (1,528 observations)

Variable Mean Std. Dev. Min Max
Female 0.4980 0.5002 0 1
Age 15.5157 1.5762 12 20
White 0.7251 0.4466 0 1
GPA 3.1291 0.5731 1.75 4
Income 53.1198 45.2244 0 900
Alcohol 0.4928 0.5001 0 1
The unit for income is in thousand dollars.

estimates are not very sensitive to small variations in in and jn. Our empirical results are presented

in Table 2.3. Note that we also report the results of MLE when ignoring measurement errors for

the purpose of comparison. The standard errors in parentheses are calculated using 400 bootstrap

samples.

Table 2.3: Empirical Results

Variable MLE ignoring meas. error Sieve MLE
Female 0.0401 0.2662

(0.0675) (0.7418)
Age 0.1866*** 0.1004***

(0.0221) (0.0241)
White 0.2875*** 0.1093***

(0.0776) (0.0340)
GPA -0.4282*** -0.4920**

(0.0605) (0.2102)
Income 0.0013 0.0008

(0.0008) (0.0040)
Constant -1.9648*** -1.3716*

(0.4092) (0.7162)
Peer Effects 0.5688*** 1.1357***

(0.1257) (0.2327)
Standard errors in parentheses are calculated using 400 bootstrap samples
Smoothing parameters: in = 5, jn = 3 in f1; in = 4, jn = 5 in f2.
* 10% significant, ** 5% significant, *** 1% significant.
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In Table 2.3, most of the estimated coefficients are significant at the 10% significance level. By

comparing the results in Columns 2 and 3, we find that when the measurement errors in network

data are ignored, the peer effects estimated using MLE are positive and statistically significant (i.e.,

0.5688 with a standard error 0.1257). The estimated peer effects ignoring measurement errors is

qualitatively similar to those empirical results in [7] and [8], who use Add Health data and the

NELS data to study school-based peer effects on youth behaviors. However, the estimated peer

effects are biased in the presence of measurement errors. Using the proposed sieve estimator, we

find consistent and much larger estimated peer effects (1.1357 with a standard error of 0.2304) on

youth alcohol drinking behaviors. This is equivalent to a 39.15% difference in the average partial

effect of actions from peer group. Hence our empirical results demonstrate that if the measurement

errors in network data are ignored, and then peer effects will be significantly underestimated.

The accuracy of the estimated peer effects can be crucial for policymakers who wish to estab-

lish some methods to control for teenagers’ smoking and alcohol drinking behaviors. For example

policymakers can impose additional sales taxes on cigarette and alcoholic beverage. Nevertheless,

in order to determine the optimal tax rates they need to know how sensitive will adolescent react

to the increases in tax, i.e., tax elasticities. As is demonstrated in [10], the smoking and alcohol

actions from peer group can have significant social multiplier effects on the tax elasticities. Con-

sequently, the effectiveness of tax policies depends upon whether we can estimate the peer effects

accurately.

2.8 Conclusion

We have developed an econometric framework to nonparametrically identify CCPs and peer

effects of a network game with incomplete information, allowing for the presence of measurement

error in network connections. In particular, we show that under the large game setting, the CCPs

are asymptotically equivalent to the ones that are conditional on players’ own characteristics and

a scalar valued function of their network structure. Hence the CCPs can be nonparametrically

identified by applying the method in [2]. Then the payoff primitives are proved to be identified up

to a monotone transformation. We also propose a semiparametric method to consistently estimate
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the peer effects. As an application of the proposed methods, we study the peer effects of adolescent

alcohol drinking behaviors and find that the peer effects will be significantly underestimated when

measurement are ignored.

It is interesting to see what we can do for the inference of peer effects without the availability of

an instrumental variable. From the analysis in Section 2.4 we know that the CCPs will no longer

be point-identified, instead we will obtain a sharp identification region for the CCPs. With the

partially identified CCPs, the peer effects may or may not be point-identified, depending on the

specific identification assumptions imposed in the model. The estimation method proposed in [3]

can be used to estimate the sharp bounds. Then peer effects can be estimated by exploring the

literature of moment inequality models. We leave this for future research.

Another important extension of the current methodology would be to apply it to the new but fast

growing area of network formation econometrics. Under the setup of network formation model,

we will have measurement error in outcome variables and a method dealing with the identification

of CCPs in this case will be required.
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3. NONPARAMETRIC IDENTIFICATION AND ESTIMATION OF ADDITIVE SOCIAL

INTERACTION MODELS WITH HOMOPHILY

3.1 Introduction

Social interaction models study how economic agents interact with each other through their

decision making processes with respect to the socioeconomic activity. Recent empirical studies

have found evidence of interaction effects on crime ([49], employment ([50]), in-school achieve-

ments ([7]), adolescent behavior ([8]; [10]; [51]), among others. In the previous literature, social

interaction can be modeled as either a Manski type linear-in-mean regression model or a strategic

game played in a social network. These two approaches are widely used in studying social in-

teraction effects with continuous and discrete outcomes respectively, e.g., see [23], [26], [52] and

[27]. However, one potential problem associated with these studies is that they treat other agents

in a network equally important for a given economic agent and ignore a pervasive phenomenon in

social network: homophily, which is the principle that “similarity breeds connection" ([53]).

In this paper, we construct a social interaction model under the framework of simultaneous

move game with incomplete information and adopt the solution concept of Bayesian Nash Equi-

librium (BNE). In the game each player chooses an action from a finite set and the payoff function

consists of three parts: direct utility from the chosen action, strategic effect from other players’ ac-

tions and a stochastic component representing player’s private information. The three components

are assumed to be additively separable, similar payoff structure has been studied in [31].

One innovation in this paper is to make use of the homophily principle when measuring the

strategic effects of other player’s actions. In sociology, homophily is the principle that a contact

between similar people occurs at a higher rate than among dissimilar people. Therefore, intuitively

we would expect that for a particular player, the strategic effect from another player’s action will be

strong if they are similar to each other in terms of socioeconomic attribute. The similarity between

two players is represented by a social distance function, which measures the difference between
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two players’ socioeconomic characteristics, and we restrict the strategic effect to be decreasing

as the social distance between two players increases. Our specification of homophily effect is

motivated by the previous work of [54] and [55], who argue that agents close to each other in terms

of socioeconomic characteristics interact strongly while those who are socially distant have little

interactions. This specification makes our model different from previous literature, our method

can demonstrate how a social network connects each agent to the other and reflects the impact of

homophily network structure on agents’ social actions.

Motivated by the commonly adopted data structure in the social interaction literature, the iden-

tification and estimation strategies in this paper are developed under “a large game" setting, mean-

ing that the number of players in a network is fairly large. Identification and estimation in a large

game are difficult because of two reasons. First, such games will usually generate multiple equi-

libria, which leads to the incompleteness of econometric models ([33]). Second, players’ actions

are interdependent in a large social network, resulting in problems for identifying and estimating

player’s equilibrium probability of actions. We solve the first problem by employing a symmetric

equilibrium selection mechanism proposed in [36], which allows for the existence of multiple equi-

libria but requires those equilibria to be symmetric. The second problem is addressed by imposing

a conditional independence assumption, which requires players’ private information to be indepen-

dently and identically distributed conditional on all the public information and is commonly used

in the literature of incomplete information games.

The identification proceeds in two steps. The first step is to identify the equilibrium conditional

choice probabilities (CCPs), which is guaranteed by the symmetric equilibrium selection mecha-

nism and conditional independence assumption. The second step is to identify payoff primitives.

Specifically, we extend the method proposed in [9] to the context of game theoretical models in

order to identify the deterministic part of the payoff function as a whole. The key is to establish a

rank ordering property regarding CCPs, which means that actions with higher deterministic payoffs

are more likely to be chosen by players. Then by exploring the variation of CCPs and homophily

effects, direct utility and strategic effect can be identified separately.
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Based upon the identification methodology, we propose a computationally feasible two-step

method to nonparametrically estimate the model primitives and establish its consistency. As a re-

sult of the symmetric equilibrium selection mechanism, players with the same characteristics can

be treated as repeated observations of the same player. Therefore, in the first step we can estimate

the CCPs using a conventional kernel-type estimator. In the second step, we nonparametrically

estimate the parameters of interest by a smoothed version of the pairwise maximum score method

proposed in [56]. Furthermore, under a semiparametric setting, we show that the first-stage non-

parametric estimation has no impact on the asymptotic behavior of second-stage estimation under

mild conditions and derive the asymptotic distribution of smoothed pairwise maximum score esti-

mator.

In the empirical application, we apply our methods to study the peer effects on youth smoking

behavior using the data from the National Longitudinal Study of Adolescent Health (Add Health).

The Add Health is a longitudinal study of a nationally representative sample of adolescents in

grades 7-12 in the United States during the 1994-95 school year. It contains student’s social net-

work data, as well as their socioeconomic characteristics, which are indispensable for our analysis.

We treat each school in the dataset as an observation of a social network and apply the proposed

two-step method to estimate the peer effects on students’ smoking behavior using data from 7

schools, each of which has more than 800 observations. We find positive and statistically signif-

icant peer effects for all schools, which is similar to other empirical findings of peer effects on

youth smoking behavior using different datasets. See e.g., [10] and [11]. Our empirical finding

indicates that smoking behavior from a student’s schoolmates will make that student more likely

to consume cigarette. We also compare the empirical results with and without imposing the ho-

mophily effects, the comparison indicates that without considering the homophily effects, most of

the estimated peer effects become insignificant, which demonstrates the empirical importance of

including homophily effects in our model.

One of our main contributions in this paper is to employ a novel way to incorporate homophily

effect into a social interaction model. [57] study the social interaction model with homophily and
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use the dependence of private information between players to represent the homophily effect. Here

we adopt a different approach by using the difference between players’ observed socioeconomic

characteristics to explicitly model the homophily effect of the social network, which we believe

is more appropriate under the context of incomplete information game because the private infor-

mation is unobserved between players and hence they can not use it to measure the “closeness"

between each other. Under our setting, the homophily effect can be easily calculated using data.

This paper also adds to the growing literature of identification and inference of discrete games

with incomplete information. Most of the previous discussions focus on “small-game” settings and

assume the observability of a large number of repetitions for the same game in order to identify

and estimate the models, see e.g., [58]; [40]; [40]; [59]). Instead, our identification and estimation

methods are based on one observation of a large game and thus are more suitable for the commonly

used data structure like the Add Health data in the social interaction literature. A similar paper that

considers the large game setting with incomplete information game is [57], but the objectives of

our paper and [57] are different since his work studies on social network formation while we fo-

cus on social interactions in a given network. Our approach treats the network formation process

as exogenously given, hence we can use the variation of homophily effect to help identify model

primitives. To the best of our knowledge, [51] is the only paper that considers both network for-

mation and social interactions in networks, but he imposes a Gumbel distribution assumption and

uses a MCMC algorithm to identify and estimate the model, which departs from the nonparametric

method proposed in this paper.

It is worth mentioning that our identification method is fully nonparametric while most of the

previous work in social interaction and incomplete information game adopts parametric or semi-

parametric method for identification. For example, [22] and [26] assume that the utility function

is linear, [23], [40] and [27] impose a parametric distributional assumption in order to identify the

model. Therefore, our results are more general and robust to misspecification of those parametric

assumptions and provide new insights into the identification methodology of this literature. [60]

also consider nonparametric identification of incomplete information games by using a “special
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regressor" that is independent of private information. In contrast we allow for the endogeneity of

all covariates and achieve point identification by imposing some mild assumptions on the payoff

function that can be supported by economic theory.

Last but not the least, our work contributes to the literature of nonparametric estimation by pro-

viding a two-step estimator and establishing its uniform consistency using the empirical process

methods developed by [61] and [62]. If, additionally the payoff function is of a parametric form,

we show that the first-step nonparametric estimator is asymptotically orthogonal to the second-

step smoothed pairwise maximum score estimation under mild restrictions and hence establish the

asymptotic normality for the pairwise smoothed maximum score estimator. Therefore, by provid-

ing a sufficient condition for asymptotic orthogonality under the context of smoothed maximum

score estimation, our work is also related to the literature of semiparametric M-estimation , see

e.g., [63], [64] and [65], but the difference between our work and previous literature is that be-

cause of the distribution-free setting and nonsmooth population objective function, our two-step

semiparametric estimation will converges at a rate slower than the usual
√
n rate, which makes it

more difficult to derive the rate of convergence and obtain the asymptotic distribution.

The rest of the essay is organized as follows. Section 3.2 presents the setting and basic as-

sumptions of our model. Section 3.2 provides the identification method. Section 3.4 discusses the

estimation method and establishes the asymptotic behavior of our proposed estimator. Section 3.5

contains empirical analysis of peer effects on youth smoking behaviors. Section 3.6 concludes. All

proofs are provided in Appendix B.

3.2 The model

3.2.1 Setting

We consider a incomplete information game played in a social network. There are n players

indexed by i ∈ N ≡ {1, 2, . . . , n}. In this game, each player simultaneously choose a discrete

action Yi ∈ A ≡ {0, 1, 2, . . . , K}. Let Xi ∈ X ⊆ Rd and Zik ∈ Z ⊆ Rq be the vectors of

i’s payoff relevant state variables. Here Xi represents player i’s socioeconomic characteristics
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and Zik is a vector of observable attributes related to player i’s action k ∈ A, which may be

different for each player. For example, consider the example of college choice decision, A is the

set of colleges available for the student and Xi can be student i’s family income, age and so on,

while Zik will be college k’s tuition fee and distance to his home, which in general varies across

different students. Moreover, player i also observes a vector of choice-specific payoff shocks

εi ≡ {εi0, εi1, . . . , εik} ∈ RK+1, which is private information.

Player i’s payoff from choosing an action k ∈ A is specified as

Uik(Y−i, Xi, X−i, Zik, εi) = α(Xi, Zik) +
∑
j 6=i

β(Yj, Xi, Zik) · γ(Hij) + εik, (3.1)

where Y−i and X−i denotes the action profile and socioeconomic characteristics of all the players

except i, α(·) is a choice-specific function, and β(·) represents the strategic effects of the actions

of other player on his payoff. Because only the differences of choice-specific payoffs matter to

players, without loss of generality we normalize the payoff of action 0 to be 0. Hij is the distance

between Xi and Xj , i.e.

Hij ≡ d(Xi, Xj) (3.2)

for a standard distance function d(·). We useHij to measure the socioeconomic difference between

player i and player j. Based on the theory of homophily in social network, people are more likely

to associate and bond with similar others, so in our model γ(Hij) represents the homophily effect

of the social network, Formally, we impose the following assumption:

ASSUMPTION 3.2.1. (Homophily) For all i, j ∈ N , γ(·) : R 7→ [0, 1] is monotonically decreasing

in Hij and
∑

j 6=i γ(Hij) = 1.

One example of such function is γ(Hij) = H−1
ij /

∑
l∈N H

−1
il , which is also the functional form

we adopted in the empirical studies. Under Assumption 3.2.1, the second part of player i’s payoff

function can be viewed as a weighted average of the strategic effects of all other players in the

same game, where the weights correspond to the homophily effects between player i and other

players. This specification makes our model different from the commonly used “linear-in-mean"
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approach in the literature, which assumes that each player’s action will be affected by the average

behavior of all other players (see e.g. [22]; [26]). Under our setting, each player’s action will

be affected by a weighted average of other player’s actions, where the weight corresponds to the

socioeconomic difference between different players. Therefore, γ(·) can demonstrate how a social

network connects each agent and reflect the impact of homophily network structure on agents’

actions. In the previous example, it is not difficult to see that our specification of the interaction

structure include the “linear-in-mean" approach as a special case by setting Hij to be a constant

for all i and j.

3.2.2 Equilibrium

In this static incomplete information game, each player’s strategy is based on her prior beliefs

about the probability distribution of other player’s actions. Let Zi = (ZT
i0, Z

T
i1, · · · , ZT

iK)T , Si =

(XT
i , Z

T
i )T and S = (S1, S2, · · · , Sn) be all the public information associated with player i. Also

let θ = (α, β(0, ·, ·), β(1, ·, ·), . . . , β(K, ·, ·))T be the structural parameters of the game, following

the Bayesian Nash Equilibrium (BNE) solution concept, player i’s equilibrium strategy, denoted

as Y ∗i , can be written as

Y ∗i (S, εi; θ) = argmax
k∈A

E[Uik(Y−i, Xi, X−i, Zik, εi)|S, εi]

= argmax
k∈A

{
α(Xi, Zik) +

K∑
l=0

[
β(l, Xi, Zik)

∑
j 6=i

Pr(Y ∗j (S, εj; θ) = l|S, εi)γ(Hij)

]
+ εik

}
.

(3.3)

In order to characterize the BNE solution we impose the following assumption

ASSUMPTION 3.2.2. (Conditional Independence) Conditional on S, {εik}i∈N,k∈A is identically

and independently distributed with a continuously differentiable and strictly increasing distribution

function Fεik|S(·).

Assumption 3.2.2 is commonly imposed in the literature on identification and estimation of

static games with incomplete information and social interaction models (see, e.g., [31], [40] and
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[27]). Under this conditional independence assumption, Pr(Y ∗j (S, εj; θ) = l|S, εi) = Pr(Y ∗j (S, εj; θ) =

l|S) for j 6= i. Following the literature in incomplete information game, we let σik(S; θ) ≡

Pr(Y ∗i (S, εi; θ) = k|S) be the equilibrium conditional choice probability of player i choosing

action k. To simplify notation, let

Vi(Xi, Zik, S) ≡ α(Xi, Zik) +
K∑
l=0

[
β(l, Xi, Zik)

∑
j 6=i

σjl(S; θ)γ(Hij)

]
. (3.4)

Then a BNE solution (given state S) can be characterized by

σik(S; θ) = Pr[(Vi(Xi, Zik, S) + εik > Vi(Xi, Zih, S) + εih)|S], ∀h ∈ A\{k}

= Pr[εih < (Vi(Xi, Zik, S)− Vi(Xi, Zih, S) + εik)|S], ∀h ∈ A\{k}

=

∫
ε∈R

[∏
h6=k

Fεih|S(ε+ Vi(Xi, Zik, S)− Vi(Xi, Zih, S))

]
fεik|S(ε)dε, (3.5)

where fεik|S(·) denotes the (conditional) density function of εik.

For any given (S; θ) and based on (3.5), we can define a mapping Γ(S;θ) : ∆→ ∆ such that

Γ(S;θ)({σik(S; θ)}i∈N,k∈A) ≡
(

Γ
(S;θ)
1 ({σik(S; θ)}i 6=1,k∈A), ...,Γ

(S;θ)
N ({σik(S; θ)}i 6=N,k∈A)

)T
with

Γ
(S;θ)
j ({σik(S; θ)}i 6=j,k∈A) = (σj0, ..., σjK)T

≡
(

Γ
(S;θ)
j0 ({σik(S; θ)}i 6=j,k∈A), ...,Γ

(S;θ)
jK ({σik(S; θ)}i 6=j,k∈A)

)T
,

where ∆ denotes a simplex of dimension n · (K + 1).

In general, this mapping may have multiple fixed points and hence multiple equilibria, among

which we just focus on those symmetric equilibria in this paper. To this end, we first define some

48



permutation functions. Define πij : N → N as a permutation of the indices i and j of players.

Specifically, πij maps the index i to the index j, j to i, and i′ to itself for all i′ 6= i, j. Similarly,

define πXij as a function that permutes the ith and jth elements of anyX ≡ (X1, .., Xn)T ∈ X n; and

πZij as a function that permutes the ith and jth elements of any Z ≡ (Z1, .., Zn)T ∈ Zn(K+1). We

thus have the set of permutations Π ≡
{(
πij, π

X
ij , π

Z
ij

)
|i, j ∈ N

}
with the generic element written

as π(·).

Definition 3.2.1. An equilibrium belief σ ∈ ∆ is symmetric if for any θ ∈ Θ, i ∈ N , k ∈ A and

π ∈ Π, we have σik(S; θ) = σπ(i)k(π(S); θ).

Here, symmetry means that, for any action k ∈ A, pairs of agents with the same attributes

choose this action with the same conditional probability. Even if such a symmetric equilibrium

exists, there might still be multiple equilibria for any given draw (S, ε). We hence, as in [36],

need to define a selection mechanism. First, we introduce a sequence of auxiliary random vectors

{ξn|n ∈ N} with an arbitrary finite dimension such that (Sn, ξn) ⊥ εn for all n ∈ N , in which Sn

and εn represent the sequentialization of S and ε using the number of players. In particular, we can

make sense of ξn as a public signal that players may use to coordinate on a particular equilibrium

1. Most importantly, we assume that ξn is payoff irrelevant and accordingly, define the equilibrium

selection mechanism as a measurable function ρn : (Sn, ξn; θ) → σn ∈ ∆SE(Sn; θ) ⊆ ∆, where

σn denotes the sequentialization of σ using the number of players and ∆SE(Sn; θ) is the set of

symmetric equilibria (SE). This mapping thus formalizes the way in which players coordinate on a

symmetric equilibrium, and also it does not rely on the privately informed vector εi for all i ∈ N .

ASSUMPTION 3.2.3. (Equilibrium Selection) There exist sequences of equilibrium selection mech-

anisms {ρn|n ∈ N} and public signals {ξn|n ∈ N} such that for n sufficiently large, ∆SE(Sn; θ)

is nonempty, and also for any Y ≡ (Y 1, ..., Y i, ..., Y n)T with Y i ∈ A,

Pr(Y n = Y |Sn) =
∑

σn∈∆SE(Sn;θ)

Pr(ρn (Sn, ξn; θ) = σn|Sn)
n∏
i=1

σni
(
Y i|Sn

)
,

1The inclusion of ξn is to ensure that the selection mechanism is nondegenerate, see Leung (2015) for details.
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where Y n represents the sequentialization of Y ≡ (Y1, Y2, ..., Yn)T using the number of players.

Intuitively Assumption 3.2.3 means that given one observation of the game, only one symmetric

equilibrium is realized in the data. But we allow the symmetric equilibrium to be different across

different observations of the same game. To guarantee that ∆SE(Sn; θ) is nonempty, we need to

impose following assumptions about the exchangeability of players and the continuity of payoff

functions so that a symmetric BNE always exists,

ASSUMPTION 3.2.4. (Anonymity) For all θ ∈ Θ, i ∈ N , k ∈ A and any realization εik ∈ R, pay-

offs Uik(·) are anonymous in the sense that, for any permutation π ∈ Π, we have Uik (σ−i, S, εik) =

Uπ(i)k

(
σ−π(i), π(S), επ(i)k

)
.

In a word, under anonymity, payoffs do not depend on the particular labels assigned to players

but only on their attributes and equilibrium beliefs, which is a natural assumption under the context

of large number of players in the game (See, e.g., [36] and [66]). Therefore, player labels in the

data set have no economic relevance. It also ensures that the equilibria are extensively robust in

the sense of [39] even if the simultaneous-play assumption is relaxed.

ASSUMPTION 3.2.5. (Continuity) For all θ ∈ Θ, i ∈ N , k ∈ A and any realization εik ∈ R,

payoffs Uik (σ−i, S, εik) are continuously differentiable in S.

Assumption 3.2.5 is a regularity condition to ensure that the mapping Γ(S;θ) has a fixed point.

Consequently, the existence of a symmetric BNE can be guaranteed by the following theorem:

Theorem 3.2.1. Suppose Assumptions 3.2.2-3.2.5 hold. Then there exists a symmetric Bayesian-

Nash equilibrium.

3.3 Identification

In this section, we provide a nonparametric method to explore the identifiability of the structural

parameter θ in the sense similar to [67] and [9], i.e., different values of θ will result in different

choice probabilities. [67] and [9] discuss the nonparametric identification in the discrete choice

model with single agent, we modify Matzkin’s definition of identification and apply to the game
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theoretic model in this paper. To be specific, the identification is implemented in two steps: The

first step is to identify players’ conditional choice probability of equilibrium actions and the second

step is to identify structural parameters of the payoff function.

As mentioned in the previous section, we focus on one market and the equilibrium selection

mechanism ensures that we only have one equilibrium give the one observation of that market, the

CCPs are therefore implicitly identified, hence θ will be identified as well if different values of θ

lead to different CCPs.

In the second step, we achieve identification by restricting the functional form of the payoff

function in the social network and proceed as follows: first we identify the composite function

Vi(Xi, Zik, S) for all i ∈ N and k ∈ A using a modification of the approach in [9], specifically we

impose the following restrictions on the payoff function of the game, which includes some mono-

tonicity and continuity assumptions. Next we identify the structural parameter θ by imposing a

rank condition similar to [40] and [27]. First, we introduce the following definition of identifica-

tion:

Definition 3.3.1. For all i ∈ N and k ∈ A, the function Vi(Xi, Zik, S) is identified in the set V if

for all V ′i (Xi, Zik, S) ∈ V such that V ′i (Xi, Zik, S) 6= Vi(Xi, Zik, S), there exist a set S̃ ∈ S with

positive Lebesgue measure and for all S ∈ S̃ we have σik(S;V ) 6= σik(S;V ′).

In this definition, σik(S;Vi) denotes the CCP of player i choosing action k with the emphasis

of dependence on V , where V = (V1, V2, · · · , Vn) for i ∈ N . Definition 3.3.1 simply means that

identification can be achieved if different values of Vi(Xi, Zik, S) lead to different CCPs. In order

to obtain the identification result, we impose the following assumptions:

ASSUMPTION 3.3.1. (Monotonic Transformation) For all Vi and V ′i ∈ V such that Vi 6= V ′i ,

there does not exist a strict increasing function m : Vi(·) → R such that V ′i (Xi, Zik, S) = m ◦

Vi(Xi, Zik, S) for all Zik ∈ Z .

By Assumption 3.3.1, no two functions in V are monotone transformations of each other, this

assumption is similar to Assumption 1.3 in [9] and guarantees that for an arbitrary player i, no two

51



payoff functions induce the same preorder on {Zi0, Zi1, · · · , ZiK}. [9] provides several sufficient

conditions for Assumption 3.3.1, which includes concavity or homogeneity of Vi(Xi, Zik, S), see

[9] for details.

ASSUMPTION 3.3.2. (Monotonicity) There exists l ∈ A such that Vi is strictly increasing with

respect to Zil for all Vi ∈ V and Zil has a everywhere positive Lebesgue density conditional on

S\{Zil}.

Assumption 3.3.2 is the key assumption for identification, it means that at least one element

of Zi has a continuous support and that vi(·) is strictly monotonic on that regressor conditional

on all the public information in the game. Note that this assumption is different from the “special

regressor" literature initiated by [68], which requires regressor be independent with the private

information. We believe that the requirement of monotonicity is less restrictive than independence

because it can be motivated by economic theory whereas the independence assumption is hard to

justify. The advantage of using the special regressor is that one can also identify the distribution

of the private information (see,e.g., [60]). However, this is not the goal of this paper because we

are interested in identifying the value of structural parameters. The key step of identification is to

establish the so-called rank ordering property, which is defined as follows

Definition 3.3.2. The rank ordering property is satisfied if for a given player i and for actions

k, l ∈ A,

Vi(Xi, Zik, S) > Vi(Xi, Zil, S)

if and only if

σik(S, Vi) > σil(S, Vi).

Definition 3.3.2 states that the equilibrium belief of player i’s action will be rank ordered by

the deterministic part of her payoff function. Actions with higher deterministic payoffs are more

likely to be chosen. This is a property that was first introduced in [18], we modify it under the

setup of our model. Then we have the following identification theorem:
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Proposition 3.3.1. Under Assumptions 3.2.1-3.3.2, Vi(Xi, Zik, S) is identified in the set V for all

i ∈ N and k ∈ A.

We briefly summarize the intuition of our identification strategy: the function Vi(·) is identified

by exploring the variation of choice specific characteristics Zik for k ∈ A, specifically suppose we

have two payoff function candidates Vi(·) and V ′i (·) such that Vi(·) 6= V ′i (·). By Assumption 3.3.1

and 3.3.2, there exists a choice l ∈ A and an nonempty set S̃ ⊂ S such that Vi(·) and V ′i (·) will

impose opposite preference ordering on options k and l for all S ∈ S̃, i.e., under payoff function

Vi(·) agent i may prefer k to l but under V ′i (·) she will prefer l to k and vice versa. Hence by

Assumption 3.2.2 and equilibrium condition (3.5), the rank ordering property holds. Then it must

be that either σik(S;V ) 6= σik(S;V ′) or σil(S;V ) 6= σil(S; vV ′). Therefore, by Definition 3.3.1

Vi(·) is identified.

Once Vi(·) is identified, the structural parameter θ can be identified accordingly by exploring

the variation of equilibrium beliefs. Specifically we need the variation of the product of equilibrium

belief and homophily effect to be sufficiently large, note that since the equilibrium beliefs will add

up to one, to avoid the multicollinearity problem we normalize βk(0, ·, ·) = 0 for all k ∈ A, i.e.,

the choice of action 0 by other players will have no impact on player i’s action. Then let φil(S) =∑
j 6=i σjl(S; θ) · γ(Hij) and φi(S) = (1, φi1(S), · · · , φiK(S))T , we introduce the following rank

condition.

ASSUMPTION 3.3.3. (Rank Condition) For sufficiently large game size n, the matrix E[φi(S) ·

φi(S)T |Xi, Zik] is invertible, i.e.,

lim inf
n→∞

det(E[φi(S) · φi(S)T |Xi, Zik]) > 0. (3.6)

Assumption 3.3.3 is testable and similar to conditions imposed in [40] and [27]. Then by simple

algebra, we have

θk = {E[φi(S) · φi(S)T |Xi, Zik]}−1E[φi(S) · Vi(Xi, Zik, S−ik)|Xi, Zik]. (3.7)
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Consequently, we can identify θk for all k ∈ A.

Theorem 3.3.1. Under Assumptions 3.2.1-3.3.2, the structural functions θ are nonparametrically

identified in a large game.

Proof. The proof follows directly from the discussion above and is hence omitted.

To summarize, our identification strategy is to first identify the deterministic payoff function

for any given player using any given action over a positive Lebesgue measure set in the space of

public information. Then, by imposing some properties on the support of payoff functions as well

as equilibrium beliefs, a closed form expression for θ can be derived.

3.4 Estimation

In this section, we discuss the estimation of the structural parameters of our model in a nonpara-

metric setting. The proposed estimation method is a two-step method and the estimator is shown

to be uniformly consistent. Moreover, under a semiparametric setting, we prove that although the

first stage estimator converges at a speed lower than the parametric root-n rate, the convergence

speed of the second stage estimator will not be affected and is asymptotically normal. We believe

that the semiparametric inference can help the applied researchers to get a better understanding of

the estimation procedure and perform empirical analysis.

3.4.1 Nonparametric estimation

The estimation method consists of two steps: the first step is to nonparametrically estimate

the equilibrium beliefs {σik(S; θ)}i∈N, k∈A, which can be done using standard nonparametric tech-

nique. Since the identification of θ requires at least one element of S to be continuously distributed,

we use the kernel smoothing method and focus on the case that all components of S are continu-

ously distributed for the purpose of notational simplicity. As in [36], the symmetric equilibrium

selection mechanism alleviates the curse of dimensionality problem caused by the large dimension

of S and enable us to obtain the estimates with only a single network observation. The intuition is

that players with same characteristics can be treated as repeated observations of a single player.
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Because of the symmetric equilibrium selection mechanism, we can write σik(S; θ) as ρnk(Si, S−i),

where S−i = S\Si and ρnk(Si, S−i) is a function that is invariant to permutations of the compo-

nent Sj of S−i. In order to facilitate derivation of asymptotic result we consider the following

well-known class of smooth function2: for 0 < α < ∞, let Cα
M(X ) denote the class of func-

tions f : X 7→ R with ‖f‖α ≤ M , where for any m-dimensional vector of non-negative integers

k = (k1, k2, · · · , km):

‖f‖α ≡ max
|k|≤α

sup
x
|Dkf(x)|+ max

|k|=α
sup
x,y

|Dkf(x)−Dkf(y)|
‖x− y‖α−α

,

where |k| ≡
∑m

i=1 ki, α denotes the greatest integer smaller than α and Dk is the differential

operator

Dk ≡ ∂|k|

∂xk11 · · · ∂xkmm
.

We use {σ̂ik(S)}i∈N, k∈A to denote the nonparametric estimator for {σik(S; θ)}i∈N, k∈A and let

φ̂il(S) =
∑

j∈N\{i} σ̂jl(S; θ) · γ(Hij) and φ̂i(S) = (1, φ̂i1(S), · · · , φ̂iK(S))T . The nonparametric

estimator will have the following form:

φ̂ik(S) =
∑
j 6=i

[∑n
j=1 1(Yj = k)K(

Sj−Si
h1

)∑n
j=1K(

Sj−Si
h1

)

]
γ(Hij), (3.8)

where K(·) is a high order product kernel function and h1 =
∏d+q(K+1)

r=1 h1r. The first stage

estimator can be viewed as a weighted U-statistics and under the following conditions, we show

that this first stage estimator is consistent.

Theorem 3.4.1. Under the following conditions, φ̂ik(S) − φik(S; θ) = op(1) for all i ∈ N and

k ∈ A.

(a) Assumptions 3.2.2 and 3.2.3 hold,

(b) ρnk(Si, S−i) ∈ Cα
M(S),

(c){Si : i ∈ N} is independent and identically distributed with a ν-times differentiable density

2See, e.g., Van der Vaart & Wellner (1996) Section 2.7.1.
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f(·) bounded away from zero,

(d)K(·) : Rd+q(K+1) 7→ [0, 1] is a νth order product kernel function,

(e)As n→∞, max1≤r≤d+q(K+1) h1r → 0 and nh1 →∞.

Since under current assumptions, we can not identify the distribution of the private information

ε, traditional estimation method like maximum likelihood estimation cannot be used. Instead in the

second step we can proceed to use a smoothed version of the pairwise maximum score method in

[56] to estimate the model, which does not require one to know the distribution of ε. Specifically

θ̂ ∈ argmax
θ∈Θ

Qn(θ, φ̂, h2) ≡ 1

n

n∑
i=1

K∑
k=1

1(Yi = k)
K∑
h6=k

G

(
φ̂Ti θk − φ̂Ti θh

h2

)
, (3.9)

where G(·) is a differentiable function on R satisfying the following conditions:

G1. |G(v)| < M for some finite M and all v ∈ R,

G2. lim
v→−∞

G(v) = 0 and lim
v→∞

G(v) = 1,

G3. G(·) is Lipschitz continuous, i.e., |G(v)−G(w)| ≤ c · |v − w| for all v, w ∈ R and some

c ≥ 0,

G4. G′(·) is a νth order kernel function (ν ≥ 2).

As pointed out in [12], here G(·) is analogous to a cumulative distribution function. Note that

h2 is the smoothing parameter satisfying limn→∞ h2 = 0 and limn→∞ n · h2 = ∞. To ensure

consistency of the estimator, we need to impose the following assumptions:

ASSUMPTION 3.4.1. The collection of the subgraphs of all θ ∈ Θ forms a Vapnik-Chervonenkis

(VC) class.

Assumption 3.4.1 is a fairly weak technical condition on the space of θ, intuitively it requires
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that the number of distinct subsets of the space of θ does not grow "too fast". For a formal definition

and examples of VC class, see [62]. Note that this assumption will be automatically satisfied if Θ

is finite dimensional, i.e., under the parametric setting.

ASSUMPTION 3.4.2. There exists a metric ‖ · ‖Θ such that (i) Θ is compact with respect to ‖ · ‖Θ;

(ii) θn ∈ Θ converges to θ uniformly if ‖θn − θ‖Θ → 0.

Assumption 3.4.2 is commonly assumed in the nonparametric and semiparametric economet-

rics literature (see, e.g.,[46], [22] and [43]). It restricts the space of structural parameters as well as

the choice of the norm ‖ · ‖Θ. As pointed out in [43], it will be satisfied if the infinite dimensional

space Θ consists of bounded and smooth functions. Therefore, without loss of generality we also

impose the following assumption:

ASSUMPTION 3.4.3. There exists some C <∞ such that ‖θ‖Θ < C for all θ ∈ Θ.

Let

Q(θ, φ) ≡ E

[
K∑
k=1

1(Yi = k)
K∑
h6=k

1(φTi θk > φTi θh)

]

be the probability limit of Qn(θ, φ̂, h2), in order to establish consistency we need to first introduce

several auxiliary lemmas.

Lemma 3.4.1. Qn(θ, φ̂, h2) converges to Q(θ, φ) uniformly with probability approaching 1.

Lemma 3.4.2. Q(θ, φ) is continuous in θ ∈ Θ.

Lemma 3.4.3. Q(θ, φ) is uniquely maximized at θ∗ ∈ Θ, which is the true value of the parameters.

By using Lemma 3.4.1-3.4.3, the next theorem establishes the uniform consistency of our pro-

posed estimator:

Theorem 3.4.2. Given Assumption 3.2.1-3.3.3 and 3.4.1-3.4.3, θ̂ is uniformly consistent for θ∗,

i.e., ‖θ̂ − θ∗‖Θ = op(1).

Proof. By Lemma 3.4.1-3.4.3 and Assumption 3.4.2, conditions (i)-(iv) of Theorem 2.1 in [69] are

satisfied. Then immediately we can get ‖θ̂ − θ∗‖Θ = op(1).
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3.4.2 Semiparametric estimation and inference

In this subsection, we restrict the space of the structural parameters to be finite dimensional

space Θ ⊆ Rd+q and discuss about the semiparametric estimation and inference of our model.

Specifically we focus on the case where K = 2 and let (Xi, Zik) ≡ Sik and αk(Xi, Zik) =

STikαk, βk(l, Xi, Zik) = βkl for all i ∈ N and k ∈ A. Without loss of generality we normalize the

payoff of action 0 to be 0, i.e., Ui0 = 0 for all i ∈ N . Note that identification also requires βk0 = 0.

Then the objective function becomes

Qn(θ, φ̂1, h2) =
1

n

n∑
i=1

[2 · 1(Yi = 1)− 1]G

(
STi1α1 + β1

∑
j 6=i σ̂j1(S; θ)γ(Hij)

h2

)

=
1

n

n∑
i=1

[2 · 1(Yi = 1)− 1]G

(
STi1α1 + β1φ̂i1

h2

)

=
1

n

n∑
i=1

[2 · 1(Yi = 1)− 1]G

(
wTi1θ

h2

)
, (3.10)

where w1 = (ST1 , φ̂1)T and we can see that the objective function has a similar form as in [12]. In

order to characterize the asymptotic distribution of θ̂ we first introduce some additional notations:

write S1 = (S11, S̃
T
1 )T , w̃1 = (S̃T1 , φ1)T , α1 = (α11, α̃

T
1 )T , θ̃ = (α̃T1 , β

T
1 )T and define

Bn(θ, φ̂1, h2) =
∂Qn(θ, φ̂1, h2)

∂θ̃

and

Hn(θ, φ̂1, h2) =
∂2Qn(θ, φ̂1, h2)

∂θ̃∂θ̃T
.

Let p(wT1 θ|S) denote the conditional density of wT1 θ on θ, which is positive everywhere with

respect to the Lebesgue measure by Assumption 3.4.4 (a) and (c) imposed below. For each positive

integer t, define

p(t)(wT1 θ|S) =
∂tp(wT1 θ|S)

∂(wT1 θ)
t
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whenever the derivative exists, and define p(0)(wT1 θ|S) = p(wT1 θ|S). Let F (·|wT1 θ, S) denote the

cumulative distribution function of ε on wT1 θ and S. For each positive integer t, define

F (t)(−wT1 θ|wT1 θ, S) =
∂tF (−wT1 θ|wT1 θ, S)

∂(wT1 θ)
t

. (3.11)

For each ν ≥ 2, define the (d+ q)× 1 vector B and the (d+ q)× (d+ q) matrices D and H by

B = −2

∫ ∞
−∞

uνG′(u)du
ν∑
t=1

{
[t!(ν − t)!]−1E

[
F (t)(0|0, S)p(ν−t)(0|S)w̃

]}
,

D =

∫ ∞
−∞

[G′(u)]2duE
[
w̃1w̃

T
1 p(0|S)

]
,

H = 2E
[
w̃1w̃

T
1 F

(1)(0|0, S)p(0|S)
]
.

It is worth mentioning that when deriving the asymptotic distribution of our semiparametric max-

imum score estimator, D and H have roles that are analogous to the outer product and Hessian

forms off the information matrix in maximum likelihood estimation. The regularity conditions

imposed for the asymptotic distribution result are stated as follows.

ASSUMPTION 3.4.4. (a) |α11| = 1 and θ̃ is contained in a compact subset Θ̃ of Rd+q; (b)

Median(ε|S) = 0; (c) the support of the distribution of w is not contained in any proper lin-

ear subspace of Rd+q+1; (d) Pr(Y = 1|S) ∈ (0, 1) for almost every S; (e) the distribution of

S11 conditional on S has everywhere positive density with respect to the Lebesgue measure; (f)

lim
n→∞

log n/(nh4
2) = 0; (g) the component of w̃1, w̃1w̃

T
1 and w̃1w̃

T
1 w̃1w̃

T
1 have finite third absolute

moments; (h) There exists some M < ∞ such that for all t ≤ ν, all wT1 θ in a neighborhood of

0 and almost every S, p(t)(wT1 θ|S) and F (t)(−wT1 θ|wT1 θ, S) exist and are continuous functions of

wT1 θ satisfying
∣∣p(t)(wT1 θ|S)

∣∣ < M and
∣∣F (t)(−wT1 θ|wT1 θ, S)

∣∣ < M . In addition, |p(wT1 θ|S)| < M

for all wT1 θ and almost every S. (i)The support of S̃1 is bounded;(j) H is negative definite; (k) θ̃ is

an interior point of Θ̃.

Assumption 3.4.4 (a)-(e) are used to establish the rank ordering property under a semi para-

metric setting and are standard in the maximum score estimation literature; see e.g., [19], [12] and
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[70]. Assumption 3.4.4 (f) is analogous to an under-smooth condition assumptions made in kernel

density estimation. Assumption 3.4.4 (g) and (h) ensure the existence of B, D and H as well as

the convergence of certain sequences of integrals when deriving the asymptotic normality, see [12]

for details. Assumption 3.4.4 (i)-(k) are standard in asymptotic distribution theory.

ASSUMPTION 3.4.5. If φ̂1 − φ1 = Op(rn), where rn is a nonstochastic positive real sequence,

then rn = o(1/
√
nh2).

Assumption 3.4.5 requires that the first-stage nonparametric estimator φ̂1 converges to φ1 faster

than 1/
√
nh2. Note that rn will be determined by the dimension of the continuous part of Si3 and

under the current semi-parametric setting, only one element of Si is required to be continuous.

Therefore, this assumption is not restrictive. Then by applying Taylor expansion and modify the

results in [12] we have the following theorem:

Theorem 3.4.3. Suppose Assumption 3.4.4 and 3.4.5 hold, let λ < ∞ be the limit of nh2ν+1
2 as

n→∞. Then √
nh2(θ̂ − θ) d−→ N (−

√
λH−1B,H−1DH−1). (3.12)

Note that the proof does not trivially follow from [12] because under our setting {Yi}i∈N is not

an independent random sequence. But since {Yi}i∈N is independent conditional on S, our strategy

is to first derive the conditional asymptotic distribution of θ̂ and then prove that unconditionally it

will converge to the same distribution.

To apply the result in Theorem 3.4.3, it is necessary to consistently estimate A, D and H . Let

θ̂ be a consistent estimator of θ based on h2 ∝ n−1/(2ν+1) and by using Theorem 3 in Horowitz

3In the kernel estimation, the kernel function K(·) will be replaced by a indicator function for discrete variable
and the rate of convergence for the mixed variables is the same as the case involving only the subset of continuous
variables, see [71] for details.
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(1992), we are able to get consistent estimators for A, D and H as

B̂ = h∗−ν2 Bn(θ̂, φ̂1, h
∗
2), (3.13)

D̂ =
h2

n

n∑
i=1

bn(θ̂, φ̂1, h2)bn(θ̂, φ̂1, h2)T , (3.14)

Ĥ = Hn(θ̂, φ̂1, h2), (3.15)

where h∗2 ∝ n−δ/(2ν+1) for some δ ∈ (0, 1) and

bn(θ̂, φ̂1, h2) = [2 · 1(Yi = 1)− 1]

(
w̃i1
h2

)
G′
(
wTi1θ

h2

)
. (3.16)

It is generally acknowledged that θ̂ can be quite sensitive to the choice of the bandwidth h2. In

practice, the optimal bandwidth is chosen to minimize the mean square error of θ̂ and is selected by

a plug-in method proposed in [12]: Given ν, choose any h2 ∝ n−1/(2ν+1) and any h∗2 ∝ n−δ/(2ν+1)

for 0 < δ < 1. Obtain the smoothed maximum score estimator θ̂ based on h2, and use θ̂ and h∗2 to

compute B̂, D̂ and Ĥ . Then compute optimal h2 by the following formula:

h2 =

[
Tr(Ĥ−1Ĥ−1D̂)

2nνB̂T Ĥ−1Ĥ−1B̂

] 1
2ν+1

, (3.17)

in which case

n
ν

2ν+1 (θ̂ − θ) d−→ N

(
−
(

Tr(H−1H−1D)

2νBTH−1H−1B

) ν
2ν+1

H−1B,

(
Tr(H−1H−1D)

2νBTH−1H−1B

) −1
2ν+1

H−1DH−1

)
.

3.5 An empirical application

In this section, we use our proposed method to analyze the peer effects on youth smoking be-

havior. Recently, there is a growing body of empirical literature on studying the peer effects on

adolescents smoking behavior, see e.g., [8], [10], [11], [72] and reference therein. The data we

use is obtained from the National Longitudinal Study of Adolescent Health (Add Health), which
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is a database designed to study the relationship between the social environment and adolescents’

behavior. It contains a nationally representative sample of students in grades 7-12 from 80 high

schools and 52 middles schools in the United States during the 1994-1995 school year. In the data

every student is asked to complete a questionnaire to provide information about his or her socioe-

conomic characteristics as well as school-related behavior and friendship. The sample contains

information on 90,118 students.4

Our empirical strategy is to treat each school in Add Health dataset as a unique social network,

since different schools may achieve different (symmetric) equilibria, we estimate peer effects on

a school-by-school case. All the respondents in our empirical analysis are selected from 7 largest

schools with more than 800 observations each and the total number of observations n = 6, 342.

Following the literature, the covariates we choose include age, GPA, race information, gender and

family background (whether mother has gone to college and father has a job). The missing obser-

vation in mother’s education has been treated as 0. We also include a dummy variable indicating

whether the student has participated in any clubs, organizations or teams at school. The summary

statistics for variables used in our empirical analysis are presented in Table 3.1.

Table 3.1: Descriptive Statistics of Key Variables

Variable Mean Std. Dev. Min Max
Age 15.629 1.267 10 19
Female 0.487 0.500 0 1
GPA 2.960 0.500 1 4
White 0.753 0.432 0 1
Hispanic 0.116 0.320 0 1
Black 0.113 0.316 0 1
Asian 0.043 0.203 0 1
Mother college 0.470 0.500 0 1
Father work 0.974 0.160 0 1
No club 0.150 0.357 0 1
Smoking 0.382 0.486 0 1

4See the Add Health website (http://www.cpc.unc.edu/projects/addhealth) for a detailed description of surveys and
data.

62



It is well known that nonparametric kernel method suffers from the “curse of dimensionality",

i.e., its convergence rate is inversely related to the dimension of covariates involved and this prob-

lem will be even worse if covariates are discrete. Therefore, in order to alleviate the dimensionality

problem, in the first stage estimation we use the smoothing method proposed in [73], the first stage

bandwidth h is selected by the cross-validation method. In the second stage estimation, the ob-

jective function we use is similar to (3.10) and the second stage bandwidth h2 is selected by the

plug-in method proposed in section 3.4.2. The smoothing functionG(·) is chosen to be the integral

of a fourth-order kernel for nonparametric density estimation ([74]). The homophily effects are

calculated by introducing a social distance function γ(·). Specifically let Hij = ‖Xi −Xj‖ be the

Euclidean norm and use

γ(Hij) =
H−1
ij∑

l∈N H
−1
il

. (3.18)

It can be easily verified that (3.18) satisfies Assumption 3.2.1.

Our empirical results are presented in Table 3.2. The standard errors are computed using The-

orem 3.4.3. Because the consistency of our estimator requires normalizing the coefficient of one

continuous covariate to be 1 or -1, we normalize the coefficient of GPA to be equal to -1.5 For all

7 schools in the data, we find positive and statistically significant (at 1%) peer effects on smoking,

means that smoking behavior from a student’s schoolmates will make that student more likely to

consume cigarette. [8], [10] and [11] use different datasets and find similar results. From our re-

sults, it is clear that age has positive effect on student’s smoking behavior, which is consistent with

previous literature; see, e.g., [10] and [11]. Father working for pay is negatively correlated with

smoking, we believe this indicates (to some extent) that the student’s family income is negatively

correlated with smoking.

For the purpose of comparison, we also estimate the model without imposing homophily ef-

fects, i.e.,

γ(Hij) =
1

n− 1
. (3.19)

5 The negative effect of GPA on smoking has been confirmed by many previous literature, see, e.g., [52]
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Table 3.2: Estimation Results (with homophily effect)

Variable School 1 School 2 School 3 School 4 School 5 School 6 School 7
Age 2.588*** 0.050** 0.753*** 0.132* 2.352*** 0.149** 0.060**

(0.059) (0.024) (0.076) (0.071) (0.293) (0.067) (0.024)
Hispanic 4.866*** 0.068 -9.962*** -3.162* -6.354*** 2.034 -5.047***

(1.447) (0.177) (1.377) (1.696) (0.680) (0.563) (1.060)
White -32.393*** 0.338*** -7.383*** 8.738*** -37.598*** -2.326*** 1.801***

(1.756) (0.338) (1.268) (0.623) (4.916) (0.396) (0.363)
Black -14.921*** 0.341** -8.294*** -3.799** -36.904*** 12.274*** 1.171***

(0.927) (0.174) (1.269) (1.635) (4.813) (2.170) (0.333)
Asian -23.795*** -4.850*** 7.057*** -1.652 -10.406*** -2.185*** -80.839***

(1.815) (0.493) (1.890) (1.801) (1.238) (0.545) (0.000)
Female 46.440*** 3.064*** -14.499*** 1.166*** -39.350*** -2.696*** -4.569***

(0.000) (0.411) (1.417) (0.396) (5.165) (0.416) (0.935)
No club 2.528*** -0.039 4.797*** -4.142*** -0.214 -8.312*** -0.161

(0.679) (0.084) (0.226) (0.000) (0.283) (2.217) (0.099)
Mother college -7.638*** -2.681*** -0.142 -0.897** -5.961*** 15.000*** 2.220***

(1.130) (0.466) (0.128) (0.364) (0.796) (2.432) (0.287)
Father work -1.052** -5.268*** -10.296*** -10.914*** -36.661*** -19.213*** -4.116***

(0.458) (0.437) (1.413) (0.623) (4.815) (3.837) (0.946)
Peer effects 6.794*** 5.191*** 12.686*** 3.086*** 7.865*** 9.152*** 2.346***

(2.299) (0.649) (2.639) (0.609) (0.856) (2.231) (0.770)
Observations 805 818 846 973 855 1205 840
Standard errors in parentheses
* 10% significant, ** 5% significant, *** 1% significant.
The coefficient of GPA is normalized to -1.

Under this setup, our model incorporates a similar setting as a Manski-type linear-in-mean model.

The results are listed in Table 3.3, we can see that the estimated peer effects become statistically

insignificant among 6 of all 7 schools included. The only exception is school 5, from which we ob-

tain a negatively significant peer effects. This comparison demonstrates the empirical importance

of including homophily effects in our model.

3.6 Conclusion

This paper develops a structural model of strategic social interactions that emphasizes the im-

pact of homophily effects on agents’ socioeconomic decisions. Our model assumes that individuals

are affected by all players within the same social network (global interaction), but the strength of

interactions decays as the social distance between players increases. Therefore, our specifica-

tion reflects the homophily principle in sociology: similarity breeds connection. By imposing a

symmetric equilibrium selection mechanism, we allow the existence of multiple equilibria across

different networks and establish nonparametric identification of the model and propose a compu-
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Table 3.3: Estimation Results (without homophily effect)

Variable School 1 School 2 School 3 School 4 School 5 School 6 School 7
Age 1.096*** -0.556*** 0.537** 0.516*** 2.645*** 0.007 0.063**

(0.033) (0.131) (0.245) (0.064) (0.113) (0.052) (0.030)
Hispanic -0.535 10.672 -10.690 -9.900*** -0.060 7.910 -6.611***

(1.200) (116.879) (31.353) (2.691) (2.407) (252.989) (0.520)
White -2.445*** 1.829*** -1.981*** -1.709** -0.117 -26.113 -0.093

(0.403) (0.242) (0.607) (0.712) (2.640) (84.410) (0.256)
Black -5.058*** 12.359 -2.905*** -9.702*** -0.363 8.670 -0.453*

(0.636) (117.076) (0.568) (2.691) (2.694) (253.076) (0.260)
Asian -6.630*** 9.642 -106.609*** -3.838*** -10.620*** -26.373 -4.751***

(0.451) (100.156) (0.000) (0.742) (2.048) (84.194) (0.301)
Female 1.497*** 8.646 -6.240*** 3.351*** -5.865*** -0.054 -6.090***

(0.000) (100.301) (1.145) (0.200) (2.065) (0.169) (0.317)
No club 0.128 11.356 3.940*** -4.936*** -0.112 -35.546 0.031

(0.336) (117.114) (0.351) (0.308) (0.467) (168.603) (0.116)
Mother college -11.433*** 0.182 -0.183 -47.370*** 0.355 1.865*** 5.066***

(1.708) (16.615) (0.160) (0.000) (0.429) (0.214) (0.272)
Father work -0.516** -1.230*** -2.666** -6.605** -5.848*** -0.778*** -4.879***

(0.217) (0.115) (1.061) (2.663) (1.934) (0.202) (0.196)
Peer effects 0.832 -33.619 -3.694 -0.510 -62.560*** -10.762 1.055

(3.757) (578.515) (6.041) (5.883) (8.815) (441.697) (0.871)
Observations 805 818 846 973 855 1205 840
Standard errors in parentheses
* 10% significant, ** 5% significant, *** 1% significant.
The coefficient of GPA is normalized to -1.

tationally feasible two-step estimation procedure that is robust to misspecification of distribution

assumption and the presence of multiple equilibria. In the empirical application we use our method

to analyze the peer effects on youth smoking using Add Health data and find strong empirical ev-

idence of peer effects among adolescents within the same school. Furthermore by comparing the

empirical results with and without specifying the homophily effect, our findings demonstrate the

empirical importance of including homophily effect in our model.

The work presented in this paper indicates various possible extensions for future research. An

example is to use different equilibrium solution concept that allows both local (i.e., the agent’s

neighbors or friends) and global interactions between players. [75] provides some examples of

such equilibria. Another, perhaps more interesting issue, is to identify the social distance function

γ(·). Here we assume that γ(·) is known, which can be viewed as a normalization assumption.

Developing methods to identify and estimate γ(·) in our framework will be of both theoretical and

empirical importance and calls for future work.
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4. A DATA-DRIVEN BANDWIDTH SELECTION METHOD FOR THE SMOOTHED

MAXIMUM SCORE ESTIMATOR

4.1 Introduction

A binary response model is a regression model in which the dependent variable is a binary

random variable. Binary response models are very useful for many economics and statistics appli-

cations.1 In this paper, we consider a linear binary response model with the following form

y = 1(xTβ + u ≥ 0), (4.1)

where y is a scalar dependent variable, 1(·) is the indicator function, x is a q×1 vector of explana-

tory variables, u is an unobserved random variable, and β is a q × 1 vector of parameters to be

estimated using the observed data {yi, xTi }ni=1.

In this model, we do not impose parametric assumptions on the distribution of u. Therefore, β

cannot be estimated by maximum likelihood method that has been widely used for probit and logit

models. If u and x are independent of each other, various semiparametric methods (e.g., [14], [15],

[16] and [17]) can be used to obtain a consistent estimator of β. The maximum score estimator

(MS) of [18, 19] allows for the dependence of the distribution of u on x in an unknown and general

way (heteroskedasticity of an unknown form). Specifically, the maximum score estimator β̂MS can

be obtained by

β̂MS = argmax
β∈Θ

1

n

n∑
i=1

(2yi − 1)1(xTi β ≥ 0), (4.2)

where Θ is the parameter space. However, since the objective function is discontinuous, the con-

vergence rate of the maximum score estimator is n−1/3, and its limiting distribution is non-standard

([20]). [12] develops a smoothed version of Manski’s maximum score estimator, which is asymp-

totically normal and has a faster convergence rate. The convergence rate could approach n−1/2,

1See [13] for a review of econometric applications of binary response models.
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depending on the strength of certain smoothness conditions.

The idea of Horowitz’s smoothed maximum score estimator (SMS) is analogous to the nonpara-

metric estimation of cumulative distribution function (CDF), and involves replacing the indicator

function by a continuously differentiable function in the objective function of the maximum score

estimation. The continuously differentiable function retains the essential features of an indicator

function. Specifically,

β̂SMS = argmax
β∈Θ

1

n

n∑
i=1

(2yi − 1)G

(
xTi β

hn

)
, (4.3)

where hn is the smoothing parameter (bandwidth) that converges to zero as n → ∞, and G(v) is

a continuous function satisfying |G(v)| < M , for v ∈ R and some M < ∞, limv→−∞G(v) = 0,

and limv→∞G(v) = 1. The identification of β (up to scale) requires that at least one component

of x to be absolutely continuous with respect to the Lebesgue measure conditional on the remain-

ing components ([19]). We arrange x so that x1 satisfies this condition. Under some technical

conditions in [12], β̂SMS can be shown to be uniformly consistent and asymptotically normal.

It is generally acknowledged that kernel smoothing method can be very sensitive to the se-

lection of bandwidth. Different bandwidths can lead to completely different results. In terms of

bandwidth selection, [12] proposes a method that is analogous to the plug-in method in kernel den-

sity estimation. The method requires initial “pilot" values of hn to compute the SMS estimator β̂,

and then uses this estimator to obtain the optimal bandwidth. This method has the disadvantage of

not being fully data-driven, since the estimated optimal bandwidth depends on the initial selection

of hn.

In this paper, we propose an alternative method to obtain the bandwidth. Unlike the conven-

tional plug-in method, we choose the bandwidth by minimizing a cross-validated criterion func-

tion. It is completely data-driven and does not require the selection of the initial bandwidth.

This essay is organized as follows. In Section 4.2 we discuss existing bandwidth selection

procedures and introduce our proposed method. In Section 4.3 we use simulations to examine the
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finite sample performance of our proposed method. Section 4.4 concludes.

4.2 Bandwidth Selection Procedures

In this section, we first discuss the bandwidth selection method in [12], and then introduce our

bandwidth selection procedure.

Based on Section 2 in [12], the optimal bandwidth selection requires two “pilot" bandwidths,

h = c1n
−1/(2s+1) and h∗ = c2n

−δ/(2s+1), where c1, c2 and δ are some constants, with c1 ∈ (0,∞),

c2 ∈ (0,∞), and δ ∈ (0, 1), and s is the order of the kernel function G′(·). To obtain the opti-

mal bandwidth, one needs to manually select the values of c1, c2 and δ. Nevertheless in practice

there is little guidance on how to choose the three constants c1, c2 and δ. Different values of these

constants may result in completely different estimates of β. Furthermore, as shown in the simu-

lation studies of [12, 74], the empirical levels of t test based on first-order asymptotics are highly

sensitive to the choice of bandwidth. Therefore, inappropriate choices of c1, c2 and δ may lead

to a large gap between the empirical and nominal levels of hypothesis test, and hence invalidate

the inference results. The alternative bandwidth selection method we propose in this paper avoids

these problems.

Our bandwidth selection method is motivated by the cross-validation method in [76], who

propose a bandwidth selection method in univariate CDF estimation by minimizing the following

cross-validation function:

CV (hn) =
1

n

n∑
i=1

∫ {
1(xi < x)− F̂−i(x)

}2

dx, (4.4)

where

F̂−i(x) =
1

n− 1

n∑
j=1,j 6=i

G

(
x− xj
hn

)
is the leave-one-out nonparametric estimator for the univariate CDF, F (x). Based on (4.4), we
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propose to select hn for the SMS estimator by minimizing the following criterion function2:

CVSMS(hn; β) =
1

n

n∑
i=1

{
(2yi − 1)1

(
xTi β ≥ 0

)
− 1

n− 1

n∑
j=1,j 6=i

(2yj − 1)G

(
xTj β

hn

)}2

. (4.5)

Note that (4.5) is analogous to (4.4) by setting x = 0, replacing the indicator function and F̂−i(x)

in (4.4) with (2yi − 1)1
(
xTi β ≥ 0

)
and the “leave-one-out" SMS objective function, respectively.

One problem with minimizing (4.5) is that β is unknown. We can obtain an initial value of β by

the MS estimation in (4.2). Therefore, our bandwidth selection method is a two-step procedure:

• Step 1: Obtain the initial value of β by

β̂MS = argmax
β∈Θ

1

n

n∑
i=1

(2yi − 1)1(xTi β ≥ 0).

Note that β can only be identified up to scale. It is convenient to impose the normalization

that |β1| = 1, where β1 denotes the coefficient of xi1;

• Step 2: Obtain the estimated bandwidth h̃n by

h̃n = argmin
hn

CVSMS(hn; β̂MS).

This two-step procedure does not require us to manually select the values of c1, c2 and δ. It is thus

completely data-driven. Note that since the convergence rate of β̂MS is slower than β̂SMS , the finite

sample performance of our proposed method can be improved by iterating the procedures above.

The iteration is as follows.

• Step 3: Obtain a new value of β by

β̂SMS = argmax
β∈Θ

1

n

n∑
i=1

(2yi − 1)G

(
xTi β

h̃n

)
,

2For using the cross-validation methods to select smoothing parameters in general conditional distribution function
and conditional mean function estimations, see [73] and [77].
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where h̃n is the bandwidth obtained in Step 2. Same normalization restriction as in Step 1

should also be applied in this step;

• Step 4: Obtain the estimated bandwidth ĥn by

ĥn = argmin
hn

CVSMS(hn; β̂SMS);

• Step 5: Repeat Steps 3 and 4, with h̃n = ĥn, until ĥn converges. The convergence criterion

in practice could be |ĥn− ĥn,−1| < ε, where ĥn,−1 is the ĥn in the previous iteration, and ε is

a small positive constant.

4.3 Monte Carlo Simulations

This section describes Monte Carlo investigation of the finite sample performance of our pro-

posed method. Each Monte Carlo experiment is concerned with estimating the scalar parameter β

in the model

y = 1(x1 + βx2 + u ≥ 0),

where the true value of β is −1, x1 ∼ N(0, 1), and x2 ∼ N(1, 1). We consider two different

distributions for u. One is the uniform distribution with median of 0 and variance of 1, the other is

the Student’s t distribution with 3 degrees of freedom normalized to have variance of 1. Note that

the coefficient of x1 has been normalized to 1 for the purpose of identification. We use the CDF of

standard normal distribution as the smoothing function G(·).

The Monte Carlo experiments are conducted under three different scenarios. The first one is

to use the plug-in method proposed in Section 2 of [12] to select the smoothing parameter hn.

For the manually selected constants, c1, c2 and δ, we use the following values: c1 = 1, c2 = 1

and δ = 0.2. The second one is to use the cross-validation method proposed in this paper. The

convergence criterion is |ĥn − ĥn,−1| < 10−3. For the purpose of comparison, we also include the

(non-smoothed) maximum score estimator β̂MS in our experiments. The sample sizes we consider

are n = 500, 1000, and 1500. The number of replications is 1000. We compare the performance
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of the three methods in terms of mean squared errors (MSE), which is defined as

1

m

m∑
j=1

(β̂j − β)2,

where m is the number of replications, and β̂j is the estimate of β in j-th experiment.

Tables 4.1 and 4.2 report the simulation results for Student’s t distribution and uniform distri-

bution, respectively. In each table, the first column shows the sample sizes, and the second to fourth

column correspond to the three methods in our experiments, i.e., cross-validation, non-smoothed,

and plug-in, respectively. The upper block reports the mean of the MSEs, while the lower block

reports the median of the MSEs. We see that in all of the cases, our cross-validation method

performs the best, while non-smoothed method performs the worst. In the comparison between

cross-validation method and plug-in method, we find that the MSEs of cross-validation method

are about 10% less than those of plug-in method. These results indicate that our data-driven cross-

validation method not only overcomes the disadvantages of plug-in method, but also improves the

performance in estimation.

Table 4.1: MSE for Student’s t Distribution

Method CV Non-smoothed Plug-In
Mean

n = 500 0.0284 0.0350 0.0299
n = 1000 0.0146 0.0185 0.0158
n = 1500 0.0117 0.0142 0.0128

Median
n = 500 0.0110 0.0144 0.0132
n = 1000 0.0056 0.0072 0.0064
n = 1500 0.0049 0.0064 0.0056
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Table 4.2: MSE for Uniform Distribution

Method CV Non-smoothed Plug-In
Mean

n = 500 0.0890 0.0951 0.0910
n = 1000 0.0489 0.0574 0.0529
n = 1500 0.0426 0.0504 0.0464

Median
n = 500 0.0182 0.0240 0.0210
n = 1000 0.0121 0.0144 0.0144
n = 1500 0.0090 0.0110 0.0100

4.4 Conclusion

In this paper, we propose a new method of selecting smoothing parameters in the smoothed

maximum score estimator. We select bandwidth by minimizing a cross-validated criterion function.

It does not require the selection of initial values for bandwidth, and is hence completely data-

driven. Simulation results show that our proposed method performs better than existing methods.

Future extensions of this paper include deriving the asymptotic properties of the cross-validation

method, and the application to the bandwidth selection of partially linear binary response models

as in [78].
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5. SUMMARY AND CONCLUSIONS

The first essay develops an econometric framework to nonparametrically identify CCPs and

peer effects of a network game with incomplete information, allowing for the presence of measure-

ment error in network connections. In particular, we show that under the large game setting, the

CCPs are asymptotically equivalent to the ones that are conditional on players’ own characteristics

and a scalar valued function of their network structure. Hence the CCPs can be nonparametrically

identified by applying the method in [2]. Then the payoff primitives are proved to be identified up

to a monotone transformation. We also propose a semiparametric method to consistently estimate

the peer effects. As an application of the proposed methods, we study the peer effects of adolescent

alcohol drinking behaviors and find that the peer effects will be significantly underestimated when

measurement are ignored.

In the second essay, we construct a structural model of strategic social interactions that empha-

sizes the impact of homophily effects on agents’ socioeconomic decisions. Our model assumes

that individuals are affected by all players within the same social network (global interaction), but

the strength of interactions decays as the social distance between players increases. Therefore,

our specification reflects the homophily principle in sociology: similarity breeds connection. By

imposing a symmetric equilibrium selection mechanism, we allow the existence of multiple equi-

libria across different networks and establish nonparametric identification of the model and pro-

pose a computationally feasible two-step estimation procedure that is robust to misspecification

of distribution assumption and the presence of multiple equilibria. In the empirical application

we use our method to analyze the peer effects on youth smoking using Add Health data and find

strong empirical evidence of peer effects among adolescents within the same school. Furthermore

by comparing the empirical results with and without specifying the homophily effect, our findings

demonstrate the empirical importance of including homophily effect in our model.

In the third essay, we propose a new method of selecting smoothing parameters in the smoothed

maximum score estimator. We select bandwidth by minimizing a cross-validated criterion function.
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It does not require the selection of initial values for bandwidth, and is hence completely data-

driven. Simulation results show that our proposed method performs better than existing methods.

Specifically, in the comparison between cross-validation method and plug-in method, we find that

the MSEs of cross-validation method are about 10% less than those of plug-in method. These

results indicate that our data-driven cross-validation method not only overcomes the disadvantages

of plug-in method, but also improves the performance in estimation.
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APPENDIX A

IDENTIFICATION AND ESTIMATION OF PEER EFFECTS IN MIS-MEASURED SOCIAL

NETWORKS

A.1 Proofs

Proof of Lemma 2.2.1

By the law of iterated expectation, we know E[W ∗
i − E(W ∗

i |Xc, G∗)] = 0. Therefore in order

to show that W ∗
i − E(W ∗

i |Xc, G∗) = op(1), we need to show that

E[W ∗
i − E(W ∗

i |Xc, G∗)]2 = o(1). (A.1)

Since

E[W ∗
i − E(W ∗

i |Xc, G∗)]2 = E

[∑
j∈N∗i

Yj

|N∗i |
−
∑

j∈N∗i
E(Yj|Xc, G∗)

|N∗i |

]2

= E

 1

|N∗i |
∑
j∈N∗i

(Yj − E(Yj|Xc, G∗))

2

=
∑
j∈N∗i

E
[

1

|N∗i |
(Yj − E(Yj|Xc, G∗))

]2

+
∑
j∈N∗i

∑
k 6=j,k∈N∗i

E
{

1

|N∗i |
[Yj − E(Yj|Xc, G∗)] [Yk − E(Yk|Xc, G∗)]

}
≡ A1 + A2.

Since Yj is binary, A1 = O(1/|N∗i |) = o(1) by Assumption 2.2.2. By law of iterated expectation

82



and conditional independence of {Yi}i∈N , we have

A2 =
∑
j∈N∗i

∑
k 6=j,k∈N∗i

E
{

1

|N∗i |
E{[Yj − E(Yj|Xc, G∗)] [Yk − E(Yk|Xc, G∗)] |Xc, G∗}

}

=
∑
j∈N∗i

∑
k 6=j,k∈N∗i

E
{

1

|N∗i |
E [Yj − E(Yj|Xc, G∗)|Xc, G∗]E [Yk − E(Yk|Xc, G∗)|Xc, G∗]

}
= 0.

Therefore E[W ∗
i − E(W ∗

i |Xc, G∗)]2 = o(1) and the lemma is proved.

Proof of Proposition 2.2.1

Let’s consider the correspondence Γ : [0, 1]n 7→ [0, 1]n with each coordinate-function compo-

nent given by Definition 2.2.1. It follows from Heine-Borel Theorem and Tychonoff Theorem that

[0, 1]n is a compact space for sufficiently large n. It is obvious that [0, 1]n is nonempty and convex.

Note from Definition 2.2.1 that

pi(X
c, G∗) = Pr{εi ≤ α(Xi) + β(Xi)E[W ∗

i |Xc, G∗]|Xc, G∗}

= Pr

εi ≤ α(Xi) +
∑

yN∗
i
∈{0,1}|Ni|

W (yN∗i , G
∗
i )β(Xi)Pr(YN∗i = yN∗i X

c, G∗)

∣∣∣∣∣∣∣Xc, G∗


= Pr

{
εi ≤ α(Xi) +

∑
yN∗

i
∈{0,1}|Ni| [W (yN∗i , G

∗
i )β(Xi)Pr(YN∗i = yN∗i |X

c, G∗) + 0 · Pr(YN/N∗i = yN/N∗i |X
c, G∗)]

∣∣∣Xc, G∗
}
,

where YN/N∗i denotes the equilibrium actions of all players other than those connected with i and

yN/N∗i denotes the realized values for YN/N∗i . Note from equation (2.3) that both Pr(YN∗i =

yN∗i |X
c, G∗) and Pr(YN/N∗i = yN/N∗i |X

c, G∗) are continuous functions with respect to pj(·) for

∀j ∈ N , we thus get that each coordinate function pi(Xc, G∗) of the correspondence Γ is a con-

tinuous function of pj(·) for ∀j ∈ N . As a result, Γ per se is continuous. Since it is obvious that

[0, 1]n is a compact Hausdorff space, we get by applying the Closed-Graph Theorem that Γ has

a closed-graph and hence is said to be sequentially upper hemicontinuous. Given that [0, 1]n is

compact, Γ is also compact-valued upper hemicontinuous.
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We now show that the correspondence Γ is also convex-valued. For this purpose, we consider

two alternative Bayesian strategies p′i(X
c, G∗) ∈ [0, 1] and p′′i (X

c, G∗) ∈ [0, 1] for any given agent

i ∈ N . By definition, for any given best responses p−i(·) of the other players, we have

p′i(X
c, G∗)Ui1(p−i(·)) + (1− p′i(Xc, G∗))Ui0(p−i(·)) ≥ pi(·)Ui1(p−i(·)) + (1− pi(·))Ui0(p−i(·))

and

p′′i (X
c, G∗)Ui1(p−i(·)) + (1− p′′i (Xc, G∗))Ui0(p−i(·)) ≥ pi(·)Ui1(p−i(·)) + (1− pi(·))Ui0(p−i(·))

for ∀pi(·) ∈ [0, 1]. Since we have Ui0(p−i(·)) = 0 for any p−i(·), we thus have

p′i(X
c, G∗)Ui1(p−i(·)) ≥ pi(·)Ui1(p−i(·)),

p′′i (X
c, G∗)Ui1(p−i(·)) ≥ pi(·)Ui1(p−i(·)),

therefore, for any coefficient λ ∈ [0, 1], we obtain

[λp′i(X
c, G∗) + (1− λ)p′′i (X

c, G∗)]Ui1(p−i(·)) ≥ pi(·)Ui1(p−i(·))

for any p−i(·) ∈ [0, 1]n−1. Thus we have shown that Γ is also convex-valued.

For each individual, the maximization problem is written as

max
pi∈[0,1]

{0, piUi1(p−i)} ,

for any p−i(·) ∈ [0, 1]n−1 of the remaining players. Given the linear property of expected utility

and the compactness of domain [0, 1], it follows from Weierstrass Theorem that Γ is a nonempty-

valued correspondence. Therefore, an application of the Kakutani Fixed-point Theorem shows that

a Bayesian Nash equilibrium always exists.
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Finally, noting that ifXi = Xj , then it is straightforward that α(Xi) = α(Xj), β(Xi) = β(Xj).

By Lemma 2.2.1, W ∗
i = W ∗

j implies that E(W ∗
i |Xc, G∗) − E(W ∗

j |Xc, G∗) = op(1). In conse-

quence, it follows from Assumption 2.2.1 that these two players actually face the same decision

problem in the game for sufficiently large n, therefore their equilibrium strategies must be the

same. The proof is therefore complete.

Proof of Proposition 2.3.1

Let Υ denote the support of εi. Then for all i ∈ N , we have

|pi(Xc, G∗)− pi(Xi,W
∗
i )|

=|Pr{εi ≤ α(Xi) + β(Xi)E[W ∗
i |Xc, G∗]|Xc, G∗} − Pr{εi ≤ α(Xi) + β(Xi)W

∗
i |Xi,W

∗
i }|

=
∣∣∫

Υ
1{εi ≤ α(Xi) + β(Xi)E[W ∗

i |Xc, G∗]}fε|Xc,G∗(εi|Xc, G∗)dεi −
∫

Υ
1{εi ≤ α(Xi) + β(Xi)W

∗
i }fε|X,W ∗(εi|Xi,W

∗
i )dεi

∣∣
=
∣∣∫

Υ
1{εi ≤ α(Xi) + β(Xi)E[W ∗

i |Xc, G∗]}fε(εi)dεi −
∫

Υ
1{εi ≤ α(Xi) + β(Xi)W

∗
i }fε|W ∗(εi|W ∗

i )dεi
∣∣

=
∣∣∫

Υ
1{εi ≤ α(Xi) + β(Xi)E[W ∗

i |Xc, G∗]}fε(εi)dεi −
∫

Υ
1{εi ≤ α(Xi) + β(Xi)W

∗
i }[fε(εi)− fε(εi) + fε|W ∗(εi|W ∗

i )]dεi
∣∣

≤
∣∣∣∣∫

Υ

[1{εi ≤ α(Xi) + β(Xi)E[W ∗
i |Xc, G∗]} − 1{εi ≤ α(Xi) + β(Xi)W

∗
i }]fε(εi)dεi

∣∣∣∣
+

∣∣∣∣∫
Υ

1{εi ≤ α(Xi) + β(Xi)W
∗
i }(fε(εi)− fε|W ∗(εi|W ∗

i ))dεi

∣∣∣∣
≤
∫

Υ

|[1{εi ≤ α(Xi) + β(Xi)E[W ∗
i |Xc, G∗]} − 1{εi ≤ α(Xi) + β(Xi)W

∗
i }]| dFε(εi)

+

∫
Υ

∣∣1{εi ≤ α(Xi) + β(Xi)W
∗
i }(fε(εi)− fε|W ∗(εi|W ∗))

∣∣ dεi
≡B1 +B2,

where the second equality is by the definition of conditional expectation, the third equality is

because εi is independent with Xc and G∗, the first inequality is by triangular inequality and the

second inequality is by the fact that |E(A)| ≤ E|A|. We now prove that both B1 and B2 are op(1).
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Since the maximum value of |1(·)− 1(·)| is 1, we have

B1 ≤
∫

Υ

1{α(Xi) + β(Xi)E[W ∗
i |Xc, G∗] ≥ εi ≥ α(Xi) + β(Xi)W

∗
i }dFε(εi)

+

∫
Υ

1{α(Xi) + β(Xi)E[W ∗
i |Xc, G∗] ≤ εi ≤ α(Xi) + β(Xi)W

∗
i }dFε(εi)

≡C1 + C2.

Since C1 and C2 are similar, without loss of generality it suffices to show that C1 is op(1). By mean

value theorem,

C1 = Fε[α(Xi) + β(Xi)E(W ∗
i |Xc, G∗)]− Fε(α(Xi) + β(Xi)W

∗
i )

= fε(η)[α(Xi) + β(Xi)E(W ∗
i |Xc, G∗)− α(Xi)− β(Xi)W

∗
i ]

= fε(η)[β(Xi)E(W ∗
i |Xc, G∗)− β(Xi)W

∗
i ]

= fε(η)[β(Xi)(E(W ∗
i |Xc, G∗)−W ∗

i )],

where η ∈ [β(Xi)W
∗
i , β(Xi)E(W ∗

i |Xc, G∗)]. Since by Lemma 2.2.1 and Assumption 2.2.2,

β(Xi)(E(W ∗
i |Xc, G∗)−W ∗

i ) = op(1), we know C1 = op(1) and hence B1 = op(1). Also note that

by Lemma 2.2.1, the dependence between W ∗
i and εi disappears as n→∞, we have

fε(εi)− fε|W ∗(εi|W ∗) = op(1).

Therefore by dominated convergence theorem, B2 = op(1) and the desired result follows.

Proof of Proposition 2.3.2
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By the definition of conditional densities and Assumption 2.3.2,

fYW |X,W ′(y, w|x,w′) =

∫
W∗

fYWW ∗|W ′,X(y, w, w∗|w′, x)dw∗

=

∫
W∗

fY |XWW ∗W ′(y|x,w,w∗, w′)fWW ∗|XW ′(w,w
∗|x,w′)dw∗

=

∫
W∗

fY |X,W ∗(y|x,w∗)fWW ∗|XW ′(w,w
∗|x,w′)dw∗

=

∫
W∗

fY |X,W ∗(y|x,w∗)fW |W ∗XW ′(w|w∗, x, w′)fW ∗|XW ′(w∗|x,w′)dw∗

=

∫
W∗

fY |X,W ∗(y|x,w∗)fW |W ∗(w|w∗)fW ∗|W ′(w∗|w′)dw∗.

This establishes (2.6), and then we can follow the proof of Theorem 1 in [2] to show the uniqueness

of the solution.

Proof of Lemma 2.3.1

If v and v′ are observationally equivalent, there exists Fε|X,W ∗ and F ′ε|X,W ∗ in F such that for

all (X,W ∗) ∈ X × W∗, Fε|X,W ∗ [v(X,W ∗)] = F ′ε|X,W ∗ [v
′(X,W ∗)]. Since F ′ε|X,W ∗ is strictly

increasing, v′(X,W ∗) = (F ′ε|X,W ∗)
−1 ◦ Fε|X,W ∗ [v(X,W ∗)]. Let g = (F ′ε|X,W ∗)

−1 ◦ Fε|X,W ∗ , and

then g is strictly increasing.

On the other hand, suppose that v′ = g◦v for some strictly increasing function g. Let F ′ε|X,W ∗ =

Fε|X,W ∗ ◦ g−1. Then for all X ∈ X and W ∗ ∈ W∗, Fε|X,W ∗ [v(X,W ∗)] = F ′ε|X,W ∗ [v
′(X,W ∗)].

Hence v and v′ are observationally equivalent. This completes the proof.

Proof of Proposition 2.4.1

By Bayes theorem,

P(W ∗
d = j|X,Wd = i) =

P(Wd = i|X,W ∗
d = j)P(W ∗

d = j|X)

P(Wd = i|X)
.
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Therefore, the identification region of P(W ∗
d = j|X,Wd = i) can be characterized as

H[P(W ∗
d = j|X,Wd = i)] =

{
ΞijPWd

j (Ξ)

PW
∗
d

i

, Ξ ∈ H(Ξ∗)

}
, i, j ∈M, (A.2)

where PWj (Ξ) is the jth element of the matrix on the left hand side of (2.19). Then by (2.18)

and following [79], for any Ξ ∈ H(Ξ∗), the sharp identification region for Pr(Y = 1|X,Wd =

i,W ∗
d = j) is given by

H(Pr(Y = 1|X,Wd = i,W ∗
d = j)) = Ψp ∩

{
Pr(Y = 1|X,Wd = i)− ψ[1− ςji(Ξ)]

ςji(Ξ)
, ψ ∈ Ψp

}
, (A.3)

where Ψp denotes the space of all probability distributions on the measurable space (Y , Ω) and

ςji(Ξ) ∈ H[P(W ∗
d = j|X,Wd = i)]. Based on (A.3) and without any other restrictions on

Pr(Y = 1|X,Wd = i,W ∗
d = j), the sharp bounds of Pr(Y = 1|X,Wd = i,W ∗

d = j) can be

characterized as the smallest and largest values in the identification region, which are respectively,

L1(Ξ) =
Pr(Y = 1|X,Wd = i)− [1− ςji(Ξ)]

ςji(Ξ)

and

U1(Ξ) =
Pr(Y = 1|X,Wd = i)

ςji(Ξ)
.

Hence by the law of total probability, for a given value of Ξ ∈ H(Ξ∗), the smallest and largest

values in the identification region of p(X,W ∗
d = j) are

L2(Ξ) =
M∑
i=1

Pr(Y = 1|X,Wd = i)− [1− ςji(Ξ)]

ςji(Ξ)
· Ξij (A.4)

and

U2(Ξ) =
M∑
i=1

Pr(Y = 1|X,Wd = i)

ςji(Ξ)
· Ξij (A.5)

respectively. The sharp bounds of the discretized CCP p(X,W ∗
d = j), j ∈ M can be character-
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ized accordingly.

Proof of Theorem 2.5.1

The proof proceeds by checking conditions of Theorem 4.1 in [45]. Following the proof of

Lemma 2 in [2], we only need to verify the pointwise convergence of 1
n

∑n
i=1Qi(γ) to E[Qi(γ)]

for all γ ∈ Γn, where

Qi(γ) ≡ ln

∫
W∗

fY |X,W ∗(y
∗
i |xi, w∗; θ)f1(wi|w∗)f2(w∗|w′i)dw∗

By LIE,

E

[
1

n

n∑
i=1

Qi(γ)− E(Qi(γ))

]
= E

{
E

[(
1

n

n∑
i=1

Qi(γ)− E(Qi(γ))

)∣∣∣∣∣Xc, G∗

]}
= 0.

Furthermore we have

Var

{[
1

n

n∑
i=1

Qi(γ)− E(Qi(γ))

]∣∣∣∣∣Xc, G∗

}

=
1

n2

n∑
j=1

E
{

[Qi(γ)− E(Qi(γ))]2
∣∣Xc, G∗

}
+

2

n(n− 1)

n∑
i=1

n∑
j>i

E {[Qi(γ)− E(Qi(γ))][Qj(γ)− E(Qj(γ))]|Xc, G∗}

≡ D1 +D2.

By Assumption 2.5.5 and following a similar argument as in the proof of Lemma 2.2.1, we know

D1 = O

(
1

n

)
= o(1).
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Furthermore by Assumption 2.5.2,

D2 ≤
2m

(n− 1)
max
j 6=i,j∈N

E {[Qi(γ)− E(Qi(γ))][Qj(γ)− E(Qj(γ))]|Xc, G∗}

= o(1).

Then by law of total variance and dominated convergence theorem,

Var

[
1

n

n∑
i=1

Qi(γ)− E(Qi(γ))

]
= o(1).

Therefore, we can conclude that 1
n

∑n
i=1Qi(γ) − E(Qi(γ)) = op(1). By Lemma 2 in [2], all the

conditions in Theorem 4.1 of [45] are satisfied, hence we know

‖γ̂ − γ0‖s = op(1).

Proof of Theorem 2.5.2

We prove this theorem by checking conditions of Theorem 2 in [47]. Following the proof of

Theorem 3 in [2], Conditions B.1-B.4 are verified and we only need to verify Condition B.5, i.e.,

√
nµn

(
d ln fYW |W ′X(D, γ0)

dγ
[v∗n]

)
d−→ N(0, σ2

v∗), (A.6)

where µn(g) ≡ n−1
∑∞

i=1[g(γ,Di)− Eg(γ,Di)] denotes the empirical measure induced by g. We
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have

√
nµn

(
d ln fYW |W ′X(D, γ0)

dγ
[v∗n]

)
=
√
nµn

{
d ln fYW |W ′X(D, γ0)

dγ
[v∗n]− E

(
d ln fYW |W ′X(D, γ0)

dγ
[v∗n]

∣∣∣∣Xc, G∗
)

+ E
(
d ln fYW |W ′X(D, γ0)

dγ
[v∗n]

∣∣∣∣Xc, G∗
)}

=
√
nµn

{
d ln fYW |W ′X(D, γ0)

dγ
[v∗n]− E

(
d ln fYW |W ′X(D, γ0)

dγ
[v∗n]

∣∣∣∣Xc, G∗
)}

+
√
nµn

{
E
(
d ln fYW |W ′X(D, γ0)

dγ
[v∗n]

∣∣∣∣Xc, G∗
)}

≡
√
nHn1 +

√
nHn2.

We first show that Hn1 = op(1), which follows a similar argument as in the proof of Theorem

2.5.1. Specifically, by law of iterated expectation,

E(Hn1) = 0, (A.7)

and by law of total variance, we have

Var(Hn1) = E [Var(Hn1|Xc, G∗)] .

By a similar argument as in the proof of Proposition 2.3.1,

Var (Hn1|Xc, G∗)

= Var

{
µn

{
d ln fYW |W ′X(D, γ0)

dγ
[v∗n]− E

(
d ln fYW |W ′X(D, γ0)

dγ
[v∗n]

∣∣∣∣Xc, G∗
)}∣∣∣∣Xc, G∗

}
=O

(
1

n

)
.
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Hence by dominated convergence theorem,

Var(Hn1) = o(1). (A.8)

(A.7) and (A.8) together implies that

Hn1 = op(1). (A.9)

By applying a classical finite-dimensional CLT for strong mixing process, we have

Hn2
d−→ N(0, σ2

v∗), (A.10)

where

σ2
v∗ = Var

{
d ln fYW |W ′X(D1, γ0)

dγ
[v∗n]

}
+ 2

m∑
j=1

Cov

{
d ln fYW |W ′X(D1, γ0)

dγ
[v∗n],

d ln fYW |W ′X(Dj, γ0)

dγ
[v∗n]

}
.

Following the results in [2],

d ln fYW |W ′X(D, γ0)

dγ
[v∗n] = Gm∗(D)(E{Gm∗(D)Gm∗(D)T})−1λ, (A.11)

Consequently,
√
n(θ̂ − θ0)

d−→ N(0, V ) (A.12)

where

V =
[
E{Gm∗(D1)Gm∗(D1)T}

]−1

+ 2
m∑
j=1

E
{[

E{Gm∗(D1)Gm∗(D1)T}
]−1

Gm∗(D1)Gm∗(Dj)
T
[
E{Gm∗(Dj)Gm∗(Dj)

T}
]−1
}
.

92



A.2 Additional Simulation Results

In this appendix, we provide additional simulation results, specifically we change the sample

size n, the DGP for the IVG′, and the matrix PGij |G∗ij to examine the performance of our estimator.

In Table A.1 and A.2, we change the sample size n to 500 and 2000 respectively, and it is not

surprising to see that our method still works very well in terms of correcting the bias and reducing

the MSE of the estimated peer effects caused by measurement errors. In Tables A.3-A.5 the IV G′

is generated as G′ij = 1(0.6ηg∗ + 0.4ηz > 0.2), and we increase the probability of correct reporting

to 0.8, specifically the matrix PGij |G∗ij is we used here is

PGij |G∗ij =

0.8 0.2

0.2 0.8

 .
We can see that the bias of α0 is relatively small if we ignore the presence of measurement errors.

However, the bias in β is still fairly large and the Sieve MLE can reduce the bias and MSE in this

case. The results are robust to different values of the smoothing parameters.

Table A.1: Simulation Results (n = 500)

Parameter(=True Value)
α0 = 1 α1 = 1 β = 1

Mean Std.dev MSE Mean Std.dev MSE Mean Std.dev MSE
Ignoring meas. error 1.4380 1.1374 1.4829 0.9139 0.1020 0.0178 0.0144 1.3068 2.6756
Accurate data 1.0022 0.1316 0.0173 1.0209 0.1156 0.0138 1.0378 0.1940 0.0390
Sieve MLE 1.0040 0.3106 0.0963 0.9177 0.1274 0.0230 1.0297 0.6577 0.4326
Smoothing parameters: in = 2, jn = 3 in f1; in = 2, jn = 3 in f2.

Ignoring meas. error 1.3981 1.1156 1.4006 0.9155 0.1026 0.0177 0.0611 1.2827 2.5237
Accurate data 1.0047 0.1316 0.0173 1.0220 0.1155 0.0138 1.0330 0.1927 0.0381
Sieve MLE 0.9963 0.3095 0.0956 0.9114 0.1230 0.0230 1.0300 0.6590 0.4344
Smoothing parameters: in = 3, jn = 4 in f1; in = 3, jn = 4 in f2.

Ignoring meas. error 1.4020 1.1357 1.4489 0.9171 0.1021 0.0173 0.0547 1.3060 2.5957
Accurate data 1.0042 0.1302 0.0169 1.0238 0.1149 0.0137 1.0324 0.1903 0.0372
Sieve MLE 0.9847 0.3267 0.1068 0.9183 0.1398 0.0262 1.0546 0.6680 0.4483
Smoothing parameters: in = 2, jn = 3 in f1; in = 6, jn = 4 in f2.

Notes: Simulation results for G′ij = 1(0.6ηg∗ + 0.4ηz > 0.2) and P(Gij = k|G∗ij = k) = 0.2.
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Table A.2: Simulation Results (n = 2000)

Parameter(=True Value)
α0 = 1 α1 = 1 β = 1

Mean Std.dev MSE Mean Std.dev MSE Mean Std.dev MSE
Ignoring meas. error 1.3964 1.2575 1.7352 0.9046 0.0534 0.0120 0.0564 1.4609 3.0203
Accurate data 1.0040 0.0659 0.0044 1.0069 0.0576 0.0034 1.0063 0.0936 0.088
Sieve MLE 0.9974 0.2121 0.0449 0.9042 0.0761 0.0150 1.0444 0.4512 0.2052
Smoothing parameters: in = 2, jn = 3 in f1; in = 2, jn = 3 in f2.

Ignoring meas. error 1.3648 1.2651 1.7304 0.9053 0.0538 0.0119 0.0961 1.4687 2.9697
Accurate data 1.0060 0.0658 0.0044 1.0075 0.0576 0.0034 1.0061 0.0926 0.0086
Sieve MLE 0.9994 0.2374 0.0563 0.9088 0.1044 0.0192 1.0603 0.4655 0.2199
Smoothing parameters: in = 3, jn = 4 in f1; in = 3, jn = 4 in f2.

Ignoring meas. error 1.3679 1.2584 1.7158 0.9044 0.0538 0.0120 0.0906 1.4633 2.9639
Accurate data 1.0052 0.0661 0.0044 1.0066 0.0578 0.0034 1.0051 0.0928 0.0086
Sieve MLE 1.0126 0.2133 0.0455 0.9070 0.0935 0.0174 1.0247 0.4594 0.2112
Smoothing parameters: in = 2, jn = 3 in f1; in = 6, jn = 4 in f2.

Notes: Simulation results for G′ij = 1(0.6ηg∗ + 0.4ηz > 0.2) and P(Gij = k|G∗ij = k) = 0.2.

Table A.3: Simulation Results (n = 500)

Parameter(=True Value)
α0 = 1 α1 = 1 β = 1

Mean Std.dev MSE Mean Std.dev MSE Mean Std.dev MSE
Ignoring meas. error 1.0835 0.4254 0.1876 0.9164 0.1030 0.0176 0.4300 0.4847 0.5594
Accurate data 1.0041 0.1329 0.0177 1.0219 0.1149 0.0137 1.0350 0.1898 0.0372
Sieve MLE 1.0348 0.3597 0.1303 0.9105 0.2037 0.0494 0.8536 0.6288 0.4160
Smoothing parameters: in = 2, jn = 3 in f1; in = 2, jn = 3 in f2.

Ignoring meas. error 1.0854 0.4268 0.1891 0.9151 0.1016 0.0175 0.4257 0.4894 0.5689
Accurate data 1.0031 0.1298 0.0168 1.0207 0.1158 0.0138 1.0363 0.1918 0.0380
Sieve MLE 1.0503 0.3536 0.1273 0.9067 0.1770 0.0400 0.8477 0.6212 0.4084
Smoothing parameters: in = 3, jn = 4 in f1; in = 3, jn = 4 in f2.

Ignoring meas. error 1.0952 0.4308 0.1942 0.9186 0.1015 0.0169 0.4162 0.4933 0.5837
Accurate data 1.0061 0.1294 0.0168 1.0232 0.1149 0.0137 1.0303 0.1918 0.0376
Sieve MLE 1.0376 0.3840 0.1486 0.9201 0.1892 0.0421 0.8610 0.6389 0.4266
Smoothing parameters: in = 2, jn = 3 in f1; in = 6, jn = 4 in f2.

Notes: Simulation results for G′ij = 1(0.6ηg∗ + 0.4ηz > 0.5) and P(Gij = k|G∗ij = k) = 0.8.
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Table A.4: Simulation Results (n = 1000)

Parameter(=True Value)
α0 = 1 α1 = 1 β = 1

Mean Std.dev MSE Mean Std.dev MSE Mean Std.dev MSE
Ignoring meas. error 1.0552 0.4811 0.2341 0.9036 0.0779 0.0153 0.4519 0.5536 0.6062
Accurate data 1.0013 0.0937 0.0088 1.0037 0.0848 0.0072 1.0087 0.1366 0.0187
Sieve MLE 1.0226 0.2668 0.0715 0.9136 0.1223 0.0224 0.9750 0.5470 0.2993
Smoothing parameters: in = 2, jn = 3 in f1; in = 2, jn = 3 in f2.

Ignoring meas. error 1.0546 0.4735 0.2267 0.9063 0.0797 0.0151 0.4553 0.5430 0.5909
Accurate data 1.0027 0.0934 0.0087 1.0076 0.0870 0.0076 1.0115 0.1369 0.0188
Sieve MLE 1.0363 0.2664 0.0721 0.9048 0.1378 0.0280 0.9375 0.5611 0.3181
Smoothing parameters: in = 3, jn = 4 in f1; in = 3, jn = 4 in f2.

Ignoring meas. error 1.0497 0.4716 0.2244 0.9059 0.0772 0.0148 0.4585 0.5471 0.5919
Accurate data 1.0002 0.0917 0.0084 1.0062 0.0846 0.0072 1.0103 0.1327 0.0177
Sieve MLE 1.0214 0.2698 0.0731 0.9016 0.1166 0.0233 0.9558 0.5595 0.3144
Smoothing parameters: in = 2, jn = 3 in f1; in = 6, jn = 4 in f2.

Notes: Simulation results for G′ij = 1(0.6ηg∗ + 0.4ηz > 0.5) and P(Gij = k|G∗ij = k) = 0.8.

Table A.5: Simulation Results (n = 2000)

Parameter(=True Value)
α0 = 1 α1 = 1 β = 1

Mean Std.dev MSE Mean Std.dev MSE Mean Std.dev MSE
Ignoring meas. error 1.0154 0.5111 0.2609 0.9054 0.0545 0.0119 0.5033 0.5900 0.5941
Accurate data 1.0070 0.0655 0.0043 1.0062 0.0598 0.0036 1.0027 0.0932 0.0087
Sieve MLE 0.9950 0.2093 0.0437 0.9051 0.0707 0.0140 1.0484 0.4610 0.2144
Smoothing parameters: in = 2, jn = 3 in f1; in = 2, jn = 3 in f2.

Ignoring meas. error 1.0204 0.5122 0.2623 0.9043 0.0542 0.0121 0.4965 0.5905 0.6015
Accurate data 1.0055 0.0657 0.0043 1.0051 0.0597 0.0036 1.0034 0.0958 0.0092
Sieve MLE 1.0213 0.2067 0.0431 0.9077 0.0960 0.0177 0.9890 0.4652 0.2161
Smoothing parameters: in = 3, jn = 4 in f1; in = 3, jn = 4 in f2.

Ignoring meas. error 1.0071 0.5088 0.2584 0.9045 0.0535 0.0120 0.5110 0.5882 0.5844
Accurate data 1.0035 0.0654 0.0043 1.0062 0.0578 0.0034 1.0069 0.0940 0.0089
Sieve MLE 1.0071 0.2272 0.0516 0.9112 0.0963 0.0171 1.0328 0.4708 0.2223
Smoothing parameters: in = 2, jn = 3 in f1; in = 6, jn = 4 in f2.

Notes: Simulation results for G′ij = 1(0.6ηg∗ + 0.4ηz > 0.5) and P(Gij = k|G∗ij = k) = 0.8.
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APPENDIX B

NONPARAMETRIC IDENTIFICATION AND ESTIMATION OF ADDITIVE SOCIAL

INTERACTION MODELS WITH HOMOPHILY

B.1 Equilibrium and Identification

Proof of Theorem 3.2.1: This proof mainly relies on an application of Schauder Fixed Point

Theorem and Arzelà-Ascoli Theorem. We use the same approach developed by [36] in proving

Theorem 1 and we shall complete it in 5 steps.

Step 1. Let ∆ be the space of continuously differentiable functions that are matrix-valued with

codomain being the set of n × (K + 1) matrices whose entries lie in [0, 1]. Endow ∆ with the

norm ‖f‖ ≡ sup
S∈S
|f(S)|, in which S ⊆ Rn[d+q(K+1)] is a compact Hausdorff space, so that ∆ is a

subset of the Banach space C (S, ‖·‖). Pick Σ as the subset consisting of such functions satisfy-

ing properties: (1) They are symmetric everywhere on S; (2) They are everywhere continuously

differentiable; (3) They are equicontinuous; (4) They have columns that have a sum of one.

Step 2. It’s obvious that for any σ, σ′ ∈ Σ and χ ∈ [0, 1], χσ(S) + (1− χ)σ′(S) still meet the

above (1)-(4) properties. Hence, we have χσ(S)+(1−χ)σ′(S) ∈ Σ, which confirms the convexity

of Σ.

Step 3. For any k ∈ A, let Uik (σ−i, S, εik) be the payoff function at the true parameter θ. To

emphasize the dependence of Γ on S, we w.o.l.g. rewrite Γ(S;θ)(σ) defined above as Γ(θ)(σ, S), for

any σ ∈ Σ. By making use of Assumption 3.2.4, we are led to

Γ
(θ)
π(i)k(σ, π(S))

= Pr
(
Uπ(i)k

(
σ−π(i), π(S), επ(i)k

)
> Uπ(i)h

(
σ−π(i), π(S), επ(i)h

)
,∀ h ∈ A, h 6= k|S, σ

)
= Pr (Uik (σ−i, S, εik) > Uih (σ−i, S, εih) ,∀ h ∈ A, h 6= k|S, σ)

= Γ
(θ)
ik (σ, S).
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Hence, we can claim that Γ
(θ)
ik (·, S) maps symmetric functions to symmetric functions. Also, notice

from (5) that

Γ
(θ)
ik (σ, S) =

∫
ε∈R

[∏
h6=k

Fεih|S(ε+ Vi(Xi, Zik, S)− Vi(Xi, Zih, S))

]
fεik|S(ε)dε, ∀i, k,

using Assumption 3.2.2 and 3.2.5 assures that Γ(θ)(σ, S) is continuous in S and σ and also pre-

serves equicontinuity. Also, by using the definition of Γ(θ)(σ, S), it is straightforward to show that

the columns have a sum of one.

Step 4. We show that Γ(θ)(Σ, S) is a subset of a compact space. And we just need to show

that Σ is compact. Noting that S is compact, Σ is uniformly bounded, and Σ is equicontinuous by

our construction, we apply the Arzelà-Ascoli Theorem to obtain that Σ is relatively compact. It

hence suffices to show that Σ is also closed, and we prove it by means of contradiction. Letting

{σm}m be a sequence in Σ that converges to a limit written as σ∗. Suppose that σ∗ /∈ Σ. Then, for

any i ∈ N and k ∈ A, we should have σ∗ik(S; θ) 6= σ∗π(i)k(π(S); θ). However, σm ∈ Σ for any m

implies that σmik(S; θ) = σmπ(i)k(π(S); θ) for any m, hence leading to σ∗ik(S; θ) = σ∗π(i)k(π(S); θ) by

continuity. This, as a result, establishes the desired contradiction.

Step 5. A canonical application of the Schauder Fixed Point Theorem completes the proof.

Proof of Theorem 3.3.1: The proof is a modification of the argument in [9], let Vi(Xi, Zik, S)

and V ′i (Xi, Zik, S) be that Vi(Xi, Zik, S) 6= V ′i (Xi, Zik, S), by Assumption 3.3.2, ∃ l ∈ A and Zil

process an everywhere positive Lebesgue density conditional on S\{Zil} and Vi and V ′i are strictly

increasing with respect to Zil. Then by Assumption 3.3.1 and the argument in Matzkin (1993),

there exist a set S̃ ⊂ S with positive Lebesgue measure such that ∀S ∈ S̃, either

Vi(Xi, Zik, S) > Vi(Xi, Zil, S) and V ′i (Xi, Zik, S) < V ′i (Xi, Zil, S)

or

Vi(Xi, Zik, S) < Vi(Xi, Zil, S) and V ′i (Xi, Zik, S) > V ′i (Xi, Zil, S).
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Suppose without loss of generality that the first case holds, by Assumption 3.2.2, Fεih|S(·) is strictly

increasing. Then we can get

Fεih|S(ε+ Vi(Xi, Zik, S)− Vi(Xi, Zil, S)) > Fεih|S(ε+ Vi(Xi, Zil, S)− Vi(Xi, Zik, S))

and

Fεih|S(ε+ Vi(Xi, Zik, S)− Vi(Xi, Zih, S)) > Fεih|S(ε+ Vi(Xi, Zil, S)− Vi(Xi, Zih, S)).

Hence,

σik(S; θ)− σil(S; θ) =

∫
ε∈R

[∏
h6=k

Fεih|S(ε+ Vi(Xi, Zik, S)− Vi(Xi, Zih, S))

]
fεik|S(ε)dε

−
∫
ε∈R

[∏
h6=l

Fεih|S(ε+ Vi(Xi, Zil, S)− Vi(Xi, Zih, S))

]
fεih|S(ε)dε

> 0.

Therefore,

Vi(Xi, Zik, S) > Vi(Xi, Zil, S) =⇒ σik(S; θ) > σil(S; θ)

Similarly we can prove that

V ′i (Xi, Zik, S) < V ′i (Xi, Zil, S) =⇒ σik(S; θ′) < σil(S; θ′)

So for all S ∈ S either

σik(S; θ) 6= σik(S; θ′)

or

σil(S; θ) 6= σil(S; θ′)

Thus we have identified Vik(Xi, Zik, S) for all k ∈ A and i ∈ N .
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B.2 Nonparametric estimation

Proof of Theorem 3.4.1:

φ̂ik(S)− φik(S) =
n∑
j 6=i

σ̂jk(S)γ(Hij)−
n∑
j 6=i

σjk(S)γ(Hij) =
n∑
j 6=i

[σ̂jk(S)− σjk(S)]γ(Hij)

=
n∑
j 6=i


∑n

l=1 1(Yl = k)K(
Sl−Sj
h1

)∑n
l=1K

(
Sl−Sj
h1

) − E[1(Yj = k)|S]

 γ(Hij)

=
1

nh1

n∑
l=1

n∑
j 6=i

{
1(Yl = k)− E[1(Yj = k)|S]

f̂(Sl)

}
K

(
Sl − Sj
h1

)
γ(Hij)

=
1

nh1

n∑
l=1

n∑
j 6=i

{
1(Yl = k)− E[1(Yl = k)|S]

f(Sl)

}
K

(
Sl − Sj
h1

)
γ(Hij)+

n∑
j 6=i

 1

nh1

n∑
l=1

E[1(Yl = k)|S]K
(
Sl−Sj
h1

)
f̂(Sl)

− E[1(Yj = k)|S]

 γ(Hij) + (s.o.)

≡ An1 + An2 + (s.o.),

where (s.o.) denotes the terms of smaller order. We first show that An1 = Op(1/
√
n), note that by

Law of Iterated Expectation

E(An1) = E(E(An1|S))

= E

[
1

nh1

n∑
l=1

n∑
j 6=i

{
E[1(Yl = k)|S]− E[1(Yl = k)|S]

f(Sl)

}
K

(
Sl − Sj
h1

)
γ(Hij)

]

= 0.

since
∑n

j 6=i γ(Hij) = 1. To simplify notation define

Klj = K

(
Sl − Sj
h1

)
(B.1)
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and

Dlji =

{
1(Yl = k)− E[1(Yl = k)|S]

f(Sl)

}
Kljγ(Hij). (B.2)

Then we have

V ar(An1|S) =
1

n2h2
1

n∑
l=1

n∑
j 6=i

n∑
m=1

n∑
o 6=p

Cov [Dlji, Dmop|S]

=
1

n2h2
1

n∑
l=1

n∑
j 6=i

V ar [Dlij|S] +
1

n2h2
1

n∑
l=1

n∑
j 6=i

n∑
o 6=p

Cov [Dlji, Dlop|S] +

1

n2h2
1

n∑
l=1

n∑
m=1

n∑
j 6=i,p

Cov [Dlji, Dmjp|S] + (s.o.)

≡ Bn1 +Bn2 +Bn3 + (s.o.).

Since E(Dlji|S) = 0,

Bn1 =
1

n2h2
1

n∑
l=1

n∑
j 6=i

E(D2
lji|S)

=
1

n2h2
1

n∑
l=1

n∑
j 6=i

E[1(Yl = k)|S] · {1− E[1(Yl = k)|S]}
f 2(Sl)

K2
ljγ

2(Hij)

≤ 1

4n2h2
1

n∑
l=1

n∑
j 6=i

K2
ljγ

2(Hij)

f 2(Sl)

Since f(·) is bounded away from zero, we know for some C <∞,

E(Bn1) = E[E(Bn1|Si, Sj)]

≤ C

4n2h2
1

n∑
l=1

n∑
j 6=i

∫ ∫
γ2(Hij)

(∫
K2
ljf(Sl|Si, Sj)dSl

)
f(Si)f(Sj)dSidSj

=
C

4n2h1

n∑
l=1

n∑
j 6=i

∫ ∫
γ2(Hij)

(∫
K2(v)f(Sj + h1v)dv

)
f(Si)f(Sj)dSidSj

= O

(
1

nh1

)
.
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Similarly,

Bn2 =
1

n2h2
1

n∑
l=1

n∑
j 6=i

n∑
o 6=p

E(DljiDlop|S)

≤ 1

4n2h2
1

n∑
l=1

n∑
j 6=i

n∑
o 6=p

KljKloγ(Hij)γ(Hpo)

f(Sj)f(So)

and then

E(Bn2)

≤ C

4n2h2
1

n∑
i=1

n∑
j 6=i

n∑
o 6=p

∫ ∫ ∫ ∫
KljKloγ(Hij)γ(Hpo)f(Sl)f(Sj)f(So)f(Sp)dSldSjdSodSp

= O

(
1

n

)
.

Following a similar argument we can show that E(Bn3) = Op(1/n), hence by the law of total

variance,

V ar(An1) = E[V ar(An1)] + V ar[E(An1)]

= E(Bn1) + E(Bn2) + E(Bn3)

= O

(
1

nh1

)
+O

(
1

n

)
+O

(
1

n

)
= O

(
1

nh1

)
.

Hence An1 = Op(1/
√
nh1).

By condition (b), we know that ρnk(Si, S−i) is s-times differentiable and the derivatives are

uniformly bounded. Then in order to do multivariate Taylor expansion, we first introduce some

multi-index notations: for α ∈ Nd+q(K+1) and Si ∈ Rd+q(K+1), define the sth order derivative of

ρnk(Si, S−i) at Si as

ρ
(α)
nk (Si) ≡

∂|α|ρnk

∂Sα1
i1 ∂S

α2
i2 · · · ∂S

αd+q(K+1)

i(d+q(K+1))

, |α| ≤ s
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where |α| =
∑d+q(K+1)

i=1 αi and Sij denotes the jth component of Si. Also let α! =
∏d+q(K+1)

i=1 αi!

and Sα =
∏d+q(K+1)

i=1 Sαii . Then by Taylor expansion of σlk(S; θ) at Sj ,

σlk(S; θ) = ρnk(Sl, S−l) = ρnk(Sj, S−l) +
∑

1≤|b|<s

ρbnk(Sj)

b!
(Sl − Sj)b +

∑
|b|=s

Cb(Sm)(Sl − Sj)b

where limSm→Sj Cb(Sl) = 0. By symmetry, ρnk(Sj, S−l) = σjk(S; θ), hence

An2 =
n∑
j 6=i

 1

nh1

n∑
l=1

K
(
Sl−Sj
h1

)
γ(Hij)

f̂(Sj)
E[1(Yj = k)|S]− E[1(Yj = k)|S]

+

1

nh1

n∑
l=1

n∑
j 6=i

∑
1≤|b|<s

ρbnk(Sj)

b!
(Sl − Sj)bK

(
Sl−Sj
h1

)
γ(Hij)

f̂(Sj)
+

1

nh1

n∑
l=1

n∑
j 6=i

∑
|b|=s

Cb(Sl)(Sl − Sj)bK
(
Sl−Sj
h1

)
γ(Hij)

f̂(Sj)

≤
∑

1≤|b|≤s

Bb

b!

∣∣∣∣∣∣ 1

nh1

n∑
l=1

n∑
j 6=i

(Sl − Sj)bK
(
Sl−Sj
h1

)
γ(Hij)

f̂(Sj)

∣∣∣∣∣∣
≤
∑

1≤|b|≤s

Bb

b!

∣∣∣∣∣∣ 1

nh1

n∑
l=1

n∑
j 6=i

(Sl − Sj)bK
(
Sl−Sj
h1

)
γ(Hij)

f̂(Sj)
− E[(Sj − Si)b]

∣∣∣∣∣∣+∑
1≤|b|≤s

Bb

b!

∣∣E[(Sj − Si)b]
∣∣

where the term Bb is the upper bound for ρbnk(Si) and maxl∈N Cb(Sl) < Bb. By standard argument

of Taylor expansion and change of variables, we have

An2 = Op

 1√
nh1

+

d+q(K+1)∑
r=1

hv1r

 .

Hence

φ̂ik(S)− φik(S) = Op

 1√
nh1

+

d+q(K+1)∑
r=1

hv1r

 = op(1). (B.3)
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Proof of Lemma 3.4.1: Let

Q∗n(θ, φ) ≡ 1

n

n∑
i=1

K∑
k=1

1(Yi = k)
K∑
h6=k

1
(
φTi θk > φTi θh

)
.

Then by Triangle inequality,

sup
θ∈Θ
|Qn(θ, φ̂, h2)−Q(θ, φ)|

≤ sup
θ∈Θ

[|Qn(θ, φ̂, h2)−Qn(θ, φ, h2)|+ |Qn(θ, φ, h2)−Q∗n(θ, φ)|+ |Q∗n(θ, φ)−Q(θ, φ)|]

≤ sup
θ∈Θ
|Qn(θ, φ̂, h2)−Qn(θ, φ, h2)|+ sup

θ∈Θ
|Qn(θ, φ, h2)−Q∗n(θ, φ)|

+ sup
θ∈Θ
|Q∗n(θ, φ)−Q(θ, φ)|

≡ An1 + An2 + An3.

Next we need to prove that Ani = op(1) for i = 1, 2, 3.

An1 = supθ∈Θ

∣∣∣∣∣ 1
n

∑n
i=1

∑K
k=1 1(Yi = k)

∑K
h6=kG

(
φ̂Ti θk − φ̂Ti θh

h2

)
− 1

n

∑n
i=1

∑K
k=1 1(Yi = k)

∑K
h6=kG

(
φTi θk − φTi θh

h2

)∣∣∣∣∣
≤

n∑
i=1

K∑
k=1

K∑
h6=k

sup
θ∈Θ

∣∣∣∣∣ 1n1(Yi = k)

[
G

(
φ̂Ti θk − φ̂Ti θh

h2

)
−G

(
φTi θk − φTi θh

h2

)]∣∣∣∣∣
≤

n∑
i=1

K∑
k=1

K∑
h6=k

sup
θ∈Θ

∣∣∣∣∣ 1n
[
G

(
φ̂Ti θk − φ̂Ti θh

h2

)
−G

(
φTi θk − φTi θh

h2

)]∣∣∣∣∣ .
By condition G3,

∣∣∣∣∣ 1n
[
G

(
φ̂Ti θk − φ̂Ti θh

h2

)
−G

(
φTi θk − φTi θh

h2

)]∣∣∣∣∣ ≤ c ·

∣∣∣∣∣ φ̂Ti θk − φ̂Ti θhnh2

− φTi θk − φTi θh
nh2

∣∣∣∣∣
= c ·

∣∣∣∣∣(φ̂Ti − φTi ) · (θk − θh)
nh2

∣∣∣∣∣ = op(1)

by Theorem 3.4.1, Assumption 3.4.3 and Cauchy-Schwarz Inequality. Thus we know An1 = op(1)
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by Slutsky’s theorem.

An2 = supθ∈Θ

∣∣∣∣ 1
n

∑n
i=1

∑K
k=1 1(Yi = k)

∑K
h6=kG

(
φTi θk − φTi θh

h2

)
− 1

n

∑n
i=1

∑K
k=1 1(Yi = k)

∑K
h6=k 1

(
φTi θk > φTi θh

)∣∣∣∣
≤ 1

n

n∑
i=1

K∑
k=1

K∑
h6=k

sup
θ∈Θ

∣∣∣∣G(φTi θk − φTi θhh2

)
− 1

(
φTi θk > φTi θh

)∣∣∣∣
≡ Bn1(a) +Bn2(a),

where

Bn1(a) =
1

n

n∑
i=1

K∑
k=1

K∑
h6=k

sup
θ∈Θ

∣∣∣∣G(φTi θk − φTi θhh2

)
− 1

(
φTi θk > φTi θh

)∣∣∣∣ · 1(|φTi θk − φTi θh| > a)

and

Bn2(a) =
1

n

n∑
i=1

K∑
k=1

K∑
h6=k

sup
θ∈Θ

∣∣∣∣G(φTi θk − φTi θhh2

)
− 1

(
φTi θk > φTi θh

)∣∣∣∣ · 1(|φTi θk − φTi θh| ≤ a).

Since limn→∞ h2 = 0, conditions G1 and G2 imply that Bn1(a) → 0 for each a > 0 as n → ∞.

As for Bn2(a), since by condition G1, G(·) is bounded by M , we know

Bn2(a) ≤ 1

n

n∑
i=1

K∑
k=1

K∑
h6=k

M · sup
θ∈Θ

1(|φTi θk − φTi θh| ≤ a)

= M
K∑
k=1

K∑
h6=k

1

n

n∑
i=1

sup
θ∈Θ

1(|φTi θk − φTi θh| ≤ a).

By Lemma 2.6.17 and 2.6.18 in [62], we know {1(|φTi θk − φTi θh| ≤ a) : θ ∈ Θ} is VC-

subgraph given Assumption 3.4.1. Thus Glivenko-Cantelli Theorem (see, e.g., Theorem 2.4.3 in

[62]) implies that

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

1(|φTi θk − φTi θh| ≤ a)− E
[
1(|φTi θk − φTi θh| ≤ a)

]∣∣∣∣∣ = op(1). (B.4)

Let r(·) : Z 7→ Θ be such that r(Zil) = vi(Zil, S\{Zil}). Then r−1(·) exists by Assumption
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3.3.2, thus by Triangle Inequality and Law of Iterated Expectation,

E
[
1(|φTi θk − φTi θh| ≤ a)

]
≤
∫
s∈S

[∫ r−1(a)

r−1(−a)

|φTi θk|+ |φTi θh|fZil|S(z)dz

]
fS(s)ds, (B.5)

where fZil|S(·) denotes the conditional density function of Zil given S and fS(·) is the density

function of S. By Assumption 3.3.2, the integral in brackets of (B.5) is continuous, hence

by making a arbitrarily close to 0, it will converge to 0 uniformly over θ ∈ Θ. Since it is

also bounded by 1, using Lebesgue Dominated Convergence Theorem, we can immediately get

E
[
1(|φTi θk − φTi θh| ≤ a)

]
converges to 0 uniformly over θ ∈ Θ. Thus by (B.4),

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

1(|φTi θk − φTi θh| ≤ a)

∣∣∣∣∣ = op(1).

Again by Slutsky’s Theorem, Bn2(a) = op(1), so An2 = op(1) as well.

An3 = supθ∈Θ

∣∣∣ 1
n

∑n
i=1

∑K
k=1 1(Yi = k)

∑K
h6=k 1

(
φTi θk > φTi θh

)
− E

[∑K
k=1 1(Yi = k)

∑K
h6=k 1(φTi θk > φTi θh)

]∣∣∣
≤

K∑
k=1

K∑
h6=k

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

1(Yi = k) · 1
(
φTi θk > φTi θh

)
− E

[
1(Yi = k) · 1

(
φTi θk > φTi θh

)]∣∣∣∣∣
= op(1)

by Glivenko-Cantelli Theorem. Consequently,

sup
θ∈Θ
|Qn(θ, φ̂, h2)−Q(θ, φ)| = An1 + An2 + An3 = op(1).
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Proof of Lemma 3.4.2: By Law of Iterated Expectation and Assumption 3.3.2,

Q(θ, φ) = E

[
K∑
k=1

1(Yi = k)
K∑
h6=k

1(φTi θk > φTi θh)

]

=
K∑
k=1

K∑
h6=k

∫
s∈S

[∫ ∞
r−1(φTi θh)

1(Yi = k)fZil|S(z)dz

]
fS(s)ds.

Since r(·) : Z 7→ Θ is continuous and strictly increasing by Assumption 3.2.5, r−1(·) : Θ 7→ Z is

also continuous. By Assumption 3.4.2, Θ is compact with respect to ‖·‖Θ, thus r−1(·) is uniformly

continuous. Suppose there exists a sequence of functions {θnh}n∈N in Θ and ‖θnh − θh‖Θ → 0 as

n→∞. Then by Assumption 3.4.2,

sup
θ∈Θ
‖θnh − θh‖Θ = o(1). (B.6)

By definition of uniform continuity, ∃ δ > 0 such that if ‖θnh − θh‖Θ < δ, then

|r−1(φTi θnh)− r−1(φTi θh)| < ε (B.7)

for all ε > 0. By (B.6), ∃ n0 ∈ N such that for all n ≥ n0,

sup
θ∈Θ
‖θnh − θh‖Θ < δ,

then (B.7) will hold. Define rn(Zil) = φTi θnh, and then by Triangle Inequality and (B.7),

sup
θ∈Θ
|r−1
n (φTi θnh)− r−1(φTi θh)|

≤ sup
θ∈Θ
|r−1
n (φTi θnh)− r−1(φTi θnh)|+ sup

θ∈Θ
|r−1(φTi θnh)− r−1(φTi θh)|

≤ sup
θ∈Θ
|r−1(φTi θnh)− r−1(φTi θh)|

< ε.
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Since ε > 0 is arbitrary, we conclude that r−1
n (φTi θnh)→ r−1(φTi θh) uniformly over θ ∈ Θ. Hence

by Lebesgue Dominated Convergence Theorem,

∫ ∞
r−1
n (φTi θnh)

1(Yi = k)fZil|S(z)dz −
∫ ∞
r−1(φTi θh)

1(Yi = k)fZil|S(z)dz = o(1).

Thus the integral in brackets is continuous in θ. Since this integral is also bounded by 1, again by

Dominated Convergence Theorem, we conclude that Q(θ, φ) is continuous in θ.

Proof of Lemma 3.4.3: Using a similar argument as in the proof of Lemma 3.4.2, we know

Pr(φTi θk = φTi θh) =

∫
s∈S

[∫ r−1(φTi θh)

r−1(φTi θh)

fZil|S(z)dz

]
fS(s)ds = 0. (B.8)

Using Law of Iterated Expectation, rewrite Q(θ, φ) as

Q(θ, φ) =
K∑
k=1

K∑
h6=k

E
[
σik(S; θ)1(φTi θk > φTi θh)

]
. (B.9)

By Theorem 3.3.1, we know θ∗ is identified, thus by the proof of Theorem 3.3.1, we can get

φTi θ
∗
k > φTi θ

∗
h ⇐⇒ σik(S; θ∗) > σih(S; θ∗)

for any (k, h) ∈ A×A such that k 6= h. Therefore, Q(θ, φ) will be globally maximized by θ∗ since

there is no tie in choice probability. Now we need to prove that Q(θ, φ) is uniquely maximzed by

θ∗, suppose by contradication there exists another θ′ ∈ Θ such that θ′ 6= θ∗ and θ′ maximizes

Q(θ, φ). Then by the proof of Theorem 3.3.1, we know there will exist some (k, l) ∈ A× A such

that

φTi θ
∗
k > φTi θ

∗
l and φTi θ

′
k < φTi θ

′
l

or

φTi θ
∗
k < φTi θ

∗
l and φTi θ

′
k > φTi θ

′
l.
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Therefore, it is not possible for θ′ to maximize Q(θ, φ) as well, this is a contradiction, so we can

conclude that Q(θ, φ) will be uniquely maximized by θ∗.

B.3 Semiparametric estimation

Proof of Theorem 3.4.3: Under our setting, {Yi}i∈N is not an independent random sequence.

Therefore, the results in [12] cannot be directly used. However, since Yi ⊥ Yj conditional on S

for all i 6= j, we can instead derive the conditional asymptotic distribution of θ̂1 and show that

asymptotically the conditional and unconditional distribution θ̂ are equivalent.

Let θ̂ be a smoothed maximum score estimator. Then we know with probability approaching

1, Bn(θ̂, φ̂1, h2) = 0, hence by Taylor expansion,

Bn(θ, φ̂1, h2) +Hn(θ̃, φ̂1, h2)(θ̂ − θ) = 0, (B.10)

where θ̃ lies between θ and θ̂. Therefore,

√
nh2Bn(θ, φ̂1, h2) +Hn(θ̃, φ̂1, h2)

√
nh2(θ̂ − θ) = 0. (B.11)

Then we have

√
nh2(θ̂ − θ) = −Hn(θ̃, φ̂1, h2)−1

√
nh2Bn(θ, φ̂1, h2)

= −Hn(θ̃, φ̂1, h2)−1
√
nh2{Bn(θ, φ̂1, h2)− E[Bn(θ, φ̂1, h2)|S] + E[Bn(θ, φ̂1, h2)|S]}

≡ −Hn(θ̃, φ̂1, h2)−1
√
nh2{Cn + E[Bn(θ, φ̂1, h2)|S]}. (B.12)

We first show that
√
nh2Cn = op(1), Let

bi(θ, φ̂1, h2) = [2 · 1(Yi = 1)− 1]

(
w̃i1
h2

)
G′
(
wTi1θ

h2

)
. (B.13)
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Then
√
nh2Bn(θ, φ̂1, h2) = (

√
h2/n)

∑n
i=1 bi(θ, φ̂1, h2). By Law of Iterated Expectation

E(
√
nh2Cn) = 0. (B.14)

E[(
√
nh2Cn)2] = E{E[(

√
nh2Cn)2|S]}

=
h2

n
E

E

( n∑
i=1

bi(θ, φ̂1, h2)− E(bi(θ, φ̂1, h2)|S)

)2
∣∣∣∣∣∣S


=
h2

n

n∑
i=1

E
{
E
[(
bi(θ, φ̂1, h2)− E(bi(θ, φ̂1, h2)|S)

)2
∣∣∣∣S]}

= o(1),

where the third equality is by conditional independence and the fact that

E[bi(θ, φ̂1, h2) − E(bi(θ, φ̂1, h2)|S)|S] = 0 and the last equality is because V ar(bi(θ, φ̂1, h2)) is

bounded by Assumption 3.4.4. Hence

√
nh2Cn = op(1). (B.15)

By Law of Iterated Expectation and Mean Value Theorem,

√
nh2E{E[Bn(θ, φ̂1, h2)|S]}

=
√
nh2E[Bn(θ, φ̂1, h2)]

=
√
nh2E[Bn(θ, φ1, h2)] +

√
nh2

∂E[Bn(θ, φ̃1, h2)]

∂φ1

(φ̂1 − φ1),

where φ̃1 is between φ̂1 and φ1. By Assumption 3.4.5,
√
nh2(φ̂1 − φ1) = op(1) and ∂E[Bn(θ,φ̃1,h2)]

∂φ1

is bounded by Condition G4 and Assumption 3.4.4, hence we know

√
nh2E[Bn(θ, φ̂1, h2)] =

√
nh2E[Bn(θ, φ1, h2)] + op(1). (B.16)
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By Lemma 5 in [12],

lim
n→∞

√
nh2E[Bn(θ, φ1, h2)] =

√
λB.

Therefore,

lim
n→∞

√
nh2E[Bn(θ, φ̂1, h2)] =

√
λB + op(1). (B.17)

Consequently, by Lebegesue Dominated Convergence Theorem and Lemma 5 in Horowitz (1992),

lim
n→∞

V ar{
√
nh2E[Bn(θ, φ̂1, h2)|S]} = D + op(1). (B.18)

By (B.17) and (B.18) and apply Lindeberg-Feller’s Central Limit Theorem, we have

D−
1
2

√
nh2[E[Bn(θ, φ̂1, h2)|S]− E(Bn(θ, φ̂1, h2))]

d−→ N (0, Id+q), (B.19)

where Id+q is an identify matrix with dimension d + q. Furthermore it is easy to verify that if

φ̂1 − φ1 = op(1). Then

Hn(θ̃, φ̂1, h2)−Hn(θ̃, φ1, h2) = op(1)

by condition G4. Hence by Law of Iterated Expectation and Lemma 8 and Lemma 9 in [12], the

stochastic equicontinuity of Hn(θ, φ̂1, h2) holds at θ and then we know

Hn(θ̃, φ̂1, h2) = H + op(1) (B.20)

since θ̂ is a consistent estimator for θ. By Slutsky’s Theorem, (B.12), (B.19), (B.20) together imply

that √
nh2(θ̂ − θ) d−→ N (−

√
λH−1B,H−1DH−1).
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