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ABSTRACT 

 

Beef cattle production in the United States is faced with restricted access to 

previously used feed-grade antibiotics, deemed medically important, under the 2017 

Veterinary Feed Directive. Suitable alternatives should be characterized and verified across 

different feeding scenarios to maintain production efficiency and implementation strategies 

should be investigated to ensure the best utilization of current technology.  

In the first study, continuous versus rotational feeding of two products, monensin 

and bambermycin, were investigated to determine their effects on volatile fatty acids, 

potential activity of methane production, and rumen microbial populations of steers. We 

found no evidence to suggest that rotational feeding schemes were more effective than the 

continuous feeding of monensin and bambermycin or that rotational regimens delay 

microbial adaptation.  

In the second study, the effects of supplemental yeast (ADY) in the diets of finishing 

steers were investigated under different environmental temperatures (TN = 18 ± 0.55°C or 

HS = 35 ± 0.55°C). We concluded that supplementing ADY in the diets of finishing steers 

improved digestibility, digestible energy, metabolizable energy, and mean ruminal pH under 

TN conditions, but not under extreme HS conditions, due to depressed intake and energetic 

demand. 

In the third study, we observed the effects of supplementing ADY to feedlot steers 

(n = 120) fed for 164 days. Final treatment assignments were designated on d 70, followed 

by a 14 d dietary transition to a finishing diet, resulting in four treatment groups (Balaam’s 

design: two parallel groups and two cross-over groups). There is evidence to suggest that the 
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addition of ADY in the diets of beef cattle during the dietary transition may aid in ruminal 

stabilization without affecting growth performance or carcass traits. 

A fourth study was initiated to isolate and characterize bacteriophage that target 

hyper ammonia producing bacteria (HAB) in the rumen. HAB had poor bacterial lawn 

growth to detect phage plaques. Sequential transfer methods of Félix d'Hérelle are 

recommended to identify phage presence on these obligately anaerobic bacteria. Naturally 

occurring antimicrobial substances in environmental samples may have interfering effects. 

Future phage work should look to high impact bacteria that cause easily measurable losses 

to truly understand efficacy.  
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

INTRODUCTION 

Beef producers in the United States are a relatively small community (< 0.5% of 

Americans > 18 years old) according to the 2012 USDA census. Challenges facing this 

community include, but are not limited to: federal regulations dictating policy in animal 

production systems, impending climate change and the agricultural contribution to 

greenhouse gasses, the ever-scrutinizing public perception of animal husbandry, increasing 

emergence of multiple drug-resistant bacteria and a rising global demand for protein coupled 

with the largest threat to food and water security. Meanwhile business must remain 

economically sustainable to deliver a source of safe, high-quality beef protein to consumers. 

Regarding food security, a large amount of research dollars have been devoted to using the 

best technologies and practices available to promote sustainability from both an economic 

and environmental standpoint. 

In the beef cattle industry, the many segments and length of the production chain 

coupled with environmental challenges require the most efficient use of natural resources to 

be economically and environmentally sustainable. Considerable effort has been made by 

researchers to establish nutrient requirements of beef cattle (National Academies of 

Sciences, Engineering, and Medicine, NASEM, 2016) at all phases of production and predict 

their performance using dynamic models for decision-making software (Tedeschi and Fox, 

2018). Forecasting tools, will be an important necessity to endure the upcoming challenges 
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facing the cattle feeding industry: 1) increasing awareness and incidence of antibiotic-

resistant bacteria, and 2) producing beef in a warming climate.  

Predicting energy requirements and feed efficiency 

Energy requirements of beef cattle. Calorimetry has been used to determine animal 

energy requirements as well as the energy provided by typical feed stuffs. Calorimetry is the 

measurement of heat and therefore may be used to determine the energetic costs of animal 

maintenance, growth, and performance, or the energy contained in a diet. The maintenance 

energy required by animals of a given weight, gender and frame is based on the fasting heat 

production measured by indirect calorimetry. Comparative slaughter studies, however, have 

resulted in the equation [1.1] we use to estimate the net energy for maintenance (NEm) 

requirements for beef cattle,  

NEm = 0.077×(SBW)0.75 [1.1] 

where SBW= Shrunk body weight in kg, and NEm= Mcal/d (Lofgreen and Garrett,1968; 

Garrett,1980).  

Energy terms and concepts are represented in Figure 1.1 adapted from NASEM 

(2016). The net energy system has been established for large ruminants and represents the 

flow of energy losses and energy retained. Gross energy (GE) is the energy of the diet 

derived from the heat of combustion. Energy lost in feces (FE) may be deducted from GE 

resulting in the apparently digestible energy (DE). The next sources of energy loss are 

urinary energy (UE) and gaseous energy (GASE), primarily CH4. Deduction of UE and 

GASE from DE result in the metabolizable energy (ME). Heat production or heat energy 

(HE) may be measured via indirect calorimetry. Typically in calorimetry only O2 and CO2 

are measured, but modifications have been made due to the large quantities of CH4 produced 
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by ruminants. The volume of O2, CO2, and CH4 and the urinary nitrogen excretion (g/d) may 

be used according to the Brouwer (1965) equation [1.2]:  

HE (kcal) = (3.866×VO2) + (1.2×VCO2) - (0.518×VCH4) - (1.431 ×urinary N) [1.2] 

Subtracting the HE from ME will result in retained energy (RE) for productive functions 

such as growth, pregnancy, or lactation. While serial slaughter may be the recommended 

method for determining RE, for some classes of animals slaughter may not be ideal (i.e., 

pregnant and lactating cattle) and can be expensive when considering sample size and labor. 

 There is some variation in energy requirements for maintenance which differ by body 

weight (BW), breed, sex, age, environment, physiological status and previous nutritional 

status (NASEM, 2016). In prediction tools like the Cornell Net Carbohydrate and Protein 

System (CNCPS), Large Ruminant Nutrition System (LRNS) and the Beef Cattle Nutrient 

Requirements Model (BCNRM, 2016) accounting for variation is key in optimizing 

prediction accuracy of diets for different classes of cattle experiencing different 

environments (Tedeschi and Fox, 2018).  

 One of the top bullets in Chapter 21 Research Needs of NASEM (2016), under 

Maintenance, Growth and Reproduction and Stress is additional research to refine the 

energetic adjustments associated with changes in environmental temperature. In light of the 

threat of a warming climate, the effect of increased heat stress in beef cattle is a major 

concern and is already a relevant topic considering its major drain on animal production in 

the hot season. Animals adapt to heat stress by decreasing DMI and lowering their metabolic 

rate (Fox et al., 1988). To maintain core body temperature cattle will invoke measures of 

evaporative heat loss of sweating and panting. However, when the thermal gradient between 

core body temperature and environmental temperature decrease, more work (energy) is 
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required to dissipate heat and prevent heat loading. The only heat stress adjustments made 

in the current beef cattle models are based on work in Bos indicus cattle which correspond 

to a panting score (Fox et al., 1992). Bos indicus cattle exhibiting rapid, shallow panting 

require approximately a 7 % increase in maintenance energy and an 18 % increase when 

exhibiting open mouth panting. Tedeschi and Fox (2018) discuss the work that has been 

done to better predict the energy requirements of heat-stressed Bos taurus cattle (technically 

dairy cattle). Fox and Tylutki (1998) developed current effective temperature index (CETI) 

from published data and models derived from the work in Bos indicus cattle. CETI is based 

on the ambient temperature, hours of exposed sunlight, relative humidity and rate of wind 

speed to develop a heat stress adjustment factor (HSF) with a coefficient of determination 

of 0.99. The HSF is a value greater than one that can be multiplied by the basal NEm to 

predict the energy required for heat dissipation. It has been established that the different 

genotypes of Bos indicus, Bos taurus beef and Bos taurus dairy cattle have different 

maintenance requirements (NASEM, 2016). There are no models for HSF adjustments in 

beef cattle, and current software adjustments use either the CETI for dairy cattle or the 

panting index for Bos indicus cattle. The CETI model has been validated in dairy cattle with 

great precision and could likely be adapted easily for beef cattle. Research using more 

extreme temperature and humidity may also be necessary to ensure models are within the 

scope of realistic environmental factors. 

 In addition to predicting energy requirements of heat-stressed beef cattle, 

simultaneous objectives should be investigated regarding rumen digestibility of feeds. It has 

been suggested that the decreases in DMI observed in cattle under heat stress are offset to 

some degree by the greater ruminal digestibility due to the increased retention time (Beede 
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and Collier, 1986). However, this likely varies depending on the total digestible nutrients 

(TDN) of the diet, intake level, temperature of the rumen and liquid dilution effects. To my 

knowledge, there have not been any beef cattle studies investigating this interaction. 

Additionally, extreme environmental temperature interactions with dietary ingredients may 

alter the kinetics of rumen fermentation which is outside the scope of our current models. 

Theoretically, finishing cattle with slower passage rates may experience greater 

accumulation of acids in the rumen, resulting in lower pH and impose a greater risk of 

ruminal dysfunction. Current models include estimations for mean ruminal pH on the basis 

of physically effective NDF inclusion of the diet. However, mean pH does not elucidate the 

lower critical pH thresholds associated with the onset of ruminal acidosis. Establishing the 

effect size of environmental and dietary risk factors related to ruminal acidosis may increase 

precision diet formulation and offer greater flexibility for different situations. Future 

research should address rumen kinetics of different diets at gradients of temperatures outside 

the thermoneutral zone of beef cattle.  

Efficient diets & growth-promoting feed additives 

In terminal cattle, feedlot diets are nutrient dense, rich in processed grain and readily 

fermentable. Highly fermentable diets promote greater digestibility and rate of feed 

conversion over forage-based diets. Finishing cattle typically spend 100 – 180 days on a high 

grain diet to reach desirable end goals (weight or carcass merit) based on the current market 

situations. However, there is an inherent risk of feeding highly fermentable diets which can 

cause ruminal disturbances. Rapid fermentation may result in acid accumulation in the 

rumen which exceeds the animal ability to properly buffer, resulting in ruminal acidosis. The 

severity of acidosis (acute or sub-acute) is probably animal-dependent, but in the literature, 
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critical pH thresholds have been established that cause systemic changes in the rumen 

microflora (Nagaraja and Titgemeyer, 2007, Nagaraja and Lechtenberg, 2007). Ruminal 

acidosis results in time-off feed and cattle who experience a bout of acidosis are often subject 

to repeated occurrences (Dohme et al., 2008). Chronic acidosis may lead to rumenitis, 

parakeratosis of the rumen wall, laminitis and in extreme cases death from metabolic 

acidosis (Nocek, 1997; Owens et al., 1998, Nagaraja and Titgemeyer, 2007). Acidosis may 

also be linked with liver abscesses and which consequently negatively impact animal growth 

productivity. Paced adaptation to high grain diets is critical for transitioning cattle and 

ruminal health (Fernando et al., 2010). However, bouts of acidosis may also occur in 

previously adapted cattle when cattle suddenly consume a larger than normal meal. 

Environmental conditions may also play a role in ruminal acidosis as temperature may affect 

feeding behavior and ruminal passage rate which both affect the rate and extent of nutrient 

fermentation. Much research has been conducted to identify and reduce the incidence of 

acidosis in feedlot cattle. New technology has been pursued of indwelling rumen monitoring 

systems that may help to better characterize rumen dysfunction and sub-clinical stress 

indicators (AlZahal et al., 2008). 

Feed additives, specifically antibiotics and ionophores, are rumen modifying 

technologies currently used to alter fermentation end products to meet the efficiency goals. 

Manipulation of ruminal fermentation is an attempt to optimize feeding and growth 

performance and reduce the risks associated with aggressive feeding regimens. Feeding 

antibiotics and ionophores have been shown to decrease CH4 and ammonia (NH3) output 

and increase rumen efficiency of feed ingredients, reduction of the acetate: propionate ratio, 

reduce ruminal disorders, improving nutrient utilization, decreasing time on feed (Brown et 
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al., 1975; Raun et al., 1976, Poos et al., 1979; Fuller and Johnson, 1981, Goodrich et al., 

1984; Smith et al., 1989; Morris et al., 1990; Casey et al., 1994; Rogers et al., 1995; de Paula 

Lana, 1997; Coe et al., 1999; Nagaraja and Chengappa, 1998; Salles et al., 2008; Nickell and 

White, 2010) and thus optimizing the use of natural resources. The effects of ionophores and 

antibiotics are caused by altering the populations and productivity of the rumen microbiota. 

Feed grade antibiotics are intended to target the cell wall or protein synthesis (Madigan et 

al., 1997) of bacteria (largely Gram-positive) which include the primary offenders of low 

ruminal pH, Streptococcus bovis and Lactobacillus spp., which have been observed to have 

a doubling time of 24 minutes (Russell and Tsuneo, 1985). Antibiotics currently used in the 

diets of beef cattle include, but are not limited to Bacitracin, Bambermycin, 

Chlortetracycline, Laidlomycin, Lasalocid, Neomycin (Oxytetracycline), Monensin, 

Sulfamethazine, and Virginiamycin, all of which are labeled for the rate of gain and feed 

efficiency (U.S. FDA, 2017).  In some cases, feeding these products result in more favorable 

carcass traits which benefiting both the live and terminal side of the production chain (Brown 

et al., 1975; Nagaraja and Chengappa, 1998; Nickell and White, 2010). However, concerns 

over the increasing emergence of antibiotic-resistant bacteria in human health have caused 

researchers to seek alternatives (Tedeschi et al., 2011). Greater regulation has already been 

demonstrated by the implementation of the veterinarian feed directive (VFD), and in other 

countries, these technologies have already been banned. Additionally, there has been 

evidence of microbial adaptation to daily supplementation of growth-promoting feed 

additives over time (Guan et al., 2006) and the rumen has been implicated as a reservoir for 

resistance genes (Auffret et al., 2017; Hitch et al., 2018). This evidence has made the cattle 
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feeding industry hyper-aware that change is on the horizon and economically viable 

alternative technologies must be established quickly.  

Antibiotic alternatives 

There are two primary objectives of using feed-grade antibiotics in the diets of beef 

cattle fed high energy diets:  

1) Alter ruminal fermentation pathways to improve feed conversion,   

2) Reduce the risk of disease or feeding disorders  

Ideally, products that increase the extent of ruminal (and total tract) digestibility at a rate that 

does not exceed the buffering capacity of the rumen are preferred. There are several rumen 

modifiers that may alter rumen fermentation that are naturally occurring in plants and lower 

organisms.  

Plant compounds. There are some secondary plant compounds that have been 

investigated in the diets of cattle for their antimicrobial properties; tannins, saponins, 

terpenes, and essential oils. Due to their anti-nutritional factors in the plants, there has been 

some degree of interest in their ability to alter ruminal fermentation and more specifically 

their antimicrobial effects.  

Tannins are the second largest polyphenolic compound behind lignin. Broadly, the 

hydroxyl groups of tannins bind proteins and metal ions both in feed particles and the surface 

receptors of bacteria. Patra and Saxena (2010) offer a comprehensive review on the effects 

of tannins in the diets of ruminants. Broadly, there is evidence that they may shift the 

metabolism of N from the rumen to the small intestine, slow the rate of fermentation and 

reduce overall CH4 production. Tannins may also exert a health benefit and overall 

performance increase in small ruminants where an anthelminthic effect can be seen when 
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grazing tannin-containing foliage (Athanasiadou et al., 2001; Nguyen et al., 2005; Hoste et 

al., 2006; Iqbal et al., 2007). However, the slower rate of fermentation and decreased 

methane production is attributed to decreased microbial activity directly impacting overall 

carbohydrate digestibility in the rumen and therefore may result in decreased VFA 

production. Yet because of their negative effect on microbial activity, there has been 

evidence tannins may reduce the incidence and severity of bloat in cattle grazing wheat 

pasture or legume forages without affected performance (McMahon et la., 2000; Min et al., 

2006). Much of the tannin literature has been done in small ruminants and grazing cattle. 

There have been few studies using tannins in feedlot scenarios that have found any beneficial 

response of growth performance. Beauchemin et al. (2007) fed 1 and 2 % of the dietary DM 

of in a 70 % forage diet to growing heifers and found no difference in performance CH4 

emissions and a linear decrease in the apparent digestibility of crude protein, suggesting 

condensed tannins indeed have a protein binding effect. Mezzomo et al. (2011) fed a low 

dose of tannins (0.4% DM intake) in a high-grain diet and found that crude protein utilization 

was improved by increasing the metabolizable protein flux to the duodenum. In 96 head of 

finishing steers Rivera-Méndez et al. (2017), found that low dose tannin inclusion (0.2, 0.4, 

and 0.6 % of DM intake) significantly increased ADG and G:F vs. controls by 6.5 and 5.5 

%, respectively and saw a tendency for greater final BW. It should be noted that an ionophore 

was used in the basal diet and therefore may have been a beneficial additive effect combined 

with tannin inclusion (Rivera-Méndez et al., 2017).  

Saponins are steroidal or triterpenoid glycosides and have significant interactions 

with cellular membranes (Makkar et al., 2007). Similar to tannins, saponins may enhance N 

retention (Makkar et al., 1999) and exert a bactericidal effect but more specifically affect 
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Gram-positive bacteria, similar to ionophores (Wang et al., 2000). Others have reported 

protozoacidal effects (Newbold et al., 1997). However, unlike tannins which are not 

digestible, some report that both saliva and some rumen bacteria may degrade saponins 

(Wang et al., 1997; Odenyo et al., 1997). The role of saponins in the diets of beef cattle is 

probably less promising than tannins, but their abundance in nature makes them worthy of 

greater research. 

A wide variety of research exists for terpenes and essential oils, mostly in vitro. Their 

modes also revolve around reducing microbial activity, especially for zoonotic pathogens 

(Vikram et al., 2010; Pittman et al., 2011; Pendleton et al., 2012) and protein sparing 

(Castillejos et al., 2006). Anthelmintic effects have also been reported against cattle ticks 

(Ribeiro et al., 2008; Martinez-Velazquez et al., 2011). One study comparing essential oil 

(thymol, eugenol, vanillin, and limonene) with monensin and control fed cattle receiving a 

silage-based diet showed that at low doses (2 g/d) essential oil treatment resulted in similar 

feed efficiency as monensin (Benchaar et al., 2006).  However, large-scale studies examining 

these plant extracts for growth performance are limited, but their use in many cattle feeding 

scenarios for several purposes seem promising.  

Enzymes. Many fiber digesting enzymes have been promoted to enhance 

digestibility including cellulases, hemicellulases, xylanases, and β-glucanases. Many of 

these are derived from yeast (Saccharomyces spp.), fungal (Aspergillus spp.) and bacterial 

donors. A review by Beauchemin et al. (2003) has indicated that feeding exogenous 

fibrolytic enzymes has been very successful in improving fiber degradation in the diets of 

beef cattle for both forage-based and high-grain diet types. However, considerations should 

be made for each feeding scenario as there is evidence of a grain type by enzyme interaction 
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specifically between barley and corn pre-treated with cellulase or xylanase, where pre-

treated barley increased feed efficiency, but pre-treated corn did not affect animal 

performance (Beauchemin et al., 1997). McAllister et al. (1999) showed that steers 

backgrounded with an enzyme-treated silage had significantly improved feed efficiency over 

control fed steers and when transitioned to a pre-treated finishing diet had greater ADG and 

tended to have better G:F. The authors also reported greater proportions of cellulolytic 

bacteria in rumen fluid and no differences in ruminal pH. Although the evidence for 

improved feed conversion and greater feed use is apparent in the literature, current pricing 

and availability may not be economically viable.  

Direct-fed microbials. The U. S. Food and Drug Administration defines direct-fed 

microbials (DFM) as products that are purported to contain live (viable) microorganisms, 

typically bacteria and/or yeasts. The most widely used DFM in the cattle feeding industry is 

yeast products and is hence discussed in detail as it pertains to the following chapters. 

 Live yeast products, specifically Saccharomyces cerevisiae, have been fed in the 

industry to promote feed digestibility and to help stabilize ruminal pH, primarily in the dairy 

industry. S. cerevisiae is a single-celled eukaryote, can grow in both aerobic and anaerobic 

environments and has an attractive aroma, making it an easy additive to incorporate in animal 

diets. Although Saccharomyces cerevisiae feed additives have been widely used in the 

industry for many years and its entire genome has been sequenced, its mode of action in the 

bovine rumen has yet to be fully elucidated. The mode of action of yeast has been theorized 

based on both in vitro work and the biological responses of cattle. In vitro comparisons of 

different forage:concentrate ratios (30:70, 50:50, 70:30) with added yeast showed that there 

was an additive effect of energy density and yeast for digestibility, VFA production, CH4 
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production, increased protozoal population and decreased NH3 production (Carro et al., 

1992). Wallace et al. (1994) found enhanced fiber-degradation of in vitro fermentations with 

added wild-type yeasts versus some non-respiratory mutants and hypothesized wild-yeast 

might scavenge oxygen in the rumen and enhance the viability of the existing consortium, 

improving digestibility. Later work (Newbold et al., 1998) conducted in continuous in vitro 

fermenters for 21 days revealed when live yeast was supplied at 2.5 % of the diet there was 

a 25% increase of bacterial mass. A grazing study using ruminally and duodenally 

cannulated steers reported greater bacterial N flow to the duodenum for yeast fed steers 

versus control when consuming actively growing summer forage (Olson et al., 1994).  

However, a more recent study resulted in less bacterial N flow to the duodenum when steers 

were consuming a 60:40 forage to concentrate TMR and yeast, although digestibility of the 

diet was still significantly improved over the controls (Lehloenya et al., 2008).  

Another potential mode of action is that yeast enhances lactate utilization by 

Selenomonas ruminantium and Megasphaera elsdenii (Nisbet and Martin, 1990, 1991, 1993; 

Rossi et al., 1995).  It is not known if live yeasts play a role in this stimulation or if they 

serve as nutrients themselves. It has been suggested that yeast may be a source of malate 

(Nisbet and Martin, 1990, 1991) which is a rate-limiting nutrient for M. elsdenii (Russell, 

2002). Regardless, stimulation of lactate utilizers may increase the conversion activity of 

lactate to propionate which would be a desirable effect regarding gluconeogenesis by the 

animal host. This effect may also prevent ruminal pH from dropping into ranges where 

populations of fiber-loving bacteria may systemically die or become dormant. It is known 

that pH is positively correlated with fiber degradability (Mould et al., 1983). Therefore, by 

keeping the fiber-loving bacteria alive and stimulating lactate utilizers, there is positive 
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effect on ruminal digestibility and a reduced risk of ruminal acidosis (Newbold et al., 1996). 

Williams et al. (1991) found that feeding yeast at 7.5 g/d (5 x 109 CFU/g) in a 50:50 forage 

to concentrate diet to steers prevented ruminal pH from dropping below 6.0 at peak 

fermentation (vs. 5.6 for control fed) and also reduced the acetate:propionate ratio to 2.8:1 

vs. control fed steers who had 3.3:1. This is indeed indicative of a possible stimulatory effect 

of yeast for the greater conversion of lactate to propionate. Vyas et al. (2014) addressed the 

viability (live vs. killed) of yeast in the diets of beef heifers and found that regardless of 

viability, digestibility was improved, and pH was stabilized more than control fed heifers. 

Vyas et al. (2014) also investigated differences the treatments invoked on the population of 

cellulolytic and lactate-utilizing bacteria and found no difference, although population does 

not equate to activity. Their results may be somewhat supportive of the proposed idea that 

stimulating effect of yeast on lactate utilizers is malate driven. Another study in steers fed 

various levels of forage (40, 60 and 80 %) supplemented with 10 g of yeast revealed a linear 

increase of NDF digestibility and also a linear reduction in the acetate:propionate ratio (Plata 

et al., 1994), suggesting stimulatory effect of bacterial population and favorable end-product 

shift.  

In the beef cattle literature, dosing of yeast, diet, and animal class have been variable 

leading to inconsistent outcomes. However, a meta-analysis on the effects of yeast in the 

diets of dairy cattle has revealed statistically significant effects on digestibility, intake, 

ruminal pH and milk fat production (Desnoyers et al., 2009). Desnoyers et al. (2009) 

reported that yeast supplementation increased DMI by 1.1 %, improved milk yield and milk 

fat content by 2.5 and 1.2 %, respectively, and showed that ruminal pH and VFA 

concentration increased linearly with yeast dose. However, the authors admit there is large 
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variation in the data between experiments, and therefore the subtle differences in dairy cow 

performance parameters may also be difficult to detect in the analogous production 

parameters in beef cattle. An example of this problem was observed by Johnson and Rops 

(2000) who found no significant effect on feeding performance when supplementing yeast 

to receiving steers for 35 days consuming either a corn-based or soybean hull-based diet, 

although the numerical trends favored diets with yeast. The study by Vyas et al. (2014) also 

failed to detect any significant effect of feed performance, but the live yeast supplemented 

heifers were numerically favorable over the control and killed yeast treatments. A feed 

through slaughter experiment where steers were fed barley and potato processing residue 

diet and supplemented with yeast (85 g/d for 28 d and 28 g/d for 85 d) improved ADG by 

(0.10 kg/d) and without affected DMI, which resulted in greater 4.6 % higher G:F but the 

amount of yeast fed is not realistic for industry (Hinman et al., 1998). Yet the overall 

consensus among research conducted on beef cattle consuming high-grain diets is that yeast 

provides no improvement or may negatively impact feed and growth performance compared 

to control fed cattle (El Hassan et al., 1996; Mutsvangwa et al., 2010; Rodrigues et al., 2013) 

or even ionophore fed cattle (Mir and Mir, 1994). Mir and Mir (1994) compared the effects 

of yeast, lasalocid and their interaction on three diet types and found no detectable 

differences although numerically they performed better than controls. El Hassan et al. (1996) 

found no significant difference in growth performance of slaughter bulls between control 

and yeast fed subjects. Rodrigues et al. (2013) reported that yeast fed cattle performed lower 

than control cattle (ADG, G:F, HCW). Monnerat et al. (2013) found no benefit of feed 

efficiency or ruminal parameters when feeding yeast to steers consuming high-grain diets. 

Beauchemin et al. (2003) found no difference in digestibility or significant effect on acidosis 
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risk of steers fed a high grain diet supplemented with yeast and Enterococcus faecium, a 

known lactate producer.  A later study investigating the blood chemistry and immune 

response of steers consuming an acidosis provocative diet, supplemented yeast and E. 

faecium resulted in a significant increase of acute phage proteins, likely due to the release of 

endotoxins by the lysis of Gram-negative bacteria at low pH (Emmanuel et al., 2007). 

Additionally, more research indicates that different strains of S. cerevisiae may have 

different effects on ruminal fermentation (Newbold et al., 1995). In a study in non-lactating 

beef cows, two strains of S. cerevisiae were compared for their effects on rumen pH and CH4 

production, researchers found that one strain selected for its ‘enhanced fiber-degradation’, 

decreased CH4 production but significantly decreased rumen pH even below control fed 

cattle (Chung et al., 2011). Although it has been shown that on lower risk diets yeast aides 

to stabilize ruminal pH (primarily dairy cattle diets), the research indicates that as the energy 

density of the diet increases there must be some limiting threshold of which can’t be 

circumvented by the effect of yeast.  

 As Mir and Mir (1994) summarized, yeast supplementation in the diets of feedlot 

cattle caused a ‘consistent but nonsignificant improvement in growth parameters’. 

Throughout the literature, diet varies greatly, and not many have reported the concentration 

or strain of yeast used, possibly due to proprietary reasons by the manufacturing company. 

It may be that the effect size yeast elicits on growth performance is subtle and therefore lost 

in the animal to animal variation, signifying under-replication of experiments. On the 

contrary, there may be some diet by strain interactions that we have not yet identified or 

characterized. Nevertheless, the early work that proved yeast could improve digestibility and 
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stabilize ruminal pH indicates that larger trials are worth pursuing to identify its best use for 

growth promotion in the cattle feeding industry. 

Bacteriophage Technology 

 Bacteriophage may be old technology but could be new age feed additive. 

Bacteriophages (phages) are viruses that infect bacteria. Phage are thought to be the most 

abundant life form on Earth and are highly pervasive predators of bacteria (Srinivasiah et 

al., 2008). Phage have been isolated from the ocean and freshwater sources, soil, and the 

GIT of mammals as part of their normal consortium and have been found to be as numerous 

as 1011 per mL of rumen fluid in the fed state (Klieve & Swain, 1993; Klieve et al., 1996). 

The history of bacteriophage therapy is well summarized by Atterbury (2009). In animal 

agriculture, phage have been increasingly looked to as a viable treatment of infectious or 

zoonotic bacteria in light of greater antibiotic resistance among bacteria.  

Phage infection. Phage infection can be either lytic or lysogenic. Steps to successful 

phage infection are summarized in Hyman and Abedon (2010) and are as follows. The first 

two steps are the same for all phage types; 1) viral adsorption to host by recognizing host 

receptors, 2) phage genome ejection into the host cytoplasm. For obligately lytic phage, host 

take-over begins with the synthesis of viral proteins and DNA necessary for new virions by 

host ribosomes. Once the viral particles are assembled into complete daughter virions, virus-

specific proteins and enzymes work in synchrony to lyse the bacterial host releasing the new 

virions into the environment to infect new hosts. The number of virions released or burst 

size of a single phage infection varies by phage and may range from as few as 40 in the 

marine Cyanophage S-PM2 (Brown et al., 2006) to as many as 10,000 in the bacteriophage 

MS2 of E. coli (Grosjean and Fiers, 1982). However, releasing very large numbers of virions 
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into the environment does not automatically result in a more effective phage. If the 

phage:bacteria ratio (multiplicity of infection; MOI) is too high, phage may lyse bacteria 

prematurely in what is known as “lysis from without” (Delbrück, 1940). Still, for the 

bacteria, the result is the same.  

For temperate (lysogenic) phage the viral DNA integrates into the host chromosome, 

or exists as an unintegrated episomal element, replicating along with the bacterium during 

cellular division. The infected bacteria is now a lysogen, and the phage is now a prophage 

providing immunity to obligately lytic phage infections. Under normal bacterial growth 

conditions, the prophage often provides some fitness advantage to its host. However, 

lysogenic phage still pose a potential threat to the host bacterium. In some cases, if the 

bacteria is threatened by the prospect of DNA damage, an induction event could cause the 

virus to abort the safety of its host, as this threat would also compromise the viral DNA. 

Exposure to UV light, extreme heat, or Mitomycin C are known to cause the induction of a 

lysogenic phage to lyse its host. Some lysogenic phage has no known induction signal and 

seem to spontaneously induce lysis. This makes a lysogenic phage a high-risk, high-reward 

parasite of bacteria.  

Callaway et al. (2008) and Gill and Hyman (2010) agree that temperate phages 

should be avoided for use in phage therapy. Gill and Hyman (2010) explain their reasoning 

to be:  1) the fitness advantage provided by the genes of the temperate phage may make the 

bacterial host a more effective disease-causing agent, 2) the lysogens may be immune to 

superinfection of the same or related phage, and lastly, 3) lysogenic phage can mediate the 

movement of bacterial DNA from one bacterium to another generalized transduction, 

contributing the horizontal gene transfer. Research in livestock species proves the latter 
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theory is merited (Colomer-Lluch et al., 2011). Allen et al. (2011) used a metagenomic 

approach that suggests that feeding antibiotics to livestock may cause the induction of 

existing prophage which may aid in conferring horizontal gene transfer of antibacterial 

resistance factors between bacteria. Another study revealed that phages isolated from 

antibiotic-treated mice conferred increased drug resistance to their bacterial community 

(Modi et al., 2013). These authors have suggested that the natural presence of lysogenic 

phage in animal microbiome may be partially responsible for the decreased efficiency of 

antibiotics over time.  

Bacterial protective measures. Due to the co-evolution of bacteria and phage, it is 

no surprise that bacteria have evolved mechanisms for phage resistance. These mechanisms 

have been extensively studied in Lactococcus bacteria and are well summarized in a review 

by Garvey et al., (1995). The most effective mechanisms by which bacteria may resist 

infection are: 1) Adsorption or uptake blocks, 2) prevention of host take-over by restriction 

enzymes & Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) immune 

response, and lastly 3) Abortive infection (Seed, 2015).   

Bacteria may employ the production of physical barriers, changes the cell-surface to 

disguise receptors or even the downregulation or deletion of those surface receptors. The 

first line of defense is to block phage adsorption and uptake through mediated changes in 

the cell surface. Bacteria have many surface molecules that play integrally in their survival. 

However vital they are to the bacterium they may also serve as surface receptors to predatory 

phage. Bacteria circumvent phage infection by producing an exopolysaccharide capsule 

and/or be protected in a biofilm, both of which serve as a physical barrier to reduce 

encounters with phage. Some of the cell-surface fitness changes may be mediated by 
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plasmids or a prophage (Garvey et al., 1995). A report by Scholl et al., (2005) revealed that 

the capsule produced form E. coli K1 was sufficient to block phage T7 infection, but the 

artificial degradation of the capsule resulted in successful T7 infection. More work by Scholl 

and Merril (2005) revealed that phage K1F, likely evolved from a common ancestor with 

phage T7, was able to recognize and degrade capsule due to a replacement of the C-terminal 

portion of the tail fiber with an endosialidase domain. Therefore, although the production of 

capsule may slow the rate of infection of one phage, it may inadvertently become more 

recognizable by another (Weinbauer, 2004).  

 The loss of bacterial surface receptors another method to shield itself from adsorption 

and uptake. Surface molecules serve as essential roles to the survival of the bacterium, and 

their loss or down-regulation may seriously compromise its persistence in that environment, 

which still agrees with our mission to reduce their impact. Despite their significant 

contribution to cell survival, mutations and modifications are likely common. Selective 

pressure by a predatory phage may result in the succession of mutant strains displaying 

discreet modification in the structure of receptors, known as phage-resistant mutants. A 

prime example of this is reported German and Misra (2001) where a mutation of the TolC 

surface receptor protein of E. coli resulted in immunity from a phage of which the parent 

strain was previously susceptible.  

 If phage are successful in injecting their DNA into the host cytoplasm the second 

line of defense is the restriction-modification system (RMS) and CRISPR protein. The RMS 

system is found in all prokaryotes and broadly acts on non-methylated foreign DNA 

recognizing and cutting target sequences. However, there is significant evidence that phage 

have their own adaptions to evade detection (Hoskisson and Smith, 2007) and some 
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researchers encourage the genetic engineering of phage for this purpose (Skiena, 2001). The 

CRISPR is an enzyme which recognizes sequences of invading phage DNA that the bacteria 

has already encountered. Sorek et al. (2008) reported that the CRISPR system has been 

identified in approximately 40% of all sequenced bacterial genomes. Similarly to RMS 

evasion, there is genomic evidence that phage may escape CRISPR recognition by rapid 

recombination of sequence motifs (Andersson and Banfield, 2008).  

 The last line of defense against phage is an abortive infection. The programmed cell 

death has been described as bacterial altruism, in that, although the bacterium dies as a 

result, ultimately it protects its community from a similar fate (Chopin et al., 2005). 

Nevertheless, occasionally intact virions may escape, but they are fewer and have less vigor. 

  Phage therapy in Livestock. Most phage therapy trials conducted in livestock have 

been pursuant of known zoonotic pathogens, Campylobacter spp., E. coli, Listeria spp., 

Salmonella spp., and Staphylococcus spp., especially in regions where there has been 

increased regulation of feed-grade antibiotics (Atterbury, 2009). Huff et al., (2002) reported 

a two-phage aerosol was highly successful in reducing mortality (up to 50 %) of broiler 

chicks experimentally infected with an avian-pathogenic strain of E. coli. Follow up studies 

reported that intramuscular injection of the same phage were also successful in reducing 

mortality from 48 % to 7 % when higher titers were used which was not different from the 

mortality of non-challenged, negative controls (Huff et al., 2006). Other research has shown 

that the oral application of Salmonella phage cocktails may persist in the GI tract of broiler 

chickens, providing long-term control of the foodborne pathogen (Fiorentin et al., 2005). In 

larger livestock, research has indicated that successful phage therapy is highly dependent on 

phage application route, titer, and site of colonization by the target bacteria (Gill et al., 2006; 
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Raya et al., 2006; Sheng et al., 2006; Callaway et al., 2008). Gill et al. (2006) found that, in 

lactating dairy cows, naturally occurring mastitis caused by Staphylococcus aureus was not 

significantly cured or reduced by phage infusion through the affected gland, and that titers 

of phage recovery were significantly lower than the titer of the inoculum, suggesting 

interfering host immunity, or potentially inactivation by milk proteins, to the site of 

application. Sheng et al. (2006) experimentally infected mice, sheep and cattle with E. coli 

O157:H7 and found that oral administration of phage was sufficient to eliminate infection 

from the mice, however, oral administration and direct application of phage to the site of 

colonization in sheep and steers was not sufficient to eliminate bacteria, although it 

significantly reduced the population. Raya et al. (2006) and Callaway et al. (2008) also found 

that orally administered phage cocktails significantly reduced but did not eliminate E. coli 

O157:H7 of experimentally infected sheep and steers and deduced the ideal PFU to CFU 

ratios based on the GIT volume of the experimental subjects. In all three of the previous 

studies, the lack of complete elimination has been suggested to be the result of phage-

resistant mutants. Phage-resistant mutants reiterate the suggestion by Callaway et al. (2008) 

that the use of phage therapy is not a magic bullet but can be used in a multi-hurdle approach 

to significantly reduce persistence and population of a target bacterium. In swine, the oral 

administration of phage prevented the colonization of Salmonella Typhimurium, as well as 

other serovars, of naïve pigs co-mingled with infected pigs compared with mock-treated 

naïve pigs, although this study was relatively short (Wall et al., 2010). However, this 

provides an incentive for the use of phage therapy as a preventative measure rather than a 

cure. There are many situations in the livestock production, especially in the highly fractured 
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beef production chain, to which preventative measures could be more advantageous than 

treatment.  

 Phage as feed additives. Although there is ample evidence that phage therapy 

reduces morbidity and mortality of livestock, research into their use as growth-promoting 

feed additives has not been well studied. Behind bolstering the immune system, the 

secondary benefit of feed grade antibiotics is their alteration of the gut microbiome that 

promotes efficient feed conversion. There have been few studies comparing the effectiveness 

of antibiotics versus phage therapy. A study that compared the effectiveness of feed 

antibiotics or orally administered phage on experimentally infected Roman chicks with 

enteropathogenic E. coli reported that the phage treatment reduced morbidity more than 

antibiotics (26 vs. 36 % affected, respectively) as well as mortality (1.2 vs. 6%, death loss) 

(Xie et al., 2005). They also reported that length of morbidity for phage treated chicks was 

significantly reduced within a week compared to antibiotic-treated chicks (0 vs. 12.4 % 

affected by week 2). Logically, healthier chicks would result in greater feed conversion rates 

(Huff et al., 2002) and smaller faster-growing livestock disease reduction has the greatest 

effect of production efficiency and is the reasoning for all the bacterial challenge studies. 

However, in beef cattle, the major benefit of feeding antibiotics is the alteration of rumen 

consortium by broadly affecting many Gram-positive bacteria, decreased intake, and the 

major shift in volatile fatty acid profile.  

The diversity of the rumen microbiota may pose challenges for the use of phage 

therapy as antibiotic alternatives. Although there have been several isolated from the bovine 

rumen (Klieve et al., 1996), there are some limiting factors for their use associated with the 

rumen environment. As mentioned previously, the rumen is a highly competitive 
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environment and bacterial populations flux throughout the day upon feeding and fasting. 

McAllister and Newbold (2008) expressed concerns that because phage must come into 

contact with their host to cause infection, their effectiveness could oscillate due to the 

dynamics of a reinforcing loop of a predator-prey model. This reiterates the need for the 

establishment of the mean and variation of target bacterial populations in the bovine rumen 

to determine that critical threshold for consistent infection and control. Another concern is 

that because phage are typically very strain specific, even in populations with relative genetic 

homogeneity, that the elimination of a few strains may not cause a significant impact on 

ruminal fermentation. Ruminal acidosis is a major problem of feedlot cattle which may 

decrease feed efficiency and is currently regulated with feeding antibiotics which act broadly 

against Gram-positive bacteria. Klieve et al. (1999) investigated the genomic diversity of the 

37 strains of Streptococcus bovis, the primary instigator of lactic acidosis in ruminants, and 

the host range of some S. bovis phage finding that although S. bovis strains were closely 

related even to other Streptococcus species, phage were only effective on the strains they 

were grown on. Klieve et al. (1999) also isolated S. bovis phage during this experiment which 

turned out to be temperate suggesting that wild S. bovis likely carry prophage. It is not likely 

that the removal of one or two strains of bacteria from the bovine rumen will have a very 

large impact on fermentation. Therefore, suitable candidates should be identified which may 

have the greatest impact on feed efficiency, those which may impact other organs related to 

the efficiency of metabolism, or those that are just inherently wasteful to the bovine host. 

Despite the challenges, Klieve et al. (1999) faced in their pursuit of lytic phage for S. bovis 

and other lactic acid producing bacteria remains a valiant endeavor as non-clinical sub-acute 

ruminal acidosis plagues the cattle feeding industry causing an unknown amount of 
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unrealized revenue. Fusobacterium necrophorum, along with a few others, found in the 

rumen but which also colonize the liver creating abscesses may also be pursued. There is 

growing evidence that liver abscesses negatively affect feedlot performance in beef cattle 

(McKeith et al., 2012; Rezac et al., 2014; Reinhardt and Hubbert, 2015) and affect both the 

live and terminal side of beef production. An example of wasteful rumen bacteria are the 

hyper-ammonia-producing bacteria (HAB) of the rumen. The most well studied are 

Clostridium aminophilum, Clostridium sticklandii and Peptostreptococcus anaerobius, and 

Russell (2002) indicated that these bacteria deaminate valuable amino-acids and peptides 

resulting in an α-ketoacid, NH3 and free H2 in the rumen. While these bacteria and their 

related cohorts are not a highly prevalent population in the rumen, the rate at which they 

deaminate amino acids makes them quantitatively important (Russell, 2002). Consequently, 

they are wasteful to the host and negatively influence the environment through the increased 

excretion of NH3 and, by contributing to the pool of available H2, potential influence on CH4 

production.  

Another approach using phage as a means of bacterial control may be the use of their 

lytic enzymes. Although it is not recommended to use temperate phage as a means of 

therapy, in cases like the persistent Clostridium species where lytic phage are difficult to 

find, the lysis enzymes produced by the phage may still be harvested and applied directly to 

bacteria rather than the phage itself (Zimmer et al., 2002; Mayer et al., 2008; Seal, 2013).  

Similar to antibiotics, phage lytic enzymes work by disrupting cell membrane and is known 

as endolysin therapy. There is concern that this could produce endolysin resistant bacteria, 

however, in vitro models have found no such threat (Briers et al., 2014; Herpers, 2015).  It 

could be that phage may offer us a simple more direct tool that acts slightly more broadly on 
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our target Gram-positive bacteria. This is very promising if it can be harnessed for future 

use as a feed additive. 

Implications for the future 

The pursuit of viable antibiotic alternatives is a relatively urgent matter with the 

threat of greater regulation on the horizon and will be a massive undertaking by researchers 

and industry leaders. Plant secondary compounds, enzymes, direct-fed microbials and phage 

therapy all hold promise as growth-promoting feed additives which alter rumen fermentation 

pathways. There is no one cure-all that can span the entirety of the cattle feeding industry to 

improve health and performance. For our industry to be sustainable without antibiotic feed 

additives, we will need to develop highly integrated systems that address the most pressing 

needs for each sector of the production chain. Additionally, these technologies will have to 

withstand the changes that may occur under a warming climate. 
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Figure 1.1. Schematic of the flow of energy in the net energy system of beef cattle. Adapted 

from National Academies of Sciences, Engineering, and Medicine (2016).  
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CHAPTER II 

EFFECTS OF ROTATING ANTIBIOTIC AND IONOPHORE FEED 

ADDITIVES ON VOLATILE FATTY ACID PRODUCTION, POTENTIAL 

FOR METHANE PRODUCTION, AND MICROBIAL POPULATIONS OF 

STEERS CONSUMING A MODERATE-FORAGE DIET* 

 

SYNOPSIS 

Ionophores and antibiotics have been shown to decrease ruminal methanogenesis 

both in vitro and in vivo but have shown little evidence toward a sustainable means of 

mitigation. Feed additive rotation was proposed and investigated for methane, VFA, and 

microbial population response. In the present study, cannulated steers (n = 12) were fed a 

moderate-forage basal diet in a Calan gate facility for 13 wk. In addition to the basal diet, 

steers were randomly assigned to 1 of 6 treatments: 1) control, no additive; 2) bambermycin, 

20 mg bambermycin/d; 3) monensin, 200 mg monensin/d; 4) the basal diet + weekly rotation 

of bambermycin and monensin treatments (B7M); 5) the basal diet + rotation of 

bambermycin and monensin treatments every 14 d (B14M); and 6) the basal diet + rotation 

of bambermycin and monensin treatments every 21 d (B21M). Steers were blocked by 

weight in a randomized complete block design where the week was the repeated measure. 

    

*Reprinted with permission from “Effects of rotating antibiotic and ionophore feed 

additives on volatile fatty acid production, potential for methane production, and 

microbial populations of steers consuming a moderate-forage diet” by Crossland, W. L., 

L.O. Tedeschi, T. R. Callaway, M. D. Miller, W. B. Smith, and M. Cravey. 2017. Journal 

of Animal Science 95(10):4554-4567. Copyright 2017 American Society of Animal 

Science. 
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Rumen fluid was collected weekly for analysis (n = 13), and results were normalized 

according to individual OM intake (OMI; kg/d). Potential activity of methane production 

was not significantly different among treatments (P > 0.05). However, treatment tended to 

affect the CH4–to-propionate ratio (P = 0.0565), which was highest in the control and lowest 

in the monensin, B21M, and B14M treatments (0.42 vs. 0.36, 0.36, and 0.33, respectively). 

The CH4:propionate ratio was lowest in wk 2 and 3 (P < 0.05) but the ratio in wk 4 to 12 

was not different from the ratio in wk 0. Week also affected total VFA, with total VFA 

peaking at wk 3 and plummeting at wk 4 (4.02 vs. 2.86 mM/kg OMI; P < 0.05). A significant 

treatment × week interaction was observed for the acetate-to-propionate (A:P) ratio, where 

bambermycin- and rotationally fed steers did not have a reduced A:P ratio compared with 

monensin-fed steers throughout the feeding period (P < 0.0001). Microbial analysis revealed 

significant shifts, but several predominant classes showed adaptation between 4 and 6 wk 

after additive initiation. There was no significant evidence to suggest that rotations of 

monensin and bambermycin provided additional benefits to steers consuming a moderate-

forage diet at the microbial/animal and environmental level versus those continuously fed. 

 

INTRODUCTION 

Methane (CH4) is a natural gaseous end product of anaerobic microbial fermentation 

of ruminants. The production of enteric CH4 represents an energetic loss to the animal at the 

microbe level, directly contributes to greenhouse gas production within the agriculture 

sector, and has been determined to be alterable with diet management (Pitesky et al., 2009; 

Place and Mitloehner, 2014; Caro et al., 2016; Tedeschi and Fox., 2016). Several feed 

additives have been shown to alter the ruminal microbiome of beef cattle, improve feed 
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efficiency, and decrease enteric methane production (Tedeschi et al., 2003; McGinn et al., 

2004; Guan et al., 2006; Van Nevel and Demeyer, 2008; Patra, 2012). Many of these feed 

additives are commercially available and already widely continuously fed throughout many 

phases of beef production systems. 

Although ionophore and antibiotic feed additives may shift end products toward 

propionigenesis and initially reduce CH4, over time, a diminishing response may be seen due 

to rumen microbial adaptation (Rumpler et al., 1986; Callaway et al., 2003; Guan et al., 

2006). To maximize potential effectiveness, some researchers have investigated the 

usefulness of rotating feed additives on a daily, weekly, or every two weeks basis as a 

potential management strategy (Hicks et al., 1988; Morris et al., 1990; Duff et al., 1995; 

Guan et al., 2006). However, most research in this area has focused on effects of rotating 

different ionophore compounds on cattle fed high-concentrate diets. The long-term 

effectiveness of many feed additives on VFA and CH4 production is not well defined in 

moderate-forage basal diet scenarios, and there have been no studies comparing the long-

term rotational effects of monensin and bambermycin. 

Therefore, the objective of this trial was to determine the short- and long-term effects 

of feeding bambermycin and monensin, continuously or rotationally, to steers consuming a 

moderate-forage diet on fermentation end products, the potential for methane production, 

and dynamics of rumen microbial populations. 
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MATERIALS AND METHODS 

Animals and Feeding 

Twelve ruminally cannulated Angus-cross long yearling steers (approximately 18 

mo of age) weighing 344 ± 22 kg were cared for in accordance with approval by the 

Institutional Animal Care and Use Committee of Texas A&M University (number 2014-

0242). Steers were fed in confinement in the Calan gate (American Calan Inc., Northwood, 

NH) facility at the Animal Science Teaching and Research Extension Center in College 

Station, TX, for 101 d. Steers were blocked by weight into 2 pens with 6 bunks per pen, and 

each treatment group was represented once per pen. Steers were bunk trained and adapted to 

the moderate-forage basal diet (Table 2.1) for 14 d prior to the start of the 13-wk feeding 

trial. Dry matter intake was restricted to 2% of individual BW, with a target ADG of 0.45 

kg/d, and adjusted each week according to increased BW. Steers were randomly assigned to 

1 of 6 dietary treatments: 1) control, containing the basal diet and no additive; 2) 

bambermycin, the basal diet + 20 mg bambermycin/d (Huvepharma, Inc., Peachtree City, 

GA); 3) monensin, the basal diet + 200 mg monensin/d (Elanco Animal Health, Greenfield, 

IN); 4) the basal diet + weekly rotation of bambermycin and monensin treatments (B7M); 

5) the basal diet + rotation of bambermycin and monensin treatments every 14 d (B14M); 

and 6) the basal diet + rotation of bambermycin and monensin treatments every 21 d (B21M). 

After the initial 14-d adaptation period, steers were fed the basal diet without an additive for 

1 wk (Week 0) prior to the start of feed additive treatments (wk 1–12). To ensure appropriate 

animal dosing, feed additives were separately weighed out in the laboratory and top-dressed 

in the morning feeding event. Basal diet feed samples were taken each week for 13 wk, 
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homogenized for a representative sample, and analyzed for nutrient content by Cumberland 

Valley Analytical Services (Hagerstown, MD; Table 2.1). 

Animal Sampling and In Vitro Analyses 

Rumen fluid collections were taken at the end of each week for 13 wk at 3 h following 

the morning feeding. Approximately 1 L of rumen fluid was taken from 3 places in the 

rumen, strained through 8 layers of cheesecloth, and preserved in individual thermoses for 

each steer. Animal weights were taken prior to the morning feeding to monitor and make 

feed intake adjustment. 

Immediately following collection, rumen fluid was transported to the laboratory and 

prepared for pH, CH4, and VFA analyses. The pH of each rumen fluid sample was recorded 

using a VWR sympHony benchtop meter (VWR International, Radnor, PA). Potential 

activity of methane production (PAMP; Anderson et al., 2006) was determined by in vitro 

incubation of 5 mL of each steer's respective rumen fluid in 5 mL of an anaerobic dilution 

media (Bryant and Burkey, 1953). The anaerobic media also contained 60 mM sodium 

formate as a methanogenic substrate and 0.2 g of ground (2 mm) alfalfa hay as the microbial 

substrate. Tubes were flushed with CO2 prior to adding rumen fluid from treated steers, 

sealed, and incubated for 3 h at 39°C. Headspace samples were taken by airtight syringe and 

methane concentration was determined by gas chromatography (Allison et al., 1992). Next, 

approximately 8 mL of rumen fluid was transferred to 4 new 2-mL microtubes, which were 

spun at a centrifugal force of 11,337 × g for 3 min at 18° to obtain cell-free supernatant, 

which was frozen at −20°C. Supernatant VFA concentration was measured by gas 

chromatography (Hinton et al., 1990). 
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In Vitro Gas Production Technique 

The in vitro gas production technique was used to determine the digestibility and 

fermentation characteristics of bermudagrass hay using the ionophore- and antibiotic-treated 

rumen fluid. A medium-quality bermudagrass hay, the energy value of which was similar to 

that of the basal diet, was selected and fermented for 48 h at intermittent time points 

throughout the feeding period. In vitro fermentations took place in an incubation chamber 

equipped with multiplate stirrers at 39°C for 48 h in replicate (Tedeschi et al., 

2008; Williams et al., 2010). The in vitro gas production technique has been previously 

described, but briefly, approximately 200 mg of bermudagrass hay was weighed into 160-

mL Wheaton bottles containing equal-sized stir bars. Samples were wetted with 2 mL of 

deionized water to reduce particle scattering during CO2addition to maintain an oxygen-

reduced atmosphere. Goering and Van Soest's (1970) in vitro buffering media (14 mL) was 

added to each bottle under constant CO2 flushing, and the bottles were sealed with a butyl 

rubber stopper and crimp sealed. Bottles were promptly placed in the incubation chamber to 

begin heating to rumen temperature. Rumen fluid inoculum was obtained from the treated 

steers and was filtered through 1 layer of cheesecloth and then, subsequently, filtered through 

glass wool under a CO2 atmosphere. Adapted rumen fluid inoculum (4 mL) was injected 

into predetermined bottles to represent each treatment group. Internal pressure was 

equilibrated across all bottles after inoculation by inserting needles into the stoppers for 

approximately 5 s. After 48 h, bottles were set in an ice bath to stop fermentation. Head 

space samples were removed and analyzed for methane concentration using the same gas 

chromatography method as previously mentioned (Allison et al., 1992). Rumen fluid pH was 

measured, and approximately 40 mL of neutral detergent solution (ANKOM Technology, 
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Macedon, NY) was added to each bottle of fermented feed residue. Bottles were resealed 

and set in the autoclave for 15 min at 121°C. Samples were then filtered using Whatman 54 

paper (Sigma-Aldrich Corporation, St. Louis, MO) to collect the washed feed residue to 

calculate DM digestibility (DMD). 

The kinetic analysis of the 48-h fermentation of bermudagrass hay was evaluated 

using nonlinear functions, and that with the lowest sum of square errors was selected 

(Schofield et al., 1994). The nonlinear fitting was performed using Gasfit 

(http://www.nutritionmodels.com/gasfit.html; accessed 20 Feb. 2017), which executes 

specific R (R Development Core Team, 2014) scripts to perform convergence of gas 

production data using the nls function (Chambers and Bates, 1992) and the port algorithm 

(Fox et al., 1978; Gay, 1990). Preliminary results indicated the exponential with discrete lag 

nonlinear function had the lowest sum of squared errors and best fitted the fermentation 

profiles (Williams et al., 2010). 

Rumen Microbial DNA Extraction and Sequencing 

The remaining rumen fluid sample (approximately 50 mL of fluid) was frozen at 

−20°C for further microbial DNA analysis. Rumen fluid samples were shipped on dry ice 

for bacterial diversity analysis (MR DNA [Molecular Research LP], Shallowater, TX). 

Genomic DNA was extracted using a QIAamp DNA Mini Kit (Qaigen; Hilden, Germany), 

and concentrations were equalized and prepared for amplification. The 16S rRNA gene (V3–

V4 variable region) was analyzed (PCR primers 341F and 805R with barcode on the forward 

primer) in a 30-cycle PCR (5 cycles used on PCR products) using a HotStarTaq Plus Master 

Mix Kit (Qaigen; Hilden, Germany) under the following conditions: 94°C for 3 min followed 

by 28 cycles of 94°C for 30 s, 53°C for 40 s, and 72°C for 1 min, after which a final 
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elongation step at 72°C for 5 min was performed. After amplification, PCR products were 

checked in 2% agarose gel to determine the success of amplification and the relative intensity 

of bands. Multiple samples were pooled together in equal proportions based on their 

molecular weight and DNA concentrations. Pooled samples were purified using calibrated 

AMPure XP beads (Beckman Coulter, Inc., Pasadena, CA). Then, the pooled and purified 

PCR product was used to prepare DNA library by following Illumina TruSeq DNA library 

preparation protocol (Illumina, Inc. San Diego, CA). Sequencing was performed at MR 

DNA (http://www.mrdnalab.com [accessed 15 March 2017]; Shallowater, TX) on a MiSeq 

Illumina System, Illumina, Inc. ) following the manufacturer's guidelines. Sequence data 

were processed using the MR DNA analysis pipeline, a customized pipeline of Qiime (MR 

DNA [Molecular Research LP]). In summary, sequences were joined and depleted of 

barcodes. Then, sequences < 150 bp and those with ambiguous base calls were removed. 

Sequences were then denoised, operational taxonomic units (OTU) were generated, and 

chimeras were removed. Operational taxonomic units were defined by clustering at 3% 

divergence (97% similarity). Final OTU were taxonomically classified using the nucleotide 

basic local alignment search tool (BLASTN; https://blast.ncbi.nlm.nih.gov [accessed 4 June 

2015) against a curated database derived from Greengenes (DeSantis et al., 2006), RDP 

release 11 (http://rdp.cme.msu.edu; accessed 4 June 2015), and the National Center for 

Biotechnology Information (https://www.ncbi.nlm.nih.gov [accessed 4 June 2017]). The 

microbial consortium is quantifiably reported as percent relative abundance (% relative 

abundance). Overall, 5,769,938 cleaned sequences were generated with a read length range 

of 384 to 446 bp and an average length of 439 bp. No ambiguous bases were detected. The 

average quality score [Q] score was 39, and 99.31% of sequences had a Q score ≥ 30. 
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Statistical Analysis 

Due to differences in DMI among the steers, raw data of VFA and CH4measurements 

were normalized, and data herein is represented as concentration per unit of OM intake 

(OMI; response variable value divided by respective kg of feed OMI). Data were analyzed 

using PROC MIXED of SAS (SAS Inst. Inc., Cary, NC) as a randomized complete block 

design and week as a repeated measure. The following model was used: 

Yijkl = µ + Ti + Wj + Bk(Ti) + TiWj + eijkl 

in which yijkl is the response variables (pH, total VFA, acetate, propionate, butyrate, acetate-

to-propionate [A:P] ratio, PAMP, CH4:propionate ratio, and microbial guilds), μ is the 

overall mean, Ti is the fixed effect of treatment (i = control, monensin, bambermycin, B7M, 

B14M, and B21M), Wj is the fixed effect of week (j = wk 0, 1, …, 12), Bk(Ti) is the random 

effect of treatment within a block (k = pen 1 or pen 2 for the ith treatment), TiWj is the 

interaction of treatment and week, and eijkl is the random error associated with the 

measurement at week j on the lth subject assigned to treatment i within the kth block. 

An autoregressive covariance structure was chosen when analyzing the rumen fluid 

measurements (pH, total VFA, acetate, propionate, butyrate, A:P ratio, PAMP, and 

CH4:propionate ratio) to convey that weekly variance in repeated measurements taken closer 

together may be more correlated than those taken farther apart for wk 0 to 12. A spatial 

powers covariance structure was used for microbial analysis because time points were 

unequally spaced (0, 3, 4, 5, 6, and 12 weeks). 

The in vitro fermentation of bermudagrass hay was analyzed using PROC MIXED 

of SAS as a 4 × 6 factorial arrangement. The following model was used: 

Yij = µ + Ti + Wj + TiWj + eij 
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in which yij is the response variables (total gas production, fractional degradation rate, lag 

time, DMD, CH4, CH4:DMD ratio, and pH), μ is the overall mean, Ti is the fixed effect of 

treatment (i = control, monensin, bambermycin, B7M, B14M, and B21M rumen fluid 

inoculum), Wj is the fixed effect of week (j = wk 1, 3, 6, or 12), TiWj is the interaction of 

treatment and week, and eij is the random error associated with the measurement at 

week j on the hay sample assigned treatment i. Least squares means and SE were reported, 

and a 95% confidence level was used to determine significant differences among least 

squares mean multiple comparisons. 

 

RESULTS AND DISCUSSION 

Rumen Fluid Analysis 

Rumen Fluid Measurements. The pH of the rumen fluid was not different across 

treatments (Table 2.2) but changed over time, as week effect was significant (P = 

0.0221; Table 2.3). During wk 3, pH was lowest (6.23) and was different from that in wk 0, 

4, and 5 (6.45, 6.42, and 6.47, respectively). This is likely a result of the differences in VFA 

production from week to week. Volatile fatty acids and PAMP are expressed as the millimole 

concentration and millimoles per kilogram OMI to normalize across different intakes. Total 

VFA (mM of acetate + propionate + butyrate and isobutyrate) were not affected by treatment 

but were affected by week (P < 0.0001). Total VFA production (expressed as both mM and 

mM/kg OMI) was greatest during wk 3 and was different from all other weeks. When 

expressed as millimoles, VFA for wk 0 was not different from that of wk 6 and 12 but, when 

normalized for intake wk 0, was not different from that of wk 6 but was greater than that of 

wk 12. It is interesting to note the increase of total VFA toward wk 3 followed by the sharp 
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drop in wk 4. There was a significant interaction of the A:P ratio (P = 0.0007; Figure 2.1). 

From wk 0 to 3, the A:P ratio increased for the control, bambermycin, and B21M treatments 

whereas it decreased for the monensin, B7M, and B14M treatments. This is likely the effect 

of the duration of monensin being fed in the continuous and more frequently rotated 

treatments. After wk 3 control, the bambermycin and monensin treatments showed an 

increase of the A:P ratio toward wk 6 whereas the B7M, B14M, and B21M treatments tended 

to fluctuate between the values of the continuous treatments. Continuous treatments did 

decrease the A:P ratio more than the control treatment, but rotational treatments (B7M, 

B14M, and B21M) did not reduce the A:P ratio more than the continuous feeding of 

monensin. 

The PAMP ranged from 2.68 to 10.24 mM (0.0742 to 0.274 mM/kg OMI) throughout 

the trial, similar to the range of other reports (Hu et al., 2005). There was no effect of 

treatment on PAMP, likely due to the methodology for quantification. For the purposes of 

this study, we were interested in the maximum potential for methane production based on 

methanogen population rather than dietary substrate availability to methanogens at a given 

point in time. There was an effect of the week on PAMP (P < 0.0001). Normalized for intake, 

PAMP was greatest during wk 0, as expected. Least squares means of PAMP were not 

different for wk 3, 4, 5, or 6 and were significantly lower (23 to 32%) for wk 0. This 

reduction in PAMP is similar to other results of feeding antibiotics and ionophores (Guan et 

al., 2006; Van Nevel and Demeyer, 2008). However, PAMP in wk 0 was not different from 

that in wk 12 (0.234 vs. 0.224 mM CH4/kg OMI), indicating that the reduction in PAMP was 

not sustained long term. This result is the same when PAMP is expressed as millimoles. This 

finding is consistent with previous research where methane production of cattle consuming 
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high-forage diets showed an adaptive response (approximately 6 wk) to feed additives 

(Johnson et al., 1997; Guan et al., 2006). It is known that propionate formation competes 

with the CH4 formation (Russell and Strobel, 1989), and therefore, we examined the ratio of 

these measurements. The potential activity of the CH4:propionate ratio was not affected by 

treatment but was affected by week (P < 0.0001). The CH4:propionate ratio significantly 

decreased from wk 0 to wk 3 but, although lower still, was no longer significantly different 

by wk 4. The CH4:propionate ratio during wk 4 through 6 was 15 to 18% lower than during 

wk 0, but the CH4:propionate ratio during wk 12 was about 8% greater than during wk 0. 

Other researchers have reported the lowest A:P ratio and greatest CH4suppression to occur 

between 2 and 6 wk when cattle were treated with ionophores before returning to near-

baseline levels (Rumpler et al., 1986; DelCurto et al., 1998; Guan et al., 2006). Our findings 

suggest a reduction in methane production in the short term but possibly due to a reduction 

in overall VFA production. 

In Vitro Gas Production Technique. When bermudagrass hay was fermented with 

the adapted rumen fluid inoculum, a treatment × week interaction was revealed for DMD, 

CH4, and the CH4:DMD ratio (P = 0.0014, P = 0.0138, and P = 0.0078, respectively; Figures 

2.2a, 2.22b, and 2.2c). Only data from wk 1, 3, and 6 are presented. Week 12 collection was 

eliminated from the analysis as the inoculum was compromised during extreme weather 

events and, therefore, deemed to be unreliable. Dry matter digestibility of bermudagrass hay 

varied little when using the control inoculum (52.74, 55.27, and 57.92% for wk 1, 3, and 6, 

respectively). Bambermycin-adapted inoculum decreased DMD from wk 1 to 3 and 

significantly increased DMD at wk 6 (69.3, 38.25, and 72.92%, respectively). The DMD for 

monensin-adapted inoculum did not differ between wk 1 and 3 but also significantly 
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increased during 6 (44.67, 46.80, and 90.87%, respectively). Rotationally adapted inoculum 

decreased DMD from wk 1 to 3 but the DMD remained below that of the control through 

wk 6 (69.4 vs. 43.66% pooled average for wk 1 and 6, respectively). Interestingly, 

bermudagrass hay fermented with the control inoculum produced much less CH4 during wk 

3 than other treatments but was not different during wk 1 and 6 (Figure 2.3). When expressed 

as a CH4:DMD ratio, the interaction is more clear, where bermudagrass hay fermented with 

bambermycin- and rotationally treated inoculum resulted in greater CH4 per unit of DM 

digested versus the control and monensin treatments when decreased over time, albeit at 

different rates (Figure 2.3). These findings may suggest a short-term inefficiency in the 

fermentation kinetics of the bambermycin and monensin treatments as the microbial 

consortium are adjusting. This outcome also confirms the previously mentioned thought that 

reduced methane production might be a result of lower digestibility and thus lower VFA 

production as observed in the rumen fluid analysis. 

Microbial Analysis 

Archaea. The 16s RNA analysis returned 6 genera of archaea identified in the rumen 

fluid samples, which accounted for 1.35% of the total bacterial and archaeal OTU classified: 

Methanobacterium spp.; Methanobrevibacter spp.; Methanomicrobium spp.; 

Methanosphaera spp.; Nitrosoarchaeum limnia, an ammonia oxidizer (Mosier et al., 2012); 

and Thermoplasma spp., a genus specialized in respiration of sulfur (Hedderich et al., 1998; 

Carberry et al., 2014). The predominant archaeal genus (<90% relative abundance) was 

Methanobrevibacter, which is consistent with several reports (Tokura et al., 1999; Janssen 

and Kirs, 2008; Wright et al., 2008; Zhou and Hernandez-Sanabria, 2009; Tan et al., 2011). 
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There were no treatment effects on archaeal genera (Table 2.6). Week affected the 

population of Methanobacterium and Methanobrevibacter as well as Methanosphaera, 

Nitrosoarchaeum limnia, and Thermoplasma (Table 2.7). Although it is unlikely that the 

treatment directly affected the archaea, it is clear that there were significant shifts in 

population throughout the feeding period, even among the control-fed steers, indicating that 

duration of treatment (week) may have indirectly affected archaea. Relative abundance of 

Methanobacterium was greatest during wk 0 and, although numerically lower, this relative 

abundance was not different from that during wk 3 and 6 (1.881, 1.070, and 1.351%, 

respectively) but was significantly different from that during wk 4, 5, and 12 (0.510, 0.536, 

and 0.528%, respectively). This is likely due to gaps in the cross-feeding efficiency between 

archaea and the shifting bacterial consortium. Methanobacterium spp. have been shown to 

feed solely on H2 and CO2 and formate (Paynter and Hungate, 1968). Many of the 

predominant rumen bacteria produce formate as well as contribute to the pool of available 

H2 and CO2, and therefore, bacterial population changes or changes in their activity may 

have reduced the substrate available to this archaeon (Russell, 2002). This is further 

supported by the correlation of Methanobacterium with total VFA production and acetate 

production (R2 = 0.25, P = 0.0313 and R2 = 0.30, P = 0.0109, respectively). Populations of 

Methanobrevibacter were significantly higher during wk 4 than during wk 3, 5, and 6 (96.82 

vs. 90.69, 90.55, and 90.52%, respectively) but were not different from those during wk 0 

or 12. Populations of Methanosphaera spp. were greatest during wk 0 and were significantly 

reduced (>50%) during all other weeks (1.32 vs. 0.493, 0.427, 0.025, 0.470, and 0.536%, 

respectively). It is not surprising to see this low prevalence, as Methanosphaera has a 

metabolism restricted to H2 and methanol and is typically not as prevalent in higher-forage 
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diets as compared with concentrate diets (Carberry et al., 2014). Additionally, it is likely that 

treatments affected bacteria capable of fermenting pectin and therefore reduced methanol 

availability to this genus, likely accounting for the difference here between wk 0 and other 

weeks (McFeeters et al., 2001). Populations of Nitrosoarchaeum limnia significantly 

increased between wk 4 and 5 (0.042 vs. 0.930%, respectively) but were not different from 

those during other weeks. Because Nitrosoarchaeum limnia predominately oxidizes 

ammonia into nitrite, it may be that there was a population shift of proteolytic bacteria 

occurring between wk 4 and 5, thereby providing more substrate to the archaea. Populations 

of Thermoplasma spp. significantly shifted among wk 0, 3, 4, and 5 (2.943, 6.297, 2.202, 

and 6.929%, respectively), but those during wk 0, 4, and 12 were not different. Little is 

known about the role Thermoplasma plays in the rumen, but its presence has been detected 

by several researchers (Irbis and Ushida, 2004; Wright et al., 2006; Tan et al., 2011; Carberry 

et al., 2014) and it has been described as a scavenger of the decomposing elements of other 

microorganisms and has the ability to tolerate extreme acidity (Ruepp et al., 2000) and 

temperature (Reysenbach and Brileya, 2014) as well as respire sulfur (Carberry et al., 2014). 

Due to its relative abundance and its unknown role in the rumen, more research should be 

conducted on this genus of archaea. 

Bacteria. Gram-positive bacteria have been shown to be more susceptible to 

monensin and bambermycin than Gram-negative bacteria (Chen and Russell, 1989; Russell 

and Strobel, 1989; Butaye et al., 2003; Pfaller, 2006). Therefore, it was expected that 

treatment would negatively affect the relative abundance of those bacteria that have an 

exposed cell wall and create a competitive advantage for those bacteria with an outer cell 

membrane. Unexpectedly, there was a considerable variation on percent relative abundance 
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of bacteria among individuals steers during wk 0 (Figure 2.3), even after being adapted to 

the diet for 14 d, whereas the average percent relative abundance of Gram-positive bacteria 

in the rumen of all steers was 51.07% during wk 0 and populations ranged between 18.5 and 

87% for individuals. This finding is echoed in other reports where the animal-to-animal 

variation may be just as great as or greater than the dietary treatment variation (Li et al., 

2009; Jami et al., 2014). 

Overall, 27 phyla were identified in the samples; however, a combined 23 phyla 

accounted for less than 3.3% of those detected. The 2 dominate phyla identified were 

Firmicutes (42.6%) and Bacteroidetes (49.3%), as expected based on previous research 

reports, followed by Spirochaetes (2.93%) and the candidate phylum TM7 Candidatus 

Saccharibacteria (1.88%). At the phylum level, there were no significant interactions of 

treatment × week on the total Gram-positive bacteria population, Gram-negative bacteria 

population, or Firmicutes-to-Bacteroidetes (F:B) ratio. There were, however, significant 

treatment and time effects on these variables, as shown in Table 2.8 and Table 2.9. The 

B21M treatment resulted in the greatest F:B ratio, differing from all other treatments. 

Control-treated rumen fluid had the lowest F:B ratio and was not different from monensin 

or bambermycin treatments but was significantly lower than rotationally treated rumen fluid. 

In general, the percent relative abundance of Gram-positive bacteria was less than the Gram-

negative bacteria across all treatments, contrary to other findings for high-forage diets 

(Fernando et al., 2010). Treatment effects revealed that the control and bambermycin 

treatments had the lowest percent relative abundance of Gram-positive bacteria (36.28 and 

36.55%, respectively); the monensin, B7M, and B21M treatments were intermediate (44.12, 

45.50, and 47.78%, respectively); and the B14M treatment had the greatest (53.07%) but 
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was not different from the B21M treatment. The percent relative abundance of Gram-

negative bacteria shows the counter mean separation and is shown in Table 2.8. Week effects 

indicate that the F:B ratio was highest during wk 0 before treatments were applied and lowest 

during wk 5 and 6 (1.762 vs. 0.742 and 0.654, respectively; Table 2.9). The F:B ratio was 

not statistically different during wk 0, 4, and 12. Gram-positive bacteria were affected by 

week, being significantly lower during wk 3, 5, and 6 but not different among wk 0, 4, and 

12. Gram-negative bacteria were, therefore, the counteractivity of the Gram-positive 

bacterial populations and were also affected by week. 

In total, 41 classes of bacteria were shared across all samples, 11 of which accounted 

for 97.35% of bacteria detected: Actinobacteria, Bacilli, Candidatus Saccharibacteria 

(TM7), Clostridia, Erysipelotrichia, Bacteroidia, Cytophagia, Flavobacteriia, 

Negativicutes, Sphingobacteriia, and Spirochaetia. For the purposes of our objectives, only 

those classes are reported, because their prevalence was greater than 1% relative abundance 

or, as in the case of Actinobacteria, proved to be moderately correlated with other 

measurements; this is discussed later. At the class level, there was a significant treatment × 

time interaction for the Gram-positive bacterial class Erysipelotrichia (P < 0.0001; Fig. 4). 

During wk 0, there was major diversity in the population of this class, ranging from 2.64 to 

24.30% relative abundance among the treatment groups. However, by wk 3, the population 

significantly decreased, ranging from 0.320 to 2.601%, and continued to stay below 2.5% 

for all treatments for the remainder of the trial. The interaction occurred between wk 3 and 

4, where Erysipelotrichia decreased in B7M-treated rumen fluid when all other treatments 

increased. Another interaction occurred between wk 5 and 6, where the Erysipelotrichia 

population declined in the B7M and B21M treatments when other treatments were showing 
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increased populations. And finally, there was an interaction between wk 6 and 12, where 

populations in the B7M treatments did not change, the B21M treatments decreased, and all 

other treatments increased. Although the interaction is intriguing, the bigger picture is that 

steers that had a greater initial population of Erysipelotrichia showed a dramatic response to 

treatment and showed no signs of adaptation to treatment. It could be that Erysipelotrichia 

was highly affected by treatments due to several members of its class having displayed a 

unique loss of spore-forming genes and was, therefore, unable to cope with the environment 

(Davis et al., 2013; Galperin, 2013; Tang et al., 2016). This hypothesis also may explain the 

significant effects of week observed for the other classes of Gram-positive bacteria. The 

relative abundance of Actinobacteria, Bacilli, and Clostridia at wk 5, 6, and 12 were not 

significantly different than their initial population at wk 0 (Table 2.9). Each of these classes 

of bacteria has spore-forming capabilities and, in the case of Actinobacteria, has different 

levels of dormancy and activities based on stress stimulus (especially among Streptomyces 

spp.; Robinson and Batt, 2014). It may be that any favorable response of VFA production 

traits occurs between wk 1 and 3 and that a subsequent shift in population between wk 4 and 

6 is the reemergence of previously prominent bacterial communities, minus those that lack 

genes to combat molecules that permeate the cell wall. This thought may also be supported 

by the significant shift in total VFA and the A:P ratio from wk 3 to 4, as previously 

mentioned. 

One class of Gram-positive bacteria was affected by treatment, where percent 

relative abundance of Clostridia was lowest in the control and bambermycin-treated rumen 

fluid and was greatest for the B14M-treated rumen fluid (30.76, 31.10, and 45.54, 

respectively). Monensin-, B7M-, and B21M-treated rumen fluid had a similar percent of 
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Clostridia and were intermediate compared with other treatments. The Clostridia class made 

up the largest portion of the detected Gram-positive group and similarly follows the 

treatment effects on Gram-positive bacteria relative abundance. Gram-negative classes 

Cytophagia and Flavobacteriia were affected by treatment. The percent of Cytophagia was 

greatest for the B21M treatment and lowest for the B14M treatment (1.638 vs. 0.982, 

respectively), whereas other treatments were intermediate and not significantly different. In 

general, treatments that had greater percent of Clostridia had lower Flavobacteriia and vice 

versa. The class Flavobacteriia was most prevalent in the control and bambermycin 

treatments and less evident in the monensin and B14M treatments, with the B7M and B21M 

treatments being intermediate. Although the true relationship between these 2 classes is 

unclear at this time, it would appear that Clostridia and Flavobacteriia may share a common 

niche based on their antagonistic behavior observed here. There was an effect of week on 

Gram-negative classes Bacteroidia, Cytophagia, Negativicutes, and Spirochaetia (Table 

2.9). As was observed in the Gram-positive classes, although there were significant 

differences among weeks, there was no difference among wk 0, 4, and 12 for Bacteroidia, 

Cytophagia, and Negativicutes. Week 0 differed from wk 4, 5, and 12, however, for 

Spirochaetia (3.922 vs. 1.976, 1.678, and 1.976%, respectively). At this time, this result is 

not clear but may be a consequence of greater competitiveness for substrate due to increased 

needs for bacterial energy to maintain functionality in an assaulting environment. 

Archaea and Bacteria Correlations 

Methanobrevibacter spp. were correlated with Gram-positive bacteria (R2 = 0.497, 

P < 0.0001), especially the Actinobacteria and Clostridia classes (R2 = 0.496, P < 0.0001 

and R2 = 0.381, P < 0.001, respectively). Contrarily, Methanomicrobium was correlated 
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with Gram-negative bacteria (R2= 0.271, P < 0.05), especially Sphingobacteriia and 

Spirochaetia (R2 = 0.472, P < 0.0001 and R2 = 0.308, P < 0.05). Interestingly, 

Methanosphaera was correlated with Erysipelotrichia and Candidatus Saccharibacteria (R2 

= 0.320, P < 0.05 and R2 = 0.381, P < 0.001, respectively). As previously mentioned, pectate 

lyase genes can be found in the genome assemblies of several subspecies belonging to the 

class Erysipelotrichia (Ogawa et al., 2011; Tang et al., 2016). Therefore, reduction of these 

bacteria and their end products due to susceptibility to antibiotics and/or ionophores likely 

restricted the growth of Methanosphaera spp., which feeds exclusively on H2 and methanol 

(Pol and Demeyer, 1988). Nitrosoarchaeum limnia was correlated with the class 

Flavobacteriia (R2 = 0.235, P < 0.05). Thermoplasma spp. was correlated with Gram-

negative bacteria (R2 = 0.502, P < 0.0001), primarily Flavobacteriia (R2 = 0.373, P < 0.001), 

Sphingobacteriia (R2 = 0.378, P < 0.001), and Spirochaetia (R2 = 0.306, P < 0.01). 

 

CONCLUSION 

Although ionophores and antibiotics may have different modes of action, there is no 

significant evidence that rotating bambermycin and monensin would alter the VFA profile 

or decrease methane potential more than continuous feeding, but rather, it may dilute the 

efficacy of the ionophore when continuously fed. Neither did we find evidence to suggest 

that rotating additives delays rumen microbial adaptation better than continuous feeding, 

which has also been reported in other research (Guan et al., 2006). In general, it appears that 

bacterial adaptation occurred between 4 and 6 wk after initiation of additives. Therefore, 

based on our findings, feeding antibiotics or ionophores or rotating the 2 may lose its efficacy 

in the long term, regarding target microbial populations, when cattle are consuming a 
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moderate-forage diet. Future research may look to a pulse-feeding approach to feed additives 

as a means to circumvent microbial adaptation when considering a long-term feeding plan. 
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Table 2.1. Ingredient and chemical composition of basal diet fed to cannulated angus-cross 

steers and Bermudagrass hay fermented in vitro 

Item Basal Diet, control Bermudagrass Hay 

 %   

Corn  29.92  

Soybean meal 3.17  

Cottonseed hulls 28.02  

Bermudagrass hay, chopped 33.15  

Molasses 3.72  

Urea 1.00  

Trace mineral 0.01  

Limestone 0.50  

Salt 0.12  

Vitamin E-201 0.39  

Dry Matter, % of Diet 91.6 93.2 

  CP, % DM 11.6 10.5 

    Soluble protein, % CP 38.1 21.3 

    NDICP, % CP2 18.6 45.5 

    ADICP, % CP3 20.6 13.6 

  NDF, % DM 53.8 75.9 

  ADF, % DM 39.3 40.1 

  Lignin, % DM 10.7 5.12 

  Crude fat, % DM    2.0 2.36 

  Sugar, % DM    5.9 4.7 

  Starch, % DM  16.9 2.4 

  Ash, % DM    4.5 6.82 

TDN,% 55.1 55.6 

NEm, Mcal/kg 1.15 1.17 

NEg, Mcal/kg 0.59 0.59 

   
1Chemical analysis of diet evaluated by Cumberland Valley 
Analytical Services (Hagerstown, MD). 
2NDICP= neutral detergent insoluble crude protein. 
3ADICP= acid detergent insoluble crude protein. 
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Table 2.2. Effect of treatment on rumen fluid pH, VFA profile and potential methane production 

           

Items1  Treatment2  SEM P-value 

  Control Monensin Bambermycin B7M B14M B21M    

           

pH  6.41 6.25 6.36 6.57 6.36 6.45  0.100 0.4395 

           

           

Total VFA, mM/kg of OMI  3.23 3.46 3.06 2.87 3.37 3.04  0.242 0.5607 

   Acetate, mM/kg of OMI  2.35 2.39 2.21 2.06 2.40 2.18  0.163 0.6369 

   Propionate, mM/kg of OMI  0.486 0.669 0.486 0.482 0.592 0.522  0.061 0.3097 

   Acetate:Propionate  4.93a 3.72c 4.69ab 4.40abc 4.16bc 4.26abc  0.208 0.0567 

           

PAMP, mM/kg of OMI         0.198 0.220 0.193 0.191 0.186 0.178  0.019 0.7409 

CH4:Propionate  0.424 0.361 0.420 0.416 0.331 0.358  0.052 0.7140 

           

           

Total VFA, mM  108.2 113.5 109.1 99.02 113.1 100.8  8.25 0.7355 

     Acetate, mM  78.78 78.27 78.83 71.06 80.68 72.22  5.05 0.6926 

     Propionate, mM  16.30 21.97 17.29 16.60 19.86 17.29  2.25 0.5003 

PAMP, mM  6.629 7.187 6.911 6.604 6.279 5.974  0.470 0.5702 

           
a-h LSM within a row without a common superscript differ at P < 0.05.  
1 Items are the pH of rumen fluid samples, Total VFA = acetate, propionate, butyrate & isobutyrate concentration of rumen fluid samples, 

PAMP= maximum potential methane production based on methanogen population in rumen fluid samples. Items expressed as mM 

concentrations in rumen fluid and also the normalized concentration per kg of organic matter intake (OMI) of the individual steers. 
2 Treatments were rumen fluid inoculum adapted to diets: Control = basal diet with no additive, Monensin = basal diet + monensin 200 

mg/hd/day (Elanco Animal Health, Greenfield, IN), Bambermycin = basal diet + bambermycin 20 mg/hd/day (Huvepharma, Inc., Peachtree 

City, GA); B7M= basal diet + weekly rotation of bambermycin and monensin, B14M = basal diet + rotation of bambermycin and monensin 

every two weeks, B21M = basal diet + rotation of bambermycin and monensin every three weeks.  
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Table 2.3. Effect of week on rumen fluid pH, VFA profile and potential activity of methane production 

       

Items1  Week2  SEM  P-value 

  0 3 4 5 6 12     

            

pH  6.45ab 6.23d 6.42bc 6.47ab 6.37bcd 6.39bcd  0.070  0.0221 

            

            

Total VFA, mM/kg 

OMI 

 3.31cde 4.01a 2.85f 2.80f 3.03ef 2.76f  0.155  <0.0001 

  Acetate, mM/kg 

OMI 

 2.36cd 2.76a 2.05ef 2.03ef 2.21de 1.94f  0.106  <0.0001 

  Propionate, 

mM/kg OMI 

 0.584b 0.708a 0.494cd 0.468d 0.493cd 0.490cd  0.038  <0.0001 

Acetate:Propionate  4.23efg 4.06gh 4.26defg 4.46cdef 4.61bc 4.01gh  0.134  <0.0001 

            

PAMP, mM/kg of 

OMI        

 0.234a 0.178cde 0.167de 0.159e 0.170cde 0.224ab  0.014  <0.0001 

CH4:Propionate  0.425bcde 0.270fg 0.348ef 0.349e 0.360de 0.462abc  0.035  <0.0001 

            

            

Total VFA, mM  106.5cde 131.5a 94.73g 95.13fg 101.5efg 100.5efg  5.10  <0.0001 

  Acetate, mM  76.06def 90.70a 68.10g 68.84fg 73.69defg 70.61efg  3.34  <0.0001 

  Propionate, mM  18.80bcd 23.21a 16.40de 15.89e 16.36de 17.81bcde  1.31  <0.0001 

PAMP, mM  7.576ab 5.800cd 5.466d 5.391d 5.685cd 8.129a  0.440  <0.0001 

            
a-h LSM within a row without a common superscript differ at P < 0.05.  
1 Items are the pH of rumen fluid samples, Total VFA = acetate, propionate, butyrate & isobutyrate concentration of rumen fluid samples, 

PAMP= maximum potential methane production based on methanogen population in rumen fluid samples. Items expressed as mM 

concentrations in rumen fluid and also the normalized concentration per kg of organic matter intake (OMI) of the individual steers. 
2 Weeks were week 0 = basal diet and no treatment, week 3 through 12 = basal diet plus treatment for the respective number of weeks. 
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Table 2.4. Treatment effects of in vitro fermentation characteristics of Bermudagrass hay inoculated with adapted rumen fluid 

           

Item2  Treatment1 SEM  P-value 

   Control Bambermycin Monensin B7M B14M B21M    

           

Total gas, mL  21.29 19.16 21.45 16.41 18.35 21.37 1.411  0.1121 

Fermentation rate, h-1  5.85 6.00 5.23 7.17 5.33 4.87 0.764  0.3961 

Lag time, h  1.89b 3.48a 1.78b 4.71a 4.46a 3.39a 0.528  0.0026 
           

DMD, %  55.31 60.15 60.78 52.78 49.33 52.93 3.503  0.3158 

CH4, mM  16.27b 19.96a 20.49a 20.43a 20.15a 19.11a 0.811  0.0010 

CH4:DMD  0.3009b 0.3689a 0.4088a 0.3800a 0.4162a 0.3743a 0.019  0.0083 

pH  6.58 6.43 6.43 6.48 6.45 6.45 0.049  0.8925 

           
a-b LSM within a row without a common superscript differ at P < 0.05.  
1Treatments were rumen fluid inoculum adapted to diets: Control = basal diet with no additive, Monensin = basal diet + 

monensin 200 mg/hd/day (Elanco Animal Health, Greenfield, IN), Bambermycin = basal diet + bambermycin 20 mg/hd/day 

(Huvepharma, Inc., Peachtree City, GA); B7M= basal diet + weekly rotation of bambermycin and monensin, B14M = basal diet 

+ rotation of bambermycin and monensin every two weeks, B21M = basal diet + rotation of bambermycin and monensin every 

three weeks. 
2 Items are the fermentation characteristics of Bermudagrass hay using the exponential with discrete lag nonlinear function, 

DMD=Dry matter digestibility.  
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Table 2.5. Week effects of in vitro fermentation characteristics of Bermudagrass hay inoculated with adapted rumen fluid 

        

Item1   Week SEM  P-value 

    1 3 6    

        

Total gas, mL  23.75a 18.18b 17.08b 1.219  0.0083 

Fermentation rate, h-1  4.78 6.44 6.00 0.649  0.2309 

Lag time, h  2.49b 2.83b 4.53a 0.418  0.0023 

        

DMD, %  62.44a 44.42a 58.78b 2.175  < 0.0001 

CH4, mM  27.71a 20.86b 9.63c 0.750  < 0.0001 

CH4:DMD  0.4585a 0.4837a 0.1824b 0.017  < 0.0001 

pH   6.49 6.42 6.47 0.051   0.2602 

        
a-b LSM within a row without a common superscript differ at P < 0.05.  
1Items are the fermentation characteristics of Bermudagrass hay using the exponential with discrete lag nonlinear function, 

DMD=Dry matter digestibility, Methane concentration, Methane concentration to DMD ratio and final pH.  
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Table 2.6. Effect of treatment on relative abundance of archaeal genera 

           

Items1   Treatment2  SEM P-value 
  Control Monensin Bambermycin B7M B14M  B21M       

           

Methanobacterium spp., %   1.099 1.159     0.843    0.615 1.276 0.883  0.45 0.9050 

Methanobrevibacter spp., %  91.47 93.11 92.16 93.22 93.80 92.71  1.67 0.9290 

Methanomicrobium spp. , %  0.265 1.133     1.103 0.160 0.254 0.421  0.60 0.7392 

Methanosphaera spp. , %  0.506 0.680     0.562 0.515 0.415 0.593  0.28 0.9883 

Nitrosoarchaeum limnia, %  0.731 0.188     0.137 0.448 0.291 0.270  0.22 0.4528 

Thermoplasma spp. , %  5.924 3.726     5.192 5.045 3.969 5.122   1.23 0.8070 

           
1Items are the archaeal genera expressed in percent relative abundance. 
2Treatments: control = basal diet with no additive; monensin = basal diet + monensin 200 mg/d (Elanco Animal Health, Greenfield, 

IN); bambermycin = basal diet + bambermycin 20 mg/d (Huvepharma, Inc., Peachtree City, GA); B7M = basal diet + weekly 

rotation of bambermycin and monensin treatments; B14M = basal diet + rotation of bambermycin and monensin treatments every 

14 d; B21M = basal diet + rotation of bambermycin and monensin treatments every 21 d. 
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Table 2.7. Effect of week on relative abundance of archaeal genera 

       

Items1 
 

Week 
 

SEM 
 

P -value   
0 3 4 5 6 12 

    

            

Methanobacterium spp., % 
 

1.881a 1.070abc 0.510c 0.536bc 1.351ab 0.528bc 
 

0.33 
 

0.0287 

Methanobrevibacter spp., % 
 

93.71ab 90.69b 96.82a 90.55b 90.52b 94.19ab 
 

1.59 
 

0.0557 

Methanomicrobium spp.,% 
 

0.019 1.347 0.000 1.029 0.561 0.380 
 

0.53 
 

0.3165 

Methanosphaera spp.,% 
 

1.320a 0.493b 0.427b 0.025b 0.470b 0.536b 
 

0.23 
 

0.0062 

Nitrosoarchaeum limnia,% 
 

0.127b 0.104b 0.042b 0.929a 0.627ab 0.235b 
 

0.21 
 

0.0290 

Thermoplasma spp.,% 
 

2.943c 6.297ab 2.202c 6.929a 6.477a 4.130abc 
 

1.21 
 

0.0340 

            
a-c LSM within a row without a common superscript differ at P < 0.05.  
1 Items are the archaeal genera expressed in % relative abundance of total archaea. 
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Table 2.8. Effect of treatment on the relative abundance of predominant ruminal bacteria 

            

Items1  Treatment2  SEM  P-value 

  Control Monensin Bambermycin B7M B14M  B21M     

            

Firmicutes/Bacteroidetes 

ratio  0.635d 1.047bcd 0.664cd 1.131bc 1.199b 1.845a  0.16  0.0001 

            

Gram Positive Phyla, %  36.28c 44.12b 36.55c 45.50b 53.07a 47.78ab  2.24  <0.0001 

Gram Positive Class            

      Actinobacteria, %  0.3692 0.5861 0.1787 0.3559 0.4879 0.3397  0.10  0.2432 

      Bacilli, %  1.752 1.969 1.463 1.801 1.808 2.097  0.23  0.5078 

      Candidatus sacc., %  2.020 2.922 1.067 0.903 3.558 0.831  1.75  0.8129 

      Clostridia, %  30.76c 36.43b 31.10c 37.53b 45.54a 39.38b  1.76  <0.0001 

      Erysipelotrichia, %  1.188b 1.893b 2.544b 4.680a 1.304b 4.770a  0.44  0.0002 

            

Gram Negative Phyla, %  61.72a 52.90b 61.14a 51.62b 43.92c 49.45bc  2.32  <0.0001 

Gram Negative Class            

      Bacteroidia, %  32.59 29.32 33.16 30.34 27.68 30.44  2.20  0.5528 

      Cytophagia, %  1.085bc 1.315abc 1.102bc 1.432ab 0.928c 1.638a  0.15  0.0332 

      Flavobacteriia, %  11.21ab 4.169c 11.53a 6.330bc 4.878c 6.603abc  1.45  0.0427 

      Negativicutes, %  0.790 1.411 1.084 1.399 1.137 1.718  0.20  0.1362 

      Sphingobacteriia, %  12.61 12.98 11.81 8.606 7.625 6.275  2.78  0.4603 

      Spirochaetia, %  3.440 3.708 2.460 3.507 1.664 2.783  0.62  0.2221 

            
a-c LSM within a row without a common superscript differ at P < 0.05.  
1 Items are the phylum ratio of Firmicutes to Bacteroidetes and predominant ( > 1 % relative abundance) taxonomic classes of bacteria in % 

relative abundance organized by typical gram stain results. Actinobacteria was included due to its moderately positive correlation to 

predominant Archaea. 
2 Treatments were Control = basal diet with no additive, Monensin = basal diet + monensin 200 mg/hd/day (Elanco Animal Health, 

Greenfield, IN), Bambermycin = basal diet + bambermycin 20 mg/hd/day (Huvepharma, Inc., Peachtree City, GA); B7M= basal diet + 

weekly rotation of bambermycin and monensin, B14M = basal diet + rotation of bambermycin and monensin every two weeks, B21M = 

basal diet + rotation of bambermycin and monensin every three weeks. 
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Table 2.9. Effect of week on the relative abundance of predominating bacterial classes 

       

Items1  Week  SEM  P-value 

  0 3 4 5 6 12     

            

Firmicutes/Bacteroidetes ratio  1.762a  0.821bc 1.597ab 0.742c 0.654c 0.945ab  0.21  0.0031 

            

Gram Positive Phyla, %  51.07ab 39.39c 56.29a 37.51c 35.06c 43.96bc  3.14  <0.0001 

Gram Positive Class            

     Actinobacteria, %  0.458ab       0.213c   0.629a 0.340bc   0.355bc   0.319bc  0.07  0.0045 

     Bacilli, %  1.738b       1.584b   2.477a   1.551b   1.519b   2.019ab  0.21  0.0077 

     Candidatus sacc. , %  4.387     1.859   2.114   0.962   0.636   1.341  1.11  0.1861 

     Clostridia, %  33.24bc    34.31bc 49.32a 33.55bc 31.43c 38.87b  2.46  <0.0001 

     Erysipelotrichia, %  10.94a       1.245b   1.203b   0.914b   0.972b   1.094b  0.67  <0.0001 

            

Gram Negative Phyla, %  46.93bc   57.80a 40.96c 59.41a 61.58a 54.08ab  3.18  0.0002 

Gram Negative Class            

     Bacteroidia, %  23.72c    31.40ab 26.00bc 34.13ab 38.02a 30.25bc  2.43  0.0063 

     Cytophagia, %  1.012b       1.587a   0.928b   1.603a   1.265ab   1.103b  0.16  0.0345 

     Flavobacteriia, %  5.500      7.728   6.702 10.70   7.718   6.369  1.34  0.1428 

     Negativicutes, %  0.337c       1.361b   0.590c   2.321a   2.316a   0.612c  0.19  <0.0001 

     Sphingobacteriia, %  12.43 10.53   4.759   8.967   9.434 13.76  2.77  0.3528 

     Spirochaetia, %  3.922ab      5.183a   1.976c   1.678c   2.821bc   1.976c  0.66  0.0119 

            
a-c LSM within a row without a common superscript differ at P < 0.05.  
1 Items are the phylum ratio of Firmicutes to Bacteroidetes and predominant (> 1 % relative abundance) taxonomic classes of bacteria in % 

relative abundance organized by typical gram stain results. Actinobacteria was included due to its moderately positive correlation to 

predominant Archaea. 
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Figure 2.1 Interaction of treatment and week on the acetate-to-propionate ratio in the rumen fluid of steers. Values are least 

squares means ± SEM. Treatments: control = basal diet with no additive; monensin = basal diet + monensin 200 mg/d (Elanco 
Animal Health, Greenfield, IN); bambermycin = basal diet + bambermycin 20 mg/d (Huvepharma, Inc., Peachtree City, GA); 

B7M = basal diet + weekly rotation of bambermycin and monensin treatments; B14M = basal diet + rotation of bambermycin 

and monensin treatments every 14 d; B21M = basal diet + rotation of bambermycin and monensin treatments every 21 d. 
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Figure 2.2. Interaction of treatment and week on DM digestibility (DMD; %) (a), methane 

concentration (mM) (b), and the methane-to–DM digestibility ratio (c) of bermudagrass hay 

fermented using the in vitro gas production technique and adapted rumen fluid. Values are least 

squares means ± SEM. Treatments were rumen fluid inoculum adapted to diets: control = basal diet 

with no additive; monensin = basal diet + monensin 200 mg/d (Elanco Animal Health, Greenfield, 

IN); bambermycin = basal diet + bambermycin 20 mg/d (Huvepharma, Inc., Peachtree City, GA); 

B7M = basal diet + weekly rotation of bambermycin and monensin treatments; B14M = basal diet + 

rotation of bambermycin and monensin treatments every 14 d; B21M = basal diet + rotation of 

bambermycin and monensin treatments every 21 d. 
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Figure 2.3. Relative abundance of Gram positive and Gram negative bacteria during week 

0 collection 3 h after the morning feeding. Steers were adapted to a basal diet with no 

treatment for 14 d prior to the collection, but an animal-to-animal variation of the bacterial 

population is apparent. 
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Figure 2.4. Interaction of treatment and week on the relative abundance of the Gram positive 
class Erysipelotrichia in the rumen fluid of steers. Values are LSM ± SEM. Treatments were 

Control = basal diet with no additive, Monensin = basal diet + monensin 200 mg/hd/day 

(Elanco Animal Health, Greenfield, IN), Bambermycin = basal diet + bambermycin 20 

mg/hd/day (Huvepharma, Inc., Peachtree City, GA), B7M= basal diet + weekly rotation of 

bambermycin and monensin, B14M = basal diet + rotation of bambermycin and monensin 

every two weeks, B21M = basal diet + rotation of bambermycin and monensin every three 

weeks. 
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CHAPTER III  

EFFECTS OF ACTIVE DRY YEAST ON RUMINAL PH 

CHARACTERISTICS AND ENERGY PARTITIONING OF FINISHING 

STEERS UNDER THERMONEUTRAL OR HEAT-STRESSED 

ENVIRONMENT 

 

SYNOPSIS 

The objective of this trial was to determine the effects of supplementing active dried 

yeast (ADY) in the diets of finishing steers on energy and nitrogen metabolism and ruminal 

pH characteristics under thermoneutral (TN) or heat-stressed (HS) conditions. Eight British-

cross steers received one of two TRT (either a control finishing diet (CON) or supplemented 

with 3 g/d (6 ×1010 CFU/d) of ADY) under one of two temperatures (TEMP: TN = 18 ± 

0.55°C and 20 ± 1.2% RH or HS = 35 ± 0.55°C and 42 ± 6.1% RH). Steers were orally 

administered an indwelling rumen pH and temperature recording bolus. Steers were adapted 

for 12 d before data collections. Data collection occurred for 48 consecutive hours inside 

two calorimetry chambers, and daily means were computed. Data were analyzed as in a 4 × 

8 Latin rectangle design with fixed effects of TRT and TEMP, and random effects of steer 

and period. There were no TRT by TEMP interactions for metabolism or calorimetric 

measurements. In vivo DM digestibility (DMD) was greater for ADY- than CON-fed steers 

(77.1 vs. 75.3%, respectively; P = 0.0311). Nitrogen retention was not different between 

CON- and ADY-fed steers (42.1 vs. 47%, respectively; P = 0.30) but tended to be different 

between steers under TN vs. HS conditions (47.8 vs. 41.3%, respectively; P = 0.18). Energy 
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partitioning showed DE and ME (Mcal/kg) were greater for ADY- than CON-fed steers (P 

= 0.0097 and 0.0377, respectively) and retained energy (RE) tended to be greater for ADY- 

vs. CON-fed steers (1.56 vs. 1.43 Mcal/kg, respectively; P = 0.11). Steers under HS had 

reduced DMI, and as expected, greater DMD than TN steers (77.1 vs. 75.3 %, respectively; 

P = 0.0316) and greater CH4 per unit of DM (12.9 vs. 9.8 L/kg, respectively; P < 0.05). 

Although DE was greater for HS than TN (3.16 vs. 3.06 Mcal/kg, respectively; P = 0.0123) 

heat production (HE) was considerably greater for HS than TN (9.96 vs 8.46 Mcal/d, 

respectively; P = 0.0013), resulting in a less RE (1.39 vs. 1.63 Mcal/kg; P = 0.0043). There 

was a tendency for an interaction for mean ruminal pH (P = 0.12) in which pH of ADY-fed 

steers was greater than CON-fed steers under TN conditions (5.81 vs. 5.57, respectively), 

but not under HS conditions (5.37 vs. 5.41, respectively). Duration and area under the curve 

for pH > 5.6 had similar tendencies in which under TN conditions the DUR and AUC pH 

>5.6 of ADY-fed steers was greater than CON-fed steers (P = 0.07 and P = 0.09, 

respectively), but under HS conditions there was no difference between ADY and CON. We 

conclude that supplementing ADY in the diets of finishing steers improved DMD, DE, ME 

and RE, and mean ruminal pH under TN conditions, but not in extreme HS conditions likely 

because of their reduced DMI and greater HE requirements. 

 

INTRODUCTION 

The effects of including an active dry yeast (ADY; i.e., Saccharomyces cerevisiae) 

in the diets of dairy cattle have been extensively studied (Desnoyers et al., 2009), but its 

effects on beef cattle under feedlot conditions are not well defined. Improvements in DM 
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digestibility (DMD), stabilization of ruminal pH, and feed efficiency are translational 

variables of interest in finishing cattle supplemented with ADY. The role of ADY in 

ruminant diets has been suggested to alter fermentative pathways from lactate to propionate 

by stimulating populations of lactate-utilizing and cellulolytic bacteria populations thereby 

decreasing the risk of low ruminal pH and increasing ruminal digestibility (Chaucheyras et 

al., 1996; Lila et al., 2004). 

Some research in dairy cattle has even shown positive impacts when supplementing 

ADY during hotter months when productive functions tend to decline (Moallem et al., 2009; 

Salvati et al., 2015). Heat stress is a substantial drain on feed energy in beef cattle and may 

increase maintenance requirements by up to 18 % (National Academies of Sciences, 

Engineering, and Medicine, NASEM, 2016). As thermal heat index increases, animal energy 

expenditure increases in an effort to maintain core body temperature within physiological 

limits. Additionally, heat stress may affect feeding behavior, DMI, cause ruminal 

disturbances that may lead to acute ruminal acidosis (Collier et al., 2006). During extreme 

weather in the United States and more commonly in sub-tropical latitudes, heat load and 

stress may have significant adverse impacts on beef production, reducing economic 

sustainability, and potentially prejudicing animal welfare. 

Therefore, the objective of this study evaluated the effects of supplemental ADY in 

the diets of finishing steers on the metabolism of energy and nitrogen using indirect 

calorimetry, and ruminal pH characteristics under thermoneutral (TN) or heat-stressed (HS) 

conditions within respiration chambers. 
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MATERIALS AND METHODS 

Animals, Feeding Regimens, and Dietary Treatments 

Eight British crossbred steers (389 ± 30 kg) were cared for according to the approved 

animal use protocol (IACUC: 2016-0267) and housed individually in metabolism stalls in a 

climate controlled barn (18 ± 0.55°C; 35 ± 6 % RH). The Large Ruminant Nutrition System 

(LRNS; http://www.nutritionmodels.com/lrns.html; Accessed on January 21, 2018; 

Tedeschi and Fox, 2018) was used to formulate the high-concentrate control diet (CON) 

using the following ingredients: cracked corn, dried distiller’s grain, a medium chopped 

alfalfa hay, and mineral supplement, as detailed in Table 3.1. Steers were stepped up over a 

period of 21 d to the CON diet and further adapted for another 14 d prior to the trial. To 

compensate for expected drops in the voluntary intake due to extreme environmental 

temperature and ensure proper dosage and full consumption of feed treatment steers were 

limit-fed (1.5% of shrunk BW, daily DMI) at 0700 and 1700 h each day, but with unrestricted 

access to water. An active dry yeast (ADY) supplement (VistaCell; ABVista, Marlborough, 

UK) was top dressed and thoroughly hand mixed (1.5 g) at each feeding to assigned treated 

steers within each period to allow a total of 3 g/d (6 ×1010 CFU/d). Viability was ensured 

before and after the trial for quality control purposes. 

Experimental Design, Equipment, and Data Collection 

A 4×8 Latin rectangle design was used to determine the effects of two feed treatments 

(CON and ADY) and two environmental temperatures (TN vs. HS) so that within a period 

each interaction of feed treatment and the temperature was replicated by two steers. Because 

we used two respiration chambers side-by-side, only two steers could be collected at one 
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time; steers were paired together to begin the trial and each period in a stepwise progression 

being 2 d apart between each pair. Steers were adapted to their feed treatment for 12 d before 

any measurements. Within each period, on d 13 for a pair of steers, a shrunk BW (SBW) 

was taken before the morning feeding. Each steer was placed in a single stall open-circuit 

respiration calorimetry chamber system using a mass flow system (Flowkit model FK-500; 

Sable System Int., Henderson, NV) for a 48-h data collection period. Chambers were 

designated as either TN (18 ± 0.55°C; 20 ± 1.2 % RH) or HS (35 ± 0.55°C; 42 ± 6.1 % RH). 

Ambient air (baseline) and air from each chamber were sampled by a multiplexer 

(Respirometry Multiplexer V 2.0, Sable System Int., Henderson, NV) rotating every 2 min 

and measured O2, CO2 and CH4 (FC-1B O2 analyzer, CA-2A CO2 analyzer and MA-10 

Methane analyzer; Sable System Int., Henderson, NV). The SBW, dietary energy density, 

and the known dimensions of the calorimetry chambers were used to calculate the proper 

bank time and flow rate needed before data recording. The assumed gas concentrations of 

baseline ambient air (O2 =20.95 %, CO2=0.04% and CH4 =0.00 %) were used to calibrate 

O2, CO2 and CH4 analyzers using known gasses, SPAN, and nitrogen, before each steer entry 

for data collection. The measured gas was scrubbed of water vapor using fresh drierite 

desiccant (Hammond Drierite Co LTD, Xenia, OH) for each 48 h collection and the rate of 

O2, CO2 and CH4 production (VO2, VCO2, and VCH4) were determined (L/min) (Lighton, 

2008). Prior to each period an oxygen recovery trial was performed using the gravimetric 

nitrogen injection technique (Cooper et al., 1991), where expected (20.95 % × volume of N) 

and observed VO2 uptake were verified with recovery being no less than 100 % (O2 < 0.001 

L/min). 
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Each chamber was preloaded with 4 rations of designated feed TRT, equipped with 

a line voltage thermostat (Ranco Enterprises, Inc., Model# ETC-111000-000), dehumidifier 

(Hisense USA, Model# DH-70K1SDLE), water meter (Neptune Technology Group, Inc., 

Model# T10-DR-075-G-F), digital HOBO temperature and humidity data loggers (Onset 

Computer Corporation, Model# UX100-003), and security cameras (FLIR Lorex Inc., 

Model# LBV1511W) for monitoring animal activity within the chambers. Additionally, each 

chamber was equipped with a metabolism stand to allow for the collection of total urine and 

fecal output. After 48 h in the chambers, steers were restrained in a squeeze chute to collect 

approximately 1 L of rumen fluid via esophageal tubing. Animals were allowed to rest for 

approximately 1 h in an open pen before returning to the stalls in the climate controlled barn 

to begin d 1 of their next experimental period with a different diet. 

Water, Feed, Fecal, and Urine Analyses 

Water intake was manually recorded from the analog water meter. During each 

period, batch feed samples were taken and homogenized into representative samples (n = 4) 

to determine the chemical analysis of DM, NDF, ADF, lignin, CP, soluble protein, NDIN, 

ADIN, starch, sugars, and minerals at Cumberland Valley Analytical Services (Hagerstown, 

MD). Residual orts during a data collection days were weighed, and a sub-sample was 

cataloged to be analyzed for DM, GE, and N to be used for calorimetry adjustments. 

Total fecal output for the 48-h data collection period was weighed, homogenized, 

subsampled, dried, and analyzed for DM, GE, and N. Total urine collection was achieved 

using a large transmission funnel and, to eliminate fecal contamination, two non-splatter 

filters fitted beneath the metabolism stand and over the catch tub. The catch tub was linked 
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to an external holding tub and vacuum pump system that remained primed to eliminate 

gaseous escape from the chamber. To prevent volatilization of N, 600 mL of 3 molar HCl 

was added to each catch tub at the beginning of each recorded steer entry. Urine was 

vacuumed as necessary into the external holding tub from the catch tub. Total urine was 

weighed and homogenized for subsampling at the end of each 48 h data collection. Urine 

samples were analyzed for GE and N. 

All GE analyses were conducted by a bomb calorimeter (Parr adiabatic calorimeter; 

Parr Instruments Co., Moline, IL) and Total N analysis was performed by Servi-Tech 

Laboratories (Amarillo, TX) using the Dumas combustion method.  

Rumen Boluses 

Rumen pH and temperature were recorded using a wireless, indwelling rumen bolus 

which communicated via radio-transmission to a base station inside the barn (smaXtec 

animal care, GMbH, Graz, Austria). Because manufacturer guaranteed lifespan was limited 

to 50 d, boluses were activated, calibrated and inserted into the steers serially one week prior 

to their first chamber collection days within the first period. Boluses were inserted orally 

using the manufacturer provided balling gun. Continuous recordings of the reticulo-ruminal 

pH and temperature were averaged and plotted for every 10 min for the duration of the trial 

automatically transmitting data to the base station radio system which stored data in the 

cloud for real-time monitoring. Data was serially downloaded to reflect the relative 

information for a given steer’s stay in the calorimetry chamber. Rumen variables were 

chosen to reflect the time (DUR=duration, h/d or %/d) and magnitude (area under the curve; 

AUC) below pH thresholds of biological importance. Rumen pH variable thresholds of 5.0 
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and 5.6 were assigned based on work by Nagaraja et al., (2007) where ruminal pH below 5.0 

was considered to be acutely acidotic and between 5.0 and 5.6 were considered to be sub-

acutely acidotic. Rumen pH variables were therefore calculated as mean pH, DUR above pH 

5.6 and the area above the curve (AAC), DUR of SARA (pH 5.0-5.6) ( h/d and %/d), AUC 

of SARA, DUR of acute ruminal acidosis (ARA; pH < 5.0, h/d and %/d) and AUC of ARA. 

Rumen temperature variables were calculated to detect changes in the normal rumen 

temperature above the typical heat of fermentation as a threshold of 40°C, resulting in the 

variables mean rumen temperature, DUR above 40°C (h/d and %/d), and AAC of 40°C. The 

AUC and AAC variables were determined with a script that used the definite integral 

approach and the rootSolve and Spline functions in the CRAN package of the R (R Core 

Team, 2017) where y-base thresholds of pH 5.0 and 5.6 were established for rumen pH data 

and an y-base threshold of 40°C was used for rumen temperature calculations. 

Energy Partitioning & Nitrogen Balance 

Gross energy intake (GEI; Mcal/d) was determined by multiplying the GE of the 

representative diet by the kilograms of feed offered (Mcal × kg/d) minus the energy 

contained in the residual orts. Fecal energy (FE; Mcal/d) was calculated by multiplying the 

energy density of the feces by daily fecal output. Urinary energy (UE; Mcal/d) and urinary 

nitrogen (UN; g/d) were calculated by multiplying the energy (Mcal/kg) and nitrogen density 

(% N) of the urine by the daily urinary output (kg/d), respectively. Gaseous energy (GASE) 

was determined by multiplying the L/d of CH4 produced in the chamber by the density of 

CH4 (0.6556 g/L at 25 °C) and its energy density (13.3 Mcal/g) to yield GASE in Mcal/d. 

Heat production energy (HE) was calculated as: HE (Mcal/d) = (3.866 × VO2) + (1.2 × 
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VCO2) – (0.518 × VCH4) – (1.431× UN) (Brouwer, 1965). Final values of energy 

partitioning were calculated as: DE = GEI – FE; MEI = DE – (UE +GASE); and retained 

energy (RE) assumed to be RE=MEI – HE, where ME intake (MEI) was calculated as the 

observed dietary ME content (Mcal/kg) multiplied by the DMI (kg/d) of diet. The net energy 

for maintenance (NEm, Mcal/kg) of the diet was calculated as NEm = 1.37 × ME – 0.138 

×ME2 + 0.0105 × ME3 – 1.12 and the partial efficiency of the use of ME for maintenance 

(km) = NEm/ME. The net energy for gain (NEg, Mcal/kg) of the diet was calculated as NEg 

=1.42 × ME – 0.174 ×ME2 + 0.0122 × ME3 – 1.65 and the partial efficiency of the use of 

ME for gain (kg) = NEg/ME. Shrunk weight gain was calculated according to Tedeschi and 

Fox (2018) where SWG=13.91 × RE0.9116 × SBW-0.6837. Nitrogen intake was determined by 

multiplying the total N (%) of the representative diet by the kg of feed offered (kg/d), less 

the total N (kg) contained in the residual orts. Fecal N was calculated as the % N of the feces 

(DM) by the daily fecal excretion (kg/d, DM). Dietary N retained was calculated by 

subtracting fecal and urinary N from N intake. 

In Vitro Fermentation 

As steers were removed from the calorimetry chambers, rumen fluid inoculum was 

obtained via esophageal tubing. Rumen fluid samples were collected in a 1 L thermos and 

filtered through 8 layers of cheese-cloth to remove any feed particles. The in vitro gas 

production (IVGP) technique has been described previously in detail (Tedeschi et al., 2009), 

but briefly, approximately 200 mg of the CON diet (ground to 2 mm) was weighed into 160 

mL Wheaton bottles, containing equal sized magnetic stir bars. Samples were wetted with 2 

mL of deionized water to reduce particle scattering during CO2 flushing to maintain an 
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oxygen reduced atmosphere. Goering and Van Soest’s (1970) in vitro buffering media (14 

mL) was added to each bottle under constant CO2 flushing, sealed with a butyl rubber stopper 

and crimp sealed. Bottles were promptly placed in the incubation chamber to begin heating 

to rumen temperature (39°C). Rumen inoculum from the treated steers was filtered through 

glass wool under a CO2 atmosphere. The treatment & temperature adapted rumen fluid 

inoculum (4 mL) was injected into the Wheaton bottles which contained either a blank, 

alfalfa standard or the representative CON diet in triplicate, respectively. Internal pressure 

was equilibrated across all bottles after inoculation by inserting needles into the stoppers for 

approximately 5 s, and pressure sensors were inserted. The pressure was recorded at 5 min 

intervals for 48 h plotting the fermentation profile over time for each sample. After 48 h, 

bottles were set in an ice bath to cease fermentation. Head space samples (1 mL) were 

removed and analyzed for methane concentration using the gas chromatography method 

(Allison et al., 1992). Final rumen fluid pH was measured, and approximately 40 mL of 

neutral detergent solution (ANKOM Technology, Macedon, NY) was added to each bottle 

of fermented feed residue. Bottles were resealed and set in the autoclave for 15 minutes at 

121°C. Samples were then filtered using Whatman 54 paper to collect the washed feed 

residue to calculate dry matter digestibility. 

The kinetic analysis of the 48 h fermentation of the CON diet using treated rumen 

fluid was evaluated using nonlinear functions, and that with the lowest sum of square errors 

was selected (Schofield et al., 1994). The nonlinear fitting was performed using Gasfit 

(http://www.nutritionmodels.com/gasfit.html; Accessed on Jan 21, 2018), which executes 

specific R scripts to perform convergence of gas production data using the nls function 
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(Chambers and Bates, 1992) and the port algorithm (Fox et al., 1978; Gay, 1990). 

Preliminary results indicated the exponential with discrete lag nonlinear function had the 

lowest SSE and best fit of the fermentation profiles (Williams et al., 2010). The Gasfit 

provides the total gas production (mL), the fermentation rate (h-1), and the lag time (h). 

Data analyzed from the IVGP technique included: Total gas production (mL), the 

rate of fermentation (h-1), and lag time (h), apparent TDN and ME assuming passage rate of 

2, 4, 6 and 8 %/h. Apparent TDN was computed using the fractional degradation rate of NDF 

obtained from the IVGP technique with the most likely fractional passage rate, using Eq. 

[3.1] to [3.6] (Tedeschi and Fox, 2018).  

𝑎𝑇𝐷𝑁 =  0.98 × (100 –  𝑁𝐷𝐹 –  𝐶𝑃 –  𝐸𝐸–  𝐴𝑠ℎ) +  𝑑𝐶𝑃 +  𝑑𝐸𝐸 +  𝑑𝑁𝐷𝐹 –  7        [3.1] 

𝑎𝐶𝑃 =  𝐶𝑃 × (1 –  0.004 × (100 ×
𝐴𝐷𝐼𝑃

𝐶𝑃
)) [3.2] 

𝑎𝐸𝐸 =  2.25 × (𝐸𝐸 − 1)  [3.3] 

𝑎𝑁𝐷𝐹 =  𝑁𝐷𝐹 × (
𝑘𝑑

𝑘𝑑+𝑘𝑝
+ 𝐼𝐷𝑁𝐷𝐹 − 𝐼𝐷𝑁𝐷𝐹 ×

𝑘𝑑

𝑘𝑑+𝑘𝑝
) [3.4] 

𝐷𝐸 =  𝑎𝑇𝐷𝑁 × 4.409 [3.5] 

𝑀𝐸 =
0.82×𝐷𝐸

𝐷𝑀𝐼
 [3.6] 

where ADIP is acid-detergent insoluble (crude) protein, %DM; aTDN is apparent total 

digestible nutrients, % DM; CP is crude protein, %DM; EE is ether extract, %DM; IDNDF 

is intestinal digestibility of NDF (assumed to be 20 % (Sniffen et al., 1992)); kd is fractional 

degradation rate of NDF, %/h; kp is fractional passage rate of NDF, %/h, and NDF is neutral 
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detergent fiber, %DM; DE is digestible energy, Mcal/d; ME is Metabolizable energy, 

Mcal/kg. 

Statistical Analysis 

Data collected during the chamber stay (indirect calorimetry variables, rumen bolus 

variables, feed and water intake, and urine and fecal output variables) were analyzed 

according to the Latin rectangle design using the PROC Mixed of SAS (SAS Inst. Inc., Cary, 

NC) using the following model:  

Yijkl = µ + steeri + periodj + TRTk + TEMPl + TRTkTEMPl + eijkl 

Where Yijkl = response variables (Heat Production, Respiratory Quotient, Methane 

production, GE efficiency,  mean rumen temperature and pH, AUC/AAC and time spent 

above 5.6, subacute, acute and above 40°C, feed intake, water intake, fecal energy output & 

urinary energy and nitrogen output), µ= overall mean, steeri= random effect of the steer 

within a column (i = 1, 2, … 8 steers), periodj= random effect of the period within a row (j 

=1, 2, 3, 4), TRTk= the fixed effect of feed treatment (k = CON or ADY), TEMPl= the fixed 

effect of temperature (l= TN or HS), TRTk×TEMPl= interaction of treatment and 

temperature, and eijkl = random error associated with the measurement of the ith steer within 

period j assigned to treatment k and temperature l. 

Data collected for the IVGP technique was analyzed as a CRD. Inoculum was taken 

only once from each of the 8 steers at given periods so that each treatment and temperature 

combination was represented twice. The following model was used in the PROC Mixed of 

SAS (SAS Inst. Inc., Cary, NC): 
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Yij = µ + TRTi + TEMPj + TRTi×TEMPj + eij 

Where Yij = response variables (DMD, total gas production, fractional degradation rate, lag 

time, TDN, ME, CH4, inoculum pH and final pH), µ= overall mean, TRTi = fixed effect of 

treatment (i = CON or ADY rumen fluid inoculum), TEMPj= fixed effect of temperature (j 

= TN or HS), TRTi×TEMPj= interaction of treatment and temperature, and eij = random error 

associated with the measurement of the feed sample assigned to temperature j and treatment 

i. 

 

RESULTS AND DISCUSSION 

Digestion and Metabolism Analyses 

 Table 3.2 shows the effects of TRT and TEMP on water consumption, metabolism 

of the diet, dietary N, and methane output. There were no significant TRT by TEMP 

interactions for these variables. 

Treatment effects. There were no significant TRT effects on daily water intake 

although the ADY supplemented steers tended to consume more than CON-fed steers (15 

vs. 12.1 kg/d, respectively; P = 0.25; Table 3.2). Dietary TRT did not significantly affect 

DMI (P =0.97). This result is consistent with other reports in beef cattle fed ADY 

supplements (McGinn et al., 2004; Zerby et al., 2011). There was a tendency for TRT to 

affect fecal DM excretion when expressed either as kg/d or as % of SBW basis (P = 0.07). 

In general, ADY steers tended to excrete less fecal DM than CON steers (0.321 vs. 0.348% 

of SBW), indicating greater apparent DMD when receiving ADY. In fact, DMD was 
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significantly affected by TRT (P =0.0311) in which DMD was greater for ADY-

supplemented steers than for CON-fed steers (77.1 vs. 75.3%, respectively). This finding is 

supported by a meta-analysis of research conducted in dairy cattle (Desnoyers et al., 2009). 

This result suggested that ADY may increase available DE to steers receiving high-

concentrate diets (i.e., finishing diets). There was no effect of TRT on urine excretion (P 

=0.8387). There was considerable variance in methane production (L/d) but no significant 

effects of TRT (% of DMI) (P = 0.5519). There was no significant effect of TRT on N intake, 

fecal N excretion, or urinary N excretion and consequently, no effect on % N retained was 

observed (P = 0.3032). 

Temperature effects. There were no significant TEMP effects on daily water intake 

(Table 3.2). It was expected that TEMP would increase water consumption in an effort to 

regulate body temperature. However, the temperature of the available water was similar to 

the temperature of the chamber and may have only provided minimal relief. Additionally, 

there has been evidence that ambient temperatures >30 °C have a low negative correlation 

with water intake (Rouda et al., 1994).There was a significant effect of TEMP on DMI (kg/d 

and % of SBW; P< 0.0005). Though steers were restricted to consuming only 1.5% of their 

SBW as DM, HS steers still had reduced DMI versus TN steers (7.10 vs. 6.43 kg/d; P < 

0.0005). This 9.4% reduction in DMI is slightly less than that predicted by the LRNS model 

(12.5%) for DMI adjustment due to current effective temperature index (CETI) of 35.3°C 

with no night time cooling (Fox et al., 2004; Tedeschi and Fox, 2018) but this is likely 

because animals where not consuming at their voluntary intake level. 



 

98 

 

 There was also a significant effect of TEMP on fecal DM excretion and DMD (P < 

0.005 and < 0.05, respectively). It was expected that since steers experiencing HS had lower 

DMI, they would excrete significantly less DM than TN steers. Indeed HS steers excreted 

significantly less fecal DM than TN steers, resulting in a 15% difference (0.306 vs. 0.363% 

SBW, respectively). The net effect of decreased DMI and fecal DM excretion still resulted 

in significantly greater DMD for HS steers than TN steers (77.1 vs. 75.3%, respectively). 

High ambient temperature is known to decrease ruminal passage rate, potentially increasing 

the diet digestibility (Miaron and Christopherson, 1992; Bernabucci et al., 1999). 

There was a significant effect of TEMP on urine excretion (P < 0.05) where steers 

under HS produced more total urine than TN steers (14.8 vs. 10.7 kg/d, respectively) at a 

greater percentage of their SBW (3.07 vs. 2.23% SBW, respectively). Interestingly, the 

urinary output of HS steers exceeded their water consumption (3.07 vs. 2.84% of SBW) 

indicating negative water balance. 

Due to a decreased DMI, there was a significant effect of TEMP on N intake where 

HS steers consumed less N than TN steers (0.122 vs. 0.134 kg/d, respectively; P < 0.0005). 

This manifested into significantly less total N excreted in the feces for HS vs. TN steers 

(0.0036 vs. 0.0039 kg/d) with a tendency to be less concentrated (2.91 vs. 3.01% N, 

respectively; P = 0.12). There was no significant TEMP effect of urinary N excretion, 

although as expected, there was a tendency for TN steers to produce urine with a greater 

concentration of N than HS steers (0.731 vs. 0.581 %, respectively; P = 0.08), likely due the 

overall difference in N intake. Although there are obvious differences in % N retained, there 

was no significant effect of TEMP (P = 0.1833). 
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 There was considerable variance in methane production (L/d), and no significant 

effects of TRT and TEMP were detected. However, when CH4 was expressed per kg of DMI, 

a significant effect of TEMP was observed. Steers that experienced HS produced 

significantly more CH4 than TN steers (12.9 vs. 9.8, L/kg DMI, respectively; P < 0.05). The 

greater CH4 output per kg of intake is very likely due to the slower ruminal passage rate 

previously suggested to contribute to the greater DMD of HS steers. By this logic, it is 

interesting to note that no observed TRT difference observed for CH4 production (L/kg of 

DMI) considering the TRT effect on DMD, suggesting that a post-rumen digestibility rather 

than ruminal digestibility might have occurred for ADY-fed steers.   

Indirect Calorimetry 

 Table 3.3 shows the results of the indirect calorimetry analysis. There were no 

significant TRT by TEMP interactions. The respiratory quotient (RQ) of CO2/O2 was above 

1.0 for all steers indicative of possible lipogenesis (Ferrannini, 1988) regardless of TRT or 

TEMP. This is also validated by the SWG and the kg (mean= 0.79, based on regression), 

indicative that the composition of gain from RE was likely due to accumulation of much 

more fat than protein (Tedeschi et al., 2004; Chizzotti et al., 2008; Tedeschi et al., 2010; 

Marcondes et al., 2013), likely influenced by the maturity of the steers in this trial. Tedeschi 

and Fox (2018) summarize these studies to reveal that the efficiency of use of ME for growth 

is inversely related to the percentage of RE in the form of protein, and at zero protein 

deposition, kg is between approximately 0.6 and 0.8, depending on the ME concentration of 

the diet. There was no significant effect of TRT or TEMP on RQ, although there was a 

tendency for an effect of TEMP where TN steers had greater RQ than HS (1.11 vs. 1.09, 
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respectively; P = 0.07), which may indicate that TN steers were more efficient at depositing 

energy as fat than HS steers. The indirect calorimetry technique consistently yields greater 

RE values than the comparative slaughter technique when animals are fed at production 

levels (Larson and Johnson, 1997). Likewise, comparative slaughter techniques may inflate 

the HE of cattle in production settings. Due to the inability to effectively separate energy 

used to support maintenance from that used to support growth requirements at different 

levels of energy intake, either technique may result in errors between predicted and observed 

kg, which is also affected by dietary energy concentrations and the composition of the gain. 

Tedeschi and Fox (2018) discussed the needs for the next generation of growth models 

highlighting a more integrated system to better predict NEm requirements and kg at different 

levels of MEI. This is highlighted in Figure 3.1 where the HE and RE of steers (kcal/kg 

MBW) are plotted with a line indicating the threshold for NEm with adjustments for no 

physical activity (NEm = 70 kcal/kg MBW) according to NASEM (2016). Using the 

regression of RE on MEI and the partial efficiency of use of ME for maintenance (km) and 

ME of the diet, the predicted NEm is lower for both TN and HS compared with expected 

values (38.9 and 46.4 vs. 70 kcal/kg0.75 of SBW; NASEM, 2016). However, when regressing 

log HE on MEI, the antilog of the intercept resulted in values closer, but still lower, to this 

threshold where NEm for TN steers was lower than HS steers (55.0 vs. 62.2 kcal/kg0.75 of 

SBW) indicating the nonlinear regression of HE on MEI may be more precise at predicting 

NEm than regressions from RE (Chizzotti et al., 2008). Deviations in the observed 

performance from predicted dietary NEm and NEg contents may also be due to the inherited 

errors when using the assumed DE to ME ratio of 0.82 rather than being directly measured 

(Galyean et al., 2016). The impact of inconsistent use of DE-to-ME and ME-to-NE 
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efficiency calculations was illustrated by Tedeschi and Fox (2018) where they compare the 

relationships of ME-to-DE ratio and NEm-to-ME ratio versus DE intake using empirical 

equations recommended by NRC (1996, 2000), NRC (2001), Galyean, et al., 2016 and 

NASEM (2016). In summary, the steers in this study exhibited NEm values that were lower 

than the NASEM (2016) recommended maintenance energy requirement likely due to major 

differences in the km and kg of steers fed at production levels versus fasted or maintenance 

levels, calorimetry technique, physical activity, and dietary factors. 

Treatment effects. Since there was no difference in DMI between TRT, the GEI was 

also not different (P = 0.97). However, there was a significant effect of TRT on FE in which 

ADY steers excreted roughly 10% less fecal energy than CON steers (6.77 vs. 7.44 Mcal/d, 

respectively; P = 0.0320). There was no effect of TRT on DE (Mcal/d; P = 0.19) however, 

the conversion of GE to DE was significantly greater for ADY- vs. CON- fed steers (76 vs. 

73.6% of GE). There was no significant effect of TRT on UE (P = 0.83) or GASE (P = 0.52) 

in Mcal/d. GASE losses as a % of GE were not significantly different (P = 0.55). Therefore, 

there was no significant effect of TRT on Mcal/d of ME (P = 0.21) and the conversion of 

ME to DE was similar for CON and ADY (92.6 and 92.8 %, respectively; P = 0.73). As 

anticipated, these values are much higher than the used ME:DE conversion of 0.82 

(NASEM, 2016). Studies conducted by Hales et al., (2012 and 2013) feeding Jersey steers 

dry-rolled or steam-flaked corn and different levels of wet distiller’s grain plus solubles have 

also observed greater ME:DE ratios (91.9% to 96 %) than that predicted by the NASEM 

(2016) equations. Tedeschi and Fox (2018) provide a very good discussion of this matter 

and suggest that because the current models predicting TDN and DE are not discounted for 
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diet type or level of intake, true ME may be underestimated, especially for high concentrate 

diets. In fact, when we computed the NEm of the diet based on observed ME from steers we 

calculated a 7.4% greater NEm than what was predicted by the feed analysis; 1.88 Mcal/kg 

for TN steers vs. the predicted 1.75 Mcal/kg. Heat production was not affected by TRT (P = 

0.92). Overall, there was a tendency for RE to be greater for ADY- than CON-fed steers 

(1.56 vs. 1.43 Mcal/kg, respectively; P = 0.11) but RE:ME was not significantly different 

(53.2 vs. 50.9 %, respectively; P = 0.27). 

Temperature effects. Differences in DMI resulted in differences of GEI in which 

there was a significant reduction GEI of HS steers vs. TN steers (29.5 vs. 26.7 Mcal/d, 

respectively; P = 0.0004). Temperature also had a significant effect on FE excretion where 

HS steers excreted roughly 17 % less FE than TN steers (6.45 vs. 7.75 Mcal/d, respectively; 

P = 0.0003). This resulted in a significant effect of TEMP on DE availability where TN 

retained more energy than HS (21.8 vs. 20.3 Mcal/d; P = 0.0096), but interestingly the 

conversion of GE to DE was greater for HS than for TN (75.9 vs. 73.7 % of GE, respectively; 

P = 0.0123).  

 Although the HS steers produced more urine, there was no significant effect of 

TEMP on urinary energy (P = 0.49). There was a tendency for HS steers to produce more 

GASE than steers in TN conditions (0.719 vs. 0.606 Mcal/d, respectively; P = 0.13) and 

convert significantly more GE to GASE (2.70 vs. 2.07 % of GE, respectively; P = 0.0176). 

Regardless of the dietary restriction imposed the conversion of GE to CH4  for steers under 

TN conditions was on the lower end of the 2006 Intergovernmental Panel on Climate Change 
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inventory report (3.0 ± 1.0 % of GE for feedlot cattle consuming a 90% concentrate diet) 

whereas those under HS were much closer to this value. 

As expected, the remaining ME was greater for steers in TN conditions than HS 

conditions (20.3 vs. 18.8 Mcal/d, respectively; P = 0.0191), however there was a tendency 

for ME to be greater for steers under HS than for those in TN conditions when expressed as 

Mcal/kg of DM (2.93 vs. 2.85 Mcal/kg DM; P = 0.10) due to the lack of significant 

differences in UE and GASE losses. The conversion of DE to ME was similar for steers 

under TN and HS conditions indicating that effects of TEMP on UE and GASE losses are 

minor when steers are consuming a restricted amount of finishing diet.  

 As expected, HE was significantly affected by TEMP (P = 0.0013). Steers 

experiencing HS lost significantly more HE than TN steers due to increased respiration in 

attempt to maintain core body temperature (9.96 vs. 8.46 Mcal/d, respectively). This equates 

to roughly a 17.7% increase in maintenance energy for heat dissipation and is consistent with 

the heat stress adjustment factor (HSF) of 1.18 for open-mouth panting (NASEM, 2016) 

although panting was not analyzed. Using the CETI of the environment within the HS 

chamber (35 ± 0.55 °C and 42 ± 6.1 RH %), assuming a wind speed and sunlight exposure 

of 0, respectively, HSF would range from 1.15 to 1.24 with a mean of 1.19 (Tedeschi and 

Fox, 2018). Using the CETI to account for NEm requirements under HS conditions slightly 

over-predicted individual requirements, but offers greater control of differing environmental 

variables than the panting index which only designates two adjustments, 1.07 or 1.18 times 

NEm. Overall, steers under TN conditions retained 3.3 Mcal/d more than steers experiencing 

HS (P = 0.0002), as well as per kg of DM (1.63 vs. 1.39 Mcal/kg DM, respectively; P = 
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0.0043) and a greater conversion of ME to RE (57.5 vs. 46.6%, respectively; P < 0.0001). 

Using equations reported by Tedeschi and Fox (2018), the calculated SWG was roughly 

21.7% less for steers under HS conditions vs. TN conditions (1.48 vs.1.89 kg/d, respectively; 

P = 0.0003). 

Rumen Parameters 

Feed treatment and environmental temperature effects on rumen parameters are 

shown in Table 3.4. There was a tendency for an interaction for mean ruminal pH (P = 0.13; 

Figure 3.1a). Under TN conditions ADY steers had significantly greater mean pH than CON 

steers (5.81 vs. 5.57, respectively), but under HS conditions, ruminal pH was much lower 

for CON and ADY and not different (5.42 vs. 5.37, respectively). Slower ruminal passage 

rate due to TEMP likely resulted in decreased acid clearance leading to overall lower mean 

pH in the rumen. The results of mean pH in a TN environment are clear that supplementing 

ADY promotes higher mean pH, notably above the SARA threshold. Evaluations made on 

the effects of feeding ADY and its role in modulating ruminal pH suggest shifting 

fermentation pathways from lactate to propionate (Desnoyers et al., 2009; Humer et al., 

2017), however, it would seem that under extreme HS conditions this effect may be lost. 

There was no significant effect of TRT or TEMP on ruminal pH variation.  

There was a tendency for an interaction of TRT and TEMP on DUR > pH 5.6 (P = 

0.07; Figure 3.3a). Steers supplemented with ADY spent greater DUR > pH 5.6 than CON-

fed steers under TN conditions (863 vs. 619 min/d, respectively), but under HS conditions 

this was reversed (509 vs. 698 min/d, respectively). The DUR of time spent in SARA range 

was not significantly affected by TRT (450 vs. 376 min/d for CON and ADY respectively) 
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or TEMP (432 vs. 394 min/d for TN and HS, respectively). However, there was a tendency 

for a significant interaction of TRT and TEMP on DUR of time spent in ARA range (P = 

0.14; Figure 3.3b) in which steers experiencing HS and supplemented ADY spent more time 

in ARA range than CON (485 vs. 307 min/d, respectively). For TN conditions and CON 

diet, however, steers spent more time in ARA range than ADY-supplemented steers (246 vs. 

143 min/d, respectively). The main effect of TEMP on DUR of ARA was quite significant, 

(P = 0.0079), steers experiencing HS spent twice as much time in ARA than steers in TN 

conditions (396 vs. 195 min/d, respectively).  

There was a tendency for interaction of TRT by TEMP for AUC > pH 5.6 (P = 0.10). 

Similar to the DUR > pH 5.6, the AUC > pH 5.6 indicated that not only did steers 

supplemented with ADY under TN conditions spend more time above pH 5.6 but they also 

reached higher pH during the day compared to CON under TN conditions (17.9 vs. 8.39 h/d, 

respectively). There was no difference between TRT under HS conditions (8.31 vs. 8.34 h/d, 

respectively). The main effects also revealed tendencies for TRT and TEMP effects in which 

ADY-fed steers had greater AUC > pH 5.6 than CON fed steers (13.1 vs. 8.36 h/d, 

respectively; P = 0.10) and steers in TN conditions were greater than when experiencing HS 

(13.2 vs. 8.32 h/d, respectively; P = 0.09). There was a significant effect of TEMP on the 

AUC in the SARA range in which TN steers had greater AUC than HS steers (20.8 vs. 15.2 

h/d, respectively; P < 0.005). However, for AUC in ARA range, there was a significant effect 

of TEMP where steers in HS were nearly seven times greater than TN steers (4.67 vs. 0.70 

h/d, respectively; P < 0.05). 
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There were no significant effects of TRT on mean ruminal temperature, temperature 

variation, DUR > 40°C or AUC > 40°C, however, as expected TEMP significantly affected 

these variables (Figure 3.2b). Mean ruminal temperature, and temperature variation was 

much greater for steers in HS than in TN conditions (40.73 ± 0.638 vs. 39.33 ± 0.241°C, 

respectively; P < 0.0001). The DUR and AUC > 40°C was also much greater for steers in 

HS than in TN conditions (1,124 vs. 91 min/d and 41.5 vs. 0.6 °C/h, respectively; P < 

0.0001). Time spent above 40°C for the TN observations was likely due to the heat of 

fermentation while the steers undergoing HS were simply unable to properly dissipate heat 

resulting in severe heat loading. 

The effect of rumen temperature greatly affects ruminal pH and the duration and 

magnitude of subclinical and acute ruminal acidosis. We believe it is primarily due to the 

reduced passage rate and increased ruminal digestibility, this risk of acidosis could be 

compounded by sudden shifts in the rumen microbiome. There has been evidence of 

microbial population shifts under heat stressed conditions in dairy heifers, notably the genus 

Streptococcus (Uyeno et al., 2010), which is accepted as the major culprit of the onset of 

ruminal lactic acidosis. Research on the growth and metabolism of S. bovis isolated from the 

rumen has indicated that peak growth occurs when media is maintained at a pH of 5.0 – 6.2 

and at a temperature of 39°C (Russell and Hino, 1985; Yuwono and Kokugan, 2008).  

However, peak enzyme production seems to occur between 40 and 44°C (Bailey, 1959). 

Therefore, it could be that the interaction of decreasing pH and increasing temperature of 

the rumen creates exceptionally favorable conditions for S. bovis and other lactic acid 

producers to proliferate and out compete pH sensitive bacteria.  
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In Vitro Gas Production Technique 

 The IVGP technique provided valuable information into the fermentative capacity of 

the adapted rumen fluid inoculant (Table 3.5 and Figure 3.4). 

Treatment effects. Inoculum taken from CON and ADY treated steers had similar 

pH, likely due to being taken in the fasted state (6.23 vs 6.28, respectively; P = 0.70). 

However, after 48 h of in vitro fermentation, there was a tendency for those feeds inoculated 

with ADY adapted rumen fluid to have lower final pH than CON adapted rumen fluid (6.12 

vs. 6.23, respectively; P = 0.10). There were no significant differences observed for total gas 

production, the rate of fermentation or lag time between TRT (P = 0.44, 0.23, and 0.98, 

respectively). Numerically, ADY inoculum resulted in greater NDFd over CON, but due to 

variation between fermentation batches this was not significant (46.4 vs. 36.4%, 

respectively; P = 0.54), still, the numerical means agree with the DMD observed in the 

steer’s metabolism where ADY resulted in greater digestion than CON feed TRT. Similar to 

the TRT means of CH4 obtained from the calorimetry chambers differences in CH4 (g/L) 

tended to be lower for ADY than CON (0.068 vs. 0.143 g/L, respectively; P = 0.21) and 

when expressed per kg of DM followed a similar trend (8.7 vs. 18.8 g/kg DM, respectively; 

P = 0.27), although the IVGP technique resulted in larger values than in vivo due to the 

complete fermentation of the diet. While the numerical differences are suggestive, the 

variation between fermentations was larger than expected. The IVGP technique is known to 

be subject to variation especially when different rumen fluid donors are utilized, but this 

may be overcome with greater replication (Tedeschi and Fox, 2018). Replication in this 
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study, however, was limited due to timing and logistics of obtaining rumen fluid from non-

cannulated animals.  

Temperature effects. Similar to the mean pH of the bolus data, the inoculum was 

also significantly affected by TEMP where TN steers had much higher pH than HS steers 

(6.70 vs. 6.16, respectively; P = 0.0339). The final pH after 48 h fermentation was not 

affected by TEMP (P = 0.39). There was no effect TEMP on the fermentation pattern of the 

in vitro feed samples; Total gas production, the rate of fermentation, and lag time of 

fermentation were similar (P > 0.20). There were no significant effects of TEMP on NDFd 

(P = 0.62) although the means were greater for TN than ADY (45.5 vs. 37.3 %, respectively). 

Interactions. There was a tendency for a TRT by TEMP interaction regarding the 

aTDN and ME estimations at a passage rate of 4 and 6 %/h (Table 3.5) where inoculum 

taken from steers adapted to the CON diet tended to result in greater in vitro aTDN and ME 

under HS than TN but inoculum from ADY adapted steers was greater under TN than HS. 

This trend was in contrast to the in vivo derived values for ME and worthy of further 

investigation. Interestingly this interaction was not observed when using passage rate of 2 

%/h. When we compared the observed ME of the steers with that predicted from the IVGP 

technique using 2, 4, 6, and 8 %/h fractional passage rates, the IVGP predicted ME at 2 and 

4%/h was closer to the observed mean values for the HS animals (2.93 Mcal/kg) whereas 

the predicted ME at 6%/h was closer to TN animals (2.85 Mcal/kg), confirming our 

hypothesis that ruminal escape may have been significantly reduced with increased heat load 

(Figure 3.4). Previous research using a similar HS environment reported ruminal passage 

rate to be closer to 4 ± 0.02%/h in dairy cattle as well (Bernabucci et al., 1999). Moreover, 
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although it was not an objective of the research we may conclude that if the expected ruminal 

passage rate is carefully considered, the IVGP technique may be able to accurately estimate 

the biological value of a diet for animals under HS, even when using rumen inoculum from 

non-HS steers. 

 

CONCLUSION 

 Under TN conditions supplemental ADY in the diets of finishing steers under feedlot 

conditions may significantly improve DM digestibility, DE, ME and possibly RE without 

affecting DMI. Additionally, supplemental ADY may significantly increase mean ruminal 

pH, above the SARA threshold under thermoneutral conditions. However, heat stress 

remains an environmental risk to finishing cattle by significantly affecting feed energy 

efficiency, methane production and acute ruminal acidosis of which we observed to be 

significantly different from TN conditions. There have been reports that live yeast 

supplemented to dairy cows during the hot season improved DMI, ruminal pH and 

productivity (Moallem et al., 2009; Salvati et al., 2015). However, the dietary characteristics 

of lactation diets are much different from typical finishing diets of beef cattle regarding 

energy density and minimum effective fiber. Under HS conditions we could not detect a 

significant benefit of ADY for feed efficiency or ruminal pH, likely due to the antagonism 

between slower ruminal passage rate and increased digestibility. It may be that supplemental 

ADY optimizes fermentation characteristics within a certain scope of energy density, 

effective fiber, and ruminal temperature. Future work should focus on the long-term feeding 
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of ADY at different energy densities and combine rumen parameters with performance traits 

of beef cattle. 
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Table 3.1. Ingredient and chemical analysis of the 

basal finishing diet fed to beef steers 

Items1 
 Finishing Diet  

    %   

Ingredients    
Alfalfa hay, medium chop  15  
Cracked corn  70  
Dried Distiller’s Grain  5.5  
Molasses  6.8  
Mineral Supplement  1  
Limestone  1  
Urea  0.7  
    

Chemical Analysis    
DM, % of diet  82.2  
   CP, % DM  11.8  
      Soluble protein, % CP  19.1  
   NDF, % DM  21.7  
   ADF, % DM  12.4  
   Lignin, % DM  2.7  
   Crude fat, % DM  3.5  
   Sugar, % DM  4.6  
   Starch, % DM  49.2  
   Ash, % DM  4.9  
   Calcium  0.7  
   Phosphorus  0.4  
   TDN, %   82  
   NEm, Mcal/kg  1.74  
   NEg, Mcal/kg  1.14  
peNDF, %2  10  

GE, Mcal/kg3  4.16  

       
 1Items are feed ingredients and chemical 

composition of diets evaluated by Cumberland 

Valley Analytical Services (Hagerstown, MD).  
2peNDF is physical effective fiber; method by Penn 

State Particle Size separator 4 mm sieve. 
3GE measured by bomb calorimetry.  
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Table 3.2. Effect of yeast treatment and environmental temperature on the water consumption and metabolism of finishing steers 

Items1 
 TRT2 

 TEMP3 
   P-value 

    CON ADY   TN HS   SEM     TRT TEMP TRT x TEMP 

             

Water intake, kg/d  12.1 15.0  13.4 13.8  2.40  0.2514 0.8692 0.6165 

Water intake, % SBW  2.51 3.09  2.76 2.84  0.444  0.2719 0.8809 0.6479 

Water intake:DMI  1.78 2.25  1.89 2.13  0.37  0.2062 0.5149 0.5698 

DMI, kg/d  6.77 6.77  7.10a 6.43b 
 0.197  0.9786 0.0004 0.6615 

DMI, % SBW  1.41 1.40  1.47a 1.34b 
 0.0445  0.8568 0.0016 0.8740 

Fecal DM, kg/ d  1.67 1.55  1.75a 1.48b 
 0.120  0.0766 0.0005 0.7721 

Fecal DM, % SBW  0.348 0.321  0.363a 0.306b 
 0.0246  0.0730 0.0007 0.8793 

DMD, %  75.3b 77.1a 
 75.3b 77.1a 

 1.90  0.0311 0.0305 0.9296 

Urine, kg/d  12.5 13.0  10.7b 14.8a 
 2.12  0.8252 0.0495 0.6350 

Urine, % SBW  2.61 2.69  2.23b 3.07a 
 0.448  0.8387 0.0438 0.7259 

             

Feed N, kg/d  0.128 0.128  0.134a 0.122b 
 0.0037  0.9786 0.0004 0.6615 

Fecal N, kg/d  0.0037 0.0038  0.0039a 0.0036b 
 0.0001  0.4578 0.0172 0.1510 

Fecal N, %  2.93 2.99  2.91 3.01  0.072  0.3456 0.1238 0.1788 

Urinary N, kg/d  0.0694 0.0630  0.0656 0.0668  0.004  0.2539 0.8356 0.6555 

Urinary N, %  0.700 0.613  0.731 0.581  0.117  0.2887 0.0772 0.7584 

N retained, %  42.1 47.0  47.8 41.3  3.65  0.3032 0.1833 0.5119 

             

CH4, L/d  78.7 73.3  69.5 82.5  8.98  0.5175 0.1280 0.3500 

CH4, g/kg DM   7.68 7.22   6.46b 8.44a   0.935   0.5519 0.0174 0.3604 

             
a-bLeast squares means of the main effects in a row with different superscripts differ at P < 0.05 
1Items are metabolism variables; SBW=shrunk body weight; DMI=Dry matter intake; N=Nitrogen; DMD=Dry matter digestibility.  
2Treatment is control fed (CON) or control + 3 g/d of an active dried yeast (ADY). 
3Temperature is thermoneutral (TN; 18 ± 0.55°C; 20% RH) or heat stressed (HS; 35 ± 0.55°C; 42% RH). 
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Table 3.3 Effect of treatment and temperature on energy metabolism of finishing steers using indirect calorimetry 

 Items1  TRT2 
 TEMP3 

 SEM  P-value 

   CON ADY   TN HS      TRT TEMP TRT x TEMP 

          
   

RQ  1.11 1.10  1.11 1.09  0.009  0.6295 0.0734 0.4324 

          
   

GEI, Mcal/d  28.1 28.1  29.5a 26.7b 
 0.819  0.9797 0.0004 0.6604 

   FE, Mcal/d  7.44a 6.77b 
 7.75a 6.45b 

 0.513  0.0320 0.0003 0.5638 

DE, Mcal/d  20.7 21.4  21.8a 20.3b  0.946  0.1886 0.0096 0.8239 

DE, Mcal/kg DM  3.06b 3.16a  3.06b 3.16a  0.082  0.0097 0.0123 0.6485 

DE, % GE  73.6b 76.0a  73.7b 75.9a  1.96  0.0094 0.0136 0.6543 

   UE, Mcal/d  0.882 0.896  0.912 0.866  0.061  0.8279 0.4941 0.8978 

   GASE, Mcal/d  0.686 0.639  0.606 0.719  0.078  0.5175 0.1280 0.3500 

GASE, % GE  2.46 2.31  2.07b 2.70a  0.299  0.5522 0.0176 0.3598 

ME, Mcal/d  19.2 19.9  20.3a 18.8b  0.929  0.2055 0.0191 0.9181 

ME, Mcal/kg DM  2.84b 2.94a  2.85 2.93  0.099  0.0377 0.0976 0.5740 

ME, % DE  92.6 92.8  92.9 92.5  0.888  0.7294 0.5886 0.5889 

   HE, Mcal/d  9.23 9.19  8.46b 9.96a  0.293  0.9180 0.0013 0.4880 

RE, Mcal/d4  9.73 10.7  11.5a 8.82b  0.683  0.1339 0.0002 0.4629 

RE, Mcal/kg DM  1.43 1.56  1.63a 1.39b  0.081  0.1131 0.0043 0.3290 

RE, % ME  50.9 53.2  57.5a 46.6b  1.49  0.2748 <0.0001 0.5185 

SWG, kg/d  1.62 1.75  1.89a 1.48b  0.179  0.1793 0.0003 0.4281 

                       

a-bLeast squares means within a row with different superscripts differ at P < 0.05 
1Items are variables representative of the net energy system for beef cattle, indirect calorimetry procedures and combustion analysis. 

RQ=Respiratory Quotient (CO2/O2); GEI=Gross energy intake (total feed energy); DE=Digestible energy (GEI – Fecal energy (FE)); 

ME= Metabolizable energy (DE – Urinary energy (UE) and Methane energy (GASE)); RE=Retained energy                        (ME – Heat 

production energy (HE)). Shrunk weigt gain (SBW)= 13.91 × RE0.9116 × SBW-0.683 
2Treatment is control fed (CON) or control + 3 g/d of an active dried yeast (ADY). 
3Temperature is thermoneutral (TN; 18 ± 0.55°C; 20% RH) or heat stressed (HS; 35 ± 0.55°C; 42% RH).  
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Table 3.4. Effects of treatment and temperature on rumen pH characteristics of finishing steers 

 Items1  TRT2 
 TEMP3 

 SEM  P-value 

    CON ADY  TN HS     TRT TEMP TRT×TEMP 

             
Mean pH  5.50 5.59  5.69a 5.39b 

 0.16  0.2901 0.0029 0.1279 

pH variation  0.11 0.13  0.13 0.11  0.02  0.3328 0.3500 0.5440 

             
DUR pH >5.6,  min/d 658 686  741 603  167  0.8093 0.2407 0.0726 

DUR of SARA,  
min/d  450 376  432 394  101  0.5519 0.7604 0.5925 

DUR of ARA,  

min/d  277 314  195b 396a 
 141  0.6816 0.0381 0.1353 

             
AUC pH >5.6, h 8.36 13.1  13.2 8.32  3.3  0.0976 0.0923 0.0954 

AUC in SARA, h  18.1 17.8  20.8b 15.2a 
 3.2  0.8482 0.0028 0.2997 

AUC in ARA, h  2.75 2.62  0.70b 4.67a 
 1.72  0.9255 0.0079 0.8862 

             
Mean temperature, ◦C 40.04 40.01  39.33b 40.73a 

 0.15  0.7616 <0.0001 0.6289 

Temperature variation, 
◦C 0.463 0.417  0.241b 0.638a 

 0.076  0.5831 0.0001 0.9342 

DUR > 40 ◦C,  

min/d  624 591  91b 1,124a 
 65  0.5422 <0.0001 0.4778 

AUC >40, ◦C/h  21.9 20.2  0.6b 41.5a 
 4.9  0.7222 <0.0001 0.7641 

                    
a-bLeast squares means within a row with different superscripts differ at P < 0.05 
1Items are variables derived from indwelling ruminal pH and temperature boluses; DUR=duration, SARA=Sub-acute ruminal 

acidosis (pH= 5.0 to 5.6); ARA=Acute ruminal acidosis (pH < 5.0); AUC=area under the curve (pH units × time, h).  
2Treatment is control fed (CON) or control + 3 g/d of an active dried yeast (ADY). 
3Temperature is thermoneutral (TN; 18 ± 0.55°C; 20% RH) or heat stressed (HS; 35 ± 0.55°C; 42% RH).  

 



 

120 

 

Table 3.5. In vitro fermentation of a finishing diet using donor rumen fluid inoculum from treatment and temperature adapted steers 

Items1 
 TRT2 

 TEMP3 
 SEM  P-value 

   CON ADY  TN HS    TRT TEMP TRT×TEMP 

             

Inoculum pH  6.23 6.28  6.59a 5.91b 
 0.087  0.6991 0.0116 0.6473 

Final pH  6.23 6.12  6.20 6.15  0.063  0.0986 0.3910 0.6681 

             

Total Gas, mL  25.1 27.1  24.5 27.6  4.57  0.4420 0.2580 0.6946 

Fermentation rate, 

h-1  11.9 16.7  15.8 12.8  2.31  0.2320 0.4189 0.5541 

Lag time, h  0.524 0.520  0.586 0.458  0.195  0.9806 0.4607 0.2629 

NDFd, %  36.4 46.4  45.5 37.3  12.0  0.5448 0.6165 0.3988 

TDN,%             

   kp 2 %/h  80.8 80.9  80.4 81.3  0.436  0.7869 0.1743 0.7244 

   kp 4 %/h  79.2 79.3  79.2 79.3  0.323  0.8726 0.7655 0.1692 

   kp 6 %/h  78.2 78.2  78.1 78.3  0.466  0.8752 0.8189 0.1651 

ME, Mcal/kg             

   kp 2 %/h  2.92 2.92  2.91 2.94  0.019  0.7944 0.1861 0.7944 

   kp 4 %/h  2.86 2.87  2.86 2.87  0.017  0.9093 0.7177 0.1411 

   kp 6 %/h  2.83 2.83  2.83 2.83  0.017  0.9052 0.9052 0.1474 

CH4, g/L gas  0.143 0.069  0.110 0.102  0.033  0.2106 0.8712 0.8866 

CH4, g/kg DM  18.8 8.70  13.7 13.8  5.28  0.2684 0.9855 0.9445 

             
a-bLeast squares means within a row with different superscripts differ at P < 0.05 
1Items are variables which represent the rumen fluid inoculum or its fermentation effects of a finishing diet. Inoculum is initial pH from 

the donor steer. Final pH is after 48 h of fermentation in vitro. Total gas production from fermentation of 0.2 g of the finishing diet. 

NDFd= NDF digestibility. ME is shown with passage rates (kp) of 2, 4 and 6 %/h.  
2Treatment is control fed (CON) or control + 3 g/d of an active dried yeast (ADY). 
3Temperature is thermoneutral (TN; 18 ± 0.55°C; 20% RH) or heat stressed (HS; 35 ± 0.55°C; 42% RH).  
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Figure 3.1 Regression of Heat Energy(HE) and Retained Energy (RE) on Metabolizable 

Energy intake (MEi) of steers using indirect calorimetry. Panel A) under thermoneutral (18 

± 0.55°C; 20% RH) or B) heat stressed (35 ± 0.55°C; 42% RH ) conditions. Net Energy for 

maintenance (NEm) of 70 kcal/kg MBW recommended by NASEM (2016) is provided as a 

reference threshold.   
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Figure 3.2. Representation of the mean diurnal fluctuation of ruminal pH (a) and ruminal temperature (b) over 48 h consuming a 

finishing diet. Treatments were control diet (CON) or control diet + 3 g/d of an active dried yeast (ADY). Temperatures were 

thermoneutral (TN; 18 ± 0.55°C; 20% RH) or heat stressed (HS; 35 ± 0.55°C; 42% RH). Interaction of TRT and Red arrows 

indicate feeding events. The mean pH represents the average of 8 replications per treatment combination, respectively over 48 h 

at 10 min intervals.
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Figure 3.3. Interaction of treatment and temperature on ruminal pH variables; a) duration of time spent above pH 5.6 (min/d), b) 

duration of time spent in acute ruminal acidosis range, pH < 5.0 (min/d). Treatments were control diet (CON) or control diet + 3 

g/d of an active dried yeast (ADY). Temperatures were thermoneutral (TN; 18 ± 0.55°C; 20% RH) or heat stressed (HS; 35 ± 

0.55°C; 42% RH) indicated by the broken lines. Red arrows indicate feeding events.



 

124 

 

 

Figure 3.4. Interaction of TRT and TEMP on the predicted ME and comparison of predicted ME by the in vitro gas production 

technique (IVGP) and the direct measure ME of steers consuming a finishing diet. Treatments were control diet (CON) or control 

diet + 3 g/d of an active dried yeast (ADY). Temperatures were thermoneutral (TN; 18 ± 0.55°C; 20% RH) or heat stressed (HS; 

35 ± 0.55°C; 42% RH). Contrasts of TN and HS (red) are included to denote possible effect of TEMP on passage rate and accuracy 

of IVGP predictions. 
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CHAPTER IV  

EFFECTS OF ACTIVE DRIED YEAST ON GROWTH PERFORMANCE, 

RUMEN PH AND CARCASS CHARACTERISTICS OF GROWING BEEF 

STEERS 

 

SYNOPSIS 

The objective of this trial was to determine the benefits of supplementing active dried 

yeast (ADY) on ruminal pH, growth performance, and carcass characteristics to diets of 

growing and finishing beef cattle. Growing beef steers (n = 120) were blocked by BW and 

allocated to one of four pens fitted with an automated intake feeding system. Animals were 

fed either control (CON; no ADY), or ADY supplemented diets. Steers were fed four 

sequential diets: grower diet (GROW) for 70 d, two step up diets (STEP1 and STEP2) for 

7 d each, and finishing diet (FIN) from d 85 to 164. Indwelling rumen boli were orally 

administered to monitor rumen pH during d 56 to 106 during the dietary transition. A re-sort 

occurred on d 70 and resulted in four final TRT assignments: steers fed CON before and 

after the re-sort (CC; n = 30), steers fed CON before and ADY after the re-sort (CY; n = 

30), steers fed ADY before and CON after the re-sort (YC; n = 30), and steers fed ADY 

(YY; n = 30). Dependent variables were analyzed as a Balaam’s design, and ruminal 

parameters were analyzed as a repeated measures design using two approaches: raw 

preliminary analysis or drift analysis. Growth performance traits (BW, ADG, DMI, G:F, and 

residual feed intake) were not significantly affected by TRT (P > 0.05). Feeding behavior 

within the transition period revealed that CY steers ate more frequently than CC steers (9.3 

vs. 8.5 meals/d, respectively; P < 0.005), and YY steers had larger meals than CY and YC 



 

126 

 

(1.45, 1.31, and 1.34 kg/meal, respectively; P < 0.005). Rumen pH analysis indicated that 

ruminal pH duration (DUR) below 6.0 (P < 0.05) and 5.8 (P <0.05) was greater for CY steers 

than CC steers. Acidosis bout prevalence and DUR was greater for CY than other TRT (P < 

0.05). The drift analysis indicated the ruminal pH values of CC and YC steers drifted further 

from basal pH values than CY and YY steers during the dietary transition (P < 0.05). Carcass 

characteristics were not different among TRT (P > 0.1). Percentile ranks of steers within 

performance traits resulted in a significant relationship between ADG and G:F rankings, the 

number of days steers experienced bouts (DEB) (P < 0.05), and a tendency for liver abscess 

severity (P = 0.079). Liver abscess severity was not affected by DEB (P = 0.90). There is 

evidence to suggest that the addition of ADY in the diets of beef cattle during the dietary 

transition may aid in ruminal stabilization without affecting growth performance and carcass 

traits. 

 

INTRODUCTION 

Increased scrutiny over feeding low-dose antimicrobial feed additives for growth 

promotion in livestock has prompted greater research discovery of antibiotic alternatives. 

Active dried yeast (ADY), specifically Saccharomyces cerevisiae, when added to the diets 

of ruminants seems to moderate ruminal pH, improve digestibility, and increase performance 

in intensive management systems. Research results of ADY inclusion to dairy cattle diets 

seem promising (Humer et al., 2018), but its effectiveness in feedlot cattle have not been as 

well established. A meta-analysis addressing some of these issues indicated that even the 

direct effects of live S. cerevisiae supplementation on OM digestibility, rumen pH, and 

fermentation end-products are subtle (Desnoyers et al., 2009). Thus, performance traits 
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measured at the pen level may not be sensitive enough to detect these subtleties, but the use 

of automated intake systems may help to characterize ADY effects on performance at the 

animal level. 

Practical areas in which ADY supplementation may be useful for diets of growing 

beef cattle include the high-risk transition from a low to high concentrate diets where cattle 

may experience bouts of ruminal acidosis. It has been indicated that animals that experience 

a bout of acidosis may be more susceptible to future challenges (Dohme et al., 2008). 

Chronically low ruminal pH has been implicated in decreased efficiency of growth 

performance and linked to liver abscesses (Brink et al., 1990; Owens et al., 1998; Nagaraja 

and Lechtenberg, 2007). Supplementation of ADY may modulate ruminal pH during dietary 

transition leading to subtle changes in measurable production traits such as ADG and G:F. 

The objective of this study was to determine the benefits of adding ADY to feedlot 

diets in an automated intake system favorably increased: 1) feedlot performance or feeding 

behavior traits, 2) stabilization of ruminal pH through the transition period, and 3) carcass 

characteristics and liver health. 

 

MATERIALS AND METHODS 

Animals and Care 

 All animals were cared for under the Institutional Animal Care and Use Committee 

of Texas A&M University approved Animal Use Protocol (number 2016-0269). One 

hundred twenty steers (¾ Bos taurus, ¼ Bos indicus) born and raised at the McGregor 

AgriLife Research center, McGregor, TX, were randomly selected after 30 d of weaning, 

with a weight range of 253 ± 40 kg. Steers were assigned an RFID tag (Allflex USA INC., 
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Dallas, TX) and adapted to the GrowSafe feeding system (GrowSafe Systems LTD., Airdrie, 

Alberta Canada) for 21 d consuming a backgrounding diet before the commencement of the 

164-d trial. Facilities included four pens, each equipped with four GrowSafe feed bunks (n 

= 16 feed bunks). Upon d 0, steers were blocked by BW according to the median BW 

resulting in 2 pens of light and 2 pens of heavy BW steers (215 ± 20 and 249 ± 16 kg, 

respectively). Within blocks, steers were randomly assigned to one of two pens. 

Diets and Feeding 

Steers were fed four diets over the course of the trial (Table 4.1) in 2 phases, growing 

(d 0 to 70) and finishing (d 71 to 164). Chemical analysis of the diet was performed by 

Cumberland Valley Analytical Services (Hagerstown, MD) on composite batch samples 

within diets. The physically effective NDF (peNDF) was determined by Penn State Particle 

Size separator and multiplying the proportion of particles > 4 mm by the proportion of NDF 

in the diet. The Large Ruminant Nutrition System (LRNS; 

http://www.nutritionmodels.com/lrns.html; Accessed on January 21, 2018; Tedeschi and 

Fox, 2018) was used to formulate the diets using the following ingredients: cracked corn, 

dried distiller’s grain, a medium chopped alfalfa hay, molasses, and mineral supplements, as 

detailed in Table 4.1. 

The grower diet (GROW; NEg of 1.0 Mcal/kg) was fed for 70 d to yield a mean BW 

of 365 kg at the time of dietary transition. The first and second transition diets (STEP1 and 

STEP2, respectively) were fed for 7 d each (d 71 to 85) and the finishing diet (FIN; NEg of 

1.14 Mcal/kg) was fed from d 86 to 164 to yield a final mean BW of 500 kg. Feed delivery 

occurred at approximately 0800 and 1700 h and feed calls allowed for 5 % residual orts. 
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Treatment Assignment 

Pens, within a weight block, were assigned to receive either control (CON) or diets 

supplemented daily with approximately 1.5 g/hd (3 x 1010 CFU/d) of ADY, Saccharomyces 

cerevisiae (Vistacell, AB Vista, Marlborough, UK). To ensure proper daily dosage of ADY, 

individual intake was downloaded weekly from the GrowSafe Feed Intake System, and the 

inter-quartile mean was used to formulate a fresh premix to allocate approximately 1.5 g/d 

of ADY to be consumed by each animal in the following week. Treatment was the sequence 

of ADY supplementation. On d 70, 15 steers from each pen were re-sorted within their block 

to the opposite pen to proceed through the transition with or without ADY. This re-sort 

yielded four TRT assignments: steers fed CON before and after the re-sort (CC), steers fed 

CON before and ADY after the re-sort (CY), steers fed ADY before and CON after the re-

sort (YC), and steers fed ADY before and after the re-sort (YY). The method of animal re-

sorting caused equal social order disruption across all TRT groups. 

Data Measurements 

Steers were weighed on d 0 and every two weeks after that before the morning 

feeding, except for the final weight in which only 10 d elapsed between weighing events. 

Data from the GrowSafe Feed Intake System was used to model growth rates by linear 

regression against the day of trial with an average coefficient of determination of 0.986. The 

regression coefficients were used to compute initial and final BW, ADG and metabolic BW. 

As-fed feed intake data was converted to DM based on the chemical analysis of the diet. 

Residual feed intake (RFI) was computed as the difference between actual DMI and the 

predicted DMI from its regression on metabolic BW and ADG. Gain-to-feed ratio was 

calculated as ADG divided by DMI. Feeding behavior was modeled using the Meal Criterion 
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Calculation software (MCC) (http://nutritionmodels.tamu.edu/mes.html; accessed on 

January 12, 2018), which uses the R software (R Core Team, 2017) and the mixdist package 

to determine meals within bunk visits (Bailey et al., 2012). 

On d 56, a random sample of steers (n = 66) within each block and TRT were chosen 

to receive a wireless, indwelling rumen pH, temperature and activity bolus (smaXtec 

Premium Bolus, smaXtec Animal Care GmbH, Graz, Austria). Bolus ID was assigned to 

each subject’s visual ID tag, calibrated using buffer solution of pH 7 for a minimum of 5 

min and inserted orally using the manufacturer provided balling gun. The bolus produced an 

average pH reading on 10-min intervals, automatically transmitting data when in range of 

the base station radio system or repeaters. Individual steer data was downloaded from 

smaXtec messenger for the selected days during the dietary transition. The analysis was 

limited to 50 d per the manufacturer’s guarantee (trial d 56 to 106). Daily summary statistics 

were computed for each steer: pH minimum, mean, maximum, range, variance, the accrued 

variance over time (cumulative variance). Bouts of acidosis were considered to be frames of 

bolus readings displaying 180 consecutive minutes below pH of 5.6. Bouts were summarized 

by prevalence within a treatment group and the mean DUR of those bouts. The area under 

the curve (AUC) and duration (DUR) below pH thresholds were calculated with an R script, 

which used the rootSolve and Spline functions, of the R software (R Core Team, 2017). All 

AUC and DUR variables were summarized by diet.  

Growth performance and feeding behavior were computed for d 0 to 164 and the 

transition period d 56 to 106, and included ADG, BW, G:F, meal frequency, meal size and 

bunk visit DUR. 
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Statistical Analysis 

Three steers in the heavy block (2 from the YY group, 1 of which contained a bolus, 

and 1 from the YC group) were removed from the analysis due to illness. Therefore, n=64 

for the rumen bolus variable analysis and n=117 for growth performance, feeding behavior 

and carcass characteristics. Due to a sorting error, the CY group contained 1 additional steer 

intended to be in the CC group. However, this did not exceed the recommended number of 

head per bunk due to the removal of other animals. 

Growth performance, feeding behavior, and carcass characteristics. The feeding 

trial was designed as a four sequence (CC, CY, YC, YY) Balaam’s design with a random 

variable of arrival weight block (heavy, HVY, and light, LT; n = 2) using the MIXED 

procedure of SAS (SAS Inst. Inc., Cary, NC). It was unknown if the effect of yeast would 

elicit any carry-over effects. Therefore the Balaam’s design was chosen to be the most 

suitable statistical design as it is strongly balanced so that the treatment difference is not 

aliased with differential first-order carryover effects (Chow and Liu, 1992). Additionally, 

the uniformity of equal representation of TRT within the period (growing or finishing 

phases) of the Balaam’s design allows for the removal of the period effect to ascertain the 

effect of sequence resulting in the final model: 

Yij = µ + TRTi + bj + eij, 

where Y is the variable of interest for Growth performance and feeding behavior (initial BW, 

mid-test BW, final BW, DMI, ADG, G:F, RFI, meal frequency, mean meal size, bunk visit 

duration) and carcass characteristics (final shrunk BW, BW shrink percentage, HCW, 

dressing percentage, 12th rib back fat thickness, longissimus muscle area, calculated YG, and 

marbling score), i = is the treatment (CC, CY, YC and YY), j = is the weight block (HVY 
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or LT), µ and TRTi are fixed parameters such that the mean for the ith treatment is µi= µ 

+TRTi, bj is the random effect associated with the jth block, and eij is the random error 

associated with the experimental unit in block j that received treatment i. 

Continuous variables of growth performance and feeding behavior were analyzed for 

the total trial (n = 164) and the days spanning the dietary transition (n = 50 d) corresponding 

to the guaranteed lifespan of the rumen boli (d 56 – 106).  

Ordinal data (USDA Quality Grade, USDA Yield Grade, liver abscess prevalence 

and severity and lung score) was analyzed using the chi-square test of probability using the 

FREQ procedure of SAS (SAS Inst. Inc., Cary, NC), observing the Mantel-Haenszel 

statistic. The distribution of data count is provided for reference and was discussed as 

significant at P < 0.05 and tendencies discussed at P < 0.10. 

Preliminary rumen pH analysis. The primary drawback of Balaam’s design is that 

it inflates the variance of an estimate of the treatment effect which reduces statistical power 

for detecting more subtle effects (Mori and Kano, 2015). Rumen pH data between subjects 

is known to be highly variable and, therefore, an additional analysis was pursued. Because 

steers were fed different diets and the re-sort occurred during this window of time, a 

randomized complete block design (RCBD) with repeated measures design analysis was 

deemed appropriate. Rumen bolus data was summarized within each steer by diet. The 

variables pH variation, AUC, and DUR displayed a Poisson distribution, and the non-

parametric procedure (e.g., PROC RANK) was used within diet to produce a Gaussian 

distribution for parametric analysis (Mitchell et al., 1994; Narinç and Aygün, 2017). 

Respective means and ranks are reported. Rumen variables were analyzed in the MIXED 
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procedure of SAS (SAS Inst. Inc., Cary, NC) as an RCBD with diet as a repeated measure 

within animal subject resulting in the final model: 

Yijk = µ + TRTi + Diet j + TRTi×Diet j + bk + eijkl, 

where Y is the variable of interest (rumen pH variables: minimum pH, maximum pH, Mean 

pH, variance, cumulative variance, AUC and DUR < pH 6, 5.8, 5.6 and 5.4 and bout 

duration), i = is the treatment (CC, CY, YC, and YY), j = is the Diet (GROW, STEP1, 

STEP2, FIN), k = is the weight block (HVY or LT), µ and TRTi are fixed parameters such 

that the mean for the ith treatment is µi= µ +Ti,, Dietj is the fixed effect associated with the jth 

Diet, bk is the random effect associated with the kth block, and eijklis the random error 

associated with the experimental unit l, consuming Diet k, in block j that received treatment 

i. 

An autoregressive variance-(co)variance structure was chosen for the repeated 

measures design to account for the potential of greater correlation between measurements 

taken closer together than those that were further apart. Acidosis bout prevalence was treated 

as a categorical variable and analyzed using the chi-square test of probability in PROC 

FREQ of SAS (SAS Inst. Inc., Cary, NC), observing the likelihood ratio statistic for 

statistical significance. Acidosis bout duration analysis included only those steers who were 

experiencing bouts. 

Rumen pH variable drift analysis. More sensitive analysis of rumen variables 

involved a similar repeated measures design in which the days consuming the GROW diet 

served to establish baseline values for each subject before the re-sort and dietary transition. 

Deviations from each subject’s basal values were then computed for each remaining day. In 

the drift analysis days refers to the days of the guaranteed lifespan of the bolus (d 1 -50) 
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where days 1 – 14 correspond to the GROW diet, d 15 – 21 correspond to the STEP1 diet, d 

22 – 28 correspond to the STEP2 diet, and d 29 – 50 correspond to the FIN diet. Two new 

variables are introduced here to aid in the characterization of the wave of the diurnal 

fluctuation of ruminal pH, the upper amplitude (Up_amp) and the lower amplitude 

(Low_amp) as amplitude may not be evenly distributed across the daily mean pH. The 

amplitude variables were calculated by measuring the distance from the upper and lower 

peak to the mean within each subject per day. Baseline variables were analyzed similarly to 

the feeding trial analysis in which TRT was fixed and the block was random. The drift data 

were normally distributed, and the following model was analyzed in the PROC MIXED of 

SAS (SAS Inst. Inc., Cary, NC) in what is henceforth known as the drift analysis: 

Yijkl = u + TRTi + DAY j + TRTi×DAY j + bk + eijkl, 

where Y is the variable of interest (Rumen pH variable change from baseline:  Minimum pH 

(MinΔ), Maximum pH (MaxΔ), Mean pH (MeanΔ), variance (VarΔ), range (RangeΔ), 

Up_amp (Up_ampΔ), Low_amp (Low_ampΔ), i = is the treatment (CC, CY, YC, and YY), 

j = is the DAY (15, 16…,50), k = is the weight block (HVY or LT), µ and TRTi are fixed 

parameters such that the mean for the ith treatment is µi= µ +Ti,, Dietj is the fixed effect 

associated with the jth Diet, bk is the random effect associated with the kth block, and eijklis 

the random error associated with the experimental unit l, consuming Diet k, in block j that 

received treatment i. 

Similarly, the first order auto-regressive variance-(co)variance structure was chosen 

for the time-series analysis. In this analysis, two steers were removed for receiving their 

boluses late and therefore failed to establish baseline variable (n=63). 
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RESULTS AND DISCUSSION 

Growth Performance and Feeding Behavior 

The effects of TRT on the growth performance and feeding behavior for the total 

feeding period and transition period are shown in Table 4.2. Analysis of the total feeding 

period revealed the growth performance variables initial BW, midtest BW, final BW, ADG, 

DMI, G:F, and RFI were similar across TRT groups and there were no significant TRT 

differences observed for feeding behavior traits. Analysis of the transition period yielded 

similar results for growth performance variables however there were significant TRT effects 

on feeding behavior for meal frequency and meal size. Steers in TRT group CY had 

significantly greater meal frequency than steers in the CC group (9.3 vs. 8.5 meals/d, 

respectively), while estimates for the YC and YY groups were intermediate and not different 

(9.0 and 8.8, respectively; P < 0.005). Mean meal size was also affected by TRT in which 

YY steers had the greatest meal size (1.45 g/meal), CY and YC steers had the least (1.31 and 

1.34 g/ meal, respectively), and CC steers had intermediate meal size (1.38 g/meal; P < 

0.005). Bunk visit DUR was not different between TRT groups. Although meal frequency 

and size was different across TRT groups during the transition period, it was not clear if this 

behavior was biologically or economically relevant since it did not manifest into any 

significant differences of growth performance traits. 

Rumen pH Characteristics 

Preliminary analysis. In the preliminary repeated measures analysis of rumen pH 

variables, one interaction of TRT and DIET was observed for maximum pH. Figure 4.1 

shows the interaction plot over the course of the dietary transition. After steers were re-sorted 

there was a brief divergence of maximum daily pH appears between the CON (CC and YC) 
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and ADY-fed (CY and YY) steers during the STEP1 and STEP2 diets before reconvening 

during the FIN diet. Over the transition, the maximum daily pH achieved by steers not 

consuming yeast increases incrementally as dietary energy increases versus those consuming 

yeast do not show any significant change until they have reached the FIN diet. We would 

expect steers of similar BW to have the similar buffering capacity and the biological 

significance of a difference in maximum pH is difficult to interpret. This difference could be 

related to feeding behavior as the CY ate more frequently and the YY group ate the largest 

meals either of which may reduce the maximum pH achieved in a day. Another reason could 

be due to differences in digestibility, and VFA concentration in the rumen of ADY fed steers 

as has been identified in several studies (Desnoyers et al., 2009). We believe that one or 

more factors may have contributed to this separation of means. There was a tendency for the 

interaction of TRT and DIET on acidosis bout prevalence (P = 0.09). The distribution of 

bout prevalence is shown in Figure 4.2 and shows that while the prevalence amongst the CC 

group was steady throughout the transition, prevalence increased for the CY group through 

the FIN diet, but was greatest during the STEP2 diet for YC and YY groups. The most 

valuable information to be taken from Figure 4.2 is that steers supplemented ADY when 

consuming the GROW diet (groups YY and YC) had fewer bouts of acidosis than those who 

were not supplemented at this time. 

The main effects of TRT on ruminal activity are shown in Table 4.3. Daily minimum 

pH (5.39, 5.25, 5.33, and 5.33 for CC, CY, YC, and YY, respectively; P = 0.4061) was not 

significantly affected by TRT. Average daily mean pH was affected by TRT in which the 

CC and YC groups had the greatest average pH and were different from the CY group, with 

the YY group being intermediate and not different (6.26 and 6.23 vs. 6.09 and 6.19, 
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respectively; P =0.05). Neither average daily range, variance, nor cumulative variance was 

detected to be significantly different between TRT groups according to their ranks in the 

population (P = 0.74, 0.95, and 0.67, respectively). 

There was a tendency for the AUC < pH 6.0 to be different across TRT being the 

greatest for the CY group and different from CC, YC, and YY (31.6 vs. 18.1, 19.9, and 19.7, 

respectively; P < 0.10). However, TRT did not significantly affect the AUC < pH 5.8, 5.6, 

and 5.4. There was a very strong tendency for TRT to affect the DUR < pH 6.0 and 5.8 (P = 

0.0528 and 0.0536, respectively). In both cases, steers in the CY group spent significantly 

more time below the thresholds than those in the CC group while the YC and YY groups 

were intermediate. Interestingly, DUR < 5.6 was not different between TRT groups (P > 0.2) 

but acidosis bout prevalence was different (P < 0.05). It should be noted here that DUR 

below a threshold in a day does not indicate that the minutes are consecutive but rather the 

summation of minutes. A greater percentage of steers in the CY group experienced bouts of 

acidosis each day than CC, YC and YY groups (12.4 vs. 7.9, 8.3, and 8.8 % of subjects/d, 

respectively). Mean bout duration was different between TRT groups CY and YC (352 vs. 

260 min/bout), but CC and YY were intermediate (327 and 346 min/bout, respectively; P < 

0.05). The estimates for mean bout duration are larger than DUR < pH 5.6 because bout 

duration only included those steers experiencing bouts versus DUR < pH 5.6 includes all 65 

fit with a bolus including steers which may have never crossed the pH threshold. 

Table 4.4 shows the main effects of DIET on rumen pH variables. It was expected 

that as the percentage of concentrate increased in the diet the minimum daily pH achieved 

would decrease. While there was a significant effect of DIET on minimum daily pH only 

STEP1 and FIN were significantly different (5.40 vs. 5.24, respectively) in which GROW 
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and STEP2 where intermediate and not different from the FIN diet (5.37 and 5.34, 

respectively; P < 0.0001). The daily mean pH was as expected to be greater for GROW than 

STEP1, STEP2, and FIN (6.22 vs. 6.19, 6.18, and 6.19, respectively; P < 0.05). The daily 

range in pH was greatest on the FIN diet versus the GROW, STEP1, and STEP2 diets (1.91 

vs. 1.50, 1.49, and 1.64 pH units, respectively; P < 0.0001). Although numerically the daily 

pH variance and cumulative pH variance increased over the transition they were not 

statistically different between diets according to their ranks in the population (P = 0.99 and 

0.62, respectively). There were no significant effects of DIET on AUC or DUR variables 

likely due to significant between-subject variation. As expected, acidosis bout prevalence 

increased over the transition where the number of steers experiencing bouts increase by 

nearly twice from GROW to STEP1 (3.91 to 7.03 %/d) and tripled by STEP2 and FIN (12.31 

and 12.24 %/d, respectively; P < 0.0001). The bout duration, however, was not statistically 

different between DIETS (P = 0.27). 

Although there were significant differences in feeding behavior and some ruminal 

pH variables between TRT groups during the transition period, these differences did not 

manifest into any biologically significant feeding performance trait. Yet because we did not 

detect a difference in growth performance, it is unclear if the observed differences in feeding 

behavior or ruminal characteristics are necessarily positive or negative outcomes. As 

mentioned earlier, the between-subject variation in the sample population for rumen pH 

variables was extremely high and greater than expected but concurs with other research 

(Dohme et al., 2008). Many trials profiling the effect of feed additives on ruminal pH 

parameters have done so on quite large (>450 kg) or mature animal subjects which may 

account for a great deal of variance in a data set (Bach et al., 2007; Chung et al., 2011; Vyas 
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et al., 2014). However, the summary statistics of rumen variables for young growing beef 

calves (Table 4.5), on a single diet (GROW) highlight this matter. When considering the CV 

% between subjects for daily pH variation, AUC and DUR variables acquiring the 

appropriate sensitivity to detect subtle differences is largely unattainable due to the required 

number of necessary and the relative expense of the bolus technology. It also reiterates the 

necessity of using a repeated measures analysis and, regarding data distribution (in our case, 

Poisson), the need for data transformation for meaningful comparison that does not violate 

parametric analysis assumptions. To account for non-Gaussian distributed data, some 

experiments reporting significant differences in AUC have done so by blocking 

experimental animals based on their pre-trial tendency to spend time below a pH threshold 

(Chung et al., 2011). Other researchers have used log transformations to enhance distribution 

normality and decrease variation (Dohme et al., 2008). However, log transformations may 

not always result in a normal distribution and should not be conducted for variables when 

observations may contain values of zero or values less than 1 (e.g., Duration below or AUC 

of given thresholds, pH variation) (Sileshi, 2012; Changyong et al., 2014), and moreover, 

may not be appropriate for variables already on a log scale, such as pH. More recent research 

suggests that data derived from continuous monitoring systems should focus on deviations 

from the expected outcomes based on individual animal patterns rather than pre-defined pH 

thresholds (Denwood et al., 2018). This concept may eventually be the right approach, but 

currently, the lifespan of the technology is limited, the analysis is complex and for feed 

additive studies, may not be economically feasible for the necessary replication 

requirements. However, the following drift analysis is based on the idea of deviations from 
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the expected values within a subject over time and offers its unique value to our knowledge 

of rumen pH characteristics. 

Drift analysis. The daily pH fluctuation and corresponding coefficient of 

determination for the basal period (GROW diet) and each TRT group are shown in Figure 

4.3. The drift analysis does not include the AUC or DUR variables due to the extreme CV 

% of the sample population mentioned previously. In the drift analysis, based on the claims 

that supplemental ADY may help stabilize ruminal pH over the dietary transition, there were 

certain expectations for the outcome of TRT groups; 1) that changes from baseline would be 

lower for YY than for CC and 2) that changes for YC would be greater than CY. 

There were no significant TRT by DAY interactions observed in the drift analysis. 

Table 4.6 and Figures 4 and 5 have the effects of TRT and day on the deviations of rumen 

variables from their basal values. In Table 4.6, the mean basal values are given as a reference, 

and the direction of the variable Δ is shown below. There was no significant difference 

between TRT groups MinΔ (P = 0.46) or MeanΔ (P = 0.27). The finding for MinΔ is similar 

to the preliminary data analysis. However, the finding for MeanΔ is in contrast. The 

difference here is that the preliminary analysis compared group means of the raw pH values, 

the drift analysis compares how far each subject’s mean pH drifted from its baseline 

established on the GROW diet. Analysis of the baseline mean pH shows that there was a 

slight tendency (P = 0.15) for TRT group CY to be different from CC, YC and YY (6.13 vs. 

6.26, 6.25, and 6.23, respectively) and this condition may have been inflated over the 

transition. However, in the drift analysis, deviations from baseline values offer greater 

accounting for the between-subject variation and therefore may be more meaningful to 

isolating the TRT effect, which in this case was different between TRT groups. Similar to 
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the preliminary analysis there was a significant effect of TRT on MaxΔ where the YC group 

had the greatest increase from basal values and were different from CY and YY groups, 

while the CC group was intermediate and not different (0.165 vs. 0.089, 0.087 and 0.120, 

respectively; P < 0.01). This likely contributed to the similar pattern for RangeΔ where again 

the YC group was significantly greater than CY and YY, and CC was intermediate and not 

different (0.310 vs. 0.208, 0.194 and 0.226, respectively; P < 0.01). This indicates that there 

was less change in daily fluctuation of CY and YY groups than the YC group and agrees 

with the presumptive claim of pH stabilization. There was a significant TRT effect on VarΔ 

where the YC group was significantly greater than CC, CY and YY (0.058 vs. 0.035, 0.038 

and 0.039, respectively; P < 0.01). This finding is interesting because it may indicate that 

when ADY is removed from the diet, the variance may increase within a subject whereas the 

addition of ADY (i.e., CY treatment) may aid in reducing the variance. Since the CC and 

YY groups were not subjected to the ADY supplement change, we would expect to not see 

a difference in their variance from their baseline values, but we would expect to potentially 

see a difference in the cross-over groups. There was a significant TRT effect on the 

Up_ampΔ where YC was greatest and significantly different from CC and YY but was not 

different from CY which was intermediate (0.194 vs. 0.137, 0.135 and 0.141 respectively; 

P < 0.05). There was also a significant TRT effect on the Low_ampΔ in which again the YC 

group drifted further downward from the mean more significantly than CY and YY but was 

not different from CC which was intermediate (0.116 vs 0.068, 0.059 and 0.089, 

respectively; P = 0.005). This confers with the RangeΔ outcome but gives a better 

perspective of the influence of direction. 
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As expected, DAY significantly affected the Δ in all rumen pH variables. Figures 4 

and 5 illustrate the general direction of the change over the transition. For each figure, the 

basal value for each variable is represented by the y-base of 0. Figure 4.4 shows the effect 

of DAY on the maximum, minimum, variance and range which shows that days that were 

most affected corresponded to the STEP2 diet through the first week of the FIN diet. 

Interestingly a second assault during the last 7 d of measurement reveals significant changes 

for these variables which demonstrate that even after adaptation to a diet external factors 

may cause rumen disturbances. Figure 4.5 displays drift of the mean ruminal pH and the 

upper and lower amplitude across the mean. Again the most significant days are during the 

STEP2 and the first week of the FIN diet with a second assault in the last week of 

measurements. Over the transition, the drift in low_amp is 0.1 pH unit on average lower than 

the baseline value while the up_amp drifts nearly twice as far from its baseline causing an 

overall increase in mean ruminal pH. It is suspected that this change in up_amp is due to an 

increasing bunk visit interval over time (time between visits; data not shown) and greater 

time spent ruminating. 

In summary, the findings of the drift analysis, specifically the main effects of TRT, 

offered a different perspective of the effect of supplemental ADY during dietary transition 

than the preliminary analysis. It also empowered the case for measuring deviations within 

subject rather than raw or transformed data and holding on to arbitrary pH thresholds for 

meaning. The drift analysis reveals that the addition of ADY during the dietary transition 

may help stabilize daily variation of ruminal pH during the transition from a low to high 

energy diet.  
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Carcass Characteristics 

Carcass characteristics of the finished steers are shown in Table 7. Cattle were pre-

shrunk before shipment (18 h without feed, 12 h without water) and this data is included in 

this section. Final shrunk body weight (SBW) was not affected by TRT. Interestingly, the 

percentage of BW shrink was affected by TRT group in which CC steers had a significantly 

greater loss than YY steers (3.7 vs. 2.7 %, respectively; P = 0.05), and CY and YC were 

intermediate and not different (3.3 and 3.1 %, respectively). Although there was an effect of 

TRT on the percentage of BW shrink, this did not manifest into any meaningful differences 

in carcass characteristics. Still, this finding may be of use to other sectors of the beef 

production chain, especially where hydration may be a key factor in health status such as 

receiving cattle (Schaefer et al., 1997).There was no TRT effect (P > 0.1) on HCW, dressing 

percent, 12th rib fat thickness, REA or overall YG. Quality Grade distribution and marbling 

scores were similar across TRT groups. Liver abscess frequency was 19.6 %, but liver 

abscess prevalence and abscess severity were not different between TRT groups. There were 

no TRT differences in the distribution of lung scores.  

Relationship of Growth Performance, Acidosis Bouts, and Liver Abscesses 

There has been considerable speculation (Owens et al., 1998; Nagaraja and 

Lechtenberg, 2007) that bouts of ruminal acidosis may result in liver abscesses. It also stands 

to reason that any liver damage may decrease overall metabolic efficiency and thus hinder 

feeding performance traits. In a post-hoc Chi-Square analysis, feeding performance traits 

DMI, ADG or G:F were used to detect any relationships with bouts of acidosis and liver 

abscess occurrence. Steers were assigned a categorical status label based on their relative 

position within the population quartiles. Steers ranking in the top 25%, 26 to 50%, 51 to75% 



 

144 

 

and 75 to 100% of the population were labeled highest, high, low, and lowest, respectively, 

for each feed performance trait. Only steers equipped with rumen boluses (n = 65) were used 

in assessments which included acidosis bout assessment but their original population rank 

within a feed performance trait was retained and not scaled to the bolus population. Since 

acidosis bout occurrence displayed a Poisson distribution labels were assigned for 

meaningful interpretation rather than the distribution in which steers were grouped by the 

number of days experiencing bouts (DEB) of 0, 1 to 10, 11 to 20 or > 20 d. While this 

separation resulted in unequal group sizes, it provided practical meaning for observation. 

Growth performance and acidosis bouts. Feedlot performance traits and DEB 

relationships are illustrated in the panels of mosaic plots in Figure 4.6. There was no 

significant relationship between DMI status and DEB (P = 0.78). However, there was a 

significant relationship between ADG status and DEB in which those steers with the highest 

ADG never experienced more than ten days of acidosis during the 50 d measured (P = 

0.034). Similarly, there was a significant relationship between G:F status and DEB in which 

those steers with greatest feed efficiency had fewer DEB than those with the lowest feed 

efficiency. This finding is consistent with suggestions of repeated bouts of acidosis having 

negative impacts on performance due to decreased short-chain fatty acid absorption 

(Schwaiger et al., 2013). 

Growth performance and liver abscesses. There was no significant relationship 

between DMI status and liver abscess prevalence or severity (P = 0.83 and 0.65, respectively; 

Figure 4.7). There was, however, a tendency for ADG status to be related to abscess severity 

(P = 0.078). Steers within low and lowest ADG status groups had a greater frequency of A+ 

livers than steers in the high or highest ADG groups. It could be that the presence and 
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severity of liver abscesses contributed to the lower performance of steers which is supported 

by earlier research (Brink et al., 1990). While the relationship of G:F status and liver 

abscesses were not significant the mosaic plot shows a similar trend in the pattern of 

occurrence and severity as the ADG status outcome. 

Acidosis bouts and liver abscesses. There was no significant relationship between 

liver abscess prevalence or severity and DEB (P = 0.98 and 0.90, respectively; Figure 4.8). 

This conflicts with the expected outcome and also general assumptions of chronic bouts 

predisposing cattle to an increased probability of rumenitis, rumen lesions and consequently 

liver abscesses (Nagaraja and Chengappa, 1998).  Although the post-mortem rumen was not 

examined for lesions or keratinization, our findings showed that steers which never 

experienced a bout of acidosis during the transition still had a 10 % abscess occurrence (2 

of 19 steers). Even more interesting, four steers with the most extreme number of DEB (21, 

28, 39 and 42 d of 50 d respectively) yielded only healthy livers. While we cannot provide 

bouts experienced for the entire feeding period some have suggested that the transition sets 

the tone for the remaining days on feed (Dohme et al., 2008). Here we may only provide 

evidence that there is not necessarily a linear relationship between DEB during the dietary 

transition and liver abscess prevalence or severity if any at all. 

 

CONCLUSION 

Characterizing the effects of ADY on beef production efficiency traits may improve 

our understanding of the relationship between health and nutrition in the feedlot setting. In 

the current study, we provided a comprehensive feed-through-slaughter assessment of the 

effects of feeding supplemental active dried yeast to growing beef steers. Additionally, 



 

146 

 

valuable insight into population variance and approaches to meaningful data analysis of 

continuous rumen monitoring systems were analyzed. There is evidence to suggest that at 

the current dosage (3 × 1010 CFU/d) supplemental ADY Saccharomyces cerevisiae may aid 

in the stabilization of ruminal pH characteristics during the dietary transition. However, 

beyond the direct action in the rumen, it was unclear if ADY effects were sufficient to 

improve animal performance. Further research should address the potential for dose-

dependent effects (in the context of CFU/d) and impacts on water intake. 
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Table 4.1. Ingredient and chemical composition of diets fed to growing steers with or without the 

inclusion of an active dried yeast. 

Items1  Diets2 

  GROW  STEP1  STEP2  FIN 

  CON ADY  CON ADY  CON ADY  CON ADY 

% of diet, DM              

   Alfalfa hay, 

medium chop  30 30  25 25  20 20  15 15 

   Cracked corn  40 40  50 50  60 60  70 70 

   Dried distiller's 

grain  20 17  15.5 12.5  10.5 7.5  5.5 2.5 

   Molasses  6.8 6.8  6.8 6.8  6.8 6.8  6.8 6.8 

   Mineral  2.5 2.5  1 1  1 1  1 1 

   Limestone  0 0  1 1  1 1  1 1 

   Urea  0.7 0.7  0.7 0.7  0.7 0.7  0.7 0.7 

   Premix3 
  3   3   3   3 

DM, % of diet  82.7   82.5   82.3   82.2  
   CP  16.3   14.9   13.3   11.8  
   Soluble protein, 

% CP  21.4   20.7   19.9   19.1  
   NDF  30.1   27.4   24.5   21.7  
   ADF  20.2   17.6   15.0   12.4  
   Lignin  4.4   3.8   3.3   2.7  
   Crude fat  4.1   3.9   3.7   3.5  
   Sugar  4.9   4.8   4.7   4.6  
   Starch  29.0   35.8   42.5   49.2  
   Ash  7.2   6.1   5.5   4.9  
   Calcium  0.7   0.8   0.8   0.7  
   Phosphorus  0.6   0.4   0.4   0.4  
   peNDF4 

 16   14   12   10  
   TDN  76   78   80   82  
   NEm, Mcal/kg  1.57   1.63   1.68   1.74  
   NEg, Mcal/kg  1.00   1.05   1.10   1.14  

             
1Items are feed ingredients and chemical composition of diets (DM basis) evaluated by 

Cumberland Valley Analytical Services (Hagerstown, MD).  
2Diets are GROW = grower (fed d 1 - 70), STEP1 = transition step 1 (fed d 71 - 77), STEP2 = 

transition step 2 (fed d 78 - 85), FIN = finisher (fed d 86 to 164), CON = no active dried yeast 

supplement, ADY = control diet + 1.5 g/ d of an active dried yeast (3 ×1010 CFU per day). 
3Premix was included in 3 % of the diet where DDG was the carrier ingredient. The additive was 

Vistacell (ABVista, Marlborough, UK) and its amount (g) was based on the average of the inner 

quartile range of the previous week’s DMI to allow for feed delivery containing 1.5 g of 

Vistacell per subject each day.  
4peNDF (physically effective NDF = proportion of particles larger than 4 mm×NDF proportion 

of the diet). 
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Table 4.2. Effect of feed treatment regimen on feedlot performance and eating behavior of 

growing steers 

Items1 
 Treatments2 

 SEM P-value 

  CC CY YC YY    

Transition Period3 
      

 
 

n=50 d       
 

 
  Initial BW, kg  374 366 370 372  36.7 0.7260 

  Final BW, kg  447 444 445 449  33.3 0.9381 

  ADG, kg/d  1.34 1.46 1.38 1.44  0.088 0.6000 

  DMI, kg/d  11.6 11.6 11.4 11.6  0.376 0.8020 

  G:F  0.115 0.122 0.111 0.127  0.013 0.3690 

  RFI, kg/d  0.026 0.095 -0.026 -0.063  0.144 0.8660 

  Meal frequency  8.5 b 9.3 a 9.0 ab 8.8 ab  0.197 0.0030 

  Meal size, kg/meal  1.38 ab 1.31 b 1.34 b 1.45 a  0.065 0.0020 

  Bunk visit DUR, min/d  92.5 94.0 92.7 89.8  2.72 0.3901 

       
 

 
Total Feeding Period 

      
 

 
n=164 d       

 
 

  Initial BW, kg  234 229 232 235  17.5 0.4980 

  Mid-test BW, kg  429 424 425 432  33.4 0.7011 

  Final BW, kg  500 492 490 500  30.7 0.5990 

  ADG, kg/d  1.62 1.60 1.58 1.62  0.083 0.7680 

  DMI, kg/d  11.2 11.1 11.1 11.2  0.338 0.9210 

  G:F  0.146 0.144  0.143 0.145  0.004 0.8240 

  RFI, kg/d  0.026 0.095 -0.026 -0.053  0.141 0.8780 

  Meal Frequency  9.07 9.25 9.57 9.40  0.350 0.7576 

  Meal size, kg/meal  1.40 1.35 1.33 1.38  0.055 0.7998 

  Bunk visit DUR, min/d  100.3 100.4 95.4 91.5  3.23 0.1418 

         
1Items are performance variables of growing steers. Mid BW= BW on day 84; F:G= feed-to-gain 

conversion; RFI = residual feed intake, kg/d; Sum = the summation of daily meals; DUR = 

duration of feeding time.  
2Treatements are CC = control, no ADY fed throughout the transition; YY = yeast fed 

throughout the entire transition; CY = control fed during the grower diet and transitioned onto 

diets containing yeast; YC = yeast fed during the grower diet and transitioned onto diets without 

yeast.  
3Transition period is d 56 to d 106 during dietary transition from grower to finisher diets.  
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Table 4.3. The effects of feed treatment regimen on rumen characteristics of growing steers during 

transition from a grower diet to a finishing diet.  

Items1  Treatments2 
 SEM  P-value 

  CC CY YC YY     

Ruminal pH          
   Minimum  5.39 5.27 5.36 5.34  0.087  0.4465 

   Maximum  7.00 6.89 7.04 6.96  0.063  0.2045 

   Mean  6.26 a 6.09 b 6.23 a 6.19 ab  0.061  0.0587 

   Range  1.61 1.63 1.68 1.62  0.063  0.8400 

   Variance  0.095 0.101 0.105 0.099  0.013   

      Rank  31.7 33.6 34.3 32.0  5.10  0.9512 

   Cumulative variance  1.62 1.75 1.83 1.70  0.251   

      Rank  28.8 35.3 33.6 32.8  5.69  0.7152 

AUC pH 6.0  18.1 31.6 19.9 19.7  8.14   

   Rank  26.8 39.4 32.3 32.2  5.52  0.0965 

DUR < 6.0, min/d  316.4 533.8 387.5 367.8  74.6   

   Rank  26.5 b 40.6 a 31.7 ab 31.7 ab  4.81  0.0528 

AUC pH 5.8  8.27 14.4 6.91 8.38  5.69   

   Rank  27.8 39.0 32.0 32.1  5.97  0.1449 

DUR < 5.8, min/d  158.4 277.2 162.1 166.4  64.2   

   Rank  26.9 b 40.5 a 31.7 ab 31.5 ab  5.72  0.0536 

AUC pH 5.6  3.56 6.25 2.52 3.51  3.18   

   Rank  28.7 37.4 32.4 32.5  5.73  0.3295 

DUR < 5.6, min/d  75.9 119 63.1 75.2  42.83   

   Rank  28.6 38.6 31.9 31.8  5.98  0.2151 

AUC pH 5.4  1.43 2.88 0.795 1.31  1.64   

   Rank  29.3 35.7 32.1 33.9  4.93  0.5017 

DUR < 5.4, min/d  37.9 53.1 22.9 35.6  25.2   

   Rank  29.6 36.1 31.7 33.7  5.43  0.5163 

          

Acidosis bouts3          

   Prevalence, %/d  7.9 12.4 8.3 8.8    0.0056 

   DUR, min/bout  327 ab 352 a 260 b 346 ab  36.1  0.0462 

          
a-bLeast squares means within a row with different superscripts differ at P < 0.06 
1Variables AUC = area under the curve (dimensionless) and DUR = duration (min/d), under the given pH 

threshold. Rank = the relative position of a data-point in the given data set. Bout = an instance of a subject 

having ruminal pH <5.6 for 180 consecutive minutes. 
2Treatements are CC = control, no ADY fed throughout the transition; YY = yeast fed throughout the 

entire transition; CY = control fed during the grower diet and transitioned onto diets containing yeast; YC 

= yeast fed during the grower diet and transitioned onto diets without yeast.  
3Bout prevalence was analyzed by the χ2 analysis. Percentage of subjects displaying bouts are reported 

within TRT. 
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Table 4.4. The effect of diet on rumen characteristics of growing steers during transition from a grower 

diet to a finishing diet. 

Items1  Diets2 
 SEM  P-value 

  GROW STEP1 STEP2 FIN     

Ruminal pH          

   Minimum  5.37 ab 5.40  a 5.34 ab  5.24 b  0.075  < 0.0001 

   Maximum  6.87 b 6.89 b 6.98 ab 7.14 a  0.049  < 0.0001 

   Mean  6.22 a 6.19 b 6.18 b 6.19 b  0.053  0.0293 

   Range  1.50 b 1.49 b 1.64 b 1.91 a  0.044  < 0.0001 

   Variance  0.058 0.089 0.121 0.120  0.012   

      Rank  33.0 33.1 33.1 32.4  4.32  0.9901 

   Cumulative variance  0.548 1.00 1.66 3.69  0.269   

      Rank  33.0 33.0 33.1 31.4  6.68  0.6185 

AUC pH 6.0  17.5 12.2 14.7 44.9  6.85   
   rank  33.0 32.9 32.9 31.9  4.76  0.9459 

DUR < 6.0, min/d  334 389 443 440  58.8   
   rank  32.9 32.9 32.9 31.7  3.90  0.9171 

AUC pH 5.8  5.38 5.44 7.00 20.14  4.77   
   rank  33.0 32.9 32.9 31.9  5.40  0.9601 

DUR < 5.8, min/d  120 177 233 234  53.3   
   rank  32.9 32.9 32.9 31.8  5.06  0.9407 

AUC pH 5.6  2.04 2.57 3.23 7.99  2.67   
   rank  33.0 33.0 32.9 31.9  5.12  0.9641 

DUR < 5.6, min/d  43 81 105 104  37.1   

   rank  33.0 32.9 32.9 31.9  5.35  0.9600 

AUC pH 5.4  0.76 1.21 1.50 2.94  1.36   

   rank  33.0 32.9 33.0 31.9  4.39  0.9674 

DUR < 5.4, min/d  18 40 51 41  21.6   

   rank  33.0 33.0 33.0 31.9  4.88  0.9626 

          

Acidosis bouts3          

   Prevalence, %/d  3.91 7.03 12.3 12.2    < 0.0001 

   DUR, min/bout  283 329 350 324  36.7  0.2694 

          
a-bLeast squares means within a row with different superscripts differ at P < 0.06 
1Variables represent rumen characteristics of growing steers over the dietary transition; AUC=Area Under 

the Curve (unit-less) & DUR= Duration (min/d), under the given pH threshold. Rank = the relative 

position of a data-point in the given data set. Bout= an instance of a subject having ruminal pH <5.6 for 

180 consecutive minutes.  
2Diets are GROW=Growing diet (30% roughage), STEP1= transition 1 diet (25% roughage), 

STEP2=transition 2 diet (20% roughage), and FIN= Finisher diet (15% roughage).  
3Bout Prevalence was analyzed by χ2 analysis. Percentage of subjects displaying bouts are reported at the 

diet level (n=65). 
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Table 4.5. Summary statistics of ruminal pH characteristic variables of growing steers 

fed a 30 % roughage grower diet. 

Items1 Summary Statistics 

n=63 
 Mean  SD  Minimum Maximum CV, %2 

Basal pH values         
   Minimum  5.75 ± 0.23  5.01 6.13 4.04 

   Mean  6.21 ± 0.18  5.77 6.57 2.91 

   Maximum  6.64 ± 0.15  6.31 7.02 2.23 

   Range  0.89 ± 0.16  0.65 1.47 18.41 

   Variation  0.06 ± 0.03  0.02 0.17 55.17 

   Cumulative 

variation  0.56 ± 0.30  0.24 1.89 52.93 

   Up_amp  0.42 ± 0.08  0.31 0.71 17.75 

   Low_amp  -0.47 ± 0.10  -0.75 -0.32 21.90 

   AUC <6.0  17.93 ± 26.75  0.04 149.34 149.19 

   AUC <5.8  5.57 ± 10.61  0.00 58.24 190.33 

   AUC <5.6  2.11 ± 5.48  0.00 31.96 259.03 

   DUR <6.0, min/d  23.67 ± 23.41  0.13 93.19 98.88 

   DUR <5.8, min/d  8.54 ± 11.59  0.00 52.73 135.72 

   DUR <5.6, min/d  3.12 ± 6.09  0.00 32.71 195.16 

         
1Variables are the population average of ruminal pH values during the 14 d prior to 

dietary transition while consuming a 30% Grower diet. Cumulative variation = the 

accrued variation over 14 d, Up_amp= the upper amplitude and maximum distance 

above the daily mean, Low_amp= the lower amplitude and maximum distance below 

the daily mean, AUC= area under the curve of the given pH threshold, DUR= the 

duration of time spent below the given pH threshold in min/d. 
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Table 4.6. Effects of TRT and DAY on ruminal characteristic variable drift from baseline values 

  Treatment2 
  P-value 

Items1 
 CC CY YC YY  SEM  TRT DAY4 TRT × Day 

            

Basal min pH  5.80 5.68 5.78 5.76  0.091  0.4112   

MinΔ  -0.107 -0.118 -0.143 -0.107  0.019  0.4604 <0.0001 0.8525 

Basal mean, pH  6.26 6.13 6.25 6.23  0.057  0.1573   

MeanΔ  0.017 0.051 0.029 0.047  0.014  0.2756 <0.0001 0.1825 

Basal max, pH  6.67 6.58 6.66 6.65  0.040  0.2252   

MaxΔ  0.120 ab 0.090 b 0.165 a 0.088 b  0.018  0.0081 <0.0001 0.6256 

Basal range, pH  0.86 0.90 0.88 0.90  0.064  0.9234   

RangeΔ  0.227 ab 0.208 b 0.310 a 0.194 b  0.029  0.0058 <0.0001 0.9853 

Basal variance, pH  0.041 0.047 0.041 0.044  0.008  0.8684   

VarΔ  0.035 b 0.038 b 0.058 a 0.039 b  0.005  0.0076 0.0007 0.9524 

Basal up_amp, pH  0.409 0.442 0.413 0.423  0.024  0.5780    

Up_ampΔ  0.137 b 0.141ab  0.194 a 0.135 b  0.016  0.0185 <0.0001 0.8507 

Basal low_amp, pH3  -0.454 -0.457 -0.472 -0.473  0.042  0.9310   

Low_ampΔ  -0.089 ab -0.068 b -0.116 a -0.059 b  0.020  0.0053 0.0051 0.8023 

            
a-bLeast squares means within a row with different superscripts differ at P < 0.05. 
1Variables represent rumen characteristics of growing steers over the dietary transition; Basal values indicate the average of the 14 d 

period steers received a Grower diet (30 % roughage) and subsequent Δ in pH units from basal values in which the sign indicates the 

distance and direction of the change.  
2 Treatments are CC=Control, no ADY fed throughout the transition; YY=Yeast fed throughout the entire transition; CY=Control fed 

during the Grower diet and transitioned onto diets containing Yeast; YC= Yeast fed during the Grower diet and transitioned onto diets 

without Yeast.  
3 Up_amp=Upper amplitude and greatest average distance above the mean pH, Low_amp= Lower amplitude and greatest average distance 

below the mean pH.  
4Main effects of Day are shown in figure format. 
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Table 4.7. Effects of treatment on carcass characteristics of growing beef steers  

Items1  Treatment2 
 SEM  P-value 

  CC CY YC YY     

N=  29 31 29 28     

SBW, kg  498 492 489 499  21.4  0.6119 

BW shrink, %  3.7 a 3.3 ab 3.1 ab 2.7 b  0.549  0.0525 

HCW, kg  313 307 310 313  14.0  0.7025 

Dressing %  62.9 62.4 63.4 62.8  0.466  0.5243 

12th rib backfat 

thickness, cm  1.9 1.8 1.6 1.8  0.103  0.2004 

Calculated yield grade  3.2 3.1 2.9 3.1  0.138  0.6165 

LM area, cm2  12.0 11.9 11.9 12.1  0.220  0.8677 

Quality grade 

distribution, %         0.995 

   Prime  0.0 0.0 3.4 3.6     

   Choice  62.1 67.7 65.5 71.4    0.8639 

      Modest/Moderate  24.1 22.6 20.7 14.3     

      Small  37.9 45.2 44.8 57.1     

   Select  37.9 32.3 31.0 25.0     

Yield grade 

distribution, %         0.5686 

   Yield grade 1  6.9 6.5 10.3 7.1     

   Yield grade 2  24.1 29.0 41.4 28.6     

   Yield grade 3  62.1 54.8 37.9 50.0     

   Yield grade 4  6.9 9.7 10.3 14.3     

          

Abscess prevalence          

   Healthy   69.0 87.1 82.8 82.1    0.3515 

   Abscessed  31.0 12.9 17.2 17.9    0.3431 

      A  17.2 9.7 6.9 10.7     

      A+  13.8 3.2 10.3 7.1     

Lungs score         0.6661 

   1, %  20.7 38.7 51.7 32.1     

   2, %  65.5 54.8 34.5 50.0     

   3, %  13.8 6.5 13.8 17.9     

          
a-b Least squared means within a row without a common superscript differ at P < 0.06. 
1 Items are carcass characteristics; SBW=shrunk BW. 
2 Treatments are CC = control, no ADY fed throughout the transition; YY = yeast fed 

throughout the entire transition; CY = control fed during the grower diet and transitioned onto 

diets containing yeast; YC = yeast fed during the grower diet and transitioned onto diets 

without yeast.  
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Figure 4.1. Interaction of treatment and diet on the average daily maximum ruminal pH 

achieved by growing steers. Values are least squares means and (*) indicate estimates that 

differ at P < 0.05. Treatments are CC = control, no ADY fed throughout the transition; YY 

= yeast fed throughout the entire transition; CY = control fed during the grower diet and 

transitioned onto diets containing yeast; YC= yeast fed during the grower diet and 

transitioned onto diets without yeast. Diets are grower = growing diet (30% roughage), 

STEP1 = transition 1 diet (25% roughage), STEP2 = transition 2 diet (20% roughage), and 

finisher= finisher diet (15% roughage). 
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Figure 4.2. Distribution of growing steers experiencing bouts of acidosis during dietary 

transition with or without an active dried yeast. Treatments are CC = control, no ADY fed 

throughout the transition; YY = yeast fed throughout the entire transition; CY = control fed 

during the grower diet and transitioned onto diets containing yeast; YC= yeast fed during 

the grower diet and transitioned onto diets without yeast.
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Figure 4.3. Diurnal fluctuations in ruminal pH of steers fed a grower diet for 14 d prior to 

dietary transition. Treatments are CC = control, no ADY fed throughout the transition; YY 

= yeast fed throughout the entire transition; CY = control fed during the grower diet and 

transitioned onto diets containing yeast; YC= yeast fed during the grower diet and 

transitioned onto diets without yeast. Blue (left panels) and gold (right panels) series 

represent steers consuming either control or yeast, respectively. Red dashed series indicates 

the fit line of the unadjusted R-squared estimate. 
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Figure 4.4. Effect of day on the maximum, minimum, variance and range of ruminal pH. 

Distance from 0 is the distance from the baseline value in pH units. Max = drift of average 

daily maximum pH form baseline maximum, min = drift of average daily minimum pH 

form baseline minimum, variance = drift of variance from baseline variance, range = drift 

distance of the range between maximum and minimum pH from baseline. *Denote days 

that were different at P< 0.05.  
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Figure 4.5. Effect of day on the mean, upper and lower amplitude drift from basal values. 

Distance from 0 is the distance from the baseline value in pH units. Up_amp=upper 

amplitude distance from the mean, Low_amp= Lower amplitude distance from the mean. 
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Figure 4.6. Mosaic displays represent the frequency of days experiencing bouts of acidosis 

and their relationship to feedlot performance traits DMI, ADG and G:F. Cell colors 

represent the quartile status of subjects within a performance trait; Gold =1-25th percentile, 

Green = 26-50th percentile, Pink = 51st-75th percentile, Purple = 76th – 100th percentile. Cell 

width represents the probability of steers within the grouping of days experiencing bouts. 

Cell height represents the probability of being within the designated population quartile for 

the respective performance trait within a column.
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Figure 4.7. Distribution of liver abscess severity by percentile rank within performance 

traits DMI, ADG, and G:F. Liver abscess scores are categorized on the Elanco scoring 

system. Colors represent y-axis liver score values of 0 = green, A = red and A+ = blue. 

Column width and performance trait status are based on n=117 subjects and their rank 

within performance trait quartiles. Cell height is the probability of a subject portraying 

respective liver abscess traits within the column.
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Figure 4.8. Distribution of liver abscess score by days experiencing bouts (DEB) of 

acidosis. Liver abscess scores are categorized on the Elanco scoring system. Colors 

represent y-axis liver score values of 0 = green, A =red and A+=blue. Column width of 

DEB are based on n=64 subjects and their associated DEB grouping. Cell height is the 

probability of a subject portraying respective liver abscess traits within the column.
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CHAPTER V 

 

IDENTIFYING BACTERIOPHAGES THAT TARGET HYPER 

AMMONIA-PRODUCING BACTERIA OF THE BOVINE RUMEN 

 

INTRODUCTION 

The ruminal ecosystem contains a microbial consortium that plays a vital role in 

converting plant matter into usable energy to the bovine host. Some bacteria, however, are 

known to occupy an ecological niche that may negatively influence the efficiency of using 

high-quality feed sources and contribute to ammonia (NH3) emissions. Obligate amino acid 

fermenting bacteria, also known as hyper-ammonia-producing bacteria (HAB), may rapidly 

deaminate essential and growth rate-limiting amino acids, resulting in excessive NH3 

production and reduce N retention of the ruminant. This process is wasteful to the ruminant 

from a feed protein perspective and may also contribute to the available hydrogen pool in 

the rumen potentially resulting in higher enteric methane (CH4) production. Antibiotic and 

ionophore feed additives have shown to be effective against HAB in the short term, but 

frequent subjectivity to non-selective antimicrobials through the feed has proved to be less 

effective long-term across many diet types (Guan et al., 2006; Crossland et al., 2017).  

In light of greater awareness of widespread bacterial resistance to antibiotics, some 

researchers have reverted to nature’s bacterial predators, the bacteriophages (phage), which 

are viruses ubiquitous in nature. One attractive component of phage is their narrow host 

selectivity and prolific self-replication upon each successful bacterial infection allowing for 

a more targeted approach to be used as a feed additive. Phages have been shown to be 



 

166 

 

effective at controlling a wide variety of pathogenic bacteria (Atterbury et al., 2007; Johnson 

et al., 2008; Atterbury, 2009) and have been shown to be a normal part of the rumen 

microflora (Klieve et al., 1996). Therefore, the objective of this trial was to isolate and 

characterize bacteriophage that selectively targets HAB. Phage culture could potentially be 

a viable antibiotic alternative in the diets of livestock that may simultaneously improve beef 

and milk production efficiency and reduce the environmental contribution of NH3 and CH4 

from the livestock sector.  

 

MATERIALS AND METHODS 

Media and Bacteria 

Three known obligate amino acid fermenting bacteria frequently isolated from the 

bovine rumen were obtained from ATCC: Clostridium aminophilum, Paster et al.(ATCC® 

49906), Clostridium sticklandii Stadtman and McCLUng (ATCC® 49905), and 

Peptostreptococcus anaerobius (ATCC® 27337) (ATCC, Manassas, VA). 

 Two media types were used based on ATCC and literature recommendations, brain 

heart infusion (BHI) and reinforced clostridial media + casamino acids (RCM+C) (Becton 

Dickson, Sparks, MD). Media was prepared as per label directions, boiled and pre-reduced 

with L-cysteine. Media (9 mL) was dispensed into 16 mL Belco tubes using a gassing 

cannula with 100% CO2 to produce an anaerobic headspace, capped with a sterile butyl 

rubber stopper, crimp-sealed and steam pressure sterilized at 121°C for 15 min. The broth 

medium pH for BHI and RCM+C were 6.62 and 6.89, respectively. Nutrient agar (BHI and 

RCM+C) was prepared as directed and was maintained at 4°C until use.  
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Bacteria were rehydrated from ampoules following ATCC recommendations for 

anaerobes. Both BHI and RCM+C were used to hydrate lyophilized bacteria. Rehydrated 

cultures were then transferred into anaerobic BHI and RCM+C broth. Alcohol swabs and 

flame from a bunsen burner were used to prevent pure culture contamination. Bacteria were 

also streaked on nutrient agar plates for purity detection and incubated both aerobically and 

anaerobically at 37°C. The GasPak EZ Anaerobe Container System (ref: 260001) was used 

for small batch anaerobic plate incubations (Becton Dickson and Company, Sparks, MD). 

The purity of bacterial cultures was not clear from plate growth indicating the need for DNA 

confirmation. Broth cultures were serially transferred to monitor bacterial growth behavior. 

Bacterial identification. Once tubes reached an OD of 0.1 broth cultures were plated 

on Brucella agar (AnaeroGRO, Hardy Diagnostics, Santa Maria, CA) and incubated for 72 

h at 39°C in an anaerobic chamber. Each bacteria produced a small entire, glistening, 

circular, smooth, grey, and raised colonies. A single colony was picked from each bacterial 

growth plate for DNA extraction to confirm purity and identity. Bacterial DNA extraction 

was achieved by depositing picked colonies in 20 µL of a lysis buffer (0.25%w/v SDS, 50 

mM NaOH) in a 2 mL micro-centrifuge tube. Tubes were set in a heat block at 95°C for 15 

minutes and subsequently centrifuged 14000 × g for 5 minutes.  One hundred eighty µL of 

ddH2O was added to each DNA sample and centrifuged again at 14000 × g for 5 minutes. 

The supernatant (50 µL) was transferred to a sterile micro-centrifuge tube and stored at -

20°C to be used as bacterial DNA template.  

Bacterial DNA was prepared for amplification using the following mixture in a 0.2 

mL PCR tube: 11.5 µL ultrapure H2O, 10 µL of Phusion Master Mix (New England 

Biolabs,), 1.25 µL of forward 8F (5'-AGA GTT TGA TCC TGG CTC AG-3') and 1492R 
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(5'- GGT TAC CTT GTT ACG ACT T-3') universal 16s rRNA primers respectively, and 

1.0 µL of bacterial DNA template. Thermocycler conditions: Denature (98°C for 30 s), 

Annealing and Elongation (98°C for 10 s, 52°C for 30 s, 72°C for 45 s; repeated 27×), 

Elongation (72°C for 10 min). Ladder (6 µL; manufacturer) and PCR product (4 µL mixed 

with 2 µL loading dye) was loaded into the wells of a 1 % agarose gel. Electrophoresis was 

conducted at 95 V for 1.5 h. The PCR product was sent to Eton BioScience for sequencing. 

Bacterial identification was confirmed by homology of the forward and reverse primer 

products with the 16S ribosomal RNA gene of known strains using the NCBI BLASTn suite.  

The DNA isolated from C. aminophilum was 93% identical to the Clostridium 

aminophilum strain F 16S rRNA complete gene sequence (sequence ID: NR_118651.1) with 

96 % query coverage and an e-value of 0. The C. sticklandii was 98% identical to 

Clostridium sticklandii strain DSM 519 16S rRNA complete gene sequence (sequence ID: 

NR_102880.1) with 94 % query coverage and e-value of 0. The P. anaerobius strain was 

shared 98 % identity with the ATCC 27337 strain (NR_118652.1) with 99 % coverage and 

an e-value of 0.  

Bacterial growth. Cultures (100 µL) were transferred to fresh nutrient broth (9ml) 

using alcohol and flame technique and incubated for 48 h at 39°C. Final pH and redox were 

measured at after 48 h of incubation. Growth was measured by light absorbance (OD) at 0, 

2, 4, 6, 12, 24, 27, 30, and 48 h, and plating 10-fold serial dilutions in PBS. Growth 

preferences were compared between BHI and RCM+C by maximum OD and CFU/mL on 

respective nutrient agar.  
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Environmental Samples and Enrichment Cultures 

Six environmental samples were taken from several locations at Texas A&M 

University in College Station, TX: the Animal Science Teaching, Research and Extension 

Center (3), the Beef Cattle Research Unit (2), and the Poultry Science Research, Teaching 

and Extension Center (1). Rumen fluid (RF) was collected from two ruminally cannulated 

British-cross steers (RF1) and orally from two non-cannulated British-cross steers (RF2) 

(IACUC # 2016-0267) into two thermoses by source, respectively. Beef cattle and swine 

lagoon (BSLG) sample (1 L) was obtained from ASTREC with permissions from the 

complex manager. Feedlot pen floor (FDLT) samples (approx. 300 g) were taken from pens 

containing British-cross heifers (n=15) from near the water trough (FDLT1) and the wettest 

area of the pen (FDLT2). Poultry cecal (PC) fluid (50 mL) was donated from the poultry 

science department taken from broiler chickens (~15 birds) from a non-treatment group at 

the time of harvest. 

 Pond water (PW) (500 mL) donated by a local cattle operation from a natural run-

off pond frequented by 5 Red Angus yearling bulls. A dairy cattle lagoon (DLG) sample (3 

L) was donated from a dairy located within 150 miles of College Station, TX. Corn snake 

(SNAKE) feces (~ 60 g) was obtained from a local breeder and the composite of two male 

and two female specimens.  

Environmental samples presented different volumes and viscosity. All samples 

which were primarily liquid (rumen fluid, beef cattle and swine lagoon, dairy cattle lagoon, 

and pond water) were individually mixed on a stir plate for approximately 20 min to elute 

potential phage and a sub-sample volume of 350 mL was saved for filtration. Those samples 

which were primarily solid or of low sample size were diluted with ddH2O into a final 
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volume of 350 mL and individually mixed for 20 min on a stir plate. Samples were then 

placed in a centrifuge at 8000 × g for 20 minutes to separate particulate from the supernatant. 

The supernatant was vacuumed overnight through a 0.22 µm pore filter flask (ref: 431097, 

Corning Filter System, Corning, NY) and a final volume of ~150 mL of filtrate was saved 

at 4°C.  

Enrichment cultures. Broth culture media was concentrated 4 times due to the slow 

growth nature of the bacteria. For all enrichments, 40 mL of 4× media was dispensed into 

150 mL Wheaton screw-cap bottles and sterilized. For each respective bacteria, 100 µL of a 

fresh overnight culture was added to a Wheaton bottle, and 10 mL of each sterile 

environmental sample was added under a flame on the benchtop. Enrichment bottles were 

transferred to the anaerobic chamber and gently swirled un-capped in the anaerobic gas 

atmosphere (90% N2, 5% CO2 and 5% H2). Caps were loosely screwed and set in the 

chamber incubator 37°C and checked at 24 and 48 h for culture growth. Regardless of culture 

clearing, enrichments were centrifuged at 13,000 × g for 5 min and then filtered through a 

0.22 µm pore and stored at 4°C as a potential lysate. 

Bacterial lawns and lysate spotting. Regular strength BHI and RCM+C agar were 

used for bacterial lawn development. Plates were pre-dried in a 37°C incubator over-night 

in the anaerobic chamber. Fresh overnight cultures and the prospective lysate were brought 

to the flame to reduce contamination of pure cultures. Sterilized micro-centrifuge tubes (2 

mL) were labeled, and 900µL of phage buffer (25 mM of 1M Tris-HCl, 100mM NaCl, 8 

mM MgSO4, 0.01% gelatin, 47.5% dH2O) was added for 10-fold dilution of lysate. Molten 

soft-agar (5 mL) was maintained at 50°C in a heat block and cooled in hand before addition 

of 100µL of bacterial stock culture. Inoculated soft-agar was briefly vortexed and spread 
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over designated nutrient agar. Plates, diluted lysate and 1 tube of undiluted lysate and related 

supplies were transferred to the anaerobic chamber and allowed to dry. Once dried, starting 

with the most dilute, lysate (10µL) was spotted on the soft agar at 10-10, 10-8, 10-6, 10-4, 10-

2, and 101. Spots were allowed to dry for approximately 1 h then plates were transferred to 

the chamber incubator for 24 to 48 h.  

 

RESULTS AND DISCUSSION 

Bacterial growth. Growth curves of C. aminophilum, C. sticklandii, and P. 

anaerobius on BHI or RCM+C are presented in Figure 5.1 and based on the most frequently 

observed growth pattern. Figure 5.1a shows that both C. aminophilum and C. sticklandii 

were able to utilize nutrients in BHI broth with doubling times of 9.33 and 3.11 h-1, 

respectively. However, C. sticklandii resulted in greater cell density than C. aminophilum 

(9.2 ×109 vs. 3.4×1010 CFU/mL).  Thus BHI broth and agar was a suitable growth medium 

for C. aminophilum and C. sticklandii, but P. anaerobius showed no apparent growth in 48 

h period.  

Figure 5.1b showed that C. aminophilum grew faster on RCM+C than on BHI (3.08 

vs. 9.33 h-1) and indicated exponential growth sometime between 12 and 24 h. This result is 

similar to that reported in the early cultivation of the bacterium in which it was ultimately 

named for its preference of free amino acids versus peptides, although it could grow on both 

(Paster et al., 1993). Similarly, P. anaerobius experienced exponential growth between 12 

and 24 h after inoculation with a doubling time of 4.74 h-1. Interestingly, C. sticklandii 

showed no apparent growth in RCM+C broth. When determining bacterial density on 

RCM+C agar, it was noticed that a biofilm, appeared on the agar before any visible colony 
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growth being greatest for C. aminophilum. Bacterial numbers were greater than expected for 

C. aminophilum (TNTC at 10-10) and difficult to count due to the viscous extracellular 

substance production. Contrarily, P. anaerobius bacterial numbers were less than expected 

(7.6 ×104 CFU/mL). We noted that P. anaerobius produced a significant viscous 

extracellular substance in broth culture (Figure 5.2) and this could potentially interfere with 

the efficacy of OD measurements causing an over-estimation of bacterial growth. It has also 

been established that P. anaerobius prefers an anaerobic gas mixture similar to that of the 

anaerobic gas chamber and the 100% CO2 headspace of the culture tubes may have been a 

limiting growth factor. However, biofilm formation has been suggested to be in response to 

several stimuli (Jefferson, 2004). Incubation for 48 h did not yield any growth from C. 

sticklandii. It was determined that either BHI or RCM+C could be used for cultivation of C. 

aminophilum. In contrast, the BHI media may be more appropriate for laboratory work with 

C. sticklandii, and P. anaerobius preferred RCM+C. Final pH (Figure 5.3) reveals a marked 

difference between C. aminophilum and C. sticklandii vs. P. anaerobius which was quite 

low and maybe the cause for the excessive frothy substance produced in broth culture. 

There was high variation in lag time among all three bacteria in broth culture and 

agar medium. Lag times were observed to be anywhere from 6 h to 48 h in their preferred 

media, and this made the onset of exponential growth challenging to predict. Age and OD 

of the sub-sampled stock culture were observed to be the primary determinant of lag time in 

broth. The spore-forming bacteria varied greatly when stock-cultures were greater than 48 h 

old. Therefore, growth curves in Figure 5.1 are the results of media inoculated with sub-

samples taken from stock cultures less than 24 h old. It can be expected that all three bacteria 
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will enter exponential growth phase sometime between 12 and 24 h on their respective 

preferred media.  

Heat activation technique. Not being able to predict the onset of early exponential 

growth makes for difficult experimental planning. Moreover, because diminishing nutrient 

in a broth culture may stimulate sporulation pathways, frequent culture transfer is necessary. 

Frequent transfer just to keep cells vegetative is wasteful from laboratory resources 

perspective. In other spore-forming species where the rate of spore germination is of interest, 

heat activation is often used to return spores to a vegetative state. Therefore it was proposed 

that heat-activation of sub-samples taken from cultures > 72 h old may; 1) reduce 

unnecessary supply use and 2) aide in the prediction of exponential phase growth prediction.  

Three different methods in the literature are typically used to induce germination of 

dormant bacterial spores of Clostridial species; 1) heating at 70°C for 30 min, 2) heating at 

75°C for 10 min and 3) heating at 80°C for 10 min. Each of these methods was tested in 

triplicate in double strength BHI broth, and the results are presented in Figure 5.4. It was 

observed that heating C. aminophilum at either 70°C for 30 min or 75°C for 10 min resulted 

in equally predictable OD, but 80°C for 10 min may have resulted in cell death. It is clear 

that by using heat activation, growth will occur reliably between 12 and 24 h. However, this 

method does not improve the lag time for growth. Interestingly heating C. sticklandii at 70°C 

for 30 min significantly reduced lag time and reached stationary phase at approximately 12 

h. This strategy may be recommended for future work with C. sticklandii. Boiling at either 

75°C or 80°C for 10 min resulted in growth between 12 and 24 h, but interestingly the OD 

at 24 h was greater for samples boiled at the higher temperature. The results of the heat 

activation technique indicate that frequent transfer of C. aminophilum and C. sticklandii is 



 

174 

 

not necessary for fresh cultures and that older cultures may be successfully used to reduce 

resource wastage. Additionally, boiling dormant sub-samples of C. sticklandii at 70°C for 

30 min may reduce lag time enabling more rapid progress in the experimental timeline.  

Preparing bacterial lawns. Confluent lawns for C. aminophilum and C. sticklandii 

could be achieved in 24 h at 37°C but was dependent on subsamples being taken when broth 

culture was in an exponential growth phase. All processes could be conducted on the 

benchtop under a flame and were most successful when the soft agar overlay was allowed 

to dry in the anaerobic chamber. However, P. anaerobius failed to form a confluent lawn 

and only resulted in spotty colonies even after 72 h in the anaerobic chamber incubator. This 

could be due to greater O2 sensitivity of the bacterium versus these Clostridium species. A 

study using a strain of P. anaerobius revealed the strains extreme sensitivity to oxygen (90 

% kill rate in 1 h) when growing on the surface of a BHI agar plate or aerated in trypticase 

soy broth (Carlsson et al., 1977; Frölander and Carlsson, 1977). It is likely that during 

vortexing the bacterium in the molten soft agar as well as pouring the agar overlay on the 

benchtop likely resulted in O2 exposure, resulting in significant cell death. All procedures 

and future work with P. anaerobius should likely be performed inside an anaerobic gas 

chamber. The laboratory requirements of this strict anaerobe make it a difficult candidate for 

phage discovery. 

 Although lawns were achievable for C. aminophilum and C. sticklandii, they were 

not always guaranteed. Scattered colonies or no growth on BHI agar were not uncommon 

resulting in lawn failure, even when the OD of broth culture indicated normal concentration 

for exponential growth. Confluent lawn formation success rates were 42.8 and 85.7 % on 

BHI for C. aminophilum and C. sticklandii (n= 21 and 14 attempts respectively), and no 
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growth on RCM+C agar. Possible reasons may be temperature sensitivity to soft agar or 

potential hindrance of the soft agar for bacteria to access growth medium or, as in the case 

of P. anaerobius, the timing of O2 exposure, causing the initiation of sporulation pathway. 

The relative difficulty in reliable lawn formation indicated that original techniques by Felix 

d’Herelle and sequential clearing in broth culture might be more appropriate for these 

bacteria.  

Enrichment of lysates. Results of enrichment cultures are presented in Table 5.1. 

After 24 h, clearing was observed in the C. aminophilum culture inoculated with both RF1, 

RF2 and DLG samples. However, when enrichments were filter sterilized the resulting 

potential phage lysate failed to clear subsequent broth cultures. Several samples resulted in 

the clearing of C. sticklandii including RF1 and RF2, PC, DLG, and PW. Again, the resulting 

lysate was unable to clear subsequent broth cultures, and no plaques were observed on 

bacterial lawns. Only the PC resulted in the clearing of P. anaerobius, but again lysate was 

not able to clear subsequent cultures.  

Reasons for lack of growth of these samples is not definitively known but likely the 

result of chemical substances in the environmental samples. Presence of antimicrobial 

chemicals may cause cell lysis. It has been determined that > 99 % of cultivated bacteria 

produce at least one bacteriocin to inhibit competition, being of the narrow or broad spectrum 

(Riley and Wertz, 2002). Considering that the taxonomic class of Clostridia may occupy 

more than 10 % of the ruminal consortium of beef cattle (Crossland et al., 2017), it is not 

surprising that environmental samples taken in the vicinity of ruminants would result in 

cellular lysis due to the presence of unknown antimicrobial chemicals or compounds. This 

complicates matters, however, when searching for potential phage from these sources. 
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Although our pursuit was not successful in identifying any HAB bacteriophage, the valuable 

groundwork has been established for these bacteria regarding their behavior in the laboratory 

and the complications with environmental sources. 

Implications for Future Works 

 Other bacteria are known for their adverse effects on feed efficiency of cattle that 

may be more suitable candidates for phage control. One bacteria which is both predictable 

and hardy in the laboratory is Fusobacterium necrophorum and is also the primary colonizer 

of ruminant liver abscesses (Nagaraja & Lechtenberg, 2007). Liver abscesses are seen at 

rates between 13.7 and 32% depending on the class of cattle, are known to be linked with 

feed efficiency, reductions in carcass weight and quality (McKeith et al., 2012; Rezac et al., 

2014) and these rates may be increasing (Reinhardt and Hubbert, 2015). This may be due to 

decreased efficacy of current antibiotic feed additives currently used in industry. It is 

unknown how many cattle are affected by liver abscesses because they are asymptomatic 

and abscesses may heal before slaughter. A characteristic that makes this bacterium 

attractive for phage work is that it travels through the bloodstream and localizes itself, rather 

than floating in the vast rumen. The fact that this bacterium affects both the live and terminal 

side of the production chain indicates its importance in animal health and production 

efficiency that would likely make a more significant impact than the elimination of HAB.  

 

CONCLUSION 

Although C. aminophilum, C. sticklandii and P. anaerobius typically exist at low 

relative abundance in the rumen, the amount and rate of NH3 they are capable of producing 

makes them quantitatively important (Russell et al., 2002). Bacteriophages are an appealing 
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biological control weapon against HAB offering selectivity without severely affecting the 

remaining bacterial community. Unfortunately, we do not report the presence of any lytic 

phage for C. aminophilum, C. sticklandii or P. anaerobius from the environmental samples 

tested although the presence of antimicrobial substances was apparent. Even among the most 

well studied Clostridial bacteria, there have been few reports of lytic phage discovery. 

However, temperate phages are well documented and more recent research has determined 

that lytic enzymes of temperate phage can be harvested and applied directly as a means of 

targeted bacterial control (Zimmer et al., 2002; Mayer et al., 2008; Seal, 2013). 

It should be addressed that the three bacteria used in this study are not the only HAB 

in the rumen and others with greater specific activity of NH3 have been detected (Attwood 

et al., 1998). Moreover, it follows that in a mixed culture the likely scenario is that the 

removal of one species simply opens the niche for another to occupy. Phage effectiveness 

depended on many factors and based on previous work highlighting the prevalence of 

ruminal bacterial lysogens (Klieve et al., 1996), in a highly competitive environment such 

as the bovine rumen the odds of successful phage infection do not seem favorable. Although 

the prospect of a self-replicating ‘antibiotic’ is enticing, moving forward, it seems that lytic 

phage enzymes may be a more direct approach in regards to defining suitable options for 

ruminant feed additives to control HAB, whereas phage stock may be more appropriate for 

infectious bacteria which may concentrate in an area. 
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Table 5.1. Results of environmental sample screening for lysate enrichment of three 

hyper-ammonia-producing bacteria of the bovine rumen.  

 Items1 Bacterium2 

  C. aminophilum C. sticklandii P. anaerobius 

Ruminal fluid #1 × × normal 

Ruminal fluid  #2 × × normal 

Poultry Cecal Fluid normal × × 

Beef cattle & Swine lagoon normal normal normal 

Dairy cattle lagoon × × normal 

Pond water normal × normal 

Feedlot pen floor, #1 normal normal normal 

Feedlot pen floor, #2 normal normal normal 

Corn snake fecal matter normal normal normal 

        
1Environmental samples were obtained with permission of authorized personnel or by 

animal use protocol approved by the Texas A&M University’s IACUC committee. Each 

sample was filter sterilized, and 10 mL was added to 40 mL of a 4×concentrated 

bacterial growth media and inoculated with a respective bacterium (100 µL).  
2Bacteria are Clostridium aminophilum (ATCC® 49906), Clostridium sticklandii 

(ATCC® 49905), and Peptostreptococcus anaerobius (ATCC® 27337) (ATCC, 

Manassas, VA). 

An × indicates that at 24 h of incubation culture was clear or showed no growth and 

‘normal’ indicates normal growth of bacteria.  
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Figure 5.1. Comparison of growth curves of three hyper-ammonia-producing bacteria on 

A) Brain Heart Infusion broth and B) Reinforced Clostridial Media + Casamino acids. 

Bacteria are Clostridium aminophilum (ATCC® 49906), Clostridium sticklandii (ATCC® 

49905), and Peptostreptococcus anaerobius (ATCC® 27337) (ATCC, Manassas, VA).
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Figure 5.2. Biofilm formation of Peptostreptococcus anaerobius (ATCC® 27337) (ATCC, 

Manassas, VA) after 24 and 48 h of incubation in Reinforced Clostridial Media + Casamino 

acids broth at 39°C. 
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Figure 5.3. Comparison of media pH and final pH of bacterial broth cultures after 48 h of 

incubation at 39°C. BHI=Brain Heart Infusion broth media, pH = 6.68; RCM+C= 

Reinforced Clostridial Media + Casamino acids, pH=6.89.  
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Figure 5.4. Comparison Clostridium aminophilum (ATCC® 49906) and Clostridium 

sticklandii (ATCC® 49905) growth after heat activation. Inoculum (100µL) was sub-

sampled from cultures older than 72 h and inoculated into fresh media, then boiled at three 

temperatures for differing times.  
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CHAPTER VI 

CONCLUSIONS AND FUTURE OUTLOOK 

In summary, the use of antimicrobial feed additives to promote feed efficiency of 

beef cattle has been utilized for many years as an active management tool. However, 

increased regulation of their use for growth promotion has resulted in revitalized interest in 

alternative products. More research should focus on identifying and characterizing their 

efficacy in different sectors of the beef cattle industry to promote their use appropriately. 

Our studies highlight potential benefits of using ionophores, yeast, or bacteriophages to 

offset the habitual use of antibiotics in cattle production. 

When cattle are fed moderate forage diets monensin reduces acetate to propionate 

ratio more than bambermycin without affecting total volatile fatty acids (VFA) which 

improves ruminal efficiency of nutrient utilization. However, long term feeding of monensin 

shows that there is some degree of microbial adaptation and therefore its feeding strategy 

should be investigated further to optimize its overall use in different feeding scenarios. We 

suggest to investigate the short and long term effects of pulse-feeding monensin on ruminal 

efficiency and animal performance.  

Under thermo-neutral conditions, active dried yeast (ADY) supplemented in the diets 

of finishing steers was found to positively moderate ruminal pH of steers versus those who 

were not supplemented. However, this difference was no longer detected under heat stressed 

conditions. Supplementing ADY increased the energy available for maintenance under 

thermoneutral conditions but was not sufficient to overcome the energetic requirements of 

extreme heat stress. When steers were group fed and transitioned from a grower diet to a 
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finishing diet, we did not find any clear evidence that ruminal pH was stabilized above the 

acidosis thresholds more for ADY- than control-fed steers, likely due to the variation in 

eating patterns in group versus individual feeding. However, the ruminal pH of steers who 

consumed yeast during the dietary transition drifted less than the ruminal pH of control fed 

cattle, which may be considered more stable. Supplementing ADY did not result in any 

significant performance parameters versus control-fed steers. Dose administration of ADY 

and consistency of intake in group feeding scenarios is a challenge that will need to be 

addressed before consistent results will emerge and yeast products may be recommended for 

practical cattle feeding.  

Bacteriophage therapy as a means of ruminal microbial control offer selectivity more 

than any other feed additive. Future work where phage may be used as a feed additive may 

look to high impact bacteria that cause easily measurable losses to truly understand efficacy. 

Ideal candidates are those implicated in ruminal acidosis and liver abscesses, as well as 

respiratory infections which may negatively impact feeding performance and growth 

efficiency. 




