
NON-LINEAR SPATIAL MULTIGRID METHOD FOR NON-LINEAR S2 ACCELERATION

A Thesis

by

JOHN DAVID KLIEWER

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Jim E. Morel
Committee Members, Jean C. Ragusa

Bojan Popov
Head of Department, Yassin A. Hassan

May 2018

Major Subject: Nuclear Engineering

Copyright 2018 John David Kliewer



ABSTRACT

A nonlinear spatial multigrid algorithm was developed and explored as a technique to effi-

ciently solve the nonlinear S2 acceleration equations for SN neutron transport calculations in 1-D

slabs. Acceleration of the basic source iteration process in SN calculations is necessary in prob-

lems with highly diffusive regions. Direct inversion would be a more efficient method in 1-D, but a

multigrid method has the potential to be far more efficient than other techniques in 2-D. This work

is a first step toward a 2-D multigrid algorithm. The computational results show that this scheme

works well for optically-thin cells on the fine mesh, but degrades significantly for optically-thick

cells on the fine mesh.
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NOMENCLATURE

x Position (cm)

xmin Minimum value of x in the problem. (cm)

xmax Maximum value of x in the problem. (cm)

h Cell width. (cm)

σt(x) Macroscopic total cross section (1/cm)

σs(x) Macroscopic scattering cross section (1/cm)

c Scattering ratio

q(x) Independent source
(

neutrons
cm3 s

)
µ Directional cosine

µm Discretized directional cosine

ℓ Multigrid iteration index

ȷ Source iteration index

ψ(µ, x) Angular flux
(

neutrons
biradian cm2 s

)
ψ̃(µm, x) Angular flux (LD approximation)

(
neutrons

biradian cm2 s

)
ϕ±(x) Half-range scalar flux

(
neutrons
cm2 s

)
ϕ̃±(x) Half-range scalar flux (LD approximation)

(
neutrons
cm2 s

)
⟨µ±

i ⟩ µ-average

ϕ(x) Scalar Flux
(

neutrons
cm2 s

)
ϕ̃(x) Scalar Flux (LD approximation)

(
neutrons
cm2 s

)
EAS Exact analytic solution

ICS Iteratively converged solution
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Basic Concepts

Neutron transport is an important area of research in computational physics and is of paramount

importance in applications such as nuclear reactor design and shielding. Scalar flux (ϕ) is of

particular importance for determining neutron interaction rates.

Transport problems do not have analytic solutions in most real-world applications, so the trans-

port analyst must turn to numerical techniques. A solution algorithm is paired with a discretization

scheme and applied to a transport problem (with its physical parameters and boundary conditions).

In this thesis, the spatial discretization scheme is linear-discontinuous (LD) Galerkin, and the an-

gular discretization is in SN discrete ordinates. Successive iterates converge to a discrete solution

defined by the discretization scheme. The approximation to which the iterates converge is termed

the iteratively converged solution (ICS).

1.2 The Boltzmann Equation

Neutron transport can be characterized quantitatively with the Boltzmann equation, which is a

particle balance equation in 7-D phase space.

One generalized version of the Boltzmann equation for neutron transport is[1]

1

v

∂ψ

∂t
+ Ω⃗ · ∇ψ + σt(r⃗, E)ψ(r⃗, E, Ω⃗, t)

=

∫
4π

∫ ∞

0

σs(r⃗, E
′ → E, Ω⃗′ → Ω⃗)ψ(r⃗, E ′, Ω⃗′, t) dE ′ dΩ′

+
χ(E)

4π

∫
4π

∫ ∞

0

ν(E ′)σf (r⃗, E
′)ψ(r⃗, E ′, Ω⃗′, t) dE ′ dΩ′ + q(r⃗, E ′, Ω⃗′, t). (1.1)

The quantities appearing in the Boltzmann equation are described in Table 1.1. The unit vector

Ω⃗ denotes the direction of flight of a neutron in 3-D space. See Fig. 1.1. The polar angle θ has

been defined in reference to the x axis.

1



Symbol Units Name Comments

ψ(r⃗, E, Ω⃗, t) neutrons
cm2 sr eV s

Angular Flux
σt(r⃗, E) 1

cm eV
Total macro-
scopic cross
section

σf (r⃗, E
′) 1

cm eV
Fission macro-
scopic cross
section

σs(r⃗, E
′ → E, Ω⃗′ → Ω⃗) 1

cm sr eV
Scattering macro-
scopic cross sec-
tion

σs dE dΩ represents the macroscopic
cross section for scattering a neutron with
initial energy E ′ and initial direction Ω′

into direction dΩ about Ω⃗ with energy dE
about E.

E eV Neutron energy
v cm

s
Neutron speed Speed is a function of energy

Ω⃗ Neutron direction Unit vector indicating direction of parti-
cle flight

t s Time Point in time (not time interval)
dΩ sr Differential solid

angle
χ(E) 1

eV
Fission spectrum

ν(E) Average number of neutrons released per
fission

q(r⃗, E ′, Ω⃗′, t) neutrons
cm3 sr eV s

Independent
source

Volumetric, flux-independent neutron
source.

Table 1.1: Variables appearing in the Boltzmann Equation (Eqn. 1.1).

Each term in Eqn. 1.1 has a physical meaning. Let

dP = dV dEdΩ, (1.2)

where dP is the differential phase space volume and dV , dE, and dΩ are the differential volume,

energy, and direction, respectively. Because time-dependent behavior is not examined in this thesis,

dt is omitted from Eqn. 1.2.

The expression 1
v
∂ψ
∂t
dP represents the time rate of change of the number of neutrons in dP .

The speed v is a function of E. The meaning of this term becomes more obvious by considering

2
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Figure 1.1: Cartesian coordinate system with direction vector and angles. |Ω⃗| = 1.

the relation between ψ and the neutron density n, n = ψ
v

, where n dP represents the number of

neutrons in dP .

The leakage term Ω⃗ · ∇ψ dP represents the net rate at which neutrons exit dP by crossing

the surface of dV . Consider a volume V0 bounded by a surface S0. Then, by applying Gauss’

Law,
∫
V0
Ω⃗ · ∇ψ dV =

∮
S0
ψΩ⃗ · n⃗ dA, where n⃗ is the unit vector normal to differential surface dA

of surface S0, pointing outside of volume V0. The expression
∮
S0
ψΩ⃗ · n⃗ dA dE dΩ more clearly

represents the net neutron flow out of V0 through S0 in dE about E and dΩ about Ω⃗. However,

since the other terms of Eqn. 1.1 are expressed as volumetric quantities, it is necessary to express

the leakage term as a volume-integrable quantity rather than as a surface-integrable quantity.

The term σtψ dP represents the number of neutrons interacting in dP . Each interaction can

be classified as either an absorption or a scattering event. An absorption removes a neutron from

volume dV . A scattering event changes E and Ω⃗, removing the neutron from the energy range dE ′

about E ′ and the direction range dΩ′ about Ω⃗′.

The inscattering term
[∫

4π

∫∞
0
σsψ dE

′ dΩ′] dP represents the rate at which neutrons are scat-
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tered into dE about E and dΩ about Ω⃗.

The fission source term
[
χ(E)
4π

∫
4π

∫∞
0
νσfψ dE

′dΩ′
]
dP represents the rate at which neutrons

are created in dP by neutron-induced fission. On average, ν neutrons are released per fission. The

inner integral gives the volumetric rate of neutron production from induced fission per steradian.

The outer integral integrates over the unit sphere to compute the volumetric neutron production rate

over all directions. Treating fission as an isotropic phenomenon, the outer integral is divided by 4π

steradians, which is then multiplied by χ(E). The fission spectrum function χ(E) is normalized

so that
∫∞
0
χ(E) dE = 1. The average number of fission neutrons in dE per fission neutron is

χ(E)dE.

The independent source term q dP represents the rate at which neutrons in dP are created in

volume dV about r⃗, independent of ψ.

Equation 1.1 does not account for delayed fission neutrons, but this point is moot since we

consider only subcritical source problems in this thesis. Solving this generalized equation for a

real-world problem is exceedingly difficult.

1.3 The Transport Equation

The transport equation to be solved in this thesis is given by

µ
∂ψ

∂x
(µ, x) + σt(x)ψ(µ, x) =

σs(x)

2
ϕ(x) +

q(x)

2
∀x ∈ [xmin, xmax] and µ ∈ [−1, 1]. (1.3)

The meanings of quantities given in Eqn. 1.3 are given in Table 1.2.

1.3.1 Convention for ψ with 1-D Angular Component

Up to this point, ψ has been expressed in terms of solid angle, as the foregoing discussion was

for the Boltzmann equation in three spatial dimensions. In transitioning to 1-D space, ψ can also be

expressed in terms of another parameter, µ, analogous to polar angle θ. To visualize the meaning

of µ, one can think of a right circular cone, with the apex on the x axis, which is collinear with the

axis of the cone. For a given µ, θ = arccosµ, where θ is the angle between the lateral surface and

axis of the cone. See Fig. 1.2.
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Symbol Units Name Comments
ψ(µ, x) neutrons

cm2 biradian s
Angular Flux

σt(x)
1
cm

Total macroscopic cross sec-
tion

σs(x)
1
cm

Scattering macroscopic cross
section

µ biradian Neutron direction µ = cos θ
q(x) neutrons

cm3 s
Independent source Volumetric, flux-independent

neutron source.

Table 1.2: Variables appearing in the 1-D transport equation (Eqn. 1.3).

In the 1-D transport equation (Eqn. 1.3), ψ is dependent upon θ via µ but independent of

azimuth angle.

The unit sphere is the set of all possible endpoints for Ω⃗. Accordingly, dΩ = dA. In Fig. 1.3,

the differential area dΩ forms a “ribbon” of circumference 2π sin θ and width dθ, so that

dΩ = (2π sin θ)dθ. (1.4)

If µ = cos θ, then dµ
dθ

= sin θ, and

dΩ = 2π(sin θ)dθ

= 2π
dµ

dθ
dθ

= 2πdµ. (1.5)

For a unit circle, ∫
4π

dΩ = 2π

∫ 1

−1

dµ = 4π steradians, (1.6)

as one would expect. The key concept here is that dΩ = constant · dµ. Seeing that dΩ
dµ

is constant

over the entire range of solid angle, one can elect to express ψ in units for µ rather than for Ω⃗.

Since the full span of µ is 2, µ is essentially a “per hemisphere” unit of solid angle. The term

biradian is herein used to refer to this “per hemisphere” unit for µ.
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Figure 1.2: Directional cone for µ = cos θ.

Hence, rather than expressing scalar flux ϕ as

ϕ =

∫
4π

ψ dΩ = 2π

∫ 1

−1

ψ dµ (ψ expressed using steradians), (1.7)

the following relation is used to compute ϕ from ψ:

ϕ =

∫ 1

−1

ψ dµ (ψ expressed using biradians). (1.8)

1.3.2 Transport Equation Assumptions

The following simplifying assumptions are made:

1. Spatial variable is 1-D.

2. Problem is steady-state (independent of time).

3. No neutron multiplication (fission).

4. No energy dependence. This is can be thought of as a single energy group problem, but our
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Figure 1.3: Unit sphere and µ.

method can be applied to the energy-dependent case via the multigroup method.[2] For the

sake of brevity, we will not further discuss this.

5. Scattering is isotropic in the lab frame. Our method can easily accommodate anisotropic

scattering[3], but for the sake of brevity, we will not discuss this further.

Boundary conditions in the spatial domain are vacuum, prescribed source, or specularly reflec-

tive. Source conditions are

ψ(µ, xmin) = ψL,in(µ) ∀µ ∈ (0, 1] (1.9)

for the left boundary and

ψ(µ, xmax) = ψR,in(µ) ∀µ ∈ [−1, 0) (1.10)

for the right boundary. Vacuum conditions for each boundary are set by setting the respective

source conditions to zero. Reflective conditions are given by

ψ(µ, xmin) = ψ(−µ, xmin) ∀µ ∈ (0, 1] (1.11)
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for the left boundary and

ψ(µ, xmax) = ψ(−µ, xmax) ∀µ ∈ [−1, 0) (1.12)

for the right boundary.

1.4 Source Iteration

Source iteration (SI) is the simplest numerical solution technique for transport problems which

is guaranteed to converge in non-multiplying problems in which σs < σt, or σs ≤ σt if the problem

is spatially bounded.[3]

Consider Eqn. 1.3 in a more concise form:

µ
∂ψ

∂x
+ σtψ =

σs
2
ϕ+

q

2
. (1.13)

The abstract operator form of transport equation Eqn. 1.13 is given by

Lψ = Sψ + q︸ ︷︷ ︸
Source Term Q

, (1.14)

where transport operator

L = µ
∂

∂x
+ σt (1.15)

and scattering operator

S =
1

2

∫ 1

−1

σs(·) dµ′. (1.16)

For the purpose of enumerating source iterations, let ȷ begin at ȷ = 0. In operator form, source

iteration is expressed as

Lψ(ȷ+1) = Sψ(ȷ) +
q

2
. (1.17)
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Applied to the transport equation (Eqn. 1.13), the source iteration equation becomes

µ
∂ψ(ȷ+1)

∂x
+ σtψ

(ȷ+1) =
σs
2
ϕ(ȷ) +

q

2
. (1.18)

The index ȷ denotes the approximation from the ȷ-th generation, where the index ȷ = 0 in ϕ(0)

represents the initial guess for ϕ. Eqn. 1.18 is used to solve for ψ(ȷ+1). The approximation for ϕ is

updated by computing ϕ(ȷ+1) =
∫ 1

−1
ψ(ȷ+1) dµ. If consecutive source iterations are to be performed,

ȷ is incremented by one, and the updated ϕ(ȷ) is then substituted into Eqn. 1.18 to solve for the next

iterate for ψ, ψ(ȷ+1). This process is repeated until the solution for ψ is deemed to be sufficiently

converged.

1.4.1 Physical Meaning of Source Iterations

Consider Eqn. 1.17. Assuming a zero initial guess, ψ(0) ≡ 0, there is no scattering in the first

iteration (ȷ = 0). Thus, the solution ψ(1) for the initial iteration must be uncollided flux, with

contributions from the independent source q and source boundary conditions only. The second

iteration takes ψ(1) as the input for the scattering source. There is still uncollided flux because of q

and/or the boundary source. However, now there is the contribution of scattered flux, all of which

was produced in the first iteration and so has been scattered once. The solution ψ(2) of the second

iteration is composed exclusively of uncollided and once-scattered flux. The solution ψ(3) for the

third iteration includes a scattered-flux component from the ψ(2) from the previous iteration, thus

incrementing the maximum possible number of scattering events for a given neutron by one, for at

most two scattering events. Thus, it is seen that, starting from a zero guess, any neutron in ψ(ȷ) has

been scattered at most ȷ− 1 times.

The relationship between iteration count and maximum possible number of scattering inter-

actions for any particle provides qualitative insight into why SI is slow to converge for c → 1

in optically-thick media. In evaluating ψ(ȷ), the S term can vary, while the q term is constant.

Therefore, in an infinite medium, any change between ψ(ȷ−1) and ψ(ȷ) is effected only by the S

term. The component of the flux which survives into the next generation/iteration ψ(ȷ) is cψ(ȷ−1).
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By extension, the component of flux from past generation ı surviving into current generation ȷ is

cȷ−ıψ(ı). It is readily apparent that past iteration components of ψ(ȷ) quickly die out for small c but

have an increasing propensity to linger as c→ 1, which inhibits convergence.

Slowly converging problems present two challenges. First, SI becomes inefficient for these

problems, and it becomes desirable to apply techniques to accelerate their convergence. Another,

more subtle issue is that slow convergence complicates the test for convergence.

1.5 Spatial Discretization Scheme

An LD Galerkin spatial discretization scheme is used to test the acceleration technique. The LD

Galerkin scheme is piecewise linear-discontinuous and exhibits better stability than the diamond

scheme. Within cell i, the spatial discretization scheme for ψm is linear-discontinuous, defined by

a linear combination of two trial space functions,

ψ̃m,i(x) =
xi,R − x

hi
ψm,i,L +

x− xi,L
hi

ψm,i,R, (1.19)

where ψm,i,L and ψm,i,R are the parameters which define the LD solution ψ̃m in cell i, x = xi,L at

the left cell i edge, x = xi,R at the right cell i edge, and hi = xi,R − xi,L is the width of cell i.

Allowing ψ̃ to be discontinuous at cell edges requires a method of assigning values of the

solution on the edges. Here, upwinding is applied to resolve this ambiguity. That is, for a given µ,

the incoming flux (the flux on the edge) is taken to be the flux just inside the edge of the cell from

which the flux is about to flow across the edge. For cell i:

ψ̃m(xi,L) = ψm,i−1,R ∀µm > 0 (1.20)

ψ̃m(xi,L) = ψm,i,L ∀µm < 0 (1.21)

ψ̃m(xi,R) = ψm,i,R ∀µm > 0 (1.22)

ψ̃m(xi,R) = ψm,i+1,L ∀µm < 0 (1.23)
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For µ > 0, the edge flux is taken from the ψR in the left cell. For µ < 0, the edge flux is

taken from the ψL in the right cell. Upwinding applies to ϕ̃+ (µ > 0) and ϕ̃− (µ < 0) as well. See

Figs. 1.4 and 1.5.

xi−1/2 x xi+3/2i+1/2Cell i Cell i+1

Direction of Flow

µ>0

Figure 1.4: LD upwinding for ψ with µ > 0 and ϕ+.

xi−1/2 x xi+3/2i+1/2Cell i Cell i+1

µ<0
Direction of Flow

Figure 1.5: LD upwinding for ψ with µ < 0 and ϕ−.

Spatial moment equations are formed to solve for ψ̃m. In addition to the trial space defined

in Eqn. 1.19, the notion of a complementary weight space comes into play here. For a particular

cell in a particular grid, the weight space is spanned by the weight functions given in Eqns. 1.24

and 1.25. As is evident from comparing Eqns. 1.24 and 1.25 with Eqn. 1.19, these are the basis

functions on the trial space on the finest grid as well. Unlike the weight space, the trial space does

not retain this form on coarser grids.

11



The two cell-wise spatial moment equations for ψ̃m are formed by first substituting ψ̃m,i(x)

from Eqn. 1.19 for ψ(ȷ+1)
m , the constant cell-wise values for σt and σs, and the cell-wise linear

function q(x) into Eqn. 1.33. The resulting equation is then multiplied by a weight function and

integrated over the cell width hi. The weight functions used in this analysis and depicted in Fig. 1.6,

are

Wi,L(x) =
xi,R − x

hi
, x ∈ [xi,L, xi,R] (1.24)

and

Wi,R(x) =
x− xi,L
hi

, x ∈ [xi,L, xi,R]. (1.25)

x
i+1/2

x
i−1/2

x
i

x
i+1/2

x
i−1/2

x
i

0

1

0

1

L
W W

R

Figure 1.6: Weight functions on cell i.

In order to account for upwinding, for each basis function, two different versions of the moment

equation are derived, one in which µm > 0 and one in which µm < 0.

1.5.1 SN Moment Equations for µm > 0

For weight function WL

µm
2

(
ψ

(ȷ+1)
m,i,L + ψ

(ȷ+1)
m,i,R

)
+
σt,ihi
2

(
2

3
ψ

(ȷ+1)
m,i,L +

1

3
ψ

(ȷ+1)
m,i,R

)
=
σs,ihi
2

(
1

3
ϕ
(ȷ)
i,L +

1

6
ϕ
(ȷ)
i,R

)
+
hi
2

(
1

3
qi,L +

1

6
qi,R

)
+ µmψ

(ȷ+1)
m,i−1,R. (1.26)
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For weight function WR

µm
2

(
ψ

(ȷ+1)
m,i,R − ψ

(ȷ+1)
m,i,L

)
+
σt,ihi
2

(
1

3
ψ

(ȷ+1)
m,i,L +

2

3
ψ

(ȷ+1)
m,i,R

)
=
σs,ihi
2

(
1

6
ϕ
(ȷ)
i,L +

1

3
ϕ
(ȷ)
i,R

)
+
hi
2

(
1

6
qi,L +

1

3
qi,R

)
. (1.27)

1.5.2 SN Moment Equations for µm < 0

For weight function WL

µm
2

(
ψ

(ȷ+1)
m,i,R − ψ

(ȷ+1)
m,i,L

)
+
σt,ihi
2

(
2

3
ψ

(ȷ+1)
m,i,L +

1

3
ψ

(ȷ+1)
m,i,R

)
=
σs,ihi
2

(
1

3
ϕ
(ȷ)
i,L +

1

6
ϕ
(ȷ)
i,R

)
+
hi
2

(
1

3
qi,L +

1

6
qi,R

)
. (1.28)

For weight function WR

−µm
2

(
ψ

(ȷ+1)
m,i,L + ψ

(ȷ+1)
m,i,R

)
+
σt,ihi
2

(
1

3
ψ

(ȷ+1)
m,i,L +

2

3
ψ

(ȷ+1)
m,i,R

)
=
σs,ihi
2

(
1

6
ϕ
(ȷ)
i,L +

1

3
ϕ
(ȷ)
i,R

)
+
hi
2

(
1

6
qi,L +

1

3
qi,R

)
− µmψ

(ȷ+1)
m,i+1,L. (1.29)

A complete derivation of the SN moment equations is given in Appendix A.

1.6 Source Iteration on SN Moment Equations

For each sweep in µm > 0, Eqns. 1.26 and 1.27 are solved as 2 × 2 system, sequentially by

cell, starting at the left end. In cell i, this system of two equations is solved for ψ(ȷ+1)
m,i,L and ψ(ȷ+1)

m,i,R.

For the first cell of a sweep in µm, the inflow ψ
(ȷ+1)
m,i−1,R is taken from the left boundary condition. In

each other cell i, the inflow ψ
(ȷ+1)
m,i−1,R is the right-edge ψm value from the just-solved previous cell.

Sweeps for µm < 0 are performed in a manner similar to that of µm > 0. However, this

sweep starts at the right end of the problem. For the first cell of a sweep in the negative direction,

the inflow ψ
(ȷ+1)
m,i+1,L is taken from the right boundary condition. In keeping with the upwinding

convention, the inflow into each cell i thereafter, ψ(ȷ+1)
m,i+1,L, is the left-edge ψm value from the
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just-solved previous cell.

If a reflective boundary condition exists on the right boundary, the µm > 0 half-sweep is

executed first. If a reflective boundary condition exists on the left boundary, the µm < 0 half-

sweep is executed first.

1.7 Angular Discretization Scheme

The SN angular discretization scheme utilizes some quadrature scheme in the angular domain.

The Gauss N -point quadrature formula is used in this thesis, where N is an even, positive integer.

Exact for all polynomials of degree 2N − 1 or less, it is the most accurate quadrature scheme

available. The points µm are chosen for integration over the range µ ∈ [−1, 1], where µm < 0 for

m ≤ N/2 and µm > 0 for m > N/2. Integration is performed over direction:

ϕEAS =

∫ 1

−1

ψEAS dµ ≈
N∑
m=1

ψ(µm)wm, (1.30)

where wm represents the weight at quadrature point µm.

The symbol ψEAS represents the solution of the analytic problem Eqn. 1.3, known here as the

exact analytic solution (EAS). If ψ includes subscripts or superscripts, it represents a parameter of

the discretized solution for a given µ except when given explicitly as a function of x as in ψL,in(x).

The same convention applies to ϕ.

To form the SN equation, Eqn. 1.3 is discretized in angle:

µ
∂ψ

∂x
(µm, x) + σt(x)ψ(µm, x) =

σs(x)

2
ϕ(x) +

q(x)

2
, (1.31)

where µm is the m-th Gauss quadrature point. We reexpress Eqn. 1.31 in a more concise form:

µm
dψm
dx

+ σtψm =
σs
2
ϕ+

q

2
, (1.32)

where ψm = ψ(µm, x).
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Applying the source iteration indices to the SN equations, we get

µm
dψ

(ȷ+1)
m

dx
+ σtψ

(ȷ+1)
m =

σs
2
ϕ(ȷ) +

q

2
. (1.33)

As previously noted, the SN equations are solved using source iteration. The convergence of source

iteration can also be accelerated. Acceleration is discussed in the next two sections.

1.8 Acceleration of Source Iterations

Source iteration alone is not viable for real-world problems in which c → 1. For such slow-

converging problems, acceleration becomes necessary. A variety of acceleration techniques have

been developed to address this need.

Research into rapidly convergent methods for SN problems has taken two overall paths. The

first is the linear acceleration path. The other is the nonlinear acceleration path.

The S2 acceleration scheme explored in this thesis lies on the nonlinear acceleration path. One

scheme in widespread use is linear Diffusion Synthetic Acceleration (DSA), or linear Diffusion

Preconditioning. Recalling Eqn. 1.18 and modifying the indices to indicate an accelerated scheme,

the 1-D transport equation for DSA is

µ
∂ψ(ℓ+ 1

2
)

∂x
(µ, x) + σtψ

(ℓ+ 1
2
)(µ, x) =

σs
2
ϕ(ℓ)(x) +

q(x)

2
. (1.34)

The other DSA equations are

ϕ(ℓ+ 1
2
)(x) =

∫ 1

−1

ψ(ℓ+ 1
2
)(µ, x)du, (1.35)

− 1

3σt

d2F (ℓ+1)

dx2
(x) + σaF

(ℓ+1)(x) = σs

(
ϕ(ℓ+ 1

2
)(x)− ϕ(ℓ)(x)

)
, (1.36)

ϕ(ℓ+1)(x) = ϕ(ℓ+ 1
2
)(x) + F (ℓ+1)(x). (1.37)

These four equations are applied in sequence to compute ψ(ℓ+ 1
2
)(µ, x), ϕ(ℓ+ 1

2
)(x), F (ℓ+1)(x), and

ϕ(ℓ+1)(x), respectively. The function F (ℓ+1)(x) is an estimate of the error of ϕ(ℓ+1)(x) with respect
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to the exact solution ϕ(x). Equation 1.36 is the diffusion approximation in terms of F . The

value in this approach is that it strongly attenuates modes of small Fourier eigenvalues, i.e. the

modes which vary slowly in x. The lower error modes happen to be the modes for which SI

exhibits poor convergence in for c→ 1. Furthermore, the spectral radius for DSA is approximately

0.2247c. SI attenuates the higher modes quite effectively. Therefore, the combination of SI and

diffusion approximation of the error utilized in DSA effectively attenuates error modes over the

full Fourier spectrum, resulting in much accelerated convergence in otherwise slowly-converging

SI problems.[3]

1.9 Nonlinear S2 Acceleration

To derive the nonlinear S2 transport equations, Eqn. 1.3 is integrated over µ ∈ [0, 1] and µ ∈

[−1, 0]. For positive µ, the S2 transport equation is

∫ 1

0

[
µ
∂ψ

∂x
+ σtψ

]
dµ =

∫ 1

0

[σs
2
ϕ+

q

2

]
dµ. (1.38)

Next, split up and factor the integrals:

d

dx

∫ 1

0

µψ dµ+ σt

∫ 1

0

ψ dµ =
[σs
2
ϕ+

q

2

] ∫ 1

0

dµ. (1.39)

Equation 1.3 must hold at each quadrature point µm. By solving for each corresponding ψm =

ψ(µm, x), the resulting angular discretization of ψ can be used to compute the S2, or half-range,

scalar fluxes ϕ+ and ϕ−, where

ϕ+ =

∫ 1

0

ψdµ ≈
N∑

m=N/2+1

ψmwm (1.40)

and

ϕ− =

∫ 0

−1

ψdµ ≈
N/2∑
m=1

ψmwm. (1.41)

As is apparent from Eqns. 1.40 and 1.41, ϕ++ϕ− =
∫ 1

−1
ψdµ. Comparing with Eqn. 1.8, the scalar
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flux ϕ can be expressed as

ϕ = ϕ+ + ϕ−. (1.42)

The ⟨µ+(x)⟩ parameter, essentially a ψ-weighted average of µ over µ ∈ [0, 1], is defined by

⟨µ+(x)⟩ =
∫ 1

0
µψ(µ, x) dµ∫ 1

0
ψ(µ, x) dµ

. (1.43)

Substituting Eqns. 1.40 and 1.43 into Eqn. 1.39, we obtain the nonlinear S2 transport equation for

the positive direction:

d

dx

[
⟨µ+⟩ϕ+

]
+ σtϕ

+ =
σs
2
ϕ+

q

2
. (1.44)

Inserting the iteration indices into Eqns. 1.3, 1.43, and 1.44, we obtain the iteration equations

for the acceleration scheme in positive µ:

µ
∂ψ(ℓ+ 1

2
)

∂x
(µ, x) + σtψ

(ℓ+ 1
2
)(µ, x) =

σs
2
ϕ(ℓ)(x) +

q(x)

2
, (1.45)

⟨µ+(x)⟩(ℓ+
1
2
) =

∫ 1

0
µψ(ℓ+ 1

2
)(µ, x) dµ∫ 1

0
ψ(ℓ+ 1

2
)(µ, x) dµ

, (1.46)

d

dx

[
⟨µ+⟩(ℓ+1)ϕ+,(ℓ+1)

]
+ σtϕ

+,(ℓ+1) =
σs
2
ϕ(ℓ+ 1

2
) +

q

2
. (1.47)

Likewise, for negative µ we obtain the the acceleration scheme iteration equations:

µ
∂ψ(ℓ+ 1

2
)

∂x
(µ, x) + σtψ

(ℓ+ 1
2
)(µ, x) =

σs
2
ϕ(ℓ)(x) +

q(x)

2
, (1.48)

⟨µ−(x)⟩(ℓ+
1
2
) =

∫ 0

−1
µψ(ℓ+ 1

2
)(µ, x) dµ∫ 0

−1
ψ(ℓ+ 1

2
)(µ, x) dµ

, (1.49)
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d

dx

[
⟨µ−⟩(ℓ+1)ϕ−,(ℓ+1)

]
+ σtϕ

−,(ℓ+1) =
σs
2
ϕ(ℓ) +

q

2
. (1.50)

Adding the values obtained for ϕ+,(ℓ+1) and ϕ−,(ℓ+1) in Eqns. 1.47 and 1.50, respectively, the new

scalar flux solution ϕ(ℓ+1) is obtained.

ϕ(ℓ+1) = ϕ+,(ℓ+1) + ϕ−,(ℓ+1) (1.51)

Equations 1.47 and 1.50 are solved using the multigrid method described in Chapter 3. The un-

compensated relative error is given by Eqn. 1.53.

The problem to be solved is in two independent variables, directional cosine µ and 1-D spatial

position x. We undertake to accelerate iterations in x only. For the SN part of the cycle, a source

iteration is taken over each µm, where µm is the m-th quadrature point in a Gauss quadrature

set (with even order). The SN sweep serves to update ⟨µ⟩ in x. It is the solution for ϕ that is

accelerated in the multigrid S2 portion of the cycle, which takes ⟨µ⟩ in x from the SN sweep as

input. The ϕ±,(ℓ+1) S2 iterate resulting from the multigrid stage is then used on the right-hand side

of Eqn. 1.18 for the next SN sweep.

1.10 Convergence Test

Save for special cases such as pure-absorber material, the solution does not converge to the ICS

in the trial space in a finite number of source iterations. Therefore, there must be a test condition to

determine whether the solution after the ℓ-th iterate is “close enough” to the ICS. Ideally, this would

involve taking a suitable norm of the error function, such as ∥ϕ − ϕ(ℓ)∥L∞ . However, ϕEAS is not

generally known, which necessitates a numerical solution in the first place. Therefore, a typical test

is to measure the error between the two most recent iterates and compare to a prescribed threshold

value, as in

∥ϕ(ℓ) − ϕ(ℓ−1)∥L∞ < ϵ, ϵ > 0. (1.52)
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In this thesis, an uncompensated relative error metric

E
(ℓ)
rel,ucomp = sup

x∈[0,xmax]

|ϕ(ℓ) − ϕ(ℓ−1)|
|ϕ(ℓ)|

< ϵ, ϵ > 0, (1.53)

is utilized to keep the convergence test independent of the magnitude scale of ϕ̃.

This test condition is adequate for highly absorbent materials but must be modified in order to

be useful in highly diffusive problems, in which c → 1−. This is intimately related to the slow

convergence for c → 1− problems described in Section 1.4.1. Adams and Larsen explain why

using Eqn. 1.52 or Eqn. 1.53 without corrective modifications leads to false convergence.[3]
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2. ACCELERATED SN SOLUTION ALGORITHM

2.1 Outline

1. Form the SN SI equations.

2. Make an initial guess for ϕ̃.

3. Perform SN SI on the finest grid for each µm.

4. Use the values for ⟨µ+⟩ and ⟨µ−⟩ from the SN SI to form the equations for S2 SI on the finest

grid.

5. Solve S2 nonlinear equation by multigrid method (see Chapter 3).

2.2 Discretization of Nonlinear S2 Equation

Whereas for SN the task is to solve for each ψm, in S2 we solve for the half-range scalar fluxes

ϕ+ and ϕ−. First, the S2 equations on the finest grid are constructed from the SN equations. We

must integrate Eqn. 1.31 over µ > 0 and µ < 0 and insert the integration indices. The was done

previously to arrive at Eqn. 1.47 and Eqn. 1.50.

Similar to Eqn. 1.19, the discretization of ϕ+ and ϕ− in cell i of width hi is given by

ϕ̃±
m,i(x) =

xi,R − x

hi
ϕ±
m,i,L +

x− xi,L
hi

ϕ±
m,i,R, (2.1)

where ϕ±
m,i,L and ϕ±

m,i,R are the parameters which define the LD solution ϕ̃m in cell i.

To obtain the S2 moment equations, ϕ+
m,i(x) is substituted into Eqn. 1.47, which is then mul-

tiplied by each of the two weight functions, WL from Eqn. 1.24 and WR from Eqn. 1.25, and

integrated over the cell width. The resulting S2 moment equations for ϕ+ are, for weight function
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WL,

1

2

(
⟨µ+

i,L⟩
(ℓ+ 1

2
)ϕ

+,(ȷ+1)
i,L + ⟨µ+

i,R⟩
(ℓ+ 1

2
)ϕ

+,(ȷ+1)
i,R

)
+
σt,ihi
2

(
2

3
ϕ
+,(ȷ+1)
i,L +

1

3
ϕ
+,(ȷ+1)
i,R

)
=
σs,ihi
2

(
1

3
ϕ
(ȷ)
i,L +

1

6
ϕ
(ȷ)
i,R

)
+
hi
2

(
1

3
qi,L +

1

6
qi,R

)
+ ⟨µ+

i−1,R⟩
(ℓ+ 1

2
)ϕ

+,(ȷ+1)
i−1,R , (2.2)

and for weight function WR,

1

2

(
⟨µ+

i,R⟩
(ℓ+ 1

2
)ϕ

+,(ȷ+1)
i,R − ⟨µ+

i,L⟩
(ℓ+ 1

2
)ϕ

+,(ȷ+1)
i,L

)
+
σt,ihi
2

(
1

3
ϕ
+,(ȷ+1)
i,L +

2

3
ϕ
+,(ȷ+1)
i,R

)
=
σs,ihi
2

(
1

6
ϕ
(ȷ)
i,L +

1

3
ϕ
(ȷ)
i,R

)
+
hi
2

(
1

6
qi,L +

1

3
qi,R

)
. (2.3)

The S2 moment equations for ϕ− are obtained in a similar fashion from Eqn. 1.50. Substituting

ϕ̃−
m,i(x) for ϕ−, the resulting S2 moment equations for ϕ− are, for weight function WL,

1

2

(
⟨µ−

i,R⟩
(ℓ+ 1

2
)ϕ

−,(ȷ+1)
i,R − ⟨µ−

i,L⟩
(ℓ+ 1

2
)ϕ

−,(ȷ+1)
i,L

)
+
σt,ihi
2

(
2

3
ϕ
−,(ȷ+1)
i,L +

1

3
ϕ
−,(ȷ+1)
i,R

)
=
σs,ihi
2

(
1

3
ϕ
(ȷ)
i,L +

1

6
ϕ
(ȷ)
i,R

)
+
hi
2

(
1

3
qi,L +

1

6
qi,R

)
, (2.4)

and for weight function WR,

−1

2

(
⟨µ−

i,L⟩
(ℓ+ 1

2
)ϕ

−,(ȷ+1)
i,L + ⟨µ−

i,R⟩
(ℓ+ 1

2
)ϕ

−,(ȷ+1)
i,R

)
+
σt,ihi
2

(
1

3
ϕ
−,(ȷ+1)
i,L +

2

3
ϕ
−,(ȷ+1)
i,R

)
=
σs,ihi
2

(
1

6
ϕ
(ȷ)
i,L +

1

3
ϕ
(ȷ)
i,R

)
+
hi
2

(
1

6
qi,L +

1

3
qi,R

)
− ⟨µ−

i+1,L⟩
(ℓ+ 1

2
)ϕ

−,(ȷ+1)
i+1,L . (2.5)

Equations 2.2-2.5 give the system of S2 equations on the finest grid only. The process for obtaining

the S2 moment equations on coarser grids is described in Section 3.2.

Several remarks are in order. First, we consider ϕ+. In the discretized moment equations for

ϕ̃+ (Eqns. 2.2 and 2.3), the two unknowns, ϕ+,(ȷ+1)
i,L and ϕ+,(ȷ+1)

i,R , occur on the left-hand-side. ϕ+,(ȷ)
i,L

and ϕ+,(ȷ)
i,R are known from the preceding SI, or from the initial guess for ȷ = 0. The inflow flux

ϕ
+,(ȷ+1)
i−1,R is known either from the preceding solve on the upwind cell from iteration ȷ + 1 or from
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the left boundary condition (cell 1). All ⟨µ⟩ values have been computed from the most recent SN

transport sweep. All other parameters are known from the problem definition. Similar remarks

apply to ϕ− in Eqns. 2.4 and 2.5, except that the inflow flux for cell i is ϕ−,(ȷ+1)
i+1,L and taken from the

right boundary condition for the rightmost cell.

The first S2 sweep following the most recent SN sweep is on the finest grid, taking initial guess

ϕ±,(0) from that SN sweep. This S2 sweep marks the beginning of the acceleration portion of the

SN cycle.
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3. MULTIGRID METHOD FOR S2 EQUATIONS

3.1 Multigrid Algorithm Outline

Our multigrid algorithm consists of two phases: a descent phase moving from coarse to fine

grids, and an ascent phase moving from fine to coarse grids.

Descent Phase Perform sweep on current grid, update scalar fluxes, and project solution onto next

coarse grid.

Ascent Phase Interpolate solution on current grid onto next fine grid.

The multigrid algorithm begins on the finest grid with the descent phase and continues until the

coarsest grid is reached. A direct matrix inversion of the coarsest-grid S2 equations is performed.

Then, the ascent phase is begun and continues until the finest grid is reached. This completes one

multigrid iteration. The first sweep on the finest grid is performed with the latest SN scalar flux

iterate.

3.2 Descending Between Grids

This section describes the finer-to-coarser grid transition. Cell enumeration starts with cell 1

on the left end. The cells of the finer grid are divided into adjacent pairs, so that, for odd i, cells

i and i + 1 on the finer grid are combined into cell (i + 1)/2 on the coarser grid. This coarsening

reduces the number of unknowns by half. Specifically, eight LD parameters (four in each fine cell)

must be reduced to four LD parameters in the coarse cell.

Because ϕ̃ is a weighted sum of the angular LD representations ψ̃ for each µm, ϕ̃ is also in the

LD form. However, this holds only for the finest grid. Projection of the S2 moment equations onto

a lower grid does not preserve the LD scheme on the coarse grid.

In descending one grid level to perform a subsequent SI, or, for the coarsest grid, a matrix

solve, several objectives must be met:
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1. Combine the moment equations of the left fine cell with the moment equations of the right

fine cell to form the four moment equations in the combined coarse cell.

2. Eliminate the interior LD parameters, which are the four LD parameters at the edge between

the left and right fine cells.

3. Provide for a means to reconstitute the LD parameters in Step 2 from the coarse-grid LD

parameters during grid ascent.

h
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h
R

h
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h
R

W
CL

W
LL

k
L
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R
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W
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1

0

1

0

Figure 3.1: Coarse-cell weight functions can be represented in terms of the fine cell weight func-
tions. Note that kL = hR/hC and kR = hL/hC .

Weight Function W (x) Description
WLL WL in left fine cell
WLR WR in left fine cell
WRL WL in right fine cell
WRR WR in right fine cell
WCL WL in coarse cell
WCR WR in coarse cell

Table 3.1: Weight functions for one coarse cell and its two constituent fine cells from the finer grid.
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3.2.1 Forming Coarser Grid Moment Equations

The S2 moment equations for coarse cell (i + 1)/2 are derived from the moment equations

for left fine cell i and right fine cell i + 1. Each weight function defined in Table 3.1 equals zero

outside of the cell for which it is defined. The maximum value of each weight function equals

unity within the cell for which that weight function is defined. As shown in Fig. 3.1, the coarse

cell width hC is the sum of the left cell width hL and the right cell width hR. Since each of the six

weight functions shown is linear in space, each of the coarse-cell weight functions WCL and WCR

can be represented as a linear combination of three of the four fine-cell weight functions. By visual

inspection, it is apparent that WCL = kLWRL in the right cell and WCR = kRWLR in the left cell.

Also, the sum of two linear functions must be a linear function. Visual inspection reveals that WLL

and kLWLR sum to WCL at the edges of the left cell. Hence, WCL = WLL + kLWLR + kLWRL.

Likewise, WCR = WRR + kRWRL + kRWLR.

Since WCL is a linear function, its value at the common edge of the left and right cells must be

kL = hR/hC . Similarly, the value of WCR at the common edge of the left and right cells must be

kR = hL/hC . The coarse-cell weight functions can thus be represented as the superposition of the

fine weight functions.

WCL(x) = WLL(x) +
hR
hC

(WLR(x) +WRL(x)) (3.1)

WRL(x) = WRR(x) +
hL
hC

(WLR(x) +WRL(x)) (3.2)

Equations 3.1 and 3.2 are key to obtaining the S2 moment equations for the coarse cell from the S2

moment equations for the fine cells.

Given that each moment Eqns. 2.2-2.5 holds over the left and right cells, each also holds over

the coarse cell. For the purpose of consolidation, we treat the pair of fine cells as one system of

eight fine-cell moment equations in eight unknowns described by

L8×8ϕ⃗8 = S8×8ϕ⃗8 + q⃗8. (3.3)
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Each row gives the coefficients of one fine-cell moment equation. The row ordering convention

used here is defined in Table 3.2.

Row Fine Cell Moment Integrand
Weight Function ϕ̃ Operand

1 Left WLL ϕ+

2 Left WLR ϕ+

3 Left WLL ϕ−

4 Left WLR ϕ−

5 Right WRL ϕ+

6 Right WRR ϕ+

7 Right WRL ϕ−

8 Right WRR ϕ−

Table 3.2: Row order.

3.2.2 Row Reduction

Let us consider the W (x) = WCL moment equations for ϕ+ and ϕ−. Given the form Lϕ± =

Sϕ± + q and the fact that the moments on the cell are taken using

∫
h

W (x)Lϕ± dx =

∫
h

W (x)(Sϕ± + q) dx (3.4)

the coarse cell moment with WCL(x) can be expressed in terms of the fine cell moments by substi-

tuting the representation of WCL(x) given in Eqn. 3.1 for W (x) in Eqn. 3.4:

∫
hC

[
WLL +

hR
hC

(WLR +WRL)

]
Lϕ± dx =

∫
hC

[
WLL +

hR
hC

(WLR +WRL)

]
(Sϕ± + q) dx.

(3.5)
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Separating the terms in Eqn. 3.5 so that each integral contains only one fine-cell W (x),

∫
hC

WLLLϕ
± dx︸ ︷︷ ︸

WLL moment LHS

+
hR
hC

∫
hC

WLRLϕ
± dx︸ ︷︷ ︸

WLR moment LHS

+
hR
hC

∫
hC

WRLLϕ
± dx︸ ︷︷ ︸

WRL moment LHS

=

∫
hC

WLL(Sϕ
± + q) dx︸ ︷︷ ︸

WLL moment RHS

+
hR
hC

∫
hC

WLR(Sϕ
± + q) dx︸ ︷︷ ︸

WLR moment RHS

+
hR
hC

∫
hC

WRL(Sϕ
± + q) dx︸ ︷︷ ︸

WRL moment RHS

. (3.6)

Because WLL = 0 and WLR = 0 outside of the left fine cell, their integration intervals can be

shortened to the x spanned by hL. Likewise, WRL = 0 outside the right fine cell, so its integration

interval can be shortened to the x spanned by hR. Thus, Eqn. 3.5 can be expressed as a linear

combination of these three fine-cell moment equations:

∫
hL

WLLLϕ
± dx =

∫
hL

WLL(Sϕ
± + q) dx (3.7)

∫
hL

WLRLϕ
± dx =

∫
hL

WLR(Sϕ
± + q) dx (3.8)

∫
hR

WRLLϕ
± dx =

∫
hR

WRL(Sϕ
± + q) dx (3.9)

For the following discussion, let F represent either matrix L8×8 or S8×8. For ϕ+, Eqns. 3.7-3.9

correspond to rows 1, 2, and 5, respectively, in F (see Table 3.2). Let C4×8 represent the 4 × 8

system of moment equations over the coarse cell, using the row order described for rows 1-4 in

Table 3.2. For notational convenience, let (M)Rn be a vector representing row n of matrix M.

Rows 1 and 3 of C4×8 are given by the linear combination described in Eqn. 3.6:

(C4×8)R1 = (F)R1 +
hR

hL + hR
((F)R2 + (F)R5) (3.10)
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for WCL-weighted ϕ̃+, and

(C4×8)R3 = (F)R3 +
hR

hL + hR
((F)R4 + (F)R7) (3.11)

for WCL-weighted ϕ̃−.

By substituting WCR for W (x) as was done for WCL in Eqn. 3.5 and repeating the ensuing

derivation, it is found that

(C4×8)R2 = (F)R6 +
hL

hL + hR
((F)R2 + (F)R5) (3.12)

for WCR-weighted ϕ̃+ and

(C4×8)R4 = (F)R8 +
hL

hL + hR
((F)R4 + (F)R7) (3.13)

for WCR-weighted ϕ̃−.

This row-reduction scheme applies to L8×8, S8×8, and q⃗8, to get L4×8, S4×8, and q⃗4, respec-

tively.

3.2.3 Column Reduction

The following convention is used here to characterize the LD parameters for ϕ̃ in two fine cells

to be combined in the coarse cell. For the fine cells, ϕ̃ is characterized by the parameters ϕSCP ,

where C (cell) is “L” to denote the left cell and “R” to denote the right cell, P (position) is “L” for

the left ϕ̃ parameter and “R” for the right ϕ̃ LD parameter in the fine cell, and S is the sign for the

direction: “+” for µ > 0 and “−” for µ < 0. For the coarse cell, LD parameters for ϕ̃ are denoted

by ϕSP , using the definitions for P and S from above.

Row reduction leaves us with a 4× 8 system, but we need a 4× 4 system to solve in the coarse

cell. Not only are there four equations and eight variables for the coarse cell, but the variables

represent LD parameters of the fine cells, not the coarse cell. As indicated in Eqns. 3.14-3.17,

LD parameters from the outer edges of the fine cells are used to initialize the corresponding LD
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parameters in the coarse cell.

ϕ+
L = ϕ+

LL (3.14)

ϕ+
R = ϕ+

RR (3.15)

ϕ−
L = ϕ−

LL (3.16)

ϕ−
R = ϕ−

RR (3.17)

The LD ϕ̃ parameters for the finer-grid cells are said to be projected onto the coarser-grid cells.

The columns representing the inner-edge fine-cell LD parameters can be eliminated by linearly

combining them with columns representing the outer-edge fine-cell LD parameters. Here, this is

achieved with the relations in Eqns. 3.18-3.21 for the γ parameters. The γ parameters are stored

for interpolation of the inner-edge LD parameters from the outer-edge LD parameters passed from

the coarser grid during the grid ascent stage.

γ+L =
2ϕ+

LR

ϕ+
LL + ϕ+

RR

(3.18)

γ+R =
2ϕ+

RL

ϕ+
LL + ϕ+

RR

(3.19)

γ−L =
2ϕ−

LR

ϕ−
LL + ϕ−

RR

(3.20)

γ−R =
2ϕ−

RL

ϕ−
LL + ϕ−

RR

(3.21)

Consider an LD function ψ̃ of x. Such a function is depicted in Fig. 3.2 for two fine-grid

cells i and i + 1 and one coarse-grid cell. In transitioning from the fine grid to the coarse grid,

γ values are computed for each of ψi,R and ψi+1,L. The γ values then represent multiplication

factors relating each interior LD parameter to ψi+ 1
2
,A. Stated more explicitly, ψi,R = γi,R ψi+ 1

2
,A

and ψi+1,L = γi+1,L ψi+ 1
2
,A.

29



x
i

x
i+1/2

x
i+3/2

x
i−1/2

ψ
i,L

ψ
i,R

ψ
i+1,L

ψ
i+1,R

ψ
i+1/2,A

x
i

x
i+1/2

x
i+3/2

x
i−1/2

ψ
i,L

ψ
i+1,R

ψ
i+1,L

ψ
i,R

ψ
i+1/2,A

x
i+1

x
i+1

After Coarse−Grid Update

Before Coarse−Grid Update

Figure 3.2: Graphical representation of the flux profile ψ̃ before and after the update of LD pa-
rameters ψi,L and ψi+1,R on the coarse grid. Here, ψi+ 1

2
,A is the average value of the outer LD

parameters. The γ factors for ψi+1,L and ψi,R remain unchanged before and after the coarse-grid
update. In this particular depiction, ψ̃ is linear within each fine cell, which is true only on the finest
grid. If the fine grid is not the finest, ψ̃ would be piecewise linear discontinuous within each fine
cell.
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Let (M)Cm be a vector representation of columnm of matrix M. Then, using the column order

as defined in Table 3.3, C4×8 is transformed to C4×4 as follows.

(C4×4)C1 = (C4×8)C1 +
γ−L
2
(C4×8)C2 +

γ−R
2
(C4×8)C5︸ ︷︷ ︸ (3.22)

(C4×4)C2 = (C4×8)C6 +

︷ ︸︸ ︷
γ−L
2
(C4×8)C2 +

γ−R
2
(C4×8)C5 (3.23)

(C4×4)C3 = (C4×8)C3 +
γ+L
2
(C4×8)C4 +

γ+R
2
(C4×8)C7︸ ︷︷ ︸ (3.24)

(C4×4)C4 = (C4×8)C8 +

︷ ︸︸ ︷
γ+L
2
(C4×8)C4 +

γ+R
2
(C4×8)C7 (3.25)

The horizontal braces have been added to emphasize the commonality of terms in each pair of

equations. This column-reduction scheme applies to each matrix L4×8 and S4×8 to get L4×4 and

S4×4, respectively.

Column Fine Cell ϕ̃ LD Variable
1 Left ϕ−

i,L

2 Left ϕ−
i,R

3 Left ϕ+
i,L

4 Left ϕ+
i,R

5 Right ϕ−
i+1,L

6 Right ϕ−
i+1,R

7 Right ϕ+
i+1,L

8 Right ϕ+
i+1,R

Table 3.3: Column order.

3.2.4 Updating the Solution on the Coarser Grid

Having obtained a 4 × 4 system for the coarser grid cell, the next step is to update the ϕ̃± LD

parameters on the coarser grid. If the coarsest grid specified for the problem is the current grid,
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a global matrix solve is performed to update ϕ̃, and the grid ascent begins. Otherwise, one S2

sweep is performed on the grid according to Eqns. 2.2-2.5, and another descent step is performed

as described in Section 3.2.

3.3 Ascending Between Grids

This section describes the coarser-grid-to-finer-grid transition. During the ascent stage of the

V-cycle, we make one or more transitions from a finer grid to a coarser grid. We must be able to

produce 8 LD parameters for two fine cells from one coarse cell. The updated parameters ϕ+
LL,

ϕ+
RR, ϕ−

LL, and ϕ−
RR, on the fine grid are mapped from the coarse-grid parameters according to

Eqns. 3.14-3.17. The parameters ϕ+
LR, ϕ+

RL, ϕ−
LR, and ϕ−

RL are interpolated using the relations

given in Eqns. 3.18-3.21 with γ parameters stored during the most recent grid descent relating

the current finer and coarser grids. This process of grid ascent continues until the finest grid is

populated with the updated ϕ± LD parameters.

Returning to Fig. 3.2, the ascent between grids can be visualized in terms of the updated coarse-

grid LD parameters and the γ values stored during the descent. In Fig. 3.2, the outer LD parameters,

and therefore ψi+ 1
2
,A, have been updated. By recalling the γ values and multiplying each by ψi+ 1

2
,A,

the updated ψi,R and ψi+1,L are constructed from the updated value for ψi+ 1
2
,A and the γ values.

Thus, the updated ψi,R and ψi+1,L remain in the same ratio to ψi+ 1
2
,A as during the descent.

Also of note, each of the γ values is obtained by dividing the corresponding ϕ̃ LD parameter at

the inside edge by the average of the ϕ̃ LD parameters at the outside edges for the given direction.

Consequently, if the fine cells are small enough that the exact solution is well-approximated within

each cell by a linear function, the γ parameters should be close to unity.
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3.4 Convergence Test in S2

After the updated ϕ± LD parameters have been obtained for the finest grid, ϕ+,(ℓ) and ϕ−,(ℓ)

are added to obtain ϕ(ℓ). The new iterate ϕ(ℓ) is compared with the previous iterate as indicated in

Eqn. 1.53. To avoid false convergence, it must be multiplied by a correction factor based on the

spectral radius ρ. Since one cannot rely on the availability of an exact solution, ρ itself must be

estimated from the ϕ̃ iterates. The spectral radius ρ at iterate ℓ can be estimated by

ρ(ℓ) =
∥ϕ(ℓ) − ϕ(ℓ−1)∥L2

∥ϕ(ℓ−1) − ϕ(ℓ−2)∥L2

. (3.26)

Three iterates of ϕ̃ are required to compute ρ(ℓ). Therefore, a minimum of three SN cycles must be

completed in order to determine convergence.

The compensated relative error is given as

E
(ℓ)
rel =

1

1− ρ(ℓ)
sup

x∈[0,xmax]

|ϕ(ℓ) − ϕ(ℓ−1)|
|ϕ(ℓ)|

< ϵ, ϵ > 0. (3.27)

3.5 Negativities

Negativities in both the SN ψ iterates and the S2 ϕ iterates were observed during testing of

this scheme. Lumping is one way to mitigate the occurrence of negativities. The fine-to-coarse

projection scheme would need to be redefined to preserve lumping. This is an avenue to pursue in

further work.
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4. RESULTS

To test the multigrid algorithm and the associated Fourier analysis method, both were imple-

mented in Python 3.5. In addition to core Python, the code used Python libraries NumPy, SciPy,

and matplotlib. Results are presented for a multitude of problem input sets intended to uncover any

weaknesses in the algorithm or flaws in the implementation.

Several checks are made in the implementation code to flag anomalous results.

• Test of negativity in the SN ψ̃ iterate.

• Test of negativity in the S2 ϕ̃
± iterate at multiple points in the multigrid algorithm.

• Test of negativity in each scalar flux iterate ϕ̃ at the end of each SN cycle.

• Fine grid S2 matrix solve to compare against the multigrid-accelerated S2 converged solution

within each SN cycle.

• Particle balance check in each region.

4.1 Constant-Solution S2 with Fourier Convergence Analysis

One of the most important tasks in this thesis is characterization of the spectral radius of our

multigrid method. A Fourier analysis method, detailed in Appendix C, was used to estimate the

spectral radius for our multigrid method applied to the linear S2 equations (µ = ± 1√
3
). This

analysis assumes an infinite, periodic mesh, with a repeating structure consisting of two cells. The

multigrid method analyzed was restricted to two grids: a fine grid and a coarse grid.

We performed accelerated SN calculations to provide spectral radii for comparison with the

theoretical spectral radii. Rather than accelerating higher-order SN calculations, we accelerated

S2 calculations to ensure that the multigrid method would be applied to the linear S2 acceleration

equations. These calculations were performed in two cells with boundary conditions and an inter-

nal source that yielded a constant solution. The Fourier-computed spectral radii are compared to
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the spectral radii estimated from the multigrid runs in Table 4.1. The iterations were terminated

when the scalar fluxes were converged to a tolerance of 10−8.

c Cell V-Cycles Spectral Radius
Width Following Estimated Fourier
(MFP) First SN

Sweep
0.9 0.1 6 0.04 0.04
0.9 1 18 0.36 0.38
0.9 5 72 0.78 0.80

0.99 0.1 7 0.05 0.05
0.99 1 21 0.40 0.42
0.99 5 143 0.87 0.89

0.999 0.1 7 0.05 0.05
0.999 1 21 0.38 0.43
0.999 5 168 0.89 0.90

0.9999 0.1 7 0.05 0.05
0.9999 1 21 0.37 0.43
0.9999 5 173 0.89 0.91

Table 4.1: Run characteristics of homogeneous S2 scenarios with theoretical Fourier spectral ra-
dius. Here, c is the ratio σs/σt. “Cell Width” is the width of each fine cell expressed in mean free
paths. “V-Cycles Following First SN Sweep” is the number of V-cycles needed to converge the S2

solution to the problem defined by the average µ, or ⟨µ⟩, parameters from the initial SN sweep.
“Spectral Radius: Estimated” refers to the spectral radius computed in the last three V-cycles in the
series of V-cycles following the initial SN sweep. “Spectral Radius: Fourier” refers to the spectral
radius computed from Fourier analysis.

These data points show good agreement between the experimentally-computed and Fourier-

computed spectral radii in each test scenario. The Fourier spectral radius is consistently higher

than the experimental spectral radius. This is to be expected, as the Fourier technique models the

problem as having infinite dimensions. Another factor contributing to the difference between the

measured and theoretical spectral radii is the possible iterative convergence of the fine grid solution

before iterative convergence of the spectral radius.
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4.2 Homogeneous S8

To test the algorithm for SN problems with N > 2, several problems were run with ho-

mogeneous material composition, vacuum boundary conditions, and a constant internal source

q = 1 neutron
cm3 s

. Within these parameters, three different categories of test scenarios, as described in

Table 4.2, were tested, each with varying c values and number of grids. All runs for the scenarios

were performed to a tolerance of 10−5.

Cell Cell Problem Grid Count to Reach
Width (MFP) Count Thickness (MFP) Single Coarse Grid

0.1 128 12.8 8
1 16 16 5
5 16 80 5

Table 4.2: Homogeneous S8 test scenario categories. Test scenarios were run with these three cell-
width values. Here, the fine-grid cell count “Cell Count” and “Problem Thickness” in mean free
paths is given. “Grid Count to Reach Single Coarse Grid” refers to the total number of grid levels
in a V-cycle needed to get a single-cell coarsest grid.

Test scenarios for each category in Table 4.2 were run with a multitude of c values and number

of grid levels. In particular, pairs of scenarios differing only in number of grid levels were run. A

“Grids” value of 2 represents the minimum number of grids required for multigrid acceleration.

A “Grids” value greater than 2 is the constraint on the maximum number of grids imposed by the

fine cell count, leaving a single cell on the coarsest grid. Results for these test scenarios are given

in Table 4.3. As expected, higher c values require more V-cycles to converge. Also, scenarios run

with higher grid counts have higher spectral radii than equivalent scenarios in two grids. Notably,

the spectral radii exhibit the same trend as seen in Table 4.1 in that using thin fine-grid cells gives

good acceleration, whereas using thick fine-grid cells gives poor acceleration.
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Cell c Grids Total Total V-Cycles Estimated
Width SN V-Cycles Following S2

(MFP) Sweeps First SN Spectral
Sweep Radius

0.1 0.9 2 5 17 5 0.05
0.1 0.9 8 5 25 9 0.25
0.1 0.99 2 6 20 5 0.06
0.1 0.99 8 6 51 17 0.47
0.1 0.999 2 6 20 5 0.06
0.1 0.999 8 6 57 18 0.50
0.1 0.9999 2 7 23 5 0.06
0.1 0.9999 8 9 58 19 0.51

1 0.9 2 5 26 10 0.40
1 0.9 5 5 38 17 0.53
1 0.99 2 7 48 14 0.46
1 0.99 5 7 104 39 0.75
1 0.999 2 8 59 14 0.47
1 0.999 5 7 122 45 0.77
1 0.9999 2 8 59 14 0.47
1 0.9999 5 8 134 46 0.78
5 0.9 2 5 93 42 0.80
5 0.9 5 5 95 41 0.80
5 0.99 2 7 290 83 0.89
5 0.99 5 6 572 177 0.95
5 0.999 2 10 577 92 0.92
5 0.999 5 9 2496 694 0.99
5 0.9999 2 13 1181 106 0.92
5 0.9999 5 11 4351 941 0.99

Table 4.3: Run characteristics of homogeneous S8 scenarios. “Grids” refers to the the number of
grid levels for each run. “Total SN Sweeps” refers to the number of accelerated SN iterations.
“Total V-Cycles” denotes the total number of V-cycles performed on each run. “Estimated S2

Spectral Radius” refers to the spectral radius computed in the last three V-cycles in the series of
V-cycles following the initial SN sweep. The other columns are as defined in Table 4.1.
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The scenarios with more than two grids were also run with S2 sweeps disabled on all grids but

the finest, retaining the other components of the multigrid algorithm. The purpose of these runs

was to explore the effect of descent-stage coarse-grid sweeps on acceleration. See Table 4.4. In

comparing Table 4.3 and Table 4.4, equivalent runs require approximately three to five times as

many V-cycles without coarse-grid sweeps to achieve the same convergence as with the sweeps.

These results affirm that coarse-grid sweeps are indeed worth the cost.

Cell c Grids Total Total V-Cycles Estimated
Width SN V-Cycles Following S2

(MFP) Sweeps First SN Spectral
Sweep Radius

0.1 0.9 8 5 103 50 0.81
0.1 0.99 8 6 260 99 0.89
0.1 0.999 8 6 311 110 0.90
0.1 0.9999 8 6 317 112 0.90

1 0.9 5 5 101 58 0.84
1 0.99 5 7 321 139 0.92
1 0.999 5 7 388 162 0.93
1 0.9999 5 8 398 165 0.93
5 0.9 5 5 168 75 0.89
5 0.99 5 7 2013 713 0.99
5 0.999 5 10 9019 2562 1.00
5 0.9999 5 12 16215 3466 1.00

Table 4.4: Run characteristics of homogeneous S8 scenarios with multigrid-accelerated S2 solu-
tion, sweeping on the finest grid only. The columns are as defined in Table 4.3.
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In order to determine how well the scheme accelerates the SN solution, the scenarios were

rerun using SN SI only. See Table 4.5. The acceleration does indeed work, as the number of SN

sweeps required to achieve convergence drops by about two orders of magnitude with acceleration.

Cell Width c Total SN Sweeps
(MFP) SI Only SI Plus S2 Acceleration

0.1 0.9 97 5
0.1 0.99 445 6
0.1 0.999 681 6

1 0.9 102 5
1 0.99 558 7
1 0.999 986 8
5 0.9 111 5
5 0.99 1111 7
5 0.999 7742 10

Table 4.5: Run characteristics of homogeneous S8 scenarios with finest-grid SN sweeps only.
“Total SN Sweeps: SI Only” gives the number of SN sweeps required to converge the SN solution
without acceleration. “Total SN Sweeps: SI Plus S2 Acceleration” gives the number of SN sweeps
required to converge the SN solution with S2 acceleration, reproduced here from Table 4.3 for
comparison.
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4.3 Modified Reed Problem

A problem proposed by Reed[4] was adapted to test the scheme in a problem with high ma-

terial contrast. This modified Reed problem contains pure-absorber, vacuum, and pure-scattering

regions. The input parameters for this 1-D, S8 problem are described in Table 4.6. The left bound-

ary is reflective, and the right boundary is a vacuum. The problem described here differs from the

Reed problem in that c = 0.9 has been changed to c = 1 in regions 4 and 5. All runs for the

modified Reed problem scenarios were performed to a tolerance of 10−7.

Regions
1 2 3 4 5

Width (cm) 2 1 2 1 2
σt (cm

−1) 50 5 0 1 1
c 0 0 0 1 1
q (neutrons cm−3 s−1) 50 0 0 1 0

Table 4.6: Modified Reed problem: material properties by region.

Data from runs to solve the modified Reed problem are shown in Table 4.7 for a multitude

of grid level counts. The comments in Section 4.2 on Table 4.3 about the “Grids” column apply

here as well. Interestingly, unlike in the homogeneous S8 problem, in the modified Reed problem

there is little to no change in the accelerated S2 spectral radius using two grids versus a higher

grid count. As in the homogeneous S8 problem, there is a penalty in number of V-cycles for using

the maximum number of grids rather than two grids. This penalty is more modest overall for the

modified Reed problem.

As was done in Section 4.2, the scenarios in Table 4.7 with more than two grids were rerun with

S2 sweeps disabled on all grids except the finest for the purpose of exploring the effect of descent-

stage coarse-grid sweeps on acceleration. See Table 4.8. Here again, the coarse-grid sweeps play

an important role in the acceleration scheme.

To determine the effectiveness of the non-linear S2 acceleration of SN iterations, it is necessary
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Cell Grids Total Total V-Cycles Estimated
Count SN V-Cycles Following S2

Sweeps First SN Spectral
Sweep Radius

16 2 12 98 27 0.55
16 5 12 103 26 0.55

128 2 9 50 20 0.51
128 8 9 59 19 0.51

1024 2 9 37 13 0.50
1024 11 9 44 13 0.50

Table 4.7: Run characteristics of modified Reed problem with acceleration.

Cell Grids Total Total V-Cycles Estimated
Count SN V-Cycles Following S2

Sweeps First SN Spectral
Sweep Radius

16 5 11 166 51 0.73
128 8 9 148 51 0.73

1024 11 9 147 49 0.68

Table 4.8: Run characteristics of modified Reed problem with multigrid-accelerated S2 solution,
sweeping on the finest grid only.

to compare the metrics of accelerated solves to unaccelerated solves. This comparison is made in

Table 4.9. As in the homogeneous S8 problem, the acceleration scheme can work quite well in

reducing the number SN sweeps needed to converge the SN solution.

Figure 4.1 is a plot of the solution for scalar flux with thin cells.
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Cell Count Total SN Sweeps
SI Only SI Plus S2 Acceleration

16 111 12
128 111 9

1024 111 9

Table 4.9: Run characteristics of modified Reed problem with finest-grid SN sweeps only. “Total
SN Sweeps: SI Only” gives the number of SN sweeps required to converge the SN solution without
acceleration. “Total SN Sweeps: SI Plus S2 Acceleration” gives the number of SN sweeps required
to converge the SN solution with S2 acceleration, reproduced here from Table 4.7 for comparison.

Figure 4.1: Computed scalar flux of modified Reed problem with 1024 fine cells and 11 grids. As
enumerated in Table 4.6, the regions are numbered from left (Region 1) to right (Region 5).
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5. CONCLUSION

The nonlinear S2 acceleration scheme works best with optically-thin cells on the finest mesh

and reasonably well with finest-mesh cells one mean free path thick. However, the scheme exhibits

diminished acceleration for optically-thick cells on the finest mesh. The runs for the modified Reed

problem suggest that the scheme is also effective for problems with high spatial contrast in material

properties.

Comparing Tables 4.5 and 4.3, it is evident that multigrid S2 provides considerable acceleration

of the SN problem for fine-grid cells up to about one mean-free-path thick. Having observed

multiple cases in which the multigrid algorithm appreciably accelerates the S2 solution, several

cases tested with multigrid were tested again using multigrid with the modification that no S2

source iterations were performed on coarse grids during descent. The purpose was to evaluate

the importance of coarse-grid source iterations to the effectiveness of the multigrid algorithm.

Comparing the homogeneous S8 run results in Tables 4.4 and 4.3 and the modified Reed run results

in Tables 4.8 and 4.7, it is seen that coarse-grid sweeps do indeed improve convergence of the

solution. If descending to a single-cell coarsest grid, the total number of cells in the coarse grids

is one less than the number of cells in the finest grid. So, within each V-cycle, sweeping on all the

coarse grids should be about the same amount of work as sweeping the finest grid. In comparing

the tables mentioned above, it is found that, except for one case, more than twice the number of V-

cycles is required for each scenario if solved without the coarse-grid sweeps. These results indicate

that coarse-grid sweeps do improve convergence, particularly for problems with optically-thin cells

on the finest mesh.

The Fourier analysis undertaken for S2 constant-solution cases yielded spectral radii which

agree nicely with the test case runs. For each case, the Fourier spectral radius was somewhat

greater than the values exhibited by the S2 acceleration scheme. The difference was modest, with

the case with the greatest disparity showing the empirical spectral radius to be 13% less than the

Fourier spectral radius.
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5.1 Future Work

The first item of interest in future work is to investigate the efficacy of lumped LD in eliminat-

ing negativities while not affecting convergence too adversely. Furthermore, lumped LD requires

redefinition of the projection scheme. Presently, the results are not adequate to justify further work

in 2-D. The degradation with cell thickness is a serious deficiency for many but not all applications.
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APPENDIX A

SN MOMENT EQUATIONS

The angle-discretized transport equation Eqn. 1.33 is the starting point for the ensuing SN LD

moment equation derivations.

A.1 Moment Equation for µ > 0 and B = BL

First, multiply Eqn. 1.33 by BL (defined in Eqn. 1.24), substitute ψ̃m,i(x) from Eqn. 1.19, and

integrate over cell width hi.

∫
hi

µmBL(x)
dψ̃m,i
dx

(x) dx+

∫
hi

σt,iBL(x)ψ̃m,i(x) dx

=

∫
hi

BL(x)
σs,i
2
ϕ̃i(x) dx+

∫
hi

BL(x)
qi(x)

2
dx (A.1)

µm

∫
hi

BL(x)
dψ̃m,i
dx

(x) dx+ σt,i

∫
hi

BL(x)ψ̃m,i(x) dx

=
σs,i
2

∫
hi

BL(x)ϕ̃i(x) dx+
1

2

∫
hi

BL(x)qi(x) dx (A.2)

Apply integration by parts to the integral in the first LHS term.

∫
hi

BL(x)
dψ̃m,i
dx

(x) dx =
[
BL(x)ψ̃m,i(x)

]x
i+1

2

x
i− 1

2

−
∫ x

i+1
2

x
i− 1

2

dBL

dx
(x)ψ̃m,i(x) dx (A.3)

Substituting the expressions for BL and ψ̃m,i into Eqn. A.3, the boundary term evaluates to

[
xi+ 1

2
− x

hi

(
xi+ 1

2
− x

hi
ψm(xi− 1

2
) +

x− xi− 1
2

hi
ψm(xi+ 1

2
)

)]x
i+1

2

x
i− 1

2

= −ψm(xi− 1
2
). (A.4)
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Substituting the LD parameters dictated by the upwinding convention, the boundary term becomes

[
xi+ 1

2
− x

hi

(
xi+ 1

2
− x

hi
ψm,i−1,R +

x− xi− 1
2

hi
ψm,i,R

)]x
i+1

2

x
i− 1

2

= −ψm,i−1,R. (A.5)

The RHS integral of Eqn. A.3 becomes

−
∫ x

i+1
2

x
i− 1

2

− 1

hi

(
xi+ 1

2
− x

hi
ψm,i,L +

x− xi− 1
2

hi
ψm,i,R

)
dx

=
1

h2i

ψm,i,L ∫ x
i+1

2

x
i− 1

2

(xi+ 1
2
− x) dx+ ψm,i,R

∫ x
i+1

2

x
i− 1

2

(x− xi− 1
2
) dx


=

1

h2i

(
−ψm,i,L

2

[
(xi+ 1

2
− x)2

]x
i+1

2

x
i− 1

2

+
ψm,i,R
2

[
(x− xi− 1

2
)2
]x

i+1
2

x
i− 1

2

)
=

ψm,i,L
2

+
ψm,i,R
2

. (A.6)

Substituting the foregoing results into the first LHS term of Eqn. A.2, it becomes

− µmψm,i−1,R +
µm
2
(ψm,i,L + ψm,i,R). (A.7)

Next, we evaluate the second LHS term of Eqn. A.2, by substituting the expressions for BL(x)

and ψ̃m,i(x).

σt,i

∫
hi

BL(x)ψ̃m,i(x) dx

= σt,i

∫
hi

xi+ 1
2
− x

hi

(
xi+ 1

2
− x

hi
ψm,i,L +

x− xi− 1
2

hi
ψm,i,R

)
dx

=
σt,i
h2i

ψm,i,L
∫
hi

(xi+ 1
2
− x)2 dx︸ ︷︷ ︸

Integral A

+ψm,i,R

∫
hi

(xi+ 1
2
− x)(x− xi− 1

2
) dx︸ ︷︷ ︸

Integral B

 (A.8)
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The evaluation of Integral A is straightforward.

∫
hi

(xi+ 1
2
− x)2 dx = −1

3

[
(xi+ 1

2
− x)3

]x
i+1

2

x
i− 1

2

=
h3i
3

(A.9)

An integration-by-parts approach is taken for Integral B.

∫
hi

(xi+ 1
2
− x)︸ ︷︷ ︸ (x− xi− 1

2
)︸ ︷︷ ︸ dx

=

[
(xi+ 1

2
− x)

(x− xi− 1
2
)2

2

]x
i+1

2

x
i− 1

2

−
∫
hi

−
(x− xi− 1

2
)2

2
dx

=
1

2

[
(xi+ 1

2
− x)(x− xi− 1

2
)2
]x

i+1
2

x
i− 1

2

+
1

6

[
(x− xi− 1

2
)3
]x

i+1
2

x
i− 1

2

=
h3i
6

(A.10)

Substituting the results from Eqn. A.9 and Eqn. A.10 into Eqn. A.8, the second LHS term of

Eqn. A.2 evaluates to
σt,ihi
2

(
2

3
ψm,i,L +

1

3
ψm,i,R

)
. (A.11)

To evaluate the first RHS term of Eqn. A.2, substitute the BL and the LD representation of ϕ.

Since the integral is identical in form to the integral in the second LHS term of Eqn. A.2, that result

can be applied to this term also.

σs,i
2

∫
hi

BL(x)ϕ̃(x) dx

=
σs,i
2

∫
hi

xi+ 1
2
− x

hi

(
xi+ 1

2
− x

hi
ϕi,L +

x− xi− 1
2

hi
ϕi,R

)
dx

=
σs,ihi
2

(
1

3
ϕi,L +

1

6
ϕi,R

)
(A.12)
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The second RHS term of Eqn. A.2 is evaluated in a similar fashion.

1

2

∫
hi

BL(x)qi(x) dx

=
1

2

∫
hi

xi+ 1
2
− x

hi

(
xi+ 1

2
− x

hi
qi,L +

x− xi− 1
2

hi
qi,R

)
dx

=
hi
2

(
1

3
qi,L +

1

6
qi,R

)
(A.13)

Substituting each of the terms in Eqn. A.1 with their evaluated expressions in Eqn. A.7, Eqn. A.11,

Eqn. A.12, and Eqn. A.13, the resulting moment equation is

−µmψm,i−1,R +
µm
2
(ψm,i,L + ψm,i,R) +

σt,ihi
2

(
2

3
ψm,i,L +

1

3
ψm,i,R

)
=

σs,ihi
2

(
1

3
ϕi,L +

1

6
ϕi,R

)
+
hi
2

(
1

3
qi,L +

1

6
qi,R

)
. (A.14)

By inserting the iteration indices and moving the first term to the RHS, we arrive at the SI form in

Eqn. 1.26 in which both unknowns are on the LHS.

A.2 Moment Equation for µ > 0 and B = BR

Multiply Eqn. 1.33 by BR (defined in Eqn. 1.25), substitute ψ̃m,i(x) from Eqn. 1.19, and inte-

grate over cell width hi.

∫
hi

µmBR(x)
dψ̃m,i
dx

(x) dx+

∫
hi

σt,iBR(x)ψ̃m,i(x) dx

=

∫
hi

BR(x)
σs,i
2
ϕ̃i(x) dx+

∫
hi

BR(x)
qi(x)

2
dx (A.15)

µm

∫
hi

BR(x)
dψ̃m,i
dx

(x) dx+ σt,i

∫
hi

BR(x)ψ̃m,i(x) dx

=
σs,i
2

∫
hi

BR(x)ϕ̃i(x) dx+
1

2

∫
hi

BR(x)qi(x) dx (A.16)

49



Apply integration by parts to the integral in the first LHS term.

∫
hi

BR(x)
dψ̃m,i
dx

(x) dx =
[
BR(x)ψ̃m,i(x)

]x
i+1

2

x
i− 1

2

−
∫ x

i+1
2

x
i− 1

2

dBR

dx
(x)ψ̃m,i(x) dx (A.17)

Substituting the expressions for BR and ψ̃m,i into Eqn. A.17, the boundary term evaluates to

[
x− xi− 1

2

hi

(
xi+ 1

2
− x

hi
ψm(xi− 1

2
) +

x− xi− 1
2

hi
ψm(xi+ 1

2
)

)]x
i+1

2

x
i− 1

2

= ψm(xi+ 1
2
). (A.18)

Substituting the LD parameters dictated by the upwinding convention, the boundary term becomes

[
x− xi− 1

2

hi

(
xi+ 1

2
− x

hi
ψm,i−1,R +

x− xi− 1
2

hi
ψm,i,R

)]x
i+1

2

x
i− 1

2

= ψm,i,R. (A.19)

The RHS integral of Eqn. A.17 becomes

−
∫ x

i+1
2

x
i− 1

2

1

hi

(
xi+ 1

2
− x

hi
ψm,i,L +

x− xi− 1
2

hi
ψm,i,R

)
dx

= − 1

h2i

ψm,i,L ∫ x
i+1

2

x
i− 1

2

(xi+ 1
2
− x) dx+ ψm,i,R

∫ x
i+1

2

x
i− 1

2

(x− xi− 1
2
) dx


= − 1

h2i

(
−ψm,i,L

2

[
(xi+ 1

2
− x)2

]x
i+1

2

x
i− 1

2

+
ψm,i,R
2

[
(x− xi− 1

2
)2
]x

i+1
2

x
i− 1

2

)

= −ψm,i,L
2

− ψm,i,R
2

. (A.20)

Substituting the foregoing results into the first LHS term of Eqn. A.16, it becomes

µmψm,i,R − µm
2
(ψm,i,L + ψm,i,R) =

µm
2
(−ψm,i,L + ψm,i,R). (A.21)

Next, we evaluate the second LHS term of Eqn. A.16 by substituting the expressions for BR(x)
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and ψ̃m,i(x).

σt,i

∫
hi

BR(x)ψ̃m,i(x) dx

= σt,i

∫
hi

x− xi− 1
2

hi

(
xi+ 1

2
− x

hi
ψm,i,L +

x− xi− 1
2

hi
ψm,i,R

)
dx

=
σt,i
h2i

ψm,i,L
∫
hi

(x− xi− 1
2
)(xi+ 1

2
− x) dx︸ ︷︷ ︸

Integral B

+ψm,i,R

∫
hi

(x− xi− 1
2
)2 dx︸ ︷︷ ︸

Integral A

 (A.22)

By observing its equivalence to Integral B in Eqn. A.22, Integral B in Eqn. A.22 is simply h3i /6,

as given in Eqn. A.10. The evaluation of Integral A is straightforward.

∫
hi

(x− xi− 1
2
)2 dx =

1

3

[
(x− xi− 1

2
)3
]x

i+1
2

x
i− 1

2

=
h3i
3

(A.23)

Substituting the results from Eqn. A.23 and Eqn. A.10 into Eqn. A.22, the second LHS term of

Eqn. A.16 evaluates to
σt,ihi
2

(
1

3
ψm,i,L +

2

3
ψm,i,R

)
(A.24)

To evaluate the first RHS term of Eqn. A.16, substitute the BR and the LD representation of

ϕ. Since the integral is identical in form to the integral in the second LHS term of Eqn. A.16, that

result can be applied to this term also.

σs,i
2

∫
hi

BR(x)ϕ̃(x) dx =
σs,ihi
2

(
1

6
ϕi,L +

1

3
ϕi,R

)
(A.25)

The second RHS term of Eqn. A.16 is evaluated in a similar fashion.

1

2

∫
hi

BR(x)qi(x) dx =
hi
2

(
1

6
qi,L +

1

3
qi,R

)
(A.26)

Substituting each of the terms in Eqn. A.15 with their evaluated expressions in Eqn. A.21,

51



Eqn. A.24, Eqn. A.25, and Eqn. A.26, the resulting moment equation is

µm
2
(−ψm,i,L + ψm,i,R) +

σt,ihi
2

(
1

3
ψm,i,L +

2

3
ψm,i,R

)
=

σs,ihi
2

(
1

6
ϕi,L +

1

3
ϕi,R

)
+
hi
2

(
1

6
qi,L +

1

3
qi,R

)
. (A.27)

By inserting the iteration indices, we arrive at the SI form in Eqn. 1.27 in which both unknowns

are on the LHS.

A.3 Moment Equation for µ < 0 and B = BL

The derivation of this moment equation is very similar to the derivation of the case for µ <

0 and B = BL in Section A.1. The only difference is in the treatment of the boundary term

component of the first LHS term of Eqn. A.2, as the sign change in µ reverses the upwinding

direction.

Consider the representation of the boundary term in Eqn. A.4. Replace with the LD parameters

for upwinding.

[
xi+ 1

2
− x

hi

(
xi+ 1

2
− x

hi
ψm,i,L +

x− xi− 1
2

hi
ψm,i+1,L

)]x
i+1

2

x
i− 1

2

= −ψm,i,L (A.28)

Adding the component from Eqn. A.6, the first LHS term of Eqn. A.2 becomes

µm
2
(−ψm,i,L + ψm,i,R). (A.29)

The resulting moment equation is

µm
2
(−ψm,i,L + ψm,i,R) +

σt,ihi
2

(
2

3
ψm,i,L +

1

3
ψm,i,R

)
=

σs,ihi
2

(
1

3
ϕi,L +

1

6
ϕi,R

)
+
hi
2

(
1

3
qi,L +

1

6
qi,R

)
. (A.30)

By inserting the iteration indices, we arrive at the SI form in Eqn. 1.28 in which both unknowns
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are on the LHS.

A.4 Moment Equation for µ < 0 and B = BR

The derivation of this moment equation is very similar to the derivation of the case for µ <

0 and B = BR in Section A.2. The only difference is in the treatment of the boundary term

component of the first LHS term of Eqn. A.16, as the sign change in µ reverses the upwinding

direction.

Consider the representation of the boundary term in Eqn. A.18. Replace with the LD parame-

ters for upwinding.

[
x− xi− 1

2

hi

(
xi+ 1

2
− x

hi
ψm,i,L +

x− xi− 1
2

hi
ψm,i+1,L

)]x
i+1

2

x
i− 1

2

= ψm,i+1,L (A.31)

Adding the component from Eqn. A.20, the first LHS term of Eqn. A.16 becomes

µmψm,i+1,L − µm
2
(ψm,i,L + ψm,i,R). (A.32)

The resulting moment equation is

µmψm,i+1,L − µm
2
(ψm,i,L + ψm,i,R) +

σt,ihi
2

(
1

3
ψm,i,L +

2

3
ψm,i,R

)
=

σs,ihi
2

(
1

6
ϕi,L +

1

3
ϕi,R

)
+
hi
2

(
1

6
qi,L +

1

3
qi,R

)
(A.33)

By inserting the iteration indices, we arrive at the SI form in Eqn. 1.29 in which both unknowns

are on the LHS.
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APPENDIX B

COMPUTATION OF NORMS IN LD

In taking the norm of the error between iterates, one consideration is to compute the norm by

considering only the differences of the LD cell-edge fluxes rather than from an integral over the

spatial domain. This makes no difference in computing the relative error using Eqn. 3.27 for an LD

function space because the difference between two LD approximations is itself a piecewise-linear

function. For a linear function within a cell, the maximum magnitude of that function must occur

at the edges.

The situation is not so simple for the L2 norm, defined as

∥u∥L2 =

√∫ xR

xL

|u(x)|2 dx. (B.1)

If ϕ̃1 and ϕ̃2 are LD functions within a cell, let ∆ϕL = ϕ̃1(xL)− ϕ̃2(xL) and ∆ϕR = ϕ̃1(xR)−

ϕ̃2(xR).

To compute the integral of the L2 norm over one cell, consider a function ∆ϕ(x) = ϕ̃1(x) −

ϕ̃2(x). ∆ϕ(x) must itself be a linear function. Choosing xL = 0 and xR = h for simplicity, ∆ϕ(x)

can be represented as a generic linear function in cell i of width hi.

∆ϕi(x) =
∆ϕi,R −∆ϕi,L

hi
x+∆ϕi,L (B.2)

Substituting into Eqn. B.1, the square of the L2 norm over a cell is

∥∆ϕi(x)∥2L2 =

∫ hi

0

(
∆ϕi,R −∆ϕi,L

hi
x+∆ϕi,L

)2

dx

=

[
(∆ϕi,R −∆ϕi,L)

2

3
+ ∆ϕi,L∆ϕi,R

]
hi. (B.3)

Expanding the integral over all cells and using substituting into Eqn. B.1, the L2 norm of ∆ϕ(x)

54



over the spatial domain of N cells is given by

∥∆ϕ(x)∥L2 =

√√√√ N∑
i=1

[
(∆ϕi,R −∆ϕi,L)2

3
+ ∆ϕi,L∆ϕi,R

]
hi. (B.4)
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APPENDIX C

FOURIER ANALYSIS

Fourier analysis is utilized as a semi-analytic method to evaluate the convergence ratio of se-

lected S2, constant-solution problems. It is not fully analytic because the slowest-damping error

mode λ is determined numerically. In particular, a problem of this class is modeled as a two-grid,

two-cell problem in which a left boundary source condition and a right boundary reflective condi-

tion are prescribed to achieve a constant solution ϕ for a two-region problem. This problem of a

finite-thickness slab with boundary conditions is equivalent to the infinite-thickness slab problem

in which the region pair from the finite-width problem is periodic in x in both directions.

The error in ϕ±,(ℓ) at the cell edges, δϕ±,(ℓ), can be conceived as a superposition of Fourier

modes, where

δϕ±,(ℓ)(xi+ 1
2
) = ϕ±

ICS(xi+ 1
2
)− ϕ

±,(ℓ)
i+ 1

2

=

∫ 2π

0

ϵ±,(ℓ)(λ)e
jλx

i+1
2 dλ. (C.1)

C.1 S2 Moment Equations for the Fourier-Mode Error

To characterize the error in the two-cell, two-grid, finite slab problem, we substitute ϕICS for ϕ

in each of the S2 moment Eqns. 2.2-2.5. Similarly, we substitute iterates ϕ±,(ℓ+ 1
2
) and ϕ±,(ℓ) into

the left-hand-sides and right-hand-sides, respectively of these equations. Then, each equation with

the ϕ iterates is subtracted from its counterpart with ϕ = ϕICS. Hence, each occurrence of ϕ(ℓ) and

ϕ(ℓ+ 1
2
) in the S2 moment equations is replaced with δϕ(ℓ) and δϕ(ℓ+ 1

2
), respectively. For µ > 0, BL,

1

2

(
⟨µ+

i,L⟩δϕ
+,(ℓ+ 1

2
)

i,L + ⟨µ+
i,R⟩δϕ

+,(ℓ+ 1
2
)

i,R

)
− ⟨µ+

i−1,R⟩δϕ
+,(ℓ+ 1

2
)

i−1,R

+
1

2
σt,ihi

(
2

3
δϕ

+,(ℓ+ 1
2
)

i,L +
1

3
δϕ

+,(ℓ+ 1
2
)

i,R

)
=

1

2
σs,ihi

[
1

3

(
δϕ

+,(ℓ)
i,L + δϕ

−,(ℓ)
i,L

)
+

1

6

(
δϕ

+,(ℓ)
i,R + δϕ

−,(ℓ)
i,R

)]
. (C.2)
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For µ > 0, BR,

1

2

(
⟨µ+

i,R⟩δϕ
+,(ℓ+ 1

2
)

i,R − ⟨µ+
i,L⟩δϕ

+,(ℓ+ 1
2
)

i,L

)
+

1

2
σt,ihi

(
1

3
δϕ

+,(ℓ+ 1
2
)

i,L +
2

3
δϕ

+,(ℓ+ 1
2
)

i,R

)
=

1

2
σs,ihi

[
1

6

(
δϕ

+,(ℓ)
i,L + δϕ

−,(ℓ)
i,L

)
+

1

3

(
δϕ

+,(ℓ)
i,R + δϕ

−,(ℓ)
i,R

)]
. (C.3)

For µ < 0, BL,

1

2

(
⟨µ−

i,R⟩δϕ
−,(ℓ+ 1

2
)

i,R − ⟨µ−
i,L⟩δϕ

−,(ℓ+ 1
2
)

i,L

)
+

1

2
σt,ihi

(
2

3
δϕ

−,(ℓ+ 1
2
)

i,L +
1

3
δϕ

−,(ℓ+ 1
2
)

i,R

)
=

1

2
σs,ihi

[
1

3

(
δϕ

+,(ℓ)
i,L + δϕ

−,(ℓ)
i,L

)
+

1

6

(
δϕ

+,(ℓ)
i,R + δϕ

−,(ℓ)
i,R

)]
. (C.4)

For µ < 0, BR,

−1

2

(
⟨µ−

i,L⟩δϕ
−,(ℓ+ 1

2
)

i,L + ⟨µ−
i,R⟩δϕ

−,(ℓ+ 1
2
)

i,R

)
+ ⟨µ−

i+1,L⟩δϕ
−,(ℓ+ 1

2
)

i+1,L

+
1

2
σt,ihi

(
1

3
δϕ

−,(ℓ+ 1
2
)

i,L +
2

3
δϕ

−,(ℓ+ 1
2
)

i,R

)
=

1

2
σs,ihi

[
1

6

(
δϕ

+,(ℓ)
i,L + δϕ

−,(ℓ)
i,L

)
+

1

3

(
δϕ

+,(ℓ)
i,R + δϕ

−,(ℓ)
i,R

)]
. (C.5)

We make two modifications to Eqns. C.2-C.5. Since this analysis is in S2, the ⟨µ±⟩ parameters

are known constants. Therefore, to simplify the notation, each ⟨µ+⟩ is replaced with µ̂, and each

⟨µ−⟩ is replaced with −µ̂, where µ̂ = 1√
3
, the magnitude of the Gauss quadrature points used in

S2.

To obtain a spectral radius for convergence, the maximum eigenvalue is computed for each

of a predefined number of evenly-spaced λ values, where λ ∈ [0, 2π). The maximum overall

eigenvalue is then taken to be the spectral radius. The half-range flux error δϕ±(x, λ) for a single
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Fourier mode λ can be expressed as

δϕ±(x, λ) = ϵ±λ (x)e
jλx, (C.6)

where ϵ±λ (x) is the Fourier coefficient at a particular edge x. To simplify the notation ϵ± and δϕ±

are assumed to be specific to the chosen λ:

δϕ± = ϵ±ejλx. (C.7)

Substituting Eqn. C.7 into Eqns. C.2-C.5, the resulting S2 single-mode Fourier error equations

are, for µ > 0, BL,

1

2

(
⟨µ+

i,L⟩ϵ
+,(ℓ+ 1

2
)

i,L e
jλx

i− 1
2 + ⟨µ+

i,R⟩ϵ
+,(ℓ+ 1

2
)

i,R e
jλx

i+1
2

)
− ⟨µ+

i−1,R⟩ϵ
+,(ℓ+ 1

2
)

i−1,R e
jλx

i− 1
2

+
1

2
σt,ihi

(
2

3
ϵ
+,(ℓ+ 1

2
)

i,L e
jλx

i− 1
2 +

1

3
ϵ
+,(ℓ+ 1

2
)

i,R e
jλx

i+1
2

)
=

1

2
σs,ihi

[
1

3

(
ϵ
+,(ℓ)
i,L e

jλx
i− 1

2 + ϵ
−,(ℓ)
i,L e

jλx
i− 1

2

)
+

1

6

(
ϵ
+,(ℓ)
i,R e

jλx
i+1

2 + ϵ
−,(ℓ)
i,R e

jλx
i+1

2

)]
, (C.8)

for µ > 0, BR,

1

2

(
⟨µ+

i,R⟩ϵ
+,(ℓ+ 1

2
)

i,R e
jλx

i+1
2 − ⟨µ+

i,L⟩ϵ
+,(ℓ+ 1

2
)

i,L e
jλx

i− 1
2

)
+

1

2
σt,ihi

(
1

3
ϵ
+,(ℓ+ 1

2
)

i,L e
jλx

i− 1
2 +

2

3
ϵ
+,(ℓ+ 1

2
)

i,R e
jλx

i+1
2

)
=

1

2
σs,ihi

[
1

6

(
ϵ
+,(ℓ)
i,L e

jλx
i− 1

2 + ϵ
−,(ℓ)
i,L e

jλx
i− 1

2

)
+

1

3

(
ϵ
+,(ℓ)
i,R e

jλx
i+1

2 + ϵ
−,(ℓ)
i,R e

jλx
i+1

2

)]
, (C.9)

for µ < 0, BL,

1

2

(
⟨µ−

i,R⟩ϵ
−,(ℓ+ 1

2
)

i,R e
jλx

i+1
2 − ⟨µ−

i,L⟩ϵ
−,(ℓ+ 1

2
)

i,L e
jλx

i− 1
2

)
+

1

2
σt,ihi

(
2

3
ϵ
−,(ℓ+ 1

2
)

i,L e
jλx

i− 1
2 +

1

3
ϵ
−,(ℓ+ 1

2
)

i,R e
jλx

i+1
2

)
=

1

2
σs,ihi

[
1

3

(
ϵ
+,(ℓ)
i,L e

jλx
i− 1

2 + ϵ
−,(ℓ)
i,L e

jλx
i− 1

2

)
+

1

6

(
ϵ
+,(ℓ)
i,R e

jλx
i+1

2 + ϵ
−,(ℓ)
i,R e

jλx
i+1

2

)]
,(C.10)
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and for µ < 0, BR,

−1

2

(
⟨µ−

i,L⟩ϵ
−,(ℓ+ 1

2
)

i,L e
jλx

i− 1
2 + ⟨µ−

i,R⟩ϵ
−,(ℓ+ 1

2
)

i,R e
jλx

i+1
2

)
+ ⟨µ−

i+1,L⟩ϵ
−,(ℓ+ 1

2
)

i+1,L e
jλx

i+1
2

+
1

2
σt,ihi

(
1

3
ϵ
−,(ℓ+ 1

2
)

i,L e
jλx

i− 1
2 +

2

3
ϵ
−,(ℓ+ 1

2
)

i,R e
jλx

i+1
2

)
=

1

2
σs,ihi

[
1

6

(
ϵ
+,(ℓ)
i,L e

jλx
i− 1

2 + ϵ
−,(ℓ)
i,L e

jλx
i− 1

2

)
+

1

3

(
ϵ
+,(ℓ)
i,R e

jλx
i+1

2 + ϵ
−,(ℓ)
i,R e

jλx
i+1

2

)]
.(C.11)

We now have S2 moment equations for the Fourier error coefficients ϵ⃗(ℓ) and ϵ⃗(ℓ+
1
2
). The next

step is to adapt the form of the single-cell system of Eqns. C.8-C.11 to another form depicting a

two-cell system. Equations C.8-C.11 are applied to the left cell by substituting i = 1 and to the

right cell by substituting i = 2, resulting in a system of eight equations and eight unknowns.

C.2 Determination of Fourier Coefficients

C.2.1 Source Iteration

Equations C.8-C.11 form the system characterizing one SI sweep in one cell. An 8× 8 system

must be constructed to characterize one SI sweep across the 2-cell fine grid. Redefining this 4× 4

single-cell system as an 8×8 two-cell system, the 8×8 system models source iteration as follows:

Aϵ⃗(ℓ+
1
2
) = Bϵ⃗(ℓ). (C.12)

Using the row order of Table 3.2 and the column order of Table 3.3, we construct ϵ⃗, A, and B.

ϵ⃗ = [ ϵ−i,L ϵ−i,R ϵ+i,L ϵ+i,R ϵ−i+1,L ϵ−i+1,R ϵ+i+1,L ϵ+i+1,R
]T (C.13)
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To construct A and B, we look to Eqns. C.8-C.11. In addition to populating the matrices for two

adjacent cells, we divide both by e
jλx

i− 1
2 in order to simplify some elements.

A =



0 0
(
µ̂
2
+

σt,ihi
3

) (
µ̂
2
+

σt,ihi
6

)
ejλhi

0 0
(
− µ̂

2
+

σt,ihi
6

) (
µ̂
2
+

σt,ihi
3

)
ejλhi(

µ̂
2
+

σt,ihi
3

) (
− µ̂

2
+

σt,ihi
6

)
ejλhi 0 0(

µ̂
2
+

σt,ihi
6

) (
µ̂
2
+

σt,ihi
3

)
ejλhi 0 0

0 0 0 −µ̂ejλhi

0 0 0 0

0 0 0 0

−µ̂ejλ(hi+hi+1) 0 0 0

(C.14)

0 0

0 0

0 0

−µ̂ejλhi 0

0 0

0 0(
− µ̂

2
+

σt,i+1hi+1

3

)
ejλhi

(
µ̂
2
+

σt,i+1hi+1

6

)
ejλ(hi+hi+1)(

µ̂
2
+

σt,i+1hi+1

6

)
ejλhi

(
µ̂
2
+

σt,i+1hi+1

3

)
ejλ(hi+hi+1)

0 −µ̂

0 0

0 0

0 0(
µ̂
2
+

σt,i+1hi+1

3

)
ejλhi

(
µ̂
2
+

σt,i+1hi+1

6

)
ejλ(hi+hi+1)(

− µ̂
2
+

σt,i+1hi+1

6

)
ejλhi

(
µ̂
2
+

σt,i+1hi+1

3

)
ejλ(hi+hi+1)

0 0

0 0


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B =



σs,ihi
6

σs,ihi
12

ejλhi
σs,ihi

6

σs,ihi
12

ejλhi

σs,ihi
12

σs,ihi
6
ejλhi

σs,ihi
12

σs,ihi
6
ejλhi

σs,ihi
6

σs,ihi
12

ejλhi
σs,ihi

6

σs,ihi
12

ejλhi

σs,ihi
12

σs,ihi
6
ejλhi

σs,ihi
12

σs,ihi
6
ejλhi

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

(C.15)

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

σs,i+1hi+1

6
ejλhi

σs,i+1hi+1

12
ejλ(hi+hi+1) σs,i+1hi+1

6
ejλhi

σs,i+1hi+1

12
ejλ(hi+hi+1)

σs,i+1hi+1

12
ejλhi

σs,i+1hi+1

6
ejλ(hi+hi+1) σs,i+1hi+1

12
ejλhi

σs,i+1hi+1

6
ejλ(hi+hi+1)

σs,i+1hi+1

6
ejλhi

σs,i+1hi+1

12
ejλ(hi+hi+1) σs,i+1hi+1

6
ejλhi

σs,i+1hi+1

12
ejλ(hi+hi+1)

σs,i+1hi+1

12
ejλhi

σs,i+1hi+1

6
ejλ(hi+hi+1) σs,i+1hi+1

12
ejλhi

σs,i+1hi+1

6
ejλ(hi+hi+1)



C.2.2 Multigrid Acceleration

So far, we’ve shown how to apply Fourier analysis to source iteration.

First, we consider how to solve for the coarse-grid error δψ⃗(ℓ+1)
C . Applying Eqns. C.2-C.5 to a

two-grid system and reexpressing in matrix form,

A′δψ⃗
(ℓ+ 1

2
)

C = B′δψ⃗
(ℓ)
C , (C.16)

where A′ represents the LHS coefficents of the system and B′ the RHS coefficients.

Because δψ⃗(ℓ+1)
C applies to a 4× 4 system, the 8× 8 matrix A′−B′ must be reduced to a 4× 4
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matrix to perform the coarse-grid matrix solve.

The row reduction described by Eqns. 3.10-3.13 can be performed using matrix multiplication.

This transformation is achieved by multiplying R,

R =



1 hi+1

hi+hi+1
0 0 hi+1

hi+hi+1
0 0 0

0 0 1 hi+1

hi+hi+1
0 0 hi+1

hi+hi+1
0

0 hi
hi+hi+1

0 0 hi
hi+hi+1

1 0 0

0 0 0 hi
hi+hi+1

0 0 hi
hi+hi+1

1


, (C.17)

by the matrix A′ − B′ describing the fine-cell-pair 8 × 8 system. Next, the row-reduced 4 × 8

matrix is then multiplied by matrix G′, which consolidates the columns according to the linearized

scheme. Here,

G′ =



1 0 0 0

1
2

1
2

0 0

0 0 1 0

0 0 1
2

1
2

1
2

1
2

0 0

0 1 0 0

0 0 1
2

1
2

0 0 0 1



. (C.18)

Then, δψ⃗(ℓ+1)
C is defined as satisfying the equation

R(A′ −B′)G′δψ⃗
(ℓ+1)
C = 0⃗. (C.19)

If we note that the expanded and linearly-interpolated fine-grid error δψ⃗(ℓ+1) is given as

δψ⃗(ℓ+1) = G′δψ⃗
(ℓ+1)
C , (C.20)
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Eqn. C.19 can be reexpressed in terms of δψ⃗(ℓ+1).

R(A′ −B′)δψ⃗(ℓ+1) = 0⃗. (C.21)

The identity given in Eqn. C.21 will prove useful later.

In combining two cells into one, we consider how the inner-edge values are interpolated onto

the fine grid. In the case of ψ(ℓ+1)
i,R :

ψ
(ℓ+1)
i,R =

1

2
(ψ

(ℓ+1)
i,L + ψ

(ℓ+1)
i+1,R)γ

(ℓ+ 1
2
)

i,R , (C.22)

where

γ
(ℓ+ 1

2
)

i,R =
2ψ

(ℓ+ 1
2
)

i,R

ψ
(ℓ+ 1

2
)

i,L + ψ
(ℓ+ 1

2
)

i+1,R

. (C.23)

Equation C.22 expresses ψ(ℓ+1)
i,R in terms of a γ multiplicative correction. To transform it into a form

suitable for Fourier analysis, it is reexpressed in terms of an additive correction. For a constant-

solution problem, the iterate ψ(ℓ+1) can be expressed as the sum of the exact solution ψEAS and the

error δψ(ℓ+1).

ψ(ℓ+1) = ψEAS + δψ(ℓ+1). (C.24)

Substituting from Eqn. C.24 for the outer-edge ψ iterates and from Eqn. C.23 for γ
(ℓ+ 1

2
)

i,R into

Eqn. C.22,

ψ
(ℓ+1)
i,R =

(
2ψEAS + δψ

(ℓ+1)
i,L + δψ

(ℓ+1)
i+1,R

)(
ψEAS + δψ

(ℓ+ 1
2
)

i,R

)
2ψEAS + δψ

(ℓ+ 1
2
)

i,L + δψ
(ℓ+ 1

2
)

i+1,R

. (C.25)

Multiplying the numerator and denominator by 2ψEAS − (δψ
(ℓ+ 1

2
)

i,L + δψ
(ℓ+ 1

2
)

i+1,R),

ψ
(ℓ+1)
i,R =

(
2ψEAS + δψ

(ℓ+1)
i,L + δψ

(ℓ+1)
i+1,R

)(
ψEAS + δψ

(ℓ+ 1
2
)

i,R

)(
2ψEAS −

(
δψ

(ℓ+ 1
2
)

i,L + δψ
(ℓ+ 1

2
)

i+1,R

))
(2ψEAS)

2 −
(
δψ

(ℓ+ 1
2
)

i,L + δψ
(ℓ+ 1

2
)

i+1,R

)2 .

(C.26)

Assuming the δψ errors are small compared to the constant solution, the denominator can be sim-
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plified to 4ψ2
EAS. Furthermore, terms in the numerator on the order of (δψ)2 are eliminated, leaving,

ψ
(ℓ+1)
i,R ≈ ψEAS +

1

2

(
σψ

(ℓ+1)
i,L + δψ

(ℓ+1)
i+1,R

)
+ δψ

(ℓ+ 1
2
)

i,R − 1

2

(
σψ

(ℓ+ 1
2
)

i,L + δψ
(ℓ+ 1

2
)

i+1,R

)
. (C.27)

Subtracting the exact solution from both sides,

δψ
(ℓ+1)
i,R ≈ 1

2

(
δψ

(ℓ+1)
i,L + δψ

(ℓ+1)
i+1,R

)
+ δψ

(ℓ+ 1
2
)

i,R − 1

2

(
δψ

(ℓ+ 1
2
)

i,L + δψ
(ℓ+ 1

2
)

i+1,R

)
. (C.28)

Equation C.28 provides the needed linear relation between the δψ(ℓ+1)
i,R interpolated onto the fine

grid and the iterates on which it depends. The same principle applies to δψ(ℓ+1)
i+1,L. Replacing the SN

δψ
(ℓ+1)
i,R and δψ(ℓ+1)

i+1,L with their S2 counterparts,

δϕ
±,(ℓ+1)
i,R ≈ 1

2

(
δϕ

±,(ℓ+1)
i,L + δϕ

±,(ℓ+1)
i+1,R

)
+ δϕ

±,(ℓ+ 1
2
)

i,R − 1

2

(
δϕ

±,(ℓ+ 1
2
)

i,L + δϕ
±,(ℓ+ 1

2
)

i+1,R

)
, (C.29)

and

δϕ
±,(ℓ+1)
i+1,L ≈ 1

2

(
δϕ

±,(ℓ+1)
i,L + δϕ

±,(ℓ+1)
i+1,R

)
+ δϕ

±,(ℓ+ 1
2
)

i+1,L − 1

2

(
δϕ

±,(ℓ+ 1
2
)

i,L + δϕ
±,(ℓ+ 1

2
)

i+1,R

)
. (C.30)
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The values δϕ±,(ℓ+1) are given by

δϕ
−,(ℓ+1)
i,L = δϕ

−,(ℓ+1)
i,L (C.31)

δϕ
−,(ℓ+1)
i,R =

δϕ
−,(ℓ+1)
i,L + δϕ

−,(ℓ+1)
i+1,R

2︸ ︷︷ ︸
ℓ+1

+ δϕ
−,(ℓ+ 1

2
)

i,R −
δϕ

−,(ℓ+ 1
2
)

i,L + δϕ
−,(ℓ+ 1

2
)

i+1,R

2︸ ︷︷ ︸
ℓ+ 1

2

(C.32)

δϕ
+,(ℓ+1)
i,L = δϕ

+,(ℓ+1)
i,L (C.33)

δϕ
+,(ℓ+1)
i,R =

δϕ
+,(ℓ+1)
i,L + δϕ

+,(ℓ+1)
i+1,R

2︸ ︷︷ ︸
ℓ+1

+ δϕ
+,(ℓ+ 1

2
)

i,R −
δϕ

+,(ℓ+ 1
2
)

i,L + δϕ
+,(ℓ+ 1

2
)

i+1,R

2︸ ︷︷ ︸
ℓ+ 1

2

(C.34)

δϕ
−,(ℓ+1)
i+1,L =

︷ ︸︸ ︷
δϕ

−,(ℓ+1)
i,L + δϕ

−,(ℓ+1)
i+1,R

2
+

︷ ︸︸ ︷
δϕ

−,(ℓ+ 1
2
)

i+1,L −
δϕ

−,(ℓ+ 1
2
)

i,L + δϕ
−,(ℓ+ 1

2
)

i+1,R

2
(C.35)

δϕ
−,(ℓ+1)
i+1,R = δϕ

−,(ℓ+1)
i+1,R (C.36)

δϕ
+,(ℓ+1)
i+1,L =

δϕ
+,(ℓ+1)
i,L + δϕ

+,(ℓ+1)
i+1,R

2︸ ︷︷ ︸
ℓ+1

+ δϕ
+,(ℓ+ 1

2
)

i+1,L −
δϕ

+,(ℓ+ 1
2
)

i,L + δϕ
+,(ℓ+ 1

2
)

i+1,R

2︸ ︷︷ ︸
ℓ+ 1

2

(C.37)

δϕ
+,(ℓ+1)
i+1,R = δϕ

+,(ℓ+1)
i+1,R (C.38)

The updated coarse-grid parameters map directly to the corresponding fine-grid parameters. The

inner-edge fine-grid parameters are updated from their values from the fine-grid sweep, the updated

coarse-grid values, and the post-sweep, pre-coarse-matrix-solve coarse-grid values. The updated

solution after one complete iterate given in Eqns. C.31-C.38 can be expressed more succinctly as

a matrix equation:

δϕ⃗(ℓ+1) = C′δϕ⃗
(ℓ+1)
C,8 +D′δϕ⃗(ℓ+ 1

2
), (C.39)

where δϕ⃗(ℓ+1)
C,8 represents the δϕ⃗(ℓ+1)

C error of the 4× 4 system expanded for the 8× 8 system, with

zero-entries for the inner-edge parameters. A matrix F may be created which, when multiplied by

δϕ⃗
(ℓ+1)
C , maps the coarse-grid solution to the fine grid:

δϕ⃗
(ℓ+1)
C,8 = Fδϕ⃗

(ℓ+1)
C (C.40)
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Here,

F =



1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1



. (C.41)

Recalling Eqn. C.21, multiplying Eqn. C.39 by R(A′ −B′) results in

0⃗ = R(A′ −B′)δϕ⃗(ℓ+1) = R(A′ −B′)
[
C′δϕ⃗

(ℓ+1)
C,8 +D′δϕ⃗(ℓ+ 1

2
)
]
, (C.42)

or

R(A′ −B′)C′δϕ⃗
(ℓ+1)
C,8 = −R(A′ −B′)D′δϕ⃗(ℓ+ 1

2
). (C.43)

Substituting Eqn. C.40 into Eqn. C.43

R(A′ −B′)C′Fδϕ⃗
(ℓ+1)
C = −R(A′ −B′)D′δϕ⃗(ℓ+ 1

2
). (C.44)

Then, expressing δϕ⃗(ℓ+1)
C as a function of δϕ⃗(ℓ+ 1

2
):

δϕ⃗
(ℓ+1)
C = −[R(A′ −B′)C′F]−1R(A′ −B′)D′δϕ⃗(ℓ+ 1

2
). (C.45)

The coarse-grid iterate δϕ⃗(ℓ+1)
C can now be used to apply the coarse-grid update the fine-grid iterate

δϕ⃗(ℓ+1). Comparing Eqn. C.20 and Eqns. C.31-C.38, it is seen that G′ = C′F.
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Substituting Eqn. C.45 for δϕ⃗(ℓ+1)
C in Eqn. C.40 and Eqn. C.40 in turn into Eqn. C.39

δϕ⃗(ℓ+1) = −C′F[R(A′ −B′)C′F]−1R(A′ −B′)D′δϕ⃗(ℓ+ 1
2
) +D′δϕ⃗(ℓ+ 1

2
)

=
[
−C′F[R(A′ −B′)C′F]−1R(A′ −B′)D′ +D′] δϕ⃗(ℓ+ 1

2
), (C.46)

leading the following matrix equation describing one complete V-cycle on a two-grid, constant-

solution system:

δϕ⃗(ℓ+1) =
[
−C′F[R(A′ −B′)C′F]−1R(A′ −B′)D′ +D′] (A′)−1B′δϕ⃗(ℓ). (C.47)

C.2.3 Transition to Fourier Domain

Modifications must be made to several matrices in order to adapt Eqn. C.47 for Fourier analysis.

Matrices F and R are merely for collapsing columns and rows, respectively, and are not modified.

The other matrices in Eqn. C.47, denoted by the prime (′) symbol, must be replaced with their

Fourier equivalents. A and B have been computed from the previous discussion on source iteration

(Eqns. C.14 and C.15).

As before for C′ and D′, we turn to Eqns. C.31-C.38 for C and D. Each row corresponds to a

parameter at ℓ+ 1. Each column corresponds to a parameter at ℓ+ 1
2
. Hence, each row defines an

element of δϕ⃗(ℓ+1) as a linear combination of elements of δϕ⃗(ℓ+ 1
2
).

In transitioning from a system defined in terms of the LD parameters δϕ⃗ to one defined in

terms of the Fourier parameters ϵ⃗, it is necessary to multiply each non-zero coefficient of the

system described in Eqns. C.31-C.38 by the phase difference between the row LD parameter and
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the column LD parameter. We obtain

C =



1 0 0 0 0 0 0 0

1
2
e−jλhi 0 0 0 0 1

2
ejλhi+1 0 0

0 0 1 0 0 0 0 0

0 0 1
2
e−jλhi 0 0 0 0 1

2
ejλhi+1

1
2
e−jλhi 0 0 0 0 1

2
ejλhi+1 0 0

0 0 0 0 0 1 0 0

0 0 1
2
e−jλhi 0 0 0 0 1

2
ejλhi+1

0 0 0 0 0 0 0 1



(C.48)

and

D =



0 0 0 0 0 0 0 0

−1
2
e−jλhi 1 0 0 0 −1

2
ejλhi+1 0 0

0 0 0 0 0 0 0 0

0 0 −1
2
e−jλhi 1 0 0 0 −1

2
ejλhi+1

−1
2
e−jλhi 0 0 0 1 −1

2
ejλhi+1 0 0

0 0 0 0 0 0 0 0

0 0 −1
2
e−jλhi 0 0 0 1 −1

2
ejλhi+1

0 0 0 0 0 0 0 0



. (C.49)

Performing the substitutions of A, B, C, D, ϵ⃗(ℓ), and ϵ⃗(ℓ+1) into Eqn. C.47,

ϵ⃗(ℓ+1) =
[
−CF[R(A−B)CF]−1R(A−B)D+D

]
A−1B︸ ︷︷ ︸

Fourier coefficient matrix

ϵ⃗(ℓ). (C.50)

C.3 Fourier Spectral Radius

Computation the Fourier spectral radius consists of determining the eigenvalue with the max-

imum magnitude over a range of λ sufficiently wide to represent every Fourier mode at the cell
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edges. Hence, we evaluate the Fourier coefficient matrix of Eqn. C.50 for a number of evenly-

spaced λ values in [0, 2π) and determine the maximum-magnitude eigenvalue for each λ to obtain

the spectral radius.
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