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ABSTRACT 

 

We use molecular dynamics simulations of cyclic deformation to investigate the 

viscoelastic response of two-component, defect-free, face-centered cubic equiatomic 

solid solutions (ESSs). Rather than simulate a specific alloy composition, we use a 

Lennard-Jones model to study the effect of loading frequency, temperature, model size, 

and atomic misfit on mechanical energy dissipation. Although free of defects, these 

models exhibit viscoelastic behavior. We attribute this behavior to the large distortion in 

the lattice structure induced by atomic misfit. Peaks in loss modulus-frequency plots are 

due to resonant vibrations occurring at specific frequencies. Moreover, the elastic 

storage moduli of our ESS models are found to be misfit dependent. Our findings may 

aid future research in mechanical behavior of concentrated alloys and in molecular 

dynamics simulations of viscoelastic behavior.  
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NOMENCLATURE 

 

ESS Equiatomic Solid Solution 

Fcc Face-centered cubic 

LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator  
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1. INTRODUCTION  

 

When a defect-free, single crystal metal is strained periodically below its elastic limit, its 

stress response is time-independent. When the same cyclic deformation is performed on 

a viscous material like a metallic glass, there exists a time lag between the applied strain 

and stress response due to the fact that energy is dissipated by small-scale structural 

changes known as “shear transformations” (or “shear transformation zones”: STZs [2, 

3]). This time-dependent viscoelastic response is often studied through dynamic 

mechanical analysis where the storage (energy stored) and loss (energy dissipated) 

modulus are calculated [4].  

 

Equiatomic solid solutions (ESSs) are single phase materials composed of metal 

elements in equal or nearly-equal proportions. Since the interatomic bonding energies 

and bond lengths between different types of elements are different, i.e. there are atomic 

misfits between atom pairs, atoms are slightly displaced from their “perfect” lattice sites. 

If the misfit is very large, the structure cannot remain crystalline and becomes 

amorphous, as in a metallic glass [5]. Unlike amorphous solids, ESS retain their 

crystalline ordering, but also show a significant degree of distortion across the structure 

[6] that is not found in single-component crystalline metals and alloys.  

 

A recent atomistic study on a two-component, face centered cubic (fcc) defect-free ESS 

model system demonstrated that ESSs actually exhibit some mechanical responses that 
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resemble those of amorphous solids [1]. Upon loading, numerous stress drops are 

observed in the elastic portion of the stress-strain graph as shown in Figure 1, which are 

caused by localized shear transformations (LSTs) [7, 8] analogous to the STZs seen in 

metallic glass [2, 3]. These LSTs correspond to transitions between inherent states, i.e. 

distinct energy minima (stable lattice configurations) [1]. Figure 2 show a sample of 

such transitions between two inherent states. 

 

  

Figure 1: Stack of stress-strain curves where each correspond for loading from one of 

the ten distinct inherent states found in the structure. The inset displayed one of them. 

Adapted from [1] with permission. 
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Figure 2: Snapshot of particles (colored in blue) transitioning from one inherent state in 

column (a) to the other in column (b). Top row is the in-plane view of a {100} plane and 

bottom row is the edge-on view of it. Adapted from [1] with permission. 

 

While a multiplicity of inherent states is characteristic of amorphous structures [9, 10], it 

had not been observed in defect-free, single crystal metals before. A plurality of inherent 

states separated by small energy barriers indicates that ESSs may exhibit a viscoelastic 

response with greater resemblance to that of metallic glasses, rather than defect-free, 

single-crystal, single-component metals. 

 

Previous investigations on metallic glasses and composite metals have shown that 

viscoelastic response may be assessed using atomistic simulations. While many studies 

have examined factors affecting the strength of ESSs or concentrated alloys [11-14], 

atomistic modelling of cyclic deformation for the viscoelastic mechanical response of 
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ESSs has not been studied until 2017 by R. Ranganathan el at. [15]. In their paper, the 

primary focus is to compare the response of three types of structures--- a perfectly 

ordered alloy, an ESS and an amorphous glass. Therefore, only one misfit is considered 

for examining the ESS case. In our study, however, we focus on ESSs with different 

misfits and how that can play a role in their viscoelastic responses.  

 

Although they have shown that ESSs exhibit viscoelastic response in their studies, it 

remains unclear on the precise mechanism that govern some of the behaviors. For 

example, a power-law increase in energy dissipation with increasing loading frequencies 

has been observed [15]. With the aid of the knowledge of ESSs possess inherent states, 

our study provided insights into explaining such phenomenon, and further extend the 

scope to how the degree of distortion in ESSs can impact their mechanical responses. 
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2. METHODOLOGY  

 

2.1 The LJ Model 

This proposed study investigates the mechanical response of two-component fcc ESSs 

under cyclic deformation using atomistic simulations. We investigate how atomic misfit, 

temperature, and strain rate affect viscoelastic response. Since we are attempting to find 

general trends in viscoelastic response, the presented work is carried out using binary 

Lennard-Jones (LJ) systems [16-20] rather than a specific alloy. The interatomic 

bonding energy between any two LJ particles of type i and j respectively is  

𝜙(𝑟) = 4𝜖𝑖𝑗[(
𝜎𝑖𝑗

𝑟
)

12

− (
𝜎𝑖𝑗

𝑟
)

6

]  

where 𝑟 is the distance between the particle pair, 𝜎𝑖𝑗 and 𝜖𝑖𝑗 are the characteristic bond 

length and energy between atom type i and j [1]. All the parameters used are presented in 

LJ units [21]. 

 

The structure is built by generating a fcc lattice filled by LJ atom type 1 or 2 randomly 

with a probability of 0.5. The choice of system is based on that in [1], where 𝜖𝑖𝑗 = 1 for 

all pairs, 𝜎11 =1, 𝜎22 = 𝜎 and 𝜎12 = √𝜎11𝜎22 . We choose to use the geometric-mean 

mixing rule for 𝜎12 calculation for consistency with study in [1], and this is also one of 

the standard used in MD simulations [22].  Another commonly used and also the oldest 

approach [23] is the Lorentz-Berthelot mixing rule [24-26], where the arithmetic mean 

of the bond lengths is taken instead. The study of mixing rules effect on simulations is 
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beyond the scope of this paper, but some studies suggest that the Lorentz-Berthelot rule 

can lead to inaccurate predictions in materials properties [27, 28].  

 

We thus adjust the atomic misfit by using different values for , namely, 0.90, 0.88, 

0.86, and 0.84. The system is stable in crystalline form for 𝜎 ≥ 0.84 [1]. All the 

simulations are carried out using molecular dynamics (MD) package LAMMPS [22] and 

the structures are monitored by visualizing snapshots from the simulation using 

ATOMEYE [29]. 

 

2.2 Molecular Dynamics  

The essence of the molecular dynamics method is to study movements of atoms by 

solving classical Newtonian equations of motion for that system of particles interacting 

through a given potential relation [21] . For classical atomic systems with generalized 

coordinates 𝑞𝑘, the Lagrangian equation of motion [30] is used 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞𝑘̇
) − (

𝜕𝐿

𝜕𝑞𝑘
) = 0 . 

L(𝑞, 𝑞̇) is the Lagrangian, which is just the difference between kinetic (K) and potential 

energies (V), i.e. 

𝐿 = 𝐾 − 𝑉  

where for the case of using pair potential, 

𝐾 =  ∑
𝑝𝑖

2

2𝑚𝑖

𝑁

𝑖=1
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𝑉 =  ∑ ∑ 𝜙(𝑟𝑖𝑗)

𝑁

𝑗=𝐼+1

𝑁−1

𝑖=1

 

𝑚𝑖 and 𝑝𝑖 are the mass and momentum of atom i respectively. 

 

Using Cartesian coordinates 𝑟𝑖, the Lagrangian equation of motion reduces to the 

familiar Newton second law of motion 

𝒇𝑖 = 𝑚𝑖𝒓𝒊̈ = 𝑚𝑖𝒂𝒊 

Thus, the force on atom i can be calculated by  [21] 

𝒇𝒊 = 𝛁𝒓𝒊
𝐿 =  −𝛁𝒓𝒊

𝑉  

 

These forces calculations made MD a relatively time-consuming simulation [31]. 

Therefore in practice, a cut-off at interatomic distance 𝑟 = 𝑟𝑐 where the interacting 

forces become negligible is introduced in the potential function, and interacting forces 

beyond that limit are ignored [21]. In our case, the cut-off of the LJ potential function is 

taken at 𝑟𝑐 = 2.5𝜎, where the potential is only 1.6% of the minimum value at −𝜖 [31].  

 

The integration algorithm used in MD simulations is the Verlet algorithm. For a short 

time interval (defined as a timestep τ) 𝑡 to 𝑡 + 𝛿𝑡, the atom trajectories are calculated by 

performing Taylor expansion about r(t) 

𝒓(𝑡 + 𝛿𝑡) = 𝒓(𝑡) + 𝒗(𝑡)𝛿𝑡 +
1

2
𝒂(𝑡)𝛿𝑡2 + ⋯ 

𝒓(𝑡 − 𝛿𝑡) = 𝒓(𝑡) − 𝒗(𝑡)𝛿𝑡 +
1

2
𝒂(𝑡)𝛿𝑡2 − ⋯ 
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And thus their sum gives  [21] 

𝒓(𝑡 + 𝛿𝑡) = 2𝒓(𝑡) − 𝒓(𝑡 − 𝛿𝑡) + 𝒂(𝑡)𝛿𝑡2 

In LJ unit, LAMMPS uses 0.005 𝜏∗ as one time-step (τ), where  𝜏∗ = √
𝑚𝜎2

𝜖
. 

Physical quantities of interest are calculated and recorded throughout the simulation 

procedures accordingly. In particular, the temperature of the system is given by the 

kinetic energy 

𝐾 =  
3

2
𝑁𝑘𝐵𝑇 

and the stress is computed through the pressure of the system [22] by 

𝜎𝑖𝑗 =
∑ 𝑚𝑘

𝑁
𝑘 𝑣𝑘𝑖𝑣𝑘𝑗

𝑉
+

∑ 𝑟𝑘𝑖𝑓𝑘𝑗
𝑁
𝑘

𝑉
 

 

2.3 Simulation Procedures 

Each structure was first relaxed and the system energy is minimized through the 

conjugate gradient algorithm [32] to ensure the starting configuration is stable. It is then 

heated up to the desired temperature T in an isobaric ensemble [33] where the pressure 

in the system was maintained at zero. This procedure ensures that no stresses developed 

in the material from the thermal expansion before applying any mechanical loading. 

 

After achieving an equilibrium volume at T, cyclic shearing was applied at constant 

volume. We applied periodically varying tensile and compressive strains along the [100] 

(x-) direction. Periodic strains of opposite sign are applied along the y-direction so that 

the volume of the model remains constant. The strain along the z-direction is kept at 
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zero. The strain profile is sinusoidal in time with a fixed frequency, 𝜔. Each straining 

period correspond to fifty strain increments. After each strain increment is applied, we 

let the system dynamically evolve through MD over a specified number of time steps ∆τ 

before applying the next strain increment. The straining process stops after the 

simulation reaches a total of 5,000,000 time-steps. The frequency 𝜔 and number of 

cycles N completed for each run may therefore be calculated as 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝜔 =
2𝜋

 𝑝𝑒𝑟𝑖𝑜𝑑

=
2𝜋

# 𝑜𝑓 𝑠𝑡𝑟𝑎𝑖𝑛 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑜𝑛𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 × 𝑀𝐷 𝑡𝑖𝑚𝑒 𝑎𝑓𝑡𝑒𝑟 𝑒𝑎𝑐ℎ 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡

=
2𝜋

50 × ∆𝜏
 

 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑐𝑦𝑐𝑙𝑒𝑠 𝑁 =
𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒

𝑝𝑒𝑟𝑖𝑜𝑑
=

5,000,000

50 ×  ∆𝜏
 

 

This loading procedure was used at three different temperatures, four misfit values 

(mentioned above), and four structure sizes as noted in Table 1. The simulations for 

different structure sizes are carried out to check if a behavior is an artifact of a model 

size or a system size-independent material property. All of these parameters are 

summarized in Table 1, below. 
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Table 1: Model parameters examined in our simulations. 

Parameters # Values 

Atomic Misfit σ 4 0.84, 0.86, 0.88, 0.90 

Loading Frequency ω 46 0.00001-0.025  

(the complete set of values and their 

corresponding ∆𝜏 values are attached in the 

appendix section) 

Temperature 3 0.1, 0.2, 0.3  

Structure Sizes 4 4000, 8788, 16384, 32000 atoms 

 

 

2.4 Storage and Loss Modulus Calculations 

The stresses recorded in the simulation are used to calculate storage and loss modulus of 

the system. In a cyclic deformation, the strain 𝜀, strain rate 𝜀̇ and stress response 𝜎 can 

be written as 

𝜀(𝑡) = 𝜀0 sin(𝜔𝑡) 

𝜀̇(𝑡) = 𝜔𝜀0 cos(𝜔𝑡) 

𝜎(𝑡) = 𝜎0 sin(𝜔𝑡 + 𝛿) 

where 𝜀0 and 𝜎0 is the magnitude of strain and stress respectively, 𝜔 is the angular 

frequency, 𝑡 is time and 𝛿 is the phase shift angle between the strain and stress. Figure 3 

shows an example of applying sinusoidal strain and the corresponding stress response. 
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Figure 3: Cyclic deformation and the corresponding stress response with a time lag. 

Adapted with permission from [34]. 

 

Expanding the sine term in the stress equation, we can define the storage modulus, 𝐺1, 

and loss modulus, 𝐺2: 

𝜎(𝑡) = 𝜎0 cos(𝛿) sin(𝜔𝑡) + 𝜎0 sin(𝛿) cos(𝜔𝑡) = 𝜀0𝐺1 sin(𝜔𝑡) + 𝜀0𝐺2cos(𝜔𝑡) 

where 𝐺1 =
𝜎0

𝜀0
cos(𝛿) and 𝐺2 =

𝜎0

𝜀0
sin(𝛿).  

 

Storage modulus describe the stored elastic energy in a cycle, while loss modulus 

represents the energy dissipated per cycle. The averaged dissipated energy can be 

calculated by integrating the power (work rate) (24) 

 

1

𝑁
∫  𝜎(𝑡)𝜀̇(𝑡) 𝑑𝑡 =  

1

𝑁
∫ [𝜀0𝐺1 sin(𝜔𝑡) + 𝜀0𝐺2cos(𝜔𝑡)]

𝑁
2𝜋
𝜔

0

𝑁
2𝜋
𝜔

0

[𝜔𝜀0 cos(𝜔𝑡)]  𝑑𝑡

= 𝜋𝜀0
2𝐺2 
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Thus, 

𝐺2 =
1

𝜋𝜀0
2𝑁

∫ 𝜎(𝑡)𝜀̇(𝑡) 𝑑𝑡
𝑁

2𝜋

𝜔
0

. 

Approximating the integral above with a discrete sum, the average loss modulus in our 

simulations may be calculated by summing over all the data points acquired during 

cyclic loading as 

𝐺2 =
1

𝜋𝜀0
2𝑁

∑ 𝜎𝑖𝜀𝑖̇

𝑁

𝑖=1

∆τ  

 

A similar approach may be used to derive an expression for computing 𝐺1: 

1

𝑁
∫  𝜎(𝑡)𝜀(𝑡) 𝑑𝑡 =  

1

𝑁
∫ [𝜀0𝐺1 sin(𝜔𝑡) + 𝜀0𝐺2cos(𝜔𝑡)]

𝑁
2𝜋
𝜔

0

𝑁
2𝜋
𝜔

0

[𝜀0 sin(𝜔𝑡)] 𝑑𝑡

=
𝜋

𝜔
𝜀0

2𝐺1 

 

Thus, 

𝐺1 =
𝜔

𝜋𝜀0
2𝑁

∑ 𝜎𝑖𝜀𝑖
𝑁
𝑖=1 ∆τ, 

where N is the total number of straining cycles carried out in the simulation. 
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3. RESULTS AND ANALYSIS  

 

3.1 Viscoelastic Responses 

3.1.1 Time-Dependent Stress Responses 

Instead of giving linear elastic responses, we found that our defect-free ESSs exhibit 

viscoelastic responses. Figure 4 shows two examples of the stress-strain curves obtained 

for simulations with loading frequency of 0.0209. Both of them have an ellipsoidal 

shape, which suggested the presence of energy dissipations during the loading cycles. 

Figure 5 and Figure 6 shows the starting four cycles of the red curve in Figure 4.  

 

Figure 4: Stress-strain curve correspond to a loading frequency of 0.0209 at T=0.3 
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Figure 5: Stress-strain graph of the first four cycles of the red curve in Figure 4 

 

 

Figure 6: Stress and strain vs time of the first four cycles of the red curve in Figure 4 



 

 

 
 

15 

3.1.2 The Elastic Feature  

To verify that ESSs are indeed viscoelastic but not of any visco-plastic nature, we 

performed cyclic deformation to four ESSs sample with different misfit and stopped 

deforming the structure after some complete cycles, where the strain is maintained at 

zero. We then examine how the stress changes with time and found that for all misfits, 

the stresses decay back to values close to zero within 100 time-steps. Figure 7(a)-(d) 

shows the stress-time graph we obtained for this examination. We also noticed that there 

is an “over-shoot” feature in the graph especially for cases with a larger 𝜎 value (less 

distorted structure), but this process only last around 50 time-steps. After the decay 

period, the oscillation in the stresses around zero is due to thermal fluctuations of the 

atoms. 
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Figure 7: Stress decay over time for structure with different misfit at T=0.1, with (a) 

𝜎 = 0.84, (b) 𝜎 = 0.86, (c) 𝜎 = 0.88 and (d) 𝜎 = 0.90 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 
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3.2 Features of Loss Modulus-Frequency Graphs 

 

 

Figure 8: Loss modulus versus frequency for a 4000-atom ESSs system with misfit 𝜎 =
0.90 over three temperatures. 
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Figure 9: Loss modulus versus frequency for a 4000-atom ESSs system with misfit 𝜎 =
0.88 over three temperatures. 

 

 

Figure 8 and figure 9 showed the loss modulus-frequency graph for a 4000-atom 

structure with misfit σ = 0.90 and σ = 0.88 at three temperatures respectively. The 

figures show two important features. First, there is a general increase in loss modulus as 

the frequency and temperature increase. The increase with frequency is steeper for 

higher temperatures. Second, there is a pronounced peak in all of the curves, and the 

peak shifts to lower frequencies at higher temperatures. 



 

 

 
 

19 

 

 

Figure 10: Loss modulus versus frequency curves for the ESSs system with misfit 𝜎 = 

0.88 and 0.90 from Figure 3 and 4 at T = 0.1. 

 

 

Figure 10 shows two curves adapted from figure 3 and 4 that correspond to T=0.1. It 

appears that the peak is located at a lower frequency for a lower σ value (σ = 0.88), 

which correspond to a higher misfit, i.e. more severe distortions in the structure. This 

trend holds for all three temperatures. These loss moduli suggest that the simulated ESS 

gives a viscoelastic response similar to that of a viscous material, such as a metallic 

glass.  
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3.3 The Peaks: Resonant Vibrations 

We noticed that the peaks in the loss modulus-frequency graphs shown shift to lower 

frequencies at higher temperatures. This is contradicting to what is expected for energy 

dissipation arise from viscoelasticity, for which the peak dissipation should shift to 

higher loading frequencies as temperature increases. In order to identify the origin of the 

peaks in the loss modulus-frequency graphs, we check if the frequencies at which the 

peaks located varies across structure sizes given the same temperature and misfit. 

Indeed, Figure 11 shows that as the structure sizes increases, the loading frequency 

corresponding to the first loss modulus peak decreases. This indicated that such feature 

is not a result from an intensive physical property, and therefore is not associated with 

the viscoelastic behavior of the material. 

 

 

Figure 11: The loading frequencies where the peaks at the loss modulus-frequency 

graph are located, versus structure sizes in terms of number of atoms. 
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Apart from the peaks shown in previous figures, there are also peaks with a large 

magnitude up to G2=12. We examined the screenshots of the corresponding atomic 

structures. We observed special “patterns” at those peaks, illustrated in Figure 12. These 

patterns can be found across different temperatures and misfits, but the number of 

patterns observed across the loading frequencies for one set of temperature and sigma 

decreases with the simulation size. We therefore attribute these peaks with resonant 

vibrations. When the loading frequency matches the natural frequency, the material 

vibrates in the corresponding vibrational mode, giving rise to the patterns.  

 

 

Figure 12: Illustration of observed patterns at loss modulus peaks. Brackets shows 

values of (frequency, loss modulus), followed by the direction of point of view. 
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To illustrate the movement of atoms during these vibrations, we calculated the averaged 

non-affine displacement of atoms for one set of simulation, where sigma= 0.90, T=0.1. 

The non-affine displacement is the difference between the location of atoms in a perfect 

single-component fcc lattice and the location of atoms in the simulation at the same 

strain 𝜀, thus neglecting the effect of the imposing strain. We then take the average over 

the total number of atoms, and that gives one non-affine displacement at that time 

instant. Figure 13 shows that at that particular frequency, the displacement has a sharp 

increase after around 25 cycles.  

 

 

Figure 13: Non-affine displacement versus number of loading cycles 
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3.3.1 Comparison with the Classical Harmonic Oscillator  

The resonant vibration argument presented above can be further understood by 

examining the harmonic oscillators model and comparing it to our results. Figure 14 

shows an illustration of a simple harmonic oscillator. 

 

Figure 14: The harmonic oscillator consists of a spring with spring constant k and mass 

m. 

 

For a simple system comprises of a mass m and a spring with spring constant k, the 

natural oscillation frequency is just  

𝜔 = √
𝑘

𝑚
 

If the system is driven at this frequency, resonance occurs. From this relation, it can be 

deduced that the resonant frequency decreases as the mass increases, or as the spring 

constant decreases. The spring constant in the model is analogous to the stiffness in a 

material. 
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From Figure 11, we have presented that as the number of atoms (which is proportional to 

the mass of our structure) increases, the frequency corresponding to a peak in the loss 

modulus-frequency graph decreases. On the other hand, from Figure 8 and 9, the peak 

shift to lower frequency as temperature increases. For our ESSs, the stiffness, which is 

proportional to the storage modulus, decreases as temperature increases. This means that 

as the stiffness decreases, the structure has a lower resonant frequency, which is in 

agreement with what we see in the harmonic oscillator model.  

 

3.4 The Storage Modulus 

 

Figure 15: Storage modulus versus frequency for the same system with misfit 𝜎 = 0.90 

in Figure 3 over three temperatures. 
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Figure 15 and 16 shows the storage modulus against angular frequency. For the same 

structure and temperature condition, the storage modulus maintains a nearly constant 

value over the range of investigated frequencies. The first “drop” in each of the curves 

occur near or at the frequency where the peak in the loss modulus graph is located. From 

both figures, the structure under lower temperature has a higher storage modulus. If we 

compare the two structures with different misfit at the same temperature, the one with 

higher σ value (less distorted structure) has a higher storage modulus. 

 

 

Figure 16: Storage modulus versus frequency for the same system with misfit 𝜎 = 0.88 

in Figure 4 over three temperatures. 
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3.4.1 Modulus Values Not Obeying the Rule of Mixture 

In order to compare the storage modulus of structures with different misfits and 

temperatures, we take the average value of the calculated storage modulus from all the 

loading frequencies that correspond to a structure with certain misfit and temperature. 

Figure 17 shows the master graph of the averaged storage modulus versus temperature 

for all four misfit values of our 4000-atoms ESS structures. Figure 18 is a reference for 

the G1 values for single component structures with corresponding characteristic bond 

lengths.  

 

Figure 17: Averaged storage modulus versus temperature for ESSs with varies misfit 

parameters. 
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Figure 18: Averaged storage modulus versus temperature for single-component 

structure with varies characteristic bond length. 

 

As expected, the modulus decreases as temperature increases. When the misfit in the 

ESSs structure increases (smaller sigma values), the storage modulus decreases. An 

interesting observation from the storage modulus graphs is that not only does the 

modulus of ESSs not follow a rule of mixture, the values are way lower than those from 

the corresponding single-component structure. For example, at T=0.1, the averaged 

storage modulus of single component with characteristic bond length of σ=1 and σ=0.84 

are 67.54 and 33.54 respectively, while a ESSs with σ=0.84 (which correspond to having 

atom pairs with σ=1 and σ=0.84) has an average modulus of 8.70.  
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3.5 Board Background Increase 

Another pronounced feature in our loss modulus-frequency graph is the presence of a 

background increase in loss modulus as the loading frequency increase. Neglecting the 

loss modulus peaks, we fit out data with a straight line in a log-log plot according to the 

following equation in order to compare the degree of the increases. Figure 19 is an 

illustration of such treatment. 

log(𝐺2) = Alog(𝜔) + 𝐵 

 

Figure 19: Fitting loss modulus-frequency data in the log-log scale 

 

Figure 20 and 21 shows the fitted slopes (A) and intercepts (B) for our examined 

structure. The slopes of all data have a value close to 1, while there is a clear trend that 
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the intercept value increase with decrease misfit values (higher distortion). If we 

consider the converted equation 

𝐺2 =  𝑒𝐵𝜔𝐴, 

a higher intercept value corresponds to a larger increase in loss modulus as frequency 

increase. This means that the increase in energy dissipation with increasing loading 

frequencies is larger in structures that are more distorted.  

 

 

Figure 20: Fitted slopes of loss modulus-frequency data versus temperature for all 

misfits 
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Figure 21: Fitted intercepts of loss modulus-frequency data versus temperature for all 

misfits 
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4. DISCUSSIONS  

 

4.1 Linear Viscoelasticity and the Standard Solid Model 

We made an attempt to understand the viscoelastic behavior observed in the previous 

section by applying the standard solid model in the scope of linear viscoelasticity. The 

model consists of a spring connecting with a dashpot in parallel, and another string 

connecting in series as shown in Figure 22.  

 

 

Figure 22: The construction of the standard solid model. Adapted with permission from 

[34].  

 

The governing equation of motion of this system is given by 

𝐸1

𝜂
𝜀 + 𝜀̇ = (1 +

𝐸1

𝐸2
)

𝜎

𝜂
+

𝜎̇

𝐸2
 

where 𝜂 is the viscosity, 𝐸1 and 𝐸2 are elastic constants. When cyclic motion is applied 

to the system, the storage and loss modulus can be calculated according by substituting  

𝜀(𝑡) = 𝜀0 sin(𝜔𝑡)   

𝜎(𝑡) = 𝜎0 sin(𝜔𝑡 + 𝛿), 

which gives 
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𝐺1 =
𝐸1𝐸2(𝐸1 + 𝐸2) + 𝐸2𝜂2𝜔2

(𝐸1 + 𝐸2)2 +  𝜂2𝜔2
 

𝐺2 =
𝐸2

2𝜂𝜔

(𝐸1 + 𝐸2)2 +  𝜂2𝜔2
 

 

Figure 23 and 24 shows examples of storage (G1) and loss (G2) modulus graph as a 

function of loading frequency for a certain 𝜂 value. 

 

Figure 23: Illustration of storage modulus-frequency relation obtained from the standard 

solid model 
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Figure 24: Illustration of loss modulus-frequency relation obtained from the standard 

solid model 

 

As noted in section 1, ESSs possess of numerous inherent states, which suggest the idea 

of transitions with different activation energies. We therefore propose that the board 

background increase in loss modulus-frequency graph may be the result of such 

transitions, which leads to the idea that at different loading frequencies, the material has 

different viscosity values. Thus the background increase is the result from adding all 

corresponding loss modulus peaks (as shown in Figure 24) across the span of the loading 

frequencies. This idea is demonstrated in Figure 25. 
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Figure 25: Illustration of the idea that ESSs possess different viscosity across different 

loading frequencies. 

 

4.2 Fitting the Loss Modulus-Frequency Data 

To examine this hypothesis, we employ the idea to our data by calculating the expected 

loss modulus and fit the relation to our data.  

𝐺2(𝑤) = ∫ 𝑓(𝜂)𝐺2
𝑠𝑠(𝜂, 𝑤)

∞

0

 𝑑𝜂 

𝑓(𝜂) = 2𝛾(𝑇)𝜂 𝑒−𝛾(𝑇)𝜂2
  

𝐺2
𝑠𝑠 =

𝛼 𝜂𝜔

𝛽 +  𝜂2𝜔2
 

𝑓(𝜂) is the distribution of viscosities, where 𝛾(𝑇) is a parameter that account for the 

temperature dependence. 𝐺2
𝑠𝑠 is the same loss modulus relation from the standard model, 

with the fitting parameters 𝛼 and 𝛽 defined by 

𝛼 = 𝐸2
2 

𝛽 = (𝐸1 + 𝐸2)2 
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The integral gives  

𝐺2 =
𝛼𝛾

𝜔3
{𝜔2√

𝜋

𝛾
+ 𝜋𝜔√𝛽𝑒

𝛽𝛾
𝜔2[𝐸𝑟𝑓 (

√𝛽𝛾

𝜔
) − 1]} 

 

Figure 26 shows an example of a best fit obtained. Although the model does not fit 

perfectly to the data, it gives the same trend that the loss modulus increases with loading 

frequency. 

 

 

Figure 26: Attempt for fitting the loss modulus using relations based on the standard 

solid model 
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We then used the fitted parameters 𝛼 and 𝛽 to calculate the corresponding storage 

modulus values in order to further verify if the hypothesis works. The storage modulus 

can be obtained using the same method with G1 replacing G2 in the equation 

 

𝐺1(𝑤) = ∫ 𝑓(𝜂)𝐺1
𝑠𝑠(𝜂, 𝑤)

∞

0

 𝑑𝜂 

𝐺1 =
√𝛼𝛽(√𝛽 − √𝛼) + √𝛼𝜂2𝜔2

𝛽 +  𝜂2𝜔2
 

 

Figure 27 shows the calculated storage modulus, for which the values are negative. Not 

only are the values off from our storage modulus data, a negative modulus value is not 

physical.  
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Figure 27: The calculated storage modulus using fitted parameters obtained from loss 

modulus calculation by applying the standard solid model 

 

4.3 Fitting the Storage Modulus-Frequency Data 

Since the fitting mentioned in the previous section is not successful, we tried to do the 

same process backwards--- first finding the best fit for the storage modulus-frequency 

data, then uses the fitted parameters to calculate the corresponding loss modulus values.  

𝐺1(𝑤) = ∫ 𝑓(𝜂)𝐺1
𝑠𝑠(𝜂, 𝑤)

∞

0

 𝑑𝜂 
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Recall that 𝐺1
𝑠𝑠 is 

𝐺1
𝑠𝑠 =

𝐸1𝐸2(𝐸1 + 𝐸2) + 𝐸2𝜂2𝜔2

(𝐸1 + 𝐸2)2 +  𝜂2𝜔2
 

And the integral gives us 

𝐺1 = 𝐸2 −
𝑒𝐶  𝐸2

2𝛾(𝐸1 + 𝐸2) ∫
𝑒−𝑡

𝑡 𝑑𝑡
∞

𝐶

𝜔2
 

where 

𝐶 =
𝛾(𝐸1 + 𝐸2)2

𝜔2
 

We re-define the parameters, 𝛼′ and 𝛽′, as follow 

𝛼′ = 𝐸2 

𝛽′ = 𝐸1 + 𝐸2 

so that 

𝐺1 = 𝐸2 −
𝑒𝐶  𝐸2

2𝛾(𝐸1 + 𝐸2) ∫
𝑒−𝑡

𝑡 𝑑𝑡
∞

𝐶

𝜔2
= 𝛼′ −

𝑒
𝛾𝛽′2

𝜔2  𝛼′2𝛾𝛽′ ∫
𝑒−𝑡

𝑡 𝑑𝑡
∞

𝛾𝛽′2

𝜔2

𝜔2
 

 

Figure 28(a)-(b) shows best fits of storage modulus obtained using the same data set as 

section 4.2. While we can get a fitted curve with values close to our storage modulus 

data, the curve suggests a decrease in storage modulus as loading frequency increases, 

rather than the trend we saw in our data.  

 

We finish our analysis by using the fitted 𝛼′ and 𝛽′ values to calculate the corresponding 

loss modulus values, and the results are shown in Figure 29(a)-(b). Since the best fit for 
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the storage modulus does not describe our data well in Figure 28, it is not surprising to 

see that the calculated loss modulus is also off from the data. We therefore conclude that 

the linear viscoelastic model fails to apply to our data. 

 

     

Figure 28: Attempt for fitting the storage modulus using relations based on the standard 

solid model, (a) T=0.2, (b) T=0.3 

  

Figure 29: The calculated loss modulus using fitted parameters obtained from storage 

modulus calculation by applying the standard solid model, (a) T=0.2, (b) T=0.3 

 

(a) (b) 
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4.4 Future Study Suggestions  

From the previous section, the linear viscoelastic model fails to account for our data. We 

suggest future efforts on re-examining the model for viscoelastic response of ESSs with 

a lower loading frequency range. This will help identify if the failure is due to our choice 

of parameters, or if it is the inappropriate model to use for ESSs systems. By doing so 

will also help understanding the underlying mechanism of the background increase in 

loss modulus and features of the storage modulus. 
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5. CONCLUSION  

 

In this study we investigated the viscoelastic response of two-component, defect-free, 

face-centered cubic ESSs by performing molecular dynamics simulations of cyclic 

deformation. We found that ESSs exhibit viscoelasticity, where the energy dissipations 

are loading frequency dependent and atomic misfit dependent. As the distortion in the 

structure increases, more energy is dissipated within the same loading frequency range. 

At certain frequencies, we observed resonant vibrations, which lead to peaks in loss 

modulus-frequency graphs. As the misfit increases, the storage modulus of ESSs 

decreases and does not obey the rule of mixture. We made an attempt to apply linear 

viscoelastic model to our result and conclude that the model does not fit our high loading 

frequency regime.  
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APPENDIX  

 

Table 2: List of MD times after each increment and the corresponding loading 

frequencies 

# MD Time  Loading # MD Time  Loading 

   after each increment  Frequency    after each increment Frequency  

1 12500 1.00531E-05 24 30 0.004189 

2 10000 1.25664E-05 25 8 0.015708 

3 8000 1.5708E-05 26 25 0.005027 

4 6250 2.01062E-05 27 24 0.005236 

5 5000 2.51327E-05 28 23 0.005464 

6 4000 3.14159E-05 29 22 0.005712 

7 2500 5.02655E-05 30 21 0.005984 

8 2000 6.28319E-05 31 20 0.006283 

9 1250 0.000100531 32 19 0.006614 

10 1000 0.000125664 33 18 0.006981 

11 800 0.00015708 34 17 0.007392 

12 500 0.000251327 35 16 0.007854 

13 400 0.000314159 36 15 0.008378 

14 250 0.000502655 37 14 0.008976 

15 200 0.000628319 38 13 0.009666 

16 125 0.00100531 39 12 0.010472 

17 100 0.001256637 40 11 0.011424 

18 80 0.001570796 41 10 0.012566 

19 50 0.002513274 42 9 0.013963 

20 45 0.002792527 43 8 0.015708 

21 40 0.003141593 44 7 0.017952 

22 35 0.003590392 45 6 0.020944 

23 32 0.003926991 46 5 0.025133 

  


