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ABSTRACT

In 1959, Dirk Brouwer pioneered the use of the Hamiltonian perturbation methods for con-

structing artificial satellite theories with effects due to nonspherical gravitational perturbations in-

cluded. His solution specifically accounted for the effects of the first few zonal spherical harmon-

ics. However, the development of a closed-form (in the eccentricity) satellite theory that accounts

for any arbitrary spherical harmonic perturbation remains a challenge to this day. In the present

work, the author has obtained novel solutions for the absolute and relative motion of artificial satel-

lites (absolute motion in this work refers to the motion relative to the central gravitational body)

for an arbitrary zonal or tesseral spherical harmonic by using Hamiltonian perturbation methods,

without resorting to expansions in either the eccentricity or the small ratio of the satellite’s mean

motion and the angular velocity of the central body. First, generalized closed-form expressions

for the secular, long-period, and short-period variations of the equinoctial orbital elements due

to an arbitrary zonal harmonic are derived, along with the explicit expressions for the first six

zonal harmonics. Next, similar closed-form expressions are obtained for the sectorial and tesseral

(collectively referred to as tesserals henceforth) harmonics by using a new approach for the exact

Delaunay normalization of the perturbed Keplerian Hamiltonian. This approach reduces the solu-

tion for the tesseral periodic perturbations to quadratures. It is shown that the existing approximate

approaches for the normalization of the tesseral problem, such as the method of relegation, can be

derived from the proposed exact solution. Moreover, the exact solution for the periodic variations

due to the tesseral harmonics produces a unified artificial satellite theory for the sub-synchronous

and super-synchronous orbit regimes without any singularities for the resonant orbits. The closed-

form theories developed for the absolute motion are then used to develop analytic solutions in the

form of state transition matrices for the satellite relative motion near a perturbed elliptic reference

orbit. The expressions for differential equinoctial orbital elements for establishing a general cir-

cular orbit type satellite formation are also derived to avoid singularities for the equatorial and

circular reference orbits. In order to negate the along-track drifts in satellite formations, an ana-
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lytic expression for the differential semimajor axis is derived by taking into account the secular

effects due to all the zonal harmonics. The potential applications of the proposed satellite theo-

ries range from fuel-efficient guidance and control algorithms, formation design, faster trade and

parametric studies to catalog maintenance, conjunction analysis, and covariance propagation for

space situational awareness. Two specific applications, one for solving a perturbed multiple revo-

lution Lambert’s problem and the other for rapid nonlinear propagation of orbit uncertainties using

point clouds, are also given. The theories presented in this work are implemented for computer

simulations in a software tool. The simulation results validated the accuracy of these theories and

demonstrated their effectiveness for various space situational awareness applications.
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NOMENCLATURE

AST Artificial Satellite Theories

GCO General Circular Orbit

PCO Projected Circular Orbit

GA-STM Gim-Alfriend State Transition Matrix

RM-STM Relative Motion State Transition Matrix (Φ)

MC Monte Carlo

PRINCE Perturbation Relegation In New Canonical Elements

PBJ Poisson Bracket Jacobian

(A,B) Poisson Bracket of A and B

LVLH Local Vertical Local Horizontal

RSS Root Sum Square

U Gravitational potential energy

V Gravitational potential

H Hamiltonian

K Transformed (or averaged) Hamiltonian

S Generating function for canonical transformations

W Generating function for Lie-series based near-identity canon-
ical transformations

t Time

C Direction cosine matrix

Σ Geometric transformation matrix

φm Differential mean state transition matrix
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DSP Differential long-period to short-period transformation
matrix

DLP Differential mean to long-period transformation matrix

D Differential mean to osculating transformation matrix (=
DSPDLP )

µ Gravitational parameter

n Spherical harmonic degree

m Spherical harmonic order

φ Latitude (planetocentric)

λ Longitude (planetocentric)

θ Greenwich sidereal time

Re Radius of the central body (Earth)

wE Rotational speed of the central body (Earth)

Pn Legendre polynomial of degree n

Jn Zonal harmonic coefficient of degree n

Cnm Spherical harmonic coefficient of degree n and order m

Snm Spherical harmonic coefficient of degree n and order m

r radial distance

ñ Mean motion

p Semilatus rectum

a Semimajor axis

e Eccentricity

i Inclination

h (also Ω) Right ascension of the ascending node

g (also ω) Argument of periapsis

l Mean anomaly
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f True anomaly

Λ Mean longitude (l+g+h)

Ψ True longitude (f+g+h)

ϑ True argument of latitude (f+g)

η
√

1− e2

si sin i

ci cos i

p1 tan
(
i
2

)
cos(h)

p2 tan
(
i
2

)
sin(h)

q1 e cos(g + h)

q2 e sin(g + h)

[x, y, z] Curviliear coordinate vector in the radial, along-track, and
cross-track directions

Z Set of all integers
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

The dawn of artificial satellite theories can be traced back to the planetary theories. Much be-

fore the advent of the space age, perturbation methods were the staples in celestial mechanics for

predicting the motions of the planetary bodies and in some cases, proving their existence, namely

Neptune. With the launch of Sputnik 1 in 1957, there was a new need to accurately predict the

motion of an artificial satellite in an arbitrary orbit, being perturbed chiefly by the nonspherical

gravitational effects of Earth and the atmospheric drag. Conventional planetary theories derived

using the perturbation methods assumed small orbital eccentricity and the inclination. Moreover,

the long-period dynamics of the nodal and apsidal lines in these theories were essentially treated

along with the secular dynamics due to the very long time scales involved. For the artificial satel-

lites, however, these time scales are much shorter and as a result, new strategies were needed to

treat the long-period dynamics as purely periodic effects using trigonometric series rather than the

power series used in the planetary theories.

An important motivation behind the development of the artificial satellite theories in previous

decades was in geodesy for estimating the parameters of Earth’s nonuniform gravitational field. By

observing the variations in the orbital elements of the artificial satellites caused by the nonuniform

gravitational field, the parameters characterizing the field can be computed. Although, fast off-the-

shelf numerical orbit propagators are widely available today, artificial satellite theories built using

perturbation methods have not lost their significance. They are indispensable for many tasks re-

quired for space situational awareness, such as catalog maintenance, orbit uncertainty predictions,

conjunction analysis, etc., and more generally, for guidance and control, proximity operations, and

perturbed relative motion propagation. The development of satellite theories that maintain long-

term prediction accuracy under the effects of various perturbations such as nonspherical gravita-

tional effects, atmospheric drag, solar radiation pressure, third-body perturbations, etc. remains an
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active area of research to this day.

The focus of this work is specifically on developing an artificial satellite theory for zonal, sec-

torial, and tesseral gravitational harmonics and its utilization for formulating the analytic solutions

for the perturbed satellite relative motion. The two primary goals behind this work are: develop a

second-order theory in a generalized form valid for an arbitrary spherical harmonic and compute

the solutions in closed-form, without resorting to expansions in either the eccentricity or ratio of

the mean-motion to the angular velocity of the central body. The achievement of these two goals

would ensure that the analytic solutions developed are compact in size, easily computable, and at

the same time, are suitable for propagating the absolute and relative motion (absolute motion in

this work refers to the motion relative to the central gravitational body) of satellites in arbitrary

elliptic orbits. Dependence on special software such as Poisson Series Processors to manipulate

large expressions for a specific spherical harmonic is avoided in this work and any off-the-shelf

general purpose symbolic computation software should suffice, if need be.

1.2 Literature Review

This section gives a review of the past research on various aspects of artificial satellite theo-

ries, including the canonical perturbation methods, nonspherical gravitational perturbations in the

form of the spherical harmonics, atmospheric drag effects, third-body perturbations, the critical

inclination singularity, and the resonance effects due to the tesseral and sectorial harmonics. Ad-

ditionally, the past research into the utilization of these satellite theories for developing analytic

solutions for the perturbed relative motion of the artificial satellites is also discussed. An effort

is made to discuss significant contributions made in the past dealing with each of these aspects.

However, considering the vast amount of the existing literature on these subjects, the author makes

no claim to include each and every deserving contribution in this survey. The literature review is

divided into the time periods based on the author’s opinion of the pioneering work that was pre-

sented in the beginning of that period. In some cases, closely related works are grouped together

despite having significant time period between their publications.
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1.2.1 Satellite Theories for Nonspherical Gravitational Perturbations

1.2.1.1 Before 1959

A few other methods existed before Brouwer’s well-known work on the use of canonical per-

turbation methods for constructing the artificial satellite theories (AST) in 1959 (much after he

computed Titan’s mass using Hill’s method as a student [2] in 1924). A general perturbation

theory for the rectangular coordinates using the variation of elements in the canonical form was

proposed by Brouwer in 1944 [3] (later modified by Musen in 1966 [4]). Using a method similar

to the one used in the Hill∗-Brown† lunar theory, Brouwer provided a solution, correct up to third

order in the eccentricity, for the orbital motion of a particle of negligible mass influenced by a

spheroidal central body [5]. His motivation for this work came from a celestial mechanics prob-

lem: the motion of Jupiter’s fifth satellite, which is affected more by the non-sphericity of the planet

than the third-body perturbations. His approach of retaining the spherical harmonic coefficients as

algebraic quantities in the expressions (to be determined separately from the observational data)

rather than explicitly specifying the mass distribution parameters in the theory, would become a

standard approach later on. The physicist and astronomer Lyman Spitzer also published a paper

on the perturbations of an artificial satellite’s orbit, in which he included third-body perturbation

effects as well [6]. In 1956, Blitzer et al. used a Lindstedt-Poincare type method to compute a

first-order perturbation solution for the spherical coordinates of an artificial satellite affected by an

oblate Earth, valid for near-circular orbits [7]. They anticipated that the analytical solutions for the

variations of the pericenter and the line of nodes could be used to estimate the oblateness coeffi-

cient of Earth by making observations of the soon-to-be launched artificial satellites. Meanwhile,

King-Hele considered the problem of predicting the orbits of an artificial satellite perturbed by the

atmospheric drag, in his first paper [8] with many to come later on this subject.

Before Sputnik 1 was launched in 1957, a compilation of the various papers, edited by Van

Allen, on the applications of the artificial satellites was published, in Chapter 1 of which Davis

∗http://www.phys-astro.sonoma.edu/BruceMedalists/Hill/index.html
†http://www.phys-astro.sonoma.edu/BruceMedalists/Brown/index.html
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et al. considered the effects of the major perturbations, the oblateness and the atmospheric drag,

on the satellite orbits [9]. In 1958, Sterne applied the conventional Hamilton-Jacobi theory in an

astronomically unconventional way (his exact words) to compute an exact analytical solution of a

Hamiltonian that included a major portion of the oblateness effects [10]. His pioneering work was

based on an important observation that the Hamilton-Jacobi equation in the spherical coordinates

for the Hamiltonian

H =
1

2

(
p2
r +

p2
λ

r2 cos2 φ
+
p2
φ

r2

)
+ V1(r) +

1

r2
V2(φ) (1.1)

is separable and can be solved exactly. In the above equation, r, λ, and φ are the radial distance,

the planetocentric right ascension (or longitude), and the planetocentric declination with respect

to the planet’s equator (or latitude), respectively; pr, pλ, and pφ are the corresponding conjugate

momenta; and V1 and V2 are arbitrary functions of r and φ, respectively. The exact solution S to

the Hamilton-Jacobi equation corresponding to the above Hamiltonian is:

S =

∫
N

r
dr +

∫
M dφ+ α3 λ, (1.2)

where

N2 = 2r2α1 − 2r2V1(r)− α2
2,

M2 = α2
2 − α2

3 sec2 φ− 2V2(φ),

and α1, α2, and α3 are the canonical constants. Sterne showed that the actual Hamiltonian with the

oblateness effects can be expressed in the form given in Eq. 1.1 with the residual considered as the

perturbation Hamiltonian. In case of the equatorial orbits, this residual vanishes. The exact solu-

tion of the zeroth-order Hamiltonian was expressed in terms of the elliptic integrals. An important

significance of this work was that the zeroth-order exact solution described an intermediary orbit

that included the first-order secular part of the oblateness effects and geometrically, can be thought
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of as an ellipse precessing nonuniformly about the two fixed axes. An intermediary must include

the first-order secular effects due to a perturbation, and desirably some second-order secular ef-

fects too. The three fundamental frequencies associated with the intermediary are the anomalistic,

nodical or draconic, and sidereal. The anomalistic frequency corresponds to one full vibration of

r, the nodical frequency is associated with the time necessary for a particular angle, analogous to

the argument of the declination in an ordinary elliptic orbit referred to the equator, to increase by

2π, and the sidereal frequency is associated with the time necessary for λ to increase by 2π. In

case of the Keplerian ellipse, all three frequencies are equal. Garfinkel improved upon Sterne’s

solution by choosing a slightly different form of the zeroth-order Hamiltonian, which resulted in

all the secular perturbations of the pericenter and the node line in the intermediary orbit, and si-

multaneously a reduction in the number of the elliptic integrals required in the exact solution [11].

Brouwer, employing the Hill-Brown method, provided an improvement of his earlier solution valid

for near-circular orbits with arbitrary inclination [12]. Remarkably, he computed a second-order

solution of the variational orbit including the contributions of the first two even zonal spherical

harmonics. The analytical solution had small divisors near the critical inclination, which Brouwer

anticipated that they could be removed from his theory using Delaunay’s normalization method

(which turned out to be not true later on). He also pointed out that a modification of Delaunay’s

method by von Zeipel∗ could provide significant advantages. It is reported that von Zeipel him-

self gave credit for this method to Poincaré [13], nevertheless von Zeipel contributed important

modifications of the original Poincaré’s method, and they are described in Chapter 3 of Reference

[14]. A first-order theory for the secular effects due to the oblateness of Earth by an approximate

integration of the Lagrange planetary equations was also presented by Izsak [15]. A fourth-order

analytical solution for the oblateness effects directly in the spherical coordinates of an artificial

satellite was derived by King-Hele by assuming the eccentricity as a first-order and the oblateness

parameter as a second-order quantity [16].

∗http://www.astro.uu.se/history/zeipel.html
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1.2.1.2 1959-1965: The von Zeipel Method Era

The year 1959 is arguably the most prolific year for the development of artificial satellite the-

ories. Four different approaches for constructing the satellite theories applicable in Earth’s gravi-

tational field were published in the literature, with three of them appearing in the same issue (no.

64) of The Astronomical Journal. Chronologically, the papers were received in the order: Vinti,

Garfinkel, Brouwer, and Kozai. A clear distinction emerged between the two major approaches

to account for the non-sphericity of the central body in the satellite theories during this time:

the Brouwer-Kozai type methods with a two-body ellipse as the unperturbed orbit, and the Vinti-

Garfinkel type methods with an intermediary orbit as the unperturbed solution that included either

complete or a portion of the oblateness effects in exact form.

Vinti’s method facilitated the most accurate satellite theory in principle as it provided an ex-

act solution for the second zonal harmonic perturbation, also called the main problem of the AST

[17, 18]. It also accounts for a portion of the higher zonal harmonics in the exact solution. Un-

like Sterne’s use of the spherical coordinates, Vinti showed that the Hamilton-Jacobi equation is

completely separable in the oblate spheroidal coordinates for a potential function of an axially

symmetric body, which is a solution of Laplace’s equation. This solution, when expanded in

spherical harmonics, can represent the gravitational potential field due to any oblate central body

by matching the three arbitrary constants present in the solution to the amplitudes of the zeroth,

first, and second zonal harmonic. The amplitudes of the higher zonal harmonics are then all fixed.

It is noted that for this special case of the gravitational potential, the critical inclination singularity

disappears. Izsak expressed the exact solution of Vinti in an explicit form using the Fourier series

in a certain parameter (related to the oblateness parameter) up to order two [19, 20]. Later, Vinti

formulated a simpler explicit solution using the complete elliptic integrals of the first and second

kind only, which included the secular terms exactly and the periodic terms up to second order.

While the orbital elements introduced by Izsak in his explicit solution of Vinti’s theory could only

be found numerically from the initial conditions, Vinti proposed a new set of orbital elements that

may be computed from the initial conditions analytically [21, 22]. The explicit solution of Vinti’s
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problem showed that the orbits perturbed by the oblateness effect have two apoapsides at the two

nodes and the two periapsides at the highest and lowest points of the orbit above and below the

equatorial plane [23]. It can be shown that the problem of an artificial satellite in the gravitational

field of an oblate central body is equivalent to the integrable problem of the two fixed centers,

known also as Euler’s problem, situated at purely imaginary distances from one another [24]. This

analogy between the two problems was also independently discovered around the same time by

the researchers in the former Soviet Union [25]. In one instance, Aksenov et al. showed that the

potential corresponding to Euler’s problem of the two fixed centers can be generalized to resem-

ble Vinti’s potential and proposed more convenient transformations for formulating the solution of

Vinti’s problem [26].

Garfinkel extended his earlier work, in which he solved the Hamilton-Jacobi equation in spher-

ical coordinates for the secular portion of the second zonal harmonic. He applied von Zeipel’s

canonical perturbation method to account for the residual part of the second zonal harmonic along

with the fourth zonal harmonic [27]. The benefit of the intermediary, compared to Brouwer’s un-

perturbed elliptic orbit, shows up in the relative smaller magnitudes of the secular variations at

second order. This results in superior accuracy in the calculated positions. Garfinkel noted that the

singularities in his theory near the critical inclination disappeared for either circular orbits or if the

condition J4 + J2
2 = 0 is satisfied, which is a characteristic of Vinti’s potential.

The credit for the first use of von Zeipel’s perturbation method (henceforth referred to as the von

Zeipel method) in AST goes to Brouwer, as acknowledged by Garfinkel. The von Zeipel method is

a modification of Delaunay’s method and removes all the periodic terms from a Hamiltonian using

a single canonical transformation instead of the multiple transformations (almost 500) as originally

employed by Delaunay in his lunar theory [14]. Using the von Zeipel method, Brouwer showed

that the artificial satellite theories can be constructed in closed-form without first expanding the per-

turbing Hamiltonian in powers of the eccentricity (although it may have been suggested to Brouwer

by Garfinkel first). Prior to his work, the perturbation theories for predicting the motion of celestial

bodies relied on the expansions of the perturbations in powers of the eccentricity for eliminating
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the short-period terms from the Hamiltonian. Exact or closed-form in the eccentricity theories are

better suited for propagation of artificial satellites or space debris with moderate to high values of

the orbital eccentricity. Additionally, avoiding the eccentricity expansions results in a more com-

pact theory. Brouwer’s theory included the secular variations up to second order, short-periodic

and long-periodic variations of the Delaunay elements up to first order for the zonal harmonics up

to degree five [28]. In Brouwer’s theory, the unperturbed orbit is a Keplerian ellipse as opposed

to the intermediaries of Sterne, Garfinkel, and Vinti. The singularities near the critical inclination

are also present in Brouwer’s theory. In the same year, Kozai developed a theory by separating the

secular, short-periodic and long-periodic terms from the disturbing potential and then computed

the corresponding variations of the orbital elements using Lagrange’s planetary equations. With

this approach, Kozai computed secular variations up to second order and the periodic variations

up to first order. An interesting account of Brouwer and Kozai with regards to their 1959 papers

on artificial satellite theories is given by Kozai himself∗. A comparison between the theories of

Brouwer and Vinti for accuracy and speed is given in Reference [29], in which the conclusion was

drawn that Vinti’s theory is faster and more accurate than Brouwer’s theory. However, due to its

simplicity (in part because of the lack of any elliptic integrals in the solutions), Brouwer’s theory

is comparatively easier to implement as well as to extend for incorporating various perturbations.

Following the seminal works of Brouwer and others in 1959, numerous satellite theories were

developed in a quest to achieve improved accuracy and wider applicability, with mostly using

either the von Zeipel-Brouwer method or the Sterne-Garfinkel method with non-Keplerian inter-

mediary orbits (relatively fewer publications focused on Vinti’s theory in later years). In a different

approach, Kaula formulated an elegant theory for the periodic variations of the classical orbital ele-

ments due to an arbitrary spherical harmonic, including the tesseral harmonics, by an approximate

analytic integration of Lagrange’s planetary equations [30]. While a few preceded Kaula for solv-

ing this problem, Kaula’s solution was simpler and included second-order effects additionally. His

theory was computed by first expressing the complete nonspherical gravitational potential in terms

∗https://www.aip.org/history-programs/niels-bohr-library/oral-histories/24816
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of the classical orbital elements of the satellite and the Greenwich sidereal time using the series

expansions in powers of the eccentricity. Kaula’s theory provides the generalized expressions for

the orbital element variations due to an arbitrary spherical harmonic. The motivation behind the

development of Kaula’s theory was to numerically estimate the spherical harmonic coefficients by

using optical observations of the artificial satellites. Kozai extended Brouwer’s theory to order two

for the periodic effects and to order three for the secular effects due to J2-J8 zonal harmonics,

using the von Zeipel method [31]. Breakwell and Vagners devised a technique for the first-order

Brouwer-type theories to keep the in-track position error levels at the second order with the aid of

the energy integral [32]. Lyddane reformulated Brouwer’s theory in terms of the Poincaré elements

to remove singularities for the equatorial and circular orbits [33].

On the suggestion of Brouwer, Hori applied the von Zeipel method to compute a first-order

analytical theory for a hyperbolic artificial satellite that included the oblateness effects, which was

also valid for any inclination [34]. A noteworthy difference from the elliptic case lies in the fact that

there is no such distinction between secular, long-period and short-period terms in the oblateness

potential, which affects the choice of the integration constants that are added to the first-order

generating function. The corresponding satellite theory for the hyperbolic orbits in the gravitational

field due to Vinti’s potential is given by Lang [35]. For elliptic orbits, Musen used Hansen’s

perturbation method to formulate a numerical theory for the oblateness effects on the rotation of the

orbit plane (small effects) and the motion of a satellite in that rotating orbit plane (larger effects),

separately [36]. Izsak noted that the von Zeipel method can be used to compute the short-periodic

variations of the canonical polar-nodal variables directly, without first computing the variations of

the elements [37]. Garfinkel and McAllister extended their previous theory of the main problem

of the artificial satellite to include the secular and long-periodic effects of all the higher zonal

harmonics using the von Zeipel method [38, 39]. They expressed the generalized expressions for

the secular and long-periodic variations of the Delaunay elements in a compact form using the

associated Legendre polynomials in the eccentricity and the inclination, which also provided the

benefit of the recursive formulation for some of these expressions. The singularities present in the
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expressions for the circular and equatorial orbits were removed by computing the similar formulae

for the variations of the coordinates. Further, Garfinkel computed the long-periodic variations due

to the tesseral and sectorial spherical harmonics (henceforth collectively referred to as the tesseral

harmonics) for the sub-synchronous orbits using the von Zeipel method [40, 41]. He used the

eccentricity expansions to express the tesseral potential function (compare it to Kaula’s potential in

Reference [42], Chapter 3) in terms of the Delaunay elements and then separated the long-periodic

part of the potential that does not depend on the mean anomaly [43]. Interestingly, Garfinkel

solved the partial differential equation for the long-periodic generating function (including the m-

daily contributions), resulting from the application of the von Zeipel method, using the method of

characteristics.

After the initial work on intermediaries by Sterne, Vinti, and Garfinkel, a much simpler inter-

mediary compared to the earlier (see [10, 11]), which enabled the construction of efficient second-

order theories, was proposed by Aksnes [44]. In another novel approach, Cid and Lahulla proposed

the construction of intermediaries using a near-identity contact transformation (called as elimina-

tion of the argument of latitude) instead of splitting the original Hamiltonian into integrable and

non-integrable parts [45, 46]. They used the von Zeipel method to construct the generator of the

transformation. The intermediaries computed with the help of a near-identity contact transforma-

tion applied to the main problem are referred to as natural intermediaries by Deprit. He proved

that the intermediary of Cid and Lahulla is, in essence, the result of the averaging of that part of

the perturbation that makes no direct contribution to the secular and long-period effects; in other

words its average with respect to the mean anomaly is zero [47]. Since the intermediary of Cid

and Lahulla is obtained by simply removing the terms containing the argument of latitude from

the main problem, it is considered as a type of intermediaries known as radial intermediaries as

opposed to the zonal intermediaries of Sterne, Garfinkel, and Aksnes. Given the gravitational

potential for the main problem:

V = −µ
r

+ J2
µR2

e

r3

(
−1

2
+

3

2
sin2 φ

)
, (1.3)
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Table 1.1: The zonal intermediaries.

Intermediary c1 c2 c3 c4 Elliptic
Integrals

Secular
Effects

Sterne 1/p 1
2

sin2 i 0 -1
6
P2(cos i) 4 O(J2)

Garfinkel 1/p cos2 i (1−e2)1/2P2(cos i)
2p2

0 2 O(J2
2 )

Aksnes 1/p 1/3 0 0 3 O(J2)

the various zonal intermediaries can be defined with the help of the following representation of V ,

in which the integrable part V0 enables the separation of the Hamilton-Jacobi equation in spherical

coordinates [48]:

V = V0 + V1, (1.4)

where

V0 = −µ
r

+ 3J2µR
2
e

( c1

2r2

(
sin2 φ− c2

)
+
c3

r
+
c4

r3

)
,

V1 = 3J2µR
2
e

(
− c1

2r2

(
sin2 φ− c2

)
− c3

r
− 1

r3

(
c4 −

1

6
+

1

2
sin2 φ

))
.

The values of the four parameters along with the number of elliptic integrals involved and order

of the secular effects incorporated are given for the zonal intermediaries of Sterne, Garfinkel, and

Aksnes (see References [48, 49]) in Table 1.1. The four parameters in the intermediaries of Sterne

and Garfinkel are considered constants, whereas in case of Aksnes’ intermediary, the parameter

c1 is considered a dynamic variable. Aksnes chose his intermediary by nullifying the secular

part of V1. This crucial distinction simplifies the construction of higher-order theories using the

intermediary of Aksnes. Vinti’s intermediary provides an exact solution for the complete potential

V0 + V1. One disadvantage of the zonal intermediaries compared to the natural ones is that their

solutions involve the elliptic integrals.

Breakwell and Pringle [50], and Deprit [51] independently applied the von Zeipel method
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to normalize a Hamiltonian of a particle near the triangular points of the restricted three-body

problem. They recognized the limitations of the von Zeipel method due to the dependence of

the short-period averaged Hamiltonian on the mixed variables. Schechter, on the suggestion of

Breakwell, solved this problem by carrying out a near-identity transformation (precursor to the Lie-

series based transformations) to express the short-period averaged Hamiltonian entirely in terms

of the new canonical variables [52]. A good review of the progress made in various Celestial

Mechanics problems including the artificial satellite theories up to 1963 is provided by Brouwer

[53, 54]. Some important works on the von Zeipel method that extended and compared it with

other perturbation methods are given in References [4, 55, 56, 57].

1.2.1.3 1966-1980: Lie-Series Methods Era

The generating function for the periodic perturbations computed using the von Zeipel method

is a function of the mixed (old and new) variables, resulting in the transformation equations in

an implicit form. In 1966, Hori formulated a new theory of canonical transformations using Lie-

series expansion, which avoided the inconvenience of the presence of the mixed variables in the

generating function [58, 59]. Additionally, the resulting transformation equations are canonically

invariant and provided a general procedure to compute expansion of an arbitrary function of the

old variables in terms of the new variables. This distinction between the explicit and implicit

transformations is due to the fact that the canonical transformation employed in Hori’s method is

truly a near-identity transformation compared to the more general contact transformation of the

von Zeipel method [14]. An extension of Hori’s method for time-dependent Hamiltonian systems

along with a recursive formulation to generate the perturbation equations, is provided by Mersman

[60]. An equivalent theory of canonical perturbations to Hori’s method was presented by Deprit

using Lie-transforms, in which the generating function itself is a function of the small parameter

[61]. Like Hori’s method, Deprit’s method also provides the explicit form of the transformation

equations. Kamel provided a general recursive and simpler formulation of Deprit’s method [62, 63]

(for different perspectives on Deprit’s method, see [64, 65]). In Deprit’s algorithm, an assumption

is made with regards to the generating function being dependent on the same small parameter that
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specifies the strength of the perturbation. As discussed by Mersman [60], this assumption is not

made in Hori’s algorithm, which results in a simpler theory especially for constructing the inverse

transformation. An insightful discussion on the construction of the near-identity transformations

using Lie-series methods and Hori’s technique of performing the Delaunay normalizations in any

set of the canonical elements, not necessarily action-angle variables, using the so called Hori’s

kernel is given in Reference [14]. Campbell and Jefferys provided the explicit relations between

the Hori and Deprit generating function up to sixth order [66]. The equivalence between the von

Zeipel and Deprit’s Lie-transform based method using an order-independent method was proved by

Shniad [67]. Hori compared his theory with the von Zeipel method and showed that up to second

order, both theories produce the same canonical transformations [68, 69]. And the equivalence

between all the three methods as well as the recurrence relations for constructing the generating

functions of each were established by Mersman [70, 71] and another unified treatment is given

by Kirchgraber [72]. Using Kamel’s technique [73], Hori provided an extension of his original

method to the non-canonical systems [74] and a more general method for treating non-canonical

systems using any canonical perturbation method was presented by Choi and Tapley [75]. A more

recent extension of Hori’s method to include dissipative dynamical systems is given by Baenas et

al. [76]. Stern provided a technique for constructing explicit canonical transformations in case

of the von Zeipel method, thus removing its major limitation [77]. Another extension of the von

Zeipel method to slowly (or adiabatically) perturbed systems was also proposed by Stern [78]. A

more recent work on removing all the major limitations of the von Zeipel method compared to

Lie-series based methods is presented by Deprit and Deprit [13].

Eckstein et al. presented a perturbation technique to compute the higher-order terms by using

an integral of motion for the time history of the satellite motion as a function of an angular variable,

after the geometry of the orbit has been obtained [79]. Aksnes first used the von Zeipel method

to extend his earlier work on the exact solution of an intermediary orbit, and computed second-

order secular variations and first-order periodic variations due to the first five zonal harmonics

using the expansions in the eccentricity [80]. Aksnes claimed that his solution remains valid at
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the critical inclination, but this is doubtful as his long-period variations does have the angular rate

of the moving apsidal line in the denominator. Later using Hori’s method and Hill’s variables

(also known as the polar-nodal or Whittaker variables), Aksnes computed a complete second-order

theory for the first four zonal harmonics starting from his intermediary orbit, without relying on the

eccentricity expansions [81]. Aksnes also derived Brouwer’s theory completely in terms of Hill’s

variables to show that expressions are more compact and involve simpler computations in case of

Hill’s variables [82]. Aksnes’ intermediary was further refined by Deprit and Richardson [83]. It is

known that Hill’s variables are not completely defined for the equatorial orbits. Cefola proposed the

use of the nonsingular equinoctial elements to construct the satellite theories [84]. It is noted that

the mixed-secular terms can arise in perturbed intermediaries if the Delaunay elements are used to

define the non-degenerate intermediary, which can be avoided by the use of the natural elements

similar to the ones used in Vinti’s theory [85]. Using the symbolic computations on a computer and

the Lie-transform based perturbation method, Deprit and Rom computed a Brouwer-type theory

for the main problem with secular, short-periodic, and long-periodic variations included up to

third order [86]. They incorrectly concluded that the second-order periodic variations cannot be

computed without using the expansions in powers of the eccentricity (see Kozai solution [87]),

which was later corrected by Aksnes in his note [88]. Vinti’s theory was extended to the universal

variables by Getchell [89] and a reformulation of Vinti’s theory in extended phase space is given

by Alfriend et al. [90].

An application of Brouwer theory to determine the time epochs corresponding to a satellite’s

arrival at its periapsis, apoapsis, the two nodes, and the point of maximum and minimum geodetic

sublatitude points using a recursive algorithm is given by Gordon [91]. Kamel and Tibbitts pro-

vided the algorithms for computing the orbit node locations given the various requirements on the

inclination using a satellite theory with oblateness and luni-solar effects included [92]. A hybrid

method to combine the efficient analytical satellite theories with the more accurate but less effi-

cient numerical integration methods is proposed by Alfriend and Velez [93]. An artificial satellite

theory with the zonal and tesseral harmonics and luni-solar perturbations along with resonance
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effects is derived in nonsingular variables using the eccentricity expansions by Giacaglia [94]. A

method similar to Kaula was adopted by Cefola [95] and Giacaglia [94] by expressing the tesseral

potential in terms of the equinoctial elements. McClain provided averaged equations of motion for

tesseral harmonics in case of the non-resonant as well as resonant orbits by using Cefola’s tesseral

potential [96]. Cefola and McClain computed the short-period generating function in a recursive

form using the generalized method of averaging [97]. Their work was further extended by Proulx

et al. for computing a recursive semi-analytic theory including the first-order tesseral short-period

variations of the equinoctial elements [98]. All of the work done by Cefola and his colleagues

in 1970s and 1980s culminated into the Draper Semianalytic Satellite Theory (DSST), which in-

cludes the analytic models of the zonal and tesseral harmonic perturbations including the resonant

tesseral effects, third-body luni-solar perturbations, atmospheric drag effects using empirical den-

sity models, solar radiation pressure, and solid Earth tides [99, 100]. Kinoshita used Hori’s method

to expand the original perturbation Hamiltonian for J2-J4 harmonics in eccentricity up to O(e6),

and computed the short and long-period variations up to order three and secular effects up to order

four [101]. Hoots reformulated the Brouwer-Lyddane theory in terms a new set of nonsingular

variables, which requires fewer computations to compute position and velocity and also avoids

one solution of Kepler’s equation [102].

In 1970, a new canonical theory of dynamical systems in the extended phase space using KS

(Kustaanheimo-Stiefel) regularizing transformation was proposed by Scheifele. A time-dependent

Hamiltonian system can be converted into a homogeneous system by augmenting the Hamilto-

nian with the time and energy states. Scheifele proposed generalized canonical transformations

in the extended phase space to include the transformation of the independent variable as well as

the transformations to augment the number of states. He applied this formalism to the perturbed

Kepler problem by doing a transformation of the independent variable time to introduce a new set

of eight canonical elements [103, 104]. When either the true anomaly or the eccentric anomaly

is chosen as the independent variable, a set of elements with geometrical interpretation similar to

the conventional Delaunay elements can be derived and are called as Delaunay-similar elements.
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Using the conventional definition of the Poincare canonical elements, a set of completely nonsin-

gular Poincare-similar elements can also be derived (e.g., see [105]). Further performing the KS-

transformation of the canonical system produces a set of ten canonical elements for the completely

regularized perturbed Kepler problem. Scheifele and Graf constructed an analytical satellite the-

ory for the main problem and 24-hour satellite problem using the eight Delaunay-similar elements

including the true anomaly [106]. Their first-order analytic theory had accuracy comparable to

the conventional second-order satellite theories and additionally, the expressions are significantly

more compact. Deprit later showed that the canonical transformation of Scheifele to make the true

anomaly a coordinate, is an extension of Hill’s transformation from six-dimensional phase space

of Hill’s variables to an eight-dimensional manifold with time and energy providing the two extra

dimensions [107]. A discussion on the regularization of the artificial satellite theories and their

benefits is given by Saari [108].

1.2.1.4 1981-present: Special Canonical Transformations Era

The Hamiltonian corresponding to the main problem of the AST can be normalized up to order

two without using the eccentricity expansions as shown by Kozai and others [31, 88]. Higher-order

normalizations in closed-form in the eccentricity are made feasible by a special canonical trans-

formation, known as the elimination of the parallax, introduced by Deprit in 1981. The specialty

of this canonical transformation that makes it distinct, is that it does not normalize the Hamilto-

nian directly, rather transforms the Hamiltonian into a simpler form. After that simplification, the

Hamiltonian can be normalized in closed-form in the eccentricity using the conventional trans-

formations with additional benefits of producing a more compact theory. Later, more canonical

transformations were also discovered to provide further simplifications of the perturbed Hamilto-

nian for performing the Delaunay normalizations in closed-form.

Deprit introduced the elimination of the parallax transformation using the polar-nodal variables

to remove the short-period variations that cause torsion in the apsidal frame through the argument

of latitude angle [49, 109]. The transformed Hamiltonian system contains short-period effects

only due to the irregularities of the equation of the center, which are separated by the subsequent
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Delaunay normalizations. The polar-nodal variables are the canonical elements defined as the set

(r, f+g, h, ṙ,G,H), with the last three elements being the conjugate of the first three. In the polar-

nodal variables, the Keplerian Hamiltonian H0 (which can also be obtained from the Hamiltonian

in Cartesian variables using Whittaker transformation, see [110]) is given as follows:

H0 =
1

2

(
ṙ2 +

G2

r2

)
− µ

r
. (1.5)

Deprit defined the following three state functions:

p =
G2

µ
, (1.6)

C = G

(
1

r
− 1

p

)
cosϑ+ ṙ sinϑ (1.7)

=
G

p
e cos g, (1.8)

S = G

(
1

r
− 1

p

)
sinϑ− ṙ cosϑ (1.9)

=
G

p
e sin g, (1.10)

where ϑ is the true argument of the latitude. The Lie-derivatives of the above functions in a Keple-

rian flow are identically zero, which can be easily verified when the Poisson brackets are evaluated

in terms of the Delaunay elements. Therefore, the Lie-derivative of any function W(p, C, S, ϑ)

dependent on the three state variables in addition to ϑ is obtained using the chain rule as shown

below:

LH0W(p, C, S, ϑ) = (H0,W) (1.11)

= (H0, p)
∂W
∂p

+ (H0, C)
∂W
∂C

+ (H0, S)
∂W
∂S

+ (H0, u)
∂W
∂u

(1.12)

=
G

r2

∂W
∂ϑ

, (1.13)
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where (_, _) represents a Poisson bracket. The significance of the above result is that the partial

derivatives of the three state functions can be ignored when computing the Lie derivatives. In

order to carry out the elimination of the parallax transformation, the parallactic term (a/r)n in

the perturbation Hamiltonian H1 is reduced to (a/r)2 and any appearance of the ṙ is removed by

expressing the Hamiltonian in terms of the state functions using the following relations:

1

r
=

1

p

(
1 +

pC

G
cosϑ+

p S

G
sinϑ

)
, (1.14)

ṙ = C sinϑ− S cosϑ. (1.15)

The first-order homological equation that must be solved for the new Hamiltonian K and the gen-

erating functionW for this near-identity transformation (see Section 2.1.2), is

K1 = LH0W1 +H1, (1.16)

=
G

r2

∂W1

∂ϑ
+
G2

r2
H̄1, (1.17)

where

H̄1 ≡
r2

G2
H1.

The transformed first-order Hamiltonian term K1 is chosen to include all the terms in H̄1 that are

not an explicit function of ϑ, although they can have an implicit dependence on ϑ through C and

S state functions. The first-order generating function term W1 is then computed using a simple

quadrature considering C and S independent of ϑ. A simpler treatment of the elimination of the

parallax transformation in terms of the Delaunay elements is given by Lara et at. [111, 112]. In

Delaunay elements, the first-order homological equation is given as
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K1 =
∂H0

∂L

∂W1

∂l
+H1. (1.18)

The parallactic terms r−n inH1 are reduced to r−2 using the following identity:

r−n = r−2

(
1 + e cos f

aη

)n−2

, n > 2.

ThenK1 is chosen by selecting all the terms ofH1 that do not depend explicitly on the true anomaly

f . The remaining periodic terms are integrated by quadrature to obtain W1. It is noted that the

new HamiltonianK1 also contains short-periodic terms in addition to the secular and long-periodic

terms due to the presence of r. The same procedure of reducing the parallactic terms and separating

the terms that do not depend explicitly on ϑ or f is repeated to obtain the higher-order terms for K

andW .

Using the elimination of the parallax type special canonical transformations, Deprit introduced

a new way of finding intermediaries, which he referred to as natural intermediaries [49]. A natural

intermediary corresponds to an integrable Hamiltonian that includes a part of the first-order per-

turbation and is obtained from the original non-integrable Hamiltonian by applying a near-identity

canonical transformation. The new Hamiltonian only needs to be integrable and not necessarily

separable in order to obtain a natural intermediary. It is noted that a Hamiltonian that can be trans-

formed into quasi-Keplerian form, is separable. Deprit showed that the common intermediaries of

Sterne, Garfinkel, Aksnes, and Cid-Lahulla can be obtained from applying different near-identity

transformations to the Hamiltonian for the main problem [49, 83]. Additionally, he proposed a

new radial intermediary that results from applying the elimination of the parallax transformation

to the main problem [49, 110]. The solution of this radial intermediary, similar to the one by

Cid-Lahulla, do not involve elliptic integrals. Using the elimination of the parallax transformation,

Coffey and Deprit computed a very compact third-order solution in closed-form in the eccentricity

for the main problem of the artificial satellite theory [113].
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Another canonical transformation, the elimination of the perigee, to simplify the Hamiltonian

and produce more compact satellite theories is proposed by Alfriend and Coffey using the polar-

nodal variables [114]. The elimination of the perigee transformation is carried out after applying

the elimination of the parallax transformation. All the long-period terms that are functions of

the perigee are removed from the Hamiltonian to choose the new transformed Hamiltonian. The

remaining terms are integrated to compute the generating function for the elimination of the perigee

transformation. Its reformulation in terms of the Delaunay elements is given by Lara et at. [112].

Cid et al. utilized Deprit’s perturbation method along with the elimination of the perigee to obtain

an improved version of the original intermediary of Cid and Lahulla that incorporated all of the

zonal harmonics [115]. They also linearized their radial intermediary with the help of a Sundman-

type regularization.

Breiter considered all the zonal harmonics as first-order perturbations and computed an ana-

lytic solution up to order two for an arbitrary high degree of the potential using the eccentricity

expansions [116]. A distinct feature of Breiter’s solution was the inclusion of the first-order secular

effects of all the zonal harmonics in the zeroth-order Hamiltonian, which makes the zeroth-order

solution an intermediary orbit. Additionally, Breiter carried out a single transformation to eliminate

the short-period and long-period terms from the original Hamiltonian together, and used a Runge-

Kutta based numerical scheme to compute the resulting periodic variations. Saedeleer computed

the generalized analytic formulae for the first-order averaged Hamiltonian and the short-period

generating function for an arbitrary zonal harmonic [117]. Recently, Lara presented a reformula-

tion of the Brouwer theory in terms of Hill’s variables [118] and a comparison between Deprit’s

intermediary orbit and the Brouwer theory [119].

The majority of the literature since 1959 on artificial satellite theories is focused on including

the effects of the zonal harmonic perturbations. In relatively few cases, the analytic expressions

for the periodic variations of the orbital elements due to the tesseral harmonics are computed using

the eccentricity expansions as discussed earlier [42, 40, 41, 99, 94, 120, 96, 97, 98]. A closed-

form solution for the short-period effects due to the tesseral harmonics is yet to be found. Coffey
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and Alfriend used two separate Lie-type transformations to construct a satellite theory for the

tesseral harmonics [121]. The first transformation was similar to the elimination of the parallax

transformation, which was performed in closed form in the eccentricity, and it produced a simpler

intermediate Hamiltonian. The second transformation completed the Delaunay normalization by

expanding the intermediate Hamiltonian in powers of the eccentricity. It was acknowledged by

Coffey and Alfriend that no closed-form normalization of this problem is known to exist. The

first transformation of Coffey and Alfriend can be seen as a precursor to the method of relegation

that can be used to perform the Delaunay normalization of the tesseral perturbation Hamiltonian

without using the typical eccentricity expansions. Wnuk utilized Hori’s perturbation method to

normalize a more efficient form of the tesseral disturbing function compared to Kaula’s formula-

tion (see [42], Chapter 3) and computed analytic expressions for the second-order short-periodic

variations due to an arbitrary tesseral harmonic [122]. He further computed the third-order short-

periodic variations due to coupling between the second zonal harmonic and the tesseral harmonics

[123]. Wnuk retained the general form of the eccentricity function in his explicit expressions for

the short-period effects rather than using its series expansion in order to evaluate it separately for

a given value of the eccentricity. These infinite series expansion of the eccentricity function in

powers of the eccentricity is given in Kaula [42] (Chapter 3).

The methods that use the eccentricity expansions for the Delaunay normalization of the tesseral

Hamiltonian, contain singularities in the form of small divisors near the resonance conditions.

These singularities arise when the true anomaly in the disturbing function is expanded in pow-

ers of the eccentricity, which additionally degrades the accuracy of the theory for elliptic orbits

with medium to high values of the eccentricity. It is known that the series expansion of the true

anomaly diverges for high values of the eccentricity. The technique that comes close to provid-

ing a closed-form (in the eccentricity) normalization of the tesseral Hamiltonian is the method of

relegation [124, 125]. This method successively reduces the magnitude of the perturbation Hamil-

tonian by scaling it with a small multiplier with the help of the canonical transformations. After a

sufficient number of iterations, the perturbation Hamiltonian is deemed small enough to be safely
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ignored. Segerman and Coffey applied the method of relegation to the Delaunay normalization of

the tesseral Hamiltonian [126]. Their results showed that the method of relegation generated large

number of terms in multiple transformations corresponding to each iteration for normalizing the

tesseral Hamiltonian. In addition, two different flavors of the relegation method are required for

sub-synchronous and super-synchronous orbit regimes, resulting in two separate theories. While

the relegation method avoids the eccentricity expansions, its convergence properties restrict the

method to small eccentricities in most cases as discussed in References [127, 128]. An alternative

relegation approach by Lara et al. expressed the short-period generating function as a power series

in the eccentricity, with convergence depending on the value of the eccentricity [127]. Recently,

Sansottera et al. derived the asymptotic estimates for the relegation algorithm given a generic

perturbed Hamiltonian system [129]. Ely presented a numerical approach to compute mean to

osculating transformations up tp first order using the Fast Fourier Transform that is applicable to

various types of perturbations such as nonspherical gravitation, the atmospheric drag, solar radia-

tion pressure, and third-bodies [130].

A survey of the progress in AST was presented in 1999 by Wnuk [131]. His survey paper noted

that there is not a single theory that includes the zonal and tesseral harmonics up to an arbitrary

degree and order, at least second-order perturbations for the tesseral harmonics, coupled effects

due to the zonal and tesseral terms, resonance effects, and is also free of all the eccentricity and

inclination related singularities including the critical inclination.

1.2.2 Resonance in Satellite Theories and Other Perturbations

1.2.2.1 Critical Inclination

The singularity in artificial satellite theories at the critical inclination has given rise to some

controversies over the years, the famous one between Brouwer and Vinti∗. In Vinti’s theory,

which provides an exact solution for a special case of the zonal gravitational potential, the crit-

ical inclination singularity does not appear. This is due to the consequence of the special case:

b ≡ 1 + J4/J
2
2 = 0 in Vinti’s potential, which is of course not true in case of Earth considering

∗http://derastrodynamics.com/docs/brouwer_vs_vinti_v1.pdf
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the values of these coefficients from the present day more accurate gravity models. The singularity

disappears when the same assumption is made in Brouwer and Garfinkel theories also as noted by

these authors. Garfinkel generalized the Vinti index (b) to higher zonal harmonics and also showed

that when the disturbing function for Vinti’s theory is considered, it also yields the same singu-

larity as Brouwer’s theory based on the Keplerian ellipse [38]. To remove the critical inclination

singularity, Hori and Garfinkel proposed approximate methods that are valid in the neighborhood

of the critical inclination value cos−1 1/
√

5 for J2. Hori derived the long-period variations, valid in

the neighborhood of the critical inclination, by expanding the generating function in the powers of
√
J2 and making use of the energy integral [132]. Similarly, Garfinkel expanded the energy integral

using Taylor series, and showed that in the neighborhood of the critical inclination, the equations

of motion (including terms up to first order only) of the one degree of freedom short-period aver-

aged system resembles that of a simple pendulum and thus the solution is reduced to the elliptic

functions [133]. Different than previous theories, a second-order analytical theory only for secular

and long-periodic variations of the orbital plane and non-elliptical orbit motion in that plane is

proposed by Struble. Like Garfinkel, he also showed that near the critical inclination, the apsidal

motion reduces to that of a simple pendulum [134, 135]. Hagihara applied his general theory of

libration to the critical inclination problem [136] and a similar analysis using the elliptic integrals

was provided by Kozai [137] to gain further insight into the conditions that lead to the libation of

the pericenter near the critical inclination. It is known that the resonance between the mean motion

with respect to the node and the mean motion with respect to the periapsis causes an increase in

the magnitude, 25 times greater than otherwise, of the perturbation when the mean inclination is

near the critical value [53, 138]. Message et al. showed that with the help of elliptic integrals or

functions, the theories valid for any inclination value can be constructed [139]. Izsak showed that

the first order solutions in powers of
√
J2 in the vicinity of the critical inclination breakdown when

higher order terms due to J2 and J4 are included, additionally the similarity with the simple pendu-

lum of this problem is lost too [140]. Izsak’s solution removed the critical inclination singularity

for terms up to second order due to J2
2 and J4. It is noted that for Earth, the width of the critical
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inclination resonance region is only 1◦ when the second and fourth zonal harmonic are considered

[54].

A formal solution for the resonance problem up to fourth order using a hybrid Bohlin-von

Zeipel technique was given by Garfinkel, which he applied to the problem of the critical inclina-

tion and the 24-hour artificial satellites [141]. After a considerable work on his so-called the ideal

resonance problem (see [142, 143, 144, 145]) and using Hori’s techniques, Garfinkel proposed a

first-order in
√
J2 global theory for the artificial satellites that is valid for any value of the inclina-

tion [146, 147]. An exposition on the critical inclination problem in the satellite theories including

analysis in the phase space is given by Coffey et al. [148] and a survey of this problem by Jupp

[149]. A comprehensive treatment of the frozen orbits by analyzing the equilibria of the short-

period averaged Hamiltonian with zonal harmonics included up to degree nine is given by Coffey

et al. [150]. A more recent analysis of the critical inclination singularity using the polar variables

is given by Lara [151, 152].

A clever device to avoid the numerical singularity at the critical inclination is due to R. H.

Smith as given in Reference [153]. The term (4− 5 sin2 i) appears in the denominator of the long-

periodic generating function and is a factor in the argument of perigee rate due to the second zonal

harmonic. At the critical inclination, this term vanishes and to avoid the resulting singularity, the

following modified form of this term can be used:

1

X
=


1−exp(−100X2)

X
, if X 6= 0

0, if X = 0

(1.19)

where

X = 4− 5 sin2 i

For the inclinations far away from the critical inclination value, 1/X evaluates to its proper value.

Whereas in the close vicinity of the critical inclination, the exponential term approaches 1 faster
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than X approaches 0 and as a result, provides a smooth spline across the discontinuity [153].

1.2.2.2 Resonant Orbits

Musen and Bailie computed a theory for the 24-hour satellites (in geosynchronous orbits) that

included secular effects due to the second and fourth zonal harmonics, and periodic effects due to

the ellipticity of the equator. They used Bohlin’s resonance theory and solved the Hamilton-Jacobi

equation to compute a series solution in powers of the eccentricity and a certain parameter that

depends on the main critical argument in a nonresonance case [154]. Allan provided a theory for

the resonant orbits including the effects of all the tesseral harmonics by retaining only the resonant

terms in a disturbing function expressed in the classical orbital elements (similar to the one de-

rived by Kaula [30]) and using Lagrange’s planetary equations [155]. Vagners used the von Zeipel

method to compute analytic theories for non-equatorial near-circular orbits at or near resonance

due to the tesseral harmonics, along with the long-period effects due to the zonal harmonics. An

averaging based perturbation method suited for computing the solutions for a nonlinear resonance

problem is presented by Morrison [156]. Another method to treat orbital resonances using two-

variable expansion procedure is proposed by Eckstein and Shi, which also remains valid for the

equatorial and circular orbits [157]. Resonance effects on the sub-synchronous orbits and ellip-

tic synchronous orbits are computed analytically by Gedeon [158]. A closed-form solution for

the deviations in the semimajor axis and the longitude of a synchronous satellite due to the zonal

and tesseral harmonics as well as the luni-solar perturbations is computed by Kamel et al. [159].

Romanowicz used Hori’s method to compute a general solution for the resonant orbits of an ar-

bitrary eccentricity in the presence of tesseral harmonics [160]. Another theory for the analytical

treatment of resonance effects on the satellite orbits is given by Lane [161].

1.2.2.3 Atmospheric Drag Perturbations

Since the oblateness of Earth does not cause any secular change in the inclination of the arti-

ficial satellites, Vinti derived an analytical theory for the variation of the orbital inclination due to

atmospheric drag [162]. Sterne derived the secular variations of all the orbital elements due to a
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rotating planetary atmosphere [163]. Izsak computed the first-order secular and periodic variations

of the orbital elements due to the atmospheric drag with a modified form of the exponential density

model [164]. Cook, King-Hele and Walker presented the first of a series of papers on the satellite

theory for the drag effects [165, 166]. A rigorous theory for the atmospheric drag was computed

by Brouwer and Kozai, which used the von Zeipel method to compute a unified satellite theory

for the atmospheric drag and zonal spherical harmonics [167]. They expanded the spherical expo-

nential density model terms in powers of the eccentricity and the mean anomaly to derive secular

and mixed secular (due to the coupling between the short-period terms of the drag-free solution

and the atmospheric drag effects) terms up to second order and the periodic terms up to first order,

however their series solution converges slowly. It should be noted that the earlier (and some of the

later) works of King-Hele separated the drag perturbations from the oblateness effects and treated

them separately [53]. Otterman and Lichtenfeld computed analytic expressions for drag effects on

the radial and in-track motion of a satellite in a near circular orbit [168]. An extension of Vinti’s

theory to account for the atmospheric drag perturbations is given by Watson et al. [169]. Hoots and

France used the method of averaging to compute a satellite theory for the first four zonal harmonics

and the atmospheric drag with any empirical atmospheric density model [153]. They expressed the

secular effects due to the atmospheric drag on the orbital elements as definite integrals, which can

be computed using numerical quadrature without resorting to series expansions in the eccentricity.

The quadrature and the atmospheric density values are computed only during initialization and the

prediction at later times are accomplished using completely analytic expressions. The coupling

between the drag and zonal spherical harmonics is also included by using the osculating altitude at

each step in the numerical quadrature.

1.2.2.4 Third Body Perturbations

The perturbation effects due to the third-bodies, such as Sun and the Moon in case of satel-

lites in orbits around Earth, become significant for the satellites in medium to high altitude or-

bits. Additionally, they must be included in the theories when the satellite observations are used

to numerically estimate the spherical harmonic coefficients. While there were earlier studies of
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including luni-solar perturbations in AST going back to 1950 by Spitzer, Cook was the first to

compute first-order solution for the secular and long-period effects due to a third body, without

assuming small orbital eccentricity [170, 171]. He used Lagrange’s planetary equations to com-

pute the changes in the orbital elements during one revolution of the satellite in addition to the

rates of the orbital elements averaged over a complete revolution. He also provided corresponding

expressions for the changes in the orbital elements due to the solar radiation pressure. In Russian

literature, Lidov provided a similar analytical theory for the third-body perturbation effects on the

orbits of the artificial satellites [172]. Kaula computed a very efficient form of luni-solar disturbing

function for an artificial satellite that was similar in form to his gravitational disturbing function

[173]. Musen presented a numerical integration method, referred to as Halphen-Goursat method,

with step sizes significantly long to compute secular effects for an interval of many years [174].

Kaufman computed a first-order semianalytic satellite theory with short-period variations due to

Sun and the moon computed using the Lie-series perturbation theory of Kamel [175]. Danielson et

al. presented the implementation of the semianalytic satellite theory that incorporated third-body

perturbations with secular and periodic variations up to first order using the generalized method

of averaging [99]. Ely and Howell investigated the effects of luni-solar perturbations along with

tesseral resonant effects on the orbits with nonzero eccentricity and inclination [176]. Broucke

considered the long-term perturbations due to third-bodies on the orbits of artificial satellites using

a double analytic averaging approach [177]. He discovered in case of third-body perturbations,

a critical inclination of 39◦ plays an important role, for orbits with the inclinations less than the

critical value have a circulating apse line and for the inclination values above that, the circular or-

bits are unstable and their eccentricities increase. Saedeleer derived an analytical theory of a lunar

satellite with the lunar oblateness, the triaxiality of its equator, and third-body perturbation due to

Earth without resorting to any series expansions in the eccentricity or inclination [178]. He formu-

lated the complete Hamiltonian in the rotating frame fixed to the moon to avoid a time-dependent

Hamiltonian, and considered the terms arising due to the rotating frame as a first-order perturbation

with the rest as second-order.
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1.2.3 Satellite Relative Motion

The relative motion between two or more satellites flying in orbits around a central body, is

affected by differential perturbations. These effects can arise due to the small differences in the

orbital elements of the satellites as well as their physical characteristics in case of the atmospheric

drag and solar radiation pressure. The accurate models and solutions for the satellite relative

motion have widespread application in the analysis and control of rendezvous and proximity op-

erations, satellite swarms or constellations, and formations. In satellite constellations, e.g. GPS

constellation, the orbits of individual satellites are comparatively widely separated, and the inter-

satellite communication is not used for guidance and control purposes. In contrast, the inter-

satellite communication is typically a requirement in order to maintain the desired geometry of the

whole satellite formation about a reference orbit, which may or may not be occupied by a reference

satellite.

The literature on modeling and control of the satellite relative motion likely starts from the

pioneering work of Clohessy and Wiltshire published in 1960 [179]. They derived the equations

of relative motion for satellite rendezvous along with their solution in Keplerian dynamics by as-

suming a circular reference orbit and linearizing the gravity terms by assuming the inter-satellite

distances small compared to the radius of the satellite in the reference orbit. Interestingly, these

equations can be obtained instantly from Hill’s lunar equations (see Reference [180], Chapter 10),

which can be considered as an approximation to the planar circular restricted three-body problem,

if the third body is assumed to stay close to the smaller primary at all times and the mass of the

smaller primary is neglected. The original reference frame (with x axis in a direction opposite to

the along-track direction) used by Clohessey and Wilshire to derive their rendezvous equations,

is not popular in the modern literature. Instead, the rendezvous equations are expressed in Hill’s

frame with modern definitions of radial (x), along-track (y), and cross-track (z) directions. Perhaps

due to these reasons, these equations of satellite rendezvous are also referred to as Hill-Clohessy-

Wiltshire (HCW) equations. Three difference researchers came up with the linear equations of
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satellite relative motion for elliptic reference orbits independently, namely D. F. Lawden∗ in his fa-

mous book on optimal rocket trajectories [181], Tschauner and Hempel [182], and de Vries [183].

A detailed treatment of these equations along with their solutions in the form of state transition

matrices (STM) are provided in Reference [184]. A number of researchers have also looked at

augmenting the linear equations of satellite relative motion in Cartesian coordinates by including

the second-order nonlinearity and eccentricity effects [185, 186, 187, 188] as well as effects due

to the perturbations such as atmospheric drag [189], third-bodies [190] and Earth’s nonspherical

gravitational field [191, 192, 190, 193, 194]. Marchad and Howell considered the relative mo-

tion problem for the spacecraft formations in the restricted three-body problem as opposed to the

Keplerian dynamics [195].

A different approach to describe the satellite relative motion is to use the difference between

the orbital elements of the satellites participating in the formation. This approach has an advantage

over the relative motion description in Cartesian coordinates (HCW equations and its variations)

because it lends itself to a straightforward methodology for incorporating various perturbation ef-

fects using the results from the artificial satellite theories. Therefore, more recent efforts have

focused on the utilization of the artificial satellite theories for the problem of perturbed satellite

relative motion [196, 197, 198, 199, 200, 201]. In this approach, the difference between the orbital

elements of the two satellites in a formation are propagated in time under the influence of various

perturbation forces using the differential secular and periodic variations of the orbital elements. In

order to convert the small differences in the orbital elements into the relative Cartesian or curvi-

linear states, Garrison et al. [202] and Alfriend et al. [197] proposed a linear transformation. An

exact nonlinear transformation, called the unit-sphere method, is derived by Vadali [203].

Gim and Alfriend developed the relative motion state transition matrix, GA-STM, which in-

cludes the first-order secular, long-period, and short-period effects due to the dominant second

zonal harmonic J2 [204]. GA-STM uses a geometric method for converting the osculating rela-

tive orbital elements to the curvilinear orbit frame. Yan et al. presented a similar approach for

∗a space futurist, a contentious talker on (New Zealand) radio and more. Interesting biosketch at http://www.
massey.ac.nz/~wwifs/mathnews/centrefolds/25/Dec1982.shtml
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constructing relative motion state transition matrix using the unit-sphere approach [205]. Schaub

developed the analytical techniques to minimize the secular drifts between the relative orbits of

the satellites due to the differential oblateness and atmospheric drag effects [206]. Alfriend and

Yan proposed a modeling error index for comparing the accuracy of the different analytical the-

ories for the perturbed relative motion of the satellites [207]. Wnuk and Golebiewska developed

an analytical solution to propagate the relative orbital elements for the geopotential coefficients

up to an arbitrary degree and order using the differential perturbations approach [208, 209, 210].

They used the Kaula-type satellite theory, which uses eccentricity expansions, to derive the expres-

sions for the differential perturbation effects. Sengupta computed a second-order state transition

tensor for propagating perturbed satellite relative motion [211]. Sengupta et al. derived a model

for propagating the averaged relative motion between two satellites about an oblate planet. This

model was further used to filter out short-period perturbations of the desired frequencies from the

relative states [212]. Roscoe et al. derived the effects due to third-body perturbations on satellite

formations [213]. Yan et al. used the first-order Kaula theory to compute the short-period effects

recursively for tesseral harmonics 20 × 20, and incorporated these effects in the GA-STM [214].

Johnson extended Hoot’s theory to second-order and used it to formulate the GA-STM in terms

of Hoot’s variables, which are nonsingular for the equatorial and circular reference orbits [215].

Koenig et al. derived a STM for propagating differential orbital elements of satellites in arbitrary

elliptic orbits that incorporated first-order secular effects due to the second zonal harmonic as well

as the differential drag [216]. Biria and Russell derived STM for perturbed satellite relative motion

based on Vinti’s intermediary that incorporated the second and third zonal harmonic along with a

portion of the fourth zonal harmonic [217]. As the STM is derived for Vinti’s potential without

incorporating any additional perturbations, their STM remains valid at the critical inclination. A

recent survey paper on satellite relative motion dynamical models is given in Reference [218].

1.3 Remaining Challenges

In the past 50 to 60 years, a significant amount of literature on various aspects of the artificial

satellite theories: ranging from modeling the effects of conservative and non-conservative pertur-
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bations to the elimination of singularities due to critical inclination and the resonant tesserals, have

been published. Interestingly, a quote by Deprit [49] in 1981 on the main problem reads: “So

much having been published about the main problem in the theory of an artificial satellite, it may

be taken as axiomatic that a claim of originality may (and probably will) be met by a statement of

the opposite. With all this wealth, empty spaces nevertheless exist where an author can contribute

more than an inadvertent duplication or a personal derivation of results already in print. We be-

lieve the present communication falls into one of the cracks.” The present author borrows these

words of Deprit to communicate that a few “cracks” or “empty spaces” still exist in the problem

of the artificial satellite theory, most noticeably in the case of the tesseral harmonics. Specifically,

there are no existing methods for computing nonresonant perturbation effects due to an arbitrary

tesseral harmonic, without resorting to the use of series expansions. Additionally, the majority of

the analytic solutions for the perturbed satellite relative motion are limited to including only the

first-order effects due to a first few zonal harmonics. These along with a few more limitations of

the existing theories for the absolute and relative motion of the artificial satellites are discussed as

follows:

• The satellite theories incorporating the short-period, long-period and secular effects up to or-

der three due to the zonal harmonics are documented in the literature. However, a completely

analytic artificial satellite theory with the generalized expressions for an arbitrary zonal har-

monic incorporating at least the second-order secular, long-period, and short-period effects

does not exist in the literature. Generalized expressions effect quick implementation of a

satellite theory and eliminate the need for symbolic manipulation software such as poisson

series processors to compute expressions for a specific zonal harmonic.

• There are no existing solutions for the exact Delaunay normalization of the perturbed Kep-

lerian Hamiltonian with the tesseral and sectorial spherical harmonics. Available methods

resort to series expansions in either the eccentricity or the ratio of the satellite’s mean motion

to the rotational velocity of the central body. Both of the approaches lose accuracy for an

orbit with medium to high value of the eccentricity and additionally, produce a large number
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of terms for each harmonic. The method of relegation for normalizing the tesseral Hamil-

tonian produces two separate theories for the sub-synchronous and super-synchronous orbit

regimes.

• No single artificial satellite theory includes secular and periodic effects due to an arbitrary

zonal or tesseral harmonic, perturbation due to the resonant spherical harmonics in closed-

form in the eccentricity, and is also free of singularities for zero eccentricity, zero inclination

and the critical inclination. It should be noted that the perturbation effects due to the "equa-

torial ellipticity" terms (C22 and S22 spherical harmonics) can be as significant as the third

and fourth zonal harmonics in case of Earth.

• No existing theories for the perturbed satellite relative motion include the secular and peri-

odic variations due to the zonal and tesseral harmonic perturbations.

• In case of the satellite formations, the existing along-track drift mitigation conditions have

to be explicitly derived for each zonal harmonic. No generalized expressions exist that can

be used to compute the initial conditions for the satellites in a formation to reduce the along-

track drift caused by an arbitrary zonal harmonic. Additionally, the initial orbital elements to

establish a general circular orbit (GCO) (see [184]) type relative orbit for an equatorial and

circular reference orbit are not known.

1.4 Contributions

Addressing all of the challenges discussed in the previous section in a single solution is (no

doubt) a daunting task. In this work, a few of these challenges have been addressed and these

contributions are discussed as follows:

• Chapter 3. A complete closed-form (in the eccentricity) artificial satellite theory for the

zonal and tesseral gravitational harmonics is developed. First, explicit expressions for the

secular, long-period and short-period variations due to the zonals from J2 to J6 are derived

up to second-order for the nonsingular orbital elements. A zonal theory using the generalized
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expressions for the secular, long-period, and short-period variations of the equinoctial orbital

elements due to an arbitrary zonal harmonic is derived next. The zonal theory is followed

by a novel solution for the exact Delaunay normalization of the tesseral Hamiltonian. Using

this solution, generalized expressions for the periodic variations of the equinoctial elements

are derived without resorting to any series expansions.

• Chapter 4. Using the satellite theories for absolute motion developed in Chapter 3, first

a STM for perturbed satellite relative motion including the effects of the zonals from J2

to J6 is derived by using the explicit expressions for each of these zonals. To include the

contributions of an arbitrary zonal harmonic, next a new STM using the equinoctial orbital

elements is derived with the generalized expressions for the secular and periodic variations.

The generalized STM with contributions from the zonal harmonics, is finally augmented

with the periodic variations due to an arbitrary tesseral harmonic.

• Chapter 5. To facilitate the computations of the orbital elements for establishing a general

satellite formation geometry, the expressions for the differential equinoctial elements of a

satellite are derived. These differential elements are expressed in terms of the formation

design parameters and are completely nonsingular for a circular and equatorial reference

orbit. Next, the generalized expressions for the secular effects due to any zonal harmonic

are used to derive a constraint on the differential semimajor axis of a satellite to mitigate

the along-track formation drift. Further, two applications of the artificial satellite theories

developed in Chapter 3 are provided: an analytical perturbed Lambert solver for elliptic

orbit transfers and nonlinear uncertainty propagation for satellite orbits using point clouds.
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2. PRELIMINARIES

An introduction to the various methods and techniques that are useful in the sequel is given

in this Chapter. An overview of the canonical perturbation methods and their utilization for con-

structing the artificial satellite theories is provided. A brief outline of their derivation along with

their pros and cons are discussed, starting from the von Zeipel method to the more modern Lie-

series/Lie-transform based perturbation methods. Additionally, two different methods: the unit-

sphere method and the geometric transformation, for modeling the satellite relative motion using

differential orbital elements are presented. The theory behind the GA-STM is given in this Chap-

ter, which is augmented in Chapter 4 to build a relative motion STM for the zonal and tesseral

spherical harmonics.

2.1 Canonical Perturbation Methods

The analytic integration of a perturbed Hamiltonian system can be performed using canonical

transformations in conjunction with the method of averaging. The perturbed Hamiltonian systems

are defined by a Hamiltonian that consists of a dominant part and a relatively small perturbation

part, often expressed as a power series in a small parameter. Therefore, the dominant part of

the Hamiltonian is also referred to as the unperturbed or zeroth-order Hamiltonian. If an exact

solution to the Hamilton-Jacobi equation corresponding to the zeroth-order Hamiltonian is known

then a asymptotic series solution for the perturbed Hamiltonian system can be constructed using

the Hamilton-Jacobi method. Essentially, it involves the computation of a generating function

for a canonical transformation that expresses the perturbed system in terms of a new set of the

canonical variables in which the systems becomes integrable up to a certain order. The form of

the Hamiltonian in the new variables is typically chosen using the method of averaging. The

methodology for a first-order solution is described as follows:

Consider a canonical system defined by a HamiltonianH(q̄, p̄, t) , where q̄ and p̄ are the gener-

alized coordinate and conjugate momenta vectors, respectively. The Hamiltonian may be expressed
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as a power series in a small parameter ε as shown below:

H(p̄, q̄, t) = H0(q̄, p̄, t) +
N∑
k=1

εkHk(q̄, p̄, t). (2.1)

If the canonical system defined by H0(q̄, p̄, t) is completely integrable, then a canonical transfor-

mation can always be found using the Hamilton-Jacobi method that transforms the unperturbed

system expressed in the old variables (q̄, p̄) to the new variables (x̄, X̄) such that in the new vari-

ables, the Hamiltonian is a function of the new momenta X̄ (typically action variables) only. The

Hamiltonian in the new variables for the unperturbed system, represented as K0(X̄, t) is related to

H0(q̄, p̄, t) through a generating function S0(q̄, X̄, t) using the following relation (see Reference

[219], Chapter 9):

H0(q̄, p̄, t) +
∂

∂t
S0(q̄, X̄, t) = K0(X̄, t), (2.2)

where K0 is not a function of the new coordinates x̄ (typically angle variables). As a result, the

new momenta X̄ are constants and additionally, x̄ is a linear function of time. The transformation

between the new and old variables is generated by S0 using the following equations:

x̄ =
∂

∂X̄
S0(q̄, X̄, t), p̄ =

∂

∂q̄
S0(q̄, X̄, t). (2.3)

Using the above relations and noting that X̄ is a constant vector, Eq. 2.2 can be written as a partial

differential equation known as the Hamilton-Jacobi equation:

H0

(
q̄,
∂

∂q̄
S0(q̄, t), t

)
+
∂

∂t
S0(q̄, t) = K0(t). (2.4)

When the parameter ε is not exactly zero but small, a canonical transformation of the form S0(q̄, X̄, t)

with time-varying new variables (x̄, X̄) may still be used. Therefore the following relation for the

perturbed system similar to Eq. 2.2 is assumed to exist:
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H0(q̄, p̄, t) +
N∑
k=1

εkHk(q̄, p̄, t) +
∂

∂t
S0(q̄, X̄, t) = K(x̄, X̄, t) (2.5)

.

Using Eq. 2.2, the above equation may be simplified to obtain the expression for the new Hamil-

tonian as

K0(X̄, t) +
N∑
k=1

εkHk(q̄, p̄, t) = K(x̄, X̄, t). (2.6)

To simplify the notation, henceforth K0(X̄, t) is represented asH0(X̄, t) denoting the unperturbed

Hamiltonian expressed using the new variables. The equations of motion of the perturbed system

in the new variables is generated by Hamilton’s canonical equations of motion as follows:

˙̄x =
∂

∂X̄
H0(X̄, t) +

N∑
k=1

εk
∂

∂X̄
Hk(q̄(x̄, X̄, t), p̄(x̄, X̄, t), t),

˙̄X = −
N∑
k=1

εk
∂

∂x̄
Hk(q̄(x̄, X̄, t), p̄(x̄, X̄, t), t).

(2.7)

The transformation equations between the old and new variables is still given by Eq. 2.3, using

which, the above equations can be written completely in terms of the new variables as

˙̄x =
∂

∂X̄
H0(X̄, t) +

N∑
k=1

εk
∂

∂X̄
Hk(x̄, X̄, t),

˙̄X = −
N∑
k=1

εk
∂

∂x̄
Hk(x̄, X̄, t).

(2.8)

The above equations for the variations of the new variables (x̄, X̄) in the presence of the pertur-

bations are similar to the variation of parameters equations in the Hamiltonian framework, except

that x̄ is a linear function of time and not constant in the unperturbed motion. If K0(t) in Eq. 2.2 is
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chosen to be nil, then H0(X̄, t) vanishes. As a result, x̄ becomes constant for ε = 0 and the above

equations indeed become variation of parameters equations.

If the unperturbed solution in terms of the old variables (q̄, p̄) is periodic with period T , then a

first approximation to the perturbed Hamiltonian system can be obtained by replacing the pertur-

bation Hk in Eq. 2.8 by its time-average 〈Hk〉. For each momentum Xi that appears in H0, the

corresponding coordinate xi is a linear functions of t, therefore as a result, the time-average can

also be computed by collecting all the term inHk to obtain 〈Hk〉 that are not a function of xi. Note

that xi are also termed as fast variables due to their linear dependence on time in the unperturbed

case. The final first-order averaged canonical equations of motion are obtained as follows:

˙̄x =
∂

∂X̄
H0(X̄, t) +

N∑
k=1

εk
∂

∂X̄
〈Hk(x̄, X̄, t)〉,

˙̄X = −
N∑
k=1

εk
∂

∂x̄
〈Hk(x̄, X̄, t)〉,

(2.9)

where

〈Hk(x̄, X̄, t)〉 =
1

T

∫ T

0

Hk(x̄, X̄, t) dt.

For solving the above integral, the slow variables X̄ are held constant. The above formalism can be

extended to obtain the higher approximation for the perturbed Hamiltonian system in a fashion that

is similar to the generalized method of averaging. The von Zeipel method [28, 220, 221] given in

the following subsection accomplishes this task by representing the generating function in a series

form with ε as the small parameter and computing the higher-order terms in the series recursively

by using a chain of partial differential equations.

2.1.1 The von Zeipel Method

The von Zeipel method is an improvement over the method of Poincaré, which itself is an

improvement over Delaunay’s method of perturbations. In the von Zeipel method, all the fast-
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periodic terms are removed from the perturbed Hamiltonian using a single canonical transforma-

tion. In Delaunay’s method, on the other hand, the disturbing function is treated term by term and

a transformation is applied to each term separately to obtain the averaged terms without the use

of the canonical transformation approach [220]. The important difference between the von Zeipel

and Poincaré methods lies in the fact that in the former, the new Hamiltonian is allowed to be a

function of the degenerate angle variables. This scheme allows the von Zeipel method to be ap-

plicable in case of degenerate unperturbed Hamiltonians (e.g., Keplerian Hamiltonian) unlike the

latter method [14].

To determine an approximate higher-order solution to Eq. 2.8, von Zeipel introduced a trans-

formation from the canonical system (x̄, X̄) to a new canonical system (ȳ, Ȳ ) using a series form

of the generating function as

S = xiYi +
∞∑
k=1

εkSk(x̄, Ȳ , t), (2.10)

and the associated equations

Xi =
∂

∂xi
S(x̄, Ȳ , t), yi =

∂

∂Yi
S(x̄, Ȳ , t), (2.11)

which leads to the following equations:

X̄ = Ȳ +
∞∑
k=1

εk
∂

∂x̄
Sk(x̄, Ȳ , t)

ȳ = x̄+
∞∑
k=1

εk
∂

∂Ȳ
Sk(x̄, Ȳ , t).

(2.12)

For convenience of notation, the Einstein summation convention is used whenever there is no scope

for ambiguity. The new HamiltonianK(ȳ, Ȳ , t) may also be represented as a power series in ε, then

the following relation is obtained between the old HamiltonianH(x̄, X̄, t) from Eq. 2.6, generating

function S in Eq. 2.10, and K(ȳ, Ȳ , t) as
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N∑
k=0

εkHk(x̄, X̄, t) +
∞∑
k=1

εk
∂

∂t
Sk(x̄, Ȳ , t) =

∞∑
k=0

εkKk(ȳ, Ȳ , t), (2.13)

where

H0(x̄, X̄, t) = H0(X̄, t),

∞∑
k=0

εkKk(ȳ, Ȳ , t) = K(ȳ, Ȳ , t).

Substituting Eq. 2.12 in the above equations, it is transformed into

N∑
k=0

εkHk

(
x̄, Ȳ +

∞∑
k=1

εk
∂

∂x̄
Sk(x̄, Ȳ , t), t

)
+
∞∑
k=1

εk
∂

∂t
Sk(x̄, Ȳ , t) =

∞∑
k=0

εkKk

(
x̄+

∞∑
k=1

εk
∂

∂Ȳ
Sk(x̄, Ȳ , t), Ȳ , t

)
. (2.14)

Expanding the left hand side of the above equation using Taylor’s theorem and equating the coef-

ficients of the same powers of ε, the following equations, referred to as homological equations, are

obtained up to O(εk) as follows:

H0(ȳ, Ȳ , t) = K0(x̄, Ȳ , t),

∂

∂Yi
H0(x̄, Ȳ , t)

∂

∂xi
S1(x̄, Ȳ , t) +H1(x̄, Ȳ , t) +

∂

∂t
S1(x̄, Ȳ , t) = K1(x̄, Ȳ , t),

Fk(x̄, Ȳ , t) +Hk(x̄, Ȳ , t) +
∂

∂t
Sk(x̄, Ȳ , t) = Kk(x̄, Ȳ , t),

(2.15)

where Fk is a known function of Hs and Ss for s = 0, 1, . . . , (k − 1). The complete expressions

of Fk in recursive form are given in Reference [220]. The terms Kk and Sk can be chosen in any

manner. Generally, the method of averaging is used to collect all the secular terms at each order

in Kk, and the remaining periodic terms become part of the partial differential equation, which

then is solved to obtain Sk. Using the solution for Sk, the new variables (ȳ, Ȳ ) can be completely

expressed in terms of the old variables and vice-versa using substitution and inversion operations.
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An important limitation of the von Zeipel method is apparent from the homological equations

given in Eq. 2.15 by noting that the new Hamiltonian and the generating function is specified in

terms of the mixed variables: old coordinates and the new momenta. As a consequence, the near-

identity transformation between the old and new variables is not explicitly given. Additionally, the

near-identity transformation is not canonically invariant, i.e., the expressions for K and S depend

on the chosen canonical elements. A discussion of these and other limitations of the von Zeipel

method is given in Reference [61].

2.1.2 Deprit’s Perturbation Method Using Lie-Transforms

The limitations of the von Zeipel method were first removed by Hori by making use of the

Lie-series based canonical transformations. These are truly near-identity transformations, and are

a special case of the more general canonical transformations. A similar method by Deprit uses

Lie-transform based nonconservative near-identity canonical transformations to convert a time-

dependent Hamiltonian expressed in the old variables into a time-independent Hamiltonian in the

new variables. The gravitational potential expanded in spherical harmonics depends on time for

the case of the tesseral harmonics, therefore Deprit’s original method is used in this work to build

perturbation solutions (Hori’s method also has been extended to time-dependent Hamiltonian, see

[60] and Section 1.2.1.3). It is noted that the time-dependence of the Hamiltonian can also be

removed by expressing it in the rotating frame fixed to the central body, however it requires an

inconvenience of redefining the node angle in a rotating frame. A brief summary and important

equations of Deprit’s perturbation method are given in this section.

If a Hamiltonian H, a function of canonical variables (x,X) and time t, can be written as a

power series using a small parameter ε as shown below:

H(x,X; t; ε) = H0 + εH1 +
ε2

2!
H2 +O(ε3), (2.16)

with the associated canonical equations as:
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ẋ =
∂H(x,X; t; ε)

∂X
, Ẋ = −∂H(x,X; t; ε)

∂x
, (2.17)

then a canonical transformation can be constructed to transform the original variables into a new

set of the canonical variables (y, Y ) such that

ẏ =
∂K(y, Y ; t; ε)

∂Y
, Ẏ = −∂K(y, Y ; t; ε)

∂y
, (2.18)

where

K(y, Y ; t; ε) = K0 + εK1 +
ε2

2!
K2 +O(ε3).

In the above equations,K represents the transformed Hamiltonian (sometimes referred to as Kamil-

tonian), which is a function of the new variables (y, Y ) and time t. The old variables can be ex-

pressed in terms of the new variables and vice versa using the following set of nonconservative

or time-dependent transformations computed by evaluating the Poisson brackets (_, _) of the new

and old variables with a time-dependent generating functionW as shown below:

x = y + ε(y,W1) + ε2

2!
[(y,W2) + ((y,W1),W1)] +O(ε3),

X = Y + ε(Y,W1) + ε2

2!
[(Y,W2) + ((Y,W1),W1)] +O(ε3),

(2.19)

and
y = x− ε(x,W1) + ε2

2!
[−(x,W2) + ((x,W1),W1)] +O(ε3),

Y = X − ε(X,W1) + ε2

2!
[−(X,W2) + ((X,W1),W1)] +O(ε3),

(2.20)

where

(E ,W ) =
∂E
∂l

∂W

∂L
− ∂E
∂L

∂W

∂l
+
∂E
∂g

∂W

∂G
− ∂E
∂G

∂W

∂g
+
∂E
∂h

∂W

∂H
− ∂E
∂H

∂W

∂h
,

W(_, _; t; ε) =W1 + εW2 +
ε2

2!
W3 +O(ε3).
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In the above equations, the generating function W depends on time t, the small parameter ε, the

new variables in Eq. 2.19, and the old variables in Eq. 2.20. The original HamiltonianH, the new

HamiltonianK, and the generating functionW for the near-identity Lie-transform based canonical

transformations are related by the following equation:

H(x,X, t; ε) = K(y, Y, t; ε) + ε
∂W
∂t

. (2.21)

The old Hamiltonian H can be expanded in terms of the new variables (y, Y ) by using the trans-

formation equations given in Eq. 2.19. Subsequently, by equating the coefficients of ε, the homo-

logical equations are found, which are given below up to order three [61]:

H0 = K0,

(H0,W1)− ∂W1

∂t
+H1 = K1,

(H0,W2)− ∂W2

∂t
+ (H1 +K1,W1)−

(
∂W1

∂t
,W1

)
+H2 = K2,

(H0,W3)− ∂W3

∂t
+ (2H1 +K1,W2) + (H2 + 2K2,W1)− ((K1,W1),W1),

−
(
∂W2

∂t
,W1

)
+H3 = K3.

(2.22)

In each of the above equations, there is a freedom in choosing K in any manner as desired. Typ-

ically, the method of averaging is used to set K equal to the average of the known terms. The

remaining periodic terms become part of the partial differential equation, which then must be

solved to find the generating functionW .

2.2 Delaunay Normalization of Perturbed Keplerian Hamiltonian

Delaunay normalization refers to a canonical transformation that converts a given Hamiltonian

into Delaunay normal form [222]. For the perturbed Keplerian Hamiltonian, Delaunay normaliza-

tion is performed by building a canonical transformation that makes one angle variable cyclic in

the transformed Hamiltonian K. Using the homological equations of Deprit’s method given in Eq.
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2.22, the terms in the series expansion of K may be chosen such that one of the angle variables

is absent from K, thus making the corresponding action variable an integral of the transformed

system. For constructing satellite theories, averaging is used to eliminate the short-period terms

(that are a function of the mean anomaly) from H in order to compute K, in what is called a first

Delaunay normalization. Specifically, at each order in Eq. 2.22, the corresponding terms in the

series expansion of K is set equal to the average of each of the known terms with respect to the

mean anomaly on the left hand side of the same equation. The remaining short-period terms then

become part of the partial differential equation (PDE) of the unknown series term of W at each

order, which is then solved to compute the short-period variations of the mean elements (K defines

the mean elements). In case of the zonal spherical harmonics, the first Delaunay normalization

results in a first-order linear PDE for each term in the series expansion ofW with one independent

variable, which can be solved in a straightforward manner without any special techniques at least

up to order two [88].

2.3 Relative Motion Description Using Differential Orbital Elements

A more accurate approach to modeling satellite relative motion is based on the differences be-

tween the orbital elements of the participating satellites compared to modeling using the Cartesian

coordinates. If the orbit of one of the satellites is chosen as the reference, referred to as the chief,

then the states of a second satellite, referred to as the deputy, can be represented by simply the

difference between its orbital elements and the chief’s elements. In case of a small separation

between the chief and the deputy compared to the radius of the chief’s orbit, the orbital element

differences can be assumed to be small. However, this statement may be violated in some cases

if a singular description of the reference orbit is used, e.g., the argument of periapsis (AOP) and

the right ascension of the ascending node (RAAN) elements, are undefined for the circular and

equatorial orbits, respectively. In this work, the prograde version of the equinoctial elements are

almost exclusively used, which are completely nonsingular, and their differences are guaranteed

to remain small for small separations between the two satellites. As a result, the differential or-

bital elements of the deputy can be modeled as a first-order variations of the equinoctial elements
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of the chief. This enables the construction of a linear transformation to convert differential or-

bital elements of the deputy to its Cartesian relative states in the Hill reference frame (also called

LVLH frame). An exact nonlinear approach to model the relative Cartesian states using the orbital

element differences is the unit-sphere method, which is described in the next subsection.

2.3.1 The Unit-Sphere Method

The unit-sphere method projects the motion of the satellites in a formation onto a unit-sphere,

which results in decoupling of the periodic variations of the radius from the along-track and cross-

track motions [184]. The motion of a satellite on the unit-sphere is projected by normalizing its

Cartesian states by its radius and the projection is termed as the sub-satellite point. This approach

is useful for analyzing satellite formations in which the prime interest is in the relative orbit ge-

ometries as seen along the radial direction. A brief summary of the important equations and results

are given next (for more details, see [184], Chapter 7.)

Let C0 and C1 denote the direction cosine matrices of the Hill frame with respect to an inertial

frame with the frames’ origins attached to the chief and deputy, respectively. The relative position

vector of the deputy’s sub-satellite point with respect to the chief’s sub-satellite point in the Hill

frame of the chief can be written as:


x̄

ȳ

z̄


C

= C0C
T
1


1

0

0


D

−


1

0

0


C

, (2.23)

where (x̄, ȳ, z̄) denote the relative position coordinates of the deputy’s projection on the unit-

sphere with respect to the chief’s projection. The superscript T denotes the transpose operator

and the subscripts C and D indicate the frames of the chief and the deputy in which the vectors are

coodinatized, respectively. The direction cosine matrices C0 and C1 can be parameterized by the

orbital elements as shown below:

C0 = C3(ϑ0)C1(i0)C3(Ω0), (2.24)
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C1 = C3(ϑ0 + δϑ)C1(i0 + δi)C3(Ω0 + δΩ), (2.25)

where ϑ is the argument of the latitude of the chief and other orbital elements have their conven-

tional meanings. The zero subscript indicates the orbital elements of the chief, and the elements

preceded by δ indicate differential orbital elements of the deputy. The quantities C1 and C3 repre-

sent elementary rotation matrices of the type indicated by their subscript. By substituting Eqs. 2.24

and 2.25 into Eq. 2.23, the relative state vector of the deputy’s projection on the unit-sphere can be

expressed in terms of its differential orbital elements along with the chief’s orbital elements with-

out any approximations. The actual relative motion states (x, y, z) of the deputy can be obtained

from its projection on the unit sphere using the following relations:

x = (r1 − r0) + r1x̄, (2.26)

y
z

 = r1

ȳ
z̄

 . (2.27)

The relative velocity states of the deputy can be obtained by differentiating Eqs. 2.23, 2.26-2.27.

For small differential orbital elements, Eq. 2.25 can be simplified and substituted in Eq. 2.23 along

with Eq. 2.24 to obtain the following approximations for the relative states of the deputy in the

Hill frame of the chief:

x = r1 − r0,

y = r1(δϑ+ ∂Ω cos(i0)),

z = r1(− sin(i0) δΩ cos(ϑ0 + δϑ) + δi sin(ϑ0 + δϑ)).

(2.28)

Further simplifications of the second and third equations, corresponding to the along-track and

cross-track directions, can be performed by only retaining the zeroth-order terms in r1 and (ϑ0+δϑ)

as they are the coefficients of the first-order terms. Therefore, the final equations for the relative
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motion are obtained as follows:

x = r1 − r0,

y = r0(δϑ+ ∂Ω cos(i0)),

z = r0(− sin(i0) δΩ cos(ϑ0) + δi sin(ϑ0)).

(2.29)

2.3.2 The Geometric Transformation

Gim and Alfriend proposed the geometric transformation as part of their STM solution for

the satellite relative motion that includes first-order secular and periodic effects due to J2 [204].

Their approach involves the transformation of the differential orbital elements of the deputy to its

relative states in a curvilinear frame attached to the chief by using the geometric transformation

matrix. The curvilinear frame is defined with respect to an imaginary sphere with its origin at

the chief and radius equal to chief’s radius. The relative position with respect to the chief can be

defined in terms of three coordinates: x represents the difference in the radii of the two satellites,

and y and z represent the curvilinear distances along and perpendicular to the along-track direction

of the chief, respectively. If x̄ is the relative position and velocity vector in the curvilinear frame

and δē is the differential orbital elements vector, then the geometric transformation matrix, Σ, is

defined as

x̄ = Σ δē. (2.30)

To derive an expression for Σ, the first variation of the following equations:

[r̄1]C = C0C
T
1 [r̄1]D ,

[v̄1]C = C0C
T
1 [v̄1]D ,

(2.31)

is taken with respect to the chief’s orbital elements, where r1 and v1 represent position and velocity

vectors of the deputy, respectively. The direction cosine matrices, C0 and C1, represents orienta-

tions of the Hill frames of the chief and deputy, respectively. If $ is the angular velocity vector of
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the chief’s frame, then the resulting variational equations can be written as:

[r̄0 + x̄]C = C0

(
CT

0 + δCT
0

)
([r̄0]C + δ [r̄0]C) ,

[v̄0 + ˙̄x+$ × x̄]C = C0

(
CT

0 + δCT
0

)
([v̄0]C + δ [v̄0]C) ,

(2.32)

where

[r̄0]C = [r0 0 0]T ,

[v̄0]C = [vr0 vt0 0]T ,

and (vr0, vt0, 0) denote the components of the chief’s velocity along radial, tangential and normal

directions, respectively. By ignoring the second-order terms, the following linearized equations for

the relative states of the deputy in the curvilinear frame are obtained:

[x̄]C = δ [r̄0]C + C0 δC
T
0 [r̄0]C ,

[ ˙̄x]C = δ [v̄0]C + C0 δC
T
0 [v̄0]C −$ × [x̄]C .

(2.33)

The variational quantities in the above equations are computed with respect to the orbital elements

of the chief. The equinoctial elements can be used to formulate the geometric transformation

matrix, which avoids singularities in case of circular or equatorial reference orbits (for details on

the equinoctial elements, see [223].) The parameterizations of the position and velocity vectors of

the chief in the Hill frame using the equinoctial elements (a,Ψ, p1, p2, q1, q2) can be derived using

the well-known two-body relations (see [224], Chapter 3) and are given below:

r0 =
a(1− q2

1 − q2
2)

(1 + q1 cos(Ψ) + q2 sin(Ψ))
,

vr0 =

√
µ

a(1− q2
1 − q2

2)
(q1 sin(Ψ)− q2 cos(Ψ)) ,

vt0 =

√
µ

a(1− q2
1 − q2

2)
(1 + q1 cos(Ψ) + q2 sin(Ψ)) ,

(2.34)

where
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Ψ = f + g + h,

p1 = tan

(
i

2

)
cos(h),

p2 = tan

(
i

2

)
sin(h),

q1 = e cos(g + h),

q2 = e sin(g + h).

By treating classical elements as functions of the equinoctial elements, C0 can also be parameter-

ized in terms of the equinoctial elements using Eq. 2.24. It is noted that after all the variational

quantities are determined and substituted, the coefficients of the differential equinoctial elements

can be collected in a matrix, which becomes the geometric transformation matrix Σ as defined by

Eq. 2.30. The expression for the along-track relative state y in terms of differential equinoctial

elements, which becomes the second row of Σ, is given below as one example:

y =

√
µp

vt0

(
δΨ +

2 p2

1 + p2
1 + p2

2

δp1 −
2 p1

1 + p2
1 + p2

2

δp2

)
. (2.35)

Using the relations between the classical and equinoctial elements, it can be verified that the above

expression for along-track position of the deputy in terms of differential equinoctial elements is

equivalent to the expression computed using the unit-sphere method in Eq. 2.29.

The angular velocity vector, $, is yet to be determined, which is required to compute the

expressions for the relative velocities in Eq. 2.33. Knowing the angular rates, the components of

$ can be computed in the chief’s frame using 3− 1− 3 rotations of the coordinate axes as shown

below:
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$ = C3(ϑ)C1(i)


0

0

Ω̇

+ C3(ϑ)


i̇

0

0

+


0

0

ϑ̇

 . (2.36)

Solving the above equation results in the following equation for the angular velocity vector:

$ =


Ω̇ sinϑ sin i+ i̇ cosϑ

Ω̇ cosϑ sin i− i̇ sinϑ

ϑ̇+ Ω̇ cos i

 . (2.37)

Using the osculation constraint that the normal component of the inertial velocity in the Hill frame

is nil, further simplifications of the above expression for $ is possible. Note that the inertial

velocity of the chief expressed in the Hill frame can be written as:

[v̄0]C = ṙ0x̂+ r0$nŷ − r0$tẑ, (2.38)

where (x̂, ŷ, ẑ) are the three unit-vectors along the coordinate axes of the Hill frame. Therefore,

the expression for the second component in Eq. 2.36, i.e., $t must be set to zero, which results in

the following expression for the inclination rate:

i̇ =
Ω̇ sin(i) cos(ϑ)

sin(ϑ)
. (2.39)

As a final step, the above relation is used to simplify the expression for $r and the resulting

expression for the angular velocity vector is

$ =

[
Ω̇ sin(i)
sin(ϑ)

0 h
r20

]T
, (2.40)

where h is the magnitude of the specific angular momentum. It is noted that all the expressions

involved in computing the geometric transformation matrix Σ are functions of the osculating orbital

elements of the chief, and the node rate. The complete expressions for all the elements of Σ are
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provided in Appendix C. If a transformation from the mean differential orbital elements to mean

relative states in the curvilinear frame is sought, then the osculation constraint discussed above is

no longer valid and the expression given in Eq. 2.37 must be used to compute the mean geometric

transformation matrix. As a result, the mean angular rates of all three angles Ω, i, and ϑ would be

required, which can be computed using the methods detailed in Chapter 3.

2.3.3 Gim-Alfriend State Transition Matrix

Using the geometric transformation, Gim and Alfriend [204] developed an analytic state tran-

sition matrix, known as the GA-STM, for the perturbed satellite relative motion in the presence of

the J2 harmonic perturbation. Specifically, GA-STM models the first-order secular, long-periodic

and short-periodic variations due to J2 by taking the first-order variations of the secular rates as

well as the mean to osculating transformation of the chief with respect to the orbital elements.

Using the geometric transformation matrix, it directly propagates the initial relative states of the

deputy in the curvilinear frame from the initial to the final time.

GA-STM is formulated using three separate component matrices: the geometric transformation

matrix Σ, the differential mean-to-osculating transformation matrix D, and the differential mean

STM φ as shown below:

Φ(t, t0) = Σ(t)D(t)φ(t, t0)D−1(t0)Σ−1(t0). (2.41)

The differential mean STM, φ, propagates the differential mean elements in time by taking a first-

order variation of the mean rates of the chief’s orbital elements. The differential mean elements

are then converted into differential osculating elements, when multiplied by D. Finally, the geo-

metric transformation matrix converts the differential osculating elements into the relative states

in the curvilinear frame. Similarly, the initial relative states at t0 can be converted to the initial

differential mean elements by multiplication with the inverse of D and Σ in a sequence shown in

the above equation, to form the complete GA-STM. All the three component matrices of GA-STM

can be derived in terms of the equinoctial elements, thereby avoiding the zero eccentricity and zero
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inclination singularities [225].
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3. SATELLITE THEORY WITH ZONAL AND TESSERAL HARMONICS∗

Using Deprit’s perturbation method described in the previous chapter (see Section 2.1.2),

the Delaunay normalization of a perturbed Keplerian Hamiltonian with the zonal, sectorial, and

tesseral harmonics is carried out in this chapter to construct an artificial satellite theory devoid of

any series expansion in powers of the eccentricity or in the ratio of the mean motion and Earth’s

angular velocity. For the zonal harmonics up to degree six, the explicit expressions for the secular

and periodic effects are computed first, followed by the generalized expressions for the same that

are valid for an arbitrary zonal harmonic. In case of the sectorial and tesseral harmonics, an exact

approach to perform the Delaunay normalization is presented and it is showed that the conven-

tional method of relegation can be considered as a special case of the proposed approach. Using

these results, a complete artificial satellite theory for the all the gravitational spherical harmonics

is constructed in terms of the equinoctial elements. The accuracy of this theory is validated against

∗Reprinted in part with permission from

B. Mahajan, S.R. Vadali, and K.T. Alfriend, “Exact Delaunay normalization of the perturbed Keplerian Hamiltonian
with tesseral harmonics,” Celestial Mechanics and Dynamical Astronomy, vol. 130, no. 25, 2018. Copyright by
Springer Science+Business Media B.V., part of Springer Nature 2018.

B. Mahajan, S. R. Vadali, and K. T. Alfriend, “Analytic solution of perturbed relative motion with zonal and
tesseral harmonics,” In Spaceflight Mechanics 2017: Proceedings of the 27th AAS/AIAA Space Flight Mechanics
Meeting held February 5-9, 2017 San Antonio, Texas, U.S.A., pp. 1117-1134. [AAS 17-475] (Advances in the
Astronautical Sciences; Vol. 160). San Diego, California: Published for the American Astronautical Society by
Univelt, Inc. (2017).

B. Mahajan, S. R. Vadali, and K. T. Alfriend, “Exact normalization of the tesseral harmonics,” In Spaceflight
Mechanics 2017: Proceedings of the 27th AAS/AIAA Space Flight Mechanics Meeting held February 5-9, 2017 San
Antonio, Texas, U.S.A. (pp. 2569-2588). [AAS 17-473] (Advances in the Astronautical Sciences; Vol. 160). San
Diego, California: Published for the American Astronautical Society by Univelt, Inc. (2017).

B. Mahajan, S. R. Vadali, and K. T. Alfriend, “Analytic solution for satellite relative motion: The complete
zonal gravitational problem,” In Spaceflight Mechanics 2016: Proceedings of the 26th AAS/AIAA Space Flight
Mechanics Meeting held February 14-18, 2016, Napa, California, U.S.A. (pp. 3325-3348). [AAS 16-262] (Advances
in the Astronautical Sciences; Vol. 158). San Diego, California: Published for the American Astronautical Society
by Univelt, Inc. (2016).

B. Mahajan, S. R. Vadali, and K. T. Alfriend, “Analytic solution for satellite relative motion with zonal grav-
ity perturbations,” In Astrodynamics 2015: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference held
August 9-13, 2015, Vail, Colorado, U.S.A. (pp. 3583-3598). [AAS 15-705] (Advances in Astronautical Sciences;
Vol. 156). San Diego, California: Published for the American Astronautical Society by Univelt, Inc. (2016).
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numerical orbit propagation in MATLAB as well as in GMAT tool∗. The theories formulated in this

chapter are used for deriving an analytic STM solution for the perturbed satellite relative motion

in the following chapter.

3.1 Satellite Theory for Zonal Harmonics J2-J6

In this section, the secular variations up to order three and the periodic variations up to order

two for the nonsingular element set are derived [1]. The expressions are computed explicitly for

each of the zonals from J2 to J6 using symbolic computations in Maple software package†. Unlike

the classical elements or the Delaunay elements, the nonsingular elements exhibit no singularity

for the circular orbits. They are singular for the equatorial orbits, however. The definitions of the

nonsingular elements along with the Delaunay elements in terms of the classical elements are:

Delaunay:
[
l g h L G H

]T
,

Nonsingular:
[
a M + ω i e cos(ω) e sin(ω) Ω

]T
,

where

l = M, g = ω, h = Ω, L =
√
µa, G = L

√
1− e2, H = G cos(i).

For the zonal problem, the gravitational potential expanded using the spherical harmonics is

U =
µ

r

[
1−

∞∑
n=2

Jn

(
Re

r

)n
Pn(sin(φ))

]
, (3.1)

where sin(φ) = sin(i) sin(f + g) (see Reference [42], Chapter 3). The symbols r, φ, Re, µ, Jn

and Pn represent the radial distance of the satellite, its geocentric latitude, radius of Earth (or the

appropriate central body in case of non-Earth orbiters), gravitational parameter, zonal harmonic

coefficients, and the Legendre polynomials of degree n, respectively. The corresponding Hamil-

tonian for the above system can be expressed as a power series in J2 using a combination of the

∗http://www.gmatcentral.org
†https://www.maplesoft.com/products/maple/
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Delaunay and classical orbital elements. The magnitude of J2 is at least three orders of magni-

tude greater than any other spherical harmonic. For many other planets also, J2 is the dominant

perturbation for orbiters with sufficiently small altitude. Therefore, for developing satellite theo-

ries up to order two, J2 can be considered as a first-order perturbation with the higher degree and

order spherical harmonics considered to be of order two. Using the definition of the Legendre

polynomials and trigonometric identities, the Hamiltonian for the zonals J2 to J6 is derived as

H = H0 + J2H1 +
J2

2

2!
H2, (3.2)

where

H0 = −1

2

µ2

L2
, (3.3)

H1 =
1

4

µ4Re
2

L6

(a
r

)3 (
1− 3 cos2(i)− 3 sin2(i) cos (2g + 2f)

)
, (3.4)

H2 = H23 +H24 +H25 +H26,

H23 =
2

J2
2

J3µ
5Re

3

8L8

(a
r

)4

sin(i)
(
3
(
1− 5 cos2(i)

)
sin (f + g)− 5 sin2(i) sin (3f + 3g)

)
, (3.5)

H24 =
2

J2
2

J4µ
6Re

4

8L10

(a
r

)5
[(

9

8
− 45

4
cos2(i) +

105

8
cos4(i)

)
+

(
−5

2
+ 20 cos2(i)− 35

2
cos4(i)

)
cos (2f + 2g) +

(
35

8
− 35

4
cos2(i) +

35

8
cos4(i)

)
cos (4f + 4g)

]
,

(3.6)

H25 =
2

J2
2

J5 µ
7Re

5 sin (i)

32L12

(a
r

)6
[

15

2

(
1− 14 cos2(i) + 21 cos4(i)

)
sin (f + g)

−35

4

(
1− 10 cos2(i) + 9 cos4(i)

)
sin (3 f + 3 g) +

63

4

(
1− 2 cos2(i) + cos4(i)

)
sin (5 f + 5 g)

]
,

(3.7)
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H26 =
2

J2
2

J6 µ8Re
6

256L14

(a
r

)7
[
25

(
1− 21 cos2(i) + 63 cos4(i)− 231

5
cos6(i)

)
−105

2

(
1− 19 cos2(i) + 51 cos4(i)− 33 cos6(i)

)
cos (2 g + 2 f)

+63
(
1− 13 cos2(i) + 23 cos4(i)− 11 cos6(i)

)
cos (4 f + 4 g)

−231

2

(
1− 3 cos2(i) + 3 cos4(i)− cos6(i)

)
cos (6 f + 6 g)

]
. (3.8)

The periodic terms present in the above zonal Hamiltonian are averaged out using Deprit’s method

in the following subsections.

3.1.1 Short-Period Effects

For the Delaunay normalization of the zonal Hamiltonian, the short-period terms that are func-

tions of l are first separated from H using the homological equations of Deprit’s method given in

Eq. 2.22. The resulting short-period averaged Hamiltonian or Kamiltonian K includes only the

secular and long-period effects. The zonal Hamiltonian is not a function of time, as a result, the

short-period generating function does not depend on time. Deprit’s homological equations after

these simplifications are

H0 = K0,

(H0,W1) +H1 = K1,

(H0,W2) + (H1 +K1,W1) +H2 = K2,

(H0,W3) + (2H1 +K1,W2) + (H2 + 2K2,W1)− ((K1,W1) ,W1) +H3 = K3,

(3.9)

where

K = K0 + J2K1 +
J2

2

2!
K2 +

J3
2

3!
K3 +O(J4

2 ), (3.10)

W =W1 + J2W2 +
J2

2

2!
W3 +O(J3

2 ). (3.11)
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In the above equations,W represents the short-period generating function and (_, _) denotes Pois-

son brackets. To compute K andW at each order successively, first a closed-form expression for

the average value of all the known terms on the left hand side of Eq. 3.9, i.e., all terms except the

first, is evaluated with respect to l. At each order, this average value is collected in the respective

term from the series expansion of K. The remaining periodic terms are integrated with respect to

l for computing the series expansion terms of W . The following formulae are used to derive the

first-order terms of K andW:

K1 =
1

2π

∫ 2π

0

H1dl, (3.12)

W1 = − 1
∂H0

∂L

∫
(K1 −H1) dl. (3.13)

The average ofW1 with respect to l may not be zero and as a result, biases may exist in the short-

period effects. Since, any expression that is not a function of l can be added toW1 as a constant of

integration, the long-period term

−1

8

µ2R2
e

G3

(
1− H2

G2

)
e2(1 + 2η)

(1 + η)2
sin 2g

can be added toW1 in order to remove its biases. It should be noted that a generating function with

a zero average at every order does not necessarily produce periodic variations with zero average

at second and higher orders due to the presence of the nonlinear terms in the transformations Eqs.

2.19-2.20. Ferraz-Mello has shown that a completely zero-average Hamiltonian system cannot be

obtained using the canonical perturbation methods at orders higher than one [226]. Nonetheless,

the accuracy of the theories are not affected by the presence of these biases, and the actual dynamics

still oscillates about the “averaged” dynamics but with non-zero bias. In order to compute the

short-period averaged Hamiltonian K, the following definite integrals are useful [227]:

1
2π

∫ 2π

0
cos(kf)dl = −

(√
1−η
1+η

)k
(kη + 1),

∫ 2π

0
sin(kf)dl = 0,
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∫ 2π

0
(f − l) dl = 0,

∫ 2π

0
(f − l) cos(kf)dl = 0, and

∫ 2π

0
(f − l) sin(kf)dl = 0,

where

η =
√

1− e2, and k ∈ Z.

The computation of J2 contributions to K2 and W2 follows a similar approach. However,

the process requires additional algebraic computations due to the presence of the Poisson bracket

involving (H1 + K1) andW1. One of the terms originating from (K1,W1) includes the following

non-reducible indefinite integral:

∫ (
cos(2f + 2g) + e cos(f + 2g) +

e

3
cos(3f + 2g)

)
dl. (3.14)

Aksnes showed that the above indefinite integral gets completely canceled by a term originating

from (H1,W1) [88]. Specifically, the following term, when integrated by parts, produces the same

integral as above, with an opposite sign:

∂H1

∂g

∂W1

∂G
: (f − l) sin(2g + 2f) (1 + e cos(f))3 .

After getting rid of the term in Eq. (3.14) with the help of the integral of the above term, the

computation of J2 contributions to K2 andW2 is straightforward. Since all the zonal harmonics of

degree higher than J2 are considered to be of the second-order and included in H2, their contribu-

tions ∆K2 and ∆W2 toK2 andW2, respectively, can be computed separately from those due to J2.

The following equations are used to compute the secular and short-periodic generating function

contributions of all the higher zonal harmonics:

∆K2 =
1

2π

∫ 2π

0

H2 dl, (3.15)

∆W2 = − 1
∂H0

∂L

∫
(∆K2 −H2) dl. (3.16)
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Given the complete short-period generating function, W , for the zonal harmonics J2 to J6, the

short-period variations due to these harmonics can be removed from the osculating elements, de-

noted by E , using the near-identity transformation equations given in Eq. 2.19-2.20. The resulting

short-period averaged elements ELP retain the long-period and secular variations, and are related

to E by the following transformations:

E = ELP + ε(ELP ,W1) + ε2

2!
[(ELP ,W2) + ((ELP ,W1),W1)] +O(ε3),

ELP = E − ε(E ,W1) + ε2

2!
[−(E ,W2) + ((E ,W1),W1)] +O(ε3).

(3.17)

It is noted that while the above near-identity transformation equations are derived in Section 2.1.2

to compute the periodic variations of the canonical elements, they can also be used to compute

variations for any other set of elements. Specifically, E , with or without subscript, represents non-

singular element set in this section. However, in case of the canonical elements, the near-identity

transformation equations provide better accuracy as there is no need to approximate the nonlin-

ear relationship between the canonical and the chosen non-canonical element set. The Poisson

brackets are, of course, always computed using the canonical elements (Delaunay elements in this

work).

3.1.2 Long-Period Effects

Elimination of the short-period terms results in the short-period averaged Hamiltonian K,

which is a function of the action variables (L,G,H) and one angle variable g. A second Delau-

nay normalization removes the long-period terms that depend on g from K, and produces a new

double-averaged Hamiltonian K̄, and the long-period generating function W̄ . Because W̄ is not a

function of l, the homological equations simplify to the following:
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K0 = K̄0,

K1 = K̄1,(
K̄1 +K1, W̄1

)
+K2 = K̄2,(

2K1 + K̄1, W̄2

)
+
(
K2 + 2K̄2, W̄1

)
−
((
K̄1, W̄1

)
, W̄1

)
+K3 = K̄3,

(3.18)

where

K̄ = K̄0 + J2K̄1 +
J2

2

2!
K̄2 +

J3
2

3!
K̄3 +O(J4

2 ), (3.19)

W̄ = W̄1 + J2W̄2 +
J2

2

2!
W̄3 +O(J3

2 ). (3.20)

At each order in Eq. 3.18, all the terms independent of g are collected in K̄, and the remaining

long-periodic terms are integrated with respect to g for computing W̄ . It should be noted that the

second-order long-period generating function W̄2 is computed from the third-order homological

equation. The mean action variables do not change with time and the constant mean rates of

the angle variables are computed using Hamilton’s equations. Using the complete long-period

generating function W̄ for the zonal harmonics J2 to J6, the near-identity transformation between

the mean elements Em, which retain only secular effects, and ELP can be computed using the

following equations:

ELP = Em + ε(Em, W̄1) + ε2

2!

[
(Em, W̄2) + ((Em, W̄1), W̄1)

]
+O(ε3),

Em = ELP − ε(ELP , W̄1) + ε2

2!

[
−(ELP , W̄2) + ((ELP , W̄1), W̄1)

]
+O(ε3).

(3.21)

3.1.3 Results

Using the results from the previous subsections, a second-order artificial satellite theory with

contributions from J2 to J6 harmonics is implemented in MATLAB. Appendix A provides the ex-

plicit expressions for K̄ up to third order, W , and W̄ up to second order for the zonal harmonics

J2 to J6 computed using Maple. The accuracy of the satellite theory is validated using numerical
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propagation in GMAT and the simulation results are given in this subsection. In GMAT, the JGM-3

gravity model, with degree six and order zero, was used for numerical propagation of an artificial

satellite. The mean elements are chosen, and the initial osculating elements of the satellite are

computed from the analytical mean-to-osculating transformation. In many applications of artifi-

cial satellite theories, the initial semimajor axis is corrected by data fitting. Even though the model

error can be significantly reduced by this approach, this numerical procedure has not been adopted

in this work. The theory developed has been utilized to determine the initial osculating elements

required to numerically propagate the satellite orbit. It is noted that the numerical propagation can

also be initialized by selecting arbitrary osculating initial conditions, and then computing the mean

initial conditions for the analytical propagation by using the inverse mean-to-osculating transfor-

mation, as given in Eq. 2.20. Kinoshita’s second-order theory [101], which is based on eccentricity

expansions, is also implemented to compare the accuracy for moderate to high values of the orbital

eccentricity. Kinoshita computed the generating functions up to order three for the short-period

and long-period effects for J2 by expanding the terms in powers of eccentricity up to O(e6). Using

the generating functions up to order two from his work, the transformations were generated for

the nonsingular elements using Hori’s method [58]. The example orbits were propagated by using

these two analytical theories as well as by GMAT, first for the main problem (i.e., including J2 per-

turbation only). The mean initial elements of the orbit were chosen as: semimajor axis 13300 km,

inclination 50◦, argument of perigee 30◦, and all the remaining angles 0◦. The simulations were

run for a period of ten days for a range of the orbital eccentricities. The osculating initial condi-

tions for GMAT propagation were computed using the second-order transformation, including the

short-period and long-period perturbations due to J2, up to order two.

Figures 3.1 and 3.2 show the position and velocity propagation errors obtained from the two

theories for the J2 problem, computed using GMAT results as the true values. Both the theories

included secular J2 effects up to order three and long-period and short-period J2 effects up to order

two. However, the periodic effects computed using Kinoshita’s theory are accurate up to O(e5)

only. For this particular simulation case, the GMAT gravity model was also chosen to include
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Figure 3.1: Absolute position errors versus the eccentricity in case of Kinoshita’s theory (Ecc) and
the closed-form theory (Cl) for the main problem of AST after 10 days of propagation [1].

Figure 3.2: Absolute velocity errors versus the eccentricity in case of Kinoshita’s theory (Ecc) and
the closed-form theory (Cl) for the main problem of AST after 10 days of propagation [1].
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Figure 3.3: Absolute position and velocity errors after 10 days of propagation versus the degree up
to which the zonal harmonics are included in the AST with explicit expressions. The initial mean
classical elements are [7100, 0.01, 50◦, 0, 0, 0].

only J2 zonal harmonic. It is noted from these results that propagation errors from the closed-

form and Kinoshita’s theories are small and match very well up to eccentricity values of 0.2.

For higher eccentricities, the closed-form theory shows significant improvement over Kinoshita’s

theory for position as well as velocity errors. This example was chosen to enable the testing of

the theories for high eccentricity orbits. Next, three different orbits were propagated using GMAT

with 6 × 0 gravity model, and the proposed satellite theory with the zonal harmonics included up

to J6 in an incremental manner. The resulting position and velocity errors of the theory are shown

in Figures 3.3-3.5. The trends for the position and velocity errors for the three kinds of orbits

including the circular one are similar, and a significant improvement in the accuracy is noted when

the contributions of the zonal harmonics up to J6 are included in the theory.

3.2 Satellite Theory for an Arbitrary Zonal Harmonic

This section presents the analytic theory of an artificial satellite, which is closed-form in eccen-

tricity, for the complete zonal problem [228]. For any zonal harmonic Jn (n ≥ 3), the generalized

62



Figure 3.4: Absolute position and velocity errors after 10 days of propagation versus the degree up
to which the zonal harmonics are included in the AST with explicit expressions. The initial mean
classical elements are [7100, 0, 50◦, 0, 0, 0].

Figure 3.5: Absolute position and velocity errors after 10 days of propagation versus the degree up
to which the zonal harmonics are included in the AST with explicit expressions. The initial mean
classical elements are [7100, 0, 50◦, 10◦, 20◦, 30◦].
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analytic expressions for the second-order mean rates, first-order long-period, and second-order

short-period effects are provided that give a readily accessible solution for the complete zonal

problem. These analytic expressions are computed using the averaged Hamiltonian and the short-

period generating function derived first by Saedeleer [117]. He considered all the zonal harmonics

as the first-order perturbations, and computed the expressions for the first-order averaged Hamilto-

nian and short-period generating function valid for any zonal harmonic Jn (n ≥ 2) using Deprit’s

method. In this work, J2 is considered as the first-order perturbation as it is at least three orders of

magnitude larger than other harmonic coefficients. The higher degree zonal harmonics Jn (n ≥ 3)

are considered as the second-order perturbations. The proposed approach simplifies the computa-

tion of the secular and short-period effects and also enables the computation of analytic expressions

for the long-period effects up to first-order due to higher degree zonal harmonics. For J2, the ex-

plicit expressions for the secular rates up to third-order and periodic variations up to second-order

as discussed in the previous section are used. By using the generalized expressions derived in

this section, the contributions to the secular and periodic effects due to any zonal harmonics Jn

(n ≥ 3) can be conveniently added to the J2 solution without having to go through the process of

Delaunay normalizations. It is noted that the generalized expressions derived in this section are

not expressed in a recursive form, however it is certainly possible to express them in a recursive

form for efficient computations. In case of the secular and long-period variations, Garfinkel and

McAllister have provided expressions for an arbitrary zonal harmonic in terms of the associated

Legendre polynomials in the eccentricity and inclination [38, 39].

The Hamiltonian for the complete zonal problem is obtained using the disturbing function

given in Eq. 3.1, as shown below:

H = H0 + J2H1 +
J2

2

2!
H2, (3.22)

where

H0 = −1

2

µ2

L2
,
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H1 =
µR2

e

a3

(a
r

)3

P2(sinφ),

H2 =
∞∑
n=3

H2,n =
∞∑
n=3

2!

J2
2

Jn
µRn

e

an+1

(a
r

)n+1

Pn(sinφ).

The Hamiltonian H for the complete zonal problem can be normalized using Deprit’s method by

separating the secular and periodic effects. The first normalization for averaging out the short-

period terms containing mean anomaly, l, produces a short-period generating function W and

the singly-averaged Hamiltonian K that includes long-period as well as secular terms. A second

normalization is necessary to separate the long-period terms containing the argument of perigee

angle, g, to produce the doubly-averaged Hamiltonian K̄ consisting of only the secular effects as

also discussed in the previous section. Because J2 is considered as the only first-order perturbation,

K1 and W1 obtained during the first normalization, have no contributions from the other zonals.

The second-order perturbation term H2 appear for the first time at the second order in Eq. 3.9,

and involves computation of Poisson brackets only at the third order. As a result, the second-order

contributions K2,n to K2, andW2,n toW2 due to any zonal harmonic Jn (n ≥ 3) can be computed

using the following equations:

K2,n =
1

2π

∫ 2π

0

H2,n
r2

a2
√

1− e2
df, (3.23)

W2,n = − 1
∂H0

∂L

(
K2,n(l − f)−

∫
p

H2,n
r2

a2
√

1− e2
df

)
, (3.24)

where the following relation is used to change the integration variable from the mean anomaly l to

the true anomaly f :

dl =
r2

a2
√

1− e2
df.

The notation
∫
p

indicates that the integration is performed for the periodic part of the integrand

only, i.e., terms involving cosine and sine functions of the true or mean anomaly. By making use

of the definition ofH in Eq. 3.22, the above integrals can be written as
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K2,n =
1

2π

2!

J2
2

Jn
µRn

e

an+1
√

1− e2

∫ 2π

0

(a
r

)n−1

Pn(sin(φ)) df, (3.25)

W2,n =

√
a3

µ

(
K2,n(f − l) +

2!

J2
2

Jn
µRn

e

an+1
√

1− e2

∫
p

(a
r

)n−1

Pn(sin(φ)) df

)
, (3.26)

where

sin(φ) = sin(i) sin(f + g),

and i represents the inclination. The following expansion formulae, including the definition for

Legendre polynomials, can be used to transform the above integrals into a suitable form for inte-

gration [229]:

Pn(x) =
1

2n

bn
2
c∑

j=0

(−1)j(2n− 2j)!

j! (n− j)! (n− 2j)!
xn−2j, (3.27)

(a
r

)n−1

=
n−1∑
k=0

(
n− 1

k

)
ek cosk(f)

η2(n−1)
, (3.28)

sin2n(x) =
1

22n

n−1∑
j=0

(−1)n−j2

(
2n

j

)
cos(2(n− j)x) +

(
2n

n

)
, (3.29)

sin2n−1(x) =
1

22n−2

n−1∑
j=0

(−1)n+j−1

(
2n− 1

j

)
sin((2n− 2j − 1)x), (3.30)

cos2n(x) =
1

22n

n−1∑
k=0

2

(
2n

k

)
cos(2(n− k)x) +

(
2n

n

)
, (3.31)

cos2n−1(x) =
1

22n−2

n−1∑
k=0

(
2n− 1

k

)
cos((2n− 2k − 1)x), (3.32)

where η =
√

1− e2. The notations
( )

, b c, d e represent binomial coefficients, floor and ceil-
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ing functions, respectively. Substituting the above formulae in Eqs. 3.25 and 3.26 results in the

following integrals and their solutions [117]:

∫
cosk(f)df =

1

2k

b k−1
2
c∑

s=0

2

(
k

s

)
sin(k − 2s)f

k − 2s
+ λk

(
k
k
2

)
f

 ≡ 1

2k

(
C(f) + λk

(
k
k
2

)
f

)
,

(3.33)∫ 2π

0

cosk(f)df = λk
1

2k

(
k
k
2

)
2π, (3.34)

∫
p

cosk(f) cos(cf)df =
1

2k


b k−1

2
c∑

s=0

(
k

s

)(
sin(k − 2s+ c)f

k − 2s+ c

)

+

b k−1
2
c∑

s=0
s 6=s∗

(
k

s

)(
sin(k − 2s− c)f

k − 2s− c

)
+ λk

(
k
k
2

)
sin(cf)

c

 ≡ 1

2k
{Dc(f)} , (3.35)

∫ 2π

0

cosk(f) cos(cf)df =


π

2k−1

(
k

k−c
2

)
, if (k, c) have the same parity, and (c ≤ k)

0, otherwise
(3.36)

∫
p

cosk(f) sin(cf)df =
1

2k


b k−1

2
c∑

s=0

(
k

s

)(
− cos(k − 2s+ c)f

k − 2s+ c

)

+

b k−1
2
c∑

s=0
s 6=s∗

(
k

s

)(
cos(k − 2s− c)f

k − 2s− c

)
− λk

(
k
k
2

)
cos(cf)

c

 ≡ 1

2k
{Ec(f)} , (3.37)

∫ 2π

0

cosk(f) sin(cf)df = 0, for (k, c) ∈ N (3.38)

where

λk = 1 + bk
2
c − dk

2
e =

 1 for k even

0 for k odd,
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s∗ =
k − c

2
.

Using the above results, Saedeleer computed the expressions for the integrals in Eqs. 3.25 and 3.26

for a general zonal harmonic, which are reproduced here after slight modifications [117]. For the

even zonal harmonics Jn (n ≥ 3), the results are

K2,n = δn(a, e)

bn
2
c∑

j=0

βj,n(i)
n−1∑

even k=0

αk,n(e)

2k

{(
n− 2j
n
2
− j

)(
k
k
2

)

+

n
2
−j−1∑
p=0

γp,j,n

(
k

k−(n−2j−2p)
2

)
cos(n− 2j − 2p)g

 , (3.39)

W2,n =

√
a3

µ
K2,n(f − l) + δ′n(a, e)

bn
2
c∑

j=0

βj,n(i)
n−1∑
k=0

αk,n(e)

2k

{(
n− 2j
n
2
− j

)
C(f)

+

n
2
−j−1∑
p=0

γp,j,n (cos(n− 2j − 2p)g Dn−2j−2p(f)− sin(n− 2j − 2p)g En−2j−2p(f))

 , (3.40)

while for the odd zonal harmonics (n ≥ 3)

K2,n = δn(a, e)

bn
2
c∑

j=0

βj,n(i)
n−1∑

odd k=0

αk,n(e)

2k

n−1
2
−j∑

p=0

γp,j,n

(
k

k−(n−2j−2p)
2

)
sin(n− 2j − 2p)g, (3.41)

W2,n =

√
a3

µ
K2,n(f − l) + δ′n(a, e)

bn
2
c∑

j=0

βj,n(i)
n−1∑
k=0

αk,n(e)

2k

×


n−1
2
−j∑

p=0

γp,j,n (cos(n− 2j − 2p)g En−2j−2p(f) + sin(n− 2j − 2p)g Dn−2j−2p(f))

 , (3.42)

where
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δn(a, e) = 2
Jn
J2

2

µRn
e

2nη2n−1an+1
,

δ′n(a, e) = 2
Jn
J2

2

√
µRn

e

2nη2n−1an−
1
2

,

βj,n(i) =
(−1)j(2n− 2j)! sinn−2j(i)

j! (n− j)! (n− 2j)! 2n−2j
,

αk,n(e) = ek
(
n− 1

k

)
,

γp,j,n = (−1)b
n
2
c−j∓p 2

(
n− 2j

p

)
.

The upper sign in the above formulae for γ applies for the case of n even and the lower sign for

the case of n odd.

3.2.1 Secular Effects

The analytic expressions for the secular or mean rates of any set of orbital elements due to any

zonal harmonic Jn (n ≥ 3) can be derived using the results from Eqs. 3.39 and 3.41 by ignoring the

long-period terms. In this subsection, expressions for the secular rates of the equinoctial elements

for an arbitrary zonal harmonic are derived. The equinoctial elements are nonsingular for circular

and equatorial orbits, however they are not canonical. As a result, the secular rates of the Delaunay

elements are computed first, which can then be used to compute the rates of the equinoctial ele-

ments. After ignoring the terms dependent on g, the second-order Kamiltonian is only a function

of the three action variables a, e, and i (or to be exact L, G, and H) for the even harmonics, and

it is zero for the odd harmonics. The expressions for the mean rates of the Delaunay elements, D,

due to even harmonics are computed using Hamilton’s equations as follows:

Ḋk =
∂K2,n

∂Dk+3

, Ḋk+3 = −∂K2,n

∂Dk
, where k = 1, 2, 3. (3.43)

The following partial derivatives are required to compute the secular rates for the Delaunay ele-

ments:
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∂

∂L
=
∂a

∂L

∂

∂a
+
∂e

∂L

∂

∂e
, (3.44)

∂

∂G
=

∂e

∂G

∂

∂e
+

∂i

∂G

∂

∂i
, (3.45)

∂

∂H
=

∂i

∂H

∂

∂i
. (3.46)

Using the above partial derivatives and Eq. 3.43, the following expressions for the second-order

contributions to the secular rates of the Delaunay elements due to any even zonal Jn (n ≥ 3) can

be computed:

l̇n = δn(a, e)

bn
2
c∑

j=0

βj,n(i)
n−1∑

even k=0

αk,n(e)

2k

(
n− 2j
n
2
− j

)(
k
k
2

)
1

L

{
−3 + k

η2

e2

}
, (3.47)

ġn = δn(a, e)

bn
2
c∑

j=0

βj,n(i)
n−1∑

even k=0

αk,n(e)

2k

(
n− 2j
n
2
− j

)(
k
k
2

)
1

G

{
−(2n− 1)− kη

2

e2
+

(n− 2j)

tan2(i)

}
,

(3.48)

ḣn = δn(a, e)

bn
2
c∑

j=0

βj,n(i)
n−1∑

even k=0

αk,n(e)

2k

(
n− 2j
n
2
− j

)(
k
k
2

)
1

H

{
−(n− 2j)

tan2(i)

}
, (3.49)

L̇n = Ġn = Ḣn = 0. (3.50)

It is noted that the odd harmonics have no contributions to the second-order secular rates. The

total secular rates of the Delaunay elements Ḋ are found by adding the secular rates due to J2 to

the above contributions from the higher degree zonal harmonics. To avoid singularity issues, the

equinoctial elements E = [a,Λ, p1, p2, q1, q2]T are used in this work, which can be propagated from
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the initial time t0 to the final time t using the Delaunay element rates as follows:

a(t) = a(t0),

Λ(t) = Λ(t0) + (l̇ + ġ + ḣ)(t− t0),

p1(t) = p1(t0) cos(ḣ(t− t0))− p2(t0) sin(ḣ(t− t0)),

p2(t) = p2(t0) cos(ḣ(t− t0)) + p1(t0) sin(ḣ(t− t0)),

q1(t) = q1(t0) cos((ġ + ḣ)(t− t0))− q2(t0) sin((ġ + ḣ)(t− t0)),

q2(t) = q2(t0) cos((ġ + ḣ)(t− t0)) + q1(t0) sin((ġ + ḣ)(t− t0)),

(3.51)

where

a = a,

Λ = l + g + h,

p1 = tan

(
i

2

)
cos(h),

p2 = tan

(
i

2

)
sin(h),

q1 = e cos(g + h),

q2 = e sin(g + h).

3.2.2 Long-Period Effects

A second Delaunay normalization is needed to compute the long-period generating function.

The first-order long-period generating function W̄1 is computed using the following second-order

equation from Eq. 3.18:
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(K̄1 +K1, W̄1) +K2 = K̄2, (3.52)

where K2 represents the second-order singly-averaged Hamiltonian that includes the long-period

terms dependent on g due to the zonals Jn (n ≥ 3), K̄2 is the second-order Kamiltonian with only

the secular terms, and W̄1 is the first-order generating function for long-period effects. Because J2

harmonic has no long-period terms dependent on g, K̄1 = K1. The Poisson bracket in the above

equation can be evaluated to obtain W̄1,n for an arbitrary zonal harmonic Jn (n ≥ 3) as shown

below:

W̄1,n =
1

2∂K̄1

∂G

∫
lp

K2,n dg. (3.53)

The notation
∫
lp

denotes the integration of the long-periodic terms of the integrand only. The first-

order Kamiltonian K1 has contributions from J2 only, and its value is computed using the methods

discussed in Subsection 3.1 and is given below:

K1 = −1

4

Re
2µ (3 cos2 (i)− 1)

a3η3
. (3.54)

Substituting the above value for K1, and K2,n from Eqs. 3.39 and 3.41 into Eq. 3.53, the final

expression for W̄1 for the even zonal harmonics Jn (n ≥ 3) is

W̄1,n = −2

3

a7/2η4

√
µRe

2 (1− 5 cos2 (i))
δn(a, e)

bn
2
c∑

j=0

βj,n(i)
n−1∑

even k=0

αk,n(e)

2k
×

n
2
−j−1∑
p=0

γp,j,n

(
k

k−(n−2j−2p)
2

)
sin(n− 2j − 2p)g

(n− 2j − 2p)

 , (3.55)

while the same for the odd harmonics is
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W̄1,n =
2

3

a7/2η4

√
µRe

2 (1− 5 cos2 (i))
δn(a, e)

bn
2
c∑

j=0

βj,n(i)
n−1∑

odd k=0

αk,n(e)

2k
×

n−1
2
−j∑

p=0

γp,j,n

(
k

k−(n−2j−2p)
2

)
cos(n− 2j − 2p)g

(n− 2j − 2p)

 . (3.56)

The two expressions for W̄2,n for the even and odd zonal harmonics can be combined and suc-

cinctly written as follows:

W̄1,n = sin(i)W1(a, e, i)W2(g), (3.57)

where

W1(a, e, i) = δLPn (a, e)

bn
2
c∑

j=0

βLPj,n (i)
n−1∑

even[odd] k=0

αk,n(e)

2k
,

W2(g) =

bn−1
2
c−j∑

p=0

γp,j,n

(
k

k−(n−2j−2p)
2

)
(− sin[cos](n− 2j − 2p)g)

(n− 2j − 2p)
,

W3(a, e, i) = δLPn (a, e)

bn
2
c∑

j=0

βLPj,n (i)
n−1∑

even[odd] k=1

n− k
k

αk−1,n(e)

2k
,

W4(g) =

bn−1
2
c−j∑

p=0

γp,j,n

(
k

k−(n−2j−2p)
2

)
(− cos[− sin](n− 2j − 2p)g),

δLPn (a, e) =
2

3

a7/2η4

√
µRe

2 δn(a, e),

βLPj,n (i) =
(−1)j(2n− 2j)! sinn−2j−1(i)

(1− 5 cos2(i))j! (n− j)! (n− 2j)! 2n−2j
,

In the above equations, the square bracketed terms are used for the odd zonal harmonics only, and

they replace the preceding terms that are used for the even zonal harmonics. It is noted that in the
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above definition for βLPj,n , the power of sin(i), i.e., n− 2j − 1 can never be less than zero because

in that case the corresponding W2 and W4 terms will be zero. Using the above results, the analytic

expressions for the long-period effects due to any zonal harmonic Jn (n ≥ 3) can be computed by

evaluating the Poisson brackets for the equinoctial elements. These expressions for the first-order

long-period variations are

(
a, W̄1,n

)
= 0, (3.58)

(
Λ, W̄1,n

)
= sin(i)

W1(a, e, i)
√
µa

[
−2n− 5

η
− ηk

1 + η
+

10 cos(i)(1− cos(i))

η(1− 5 cos2(i))

+
n− 2j

η

(
− cos(i)

2 cos2
(
i
2

))]W2(g), (3.59)

(
p1, W̄1,n

)
=

cos(i)

2η
√
µa cos2

(
i
2

) [sin(h)W1

{
(n− 2j)− 10 sin2(i)

1− 5 cos2(i)

}
W2 − cos(h)W1W4

]
,

(3.60)

(
p2, W̄1,n

)
=

cos(i)

2η
√
µa cos2

(
i
2

) [− cos(h)W1

{
(n− 2j)− 10 sin2(i)

1− 5 cos2(i)

}
W2 − sin(h)W1W4

]
,

(3.61)

(
q1, W̄1,n

)
= sin(i)

sin(g + h)

η
√
µa

[
W1

{
e(2n− 5)−

5e sin(2i) tan
(
i
2

)
1− 5 cos2(i)

+
e cos(i)(n− 2j)

2 cos2
(
i
2

) }
W2 + η2W3kW2

]
+ sin(i)

η
√
µa

cos(g + h)W3W4, (3.62)

74



(
q2, W̄1,n

)
= − sin(i)

cos(g + h)

η
√
µa

[
W1

{
e(2n− 5)−

5e sin(2i) tan
(
i
2

)
1− 5 cos2(i)

+
e cos(i)(n− 2j)

2 cos2
(
i
2

) }
W2 + η2W3kW2

]
+ sin(i)

η
√
µa

sin(g + h)W3W4. (3.63)

In the above equation, the order of the terms in a product must be preserved because of the presence

of the summation indices. With the above results, the first-order long-period variations due to an

arbitrary zonal harmonic Jn (n ≥ 3) can be added to Em as well as subtracted from ELP using the

near-identity transformations given in Eq. 3.21.

3.2.3 Short-Period Effects

The second-order short-period generating function for any zonal harmonic Jn (n ≥ 3), given

in Eqs. 3.40 and 3.42, can be written succinctly in a unified form for the even and odd zonal

harmonics as:

W2,n = W1(a, e, i, f, l, g) +W2(a, e, i)W3(f, g), (3.64)

where

W1(a, e, i, f, l, g) =

√
a3

µ
K2,n(f − l),

K2,n = δn(a, e)

bn
2
c∑

j=0

βj,n(i)
n−1∑

even[odd] k=0

αk,n(e)

2k

{
λn

(
n− 2j
n
2
− j

)(
k
k
2

)

+

bn−1
2
c−j∑

p=0

γp,j,n

(
k

k−(n−2j−2p)
2

)
(cos[sin](n− 2j − 2p)g)

 ,
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βj,n(i) =
(−1)j(2n− 2j)! sinn−2j(i)

j! (n− j)! (n− 2j)! 2n−2j
,

W2(a, e, i) = δ′n(a, e)

bn
2
c∑

j=0

βj,n(i)
n−1∑
k=0

αk,n(e)

2k
,

W3(f, g) = λn

(
n− 2j
n
2
− j

)
C(f)

+

bn−1
2
c−j∑

p=0

γp,j,n


b k−1

2
c∑

s=0

(
k

s

)(
sin[− cos]((k − 2s+ c)f + cg)

k − 2s+ c

)

+

b k−1
2
c∑

s=0
s 6=s∗

(
k

s

)(
sin[cos]((k − 2s− c)f − cg)

k − 2s− c

)
+ λk

(
k
k
2

)
sin[− cos](cf + cg)

c

 ,

c = n− 2j − 2p.

In the above equations, the square-bracketed terms applies for odd harmonics, which replaces the

proceeding terms valid for the even harmonics. The analytic expressions for the second-order

short-period effects due to any zonal harmonic greater than J2 for the equinoctial elements can

be computed by evaluating the corresponding Poisson brackets. These formulae are computed by

hand, and are given below:

(a,W2,n) = −2

√
a

µ

[√
a3

µ
K2,n

(
∂f

∂l
− 1

)
+W2

(
∂W3

∂f

)
∂f

∂l

]
, (3.65)

(Λ,W2,n) =
3
√
µa
W1 +

√
a3

µ

{
(f − l)KLGH2,n +K2,nfLG

}
− W2

η
√
µa

{
cos(i)

1 + cos(i)
(n− 2j) + (2n− 1) +

kη2

1 + η

}
W3 +W2

(
∂W3

∂f

)
fLG, (3.66)
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(p1,W2,n) =
1

η
√
µa

cos(i)

1 + cos(i)

[
− sin(h)

{√
a3

µ
(f − l) (−K2,n(n− 2j))−W2(n− 2j)W3

}

− cos(h)

{√
a3

µ
(f − l)∂K2,n

∂g
+W2

∂W3

∂g

}]
, (3.67)

(p2,W2,n) =
1

η
√
µa

cos(i)

1 + cos(i)

[
cos(h)

{√
a3

µ
(f − l) (−K2,n(n− 2j))−W2(n− 2j)W3

}

− sin(h)

{√
a3

µ
(f − l)∂K2,n

∂g
+W2

∂W3

∂g

}]
, (3.68)

(q1,W2,n) = − sin(g + h)

{√
a3

µ
(f − l)KeGH2,n −

√
a3

µ

∂f

∂e

η
√
µa
K2,n

−
(
∂W2

∂e

η
√
µa

+
e

η
√
µa

1

1 + cos(i)
W i

2

)
W3 −

∂f

∂e

η
√
µa
W2

∂W3

∂f

}
− cos(g + h)

{
W lge

1 +W lge
23

}
, (3.69)

(q2,W2,n) = cos(g + h)

{√
a3

µ
(f − l)KeGH2,n −

√
a3

µ

∂f

∂e

η
√
µa
K2,n

−
(
∂W2

∂e

η
√
µa

+
e

η
√
µa

1

1 + cos(i)
W i

2

)
W3 −

∂f

∂e

η
√
µa
W2

∂W3

∂f

}
− sin(g + h)

{
W lge

1 +W lge
23

}
, (3.70)

where
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fLG =
∂f

∂L
+
∂f

∂G
= −

√
1− η
1 + η

sin(f)

η

(
2 + e cos(f)
√
µa

)
,

∂f

∂l
=

(1 + e cos(f))2

η3
,

∂f

∂e
=

(2 + e cos(f)) sin(f)

η2
,

∂W2

∂e
= (2n− 1)

e

η2
W2 + δ′n(a, e)

bn
2
c∑

j=0

βj,n(i)
n−1∑
k=1

(n− k)αk−1,n(e)

2k
,

W i
2 = sin(i)

∂W2

∂i
= cos(i) (W2(n− 2j)) ,

∂W3

∂f
= λn

(
n− 2j
n
2
− j

) b k−1
2
c∑

s=0

2

(
k

s

)
cos(k − 2s)f

+

bn−1
2
c−j∑

p=0

γp,j,n


b k−1

2
c∑

s=0

(
k

s

)
(cos[sin]((k − 2s+ c)f + cg))

+

b k−1
2
c∑

s=0
s 6=s∗

(
k

s

)
(cos[− sin]((k − 2s− c)f − cg)) + λk

(
k
k
2

)
cos[sin](cf + cg)

 ,

∂W3

∂g
=

bn−1
2
c−j∑

p=0

γp,j,n


b k−1

2
c∑

s=0

(
k

s

)(
cos[sin]((k − 2s+ c)f + cg)

k − 2s+ c

)
c

−
b k−1

2
c∑

s=0
s 6=s∗

(
k

s

)(
cos[− sin]((k − 2s− c)f − cg)

k − 2s− c

)
c+ λk

(
k
k
2

)
cos[sin](cf + cg)

 ,
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KLGH2,n =
∂K2,n

∂L
+
∂K2,n

∂G
+
∂K2,n

∂H

= δn(a, e)

bn
2
c∑

j=0

βj,n(i)
n−1∑

even[odd] k=0

αk,n(e)

2k
1

G

{
−2(n+ 1)− (n− 2j)

cos(i)

2 cos2
(
i
2

)}

×

λn
(
n− 2j
n
2
− j

)(
k
k
2

)
+

bn−1
2
c−j∑

p=0

γp,j,n

(
k

k−(n−2j−2p)
2

)
(cos[sin](n− 2j − 2p)g)

 ,

KeGH2,n = e
∂K2,n

∂G
+ e

∂K2,n

∂H

= δn(a, e)

bn
2
c∑

j=0

βj,n(i)
n−1∑

even[odd] k=0

αk,n(e)

2k
1

G

{
−e(2n− 1)− kη2

e
− e(n− 2j)

cos(i)

2 cos2
(
i
2

)}

×

λn
(
n− 2j
n
2
− j

)(
k
k
2

)
+

bn−1
2
c−j∑

p=0

γp,j,n

(
k

k−(n−2j−2p)
2

)
(cos[sin](n− 2j − 2p)g)

 ,

∂K2,n

∂g
= δn(a, e)

bn
2
c∑

j=0

βj,n(i)
n−1∑

even[odd] k=0

αk,n(e)

2k

×


bn−1

2
c−j∑

p=0

γp,j,n

(
k

k−(n−2j−2p)
2

)
(n− 2j − 2p)(− sin[cos](n− 2j − 2p)g)

 ,

W lge
1 =

∂W1

∂l

∂e

∂L
+
∂W1

∂g

∂e

∂G

=
a

2µη

(
4 cos(f) + e cos(2f) + e

2η2 + 3η + 3

1 + η

)
K2,n

− aη

µ
(f − l)

δn(a, e)

bn
2
c∑

j=0

βj,n(i)
n−1∑

even[odd] k=1

αk−1,n(e)

2k
n− k
k
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bn−1
2
c−j∑

p=0

γp,j,n

(
k

k−(n−2j−2p)
2

)
(n− 2j − 2p)(− sin[cos](n− 2j − 2p)g)

 ,

W lge
23 = W2

∂W3

∂f

∂f

∂l

∂e

∂L
+W2

∂W3

∂g

∂e

∂G

= δ′n(a, e)

bn
2
c∑

j=0

βj,n(i)

 1

2η
√
µa

(4 cos(f) + e cos(2f) + 3e)

bn−1
2
c−j∑

p=0

γp,j,n cos[sin](cf + cg)

+
n−1∑
k=1

αk−1,n(e)

2k
n− k
k

η2

√
µa

(
∂W3

∂f

∂f

∂l
− 1

η

∂W3

∂g

)}
.

With the above results, the second-order short-period variations due to an arbitrary zonal harmonic

Jn (n ≥ 3) can be added to ELP as well as subtracted from E using the near-identity transformations

given in Eq. 3.17.

3.2.4 Results

The analytic expressions derived in the previous subsections for the second-order short-period

effects, the first-order long-period effects, and the second-order secular effects have been verified

for the zonals J3 and J4 using Maple. The explicit expressions for the secular rates up to third-

order, the long-period and short-period effects up to second-order due to J2, computed in Section

3.1, are incorporated with the generalized expressions for an arbitrary zonal harmonic to construct

a satellite theory for all the zonal harmonics without using any series expansions in the eccentricity.

To validate this satellite theory, GMAT numerical propagator with 70×0 JGM-3 gravity model

is used as the truth model. Three different orbits are propagated analytically and numerically for

ten days to compute position and velocity errors. The osculating initial semimajor axis for all the

simulated orbits is equal to 7100 km. The first orbit has the osculating eccentricity equal to 0.01

and the inclination equal to 50◦, and the other two orbits are circular and have zero inclination.

Figures 3.6-3.8 show the absolute position and velocity root-sum-square (RSS) errors after ten

days of propagation versus the harmonic degree up to which the zonal harmonics are included in
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Figure 3.6: Absolute position and velocity errors after 10 days of propagation versus the degree
up to which the zonal harmonics are included in the AST with generalized expressions. The initial
osculating classical elements are [7100, 0.01, 50◦, 0◦, 0◦, 0◦].

the theory for the three simulated orbits. The improvements in the position and velocity errors are

clearly seen for all the three orbits with the increase in the number of zonal harmonics included.

3.3 The Hamiltonian with Tesseral Harmonics

The previous two sections detailed a satellite theory for the complete zonal gravitational prob-

lem. The effects of the tesseral harmonics on the motion of an artificial satellite of Earth is signif-

icant, especially due to C22 and S22 (the equatorial ellipticity). Moreover, the resonant effects of

the tesseral harmonics with smaller magnitudes can also produce large propagation errors in the

position and velocity if these effects are not taken into account. The existing methods to include

the short-period effects of the tesseral harmonics in satellite theories, rely on the series expansions

of the disturbing function in powers of either the eccentricity or the ratio of mean motion to Earth’s

angular velocity. These series expansions not only produce prohibitive large expressions, but also

compromise the accuracy for orbits with medium to high values of the eccentricity. In this sec-

tion, a perturbed Keplerian Hamiltonian with the tesseral harmonics is formulated. The following
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Figure 3.7: Absolute position and velocity errors after 10 days of propagation versus the degree
up to which the zonal harmonics are included in the AST with generalized expressions. The initial
osculating classical elements are [7100, 0, 0◦, 0◦, 0◦, 0◦].

Figure 3.8: Absolute position and velocity errors after 10 days of propagation versus the degree
up to which the zonal harmonics are included in the AST with generalized expressions. The initial
osculating classical elements are [7100, 0, 0◦, 10◦, 20◦, 30◦].
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two sections discuss the two different approaches to perform Delaunay normalization of such a

Hamiltonian without using series expansions in the eccentricity.

The tesseral disturbing function depends on the longitude of the satellite, when expressed in

an inertial frame. In this work, Kaula’s form of the geopotential, which is expressed in the inertial

frame using the classical orbital elements and the Greenwich Sidereal Time, is used as the disturb-

ing function for the tesserals [42]. The Hamiltonian formulated in the classical orbital elements,

instead of the polar-nodal or Whittaker elements, results in simpler perturbation equations. Kaula’s

gravitational potential, expressed in terms of the true anomaly, is [42]

Vnm =
µRn

e

rn+1

p=n∑
p=0

Fnmp(i) [CS1 cos(Ψ) + CS2 sin(Ψ)] , (3.71)

where

Ψ ≡ (n− 2p)(f + g) +m(h− θ),

CS1 =


Cnm if n−m is even

−Snm if n−m is odd,

CS2 =


Snm if n−m is even

Cnm if n−m is odd.

This representation of the disturbing potential contains a mix of the classical and Delaunay ele-

ments. The letters n and m represent the degree and order of the potential Vnm, respectively; θ

represent the Greenwich Sidereal Time; and Cnm and Snm are the spherical harmonic coefficients.

Instead of using the original definition of the inclination function Fnmp(i) given by Kaula, the

following more computationally efficient definition is used in the present work [230, 231]:
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Fnmp(i) = (−1)E(n−m+1
2 ) (n+m)!

2np! (n− p)!

j=min(n−m, 2n−2p)∑
j=max(n−2p−m, 0)

(−1)j

×
(

2n− 2p

j

)(
2p

n−m− j

)
cos2n−s

(
i

2

)
sins

(
i

2

)
, (3.72)

where s = m − n + 2p + 2j and E() represents the Entier (also called integer part) function.

The above definition of the inclination function has only one summation compared to three present

in Kaula’s inclination function. This representation of the disturbing potential is also more com-

putationally efficient than the one using the polar-nodal variables given by Segerman and Coffey

[126].

Subsequent developments in this paper involve the integration of the disturbing potential with

respect to f , a task made easier if the explicit occurrences of r in Vnm are eliminated by substituting

the orbit equation. The powers of the cosine function introduced by the orbit equation are converted

into the multiples of its argument using the following formulae [229]:

(1 + e cos f)n+1 =
n+1∑
s=0

(
n+ 1

s

)
es coss f, (3.73)

coss f =
1

2s−1


b s−1

2
c∑

k=0

(
s

k

)
cos((s− 2k)f) +

λs
2

(
s
s
2

) , (3.74)

where λs is defined as

λs =

 1 s is even

0 s is odd.
(3.75)

By using the trigonometric identities for converting the product of terms to sum of terms, the

following expression for Vnm can be computed:

84



Vnm =
µRn

e

an+1η2n+2

n∑
p=0

n+1∑
s=0

Fnmp(i)e
s

(
n+ 1

s

)
1

2s

b s−1
2
c∑

k=0

(
s

k

)

× [CS1 (cos(Ψ1) + cos(Ψ2)) + CS2 (sin(Ψ1) + sin(Ψ2))]

+λs

(
s
s
2

)
[CS1 cos(Ψ) + CS2 sin(Ψ)]

]
, (3.76)

where

Ψ1 ≡ (n− 2p+ s− 2k)f + (n− 2p)g +m(h− θ),

Ψ2 ≡ (n− 2p− s+ 2k)f + (n− 2p)g +m(h− θ),

and η is the eccentricity function equal to
√

1− e2 and b c represents the floor function. In case

of Earth, the oblateness coefficient C20(=-J2) is at least three orders of magnitude greater than any

other zonal or tesseral coefficient. Therefore, the complete HamiltonianH is expressed as a power

series in C20 withH0 being the unperturbed Keplerian Hamiltonian as shown below:

H = H0 + εH1 +
ε2

2!
H2, (3.77)

where

ε = C20 = −J2,

H0 = − µ2

2L2
,

H1 = −V20

C20

,

H2 = − 2!

C2
20

Vnm, m 6= 0 if n = 2.

In the above equation, H1 is the oblateness disturbing potential, and H2 is the disturbing potential

for the remaining spherical harmonics. It is noted that the negative signs in the above definitions of
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H0,H1, andH2 are the result of considering the angle variables (l, g, h) as the first three canonical

variables and the action variables (L, G, H) as the last three.

To perform the Delaunay normalization of the above Hamiltonian with the tesseral harmonics,

the homological equations with the nonconservative canonical transformations of Deprit’s method

given in Eq. 2.22 can be used. As before, the zonal harmonics with degree higher than two enter

these homological equations at second order throughH2. As a result, there is no coupling between

these zonal and tesseral harmonics, and the tesseral part of the second-order homological equation

can be separated from all the zonal contributions as shown below:

(H0,WT
2 )− ∂WT

2

∂t
+HT

2 = KT2 , (3.78)

where

HT
2 = − 2!

C2
20

Vnm

∣∣∣∣
m6=0

.

The superscript T in the above equation indicates that these terms include only tesseral contribu-

tions. Through the disturbing function Vnm, there are short-period terms present inHT
2 that depend

simultaneously on f and θ. The remaining terms that are only dependent on θ are called m-daily

terms as they repeat m-times a day [42]. If the resonance effects due to tesserals are ignored then

there is no secular or long-period contributions to KT2 from any of the terms in HT
2 , i.e. KT2 can

be taken as zero. The resulting PDE for the second-order short-period tesseral generating function

WT
2 is obtained as follows:

− ñ∂W
T
2

∂l
− wE

∂WT
2

∂θ
+HT

2 = 0, (3.79)

where

ñ =
∂H0

∂L
=
µ2

L3
,
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∂

∂θ
=

1

wE

∂

∂t
.

In the above equation, ñ and wE represent the mean motion and the Earth’s angular velocity,

respectively.

The advantage of formulating the Hamiltonian in the Delaunay elements is evident from the

above equation, which is a linear first-order PDE in two independent variables l and θ as opposed

to three in case of the similar PDE in the polar-nodal variables; the third independent variable

being the radial distance r [126]. A closed-form solution of the above PDE, if feasible, completes

the Delaunay normalization of the Hamiltonian up to order two. However, a closed-form analytic

solution is not known to exist for this PDE without first expanding the true-anomaly dependent

terms inH2 in powers of the eccentricity [121]. Nevertheless, two different approaches for solving

this PDE in closed-form in the eccentricity are discussed in the following two sections.

3.4 Relegation of the Tesseral Harmonics

The method of relegation uses an iterative approach to normalize the tesseral Hamiltonian

and compute the short-period generating function that is closed-form in the eccentricity. In this

section, a reformulation of the method of relegation to normalize the Hamiltonian expressed in the

Delaunay elements is presented [232]. Unlike the original formulation [126] of this method in the

polar-nodal variables, its convergence criteria are better illustrated using the Delaunay elements.

An alternative formulation of this method in the Delaunay elements is also proposed by Lara et al.

that produces a series representation of the tesseral short-period generating function in powers of

the eccentricity [127].

In the relegation method, an approximate solution of Eq. 3.79 is chosen that only partially satis-

fies the homological equation. The residual produced by this approximate solution gets multiplied

by a term having a value less than unity. This residual becomes the new perturbation Hamiltonian

term for the next iteration and after a sufficient number of iterations, it becomes small enough to

be safely relegated to the next higher order. To illustrate this method, a residual term RT is added
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to Eq. 3.79, with the subscript j representing an iteration as shown below:

ñ
∂WT

2,j

∂l
+ wE

∂WT
2,j

∂θ
−HT

2,j = RT
j . (3.80)

Two separate flavors of the relegation method, one applicable for the sub-synchronous and other

for the super-synchronous orbit regimes, are needed and are given below for solving the above

equation.

Sub-Synchronous Relegation. IfWT
2,j is chosen to satisfy the constraint

ñ
∂WT

2,j

∂l
−HT

2,j = 0 (3.81)

then the approximate solution of Eq. 3.80 is given as

WT
2,j =

1

ñ

∫
γHT

2,j df, (3.82)

where

γ =
η3

(1 + e cos(f))2
,

df =
1

γ
dl.

This approximate solution is substituted back into Eq. 3.80 to obtain the residual

RT
j =

∫
δ γ

∂HT
2,j

∂θ
df, (3.83)

where

δ =
wE
ñ
.

It is noted that for the sub-synchronous orbits, δ < 1. To continue the iterations further, the above
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residual is collected in HT
2,j+1, i.e. HT

2,j+1 = RT
j , and a newWT

2,j+1 is computed by repeating the

same process. The iterations are started by choosing HT
2,0 = HT

2 . If the residual RT
j is smaller

in magnitude than the original perturbation HT
2,j , then the method of relegation is guaranteed to

converge. In order to estimate an upper bound of the residual for any value of f , the following

bounds on the function γ are noted for an elliptic orbit:

η3

(1 + e)2
= γmin ≤ γ ≤ γmax =

η3

(1− e)2
. (3.84)

In the limit that the eccentricity approaches 1, the values of γmin and γmax approach 0 and ∞,

respectively. The differentiation and integration operation in Eq. 3.83 produce the coefficients of

θ and f in the numerator and denominator, respectively. The minimum and maximum coefficient

of f can be determined using the expression for the Hamiltonian given in Eq. 3.76, which are 1

and 2n+ 1, respectively. As a result, the maximum magnitude that the residual corresponding to a

single term inHT
2,j , can attain during one orbit is found using Eq. 3.83 as follows:

RT
j,max = mδ γmax |HT

2,j|. (3.85)

It is noted that the minimum coefficient value of f that appears in the denominator of right hand

side of the above equation is used in calculating the upper bound on the residual. Thus, a sufficient

condition for the relegation method to converge is

mδ γmax < 1. (3.86)

Hence, for the sub-synchronous orbits of medium to high eccentricities, the method of relegation

will converge slowly, especially for the tesserals with m > 1. If the above condition holds, then

after a sufficient number of iterations d, the residual can be deemed small enough to be safely

ignored at the current perturbation order and the tesseral short-period contributions are captured in

the multipleWT
2,j terms, where j runs from 0 to d. All these terms are summed together to get the

complete short-period generating function for the tesserals.
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Super-Synchronous Relegation. The relegation approach for super-synchronous orbits begins

with the following choice of the constraint forWT
2,j derived using Eq. 3.80:

wE
∂WT

2,j

∂θ
−HT

2,j = 0. (3.87)

Solving the above equation, an approximate solution of Eq. 3.79 and the corresponding residual

are obtained as:

WT
2,j =

1

wE

∫
HT

2,j dθ, (3.88)

RT
j =

∫
1

δ γ

∂HT
2,j

∂f
dθ. (3.89)

The iterations are continued by using the residual RT
j from the previous iteration as the new per-

turbation term HT
2,j+1. Using the same approach as for the sub-synchronous case, the maximum

value the residual corresponding to a single term inHT
2,j , can attain over one complete orbit for the

super-synchronous case is

RT
j,max =

2n+ 1

mδ γmin
|HT

2,j|, (3.90)

where 2n+1 is the maximum coefficient of f inHT
2,j andm is the coefficient of θ. The convergence

condition for the super-synchronous obits is

2n+ 1

mδ γmin
< 1. (3.91)

For the super-synchronous orbits, δ > 1. For orbits with periods approaching resonant values,

the convergence degrades for both super-synchronous as well as sub-synchronous orbits due to the

fact that δ approaches unity. Similar to sub-synchronous case, the convergence of the method of

relegation depends on e, n, and m. However, it is emphasized that the two sufficient conditions

Eqs. 3.86 and 3.91 for the convergence of the relegation method in case of sub-synchronous and
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super-synchronous orbits, respectively, are derived using the upper bounds on the residuals in the

two cases. It is possible that the method of relegation will converge , albeit slower, even if these

conditions are not satisfied in certain cases. It should also be noted that there are no singularities

present in the expressions for the generating functionsWT
2,j for resonant orbits.

m-daily Terms

All the terms inHT
2,j from Eq. 3.78 that do not depend on f are characterized as m-daily terms

(see [233], Chapter 9). It is noted that these m-daily terms also depend on h and g, which are

generally associated with the long-period terms. In case of the nonresonant tesseral harmonics,

there are no pure long-period terms in HT
2,j . For Earth, the secular rates (from which the short-

period terms are averaged out) of h and g due to the dominant J2 zonal harmonic are given as (see

[224], Chapter 10):

dh̄

dt
= −9.96

(
Re

a

)3.5

(1− e2)−2 cos i degrees/day, (3.92)

dḡ

dt
= 5.0

(
Re

a

)3.5

(1− e2)−2 (5 cos2 i− 1) degrees/day. (3.93)

An upper bound on the above angular rates can be obtained by considering equatorial orbits with

semimajor axis equal to the radius of Earth, and as a consequence, the eccentricity must be assumed

zero. Therefore, these upper bounds for the rates of h̄ and ḡ are approximately −10◦ and 20◦ per

day, respectively. It can be easily verified that these upper bounds hold well for the typical orbits,

for which the perigee does not fall below Earth’s radius. In case of the tesseral harmonics, these

upper bounds are expected to be a periodic function of h̄ and ḡ, and also much smaller in amplitude

than that due to J2. Considering the longest period of a pure m-daily term (which do not depend

on g and f ) as 1 day, the periodic rates of all the terms inHT
2,j that do not depend on f (the m-daily

terms of the tesseral potential) can be approximated well by m times the angular velocity of Earth.

Therefore, the m-daily terms repeat m times a day approximately.

To avoid secular terms inWT
2,j , the contributions from the m-daily terms are captured in a sep-
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arate generating functionWmd
2 . This generating function can be computed in closed form without

any iterations by directly integrating the m-daily part ofHT
2 as shown below:

Wmd
2 =

1

wE

∫
Hmd

2 dθ, (3.94)

where the superscript md is used to indicate that only the m-daily terms are included in the above

integrand.

Considering the above results, it is noted that the method of relegation is an iterative ap-

proach, with different expressions for the tesseral short-period generating functions for the sub-

synchronous and super-synchronous orbit regimes. The generating function corresponding to each

iteration captures only a part of the complete short-period contribution. The number of terms in

the generating function increases significantly with each iteration. For instance, in one imple-

mentation of the relegation algorithm using the polar-nodal variables, the number of terms in the

generating function easily exceeded one thousand after four iterations for C22 and S22 tesseral har-

monics [126]. Another limitation of the relegation method is evident from the residual expressions

given in Eq. 3.85 and 3.90. For both sub-synchronous and super-synchronous cases, since γ is an

unbounded monotonic increasing function of the eccentricity, the convergence criterion typically

dictates small orbital eccentricities.

3.5 Exact Delaunay Normalization of the Tesseral Perturbation Hamiltonian

An exact solution for the PDE given in Eq. 3.79 is presented in this section, which accomplishes

the Delaunay normalization of the tesseral Hamiltonian without using the eccentricity expansions

and also avoids the convergence limitations of the relegation method discussed in the previous

section [234, 232]. It is a linear first-order PDE with two independent variables and its exact

solution can be reduced to quadrature using the method of characteristics to obtain the generating

function for the short-periodic effects due to the tesseral harmonics.

The method of characteristics is a powerful technique for solving a linear or quasi-linear PDE

such as the one-dimensional wave equation [235]. In this method, a characteristic curve is found
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along which the PDE reduces to an ordinary differential equation (ODE). If the characteristic

curves for the PDE given in Eq. 3.79 are chosen as the general solution of the equation

dθ

dl
=
wE
ñ

= δ (3.95)

then this PDE is transformed into the following ODE forWT
2 :

dWT
2

dl
− 1

ñ
HT

2 = 0. (3.96)

Before the above ODE can be integrated, all the appearances of θ inHT
2 have to be removed using

the solutions for the characteristic curves. These characteristic curves are found by integrating Eq.

3.95 and are given as follows:

θ = δ l + θ0, (3.97)

where θ0 is a constant. The above relation for θ, when substituted in the expression for HT
2 given

in Eq. 3.77 results in the following equation:

HT
2 = − 2!

C2
20

µRn
e

rn+1

p=n∑
p=0

Fnmp(i) [CS1 {cos(α) cos(β)− sin(α) sin(β)}

+CS2 {sin(α) cos(β) + cos(α) sin(β)}] , (3.98)

where

α ≡ (n− 2p)f −mδ l, (3.99)

β̄ ≡ (n− 2p)g +m(h− θ0). (3.100)

The ODE in Eq. 3.96 with HT
2 given above can now be integrated along the characteristic curves

and the solution is given as follows:

93



WT
2 = − 2!

C2
20

µRn
e

ñ

p=n∑
p=0

Fnmp(i)

[
CS1

{
cos(β̄)

∫
cos(α)

rn+1
dl − sin(β̄)

∫
sin(α)

rn+1
dl

}
+CS2

{
cos(β̄)

∫
sin(α)

rn+1
dl + sin(β̄)

∫
cos(α)

rn+1
dl

}]
+ F (θ0, a, e, i, h, g), (3.101)

where F is an arbitrary function. The final step to obtain the solution of the original PDE is

to substitute back the value of the constant θ0 from Eq. 3.97 in the above solution. After this

substitution and the change of integration variable from l to f , the solution in the final form is

given as follows:

WT
2 = − 2!

C2
20

µRn
e

ñ an+1η2n−1

p=n∑
p=0

Fnmp(i) [CS1 {cos(β)Inmp1 − sin(β)Inmp2 }

+CS2 {cos(β)Inmp2 + sin(β)Inmp1 }]

+ F (θ − δ l, a, e, i, h, g), (3.102)

where

β ≡ (n− 2p)g +m(h− θ + δ l), (3.103)

Inmp1 ≡
∫

cos((n− 2p)f −mδ l)(1 + e cos f)n−1 df, (3.104)

Inmp2 ≡
∫

sin((n− 2p)f −mδ l)(1 + e cos f)n−1 df. (3.105)

The above result provides an exact and very succinct solution for the generating functionWT
2 for

an arbitrary tesseral spherical harmonic. It satisfies the PDE given in Eq. 3.79 exactly, which

can be easily verified by substituting this solution back into the PDE. In addition, F is an arbi-

trary function of the first five classical orbital elements and θ − δ l and can be chosen to make the
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time-average of WT
2 zero, if required. Otherwise, it can safely be assumed to be equal to zero.

A major advantage of this solution is that it remains valid for an arbitrary elliptic orbit in both:

the sub-synchronous as well as super-synchronous orbit regimes simultaneously, and avoids any

singularities for the resonant orbits as well. A similar solution for the generating function that

accomplishes the normalization of a perturbed Keplerian system using the method of characteris-

tics was also proposed by Palacián [236]. His solution applies to a generic form of the perturbed

Keplerian Hamiltonian (see Eq. (14) in [236]) that represents only a part of the complete tesseral

Hamiltonian used in this work. Palacián acknowledged that the integrals present in his solution

cannot be evaluated analytically except in some special cases, and a numerical quadrature must be

performed for computing a solution. However, he arbitrarily chose the lower limit of integration

for these integrals as zero, and ignored the computation of the integration constant (see Proposi-

tion 4.1). It is seen through simulations in this work that ignoring the integration constant while

evaluating the integrals using the numerical quadrature affects the accuracy of the proposed theory

significantly.

The general solution forWT
2 contains integrals Inmp1 and Inmp2 , and they need to be evaluated

for computing WT
2 and its partial derivatives. It is noted that these integrals are functions of the

true and mean anomaly simultaneously and as a consequence, a closed-form solution for Inmp1

or Inmp2 is not known to exist. Additionally, their integrands are generally not periodic functions

because of the presence of δ, which is generally an irrational number, except for some special

cases. Nevertheless, these integrals represent only a part of the complete generating function and

a series representation of them can be obtained by expanding their integrands either by using the

typical eccentricity expansions of the true anomaly or by using the integration by parts method.

Additionally, they can be computed numerically to arbitrary precision (in theory). These three

different ways to compute a solution for Inmp1 and Inmp2 and their partial derivatives are discussed

in the following subsections.

3.5.1 Evaluation of Quadratures Using Eccentricity Expansion

The well-known elliptic expansion of f in terms of e and l up to O(e7) is [224]
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f = l +

(
2 e− 1

4
e3 +

5 e5

96

)
sin (l) +

(
5

4
e2 − 11 e4

24
+

17 e6

192

)
sin (2 l)

+

(
13 e3

12
− 43 e5

64

)
sin (3 l) +

(
103 e4

96
− 451 e6

480

)
sin (4 l)

+
1097 e5 sin (5 l)

960
+

1223 e6 sin (6 l)

960
+O(e7). (3.106)

The series solutions of Inmp1 and Inmp2 can be obtained for an arbitrary tesseral harmonic by sub-

stituting the above relation in Eqs. 3.104 and 3.105, and expanding the integrands using Taylor

series about e = 0. These series solutions are known to be convergent for low to moderate values

of the eccentricity (approx. e < 0.7), therefore a term-by-term differentiation can be performed

to compute the partial derivatives of Inmp1 and Inmp2 . The results can be substituted in Eq. 3.102

to computeWT
2 and its partial derivatives. All of these operations can easily be mechanized using

any off-the-shelf symbolic algebra package. The series solutions of Inmp1 and Inmp2 up toO(e2) are

given below for ready reference:

Inmp1 = − sin (α)

δ m− n+ 2 p
+

(
−1/2

(3n− 4 p+ 1) sin (l + α)

δ m− n+ 2 p− 1
− 1/2

(n− 4 p− 1) sin (l − α)

δ m− n+ 2 p+ 1

)
e

+

(
1/4

(3n2 − 16np+ 16 p2 + 3n− 2) sin (α)

δ m− n+ 2 p

−1/8
(9n2 − 24np+ 16 p2 + 14n− 18 p+ 4) sin (2 l + α)

δ m− n+ 2 p− 2

+1/8
(n2 − 8np+ 16 p2 − 4n+ 18 p+ 4) sin (2 l − α)

δ m− n+ 2 p+ 2

)
e2 +O(e3), (3.107)

Inmp2 =
cos (α)

δ m− n+ 2 p
+

(
−1/2

(n− 4 p− 1) cos (l − α)

δ m− n+ 2 p+ 1
+ 1/2

(3n− 4 p+ 1) cos (l + α)

δ m− n+ 2 p− 1

)
e

+

(
1/8

(n2 − 8np+ 16 p2 − 4n+ 18 p+ 4) cos (2 l − α)

δ m− n+ 2 p+ 2
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+1/8
(9n2 − 24np+ 16 p2 + 14n− 18 p+ 4) cos (2 l + α)

δ m− n+ 2 p− 2

−1/4
(3n2 − 16np+ 16 p2 + 3n− 2) cos (α)

δ m− n+ 2 p

)
e2 +O(e3), (3.108)

where

ᾱ = (n− 2p)l −mδl.

Evaluation of Inmp1 and Inmp2 by using the eccentricity expansions as shown above introduces

singularities for the orbits with periods close to the resonant values because of the appearance

of the denominators of the form (n − 2p − mδ) in the series solutions. This drawback can be

avoided by finding series representations of these integrals using the integration by parts method

as discussed in the following subsection.

3.5.2 Evaluation of Quadratures Using Integration by Parts

Since δ appears as a coefficient of the mean anomaly in Inmp1 and Inmp2 , the repeated differ-

entiation or integration of their integrands can produce powers of δ multiplying the numerator or

denominator of the same integrands. This observation motivates the application of the integration

by parts method to produce a series representation of Inmp1 and Inmp2 . The repeated application of

the integration by parts method is equivalent to the iterations performed in the method of relegation

in Section 3.4, for the two methods produce the same solution for the generating function. As for

the method of relegation, the series solutions of I1
nm and I2

nm using integration by parts are also

different for the sub-synchronous and super-synchronous orbit regimes.

Sub-Synchronous case

Before applying integration by parts to I1
nm and Inmp2 , the integration variable is changed to

l and the terms containing f and l are separated from each other. Using trigonometric identities,

Eqs. 3.104 and 3.105 can be written as shown below:
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Inmp1 =
1

η3

∫
(cos(mδl)A0(f) + sin(mδl)B0(f)) dl, (3.109)

Inmp2 =
1

η3

∫
(cos(mδl)B0(f)− sin(mδl)A0(f)) dl, (3.110)

where

A0(f) = cos ((n− 2p)f) (1 + e cos(f))n+1,

B0(f) = sin ((n− 2p)f) (1 + e cos(f))n+1.

Repeated application of the integration by parts, with each term containing l considered as the first

function, produces a series expansion of these integrals in the powers of δ. These series solutions

of Inmp1 and Inmp2 up to O(δ4) are as given below:

Inm1 =
1

η3

[
cos(mδl)

(
A1 − (mδ)B2 − (mδ)2A3 + (mδ)3B4 + (mδ)4A5 − . . .

)
+ sin(mδl)

(
B1 + (mδ)A2 − (mδ)2B3 − (mδ)3A4 + (mδ)4B5 + . . .

)]
, (3.111)

Inm2 =
1

η3

[
− sin(mδl)

(
A1 + (mδ)B2 − (mδ)2A3 − (mδ)3B4 + (mδ)4A5 + . . .

)
+ cos(mδl)

(
B1 − (mδ)A2 + (mδ)2B3 + (mδ)3A4 − (mδ)4B5 − . . .

)]
, (3.112)

where for k ≥ 1

Ak(f) =

∫
γ Ak−1(f)df,
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Bk(f) =

∫
γ Bk−1(f)df.

Th expressions of Ak and Bk appearing in the above equations are only functions of the true

anomaly and as a result, they are integrable. As k increases, the magnitudes of Ak and Bk are

guaranteed to decrease if γmax < 1, where γmax is the maximum value of γ for any f (see Eq. 3.84).

Therefore, the sufficient condition for the series solutions of Inmp1 and Inmp2 to converge is

mδ γmax < 1. (3.113)

It is noted that the coefficients of f that are produced while evaluating Ak and Bk appear in the

denominator of the left hand side of the above inequality condition. Using formulae given in Eqs.

3.73 and 3.74, it can be verified that these coefficients are lower bounded by unity. Therefore, the

above convergence criterion is valid for any tesseral harmonic.

Super-Synchronous case

For super-synchronous orbits, δ > 1. Therefore, each term containing f is treated as the

first function in the application of integration by parts to Eqs. 3.109 and 3.110, resulting in the

following series solutions of Inmp1 and Inmp2 up to O(δ−4):

Inm1 =
1

η3

[
cos(mδl)

mδ

(
−B0 +

A1

(mδ)
+

B2

(mδ)2
− A3

(mδ)3
− B4

(mδ)4
+ . . .

)
+

sin(mδl)

mδ

(
A0 +

B1

(mδ)
− A2

(mδ)2
− B3

(mδ)3
+

A4

(mδ)4
+ . . .

)]
, (3.114)

Inm2 =
1

η3

[
cos(mδl)

mδ

(
−A0 +

B1

(mδ)
+

A2

(mδ)2
− B3

(mδ)3
− A4

(mδ)4
+ . . .

)
+

sin(mδl)

mδ

(
B0 +

A1

(mδ)
− B2

(mδ)2
− A3

(mδ)3
+

B4

(mδ)4
+ . . .

)]
, (3.115)
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where for k ≥ 1

Ak =
1

γ

∂Ak−1

∂f
,

Bk =
1

γ

∂Bk−1

∂f
.

Since the absolute values of the coefficients of f inA0 andB0 are bounded by 2n+1, the sufficient

condition for the convergence of the above series solutions of Inmp1 and Inmp2 is

2n+ 1

mδγmin
< 1. (3.116)

It is not a coincidence that the convergence criteria for sub-synchronous and super-synchronous

orbits given in this section are identical to the criteria obtained earlier for the method of relegation

(see Eqs. 3.86 and 3.91 in Section 3.4). In fact, the above series solutions of Inmp1 and Inmp2

if substituted in Eq. 3.102, gives the same solution for the tesseral generating function WT
2,j as

produced by the method of relegation. Each expansion order in the series solutions of Inmp1 and

Inmp2 corresponds to that from an iteration in the method of relegation. The exact solution presented

in this section is, therefore, can be considered as a more general method, of which the method of

relegation is a special case.

3.5.3 Evaluation of Quadratures Numerically

The two approximate approaches for evaluating the indefinite integrals Inmp1 and Inmp2 , which

are needed to compute the tesseral generating function, have different limitations. The approach

using the eccentricity expansion has inherent singularities for resonant elliptic orbits and a large

number of terms must be retained in the eccentricity expansions for medium to high values of

the orbital eccentricity. In contrast, the series solutions found in the previous subsection using

integration by parts produce large expressions for each term in the series. Also, the domain of

convergence are limited by the convergence criteria. Another approach to evaluate these integrals
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to arbitrary precision (in theory) is by numerical quadrature. The numerical approach not only

produces very compact expressions for the short-period variations of the orbital elements due to

tesserals, it also avoids the singularities and convergence limitations of the previous two methods.

The integrands of Inmp1 and Inmp2 are not periodic functions due to the presence of the irrational

number δ. As a consequence, the current value of the true anomaly, which is used as the upper

limit for the numerical quadrature, must take into account the number of orbital periods passed

since the initial time, i.e., it must not be wrapped between 0 and 2π. The lower limit for the

quadrature is arbitrary and can be taken as 0. However, the values of these indefinite integrals at

the lower limit, i.e., f = 0 are required, which can be computed by using either of the previous two

approaches discussed. This hybrid approach uses the eccentricity expansions or the integration by

parts method only to evaluate Inmp1 and Inmp2 at a single point, f = 0, and produces more accurate

results as will be seen in the following section. With this discussion, the solutions of these integrals

are now represented as follows:

Inmp1 =

∫ f

0

cos((n− 2p)f −mδ l)(1 + e cos f)n−1 df, (3.117)

Inmp2 = Inmp2 |f=0+

∫ f

0

sin((n− 2p)f −mδ l)(1 + e cos f)n−1 df. (3.118)

It can be easily verified that Inmp1 = 0 at f = 0. It is noted that by using the true anomaly as the

integration variable in the quadratures, the need to solve Kepler’s equation at each step is avoided.

The minimum step size needed for the numerical quadrature should take into account the highest

frequency component present in the integrands of Inmp1 and Inmp2 . Using formulae in Eqs. 3.73 and

3.74, the largest numerical coefficient of f in the integrands is obtained as 2n − 1. Therefore, the

highest frequency component in the integrands has the time-period as 2π/(2n− 1).

From an operational point of view, the numerical quadrature approach has many advantages.

The exact solution forWT
2 , which is closed-form in the eccentricity is very compact in size com-

pared to the approximate solutions generated by the method of relegation. This stems from the fact

that the term (1 + e cos(f))n−1 need not be expanded for evaluating these quadratures Inmp1 and
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Inmp2 . The numerical quadrature approach is also well-suited for parallel computations for faster

execution. Moreover, unlike the method of relegation, no separate treatment for m-daily terms is

required and their contributions are included in the proposed solution without any approximations.

3.6 Satellite Theory with Tesseral Harmonics

The solution for the tesseral generating function obtained in the previous section have been

implemented into an artificial satellite theory, which includes tesseral short-period and m-daily

effects. The expressions for the second-order variations of the equinoctial orbital elements valid

for an arbitrary tesseral are provided below. The tesseral contributions are required in addition to

the secular and periodic contributions of the zonal harmonics developed in Sections 3.1 and 3.2 to

formulate a complete satellite theory valid for an Earth-like nonspherical central body.

Provided a generating function for the periodic variations computed using the Deprit’s method,

the expressions for the periodic variations of any set of orbital elements can be computed by eval-

uating the Poisson brackets in the near-identity transformations given in Eqs. 2.19 and 2.20. The

second-order tesseral contributions in the mean to osculating transformation depend on the Pois-

son bracket (E ,WT
2 ), where E represents the equinoctial elements. Using the definitions of the

equinoctial elements (see Eq. 3.51), the following expressions for their variations valid for any

tesseral harmonic are obtained:

(a,WT
2 ) = −2

√
a

µ

∂f

∂l

∂WT
2

∂f
, (3.119)

(Λ,WT
2 ) = 2

√
a

µ

∂WT
2

∂a
− η

L

√
1− η
1 + η

∂WT
2

∂e
− ∂WT

2

∂i

(
tan( i

2
)

G

)
, (3.120)

(p1,WT
2 ) =

sin(h)

G(1 + cos i)

∂WT
2

∂i
− cosh

(1 + cos i)

1

G
WT

2,gh, (3.121)

(p2,WT
2 ) =

− cos(h)

G(1 + cos i)

∂WT
2

∂i
− sinh

(1 + cos i)

1

G
WT

2,gh, (3.122)
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(q1,WT
2 ) = − sin(g + h)

(
−η
L

∂WT
2

∂e
− e∂W

T
2

∂i

tan( i
2
)

G

)
− η2

L
cos(g + h)WT

2,lg, (3.123)

(q2,WT
2 ) = cos(g + h)

(
−η
L

∂WT
2

∂e
− e∂W

T
2

∂i

tan( i
2
)

G

)
− η2

L
sin(g + h)WT

2,lg, (3.124)

where

WT
2,gh ≡

1

sin i

(
cos i

∂WT
2

∂g
− ∂WT

2

∂h

)
, (3.125)

WT
2,lg ≡

1

e

(
∂WT

2

∂l
− 1

η

∂WT
2

∂g

)
. (3.126)

The apparent singularities in the above expressions for WT
2,gh and WT

2,lg are only artificial, and

they are eliminated when the expression for WT
2 is substituted into these equations. The final

expressions for these terms after canceling out the singular terms along with the partial derivatives

of Inmp1 and Inmp2 needed to compute the above expressions are provided in Appendix B. As for

Inmp1 and Inmp2 , their partial derivatives can also be computed using any of the three methods

discussed in the previous section: the eccentricity expansion, integration by parts, or numerical

quadrature. Specifically, for computing the partial derivatives of Inmp1 and Inmp2 with respect to e

using numerical quadrature, they can be evaluated by first changing the variable of integration from

f to l, and then taking the partial derivative of the integrands. The rest of the partial derivatives of

the two integrals can be easily evaluated using Leibniz’s rule.

3.6.1 Results

By incorporating the expressions for the orbital element variations due to the tesseral harmonics

into the satellite theory with zonal harmonics developed in the previous sections, a complete satel-
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Table 3.1: Initial classical elements for the two test orbits.

IC a e i Ω ω M
Orbit-1 12159.596 km 0.01 5◦ 0◦ 270◦ 0◦

Orbit-2 18520 km 0.35 100◦ 0◦ 270◦ 0◦

lite theory for a nonspherical Earth-like gravitational body is implemented in MATLAB. It is em-

phasized that the resulting satellite theory is valid for any tesseral of arbitrary degree and order. The

tesseral short-period and m-daily variations are computed by evaluating Inmp1 , Inmp2 , and their par-

tial derivatives. The eccentricity expansion approach as well as the adaptive quadrature algorithm

available in MATLAB (the integral command) with tolerance set to 10−9 are used to generate the

results. The accuracy of this theory is ascertained by comparison with the results obtained from a

variable-step, variable-order Adams-Bashforth-Moulton integrator (MATLAB ode113 command)

with JGM-3 Earth’s gravity model and tolerances set to 10−11.

The two different initial condition sets are chosen, one with a small and the other with a mod-

erate value of the eccentricity to showcase the accuracy improvements obtained by using the pro-

posed approach. These initial osculating classical orbital elements, given in Table 3.1, are taken

from Reference [127] and the results are compared with the results of the Lara’s formulation of

the method of relegation in the same reference. The zonal satellite theory used in this section is

semi-analytic, i.e., the secular and long-period rates are numerically integrated for propagating

the mean elements, in order to compare the results with Lara’s theory. It is noted that the secular

and long periodic effects due to J2 are included up to O(J3
2 ) in the averaged Hamiltonian, and

the short-period effects up to O(J2
2 ) in the generating function. A step-by-step algorithm for the

semi-analytic integration of the geopotential using the proposed approach is as follows:

1. Choose the osculating initial elements;

2. Compute the integrals Inmp1 and Inmp2 , and their partials by numerical quadrature with the

lower limit f = 0. Compute integrals values at f = 0 using either the eccentricity expansion

or by integration by parts method;
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3. An alternative to the previous step is to use the eccentricity expansion or the integration by

parts method to directly evaluate the indefinite integrals and their partials for a given value

of f ;

4. Using the results from Step 2 or 3, compute the periodic variations due to the tesseral har-

monics using Eqs. 3.119-3.124;

5. Compute the zonal short-periodic variations and using the inverse transformation given in

Eq. 2.20, compute the mean initial conditions;

6. Numerically integrate the mean initial conditions using equations capturing secular and long-

period effects of the zonal harmonics;

7. Convert the mean variables at the desired time back to the osculating variables by evaluating

the transformation equations given in Eq. 2.19. Use the same approach as in Steps 2 or 3 to

compute the tesseral short-period contributions.

The initial conditions from Table 3.1 are propagated numerically as well as semi-analytically with

gravity model 2× 2 using the above algorithm, and the differences in the classical orbital elements

over a period of 30 days are plotted in Figures 3.9-3.16. The numerical quadrature based approach

(as described in Step 2 of the above algorithm) was used for Orbit-1 in Figures 3.9-3.10 and for

Orbit-2 in Figures 3.13-3.14. The eccentricity expansion approach was used to generate the cor-

responding results shown in Figures 3.11-3.12 and 3.15-3.16 for the same two orbits. Comparing

the plots for Orbit-1 in Figures 3.9-3.10 and 3.11-3.12, it is seen that the exact solution for the

variations due to tesserals using numerical quadrature has the same accuracy as the eccentricity

expansion approach as expected for this near-circular orbit. However, significant difference in the

accuracy of the two approaches became apparent for Orbit-2, which has a higher eccentricity of

0.35, as seen in Figures 3.13-3.14 and 3.15-3.16. Here, the numerical quadrature based exact so-

lution for the tesseral periodic variations outperforms the eccentricity expansion based approach

significantly for all the elements. The peak semimajor axis error for the numerical quadrature

approach is smaller than that for the eccentricity expansion approach by a factor of 20.
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Figure 3.9: Propagation errors for Orbit-1 in the first three classical elements for 2 × 2 semi-
analytic satellite theory with the tesseral periodic variations computed by numerical quadrature.
The propagation time corresponds to 30 days with data points plotted at 30 minute intervals.

Figure 3.10: Propagation errors for Orbit-1 in the last three classical elements for 2 × 2 semi-
analytic satellite theory with the tesseral periodic variations computed by numerical quadrature.
The propagation time corresponds to 30 days with data points plotted at 30 minute intervals.

106



Figure 3.11: Propagation errors for Orbit-1 in the first three classical elements for 2 × 2 semi-
analytic satellite theory with the tesseral periodic variations computed using the series solution in
powers of the eccentricity. The propagation time corresponds to 30 days with data points plotted
at 30 minute intervals.

Figure 3.12: Propagation errors for Orbit-1 in the last three classical orbital elements for 2×2 semi-
analytic satellite theory with the tesseral periodic variations computed using the series solution in
powers of the eccentricity. The propagation time corresponds to 30 days with data points plotted
at 30 minute intervals.
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Figure 3.13: Propagation errors for Orbit-2 in the first three classical elements for 2 × 2 semi-
analytic satellite theory with the tesseral periodic effects computed by numerical quadrature. The
propagation time corresponds to 30 days with data points plotted at 30 minute intervals.

Figure 3.14: Propagation errors for Orbit-2 in the last three classical elements for 2 × 2 semi-
analytic satellite theory with the tesseral periodic effects computed by numerical quadrature. The
propagation time corresponds to 30 days with data points plotted at 30 minute intervals.
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Figure 3.15: Propagation errors for Orbit-2 in the first three classical elements for 2 × 2 semi-
analytic satellite theory with the tesseral periodic effects computed using the series solution in
powers of the eccentricity. The propagation time corresponds to 30 days with data points plotted
at 30 minute intervals.

Figure 3.16: Propagation errors for Orbit-2 in the last three classical elements for 2 × 2 semi-
analytic satellite theory with the tesseral periodic effects computed using the series solution in
powers of the eccentricity. The propagation time corresponds to 30 days with data points plotted
at 30 minute intervals.
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The position and velocity errors for these two approaches for Orbit-1 and Orbit-2 are shown in

Figures 3.17-3.20. It is noted that the smaller propagation errors for Orbit-2 compared to Orbit-1

are attributed to higher inclination of the former orbit. The proposed theory for tesseral periodic

variations outperforms Lara’s version of the method of relegation for both Orbit-1 and Orbit-2,

when Inmp1 and Inmp2 , and their partial derivatives are computed numerically. The results in Fig-

ures 3.9-3.16 should be compared with Figures 2 and 4 of Reference [127]. For the near-circular

Orbit-1, the proposed solution with Inmp1 and Inmp2 computed by eccentricity expansions, produce

more accurate results than those from Lara’s method of relegation after one iteration. In case of

Orbit-2, Lara’s method with five iterations produces better results than the proposed solution with

eccentricity expansion based approach for all the elements except for the mean anomaly, for which

Lara’s method produces a secular growth in the error. It is noted that the mean anomaly has more

significant contributions to position and velocity errors than other elements.

Figure 3.21 presents a comparison of the position and velocity errors for a 2 × 0 and a 6 × 6

completely analytic artificial satellite theory. The errors were computed by differencing the states

propagated for a day using a 70×70 JGM-3 GMAT numerical propagator. It is noted that the 6×6

fully analytic theory provides more than 50 % improvement in the position and velocity predictions

over 1 day and the errors between the two theories has a more than a linear growth with time.

110



Figure 3.17: Position and velocity errors for Orbit-1 using 2 × 2 semi-analytic satellite theory
including tesseral periodic effects computed using numerical quadrature. The propagation time
corresponds to 30 days with data points plotted at 30 minute intervals. Neglecting the tesseral
corrections in the semi-analytic theory for this orbit results in position and velocity errors of re-
spectively, 80 km and 0.038 km/s in 30 days.

Figure 3.18: Position and velocity errors for Orbit-1 using 2 × 2 semi-analytic satellite theory
including tesseral short-period effects computed using the eccentricity expansion. The propaga-
tion time corresponds to 30 days with data points plotted at 30 minute intervals. Neglecting the
tesseral corrections in the semi-analytic theory for this orbit results in position and velocity errors
of respectively, 80 km and 0.038 km/s in 30 days.

111



Figure 3.19: Position and velocity errors for Orbit-2 using 2 × 2 semi-analytic satellite theory
including the tesseral short-period effects computed using numerical quadrature. The propagation
time corresponds to 30 days with data points plotted at 30 minute intervals. Neglecting the tesseral
contributions in the semi-analytic theory for this orbit results in position and velocity errors of
respectively, 9.6 km and 0.004 km/s in 30 days.

Figure 3.20: Position and velocity errors for Orbit-2 using 2 × 2 semi-analytic satellite theory
including the tesseral short-period effects computed using the eccentricity expansion. The prop-
agation time corresponds to 30 days with data points plotted at 30 minute intervals. Neglecting
the tesseral contributions in the semi-analytic theory for this orbit results in position and velocity
errors of respectively, 9.6 km and 0.004 km/s in 30 days.
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Figure 3.21: Absolute position and velocity errors with respect to 70 × 70 GMAT for 2 ×
0 and 6 × 6 Exact Theory using quadrature. The initial osculating classical elements are
[7100, 0.05, 50◦, 10◦, 20◦, 30◦].
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4. RELATIVE MOTION STATE TRANSITION MATRIX∗

The advantages of modeling the satellite relative motion in terms of the differential orbital

elements become apparent when the perturbation effects need to be incorporated into the analytic

solutions. If the analytical expressions for the variations of the orbital elements in the presence

of perturbations are available, then the task of incorporating the same perturbation effects in the

solutions for the relative motion essentially reduces to computing Jacobian matrices of the element

variations. It is noted that the order up to which the perturbation effects are included in the relative

motion solution, depends on the order of the expressions for the orbital element variations and not

on the linearized relationship between the orbital elements of the reference satellite and the relative

states.

The artificial satellite theories developed in the previous chapter for the zonal and tesseral

harmonics are used to derive a state transition matrix for the perturbed relative motion, referred

to as RM-STM, in this chapter. The GA-STM framework, described in Section 2.3.3, is used

for deriving the two versions of RM-STM: the first includes zonal harmonics J2 to J6 using the

expressions for secular and periodic variations explicitly derived for each zonal (see Section 3.1),

and the second uses the generalized expressions for the secular and periodic variations due to any

∗Reprinted in part with permission from

B. Mahajan, S. R. Vadali, and K. T. Alfriend, “Analytic solution of perturbed relative motion with zonal and
tesseral harmonics,” In Spaceflight Mechanics 2017: Proceedings of the 27th AAS/AIAA Space Flight Mechanics
Meeting held February 5-9, 2017 San Antonio, Texas, U.S.A., pp. 1117-1134. [AAS 17-475] (Advances in the
Astronautical Sciences; Vol. 160). San Diego, California: Published for the American Astronautical Society by
Univelt, Inc. (2017).

B. Mahajan, S. R. Vadali, and K. T. Alfriend, “Analytic solution for satellite relative motion: The complete
zonal gravitational problem,” In Spaceflight Mechanics 2016: Proceedings of the 26th AAS/AIAA Space Flight
Mechanics Meeting held February 14-18, 2016, Napa, California, U.S.A. (pp. 3325-3348). [AAS 16-262] (Advances
in the Astronautical Sciences; Vol. 158). San Diego, California: Published for the American Astronautical Society
by Univelt, Inc. (2016).

B. Mahajan, S. R. Vadali, and K. T. Alfriend, “Analytic solution for satellite relative motion with zonal grav-
ity perturbations,” In Astrodynamics 2015: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference held
August 9-13, 2015, Vail, Colorado, U.S.A. (pp. 3583-3598). [AAS 15-705] (Advances in Astronautical Sciences;
Vol. 156). San Diego, California: Published for the American Astronautical Society by Univelt, Inc. (2016).
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zonal or tesseral harmonic (see Section 3.2 and 3.6). For the dominant harmonic J2, the secular

effects are included up to orderO(J3
2 ), and short-period and long-period effects up toO(J2

2 ) using

the explicitly derived expressions in Section 3.1 in both versions of the RM-STM. The derivation

of these two versions of the RM-STM and the results showing improvements in the prediction of

relative motion in the presence of zonal and tesseral harmonic perturbations are presented in the

following subsections.

4.1 STM for Zonal Harmonics J2-J6

Following the GA-STM framework, the three component matrices (see Section 2.3.3) to propa-

gate the relative states in the presence of perturbations are computed using the explicit expressions

for the variations of the orbital elements due to the zonal harmonics J2-J6 [1]. This is accom-

plished by computing Jacobian of the secular rates, and the mean to osculating transformation.

The nonsingular element set [a, l + g, i, e cos(g), e sin(g), h] is used to compute the Jacobian, and

as a result singularities for the circular reference orbits are avoided. The geometric transformation

matrix, Σ, from Section 2.3.2 is derived using the nonsingular elements for computing the relative

states in the curvilinear frame given the differential osculating nonsingular elements. The angular

velocity of the Hill frame attached to the reference satellite needed for Σ, is computed in exact

form for zonal harmonics J2-J6 using the Lagrange planetary equations. The RM-STM Φ for the

zonal harmonics J2-J6 can be represented in a similar form as that of the original GA-STM (see

Eq. 2.41) as shown below:

Φ(t, t0) = Σ(t)D(t)φm(t, t0) (Σ(t0)D(t0))−1 , (4.1)

where D is the differential mean to osculating transformation matrix for the nonsingular elements,

φm is the differential STM for the mean nonsingular elements, and t0 and t are the initial and final

time, respectively. The component matrices of Φ are derived in the following subsections.
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4.1.1 The Geometric Transformation Matrix

The derivation in Section 2.3.2 shows that adding the effects of any perturbation in Σ amounts

to incorporating its effects in the angular velocity $ of the Hill frame attached to the reference

satellite or the chief. This is because of the fact that Σ only depends on the osculating elements of

the chief and $. For deriving Σ in terms of the nonsingular elements, the following expressions

for the chief’s position and velocity components are used in Eq. 2.33:

r0 =
a(1− q2

1 − q2
2)

(1 + q1 cos(ϑ) + q2 sin(ϑ))
,

vr0 =

√
µ

a(1− q2
1 − q2

2)
(q1 sin(ϑ)− q2 cos(ϑ)) ,

vt0 =

√
µ

a(1− q2
1 − q2

2)
(1 + q1 cos(ϑ) + q2 sin(ϑ)) ,

(4.2)

where

ϑ = f + g,

q1 = e cos g,

q2 = e sin g,

and the subscript 0 represents that these quantities are for the chief. The symbolic computations

required for computing the expressions for each element of Σ matrix are done in Maple. To com-

pute $ given in Eq. 2.40, Lagrange planetary equation (see Reference [224]) for node angle rate

is used to compute the radial component of $ as follows:

$r =
1

ñ a b sinϑ

∂R

∂i
, (4.3)

where b is semiminor axis, and R represents the disturbing function. A straightforward way to

evaluate the expression for the radial component of $ is to use the Hamiltonian (without the two-

body part H0) for the zonal harmonics given in Eq. 3.22 as the disturbing function R. As a result,

the equation for $r is obtained as
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$r =
1

ñ a b sinϑ

∂

∂i

(
∞∑
n=2

Jn
µRn

e

an+1

(a
r

)n+1

Pn(sin i sinϑ)

)
. (4.4)

A general expression for Legendre polynomials Pn is given in Eq. 3.27, which after substitution in

the above equation, and carrying out the differentiation yields

$r =
cos i

ñ a b

∞∑
n=2

Jn
µRn

e

an+1

(a
r

)n+1 1

2n

×
bn
2
c∑

j=0

(−1)j(2n− 2j)! (n− 2j)

j! (n− j)! (n− 2j)!
sinn−2j−1 i sinn−2j−1 ϑ. (4.5)

The above expression has no singularities and is valid for any zonal harmonic. To compute the $r

for zonal harmonics from J2 to J6, the first summation is performed only from n = 2 to n = 6 in

the above expression. It is noted that for the polar orbits, the angular velocity of the Hill frame has

no component in the radial direction, which results in no regression of the node.

With the expression for $ valid for any zonal harmonics derived, all the quantities for comput-

ing Σ are known. The inverse of Σ is also required for the relative motion STM as seen in Eq. 4.1,

which can be computed symbolically or numerically. Since the inverse of Σ is only required once

at the initial time, there is no particular advantage in computing the expressions for the inverse

matrix symbolically.

4.1.2 Differential Mean to Osculating Transformation Matrix

The differential mean to osculating transformation matrix, D, captures the periodic effects due

to perturbations on the differential mean elements. For the orbital elements, the periodic variations

are computed using the two separate transformations: short-period and long-period for a fully

analytic satellite theory as seen in Chapter 3. Therefore, D is computed using the two separate

matrices: DLP for the long-period and DSP for the short-period variations as shown below:
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D(t) = DSP (t)DLP (t), (4.6)

where DLP and DSP are the Jacobian matrices of the corresponding near-identity transformations,

and t represents the time. The near-identity transformations for the zonal harmonics J2 to J6 are

give in Eqs. 3.17 for the short-period, and in 3.21 for the long-period variations. Using these

equations, any element of DSP and DLP matrices with i and j indicating its row and column,

respectively, is computed using the following equations:

[DSP ]i,j =
∂[E ]i
∂[ELP ]j

,

=δi,j + ε
∂([ELP ]i,W1)

∂[ELP ]j
+
ε2

2!

[
∂([ELP ]i,W2)

∂[ELP ]j
+
∂(([ELP ]i,W1),W1)

∂[ELP ]j

]
+O(ε3), (4.7)

[DLP ]i,j =
∂[ELP ]i
∂[Em]j

,

=δi,j + ε
∂([Em]i, W̄1)

∂[Em]j
+
ε2

2!

[
∂([Em]i, W̄2)

∂[Em]j
+
∂(([Em]i, W̄1), W̄1)

∂[Em]j

]
+O(ε3), (4.8)

where δ is the Kronecker delta; Em, ELP and E represent the mean, short-period averaged, and

osculating nonsingular elements, respectively; and a square bracket with subscripts indicates an

element of the matrix or vector. The computations in the above equations are lengthy but straight-

forward and, were performed using Maple in this work. While the above results are derived for the

nonsingular elements, they are still expressed in terms of the classical orbital elements, specifically

the eccentricity and the inclination. The author’s experience is that the artificial singularities in the

expressions with respect to the circular or equatorial orbits are easier to remove especially using

symbolic algebra software like Maple. This is due to the fact that all the singular terms with e or

(sin i) in the denominator can be easily separated out from the rest.
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4.1.3 Differential Mean STM

The differential mean STM, φm, propagates the differential mean elements from the initial

time t0 to the final time t. In case of the Delaunay elements, the mean rates are zero for the action

variables (L,G,H) and constants for the angle variables (l, g, h). However, this is not true for

the nonsingular elements as they are nonlinear functions of the Delaunay elements. Therefore, φm

for the nonsingular elements is computed by taking a first-order variation of the mean nonsingular

elements Em at the final time expressed as functions of the mean Delaunay elements Dm, with

respect to the mean nonsingular elements at the initial time. To illustrate the process, consider Em

as a nonlinear vector function F̄ of Dm as shown below:

Em(t) = F̄ (Dm(t)) , (4.9)

where

Dm(t) = Dm(t0) + Ḋ(t− t0),

and Ḋ represents the rates of the mean Delaunay elements, which are functions of the action

variables only. A single element of φm, i.e., [φm]i,j is computed by using the chain rule as given

below:

[φm(t, t0)]i,j =
∂[F̄ ]i

∂[Em(t0)]j
,

=
∂[F̄ ]i

∂[Dm(t)]k

(
δk,p +

∂[Ḋ]k
∂[Dm(t0)]p

(t− t0)

)
∂[Dm(t0)]p
∂[Em(t0)]j

. (4.10)

In the above equation, the Einstein convention is used. The partial derivatives of the mean rates of

the Delaunay elements Ḋm can be computed by first deriving the Hessian matrix of the Kamiltonian

K̄ defined in Eq. 3.18. Similar to the cases earlier, all of the symbolic computations in this section

were performed in Maple.
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4.1.4 Results

The MATLAB simulation results of the nonsingular element version of the RM-STM with

the perturbations effects of J2-J6 harmonics included are given here. The accuracy is validated

by comparing the propagation results with numerical propagation in GMAT with 6 × 0 JGM-3

gravity model. A projected circular orbit (PCO) formation (see Section 5.1) consisting of the two

satellites, the chief and deputy, is simulated with the formation size of 1 km. The initial conditions

are the mean elements of the chief, and the osculating elements were computed using the analytic

mean to osculating transformation to start the numerical propagation. In addition to the relative

states generated by the STM, the two satellite’s analytically propagated states are also directly

differenced, and the results (relative states) are plotted in the curvilinear frame for comparison. In

all the results, the errors are computed by subtracting the relative states generated using the STM

and direct differencing method from the numerically propagated relative states, and picking the

maximum error value from a single orbit after the specified propagation time. Figure 4.1 shows

the root-sum-square (RSS) relative position error after ten days of propagation for the STM and

the direct differencing method, including the secular effects of J2-J6 up to order three, short-period

and long-period effects of J2 only up to order two. The initial chief’s mean elements are chosen

as: the semimajor axis 7100 km, inclination 50◦, and the rest of the angles equal to 0◦. The errors

are plotted for a range of the orbital eccentricities of the chief. It is observed that the STM results

match those of the direct differencing for the range of the eccentricity values considered. In the

results shown in Figure 4.2, the long-period as well as short-period effects due to J3-J6 harmonics

up to order two are also added in the theory. It is noticed that the relative position errors were

brought down from 850 m to less than 16 m after ten days of propagation for e = 0.5 by adding

long-period and short-period effects of the zonal harmonics J3 to J6.

Figures 4.3-4.5 show the RSS relative position errors for three different reference orbits (chief’s

orbits). The errors are plotted against the harmonic degree up to which the zonal harmonics are

included in the analytic theory. It is noticed that the position errors in the first two figures increase

after adding J3 effects in the theory, however they gradually decrease after adding contributions of
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Figure 4.1: Relative position errors of the RM-STM and direct differencing (Diff) method after 10
days of propagation with J2-J6 secular effects up to O(J3

2 ) and J2 short-period and long-period
effects up to O(J2

2 ) included [1].

Figure 4.2: Relative position errors of the RM-STM and direct differencing (Diff) method after 10
days of propagation with J2-J6 secular effects up to O(J3

2 ) and J2-J6 short-period and long-period
effects up to O(J2

2 ) included [1].
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Figure 4.3: Relative position errors of the RM-STM and direct differencing (Diff) method after 10
days of propagation. The initial mean classical elements of the chief are [7100, 0.01, 50◦, 0◦, 0◦, 0◦].

the higher zonal harmonics. This may be explained by the fact that the data points in all the plots

correspond to the maximum errors obtained during a single orbit just after ten days of propagation,

and not necessarily correspond to the same time epochs. Figure 4.6 shows the RSS relative position

errors of the RM-STM and direct differencing method for different formation sizes after ten days

of propagation. The geometric transformation in RM-STM is a linear representation of a nonlinear

transformation. This linearization error is clearly shown in this figure for large formation sizes.

The position errors in case of the direct differencing method were smaller as expected, since the

latter method does not involve any approximation for converting relative orbital elements into the

curvilinear frame.

4.2 STM for the Complete Zonal Problem

The satellite theory developed in Section 3.2 provides generalized expressions for the secular,

short-period, and long-period variations of the equinoctial orbital elements due to an arbitrary

zonal harmonic Jn (n ≥ 3). These generalized expressions are very compact in size compared

122



Figure 4.4: Relative position errors of the RM-STM and direct differencing (Diff) method after 10
days of propagation. The initial mean classical elements of the chief are [7100, 0, 50◦, 0◦, 0◦, 0◦].

Figure 4.5: Relative position errors of the RM-STM and direct differencing (Diff) method
after 10 days of propagation. The initial mean classical elements of the chief are
[7100, 0, 50◦, 10◦, 20◦, 30◦].
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Figure 4.6: Relative position errors of the RM-STM and direct differencing (Diff) method versus
formation size after 10 days of propagation with J2-J6 secular effects up to O(J3

2 ) and J2-J6 short-
period and long-period effects up to O(J2

2 ) included. The initial mean classical elements of the
chief are [7100, 0.01, 50◦, 0◦, 0◦, 0◦] [1].

to the explicit expressions derived for each of the zonal harmonics up to J6 for the absolute and

relative motion theories in Section 3.1 and 4.1, respectively. The size of the explicit expressions for

the higher zonal harmonics becomes prohibitively large. Therefore, a new relative motion STM

using the satellite theory of Section 3.2 is derived in this section that includes the perturbation

effects due to an arbitrary number of zonal harmonics [228]. This RM-STM is derived using the

equinoctial elements and as a result, it contains no singularities for circular or equatorial reference

orbits. It is noted that for J2, the explicit expressions for the long-period, and short-period effects

up to O(J2
2 ), and secular rates up to O(J3

2 ) are used that are derived in Section 3.1. The following

subsections discuss how the contributions of an arbitrary zonal harmonic (with degree higher than

two) are included in the component matrices in order to obtain the RM-STM for the complete

zonal gravitational problem.
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4.2.1 The Geometric Transformation Matrix

The derivation of the geometric transformation matrix in terms of the equinoctial elements is

given in Section 2.3.2. The expression for the angular velocity of the Hill frame of the reference

satellite, valid for an arbitrary number of zonal harmonics, has already been derived in Section 4.1.1

and the expression for the radial component is given in Eq. 4.5. There is no other modifications

required in Σ to accommodate an arbitrary number of zonal harmonics for converting differential

equinoctial elements to the relative states in the curvilinear frame.

4.2.2 Differential Mean to Osculating Transformation Matrix

Given the short-period, and long-period generating functions (W , and W̄ , respectively), the

differential mean to osculating transformation matrix, D, can be computed using Eqs. 4.7 and 4.8,

with E representing the equinoctial elements. The expressions for the long-period, and short-period

variations of the equinoctial elements due to an arbitrary zonal harmonic Jn (n ≥ 3) are given in

Eqs. 3.58-3.63, and 3.65-3.70, respectively. Contrary to the derivations in the previous section,

the Jacobian of these variations with respect to the equinoctial elements for computing DLP and

DSP matrices, are derived by hand. The artificial singularities corresponding to the zero value of

the eccentricity and inclination are completely removed from the expressions by combining the

singular terms and canceling the singularities. The resulting D matrix includes the short-period

effects up to O(J2
2 ), and long-period effects up to O(J2) due to an arbitrary zonal harmonic Jn

(n ≥ 3). Due to their large size, the generalized expressions for the elements of D matrix are

not provided in this work, however they are implemented in the MATLAB code provided in the

supplementary files (see Appendix D).

4.2.3 Differential Mean STM

The procedure to derive the differential mean STM, φm, follows the same approach as described

in Section 4.1.3 with the exception that in this section, the equinoctial elements are exclusively

used. The Delaunay element rates, Ḋ, due to an arbitrary zonal harmonic Jn (n ≥ 3) are given

in Section 3.2.1, which are used in Eq. 4.10 to compute the elements of φm matrix. The mean
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equinoctial element set, represented as Em, are now considered as a vector function F̄ of D in Eq.

4.10. Using these equations, the generalized expressions for each of the elements of φm with no

singularities for the circular or equatorial orbits, are derived by hand in this work .

4.2.4 Results

The equinoctial element version of the RM-STM for the complete zonal gravitational problem

is implemented in MATLAB, and the code is provided in the supplementary files (see Appendix D).

For validating its accuracy, a formation of two satellites, the chief and deputy, with formation size

1 km is simulated in GMAT using a 70 × 0 JGM-3 gravity model. The mean initial conditions of

the deputy are computed according to a projected circular orbit (PCO) type formation (see Section

5.1). The orbits of the chief and deputy are propagated for ten days in GMAT, and the relative

position and velocity states in the curvilinear frame are computed. Using the RM-STM developed

in this section, the same relative states are also propagated for ten days analytically. The errors

are computed by subtracting the relative states generated using the RM-STM from the GMAT

propagated states, and picking the maximum error value from a single orbit after the specified

propagation time. Figures 4.7-4.9 show the RSS relative position errors in the curvilinear frame

for the PCO formation after ten days of propagation for three different reference orbits, including

a circular and equatorial reference orbit also. The errors are plotted against the harmonic degree

up to which the zonal harmonics are included in the RM-STM. It is noted that in all the cases, the

maximum relative position error is less than 20 m after ten days of propagation for the RM-STM

with zonal harmonics included up to J20. It should be noted that the data points in all the plots

correspond to the maximum errors obtained during a single orbit just after ten days of propagation,

and not necessarily correspond to the same time epochs.

4.3 Inclusion of Tesseral Harmonics in the STM

The short-period and m-daily variations of the equinoctial elements up to O(J2
2 ) due to an

arbitrary tesseral harmonic are derived in Section 3.6. The secular or long-period variations due to

the resonant tesserals are ignored in this work. As a result, the tesseral harmonics only contribute
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Figure 4.7: Relative position errors after 10 days of propagation versus the degree up to which
the zonal harmonics are included in the RM-STM. The initial osculating classical elements of the
chief are [7100, 0.01, 50◦, 0◦, 0◦, 0◦].

Figure 4.8: Relative position errors after 10 days of propagation versus the degree up to which
the zonal harmonics are included in the RM-STM. The initial osculating classical elements of the
chief are [7100, 0, 0◦, 0◦, 0◦, 0◦].
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Figure 4.9: Relative position errors after 10 days of propagation versus the harmonic degree up to
which the zonal harmonics are included in the RM-STM. The initial osculating classical elements
of the chief are [7100, 0, 0◦, 10◦, 20◦, 30◦].

to the differential long-period to short-period transformation matrix (DSP ) and to the geometric

transformation matrix (Σ) in the form of the angular velocity expression for the Hill frame centered

at the chief [237]. The Jacobain matrix DSP for tesseral harmonics is computed by taking partials

of the generalized expressions for the short-period variations of the equinoctial elements given in

Eqs. 3.119-3.124. The TesseralDSP matrix is then added toDSP matrix for the zonal contributions

given in Section 4.2.2.

The Tesseral harmonic contributions to the angular velocity vector of the Hill frame attached to

the reference satellite (or the chief) are derived here. As seen in the previous section, the expression

for the radial component of the angular velocity $ needs to include the perturbation effects. Since

the radial component is a function of the node angle rate, Lagrange planetary equation for Ω̇ with

the following expression for the disturbing function given in Reference [42] (Chapter 3) is used:
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R = −µR
n
e

rn+1

k∑
t=0

Tnmt sinn−m−2t(i)Re [(Cnm − jSnm) cosm(Ω− θ)+

(Snm + jCnm) sinm(Ω− θ)]
m∑
s=0

(
m

s

)
js sinn−m−2t+s ϑ cosm−s ϑ coss i,

(4.11)

where

Tnmt =
(−1)t (2n− 2t)!

2n t! (n− t)! (n−m− 2t)!
.

In the above equation, k is equal to the integer part of (n − m)/2, j is the imaginary unit, and

Re denote the real part. Differentiating R with respect to i and dividing by sinϑ results in the

following equation:

1

sinϑ

∂R

∂i
= −µR

n
e

rn+1

k∑
t=0

Tnmt

m∑
s=0

(
m

s

)
Re [js(Cnm − jSnm) cosm(Ω− θ)+

js(Snm + jCnm) sinm(Ω− θ)] sinn−m−2t+s−1 ϑ cosm−s ϑ

×
(
(n−m− 2t) sinn−m−2t−1 i coss+1 i− s sinn−m−2t+1 i coss−1 i

)
. (4.12)

The above equation has no singularities. If the power of sinϑ is −1, then the only non-negative

value s can have is 0. Similarly for the inclination related singularities, the coefficients of the

singular terms vanish. By substituting the above result in Eq. 4.3, the complete expression for the

radial component of the angular velocity of the chief’s frame is computed for any arbitrary zonal

or tesseral harmonic.

4.3.1 Results

The accuracy improvements for the satellite relative motion by including the tesseral short-

period effects in the RM-STM is ascertained by comparing the results with numerically propagated

orbits of the two satellites. A variable-step, variable-order Adams-Bashforth-Moulton integrator
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(MATLAB ode113 command) with JGM-3 Earth’s gravity model and tolerances set to 10−11 was

used as the numerical propagator. The initial conditions for the reference satellite or the chief for

numerical propagation are taken from Table 3.1. Using a PCO formation (see Section 5.1), the

mean initial equinoctial elements for the deputy are chosen based on a formation baseline of 1 km

and phase angle 0◦. The errors are computed by differencing the RM-STM propagated relative

states from the numerically propagated orbits of the chief and deputy.

For the analytical propagation of the deputy’s relative orbit using the RM-STM, the initial

relative states are generated from the differential equinoctial elements using the inverse geometric

transformation matrix. To use the correct initial conditions consistent with the analytical model

is a crucial step. Initial conditions for the relative orbit computed using the linearized models

such as the solutions of Hill-Clohessy-Wiltshire equations (see Reference [184], chapter 5) are not

consistent with the relative motion STM, and produces relatively larger errors. For RM-STM, if the

initial relative states in the curvilinear frame are not available, it is recommended to compute the

differential orbital elements first by differencing the orbital elements of the chief and the deputy,

and then use the inverse geometric transformation matrix to compute the relative states. The mean

and osculating elements of the chief are computed and propagated using the methods described

in Chapter 3. It is noted that in all the simulation results given in this section, the tesseral short-

period effects are computed by evaluating the Inmp1 , and Inmp2 integrals as well as their partial

derivatives using the adaptive quadrature algorithm available in MATLAB (the integral command)

with tolerance set to 10−9.

Figures 4.10 and 4.11 show the relative position errors in the curvilinear frame for the deputy

with the analytical propagation using a 2× 0, and 2× 2 RM-STM, respectively. It should be noted

that the 2 × 0 RM-STM includes the secular effects up to order three and periodic effects up to

order two, in comparison the GA-STM includes only the first-order secular and periodic effects for

J2. The force model for the numerical propagation was 2×2 in both cases, and Orbit-1 from Table

3.1 was chosen as the reference orbit. The relative position errors after thirty days of propagation

improved from 15 m to less than 1 m. For a different reference orbit chosen for the chief, Orbit-2
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Figure 4.10: Relative position errors corresponding to reference orbit-1 of the 2×0 RM-STM with
2× 2 numerical propagation as the truth model.

from Table 3.1, the similar results are shown in Figures 4.12 and 4.13. The relative position errors

did not improve by adding tesseral harmonics in this case. It is noted that the less improvement

in the absolute motion errors was also observed in Section 3.6.1 for this particular orbit. The high

inclination of Orbit-2 is the reason as the tesserals do not affect the orbits with high inclination

significantly.

Figure 4.14 presents a comparison of the relative position errors after 1 day of propagation

incurred by a 2 × 0, and a 6 × 6 RM-STM. For this simulation, the numerical propagation was

performed in GMAT with 70× 70 JGM-3 gravity model. It is noticed that for the chosen reference

orbit, the inclusion of tesseral harmonics improved the prediction of the along-track motion of the

deputy by a significant amount when compared with the zonal RM-STM.
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Figure 4.11: Relative position errors corresponding to reference orbit-1 of the 2×2 RM-STM with
2× 2 numerical propagation as the truth model.

Figure 4.12: Relative position errors corresponding to reference orbit-2 of the 2×0 RM-STM with
2× 2 numerical propagation as the truth model.
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Figure 4.13: Relative position errors corresponding to reference orbit-2 of the 2×2 RM-STM with
2× 2 numerical propagation as the truth model.

Figure 4.14: Relative position errors of the 2 × 0 and 6 × 6 RM-STM with 70 × 70 numerical
propagation in GMAT as the truth model. The initial osculating classical elements of the chief are
[7100, 0.05, 50◦, 10◦, 20◦, 30◦].
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5. FORMATION FLYING AND MISCELLANEOUS APPLICATIONS

A few applications of the theories developed in the previous chapters for the absolute and rel-

ative motion of satellites are presented here. First, initial conditions are derived in the form of

the differential equinoctial elements required for establishing a general relative orbit of a deputy

satellite around a chief satellite. The differential equinoctial elements are chosen to avoid singular-

ities in case of the equatorial or circular reference orbits of the chief. Previous research has shown

that the dominant second zonal harmonic causes significant along-track drift between the chief

and deputy satellites if the initial conditions are not chosen by taking these effects into account.

To extend these results to higher zonal harmonics, a drift mitigation condition for preventing the

along-track drift including the secular effects due to an arbitrary zonal harmonic, is derived in this

chapter. Also, two more applications using the results of Chapter 3 on the artificial satellite the-

ories with the zonal and tesseral harmonics are presented. The first one demonstrates an analytic

algorithm for solving the perturbed Lambert’s problem for elliptic orbital transfers in the presence

of the nonspherical gravitational perturbations. The second application demonstrates the efficient

nonlinear propagation of the orbit uncertainties in time using point clouds.

5.1 Initial Conditions for Formation Establishment

The conventional way of specifying the geometry of the satellite formations is to use the con-

stants of the particular bounded solutions of Hill-Clohessy-Wiltshire (HCW) equations. In contrast

to the modeling of relative motion using the differential orbital elements, the HCW equations use

Cartesian coordinates to model relative states in the Hill frame, and are derived by linearizing the

nonlinear gravitational terms along with assuming circular reference orbit (see Reference [184]).

The HCW equations are

ẍ− 2ñẏ − 3ñ2x = 0, (5.1)
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ÿ + 2ñẋ = 0, (5.2)

z̈ + ñ2z = 0, (5.3)

where x, y, and z are the relative states in the radial, along-track and cross-track directions, re-

spectively; and ñ is the reference satellite’s (or chief’s) mean motion. A particular solution of the

HCW equations, which is bounded, is as follows:

x = ρx sin(ñt+ αx), (5.4)

y = ρy + 2ρx cos(ñt+ αx), (5.5)

z = ρz sin(ñt+ αz), (5.6)

where the five constants, ρx, ρy, ρz, αx, and αz, are determined from the five initial conditions. The

remaining initial condition is used to satisfy the constraint

ẏ(t0) = −2ñx(t0) (5.7)

on the initial along-track velocity to remove the secular terms from the general solution of the

HCW equations.

Many different kinds of the relative orbit geometries can be obtained for different values of the

five constants. For example, the projected circular orbit (PCO) formations, which are characterized

by having a circular projection of the relative orbit in the yz-plane, can be designed by choosing

ρz = 2ρx (5.8)

αx = αz (5.9)

For more types of feasible orbit geometries, see Reference [184] (Chapter 5). Once the desired
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relative orbit geometry is established, the initial differential orbital elements of the deputy satellite

are needed for numerical or analytical propagation of its absolute states. The relationship between

the five constants and the differential nonsingular elements is given in Reference [184]. To avoid

singularity issues for circular and equatorial reference orbits, a similar relationship between the

differential equinoctial elements and the five constants of the HCW bounded solution is derived

here. In Reference [215], similar results are given for the PCO formations, which is a special case

of the results presented in this section.

To derive the expressions for the differential equinoctial elements using the HCW solution

constants, we substitute the following relations between the classical and equinoctial elements:

δh = −sin(h)δp1 − cos(h)δp2√
p2

1 + p2
2

, (5.10)

δh(1− cos(i)) = −2
p2δp1 − p1δp2

1 + p2
1 + p2

2

, (5.11)

δi =
2

(1 + p2
1 + p2

2)
(cos(h)δp1 + sin(h)δp2), (5.12)

cos(ϑ) = cos(Ψ) cos(h) + sin(Ψ) sin(h), (5.13)

sin(ϑ) = sin(Ψ) cos(h)− cos(Ψ) sin(h), (5.14)

sin i = 2

√
p2

1 + p2
2

1 + p2
1 + p2

2

, (5.15)

into Eq. 2.29 for the along-track and cross-track motions to obtain the following results:

y = r

(
δΨ +

2

1 + p2
1 + p2

2

(p2δp1 − p1δp2)

)
, (5.16)

z =
2 r

1 + p2
1 + p2

2

(sin Ψ δp1 − cos Ψ δp2) . (5.17)

The quantity δΨ in the above equation can be expressed in terms of mean longitude by expanding

in powers of the eccentricity and retaining only the first order term as shown below:
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δΨ = δ(f + g + h),

= δ(l + g + h+ 2e sin l),

= δΛ + 2δ

(
e sin

(
Λ− tan−1 q2

q1

))
,

= δΛ + 2δ (sin Λ q1 − cos Λ q2) ,

= δΛ + 2 (sin Λ q2 + cos Λ q1) δΛ + 2 (sin Λ δq1 − cos Λ δq2) .

(5.18)

With the help of the last result, the along-track and cross-track motions can now be completely

specified in terms of differential equinoctial elements. Before equating the above results to the

solution of the HCW equations, the assumption of a circular reference orbit is made by approxi-

mating Ψ by Λ, and r by a. If it is assumed that the chief crosses the ascending node at the t = 0,

then the quantity ñt in Eq. 5.4 can be replaced by Λ−Ω, and the resulting equations in y− z plane

are:

y = ρy + 2ρx cos(Λ) cos(α′x)− 2ρx sin(Λ) sin(α′x),

z = ρz sin(Λ) cos(α′z) + ρz cos(Λ) sin(α′z),

(5.19)

where α′x = αx−Ω and α′z = αz−Ω. The final step requires equating the coefficients of the sin Λ

and cos Λ terms in Eqs. 5.16 and 5.19 and using Eq. 5.18 as well as Ψ = Λ to get the following

relations:

δp1 =
1 + p2

1 + p2
2

2a
ρz cosα′z (5.20)

δp2 = −1 + p2
1 + p2

2

2a
ρz sinα′z (5.21)

δq1 = −ρx
a

sinα′x (5.22)

δq2 = −ρx
a

cosα′x (5.23)

δΛ = − ρy
a(1 + 2q1 cos Λ + 2q2 sin Λ)

(5.24)
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Using the above result, the differential equinoctial elements for any given formation geometry

specified using the constants of the HCW bounded solution can be computed. It is noted that α′x

and α′z are different from the phase angles that appear in the HCW solution. However, they retain

the property that their value specify the phase angles of the deputy with respect to the along-track

and cross-track direction when the chief crosses the ascending node.

5.2 Along-Track Formation Drift Mitigation

If the assumptions of a spherical central body, circular reference orbit, and small separation

between the two satellites in Keplerian orbits are made, then a global condition for periodic relative

motion is

δa = 0, (5.25)

where δa is the difference between the semimajor axes of the two satellites. The above condition

ensures that the two satellites have matching angular rates. A more general condition to prevent

drifts between the two satellites using energy arguments, which does not assume small separation

and circular reference orbit, is given in Reference [184] (Chapter 4). On the other hand, if the

assumption of the spherical central body is relaxed, and then a modification of the above drift

mitigation condition is required that captures the effects due to nonspherical gravitational pertur-

bations.

In the presence of zonal harmonic perturbations, the node angle h, the argument of periapsis

g, and the mean motion ñ have secular as well as periodic variations. The variations in these

quantities, in turn, cause variations in the radial, along-track and cross-track motions of the deputy

satellite. In this section, an along-track drift mitigation condition for δa that negates the secular

drifts caused by any arbitrary zonal harmonic is derived. To negate the drifts in the cross-track and

radial directions, additional constraints on the differential elements are needed. However, more

than one constraint on the differential elements causes a loss in degrees of freedom in choosing a

formation geometry.
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The along-track motion of a deputy satellite can be written in terms of differential orbital

elements assuming small formation size as (see Section 2.3.1):

y = r (δϑ+ δh cos(i)) , (5.26)

where δϑ can be expressed in terms of the mean argument of the latitude λ after taking the first-

order variations as follows:

δϑ = δλ+ 2 (sin l δe− e cosλ δl) . (5.27)

Ignoring the periodic terms and the eccentricity of the chief’s orbit, the following equation for the

along-track secular drift is obtained:

y = a (δλ+ δh cos(i)) . (5.28)

Using the mean elements of the chief in the above equation and differentiating with respect to time,

the secular drift rate of the deputy in the along-track direction is obtained as follows:

ẏ = a
(
δλ̇+ δḣ cos(i)

)
. (5.29)

Thus, the following constraint on the differential element rates must be satisfied to negate the

along-track drift assuming small formations about a circular reference orbit:

δλ̇+ δḣ cos(i) = 0. (5.30)

For J2, the secular rates of l, g, and h are derived in Section 3.1 up to O(J3
2 ). The secular rates

due to an arbitrary zonal harmonic Jn with n ≥ 3 up to O(J2) are given in Eqs. 3.47-3.49. Taking

first order variations of these secular rates with respect to a, e and i, and substituting in the above

constraint equation yields the constraint for δa in terms of δe and δi that must be satisfied to negate

the along-track drift. In this section, the drift mitigation condition for an arbitrary zonal harmonic
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is derived to first order. To simplify the derivation, Eq. 5.30 can be written as

δ(L̇) + ḣ sin i δi = 0, (5.31)

where the term L̇ = λ̇+ ḣ cos i can be written using Eqs. 3.47-3.49 as

L̇ =
δn(a, e)

L

bn
2
c∑

j=0

βj,n(i)
n−1∑

even k=0

αk,n(e)

2k

(
n− 2j
n
2
− j

)(
k
k
2

){
−3− 2n− 1

η
− k η

1 + η

}
. (5.32)

By taking variations of the above equation, we obtain:

∂L̇
∂a
δa+

∂L̇
∂e
δe+

(
∂L̇
∂i

+ ḣ sin i

)
δi = 0, (5.33)

which can be solved to obtain the final result for the along-track drift mitigation constraint for δa

in the presence of an arbitrary zonal harmonic:

δa = −

(
∂L̇
∂a

)−1(
∂L̇
∂e
δe+

(
∂L̇
∂i

+ ḣ sin i

)
δi

)
. (5.34)

It is emphasized that the assumptions such as the circular reference orbit and small formation size,

are assumed in deriving the above result.

5.2.1 Results

The absolute motion of the two satellites in a PCO-type formation are propagated numerically

to ascertain the improvements in preventing the along-track drift between the satellites in forma-

tion. The mean initial conditions for the chief were chosen as: [a = 6700 km, e = 0.03, i =

50◦,Ω = 10◦, ω = 20◦,M = 30◦]. The mean initial equinoctial elements of the deputy are com-

puted using the formulae given in Eq. 5.20 with the data: [ρz = 2ρx = 1 km, ρy = 0, α′x =

α′z = −10◦]. The drift constraint on the mean δa of the deputy was computed for the two separate

cases: with only J2 effects included up to O(J2) referred as the J2 drift condition, and for the

second, the effects of the zonal harmonics from J2 to J10 are included up to O(J2
2 ) in the drift
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Figure 5.1: PCO-type relative orbit of the deputy with J2 drift condition on δa for a time span of
30 days.

condition referred to as the Jn condition. The osculating conditions for the numerical propagation

were computed using a mean to osculating transformation with effects due to 10 × 10 spherical

harmonics included. The force model for the numerical propagation also includes 10×10 spherical

harmonics. Figures 5.1 and 5.2 shows the deputy’s relative orbit, and its along-track drift with J2

drift condition for a time span of thirty days. It is noted that the higher degree zonal harmonics

contribute less than 25 m to the along-track drift. The results for the Jn drift condition is given in

Figures 5.3 and 5.4, which shows that the Jn drift condition has successfully negated the along-

track drift due to the higher zonal harmonics. The along-track drifts shown in Figures 5.2 and 5.4

are computed using Eq. 5.28.

5.3 Perturbed Lambert Solver for Elliptic Orbit Transfers

In this section, the artificial satellite theory for the zonal and tesseral harmonics is used to solve

the perturbed Lambert’s problem for elliptic orbital transfers. The two-body Lambert’s problem is

a boundary-value problem for the Keplerian motion, and its solution provides a Keplerian transfer
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Figure 5.2: Along-track drift of the deputy with J2 drift condition on δa for a time span of 30 days.

Figure 5.3: PCO-type relative orbit of the deputy with Jn drift condition (n = 10) on δa for a time
span of 30 days.
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Figure 5.4: Along-track drift of the deputy with Jn drift condition (n = 10) on δa for a time span
of 30 days.

orbit that connects the two given positions in a given transfer time. Solving the Lambert’s problem

amounts to finding the initial velocity that completes the initial state vector, which when propagated

forward in time for the given transfer duration, achieves the final desired position. A detailed

introduction to the two body Lambert’s problem and the techniques for its solution are provided by

Battin [224]. In the presence of nonspherical gravitational perturbations, the exact solution to the

two-body Lambert’s problem can exhibit significant error if the transfer time is sufficiently long,

e.g., in case of multiple revolution transfer orbits.

If an analytic solution to a dynamical system, whose time evolution is described by ordinary

differential equations, is available then solving a boundary value problem for that dynamical sys-

tem is reduced to finding roots of a set of nonlinear equations. The artificial satellite theories

developed in Chapter 3 provides an approximate analytic solution for propagating bounded orbits

of a spacecraft in the vicinity of a nonspherical central body. A Lambert solver for computing

perturbed elliptic transfer orbits can be formulated by utilizing these satellite theories for the ana-

lytic propagation, replacing the numerical propagation in the conventional shooting methods based
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perturbed Lambert solvers. The advantage of the analytical propagation lies not just in the faster

propagation, but also in the availability of the analytic sensitivity matrices that are needed for the

numerical root solving algorithms that are required for the solution.

To formulate a perturbed Lambert solver, the position and velocity states at the final time are

computed analytically using the initial position and a guess for the initial velocity. The difference

between the analytically propagated states and the desired final position provides three nonlinear

constraint equations with the three components of the initial velocity as their roots. The two-

body Lambert solver can provide the guess for the initial velocities or the roots, which are further

refined by the perturbed Lambert solver by applying Newton’s method to drive the three nonlinear

constraints to zero, i.e., nullify the error between the propagated final position and the desired final

position. The steps to implement a perturbed elliptic Lambert solver using the artificial satellite

theories for analytical propagation are given in Figure 5.5.

Figure 5.5: Algorithm for the perturbed Lambert solver for elliptic orbital transfers. The final step
is only required to assess the performance of the Lambert solver.

To validate the performance and accuracy of the perturbed Lambert solver for a multiple rev-

olution orbit transfer, a MATLAB simulation is built that generated a true elliptic transfer orbit in

a 20 × 20 JGM-3 gravity field. The true transfer orbit has its perigee at 6500 km, and apogee at

60 000 km. The inclination of the transfer orbit was chosen to be 5◦ and rest of all the initial ele-

ments are zero. The transfer time was chosen as 3.35 times the orbital period or 2.34 days. Using
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Figure 5.6: Actual multiple-revolution transfer orbit and the two-body Lambert solution transfer
orbit propagated numerically in 20× 20 gravity field.

a two-body Lambert solver∗, a multiple revolution (with 3 complete revolutions) solution when

propagated in the 20× 20 JGM-3 gravity field for the given transfer time, the final position misses

the desired one by more than 2500 km. Figure 5.6 shows the true transfer orbit and the two-body

Lambert transfer solution. The initial velocities and the final positions of the actual transfer orbit

and the two-body Lambert solution are given in Table 5.1 and 5.2, respectively.

Next, the initial velocity from the two-body Lambert solver was improved using the perturbed

Lambert solver that used a 6×6 JGM-3 gravity model to propagate the transfer orbit. The improved

results for initial velocity and the final position are shown in Tables 5.1 and 5.2, respectively.

Additionally, the results for a perturbed Lambert solver that used numerical propagation instead of

the artificial satellite theories (AST) are also given. The accuracy of the perturbed Lambert solver

∗https://www.mathworks.com/matlabcentral/fileexchange/39530-lambert-s-problem
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Table 5.1: Initial velocities of the actual transfer orbit, the two-body Lambert solution, and the
perturbed Lambert solution using AST. All quantities are expressed in the inertial frame. The unit
is km/sec.

Initial Velocities vx vy vz
True 0 10.4794 0.916828
TB Lambert −0.0492813 10.4823 0.845299
Pert. Lambert (Num.) 0.000022525 10.4794 0.916559
Pert. Lambert (AST) −0.000439634 10.4794 0.917053

Table 5.2: Final position of the actual transfer orbit, the two-body Lambert solution, and the per-
turbed Lambert solution using AST. All quantities are expressed in the inertial frame. The unit is
km.

Final Positions x y z
True −56615.5996 7736.43904 623.869684
TB Lambert −57510.0563 5406.3636 386.348638
Pert. Lambert (Num.) −56610.8217 7744.97721 624.434857
Pert. Lambert (AST) −56608.9156 7744.01436 624.691054

using AST is significantly more than the two body Lambert solver and very slightly worse than the

perturbed Lambert solver with numerical propagation. The time taken for the Newton’s method to

converge for the perturbed Lambert solver with numerical and analytical propagation is 80 sec and

68 sec, respectively. The finite differencing was used to compute sensitivity matrices in both the

cases in this simulation. For longer transfer times and with analytic sensitivity matrices provided

to the Newton’s method solver, the perturbed Lambert solver with analytic propagation is expected

to have even further speed improvements.

5.4 Nonlinear Uncertainty Propagation Using Point Clouds

It is well known that the orbit propagation is an example of a highly nonlinear dynamical

process. If the initial uncertainty in the orbital states is Gaussian, then the mean and covariance

propagation using the linearized models of the orbital dynamics, induces errors in the posteriori

uncertainty estimation, which grow over time. The initial Gaussian uncertainty in the states of

a satellite loses its Gaussian properties quickly over time within a few days. These phenomena
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affect the performance of the estimation filters like the first-order Extended Kalman Filter (EKF).

The Unscented Kalamn Filter (UKF) avoids the limitations (to a degree) of the linearized propaga-

tion of the Gaussian uncertainty by propagating a small number of sigma points carefully sampled

about the mean, using the actual nonlinear dynamics. The mean and covariance can then be re-

constructed from the propagated sigma points. Because the UKF also assumes that the uncertainty

is Gaussian, its performance also suffers for highly nonlinear dynamics and non-Gaussian initial

uncertainty. Particle Filter (PF) is a Monte Carlo based algorithm that propagates a large number

of sample points generated from the initial distribution, through the nonlinear dynamics. The mean

and covariance as well as the higher moments of the posterior distribution can then be computed

from the propagated sample points. It is clear that PF, and to some extent the UKF also, are com-

putationally intensive algorithms and significant improvement in their execution performance can

be achieved by efficiently propagating the sample and sigma points through the nonlinear orbital

dynamics.

The artificial satellite theories developed in this work provides a rapid and fairly accurate means

of propagating point clouds (sample points) through the nonspherical gravitational field of a central

body. The theories, being completely analytic, are capable of propagating all the sample points

in the point cloud to the final time in a single step unlike numerical integration that must take

small time steps to maintain accuracy. To demonstrate the usefulness of the satellite theories for

the nonlinear uncertainty propagation using point clouds, a MATLAB simulation is implemented

that propagates 50 sample points analytically as well as numerically. The time evolution of the

point cloud is then shown for both type of propagations to compare the analytically propagated

distribution of sample points to that of the numerical propagation.

An initial orbit was chosen with the classical orbital elements as [7100 km, 0.05, 50◦, 10◦,

20◦, 30◦]. A point cloud about this mean orbit was generated by adding normally distributed

noise to the position and velocity states in the radial, along-track, and cross-track directions. The

standard deviations for the noise distribution were chosen as 500 m, 1 m, and 1 m in the three

directions, respectively. Similarly, the noise in the velocity states were generated using standard
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Figure 5.7: Position and velocity point cloud at the initial time.

deviations of 0.5 m/sec in all three directions. The projections of position and velocity point

clouds in the Hill frame at the initial time are shown in Figure 5.7. All the 50 cloud points were

first propagated numerically using a 6 × 6 JGM-3 gravity model, and then analytically using the

second-order 6 × 6 satellite theory for the zonal and tesseral harmonics developed in Chapter 3.

The time evolution of the point clouds using numerical and analytical propagation after 1 day is

shown in Figure 5.8 and 5.9. Similar plots after 5 and 10 days of propagation are shown in Figures

5.10-5.13. The results show that the nonlinear uncertainty propagation using the artificial satellite

theories is very accurate when compared to the numerically propagated distribution. Figures 5.10

and 5.10 clearly show that the point cloud is no longer resemble a Gaussian distribution in the

Cartesian coordinates after five days of propagation through the nonspherical gravitational field.

Nevertheless, the artificial satellite theory based point cloud propagation has reproduced the non-

Gaussian uncertainty dynamics quite accurately.
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Figure 5.8: Point cloud for position states after 1 day for numerical (Num) and analytical (AST)
propagation.

Figure 5.9: Point cloud for velocity states after 1 day for numerical (Num) and analytical (AST)
propagation.
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Figure 5.10: Point cloud for position states after 5 days for numerical (Num) and analytical (AST)
propagation.

Figure 5.11: Point cloud for velocity states after 5 days for numerical (Num) and analytical (AST)
propagation.
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Figure 5.12: Point cloud for position states after 10 days for numerical (Num) and analytical (AST)
propagation.

Figure 5.13: Point cloud for velocity states after 10 days for numerical (Num) and analytical (AST)
propagation.
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6. SUMMARY AND CONCLUSIONS

An artificial satellite theory (AST) for the complete nonspherical gravitational problem, i.e.,

including all the zonal, sectorial, and tesseral spherical harmonics is formulated. The analytic the-

ory does not rely on any series expansion in powers of either the eccentricity or the small ratio of

the satellite’s mean motion and the angular velocity of the central body. As a result, it is closed-

form in the eccentricity and does not loose accuracy for highly elliptic orbits. The generalized

expressions that are computed for the secular, long-periodic, m-daily, and short-periodic varia-

tions of the equinoctial orbital elements are compact in form, and valid for an arbitrary spherical

harmonic. Additionally, it provides a unified satellite theory for the sub-synchronous and super-

synchronous orbit regimes, with no singularities for the resonant orbits. Many of these advantages,

especially in case of the tesseral harmonics, are a direct consequence of the exact solution pre-

sented in this work for the Delaunay normalization of the tesseral Hamiltonian. Compared to the

past methods for constructing this Delaunay normalization approximately, the exact solution is

more compact and can be computed with almost arbitrary accuracy using the numerical quadra-

ture algorithms. The numerical quadrature is ideally suited for parallel computations to reduce the

computational time as all the function evaluations can be performed independently without any

need for inter-process communication. Additionally, it is shown that the conventional approaches

like the method of relegation can be derived from the exact solution. The results presented showed

that the tesseral harmonics, especially the equatorial ellipticity terms, have a significant effect on

the absolute motion and ignoring these severely affects the accuracy of the artificial satellite theo-

ries except for the high inclination near-polar orbits. A majority of the effects due to the tesseral

harmonics manifest themselves in the anomalistic motion of the satellites. Perturbation effects due

to the tesseral and sectorial harmonics diminish with increasing inclination, with highest effects

on the near-equatorial orbits. The theories developed in this work are fully analytic, therefore,

long-term propagation is inexpensive for the execution times even with the computation of the

numerical quadratures.
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The relative motion state transition matrix (RM-STM) is derived for the complete gravita-

tional problem by including the secular and periodic effects due to the zonal, sectorial and tesseral

harmonics. The RM-STM showed improvements in the long-term prediction accuracy of the per-

turbed satellite relative motion in the presence of the nonspherical gravitational perturbations, es-

pecially in the along-track direction for the relative position. For the reference orbits with high

inclination, the improvements in the relative position prediction were not significant similar to the

case of the absolute motion. For establishing a satellite formation, the initial conditions for the

differential equinoctial elements are derived that are completely nonsingular for the equatorial and

circular reference orbits. These five initial conditions (differential semimajor axis being zero for

the two-body dynamics) are expressed in terms of the five formation design parameters for a gen-

eralized circular orbit type formation, using which many different formation geometries can be

designed.

The theories developed in this work for the absolute and relative motion have many benefits

for mission analysis and designing guidance and control laws for stationkeeping and formation

maintenance. Using an accurate analytic model for the dynamical system increases the accuracy

and fuel efficiency of the guidance and control algorithms. Similarly, estimation algorithms can

benefit from the accurate propagation of the states and the associated uncertainties using the ana-

lytical methods. A few of these applications using the results from the artificial satellite theories

developed in this work, are presented. First, a new drift mitigation condition is derived that nul-

lifies the along-track drift of a deputy satellite with respect to a reference satellite in the presence

of any zonal spherical harmonic. The results showed that any drift caused by the higher zonal

harmonics in the along-track direction was removed by using the along-track drift condition. Next,

a multiple revolution perturbed Lambert solver using AST is formulated. This analytic perturbed

Lambert solver provides an accurate and fast algorithm for computing multiple revolution ellip-

tic orbit transfers in the presence of the nonspherical gravitational perturbations. The simulation

showed the accuracy of the analytic perturbed Lambert solver matches that of the numerical propa-

gation based Lambert solver. Further improvements, especially in computation time, over the latter
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are expected with the use of analytic sensitivity matrices and for longer time of flights for orbital

transfers. Lastly, the accuracy and efficiency of the developed artificial satellite theory is demon-

strated for the nonlinear propagation of the orbital uncertainties using point clouds. The accurate

propagation of the point cloud distributions over long time intervals provides significant perfor-

mance improvements for the estimation filters like the unscented Kalman filter and the particle

filter, which uses sample points to propagate uncertainty distributions.

6.1 Further Study

Looking at the results presented in this work, it can be concluded that the goals stated in Chapter

1 have been achieved. The artificial satellite theories for the absolute and relative motion have been

derived in a general form, which includes the perturbations effects due to any arbitrary spherical

harmonic, without the need for series expansions in the eccentricity or the ratio of the satellite’s

mean motion to the rotational velocity of the central body. For the absolute and relative motion, the

results showed that the tesseral and sectorial harmonics have a significant effect on the prediction

accuracy of the analytical theories, except only for the orbits with high inclinations. There are

a few areas in which the current work can be extended further. This includes the inclusion of

the secular and long-period effects due to the resonant tesserals in the satellite theories and the

relative motion STM. With secular and long-period variations due to tesseral harmonics included,

the satellites in resonant orbits can also be propagated with better accuracy. Other areas for further

extension of this work may include the addition of the analytical expressions for other dominant

perturbations, namely the atmospheric drag, and the third-body perturbations. The generalized

expressions derived in this work for the secular, long-period, m-daily, and short-period variations

due to the zonal and tesseral harmonics can also be expressed in a recursive form. This will greatly

increase the execution speed of the proposed satellite theories for the absolute and relative motion.
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APPENDIX A

SECULAR HAMILTONIAN AND PERIODIC GENERATING FUNCTIONS FOR J2-J6

A.1 Secular Hamiltonian up to Third Order

J2 Contribution

K̄J2
=

(
−−261G10 + 15456G8H2 − 165490G6H4 + 659500G4H6 − 1052425G2H8 + 640500H10

2048G17 (G2 − 5H2)
2
L3

−180G11 − 2700G9H2 + 13320G7H4 − 16920G5H6 − 42300G3H8 + 94500GH10

2048G17 (G2 − 5H2)
2
L4

−−156G12 − 2058G10H2 + 38112G8H4 − 168372G6H6 + 265020G4H8 − 154050G2H10

2048G17 (G2 − 5H2)
2
L5

−468G13 − 11052G11H2 + 88840G9H4 − 301720G7H6 + 417700G5H8 − 205500G3H10

2048G17 (G2 − 5H2)
2
L6

−9G14 − 414G12H2 + 5730G10H4 − 25800G8H6 + 40725G6H8 − 20250G4H10

2048G17 (G2 − 5H2)
2
L7

)
Re

6µ8J3

+

(
15G4 − 30G2H2 − 105H4

128G11L3
+

15

128G11L4

(
−4/5G5 +

24G3H2

5
− 36GH4

5

)
+

15

128G11L5

(
−G6 +

18G4H2

5
−G2H4

))
Re

4µ6J2 + 1/4
Jµ4Re

2
(
G2 − 3H2

)
L3G5

− 1/2
µ2

L2
. (A.1)

J3 Contribution

K̄J3 =
J3

2Re
4µ6

J

(
−9G4 − 72G2H2 + 75H4

32G11L3
+ 3/16

G4 − 9G2H2 + 10H4

G9L5

)
. (A.2)

J4 Contribution

K̄J4 =
1

2048G17 (G2 − 5H2)
2
L7

((
45G14 − 164G13L− 1005G12H2 + 174G12L2

178



+ 2972G11H2L− 540G11L3 + 4050G10H4 + 3738G10H2L2 − 115G10L4 − 14120G9H4L

+ 12420G9H2L3 + 2430G8H6 − 44580G8H4L2 − 6725G8H2L4 − 6280G7H6L

− 106200G7H4L3 − 33375G6H8 + 90420G6H6L2 + 68450G6H4L4 + 148300G5H8L

+ 419400G5H6L3 + 39375G4H10 + 180150G4H8L2 − 112610G4H6L4 − 164500G3H10L

− 751500G3H8L3 − 372750G2H10L2 − 372175G2H8L4 + 472500GH10L3

+ 634375H10L4

)
Re

6µ8J4 J

)
−
(
9G2 − 15L2

) (
3G4 − 30G2H2 + 35H4

)
J4 Re

4µ6

128G11L5

− 75

2048G17 (G2 − 5H2)
2
L7J

(
(G− L) (G+ L) (−H +G) (H +G)

(
G2 − 7H2

)
×
(

3G8 − 50H2G6 − 5G6L2 + 209H4G4 + 76G4H2L2 − 210H6G2 − 303G2H4L2

+ 280H6L2

)
Re

6µ8J4
2

)
. (A.3)

J5 Contribution

K̄J5 =
−1

256G17L7J

((
135G10 − 2700H2G8 − 600G8L2 + 7875H4G6 + 11250G6H2L2

+ 525G6L4 − 5670H6G4 − 31500G4H4L2 − 9450G4H2L4 + 22050G2H6L2 + 25725G2H4L4

− 17640H6L4

)
Re

6µ8J5 J3

)
+

1

98304G23 (G2 − 5H2)
2
L9J

(
37300G18 − 1443000G16H2

− 247875G16L2 + 19154400G14H4 + 9441150G14H2L2 + 513450G14L4 − 107480800G12H6

− 124222725G12H4L2 − 19305300G12H2L4 − 317275G12L6 + 280906500G10H8

+ 693564900G10H6L2 + 251908650G10H4L4 + 11796750G10H2L6 − 335953800G8H10

− 1799011725G8H8L2 − 1398940200G8H6L4 − 152758725G8H4L6 + 146853000G6H12

+ 2133006750G6H10L2 + 3602124750G6H8L4 + 843902500G6H6L6 − 924280875G4H12L2

− 4236113700G4H10L4 − 2158309125G4H8L6 + 1820778750G2H12L4 + 2519499150G2H10L6

− 1075102875H12L6

)
Re

8µ10J5
2. (A.4)
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J6 Contribution

K̄J6
=

2625

32768G23 (G2 − 5H2)
2
L9J

(
J6
(
G2 −H2

) (
G2 − L2

)(
4G14 − 146G12H2 − 21G12L2

+ 1654G10H4 + 739G10H2L2 + 21G10L4 − 7614G8H6 − 8186G8H4L2 − 717G8H2L4 + 14574G6H8

+ 37006G6H6L2 + 7788G6H4L4 − 9240G4H10 − 69201G4H8L2 − 34632G4H6L4 + 42735G2H10L2

+ 63351G2H8L4 − 38115H10L4

)
Re

8µ10J4

)
+

1

196608G23 (G2 − 5H2)
2
L9

((
5775G18

+ 36600G17L− 183750G16H2 − 60075G16L2 − 1278000H2G15L− 123200G15L3 + 3908625G14H4

− 357750G14H2L2 + 383625G14L4 + 12765000H4G13L+ 4088000H2G13L3 − 113400G13L5

− 26781300G12H6 + 2145375G12H4L2 − 4643250G12H2L4 − 189805G12L6 − 51511200H6G11L

− 38696000H4G11L3 + 3855600H2G11L5 + 76014225G10H8 + 19986300G10H6L2

+ 37185375G10H4L4 + 131950G10H2L6 + 81669000H8G9L+ 141724800H6G9L3

− 44339400H4G9L5 − 94767750G8H10 − 149755725G8H8L2 − 222037500G8H6L4

+ 9794225G8H4L6 − 28350000H10G7L− 168504000H8G7L3 + 237595680H6G7L5

+ 42879375G6H12 + 363872250G6H10L2 + 822697575G6H8L4 − 4627980G6H6L6

− 17325000H12G5L− 61320000H10G5L3 − 639644040H8G5L5 − 261174375G4H12L2

− 1607807250G4H10L4 − 299253675G4H8L6 + 138600000H12G3L3 + 823964400H10G3L5

+ 1065920625G2H12L4 + 1008414750G2H10L6 − 392931000H12GL5 − 792185625H12L6

)
×Re

8µ10J6 J

)

+

(
75G4 − 350G2L2 + 315L4

) (
5G6 − 105G4H2 + 315G2H4 − 231H6

)
J6 Re

6µ8

2048L7G17

− 1

8388608G29 (G2 − 5H2)
2
L11J

(
3675 J6

2
(
G2 − L2

) (
G2 −H2

)(
545G18 − 25839G16H2

− 4471G16L2 + 412656G14H4 + 209397G14H2L2 + 11307G14L4 − 2682234G12H6

− 3317308G12H4L2 − 522477G12H2L4 − 8181G12L6 + 8062581G10H8 + 21452382G10H6L2

+ 8197848G10H4L4 + 372519G10H2L6 − 11062359G8H10 − 63957003G8H8L2

− 52663662G8H6L4 − 5781996G8H4L6 + 5499450G6H12 + 86839533G6H10L2

+ 155604663G6H8L4 + 36859914G6H6L6 − 42656130G4H12L2 − 209039589G4H10L4
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− 107843841G4H8L6 + 101483910G2H12L4 + 143241615G2H10L6 − 68683230H12L6

)
Re

10µ12

)
. (A.5)

A.2 First-Order Short-Period Generating Function

W1 =

(
1/4

(
G2 − 3H2

)
e sin (f)

G5
− 3/8

e (−H +G) (H +G) sin (f + 2 g)

G5

−1/8
e (−H +G) (H +G) sin (3 f + 2 g)

G5
− 3/8

(−H +G) (H +G) sin (2 g + 2 f)

G5

+1/4

(
G2 − 3H2

)
(f − l)

G5

)
Re

2µ2. (A.6)

A.3 Second-Order Short-Period Generating Function

J2 Contribution

W2 =

(
(3 f − 3 l)

(
15 si2 − 14

)
si2
(
η2 − 1

)
cos (2 g)

32 η7L7

+
(9 f − 9 l)

(
5 si2 − 4

)
si2
√
−η2 + 1 cos (f + 2 g)

16 η7L7

+3/16
(f − l)

(
5 si2 − 4

)
si2
√
−η2 + 1 cos (3 f + 2 g)

η7L7

+
(9 f − 9 l)

(
5 si2 − 4

)
si2 cos (2 g + 2 f)

16 η7L7

−
(
27 η2si4 + 90 η si4 − 36 η2si2 + 171 si4 − 264 η si2 + 12 η2 − 372 si2 + 144 η + 180

)√
−η2 + 1 sin (f)

(64 + 64 η) η7L7

−
(
15 η si4 − 93 si4 + 24 η si2 + 168 si2 − 24 η − 72

)
(η − 1) sin (2 f)

128 η7L7
+

(
3 si2 − 2

)2
(η − 1)

√
−η2 + 1 sin (3 f)

64 η7L7

+

(
45 η2si2 − 612 η si2 − 30 η2 − 693 si2 + 576 η + 630

)
si2
√
−η2 + 1 sin (f + 2 g)

(128 + 128 η) η7L7

+

(
15 η2 − 15

)
si4 sin (2 f + 4 g)

256 η7L7

+

(
3 η2si2 + 100 η si2 − 2 η2 + 181 si2 − 64 η − 118

)
si2
√
−η2 + 1 sin (3 f + 2 g)

(128 + 128 η) η7L7

−3
√
−η2 + 1si4 sin (3 f + 4 g)

64 η7L7
−
(
39 η si2 + 93 si2 − 30 η − 66

)
si2 (η − 1) sin (4 f + 2 g)

128 η7L7
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+

(
3 η2 + 9

)
si4 sin (4 f + 4 g)

256 η7L7
−
(
9 si2 − 6

)
si2 (η − 1)

√
−η2 + 1 sin (5 f + 2 g)

128 η7L7

+
3
√
−η2 + 1si4 sin (5 f + 4 g)

64 η7L7
−
(
3 η2 − 3

)
si4 sin (6 f + 4 g)

256 η7L7

−
(
9 si2 − 6

)
si2 (η − 1)

√
−η2 + 1 sin (−2 g + f)

128 η7L7
+

(
3 η2si2 − 6 η2 − 21 si2 + 30

)
si2 sin (2 g + 2 f)

32 η7L7

−
(
15 η2si4 + 24 η2si2 + 105 si4 − 24 η2 − 240 si2 + 120

)
(f − l)

64 η7L7

)
Re

4µ4. (A.7)

J3 Contribution

W2 =
J3 Re

3µ3

J2

(
3/16

si
(
5 si2 − 4

)
e2 cos (f − g)

L5η5
+ 3/8

si
(
5 si2 − 4

) (
η2 − 3

)
cos (f + g)

L5η5

+
5 si3e2 cos (f + 3 g)

16L5η5
− 3/8

e si
(
5 si2 − 4

)
cos (2 f + g)

L5η5
+ 5/8

e si3 cos (2 f + 3 g)

L5η5

− 1/16
si
(
5 si2 − 4

)
e2 cos (3 f + g)

L5η5
−

5 si3
(
η2 − 3

)
cos (3 f + 3 g)

24L5η5
+

5 e si3 cos (4 f + 3 g)

16L5η5

+ 1/16
si3e2 cos (5 f + 3 g)

L5η5
+ 3/4

e si
(
5 si2 − 4

)
(f − l) sin (g)

L5η5

)
. (A.8)

J4 Contribution

W2 =
Re

4µ4J4
J2

(
−

15 si2
(
7 si2 − 6

)
e2 (f − l) cos (2 g)

32L7η7

−
9 e
(
35 si4 − 40 si2 + 8

) (
η2 − 5

)
sin (f)

128L7η7
+

(
315 si4 − 360 si2 + 72

)
e2 sin (2 f)

128L7η7

+
e3
(
35 si4 − 40 si2 + 8

)
sin (3 f)

128L7η7
+

15 esi2
(
7 si2 − 6

) (
η2 − 5

)
sin (f + 2 g)

64L7η7

+
35 e3si4 sin (f + 4 g)

256L7η7
+

105 si4e2 sin (2 f + 4 g)

256L7η7
+

5 esi2
(
7 si2 − 6

) (
η2 − 5

)
sin (3 f + 2 g)

64L7η7

−
35 esi4

(
η2 − 5

)
sin (3 f + 4 g)

256L7η7
−

35 si4
(
3 η2 − 5

)
sin (4 f + 4 g)

256L7η7

−
e3si2

(
7 si2 − 6

)
sin (5 f + 2 g)

64L7η7
−

21 esi4
(
η2 − 5

)
sin (5 f + 4 g)

256L7η7
+

35 si4e2 sin (6 f + 4 g)

256L7η7

+
5 e3si4 sin (7 f + 4 g)

256L7η7
−

5 e3si2
(
7 si2 − 6

)
sin (−2 g + f)

64L7η7
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+
5 si2

(
7 si2 − 6

) (
3 η2 − 5

)
sin (2 g + 2 f)

32L7η7
−

15 si2
(
7 si2 − 6

)
e2 sin (2 g + 4 f)

128L7η7

−
(
105 si4 − 120 si2 + 24

) (
3 η2 − 5

)
(f − l)

64L7η7

)
. (A.9)

J5 Contribution

W2 =
J5 Re

5µ5

J2

(
−

15 si (f − l)
(
21 si4 − 28 si2 + 8

) (
3 η2 − 7

)
e sin (g)

64 η9L9

− 63 si5e3 cos (2 f + 5 g)

256 η9L9
− 63 si5e3 cos (8 f + 5 g)

1024 η9L9
− 7 si5e4 cos (9 f + 5 g)

1024 η9L9

− 63 si5e4 cos (f + 5 g)

1024 η9L9
−

63 si5
(
3 η4 − 30 η2 + 35

)
cos (5 f + 5 g)

2560 η9L9

−
15 si

(
21 si4 − 28 si2 + 8

)
e3 cos (4 f + g)

256 η9L9
+

63 si5
(
3 η2 − 7

)
e cos (4 f + 5 g)

512 η9L9

+
15 si

(
21 si4 − 28 si2 + 8

)
e3 cos (2 f − g)

128 η9L9
+

35 si3e3
(
9 si2 − 8

)
cos (6 f + 3 g)

768 η9L9

+
21 si5

(
3 η2 − 7

)
e cos (6 f + 5 g)

256 η9L9
+

9 si5e2
(
η2 − 7

)
cos (7 f + 5 g)

256 η9L9

+
21 si5e2

(
η2 − 7

)
cos (3 f + 5 g)

256 η9L9
+

5 si3
(
9 si2 − 8

)
e4 cos (7 f + 3 g)

1024 η9L9

+
5 si

(
21 si4 − 28 si2 + 8

)
e4 cos (3 f − g)

512 η9L9
−

35 si3
(
9 si2 − 8

)
e4 cos (f − 3 g)

1024 η9L9

−
3 si

(
21 si4 − 28 si2 + 8

)
e4 cos (5 f + g)

512 η9L9

+
15 si

(
21 si4 − 28 si2 + 8

) (
3 η2 − 7

)
e cos (2 f + g)

128 η9L9

−
35 si3

(
3 η2 − 7

)
e
(
9 si2 − 8

)
cos (2 f + 3 g)

256 η9L9
−

35 si3
(
3 η2 − 7

)
e
(
9 si2 − 8

)
cos (4 f + 3 g)

512 η9L9

−
15 si

(
21 si4 − 28 si2 + 8

)
e2
(
η2 − 7

)
cos (f − g)

128 η9L9

−
35 si3

(
9 si2 − 8

)
e2
(
η2 − 7

)
cos (f + 3 g)

256 η9L9
−

35 si3 (f − l) e3
(
9 si2 − 8

)
sin (3 g)

128 η9L9

+
5 si

(
21 si4 − 28 si2 + 8

)
e2
(
η2 − 7

)
cos (3 f + g)

128 η9L9
−

7 si3
(
9 si2 − 8

)
e2
(
η2 − 7

)
cos (5 f + 3 g)

256 η9L9

+
35 si3

(
9 si2 − 8

) (
3 η4 − 30 η2 + 35

)
cos (3 f + 3 g)

1536 η9L9

−
15 si

(
21 si4 − 28 si2 + 8

) (
3 η4 − 30 η2 + 35

)
cos (f + g)

256 η9L9

)
. (A.10)
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J6 Contribution

W2 =
Re

6µ6J6
J2

(
−

175 si2
(
33 si4 − 48 si2 + 16

)
e4 sin (6 f + 2 g)

8192 η11L11
+

315 si4
(
11 si2 − 10

)
e4 sin (8 f + 4 g)

16384 η11L11

−
525 si2

(
33 si4 − 48 si2 + 16

)
e4 sin (−2 g + 2 f)

8192 η11L11
+

1155 si6e2
(
η2 − 3

)
sin (8 f + 6 g)

8192 η11L11

−
(
5775 si6 − 9450 si4 + 4200 si2 − 400

)
e2
(
η2 − 3

)
sin (2 f)

512 η11L11
+

1155 si6e2
(
η2 − 3

)
sin (4 f + 6 g)

4096 η11L11

−
231 esi6

(
η4 − 14 η2 + 21

)
sin (5 f + 6 g)

4096 η11L11
−

165 esi6
(
η4 − 14 η2 + 21

)
sin (7 f + 6 g)

4096 η11L11

+
25 e

(
231 si6 − 378 si4 + 168 si2 − 16

) (
η4 − 14 η2 + 21

)
sin (f)

1024 η11L11

−
15 e5si2

(
33 si4 − 48 si2 + 16

)
sin (7 f + 2 g)

8192 η11L11
+

7 e5si4
(
11 si2 − 10

)
sin (9 f + 4 g)

4096 η11L11

+
63 e5si4

(
11 si2 − 10

)
sin (−4 g + f)

4096 η11L11
−

35 e5si2
(
33 si4 − 48 si2 + 16

)
sin (3 f − 2 g)

8192 η11L11

−
77 si6

(
15 η4 − 70 η2 + 63

)
sin (6 f + 6 g)

4096 η11L11
+

525 si2
(
33 si4 − 48 si2 + 16

)
e2
(
η2 − 3

)
(f − l) cos (2 g)

1024 η11L11

−
45 e3si4

(
11 si2 − 10

)
(η + 3) (η − 3) sin (7 f + 4 g)

4096 η11L11

+
525 e3si2

(
33 si4 − 48 si2 + 16

)
(η + 3) (η − 3) sin (−2 g + f)

8192 η11L11

−
315 e3si4

(
11 si2 − 10

)
(η + 3) (η − 3) sin (f + 4 g)

4096 η11L11

+
105 e3si2

(
33 si4 − 48 si2 + 16

)
(η + 3) (η − 3) sin (5 f + 2 g)

8192 η11L11

+
e5
(
231 si6 − 378 si4 + 168 si2 − 16

)
sin (5 f)

2048 η11L11
− 21 e5si6 sin (11 f + 6 g)

8192 η11L11
− 1155 si6e4 sin (2 f + 6 g)

8192 η11L11

− 231 e5si6 sin (f + 6 g)

8192 η11L11
+

(
5775 si6 − 9450 si4 + 4200 si2 − 400

)
e4 sin (4 f)

4096 η11L11
− 231 si6e4 sin (10 f + 6 g)

8192 η11L11

−
105 si2

(
33 si4 − 48 si2 + 16

) (
15 η4 − 70 η2 + 63

)
sin (2 g + 2 f)

4096 η11L11

+

(
1155 si6 − 1890 si4 + 840 si2 − 80

) (
15 η4 − 70 η2 + 63

)
(f − l)

1024 η11L11

+
525 si2

(
33 si4 − 48 si2 + 16

)
e2
(
η2 − 3

)
sin (2 g + 4 f)

4096 η11L11
−

105 si4
(
11 si2 − 10

)
e2
(
η2 − 3

)
sin (6 f + 4 g)

1024 η11L11

−
315 si4

(
11 si2 − 10

)
e2
(
η2 − 3

)
sin (2 f + 4 g)

1024 η11L11

−
525 esi2

(
33 si4 − 48 si2 + 16

) (
η4 − 14 η2 + 21

)
sin (f + 2 g)

4096 η11L11
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−
175 esi2

(
33 si4 − 48 si2 + 16

) (
η4 − 14 η2 + 21

)
sin (3 f + 2 g)

4096 η11L11

+
105 esi4

(
11 si2 − 10

) (
η4 − 14 η2 + 21

)
sin (3 f + 4 g)

2048 η11L11

−
25 e3

(
231 si6 − 378 si4 + 168 si2 − 16

)
(η + 3) (η − 3) sin (3 f)

6144 η11L11
+

385 e3si6 (η + 3) (η − 3) sin (3 f + 6 g)

8192 η11L11

+
385 e3si6 (η + 3) (η − 3) sin (9 f + 6 g)

24576 η11L11
+

315 si4
(
11 si2 − 10

)
e4 (f − l) cos (4 g)

2048 η11L11

+
63 esi4

(
11 si2 − 10

) (
η4 − 14 η2 + 21

)
sin (5 f + 4 g)

2048 η11L11

+
63 si4

(
11 si2 − 10

) (
15 η4 − 70 η2 + 63

)
sin (4 f + 4 g)

4096 η11L11

)
. (A.11)

A.4 First-Order Long-Period Generating Function

J2 Contribution

W̄1 = −1/32

(
G2 − 15H2

) (
G2 − L2

) (
G2 −H2

)
sin (2 g)Re

2µ2

G5L2 (G2 − 5H2)
. (A.12)

J3 Contribution

W̄1 = 1/2

√
−G2 + L2

√
G2 −H2 cos (g)Re µ J3
G2LJ2

. (A.13)

J4 Contribution

W̄1 = −
(
5G2 − 35H2

) (
G2 − L2

) (
G2 −H2

)
sin (2 g)Re

2µ2J4

32L2G5J2 (G2 − 5H2)
. (A.14)

J5 Contribution

185



W̄1 =

(
−

5
√
−G2 + L2

√
G2 −H2

(
G4 − 14G2H2 + 21H4

) (
3G2 − 7L2

)
cos (g)

32L3G8J2 (G2 − 5H2)

−
35
(
−G2 + L2

)3/2 (
G2 −H2

)3/2 (
G2 − 9H2

)
cos (3 g)

576L3G8J2 (G2 − 5H2)

)
Re

3µ3J5 . (A.15)

J6 Contribution

W̄1 =

((
175G4 − 3150G2H2 + 5775H4

) (
G4 − 4G2L2 + 3L4

) (
G2 −H2

)
sin (2 g)

1024L4G11J2 (G2 − 5H2)

−
(
105G2 − 1155H2

)
(−H +G)

2
(H +G)

2 (
G4 − 2G2L2 + L4

)
sin (4 g)

4096L4G11J2 (G2 − 5H2)

)
Re

4µ4J6 . (A.16)

A.5 Second-Order Long-Period Generating Function

J2 Contribution

W̄2 =
µ4Re

4

L7

(
− (η − 1)

1536
(
5 si2 − 4

)2
(1 + η) η7

(
2025 η4si6 − 13950 η3si6 − 270 η4si4

− 23700 η2si6 + 53700 η3si4 − 6050 η si6 − 4032 η4si2 + 68940 η2si4 − 11125 si6

− 60096 η3si2 − 4700 η si4 + 2352 η4 − 63984 η2si2 + 16010 si4 + 20832 η3 + 21536 η si2

+ 19200 η2 − 3056 si2 − 11104 η − 2096

)
si2 sin (2 g)

+
si4 (η − 1)

2

3072 η7
(
5 si2 − 4

)3
(1 + η)

2

(
10125 η4si6 + 70500 η3si6 − 27675 η4si4 + 173250 η2si6

− 187500 η3si4 + 142500 η si6 + 25200 η4si2 − 450850 η2si4 + 35625 si6 + 166080 η3si2

− 368300 η si4 − 7644 η4 + 390880 η2si2 − 92075 si4 − 49008 η3 + 317120 η si2

− 112936 η2 + 79280 si2 − 90992 η − 22748

)
sin (4 g)

)
. (A.17)
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J3 Contribution

W̄2 =

(
e si J3 cos (g)

384
(
5 si2 − 4

)2
(1 + η) η5L5J2

(
3075 η3si6 + 11075 η2si6 − 4170 η3si4

+ 4025 η si6 − 16010 η2si4 + 4025 si6 + 540 η3si2 − 9710 η si4 + 3612 η2si2 − 9710 si4

+ 672 η3 + 6660 η si2 + 1696 η2 + 6660 si2 − 1184 η − 1184

)

− e si3 (η − 1) J3 cos (3 g)

1152 η5
(
5 si2 − 4

)2
(1 + η)

2
L5J2

(
1425 η3si4 + 13875 η2si4 − 2690 η3si2 + 19275 η si4

− 24070 η2si2 + 6425 si4 + 1276 η3 − 33030 η si2 + 10484 η2 − 11010 si2 + 14196 η + 4732

))
Re

3µ3

+ 1/8
si2
(
15 si2 − 13

)
(η − 1) (1 + η) sin (2 g) J3

2Re
2µ2

L3η3
(
5 si2 − 4

)
J4

. (A.18)

J4 Contribution

W̄2 =

((
25
(
7 si2 − 6

)
e2
(
189 η2si4 − 252 η2si2 − 385 si4 + 72 η2 + 500 si2 − 136

)
si2J4

2

512 η7L7J4
(
5 si2 − 4

)2
− (η − 1) si2J4

1536 J2L7η7
(
5 si2 − 4

)2
(1 + η)

(
19425 η4si6 + 86450 η3si6 − 34800 η4si4 + 79450 η2si6

− 163200 η3si4 − 59150 η si6 + 15120 η4si2 − 176220 η2si4 − 29575 si6 + 85216 η3si2 + 80040 η si4

+ 480 η4 + 127232 η2si2 + 40020 si4 − 7488 η3 − 1952 η si2 − 29952 η2 − 976 si2 − 20416 η

− 10208

))
sin (2 g) +

((
375 si2 − 325

) (
7 si2 − 6

)2
e4 si4J4

2

1024 J4L7η7
(
5 si2 − 4

)3
+

si4 (η − 1)
2
J4

6144 J2L7η7
(
5 si2 − 4

)3
(1 + η)

2

(
49875 η4si6 + 355500 η3si6 − 136950 η4si4 + 720250 η2si6

− 938200 η3si4 + 555500 η si6 + 125280 η4si2 − 1874500 η2si4 + 138875 si6 + 826240 η3si2

− 1437400 η si4 − 38160 η4 + 1627840 η2si2 − 359350 si4 − 242752 η3 + 1240960 η si2 − 471648 η2

+ 310240 si2 − 357440 η − 89360

))
sin (4 g)

)
Re

4µ4
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+

(
esi J3 J4 cos (g)

128 J4L5η5
(
5 si2 − 4

)2
(

25725 η2si6 − 53950 η2si4 − 47425 si6 + 35700 η2si2 + 97910 si4

− 7200 η2 − 63380 si2 + 12320

)
+

(
4375 si4 − 7510 si2 + 3220

)
e3 si3J3 J4 cos (3 g)

384 J4L5η5
(
5 si2 − 4

)2
)
Re

3µ3. (A.19)

J5 Contribution

W̄2 =

(
−25e2si2J5

2 sin (2 g)

4608
(
5 si2 − 4

)3
η11L11J4

(
277830 η4si10 − 953883 η4si8 − 1203930 η2si10

+ 1262709 η4si6 + 4110561 η2si8 + 1203930 si10 − 796110 η4si4 − 5407206 η2si6

− 4118058 si8 + 234480 η4si2 + 3386180 η2si4 + 5432385 si6 − 24912 η4 − 991648 η2si2

− 3419318 si4 + 105504 η2 + 1012144 si2 − 110544

)
− 175 e4si4J5

2 sin (4 g)

36864
(
5 si2 − 4

)3
η11L11J4

(
11340 η2si8

− 31752 η2si6 − 6615 si8 + 30456 η2si4 + 14112 si6 − 10704 η2si2 − 4704 si4 + 672 η2 − 6608 si2

+ 3808

)
−
(
18375 si2 − 15925

) (
9 si2 − 8

)2
e6 si6J5

2 sin (6 g)

221184
(
5 si2 − 4

)3
η11L11J4

)
Re

6µ6

+

((
− e si J4

36864 η9
(
5 si2 − 4

)3
L9J4

(
178880625 η4si10 − 603967350 η4si8 − 738123750 η2si10

+ 787003700 η4si6 + 2482277700 η2si8 + 723295125 si10 − 489928800 η4si4 − 3219802600 η2si6

− 2429383950 si8 + 143668800 η4si2 + 1994251200 η2si4 + 3147672500 si6 − 15552000 η4

− 581961600 η2si2 − 1948648800 si4 + 62899200 η2 + 569620800 si2 − 62092800

)

− e si

36864 η9
(
5 si2 − 4

)3
(1 + η)L9J2

(
24782625 η5si10 + 54518625 η4si10 − 77480550 η5si8

− 35232750 η3si10 − 161413350 η4si8 − 122424750 η2si10 + 91089780 η5si6 + 139736100 η3si8

+ 79246125 η si10 + 173626740 η4si6 + 399195300 η2si8 + 79246125 si10 − 48959840 η5si4

− 229482600 η3si6 − 320874750 η si8 − 78232928 η4si4 − 511192680 η2si6 − 320874750 si8

+ 11403840 η5si2 + 195593152 η3si4 + 532534260 η si6 + 10764864 η4si2 + 324816832 η2si4

+ 532534260 si6 − 806400 η5 − 86564736 η3si2 − 451822688 η si4 + 815616 η4 − 105242496 η2si2

− 451822688 si4 + 15860736 η3 + 195503424 η si2 + 14631936 η2 + 195503424 si2 − 34420224 η
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− 34420224

))
J5 cos (g) +

(
−25e3 si3J4

18432 η9
(
5 si2 − 4

)3
L9J4

(
231525 η2si8 − 693630 η2si6

− 443205 si8 + 755244 η2si4 + 1318814 si6 − 349056 η2si2 − 1421084 si4 + 56160 η2 + 645568 si2

− 100576

)
+

(η − 1) e si3

9216 η9
(
5 si2 − 4

)3
(1 + η)

2
L9J2

(
63000 η5si8 + 1755000 η4si8 + 77175 η5si6

+ 5564250 η3si8 − 4473675 η4si6 + 3384750 η2si8 − 513210 η5si4 − 17039850 η3si6 − 956250 η si8

+ 3657170 η4si4 − 13076550 η2si6 − 318750 si8 + 554080 η5si2 + 19253300 η3si4 − 230925 η si6

− 825824 η4si2 + 18848620 η2si4 − 76975 si6 − 180560 η5 − 9475872 η3si2 + 4963110 η si4

− 109552 η4 − 12038496 η2si2 + 1654370 si4 + 1703584 η3 − 5605056 η si2 + 2879072 η2

− 1868352 si2 + 1820592 η + 606864

))
J5 cos (3 g) +

(
−e5 si5J4

36864 η9
(
5 si2 − 4

)3
L9J4

(
804825 si6

− 2101890 si4 + 1829660 si2 − 530880

)
− e si5 (η − 1)

2

184320 η9
(
5 si2 − 4

)3
(1 + η)

3
L9J2

(
1185975 η5si6

+ 8641875 η4si6 − 3267810 η5si4 + 22301250 η3si6 − 23183850 η4si4 + 26363250 η2si6

+ 2999724 η5si2 − 59014500 η3si4 + 14382375 η si6 + 20743260 η4si2 − 69233700 η2si4

+ 2876475 si6 − 917056 η5 + 52087800 η3si2 − 37633050 η si4 − 6188864 η4 + 60639480 η2si2

− 7526610 si4 − 15333760 η3 + 32840220 η si2 − 17714560 η2 + 6568044 si2 − 9558080 η

− 1911616

))
J5 cos (5 g)

)
Re

5µ5

+

(
5e2 si2J3 J5 sin (2 g)

1152 η7L7J4
(
5 si2 − 4

)2
(

22365 η2si6 − 48489 η2si4 − 46935 si6 + 33248 η2si2

+ 101577 si4 − 6960 η2 − 69440 si2 + 14448

)
+

(
2625 si2 − 2380

) (
6 si2 − 5

)
e4 si4J3 J5 sin (4 g)

2304 η7L7J4
(
5 si2 − 4

)2
)
Re

4µ4.

(A.20)

J6 Contribution

W̄2 =

(
6125e2 si2J6

2 sin (2 g)

4194304
(
5 si2 − 4

)3
η15L15J4

(
6136515 η6si12 − 24878502 η6si10 − 50175675 η4si12

+ 40846164 si8η6 + 203168790 η4si10 + 126808605 η2si12 − 34573728 η6si6 − 333049860 η4si8

− 513054234 η2si10 − 95314725 si12 + 15792960 η6si4 + 281327520 η4si6 + 840066444 η2si8 + 384843690 si10
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− 3650560 η6si2 − 128129600 η4si4 − 708375648 η2si6 − 628496604 si8 + 327680 η6 + 29475840 η4si2

+321735360 η2si4 +528149088 si6−2621440 η4−73657344 η2si2−238726080 si4 +6488064 η2 +54254592 si2

−4718592

)
+

1225 e4 si4J6
2 sin (4 g)

1048576
(
5 si2 − 4

)3
η15L15J4

(
762300 η4si10−2800215 η4si8−4356000 η2si10+4020120 η4si6

+15973650 η2si8+5619240 si10−2805120 η4si4−22893600 η2si6−20692287 si8+944640 η4si2+15950400 η2si4

+ 29819016 si6 − 121600 η4 − 5366400 η2si2 − 20932416 si4 + 691200 η2 + 7120512 si2 − 933120

)

+
6125 e6 si6J6

2 sin (6 g)

4194304
(
5 si2 − 4

)3
η15L15J4

(
30855 η2si8 − 97614 η2si6 − 70785 si8 + 113140 η2si4 + 223938 si6

− 56416 η2si2 − 258876 si4 + 10048 η2 + 128160 si2 − 22464

)

+

(
165375 si2 − 143325

) (
11 si2 − 10

)2
e8si8J6

2 sin (8 g)

8388608
(
5 si2 − 4

)3
η15L15J4

)
Re

8µ8

+

(
e si J5 J6 cos (g)

4718592 η13
(
5 si2 − 4

)3
L13J4

(
126267285375 η6si12 − 492163519050 η6si10 − 924117319125 η4si12

+ 770924013300 si8η6 + 3590301635550 η4si10 + 2066163994125 η2si12 − 615854148000 η6si6

− 5602149644700 η4si8 − 8008345475550 η2si10 − 1389860616375 si12 + 261287488000 η6si4

+ 4454554188000 η4si6 + 12460342379100 η2si8 + 5374751819850 si10 − 54700800000 η6si2

− 1879193792000 η4si4 − 9873304140000 η2si6 − 8339790616500 si8 + 4257792000 η6 + 390528768000 η4si2

+ 4146807078400 η2si4 + 6586246212000 si6 − 30062592000 η4 − 856655923200 η2si2 − 2754795993600 si4

+ 65311948800 η2 + 566037964800 si2 − 42810163200

)
+

175 e2 e si3J5 J6 cos (3 g)

2359296 η13
(
5 si2 − 4

)3
L13J4

(
29615355 η4si10

−104732166 η4si8−149168250 η2si10 +143436948 η4si6 +525578340 η2si8 +161465535 si10−94128768 η4si4

− 716684760 η2si6 − 569086686 si8 + 29106080 η4si2 + 467904640 η2si4 + 776187972 si6 − 3289600 η4

− 143835840 η2si2 − 506903040 si4 + 16163840 η2 + 155982624 si2 − 17601024

)

+
35 e5 si5J5 J6 cos (5 g)

2359296 η13
(
5 si2 − 4

)3
L13J4

(
7182945 η2si8 − 21930930 η2si6 − 13877325 si8 + 24200340 η2si4

+ 42803586 si6 − 11206080 η2si2 − 47657988 si4 + 1758112 η2 + 22212288 si2 − 3487008

)

+

(
12560625 si6 − 33468750 si4 + 29722700 si2 − 8797600

)
e7 si7J5 J6 cos (7 g)

1572864 η13
(
5 si2 − 4

)3
L13J4

)
Re

7µ7

+

((
−175 e2 si2J4

131072
(
5 si2 − 4

)3
η11L11J4

(
2521365 η4si10 − 8898432 η4si8 − 12924450 η2si10 + 12220440 η4si6
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+ 45434400 η2si8 + 14320845 si10 − 8107480 η4si4 − 62088208 η2si6 − 50159136 si8 + 2572160 η4si2

+ 40923440 η2si4 + 68248056 si6 − 307200 η4 − 12865280 η2si2 − 44749656 si4 + 1515520 η2 + 13979520 si2

− 1634304

)
+

5 (η − 1) si2

393216 η11
(
5 si2 − 4

)3
(1 + η)L11J2

(
43329825 η6si10 + 150125250 η5si10 − 144514440 si8η6

+37077975 η4si10−489953040 η5si8−486964500 η3si10+183263304 η6si6−96856920 η4si8−236868225 η2si10

+603322512 η5si6+1648679520 η3si8+469314450 η si10−107737560 η6si4+68785112 η4si6+718794120 η2si8

+ 234657225 si10−338654128 η5si4−2159522016 η3si6−1725994320 η si8 + 27834240 η6si2 + 17277784 η4si4

− 766899272 η2si6 − 862997160 si8 + 79621888 η5si2 + 1356946016 η3si4 + 2550919248 η si6 − 2150400 η6

− 37742464 η4si2 + 298365400 η2si4 + 1275459624 si6 − 4366336 η5 − 405126656 η3si2 − 1906837168 η si4

+11440128 η4 +8128640 η2si2−953418584 si4 +45596672 η3 +728059648 η si2−21606400 η2 +364029824 si2

− 114958336 η − 57479168

))
J6 sin (2 g) +

(
−175 e4 si4J4

65536
(
5 si2 − 4

)3
η11L11J4

(
100485 η2si8 − 315138 η2si6

− 271425 si8 + 364464 η2si4 + 851850 si6 − 183344 η2si2 − 986160 si4 + 33600 η2 + 496752 si2 − 91200

)

− (η − 1)
2
si4

196608 η11
(
5 si2 − 4

)3
(1 + η)

2
L11J2

(
7709625 si8η6 +61418500 η5si8−22626450 η6si6 +155959375 η4si8

− 186523400 η5si6 + 58993000 η3si8 + 23565360 η6si4− 492047150 η4si6− 205236625 η2si8 + 206152000 η5si4

− 226192400 η3si6 − 216089500 η si8 − 9913008 η6si2 + 575225440 η4si4 + 573764450 η2si6 − 54022375 si8

− 96950976 η5si2 + 326018880 η3si4 + 629463800 η si6 + 1270080 η6 − 294626736 η4si2 − 560130000 η2si4

+ 157365950 si6 + 15944960 η5 − 209287424 η3si2 − 658494720 η si4 + 55588160 η4 + 212520944 η2si2

− 164623680 si4 + 50467840 η3 + 285891008 η si2 − 21144640 η2 + 71472752 si2 − 40986880 η

− 10246720

))
J6 sin (4 g) +

(
−
(
1684375 si6 − 4431000 si4 + 3885000 si2 − 1135400

)
e6 si6J4

131072
(
5 si2 − 4

)3
η11L11J4

+
si6 (η − 1)

3

1179648 η11
(
5 si2 − 4

)3
(1 + η)

3
L11J2

(
5110875 η6si6+40417250 η5si6−14120400 η6si4+125473125 η4si6

− 109471200 η5si4 + 197053500 η3si6 + 12999000 η6si2− 335602800 η4si4 + 165395125 η2si6 + 98868240 η5si2

− 522782400 η3si4 + 70229250 η si6 − 3986472 η6 + 299344680 η4si2 − 436590000 η2si4 + 11704875 si6

− 29772016 η5 + 462493920 η3si2 − 184917600 η si4 − 89045592 η4 + 384273960 η2si2 − 30819600 si4

−136456992 η3+162343440 η si2−112797272 η2+27057240 si2−47530224 η−7921704

))
J6 sin (6 g)

)
Re

6µ6

+

(
−e si J3 J6 cos (g)

4096 η9
(
5 si2 − 4

)2
L9J4

(
4475625 η4si8 − 11719050 η4si6 − 22926750 η2si8 + 10844400 η4si4
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+59379600 η2si6+22470525 si8−4082400 η4si2−54168800 η2si4−57663270 si6+492800 η4+19980800 η2si2

+ 51957360 si4 − 2329600 η2 − 18819360 si2 + 2123520

)
+
−35 e3 si3J3 J6 cos (3 g)

49152 η9
(
5 si2 − 4

)2
L9J4

(
112695 η2si6

− 259314 η2si4 − 330495 si6 + 193540 η2si2 + 761874 si4 − 46400 η2 − 570180 si2 + 137280

)

−
(
65835 si4 − 115458 si2 + 50484

)
e5 si5J3 J6 cos (5 g)

16384 η9
(
5 si2 − 4

)2
L9J4

)
Re

5µ5. (A.21)
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APPENDIX B

EXPRESSIONS FOR THE EXACT SHORT-PERIOD GENERATING FUNCTION FOR THE

TESSERAL AND SECTORIAL HARMONICS

B.1 Partial Derivatives ofWT
2

WT
2,gh =

1

sin i

(
cos i

∂WT
2

∂g
− ∂WT

2

∂h

)
,

= − 2!

C2
20

µRn
e

ñ an+1η2n−1

p=n∑
p=0

F ′nmp(i) [CS1 {− cos(β)Inmp2 − sin(β)Inmp1 }

+CS2 {cos(β)Inmp1 − sin(β)Inmp2 }] ,

where F ′nmp(i) =


−m
G

tan (i/2) Fnmp(i) if (n− 2p) = m

1
2

cos(i)(n−2p)−m
G cos(i/2)

(
1

sin(i/2)
Fnmp(i)

)
if (n− 2p) 6= m.

WT
2,lg =

1

e

(
∂WT

2

∂l
− 1

η

∂WT
2

∂g

)
,

= − 2!

C2
20

µRn
e

ñ an+1η2n−1

p=n∑
p=0

Fnmp(i)

[
CS1

{
cos(β)

(
−(n− 2p)Inm2,lga −

n+ 1

η3
Inm1,lgb

)
+ sin(β)

(
−(n− 2p)Inm1,lga +

n+ 1

η3
Inm2,lgb

)}
+CS2

{
cos(β)

(
(n− 2p)Inm1,lga −

n+ 1

η3
Inm2,lgb

)
+ sin(β)

(
−(n− 2p)Inm2,lga −

n+ 1

η3
Inm1,lgb

)}]
.
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B.2 Partial Derivatives of Inmp1 and Inmp2

∂Inmp1

∂a
= m

dδ

da

∫
l sin((n− 2p)f −mδ l)(1 + e cos f)n−1 df,

∂Inmp2

∂a
= −mdδ

da

∫
l cos((n− 2p)f −mδ l)(1 + e cos f)n−1 df,

∂Inmp1

∂e
=

1

η2

∫ (
−3e(n− 1)

2
cos(α(f)) +

(−(n− 1) + 4p)

2
cos(α(f)− f)

+
((3n+ 1)− 4p)

2
cos(α(f) + f) +

e(2p+ 1)

4
cos(α(f)− 2f)

+
e(2n− 2p+ 1)

4
cos(α(f) + 2f)

)
(1 + e cos f)n−1 df,

∂Inmp2

∂e
=

1

η2

∫ (
−3e(n− 1)

2
sin(α(f)) +

(−(n− 1) + 4p)

2
sin(α(f)− f)

+
((3n+ 1)− 4p)

2
sin(α(f) + f) +

e(2p+ 1)

4
sin(α(f)− 2f)

+
e(2n− 2p+ 1)

4
sin(α(f) + 2f)

)
(1 + e cos f)n−1 df,

where α(f) ≡ (n− 2p)f −mδ l,

∂Inmp1

∂f
= cos((n− 2p)f −mδ l)(1 + e cos f)n−1,

∂Inmp2

∂f
= sin((n− 2p)f −mδ l)(1 + e cos f)n−1,

Inm1,lga =

∫
1

η3

(
e+ 2 cos(f) + e cos2(f)

)
cos((n− 2p)f −mδ l)(1 + e cos f)n−1 df,
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Inm2,lga =

∫
1

η3

(
e+ 2 cos(f) + e cos2(f)

)
sin((n− 2p)f −mδ l)(1 + e cos f)n−1 df,

Inm1,lgb =

∫
sin(f) cos((n− 2p)f −mδ l)(1 + e cos f)n df,

Inm2,lgb =

∫
sin(f) sin((n− 2p)f −mδ l)(1 + e cos f)n df.
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APPENDIX C

THE EQUINOCTIAL GEOMETRIC TRANSFORMATION MATRIX

C.1 The Geometric Transformation Matrix Definition

The geometric transformation matrix (Σ) formulated using the osculating equinoctial elements

is used to compute the relative position and velocity state vector (δx̄) in the curvilinear frame using

the differential equinoctial element vector (δē) as shown below:

δx̄ = Σ δē, (C.1)

where

δx̄ =

[
x y z ẋ ẏ ż

]T
,

δē =

[
δa δΨ δp1 δp2 δq1 δq2

]T
.

C.2 The Geometric Transformation Matrix Elements

Σ1,1 = −
(
q1 2 + q2 2 − 1

)√
µ

Vt
√
p

, (C.2)

Σ1,2 =
Vr
√
µ
√
p

Vt2 , (C.3)

Σ1,3 = 0, (C.4)

Σ1,4 = 0, (C.5)
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Σ1,5 = −
a
(
cos (Ψ) q1 2 − cos (Ψ) q2 2 + 2 sin (Ψ) q1 q2 + cos (Ψ) + 2 q1

)
µ

Vt2p
, (C.6)

Σ1,6 = −
a
(
2 cos (Ψ) q1 q2 − sin (Ψ) q1 2 + q2 2 sin (Ψ) + sin (Ψ) + 2 q2

)
µ

Vt2p
, (C.7)

Σ2,1 = 0, (C.8)

Σ2,2 =

√
µ
√
p

Vt
, (C.9)

Σ2,3 = 2

√
pp2
√
µ(

p1 2 + p2 2 + 1
)
Vt
, (C.10)

Σ2,4 = −2

√
pp1
√
µ(

p1 2 + p2 2 + 1
)
Vt
, (C.11)

Σ2,5 = 0, (C.12)

Σ2,6 = 0, (C.13)

Σ3,1 = 0, (C.14)

Σ3,2 = 0, (C.15)
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Σ3,3 = 2

√
p sin (Ψ)

√
µ(

p1 2 + p2 2 + 1
)
Vt
, (C.16)

Σ3,4 = −2

√
p cos (Ψ)

√
µ(

p1 2 + p2 2 + 1
)
Vt
, (C.17)

Σ3,5 = 0, (C.18)

Σ3,6 = 0, (C.19)

Σ4,1 = −1/2
Vr

a
, (C.20)

Σ4,2 =

√
µ
√
p

(
q1
(
p1 4 − 2 p1 2σ1

2 − p2 4 − 2σ1
2 − 1

)
cos (Ψ)

(σ1
2 + 1)2

+
q2
(
p1 4 − 2 p1 2σ1

2 − p2 4 − 2σ1
2 − 1

)
sin (Ψ)

(σ1
2 + 1)2

+
p1 4 − 2 p1 2σ1

2 − p2 4 − σ1
4 − 4σ1

2 − 2

(σ1
2 + 1)2

)
+ 2Vt , (C.21)

Σ4,3 = 0, (C.22)

Σ4,4 = 0, (C.23)

Σ4,5 =
aq1 Vr

p
+

√
µ sin (Ψ)
√
p

, (C.24)
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Σ4,6 =
aq2 Vr

p
−
√
µ cos (Ψ)
√
p

, (C.25)

Σ5,1 = −3/2
Vt

a
, (C.26)

Σ5,2 = −Vr , (C.27)

Σ5,3 = 2
p2 Vr

σ1
2 + 1

+ 2
w1
√
p sin (Ψ)

√
µ

(σ1
2 + 1)Vt

, (C.28)

Σ5,4 = −2
p1 Vr

σ1
2 + 1

− 2
w1
√
p cos (Ψ)

√
µ

(σ1
2 + 1)Vt

, (C.29)

Σ5,5 =
µ3/2

p5/2

(
1/4

a
(
3 q1 4 + 2 q1 2q2 2 − q2 4 + 23 q1 2 − 3 q2 2 + 4

)
cos (Ψ)

Vt2

+
aq1

(
2 q1 2 − 4 q2 2 + 1

)
cos (2 Ψ)

Vt2

+ 1/4
a
(
q1 4 − 6 q1 2q2 2 + q2 4 + q1 2 − q2 2

)
cos (3 Ψ)

Vt2

+ 1/2
aq1 q2

(
2 q1 2 + 2 q2 2 + 13

)
sin (Ψ)

Vt2 +
aq2

(
5 q1 2 − q2 2 + 1

)
sin (2 Ψ)

Vt2

+ 1/2
aq1 q2

(
2 q1 2 − 2 q2 2 + 1

)
sin (3 Ψ)

Vt2 +
aq1

(
2 q1 2 + 2 q2 2 + 3

)
Vt2

)
+(

cos (Ψ)
√
p

+
cos (Ψ) aq1 2 + sin (Ψ) aq1 q2 + aq1

p3/2

)
√
µ, (C.30)

Σ5,6 =
µ3/2

p5/2

(
1/2

aq1 q2
(
2 q1 2 + 2 q2 2 + 13

)
cos (Ψ)

Vt2
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+
aq2

(
4 q1 2 − 2 q2 2 − 1

)
cos (2 Ψ)

Vt2 + 1/2
aq1 q2

(
2 q1 2 − 2 q2 2 − 1

)
cos (3 Ψ)

Vt2

− 1/4
a
(
q1 4 − 2 q1 2q2 2 − 3 q2 4 + 3 q1 2 − 23 q2 2 − 4

)
sin (Ψ)

Vt2

−
aq1

(
q1 2 − 5 q2 2 − 1

)
sin (2 Ψ)

Vt2

− 1/4
a
(
q1 4 − 6 q1 2q2 2 + q2 4 − q1 2 + q2 2

)
sin (3 Ψ)

Vt2 +
aq2

(
2 q1 2 + 2 q2 2 + 3

)
Vt2

)
+(

sin (Ψ)
√
p

+
cos (Ψ) aq1 q2 + sin (Ψ) aq2 2 + aq2

p3/2

)
√
µ, (C.31)

Σ6,1 = 0, (C.32)

Σ6,2 = −
w1
√
p
√
µ

Vt
, (C.33)

Σ6,3 = 2
sin (Ψ)Vr

σ1
2 + 1

+ 2
cos (Ψ)Vt

σ1
2 + 1

− 2
w1
√
pp2
√
µ

(σ1
2 + 1)Vt

, (C.34)

Σ6,4 =

(
2

p1 w1
√
p

(σ1
2 + 1)Vt

+
1
√
p

(
−q2 cos (2 Ψ)

σ1
2 + 1

+ 2
sin (Ψ)

σ1
2 + 1

+
q1 sin (2 Ψ)

σ1
2 + 1

+
q2

σ1
2 + 1

))
√
µ− 2

cos (Ψ)Vr

σ1
2 + 1

, (C.35)

Σ6,5 = 0, (C.36)

Σ6,6 = 0, (C.37)

where
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p = a
(
1− q12 − q22

)
,

V r =

√
µ

p
(q1 sin Ψ− q2 cos Ψ) ,

V t =

√
µ

p
(1 + q1 cos Ψ + q2 sin Ψ) ,

and w1 is the radial component of the Hill reference frame of the chief, and (a,Ψ, p1, p2, q1, q2)

are the equinoctial element set with Ψ as the true longitude.

C.3 Differential Mean and True Longitude

The geometric transformation matrix depends on the differential true longitude (δΨ) to com-

pute relative state vector in the curvilinear frame. In case δΨ is not directly available, then it can

be computed from the differential mean longitude (δΛ) using the following relation:

δΨ =
∂Ψ

δΛ
δΛ +

∂Ψ

δq1
δq1 +

∂Ψ

δq2
δq2, (C.38)

where

∂Ψ

∂Λ
= −2

q1 cos (Ψ)

η3
− 1/2

(
η2 + 2 q1 2 − 1

)
cos (2 Ψ)

η3

− 2
sin (Ψ) q2

η3
− q1 q2 sin (2 Ψ)

η3
+ 1/2

η2 − 3

η3
, (C.39)

∂Ψ

∂q1
= 4

cos (Ψ) q1 q2

2 η4 + 2 η3
+

(
2 q1 2q2 − η q2 − q2

)
cos (2 Ψ)

2 η4 + 2 η3

+

(
−4 q1 2 + 4 η + 4

)
sin (Ψ)

2 η4 + 2 η3
+

(
−q1 η2 − 2 q1 3 + η q1 + 2 q1

)
sin (2 Ψ)

2 η4 + 2 η3
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+
2 η2q2 + 3 η q2 + 3 q2

2 η4 + 2 η3
, (C.40)

∂Ψ

∂q2
=

(
−4 η2 − 4 q1 2 − 4 η

)
cos (Ψ)

2 η4 + 2 η3
+

(
−2 q1 η2 − 2 q1 3 − η q1 + q1

)
cos (2 Ψ)

2 η4 + 2 η3

− 4
sin (Ψ) q1 q2

2 η4 + 2 η3
+

(
−η2q2 − 2 q1 2q2 − η q2

)
sin (2 Ψ)

2 η4 + 2 η3

+
−2 q1 η2 − 3 η q1 − 3 q1

2 η4 + 2 η3
. (C.41)
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APPENDIX D

SWARM SIMULATION TOOL

The analytic propagator for the absolute and relative motion of artificial satellites using the

perturbation theories developed in this work is implemented in a MATLAB tool, referred to as

SwARM, and is available in the supplementary files as part of this dissertation. The graphical

front-end for SwARM is shown in Figure D.1. To be specific, SwARM implements a second-

order analytic propagator for the absolute and relative motion in the presence of the gravitational

harmonic perturbations. The J2 harmonic is considered as the first-order perturbation and the rest

of the harmonics as the second-order perturbations. The secular and periodic effects due to the

oblateness potential are added up to order three and two, respectively (see Section 3.1). For the

higher zonal harmonics, secular and short-periodic effects are included up to order two and the

long-periodic effects up to order one (see Section 3.2). For tesseral harmonics, only the short-

periodic effects have been included up to order two (see Section 3.6). The theory is completely

closed-form in the eccentricity with the tesseral effects computed using numerical quadrature.

There is an option to use the eccentricity expansions for computing the tesseral periodic effects

with the terms included up to O(e7).

A formation can be simulated by specifying the formation parameters that determines the mean

elements of a deputy satellite (see Section 5.1). The relative orbit is propagated using the RM-STM

(see Sections 4.2 and 4.3). In case of the Relative State option for the RM-STM in SwARM, the

relative states in the curvilinear frame are generated using a first-order transformation between

the mean and true longitudes of the chief satellite. Otherwise, only the differential osculating

equinoctial elements are analytically propagated and the results are converted into the relative

states using the exact nonlinear transformation. For a given chief orbit, the RM-STM needs to

be generated only once and different formations can be propagated using the RM-STM without

propagating the chief’s orbit again. SwARM also provides a common interface to propagate the
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orbits numerically using GMAT or MATLAB, and it can also plot the errors between the numerical

and analytical results.

Figure D.1: Frontend for the MATLAB tool SwARM.
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