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ABSTRACT

In parallel programming, a concurrent container usually distributes its elements to

all processing units (locations) equally to maximize the processing ability. However,

this distribution strategy does not perform well when we apply nested parallel func-

tions on a composed concurrent container, such as a concurrent vector of vectors or

a concurrent map of lists. The distribution of the inner concurrent containers across

the system will mess up the locality of the elements in the composed containers,

generating a lot of inter-process communication when the nested parallel operations

are called to access the container’s elements. As the hierarchy in modern high per-

formance computing (HPC) systems become large and complex, a large amount of

inter-process communication, especially those between two remote processing units

(such as two cores on different nodes), will have dramatic negative impact on the

performance of the parallel applications.

In this thesis, we introduce a hierarchical system view that represents the topol-

ogy of the processing units in a HPC system, and use it to guide the distribution of

the composed concurrent containers. It reduces the number of processing elements

involved in storing in the inner concurrent containers, which reduces memory usage

and improves construction time. It also reduces the amount of inter-process com-

munication by improving the locality of the elements when we apply nested parallel

functions on a composed concurrent container.

To evaluate our approach, we implement two concurrent associative multi-key

containers, multimap and multiset, in the Standard Template Adaptive Parallel Li-

brary (STAPL), and use the hierarchical system view on the distribution of composed

2D and 3D containers. Finally, we show great improvement on both the construction
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time and the execution time of the nested parallel functions with various numbers

of cores and hierarchies.
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1. INTRODUCTION

As the processing capacity of a single core is limited and the amount of data

to process is increasing steadily, High Performance Computing (HPC) [1] becomes

the main way to solve large problems efficiently. HPC refers to the parallel process-

ing of data on a system with a massive number of processors that delivers a much

higher performance than a general-purpose computer. The concurrent container is

one of the main components in parallel programming frameworks that distributes

the elements it handles to different processing units (locations) to process them in

parallel. Usually, the elements are divided into each location equally, however, this

distribution strategy does not perform well when we apply nested parallel functions

on a composed concurrent container, such as a concurrent vector of vectors or a con-

current map of lists. It is because the distribution of the inner concurrent containers

across the entire system will mess up the locality of the elements in the composed

containers, generating a lot of inter-process communication when a nested parallel

function is called to access the container’s elements. As the hierarchy in modern

HPC systems become large and complex, a large amount of inter-process commu-

nication, especially those between two remote processing units (such as two cores

on different nodes), will have a dramatic negative impact on the performance of the

parallel applications.

This thesis introduces a hierarchical system view that represents the topology

of the processing units in a HPC system and uses it to guide the distribution of

the composed concurrent containers. It reduces the number of processing elements

involved in storing in the inner concurrent containers, which reduces memory usage

and improves construction time. It also reduces the amount of inter-process com-
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munication by improving the locality of the elements when we apply nested parallel

functions on a composed concurrent container. To evaluate our approach, we im-

plement two concurrent associative multi-key containers, multimap and multiset, in

the Standard Template Adaptive Parallel Library (STAPL) [2], and use the hierar-

chical system view on the distribution of composed 2D and 3D containers to show

great improvement of our distribution strategy on both the construction time and

the execution time of the nested parallel functions.

1.1 HPC Introduction

According to the system architectures, generally, there are two types of HPC

systems: the shared-memory system and the distributed-memory system (Figure

1.1). In a shared-memory system, all the processors use the same address space

and they access the shared memory with an equal priority. The advantage is that

the memory access time for each processor is very fast, because they are directly

connected to the shared memory. But the shared memory cannot handle a lot of

processors at the same time due to its capacity and bandwidth. It is hard to have a

shared-memory system with a large scale and a complex hierarchical structure, thus,

our work is mainly focused on the distributed-memory system.

Figure 1.1: Distributed-memory System and Shared-memory System.
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Unlike the shared-memory system, each processor in a distributed-memory system

has its own memory and is connected with other processors by a high-speed network.

Accessing elements in the memory of another processor is much slower than accessing

elements in its own memory. But a supercomputer using the distributed-memory

system can easily accommodate thousands of processors. These processors are not

placed in a linear or arbitrary order. They are usually organized and connected in a

hierarchical way (e.g., a 5D torus of nodes, each with 16 cores in shared memory with

a high-speed interconnect). These levels are commonly used in a current distributed-

memory system: compute nodes, dies (NUMA nodes), cores and threads.

A compute node is a big module in the HPC system, which often consists of

multiple dies that are connected with memory banks. A die is usually a NUMA

node that contains multiple cores with a shared cache that has uniform memory

access. A core is a basic computational unit; it has its own cache and could fork

multiple threads to work concurrently. A thread is the smallest unit in the HPC

system; all the threads in one core have the same address space.

The data transmission speed within each level of the system hierarchy is also

different. Usually, the processing units that are physically adjacent will have high

communication speed. Figure 1.2 shows the speed of the hyper transport (HT)

link between the non-uniform memory access (NUMA) nodes in one Cray XE6 [3]

compute node from the hopper system at NERSC [3]. The communication speed

within a NUMA node is much faster than that between two NUMA nodes. Moreover,

even the NUMA nodes in the same compute node may have different communication

speed. P0 and P1 are two NUMA nodes on the same socket, so they have faster

communication speed, which is 19.2GB/s. The communication speed between nodes

P0 and P2, which are located on different sockets, has 12.8GB/s communication

speed. The speed of ncHT3 link between Hopper compute node is 10.4GB/s. Thus,
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how to fully utilize this feature to optimize the distribution of the composed data

structures becomes the main challenge of our work.

Figure 1.2: Cray XE6 Hopper Node Topology [3]

1.2 STAPL Introduction

The Standard Template Adaptive Parallel Library (STAPL) [2] is a parallel pro-

gramming framework whose components help users to implement parallel applica-

tions without managing the details of data distribution and access. It is developed

using the C++ programming language and provides the parallel equivalents of most

algorithms and data structures (containers) found in its Standard Library (STL).

Moreover, STAPL includes many other concepts and components that are useful for

parallel programming, such as parallel matrix [4], graph [5]. Containers in STAPL

are built using components of the Parallel Container Framework [6]. Algorithms are

expressed using algorithmic skeletons [7, 8]. Its run-time system [9, 10] is responsible

for the inter-processor communication and task scheduling to achieve higher load

balance.

1.3 Contribution

This work provides the following contributions:
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• A STAPL view that represents the topology of system hierarchy to guide the

distribution of the composed concurrent containers.

• A convenient and flexible control for the distribution of the composed concur-

rent containers based on the system hierarchy.

• Locality and memory usage improvement for the construction of a composed

concurrent container.

• Performance improvement for the nested parallel algorithms and operations

that use composed concurrent containers.

• Extension of STAPL features and functionalities by implementing parallel mul-

timap and multiset containers that use the hierarchical system view to specify

their distribution.

1.4 Outline

This thesis will first discuss the related work about the distribution of nested par-

allelism in other parallel frameworks and the previous work in STAPL that supports

nested parallelism on the composed concurrent containers (Chapter 2). Then, we

will describe the details about why the commonly used distribution performs poorly

on the composed concurrent containers and why our work can solve this problem

(Chapter 3). After that, we will present the implementation of the hierarchical sys-

tem view (Chapter 4) and the multimap and multiset containers (Chapter 5). Next,

we demonstrate the performance improvement by conducting the experiments on

the composed multimap containers who use the hierarchical system view for their

distribution (Chapter 6). Finally, we conclude and discuss future work (Chapter 7).
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2. PREVIOUS AND RELATED WORK

A considerable amount of research has been done on parallel programming frame-

works. Some of them, such as Intel TBB [11], only target shared-memory systems.

As we mentioned before, the structure of the shared-memory system is relatively

simple and small compared to the distributed-memory system. Thus, those frame-

works have limited distribution strategies for the nested parallelism according to the

hierarchical structure of the shared-memory system. Other parallel frameworks may

have some techniques that support the nested parallelism for distributed-memory

system, but some of them only support 2-level nested parallelism, and other parallel

frameworks require users to manually handle the distribution based on the system

hierarchy.

2.1 Nested Parallelism In Other Libraries

X10 [12] is a programming language that designed for the distributed-memory

system. The core concepts of X10 for the data distribution and storage are Ac-

tivity, Place and Partitioned-global. An Activity is a lightweight thread for the

task execution. A Place is a collection of Activities on the same processor or node.

Partitioned-global represents a global address space for the elements to be accessed

by both local and remote Activities. It supports hierarchical parallelism by applying

a second level place-to-physical-node mapping, but users need to manually take care

of the distribution at each level [13]. Our hierarchical system view uses the loca-

tion information that is abstracted by the STAPL run-time system to automatically

manage the distribution for multiple hierarchy levels.

Another productive parallel programming language, Chapel [14], provides similar

concepts to STAPL; a Locale is a computational unit in the parallel architecture
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that has uniform access to the memory, such as a node in the cluster architecture; a

Domain is an index set used to map elements to the Locales. It shows a global view

of distribution to users and makes the nested parallelism much easier by defining the

sub-domains at each level [15]. But it has the same problem that the partition from

a domain to sub-domains is not based on the system hierarchy; it leaves the burden

on users to map the sub-domains to the appropriate Locales for the systems with

different hierarchical structures.

Unified Parallel C (UPC) [16] is another programming language with Partitioned

Global Address Space (PGAS) like X10. It only supports 2-level nested parallelism

for task distribution. However, the data distribution is an important factor that af-

fects the performance of the parallel applications. A poor distribution will generate

unbalanced tasks which may not be simply handled by task distribution. For exam-

ple, if there are two tasks; one task has extremely heavy workload and the other has

little workload. The task distribution cannot balance the workload if the tasks are

not dividable.

Legion [17] is a parallel programming framework that supports dynamic mapping

according to the memory hierarchy in a HPC machine. Its Logical Region is a set

of first-class values that may be dynamically allocated and stored in data structures

[17]. Logical Region can be divided into sub-regions as needed. While multi-level

memory architecture and nested parallelism are detected, the regions will be initially

placed in the smallest memory where they fit. They represent the memory hierarchy

as a stack with the increasing order of memory bandwidth from the local processor.

This linear structure, sometimes, may not correctly reflect the real memory access

time from remote locations, and thus, causes unimportant regions to consume the

precious fast memory.

Kokkos [18], which is an extension of C++ library from Trilinos package [19],

7



supports nested parallelism by dividing processing elements into smaller groups at

thread level. However, it only works on the shared memory system.

Unlike the related work mentioned above, our work supports both shared-memory

system and distributed-memory systems. Its distribution is based on, but not limited

to, the system hierarchy. Our work can group arbitrary consecutive levels together, or

divide a level into multiple sub-levels according to the users’ demand or the hardware

properties. For example, the core level and the thread level can be grouped as one

level if we only use one thread each core. Also, we can further divide the node level

into sub-levels in which the cores in the nodes are on the same socket or not. This

gives us the flexibility to choose the features we want for the distribution of the

nested parallelism.

Figure 2.1: The STAPL framework
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2.2 STAPL Overview

The Standard Template Adaptive Parallel Library (STAPL) is a parallel pro-

gramming framework that provides building blocks for users to efficiently implement

parallel applications [2]. Its main components include the parallel Containers and

Algorithms, Views, Skeletons Framework, PARAGRAPH, and the STAPL Runtime

System (Figure 2.1). A container is a concurrent, thread-safe data structure that

distributes the elements to all locations. It has similar interfaces to its STL coun-

terpart, but apply parallel methods on the data it stores. An algorithm is a parallel

equivalent of the STL algorithm. It is expressed using algorithmic skeletons to rep-

resent its dependence patterns, and deal with the data through views [20]. A view

is a lightweight abstract data type that references to a set of elements. It works

like the iterator in the C++ Standard Library that provides a uniform collection of

data access operations for the elements it represents. The skeletons framework [7, 8]

simplifies the parallel patterns (e.g. map, reduce, and so on) a developer may use

while writing the applications. The task dependencies are represented as PARA-

GRAPHs, and the abstraction of inter-processor communication is provided by the

STAPL Runtime System [9, 10]. Other components that contain the mechanisms

and strategies about data distribution and task scheduling are abstracted away from

the users.

2.2.1 STAPL Runtime System

The STAPL Runtime System is an abstract layer that supports inter-process com-

munications for parallel frameworks [10]. It uses hybrid MPI + OpenMP or threads

model for shared and distributed memory system, and contains ARMI (Adaptive Re-

mote Method Invocation (RMI)), a task scheduler and performance monitor. ARMI

is a communication library that provides an abstraction of the inter-process com-

9



munication for the higher-level STAPL components [9]. It is a platform dependent

component in that its running characteristics are dependent on the operating system

and the computer architecture, but it has the ability to adjust its features auto-

matically according to different platforms or conditions to improve the performance

and resource usage. ARMI provides primitives for communication that are Remote

Method Invocations (RMI). RMIs have the flexibility of passing data or calling meth-

ods between processors, and thus can be more easily adapted to the needs of the

applications. The scheduler arranges the set of task graphs to determine which are

to be executed first on each location [9]. The PARAGRAPH Executor is responsible

for processing the tasks in a task graph that are ready for execution.

2.2.2 Nested Parallelism

Figure 2.2: Execution model with nested parallel section [21]
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The execution of the tasks in a parallel algorithm or operation is decided by

PARAGRAPH, a distributed graph represents the task dependencies. Each PARA-

GRAPH is executed independently. A termination detection algorithm determines

when a PARAGRAPH has finished and its results are available to other PARA-

GRAPHs. When a task itself in the PARAGRAPH is also a parallel algorithm or

operation, it will create a new nested parallel section for its task execution and em-

ploy a nested termination detection [10]. The STAPL Runtime System supports

the creation of parallel sections on arbitrary set of available locations. If a nested

parallel section is needed (e.g. creating a composed concurrent container), it could

be created using a subset of locations of its parent section. An example of nested

parallel sections is shown in Figure 2.2.

2.2.3 STAPL Container Framework

To simplify the process of developing concurrent data structures, the Parallel

Container Framework (PCF) provides a set of predefined concepts and a common

methodology that can be used to construct a new parallel container through inher-

iting features from the appropriate concepts [6]. The main concepts defined in the

Parallel Container Framework are the Global Identifier, Domain, Distribution, Par-

tition, Partition Mapper and PCF Base Classes. The basic structure of the PCF and

the interaction between these modules are shown in Figure 2.3.

The Global Identifier (GID) distinguishes the elements stored in a STAPL parallel

container so that the elements can be distributed across the processors. A Domain

is a collection of GIDs of the elements in the same container.

Data Distribution is the component that takes charge of the allocation of each

element. An element will be stored on a location according to its GID. The Data

Distribution uses a Partition to separate the domain into disjoint sub-domains, and
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Figure 2.3: pContainer Framework Structure

then, employs a Partition Mapper to determine the location on which the elements

associated with a sub-domain should be stored. Usually the Partition equally dis-

tributes the GIDs into the sub-domains to keep the balance of workload for each

processor.

The PCF Base Classes are implemented as the building blocks for programmers to

avoid the tedious and repetitive work for distribution and element access by building
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new containers that derive from these base classes. They are generic classes that use

template parameters to meet users’ needs and provide the basic functionality of data

distribution, element access, and container management.

2.2.4 View-based Distribution

The view-based distribution is a key concept in STAPL that gives a convenient

way for users to define a customized distribution for their parallel containers. As

we mentioned in section 2.2.3, users are required to provide a partition that divides

elements to multiple subsets and a mapper that maps a subset to a corresponding

location to make a customized distribution. Users can also specify this partition by

defining a view.

V iew = {Collection, Domain, Mapping functor} (2.1)

A view is defined by Equation 2.1. Collection is the underlying collection of elements;

Domain is the set of elements that are referenced by the view; and the Mapping

functor decides the mapping from View’s domain to the Collection’s domain.

VSystem = {Location container, Locationdomain, LID → Location} (2.2)

VPartition = {VSystem, Partitiondomain, P ID → LID} (2.3)

VElements = {VPartition, Elementsdomain, GID → PID} (2.4)

The View-based distribution is a nested view defined by Equation 2.2, 2.3 and

13



2.4. The VElements is a view decides how the elements’ id (GIDs) are divided into

multiple subsets (partitions). The VPartition is a view describes how a partition id

(PID) is mapped to a location id (LID) in the VSystem. The VSystem is a system view

indicates which locations should be used in the distribution. Thus, we use only one

view to wrap all the information a container needs for its distribution.

Users do not need to create these views by themselves. STAPL provides prede-

fined frameworks such as balance distribution, cyclic distribution, arbitrary distribu-

tion and so forth, for users to build a view-based distribution easily. Users can build

a customized distribution by passing a domain of elements that will be distributed, a

set of locations that will be used to store the elements, a functor that maps a GID to

a partition ID, and a functor that maps a partition ID to a location ID to the view-

based distribution framework which creates a view that represents the distribution

they want for their parallel containers.

2.2.5 STAPL Redistribution

Many concurrent containers, such as vector, list and map, allow users to dynam-

ically insert or remove elements. The balance of the original distribution will be

broken if a considerable number of elements are inserted or removed. Another situ-

ation is that a concurrent container may be successively used in two algorithms that

require different distribution strategies. Thus, STAPL provides a feature that allows

a user to redo the distribution for an existing concurrent container as needed [21].

The user only needs to pass a view-based distribution to the redistribution function

of a concurrent container, then the data stored in the container will be reallocated

based on the new distribution.
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3. NESTED DISTRIBUTION OF COMPOSED CONTAINER

In this chapter, we will discuss the difference between traditional distribution

and our hierarchical distribution including their advantages and disadvantages using

examples of 2D and 3D composed containers.

3.1 Balanced Global Distribution

The balanced distribution across the entire system is commonly used as the de-

fault distribution strategy in a concurrent container. It equally distributes the ele-

ments to all locations so that the elements can be processed by multiple processing

units in parallel.

The default constructor of a composed container in STAPL uses balanced dis-

tribution for all the concurrent inner containers it has. Without information about

the system hierarchy, it either restricts nested containers to a single location or dis-

tributes them across all locations. A concurrent container will create base containers

on each location to hold its elements. If the elements stored in a base container are

also concurrent containers, the elements of the inner concurrent containers will be

distributed again. Thus, these base containers do not store the real data. They hold

a place in the location to track their elements. Only the base containers created by

the innermost concurrent containers own the data we want. However, we are contin-

ually creating base containers, and the data are distributed across the locations at

each level during the process of constructing a composed container.

Comparing with a 1D container who has the same amount of elements as the 2D

composed container distributed across the system at both levels, the number of ele-

ments stored on each location is unchanged, but the original locality of the elements

in the composed container has been messed up as the elements are distributed across
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the entire system.

Figure 3.1: 1D Container Default Distribution

Figure 3.1 shows the allocation of 16 elements in a 1D concurrent array on 4

locations. The yellow rectangle around a set of elements represents the base container

that holds the elements on each location. We can see that there is one base container

created on each location, and each base container has 4 elements. When a parallel

operation is applied to the 1D array, it will call the base containers on each location

and let them to process its local data at the same time to improve the performance.

If we use a 4 by 4 2D concurrent array to hold the same amount of elements,

the composed array will have 4 inner containers, which is a 1D concurrent array,

and each inner container will have 4 elements. The allocation of elements in this

2D concurrent array is shown in the Figure 3.2. The 2D array first is distributed

like a 1D array whose size is 4. It creates one base containers on each location to
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hold a 1D array. Then, the elements in the 1D array will also be distributed to all

the locations. The 1D concurrent array will create a base container on each location

again and store its elements into them. A 1D concurrent array has 4 elements, so

each base container only holds one element. There are 4 base containers created

on each location by the 1D concurrent container. Thus, there are 4 base containers

created by the 2D concurrent array and 16 base containers created by the inner 1D

concurrent arrays on 4 locations. It requires 16 more base containers than the 1D

container to hold the same amount of elements.

Figure 3.2: 2D Container Default Distribution
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When we apply a 2-level nested parallel function on a 2D composed container,

the outer container will inform all the base containers on each location to process the

first level parallel function. Then, the second level parallel function will be applied

to every inner container stored in the base containers. Each inner container is also

required to communicate with its base containers on every location to process their

elements. For example, if we want to modify the element E[0][3], we need to first

communicate with the base container on location 0 to find its inner container E[0],

and then, track down to its base container on location 3 to access the element E[0][3].

Therefore, the communication pattern at each level of an composed container with

the global balanced distribution is a complete graph.

We can deduce the structure of a N-dimensional composed container from that of

a 2D composed container. The disadvantage of the global balanced distribution in the

composed concurrent container is that the elements stored on the same location do

not have a good spatial locality because they are not from the same outer container.

Whenever it has a nested level, the number of base containers created will increase

and the tracing from the outermost container to a innermost element will require

more communication between different locations. Especially when the number of

locations is very large, the overhead of the communication and the construction of

the base containers is significant when compared with the 1D concurrent container

although they handle the same amount of elements.

3.2 Hierarchical Distribution

The hierarchical distribution is different from the global balanced distribution. It

distributes the composed concurrent container based on the structure of the system

hierarchy. The outer containers may be distributed at the node level and the inner

containers could be distributed at the core level. Distributing a container at the node
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level means that the elements of the container will be distributed to all the locations

in the same node. But no matter which level we use, the principle of hierarchical

distribution is to group the locations based on the structure of system hierarchy,

and let a smaller set of locations to handle the distribution of its inner containers.

A location is physically closer to the locations in the same set than the locations

outside the set, and is likely to have lower communication overhead with it.

3.2.1 2D Hierarchical Distribution

Figure 3.3: 2D Container Hierarchical Distribution

Distributing a container to a smaller location set will make each base container

to hold more elements because the number of elements on each level is unchanged.

And the locality of the elements will be improved because more consecutive elements
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are put together in the same location. The number of base containers is decided by

how many locations are used in the distribution at that level, thus the number of

the base containers created by the hierarchical distribution is less than that created

by the global balanced distribution. When a composed concurrent container is used

in a nested parallel function, there will be less communication required to trace the

innermost elements through the base containers. Moreover, the communication is

limited in the same location set at each level. This reduces the cost that generated by

the communication between remote locations (e.g. two locations on different nodes).

Figure 3.3 shows an example of the hierarchical distribution on the same 2D

composed array as the one we showed in the Figure 3.2. The composed array has 4

inner 1D arrays, E[0] to E[3].

The distribution of the outer 2D array is same as the default distribution that

creates 1 base container on each location to hold a 1D array. But the elements in

the 1D arrays will be distributed to a smaller location set. For example, here we will

limit the distribution of the 1D array in 1 location. So all the 4 elements in a 1D

array will be distributed to the same base container on the local location.

We can see that there are 4 base containers created by the inner 1D arrays and

totally 8 base containers created on 4 locations. It is much less than the number of

base containers created by the composed array with the global balanced distribution.

The benefits are the same if we use four location sets instead of four locations because

more consecutive elements will be put on the same location, and the communication

from a base container to its elements will be faster.

3.2.2 3D Hierarchical Distribution

The hierarchical distribution of a 3D composed container on a 2 by 2 hierarchical

system is shown in Figure 3.4. The container has 4 elements on each level and totally
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Figure 3.4: 3D Container Hierarchical Distribution

64 elements. It is distributed to a system with 2 nodes; each node has 2 locations.

First, we distribute the 3D composed containers to all locations. Thus, each location

receives one 2D container. Then the 2D inner containers on the Node 0 will be

distributed to all the locations on the Node 0 (location 0 and 1). The inner containers

on the Node 1 will be distributed to all the locations on the Node 1 (location 2 and 3).

Each location will contain four 1D containers. The two 1D containers that are from

the same 2D container will be grouped together in a base container. Finally, the 1D

containers are distributed to the same location as the location its parent container

stored, keeping them on a single location. Each location will store 16 elements. The

4 elements that are from the same 1D container will be put in one base container.
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4. IMPLEMENTATION OF HIERARCHICAL SYSTEM VIEW

The Hierarchical System view is implemented using STAPL graph container and

STAPL graph view [5] (Figure 4.1) because the hierarchy in a distributed-memory

system can be represented as a tree structure. The STAPL graph container is a

concurrent container that distributes its vertexes and edges to all locations and pro-

vides parallel methods to access and modify the vertexes and edges it stores. STAPL

graph has several template properties that can be customized by users to adjust the

behavior of the graph as needed. We choose the static undirected graph as the base

class of our work. The static property means that the graph cannot be modified by

dynamically adding or removing vertexes after its construction. Because the system

hierarchy is decided at runtime, and usually the system structure will not be changed

during the process of a parallel algorithm. We use the undirected property because

the distribution of the nested parallelism always follows the hierarchical structure,

whose order is from the top level down to the bottom level, so it is unnecessary to

use directed edges. The main components of STAPL Hierarchical System View are

Location Vertex, Hierarchy Container and Hierarchical System View.

The Location Vertex is the vertex property used in the undirected Hierarchy

Container to represent a set of locations at that level. It contains the information

of its level, child vertexes, descendant vertexes and the locations it represents. The

child vertexes of a vertex v are the connected vertexes of v at the next level. The

descendant vertexes are all the vertexes below v in the graph.

The Hierarchy Container is a data structure that represents the whole system

hierarchy. It inherits the basic functionalities from the STAPL static undirected

graph and constructs a tree graph using the location vertexes. It offers the methods
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Figure 4.1: Hierarchical System View Structure

to find a certain vertex and get its information by invoking the corresponding meth-

ods in the location vertex. A vector of integers will be passed to the constructor

of Hierarchy Container to indicate the height of the tree and the width of a ver-

tex at each level. This vector is usually specified by a user at the runtime using
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the STAPL HIERARCHICAL PROC environment variable and returned by the

get hierarchy widths() function. For example, if the vector is {2,4}, each vertex at

the first level has two children and each vertex at the second level has four children.

This will generate a 3 level tree graph showed in Figure 4.2. The top level will al-

ways be a single vertex that represents all the locations in the system. One thing

that deserves our attention is that any level whose vertex width equals to one will

generate exactly the same view as that of its parent level. We can reuse the view of

the previous level to achieve the same distribution.

Figure 4.2: Hierarchical System Graph
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4.1 Hierarchical System View

The Hierarchical System View is a graph view of the Hierarchy Container. It is a

lightweight representation of a set of Location Vertexes in the Hierarchy Container.

A user could access a Location Vertex and its information by calling the methods

of the Hierarchical System View. It also provides the methods to get a sub-view for

the top level, the next level, the lower level and the bottom level (Figure 4.3). The

top level sub-view is a view of the hierarchical graph root, which is a single vertex

that represents all the locations in the system hierarchy. The bottom level sub-view

is a view with references to the vertexes at the lowest level that represents only one

location for each vertex. The next level sub-view is the view of the vertexes at the

next level. The lower level sub-view allows users to specify a lower level that the

sub-view should be created. It can be used when the height of system hierarchy

is larger than the dimension of the composed container, and let the users pick a

suitable level in the system hierarchy for their distribution. The only thing required

is that the specified level must be lower than current level because a vertex at a

higher level represents a larger domain of locations, it will violate the rule that the

location domain of a nested parallel section should be a subset of its parent location

domain. Also, when the height of system hierarchy is less than the dimension of the

composed containers, users can reuse the hierarchical system view of an appropriate

level multiple times to give the best distribution for all the inner containers.

4.1.1 Sequential and Parallel Initialization

When a Hierarchy Container is constructed, its vertexes are empty. We will

do the vertex initialization when the Hierarchical System View of that container is

created. The reason behind is that we provide two ways to initialize the vertexes

in the Hierarchical Container: the first one is to use the sequential initialization
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Figure 4.3: Hierarchical System View

function that computes and assigns the location domain for each vertex from the

top level to the bottom level when the constructor of the Hierarchical System View

is called; the other way is to call a generation function that initializes each vertex

of a Hierarchy Container using all processing units in parallel, and then returns the

Hierarchical System View.

If the Hierarchical System View is just created by its constructor, the sequential

initialization function in the Hierarchical Container will be called to set the vertex

properties. Thus, we recommend creating the Hierarchical System View using its

generation function if the system hierarchy is very large because the sequential vertex

initialization is not efficient although it may be only called once for each run of the
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application.

4.1.2 Building Composed Distribution by Hierarchical System View

There are three steps to build a composed container by the hierarchical system

view. First, a user needs to make a generator to specify the distribution for each ele-

ment that is a concurrent container. The distribution can be easily made by passing

a suitable level of hierarchical system view to a predefined view-based distribution

framework provided by STAPL. Then, the user can build a composed distribution us-

ing the generator, and use the composed distribution to create a composed container.

The hierarchical system view can also be used to redistribute an existing concurrent

container. We only need to make a view-based distribution or a composed distribu-

tion by the hierarchical system view, and pass it to the redistribution function of a

concurrent container. An example can be found in the following pseudo-code.

The pseudo-code in Figure 4.4 uses hierarchical system view to create composed

containers. The outer container is balanced distributed to the top level of the hierar-

chical system view, which contains all the locations. The second level containers are

cyclic distributed to the location sets at the second level of the hierarchical system

view. All remaining levels except the last are arbitrary distributed to the location

sets at that same level. The last level elements are blocked distributed to a single

location represented by the vertexes at the bottom level of the hierarchical system

view.
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// generate distribution for each element who is a concurrent container.
struct generator
{
hierarchical system view hie sys view ;

distribution operator()(element) {
switch(element. level )
case 0:
return balance distribution (element.domain, hie sys view. top level ());

case 1:
return cyclic distribution (element.domain, hie sys view.next level ());

...
case i :
return arbitrary(element.domain, hie sys view. lower level ( i ),

GID to PID functor, PID to LID functor);
...
case last level :
return block distribution (element.domain, hie sys view.bottom level ());

}
};

// make hierarchical system view by a vector of widths for each level
hierarchical system view = make hierarchical system view(vector<int> level widths);

// make composed distribution
composed distribution comp dist(generator(hierarchical system view));

// make composed container
outer container<inner container> composed container(comp dist);

// redistribute an existing container
existing container . redistribution (comp dist);

Figure 4.4: Use cases for Hierarchical System View in the distribution of composed
containers
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5. IMPLEMENTATION OF ASSOCIATIVE MULTI-KEY CONTAINERS

The reason for choosing multimap and multiset containers as the test object of

our hierarchical system view is because the associative containers are often used to

construct a composed container. Although multi-dimensional array is another most

commonly used composed container, we already have implemented multiarray and

matrix in STAPL to handle the distribution of the composed concurrent array, but

the multimap and multiset have not yet been implemented in STAPL.

The STAPL multimap and multiset are designed to be the parallel version of the

STL multimap and multiset, therefore, they will provide the same user-level facilities

as their STL equivalents. Superficially, STAPL multimap and multiset are similar

to their STL equivalents, but hide the detail of the concurrency and distribution

management in the implementation of the STAPL containers. The components of

the STAPL Container Framework that are specialized for multimap and multiset are

the base container, the base container traits, distribution, container manager, the

container class and the container traits.

The Traits are the template classes that can be passed to their corresponding

components to specialize the properties according to users needs. It abstracts the

types of primary components for the developer to access them rapidly and conve-

niently, while hiding the other private or subordinate component types.

The container classes of STAPL multimap and multiset have the interfaces that

are similar to their STL counterparts; most member functions in STL multimap and

multiset are provided in STAPL equivalents with the same function names, return

types and parameters. Furthermore, the STAPL containers also provide extra func-

tions for users to manipulate the data, such as applying asynchronous methods to a
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given element. In the definition of these member functions, a key will be transformed

to a unique GID to support the data distribution, because the key of the element in

a multimap or a multiset is not necessarily exclusive. Thus, when an element with

a key is passed into a function, the multiplicity of the key in this container will be

calculated first, and then the multiplicity will be paired with the key to compose

an instance of the multiKey structure as the GID of this element. The multiKey

contains the type cast operator to allow implicit conversion from multiKey type to

Key type. This allows the use of the container to be unaware of the multiplicity.

Unordered multimap and unordered multiset also use the same multiKey concept

as their GID type. In the ordered associative containers, the GID is sorted in the

domain, so we also design a templated multiComp class as the comparator of the

multiKey to keep GIDs in order.

The distribution classes of STAPL multimap and multiset are derived from the

base distribution and associative distribution classes. The former is the common

base class that provides essential functionality for all distributions of STAPL par-

allel containers. The latter is a subclass of the former that provides functionality

exclusively for the distribution of STAPL associative containers. The distribution of

STAPL multimap and multiset uses the balanced partition as the default partition

if the user does not specify it. The balanced partition evenly divides the domain

into subdomains that contain contiguous ranges of GIDs. It guarantees that the

difference between the sizes of any two subdomains is at most one. When an element

is inserted into a STAPL multimap or a STAPL multiset, its GID will be registered

into the vector directory instance of the container. The vector directory is a class

built for dynamic-sized containers to manage the distributed GIDs. It can determine

the location on which a GID is located and allow user to invoke the methods on the

location of GIDs without using external entities to know exact locality information.
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The container manager of the multimap and multiset containers store the ele-

ments of the container mapped to a location by the partition and mapping. After

mapping the subdomains to the locations, the elements with the GIDs in one sub-

domain will be sent to a base container, which is contained in the corresponding

location that the subdomain should belong to. A Container Manager is the compo-

nent that stores base containers and provides the access of the base containers on

a location. The associative container manager is a base class implemented for as-

sociative container in the STAPL Parallel Container Framework. Deriving from the

base class, the container manager classes of STAPL multimap and multiset inherit

the basic functionality of supervising the base containers. It knows which base con-

tainers the elements reside locally. The container manager provides functions that

can invoke base container functions on an element without specifying in which base

container the element is located.

The base container, also called bContainer, is a subunit that holds a part of the

elements to share the workload of STAPL container. The base containers of cur-

rent STAPL containers are implemented based on their STL counterparts, whose

properties are suitable for the requirement of STAPL containers. For example, the

base containers of STAPL multimap consist of STL multimap and an integer class

member, CID, which is the identifier of this base container. However, other libraries

containers or a customized container can also be used to build the base container

according to programmer's need. Except directly invoking the function of its STL

counterpart, the base containers of STAPL multimap and multiset provide additional

functions to support the interaction of PCF components, such as retrieving the iden-

tifier of a base container or returning a domain of all the GIDs in this base container.

Moreover, to make the GIDs fit in with the features of STAPL multimap and multi-

set, a unique function is added to decrease the multiplicity of all the elements with
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a certain key by one each time an element with that key is erased. It is unique for

multiple associative containers, whose GID is a key-multiplicity pair.

To apply a method of STAPL multimap or multiset on a given element, the

element's key will be first translated to the GID type, multiKey, and then invoke the

related function of the container distribution. If the GID exists in the domain, the

distribution will find which location the element is located and invoke the function

of the location’s container manager. The container manager will find in which base

container the element is contained. Finally, the function of base container is called

to access the element.
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6. PERFORMANCE EVALUATION

In this chapter we present the methodology used in our tests and the perfor-

mance evaluation of our work. We will first address the experimental environment,

including the specification of the hardware and the software. Next, we will present

the scalability tests for the STAPL multimap and multiset containers. Then, we will

make the performance evaluation for the 1D, 2D and 3D containers that are using

our hierarchical distribution, and comparing their results with those who are using

the global balanced distribution. Note that for the remainder of this chapter,the

global balanced distribution will be referred to as the default distribution.

6.1 Experimental Environment

Our experiments are conducted on Cray XE6m (rain) supercomputer. It is a

distributed-memory system using 2-dimensional torus architecture. It has totally

576 cores contained in 24 nodes that are connected by Cray Gemini high-speed

interconnect. The details of the hardware configurations can be found in Table 6.1.

There are 24 nodes in Cray XE6m; 12 of them have 2 AMD 16-core processors and

the others have one 16-core processor with accelerators. The hierarchical structure of

one node is shown in Figure 6.1. This is a node that contains two 16-core processors

with 32 GB DDR3 Memory; one processor has two dies and each die contains 8 cores

with a 6 MB shared L3 cache.

The software we used in our experiments is shown in Table 6.2. We use g++ 4.9.2

as the compiler of STAPL. And we install the boost 1.56 on rain because STAPL

depends on the functionalities provided by several Boost libraries.

There is run-to-run variability in the execution time when we run the same pro-

gram with a fixed number of cores. To minimize the impact of that variability, we

33



Table 6.1: Cray XE6m hardware specifications.
Board count 6
Nodes per board 4
Node count 24
Cores per node 32 on 12 nodes

16 on 12 nodes
Total number of cores 576
Processor Type 64-bit AMD Opteron (Interlagos) 6272, 2.1GHz
Cache 8x61 KB L1 I-cache, 16x16 KB L1 D-cache, 8x2

MB L2 cache per core, 2x8 MB shared L3 cache
Memory 32 or 64 GB registered ECC DDR3 SDRAM per

compute node
Memory per core 2 GB
Interconnect 1 Gemini routing and communication ASIC per

two compute nodes.
48 switch ports per Gemini chip (160GB/s switch-
ing capacity per chip).
2-D torus organization

Figure 6.1: Hierarchical Structure of a Node in Cray XE6m

collect the results of the experiments with the same configuration 32 times, and then

report the mean and 95% confidence interval using a normal distribution.
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Table 6.2: Cray XE6m software specifications.
OS Cray Linux Environment
Compilers Cray g++ version 4.9.2
MPI version 2.0
Libraries Boost version 1.56

6.2 Scaling test of Associative Multi-Key Containers

Scalability is a characteristic that indicates the ability of an application to ef-

ficiently deal with the data using increasing numbers of parallel processing units

(processes, cores, threads etc.). We did both strong and weak scaling tests on three

basic functionalities of the STAPL multimap and multiset containers: insert, find,

and erase. They are the most frequently used functions of these two containers and

greatly affect the speed of data processing in a parallel program.

6.2.1 Strong Scalability Evaluation on STAPL Multimap and Multiset

Strong scaling refers to the test of the application running time using an increasing

number of cores and a fixed input size. In strong scaling tests, an application is

considered to scale linearly if the ratio of the performance improvement is equal to

the ratio of the increased number of cores (Equation 6.1). The scale of running the

application with k cores, Sk, is defined as the ratio between t1 and tk, where t1 is the

amount of time to complete a work unit with 1 core and tk is the amount of time to

finish the same unit of work with k cores.

Sk =
t1
tk

(6.1)

Figure 6.2 shows a good scalability of all three functions, insert, find and delete,

for STAPL multimap and multiset containers. We can see when the number of cores
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Figure 6.2: Strong Scaling Test for Multimap and Multiset using 100,000,000 ele-
ments

is doubled, we cut more than half of the execution time. This is because the operation

time for the insert, find and delete in multimap and multiset is O log(n). It means

the average operation time will increase as the number of elements increases. When

we distribute the elements to multiple locations, we are not only cut off the workload

on one location, we also reduce the average operation time since each base container

now only holds a part of the elements. That is why our scalability is a little bit

higher than the linear scalability.

6.2.2 Weak Scalability Evaluation

Weak scaling is another basic evaluation method that measures the parallel per-

formance of a given application. In this test, the number of elements stored on each

location is constant no matter how many cores we use. Weak scaling differs from the

strong scaling, which focuses on the measurements of CPU limitation (CPU-bound),

by emphasizing the presentation of the memory effect (memory-bound) on the par-

allel application. If the amount of time to complete a work unit with 1 processing

element is t1, and the amount of time to complete k of the same work units with k
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cores is tk, the weak scaling efficiency is defined as:

Sk =
t1
tk

(6.2)

Because tk is greater than t1, in order to show the percent increase in execution time,

we report the normalized execution time, Tk, which is defined as:

Tk =
tk
t1
× 100% (6.3)

Figure 6.3: Weak Scaling Test for Multimap and Multiset using 1,000,000 elements
on each core

Because the workload of each processor will not change, in theory, the execution

time should be fixed as well. Thus, when we double the number of processors, the

smaller variation of execution time, the better efficiency we have. From the graphical

view, an ideal scaling should be a horizontal line.

Figure 6.3 shows the scalability of multimap and multiset in the weak scaling

test. We can see that the scales of the execution time on each case are steady; the

connecting line is approximately horizontal, especially when the number of running
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cores is larger than 2. The normalized execution time on 2 cores is higher than 1 due

to the communication overhead. Although there is more than 10% increase from 1

core to 2 cores, we can see that the variation of the execution time on the remaining

core counts is very small.

6.3 Evaluation for Composed Containers Using Hierarchical System View

To evaluate the performance of applying our hierarchical system view on the

composed containers, We make the distribution at two hierarchy levels in our ex-

periments, the NUMA node level and the core level. We choose these two levels

is because the communication speed between these two levels is significantly differ-

ent. As we mentioned before, the inter-NUMA node communication speed will be

much slower than that of the intra-NUMA node. Thus, we can clearly show how

the hierarchical distribution improves the performance of the composed containers

by reducing the expensive inter-NUMA node communications in the parallel opera-

tions. Although the hierarchical system view can represent a system hierarchy with

more than 3 levels, a two-level hierarchy is enough for us to demonstrate our work

because the 2D and 3D composed containers are the most frequently used composed

containers.

In our experiments, The hierarchical structure will be represented as N × M ,

where N is the number of NUMA nodes and M is the number of cores used per

node; the product of N ×M is the total number of cores used in this experiment.

Basically, the number of cores per node will not be very large since each NUMA node

only has 8 cores.

The way of the hierarchical distribution for the 2D composed containers is same

as what we demonstrated in the example of section 3, Figure 3.3. We first distribute

the elements in the composed multimap to all locations using the top level of our
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hierarchical system view. Then we limited the distribution of the elements in a 1D

inner container to one core.

The hierarchical distribution of the 3D composed multimap can also refer the

example in section 3, Figure 3.4. The elements of the 3D containers are distributed

to all the locations; the 2D inner containers are distributed within a node, and the

1D inner containers are allocated to a single core.

Here, we only demonstrate the evaluation on the composed multimap containers

whose inner containers are 1D or 2D concurrent array because multimap and multiset

have almost the same properties and one can infer the behavior of the composed

multiset from the results of the composed multimap. The size of the composed

container on each level is roughly equal. If the total number of elements is S, then

the 2D container size is
√
S×
√
S and the 3D container size will be 3

√
S× 3
√
S× 3
√
S.

6.3.1 Evaluation for The Construction of The Composed Containers

In this experiment, we evaluated the construction time for the composed contain-

ers using default distribution and hierarchical distribution. The system hierarchical

structures used in these tests are N × 4. It means that if the total number of cores

is 16, we will use 4 NUMA nodes with 4 cores each.

From the Figure 6.4, we can see that the construction time of 1D container

decreases. It is because its base containers are initialized with fewer elements when

we use more cores. But the construction time of 2D and 3D composed containers

with the default distribution does not decrease because their construction process

requires more communication to create the base containers for the inner concurrent

containers; also creating the base container will take time and memory space. As

we mentioned in Chapter 3, 2D and 3D composed containers will create more base

containers than the 1D container even if they hold the same amount of elements.
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Figure 6.4: Construction time for 1D, 2D and 3D Multimap with 1.6× 107 elements

The amount of communication and the created base containers will increase as the

number of cores increases.

The results show that the composed multimaps using hierarchical system view for

their distribution have a shorter construction time than that using default distribu-

tion because we reduce the number of base containers and communications especially

those expensive inter-NUMA node communications. The improvement is not obvious

when we use a small number of cores. The reason is that, first, our work does not

save a lot on a small hierarchy because the amount of its remote communications

is relatively small; also, there is an overhead of querying the location domain from

hierarchical system view for each concurrent inner container. But when the system

hierarchy is large, we save about 10% construction time in average for 2D composed

multimaps, and for 3D composed multimaps, we cut more than 30% construction
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time.

6.3.2 Evaluation for Parallel Functions on The Composed Containers

A composed container may be built only once in a parallel algorithm, but it may

be used in the nested parallel functions multiple times. Thus, the performance of

applying a nested parallel function on the composed container is of greater impor-

tance.

Figure 6.5: Execution time for 1D, 2D and 3D Multimap with 1.6× 107 elements

Figure 6.5 shows the results of our experiments on the systems whose hierarchical

structure are 2x × 4. Here we evaluate the performance of the composed multimaps

with 1.6×107 elements by applying a nested parallel function that modifies the value

of all the elements in the container. We also normalized the execution time based on

that of the 1D container and we use the logarithmic scale because the execution time

of the 2D and 3D composed container with the default distribution is much longer
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than that of the 1D container. Moreover, it grows dramatically when the number of

cores increases. However, the performance of the composed multimaps that uses the

hierarchical system view for their distribution is much closer to the execution time of

the 1D multimaps comparing with the containers with the default distribution. The

execution time of a composed multimap with the default distribution increases from

160 times to 502 times of the 1D execution time when the number of cores increases

from 4 to 64. The execution time of our 2D composed multimaps with hierarchical

distribution is only triple as long as the 1D execution time. The execution time scale

of the 3D composed multimaps with default distribution increases from 640 to 4688,

while the hierarchically distributed container remains around 80.

Figure 6.6: Scalability for 1D, 2D and 3D Multimap with 1.6× 107 elements

The most important thing is that it has a good scalability. It means the larger
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problem and system we deal with, the more time we could save using the hierarchical

distribution. The scalability of the 1D, 2D and 3D composed multimaps are shown

in Figure 6.6. The scales are calculated by the Equation 6.3. Sk is the scale value

and tk is the execution time using k cores. t4 is the base of the scale that is the

execution time of the experiments using one NUMA node with 4 cores.

Sk =
t4
tk

(6.4)

We can find that the 1D multimap and our hierarchical distributed multimaps

maintain a good scalability. The results are displayed as a straight line; it cuts

nearly half of the execution time when the number of cores is doubled. However,

the scalability of the multimap with the default distribution is very poor due to its

high communication overhead. The performance improvement is really small when

the number of cores is large.

We also evaluate the performance of our work on a fixed core count but different

hierarchical structures. From Figure 6.7, we can find that the execution time on

different hierarchical structures is very close because the communications are limited

in the NUMA nodes and their inter-process communications are very fast. The

execution time with larger node counts and smaller cores per node counts is a little

bit faster because distributing the inner containers to a smaller location set makes

the better data locality in the middle level. Also the competition of the shared cache

is low because we only use partial cores of a node. There are many other factors that

affect the performance, such as the property of the system hardware, the hierarchy

levels that the user is using for the distribution, and whether the number of elements

fits the size of the memory at that level. But these effects are less impressive than the

performance gap between the composed containers with the hierarchical distribution
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Figure 6.7: Execution time for different hierarchical structure with fixed core counts

and the containers with the default distribution.

6.3.3 Evaluation on The Redistributed Composed Containers

The hierarchical system view can work perfectly with the redistribution mecha-

nism of the STAPL concurrent containers to flexibly adjust the distribution of an

existent composed container at any time. It allows the users to maximize the perfor-

mance of their parallel applications when the requirements of the distribution for the

same container are changed in different algorithms. An even better use case may be

implemented in the future is to automatically detect the available processing units

in the system and redistribute the containers based on the view of current system

hierarchy.

In the experiments of the container redistribution, we use composed 2D arrays to

test the performance of our work. First, we construct a 2D array using the default
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Figure 6.8: Execution time for 1D and 2D redistributed arrays with 1.5×107 elements

distribution and apply parallel operations on it to test its performance. Then we

redistribute this 2D array using our hierarchical system view and record its execution

time in the parallel operations again.

To show the flexibility of our work on the systems with different hierarchies, We

run the redistribution experiments on the N×5 hierarchical systems for the 2D arrays

with 1.5× 107 elements. The experiment results shown in Figure 6.8 show that the

hierarchical distribution still got great performance improvement in the container

redistribution even on a hierarchical system with an odd node number per block.
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7. CONCLUSION AND FUTURE WORK

In this thesis, we developed a hierarchical system view that represents the topol-

ogy of the system hierarchy, and use it as a guide to the distribution of a com-

posed container to replace the inefficient global balanced distribution mechanism.

We discussed the principle of the global balanced distribution and our hierarchical

distribution along with their advantages and disadvantages. We also described the

implementation of the hierarchical system view and the implementation of concur-

rent multimap and multiset containers. At last, we conducted experiments for our

hierarchical distribution on the composed multimap containers, and compared their

results with the containers using default distribution to show the improvement of

our work on both performance and scalability.

Future research on the hierarchical system view could focus on reducing the

overhead of querying the location domain in which a container will be distributed. It

is because our work requires the specification of the location domain for each element

when we are constructing a composed container. The overhead will be obvious when

the size of the composed container is large.

Another direction of the future work can be an automatic detection of the system

hierarchy. Currently, the information of the system hierarchy used in our work

is passed by the variable STAPL PROC HIERARCHY at the runtime. It is

necessary to figure out the system hierarchy automatically when there is no user

specification. A feasible way is to test the communication speed between each pair

of locations so that we can decide the system hierarchy based on that information.

Overall, the distribution of the composed container in a reasonable way is a key

point to improve the performance of nested parallelism.
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