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ABSTRACT

In this work, a new concept was explored for the optimization of heating, venti-

lating, and air-conditioning (HVAC) systems in buildings. The methods assume that

only commonly trended sensor data would be available and that no live connection

to sensor values would exist. An actual implementation would only require a small

script to be written at the target building to request information from a centralized

server and update setpoint values.

A prioritization of sensors to trend at buildings is presented. Investigations into

the feasibility were completed on a case study building on the Texas A&M Campus,

the National Center for Therapeutic Medicine (NCTM) and the Preston Royal Li-

brary. The algorithms and models for the optimization are presented, along with

uncertainty analysis into several key model parameters.

23-29% energy savings were found for AHU-2-3 at the NCTM building from June

1st, 2016 to January 1st, 2017. Missing fan power and air flow sensors reduced effec-

tiveness, along with uncertainty in the plenum temperature for the series fan powered

terminal units. Lack of readily available, accurate, manufacturers’ specifications were

also limitations.

A prototype of the system was developed on the web application CC-Compass,

available at Texas A&M.
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ρ Density
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cp Specific Heat

Ė Power
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V̇ Volume Flow Rate

Ẇ Power

X Fraction

Cair Volumetric Heat Capacity [Energy per unit Volume per unit Tempera-
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H Volumetric Heat of Vaporization [Energy per unit Volume]
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a air

db dry-bulb

des design
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pri primary

ra return air
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1. INTRODUCTION

Adjusting the HVAC control sequences in existing building commissioning is a

common method to reduce energy consumption. Many of the original control se-

quences for building equipment are never optimized or adjusted using detailed engi-

neering, due not only to the amount of time and effort that such an analysis may

take but also due to the lack of skill the on-site maintenance staff may have.

Sensor data from building automation systems are becoming more abundant as

computing resources decrease in price and software improves in quality. Software

applications can use this wealth of information in an automated process to actively

optimize the air conditioning system, without detailed input from an engineer.

This work attempts to leverage commonly available trend data to optimize the

setpoint values that air handling units of single duct variable air volume systems

typically use. Ideally, to be considered optimal, the entire airside system needs to be

considered as a whole, including fan energy, cooling energy, and reheat energy. While

demand-based controls can often significantly reduce energy use for one component

of the system, it does not necessarily optimize the whole.

It is desired to refrain from adjusting the existing control logic or low-level elec-

tronics to accomplish this outcome. This work attempts to acquire trend data, run

the necessary methods to determine the optimal setpoints from a separate dedicated

system, and then send the information back and actively change the air handling

unit setpoints in the BAS. In this way, the methodology can scale quickly to many

different air handlers and buildings, being indifferent to the vendor of the BAS.
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2. LITERATURE REVIEW

A significant amount of research has been completed in the field of control op-

timization schemes. Several different approaches including direct search methods,

non-linear programming, genetic algorithms, and artificial neural networks have been

researched. Optimizations have been completed at all levels of the HVAC system:

Zone, AHU, and Plant.

When discussing optimization, it is important to be clear on what is meant by

Controls Optimization. When discussing the subject with a controls engineer, they

will likely be analyzing parameters such as the settling time, overshoot, and rise time

— dynamic parameters. In contrast, this research focused on the optimization of the

steady-state behavior of the system.

2.1 Setpoint Optimization

Since the time constant of AHU dynamics is on the order of minutes and the time

constant of the thermal loads on the building are on the order of minutes to hours,

it is appropriate to focus on the steady state behavior of AHUs [1].

Ke and Mumma were among the first to attempt to balance the benefits of raising

the supply air temperature with the penalties associated with increased fan energy

and decreased dehumidification potential [2]. This paper was limited in the fact

that it made no discussion on actual implementation. The simulated results showed

that optimizing the balance between fan, cooling, and reheat energy resulted in

approximately 6% energy savings annually versus a fixed supply air temperature

setpoint. They showed that the benefit was most promising in the more temperate

weather when the VAV system was running above the minimum primary airflow.

Ideally, the fan static pressure pressure setpoint would be optimized in conjunction
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with the supply air temperature as well.

Wang and Song also balanced supply air temperature with fan power and included

economizer control [3]. They found energy savings reaching up to 90% under the

specific outdoor air conditions and space loads in their simulation. The universal

control sequence they proposed relied on an outside air temperature sensor, supply

air temperature sensor, and supply air flow sensor. A hindering assumption was

that the terminal units did not have reheat. It is well known that terminal unit

reheat energy can be a significant contributor to the total energy consumption and

the reduction of reheat is often a source of significant energy and money savings in

existing building commissioning.

Qin completed a dissertation in 2014 entitled, “A Data-Driven Approach for Sys-

tem Approximation and Set Point Optimization, With a Focus in HVAC Systems”

[4]. The focus of this work was related to the programming of thermostats in resi-

dential homes and did not cover any buildings in the commercial sector. The control

responses for the rooms were being optimized and not the temperature setpoints of

the rooms.

Huh and Brandemuehl optimized the setpoint for hot and humid climates [5].

The most significant limitation of this work was that it was heavily focused on a DX

unit that would be common to a retail or supermarket and was also focused on only

a hot and humid climate. Engdahl and Johansson also devoted investigation into the

optimization of the supply air temperature setpoint in a VAV system [6], but only

studied AHUs with 100% outside air.

While the focus of this research is on air handling units, the research regarding

the optimization of central plants should not be ignored [7, 8]. At the plant level,

Braun has completed a great deal of research [9, 10, 11, 12]. He has investigated

optimizations of various systems, such as ones for night precooling with packaged
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rooftop systems [13]. Crowther and Furlong showed that advanced optimization

controls for chiller-tower condenser-pump systems could make a 5-8% improvement

in annual energy use [14]. Henze has also been active in optimizing thermal storage

systems [15] along with Kintner-Meyer and Emery [16]. Lu et al. also focused on the

optimization of the entire HVAC system, plant, and building, in a series of papers

[17, 18, 19, 20].

United States patents have even been written on the topic of HVAC optimization.

Cascia has a patent on optimal control for a cooling and heating plant with DDC

control [21] and Seem has a patent that describes the strategy to optimally control

an air side economizer [22].

Numerous other researchers have thoroughly covered many aspects of an opti-

mally operating HVAC system, which is not limited to [23, 24, 25, 26, 27, 28, 29,

30, 31, 32, 33, 34, 35, 36, 37]. Wang and Ma provided a comprehensive review of

supervisory control research [38]. The literature is limited in regards to efficient

methods of rapid implementation. This research also presents a different optimiza-

tion methodology that focuses on the use BAS trend data paired with first-principle

models.

2.2 Advanced Computation Techniques and Controls

The HVAC industry has slowly begun to employ the advances in computer science.

Researchers from the University of Iowa (Kusiak, Li, Xu, Tang, Wei) have published

a great deal of work on the optimization of all types of HVAC systems. They have

applied data mining algorithms and computational intelligence algorithms to data-

driven optimization for the cooling output of air handling units and plants [39, 40,

41, 42, 43, 44, 45, 46, 47, 48, 49]. They have used techniques like neural networks,

evolutionary type programming, and multi-perceptron ensembles. They have also

4



applied particle-swarm optimization in several of their publications.

The use of genetic algorithms or general evolutionary programming techniques

has been applied in several pieces of research. Genetic algorithms have been used to

optimize chilled water supply temperature, supply air temperature, fan control, and

outdoor air control, related to many different kinds of systems, including variable air

volume and variable refrigerant volume [50, 51, 52, 53].

2.2.1 Model Predictive Control

Model predictive (or receding-horizon) control (MPC) has been a popular re-

search field in control theory and has been successfully implemented in practice. Li

et. al [54] recently showed the benefits of MPC in both simulation and in experimen-

tal work. They estimated electrical consumption savings to be 18% for a 75,150 ft2

building in Philadelphia during a week in August, and found that in 75% of their

20 test days they had energy consumption savings of over 20%. They also used a

centralized architecture where BAS data were passed through a middleware with a

historical database to Matlab and an AMPL (A Mathematical Programming Lan-

guage) optimization system, with results of that system dynamically changing the

building HVAC system.

Afram et al. also studied the combination of ANNs and MPC [55]. As described

in [55], the combination of these two techniques has been used for the following

different control objectives:

1. Minimize energy consumption [56, 57, 49, 39, 45, 58, 59, 20, 31]

2. Maintain thermal comfort [56, 49, 39, 45, 58, 59]

3. Maintain indoor air quality (IAQ) at an acceptable level [43]

4. Minimize operating cost [58, 60, 57, 61, 62]
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5. Maintain visual comfort at an acceptable level [59]

6. Minimize retrofit cost [63]

7. Minimize thermal discomfort hours [63]

This dissertation has a focus on steady state behavior, but the dynamic behav-

ior of buildings and its controls are also important. Seem has published research

comparing a finite state machine (FSM) sequencing to the more common split-range

sequencing control logic [64]. Xu, Li, and Cai proposed a receding-horizon optimiza-

tion control that uses a typical PID type controller [65]. This work had a focus on

practicability in that it required no changes in the hardware or the definitions of

the common control parameters related to a PID controller. Yuan and Perez used a

model-predictive controller to control temperature and ventilation for multiple zones

[66]. Freire, Oliveira, and Mendes also used predictive controllers for thermal com-

fort optimization [67]. Guo, Song, and Cai investigated neural networks in HVAC

control [68].

2.3 BAS Communication

There are many different networking and communication levels and protocols

related to buildings. Kastner, Neugschwandtner, and Soucek et al. provided a sum-

mary of the different systems that exist in buildings [69]. An understanding of the

different levels (described as management, automation, and field by [69]) is important

for developing any automated system. The most important open systems related to

building automation include BACnet, LonWorks, EIB/KNX. Other important and

relative standards, protocols, and technologies are shown in Table 2.2.

Project Haystack is an important open source initiative that is looking to bring

specific naming conventions to building operational data (project-haystack.org). It
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Table 2.1: Techniques applied in HVAC system optimization.

Techniques Sources

Quadratic Least Square Regression [7]
Gradient Based Optimization, Golden
Complex Search [5][32]
Genetic Algorithms [17][19][20][25][27][34]

[37][53][51][46]
Analytical Linear Optimization [33]
Evolutionary Programming [50][43]
Evolutionary Strategy [47]
Model Predictive Control/Receding Horizon [15][23][67][44][65][66]
Neural Networks [31][47][68][42][49][39]
Particle Swarm Optimization [40][44][48][42][49][45][46]
Harmony Search [40]
Model Free Reinforcement Learning [28][29]
ARMA [51]
Data Mining Algorithms [43][47][44][48]
Multiple-Linear Perceptron Ensemble [39][48][45][41]
Interior Point Method [39]
Adaptive Neuro-Fuzzy Inference Systems
(ANFIS) [20]
Genetic Fuzzy Optimization [52]
Finite State Machine [64]

accomplishes this at a more abstract level than BACnet, LonWorks, and EIB/KNX,

using lexical rules. Before data from sensors in buildings can be used effectively,

an “association” of the data to an HVAC object (say data being associated with an

air temperature sensor located in a specific air handling unit) needs to occur. To

create an environment where an intelligent building makes sense, raw numeric data

needs to have extensive meta-data to give it context. This meta-data can be related

to engineering units, what piece of equipment the data belongs to, the hierarchy of

equipment and relationships to one another, and other modifiers.
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Table 2.2: Important standards/technologies in building automation.

Network Communication Protocols

BACnet
LonWorks
EIB/KNX

IP

Object Access Protocols

Common Object Request Broker Architecture (CORBA)
Java Remote Method Invocation (RMI)

Microsoft Distributed Component Object Model (DCOM)
Simple Object Access Protocol (SOAP)

Architecture Style

Representational State Transfer (REST)

Local Area Network Type

Ethernet
ARCNET

Master-Slave/Token-Passing (MS/TP)
LonTalk

Point-to-Point (PTP)

Data Format

Javascript Object Notation (JSON)
Extensible Markup Language (XML)
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2.4 Summary of Literature

Not surprisingly, the goal of any controlled system is to operate optimally. It is

to be expected that there would be a wealth of literature on the optimization of all

different components in a particular HVAC system.

Any optimization problem has objectives and constraints. Many different objec-

tive functions and constraints to optimization problems in HVAC have been proposed.

Numerous different optimization techniques and methods have been implemented

and analyzed by different researchers.

However, there are several limitations and deficiencies in the optimization lit-

erature. Not all authors have focused on the scalability of different optimization

methodologies. Presently it is not feasible to implement complicated data-mining

algorithms on every individual BAS or controller, partly due to installation time

and partly due to the lack of facilities managers that have the necessary training to

understand the algorithms and that can keep the system running properly. Facil-

ity managers already have difficulties in maintaining traditional and straightforward

HVAC systems.

Many of the techniques proposed in the literature also are dependent on sensors

or information that are currently unavailable in typical commercial HVAC systems.

For large-scale implementation, a methodology must function with a minimal number

of sensors and remain useful.

For an individual system, there are more than enough well-documented and ef-

fective optimization methods and algorithms. Few buildings in practice have these

optimizations in place because other numerous challenges have not been fully solved.

These challenges include complexity in implementing with different BAS vendors,

training staff members to understand the logic behind the optimizations, and simply
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the technician effort to install and setup implementations.

This research proposes an intuitive optimization method based on small first-

principle models using historical data that is designed to efficiently scale. The re-

search investigates how to use current communication protocols with BAS systems

and implementable methodologies to apply a single set of optimization logic and code

to many and varied air handling units.

2.5 Typical Trends Available from Commissioning Projects

Unfortunately, at the current time, it is uncommon to have all the sensor data

trended for all portions of the HVAC system. It is rare to have the capability to sub-

meter the energy use of all the individual components including the fans, cooling

coils, and heating coils. This section investigates what sensors have been typically

available from existing building commissioning and provides suggestions for which

trends are most important for energy-use breakdowns.

2.5.1 Common Case

The following suggestions are based on the data for over 150,000 trends stored

in Implementer along with personal experience. Implementer is a web application

developed by the Energy Systems Laboratory that aids engineers in the collection

and analysis of trend data from buildings. The statistical results presented use data

until April 13, 2016. The total number of configured single duct AHUs at this

time was 846. The number of trends that existed in these 846 AHUs was 11,806,

or approximately 14 trends per AHU. Table 2.3 gives the percentage breakdown of

the types of points that we have seen in current Implementer projects. Note that

due to special Implementer considerations, the occurrence percentage should not be

evaluated in absolute terms (due to some projects not being properly set up at all).

The relative relationship between trend types is the more significant result.
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Table 2.3: Breakdown of points typically available in single duct AHU systems cur-
rently in Implementer.

Point Type
Occur-
rence

65%+

DAT/SAT 83%
CHW Valve 73%
Duct Static
Pressure 67%

45% - 65%

Outdoor Air
Damper 65%
Return Air Temp 58%
DAT/SAT
Setpoint 53%
Return RH 52%
Fan Status Points 50%
Mixed Air Temp 48%
Return Air CO2 48%

25%-45%

Filter ∆P 35%
Static Pressure
Stpt. 35%
Outdoor Air
Flow 28%
Return Air
Damper 27%
Occupied Status 25%

5% - 25%

Space Temp 21%
Supply Air Flow 15%
Fan Status 15%
Fan S/S 14%
Outdoor Air
Temp 13%
Heating Coil
Valve 21%
Modes 10%
Fan Power 9%
Preheat Temp 9%
CCLT 8%
Mixed Air
Damper 7%
CHW Supply
Temp 6%
Return Air Flow 6%
CHW RT 6%
Air Changes 5%
Fan Proofs 5%
Limits 5%

0% - 5%

# Boxes In
Reheat 4%
Misc. Alarms 4%
Supply Fan kW 4%
Economizer
Status 3%
Space Humidity 3%
CCLT Setpoint 3%
% Load 2%
Cool/Heat Coil
Flows 2%
Runtimes 2%
Water Pressure 1%
Fan Volts 1%
HW Supply Temp <1%
HW Return Temp <1%
Fan Current <1%
Outdoor Air Flow
Stpt <1%
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If the building in question consumes district chilled and hot water for thermal

HVAC processes, the importance of additional trends is lessened since it is clear that

the chilled water is used to meet the cooling load of the building and similarly for

the hot water. The electricity use is then left to lights and equipment, along with

the fan and pump energy.

However, if natural gas and electricity are the only energy supply types for the

building, additional information coming from trend data becomes more important

for disaggregating the energy end uses.

It can normally be assumed that monthly utility bills are available. Having a

smaller time interval on the utility data can also aid significantly in calibration.

Daily data can help aid in discriminating weekday/weekend profiles, while hourly

data can aid in exposing the diurnal cycle of the building.

2.5.1.1 Fan Power

In all cases, having the fan power trended will aid in the energy use breakdown,

as this immediately provides information regarding this portion of the electricity use.

In many cases, it is acceptable to combine lighting energy and the non-HVAC related

internal electricity use.

The fan power is trended directly on less than 10% of systems in Implementer.

The next best option in 15% of the cases is using the supply flow along with man-

ufacturers’ specifications to estimate fan power. With the design flow values from

mechanical drawings, fractional power curves based on part-load ratio can be used

to estimate the fan energy use.

2.5.1.2 Cooling Energy

At the air handler level, the sensible cooling energy is related to the supply

flow, and the difference between the mixed air temperature, and the supply air
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temperature. The supply flows can vary significantly from one air handler to another,

and also under different loadings.

The mixed air temperature is the lowest priority of the three air-side parameters

for estimating the sensible cooling energy in the AHU. A reasonable estimate of

the outdoor air temperature is available from local weather stations, in addition

to commonly trended outdoor air temperatures at the site itself. The return air

temperature in air handling units is normally near the space temperature setpoints.

It is known that the mixed air temperature must be between the return and outdoor

air temperature (if the air streams are indeed being mixed). Without any other

information, the safest estimate for the mixed air temperature would be halfway

between these two measurements.

As an argument for the claim that mixed air temperature is the lowest priority

of the three parameters, the difference between Toa and 72◦F for the hourly outdoor

air dry-bulb temperature weather data for College Station during the year of 2015

was calculated. 1/2 of this difference would be the worst case error estimation.

The median of these half-differences was 4.9◦F, and the mean was 6.4◦F. These

are robust estimates of the upper bounds on the error of the estimation of mixed

air temperature with no guidance other than the assumption that the mixed air

temperature is between the outdoor air temperature and return air temperature.

With any additional information regarding the outdoor air fraction, the estimate

would be even better.

Determining the latent load across the cooling coil is difficult using air-side pa-

rameters. Humidity sensors are traditionally unreliable, and two would be necessary

to calculate an absolute humidity difference.

In this sense, metering the water-side parameters would be a more reliable estima-

tor of the total cooling load, including the latent effect. However, trended water-side
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sensors have not been seen in the five years of Implementer projects.

2.5.1.3 Reheat Energy

Unless the building has some other large hot water end uses, if the building con-

sumes natural gas, much of this will be directly related to heating/reheat. Electricity

use will then be distributed between lights and non-HVAC equipment, fans, along

with chiller/HVAC equipment.

If the building is heated using natural gas, the natural gas consumption can be

an adequate indicator of the level of reheat use in the building. At the current time,

trended data from all terminal unit points is uncommon. The sensors are typically

available, however, the number of terminal units and a large amount of data to

be handled are issues that cause persons to decline to pursue the collection of the

terminal unit data.

Having the supply air temperature and supply air flow is important because it

not only helps fix the parameters for the cooling energy end use at the AHU but also

the parameters for estimating reheat in the terminal units. If the terminal units are

aggregated together, with the knowledge of the total flow and supply air temperature,

along with potentially having measured natural gas use, the only parameter left to

estimate reheat is the discharge temperature to the zones.

2.5.1.4 Prioritization

The following sensors, in no particular order, are the most useful with regards to

energy modeling and determining the energy use breakdown.

• Supply air temperature – This parameter is crucial in estimating both the

sensible cooling energy and the reheat energy of the system.

• Fan power – Directly returns the energy end use for fans.
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• Supply air flow – A key parameter in estimating the flow both at the AHU and

the total of which is going to the terminal units, affecting both the cooling and

reheat energy end uses.

• Outdoor air flow – Important in fixing the ventilation load at the AHU.

• Terminal unit flows – Helps set the minimum primary air flow parameter, a

sensitive parameter affecting the reheat.

• Terminal unit discharge temperatures – Aids the estimation of zone reheat.

• Space temperature – Defines the zone temperatures.

• Mixed air temperature – Aids in the determination of the sensible and latent

cooling load and estimation of the outdoor air fraction.

• Return air temperature – Aids in the estimation of the outdoor air fraction or

ventilation load.

• VSD speed, VFD frequency, etc. – Indicator of the part-load ratio for the

equipment, which may be used in the estimation of fan energy.

• Preheat Temperature – Sets this parameter in the model, aiding in the estima-

tion of the heating end uses.

Sensors that may be of medium usefulness:

• Fan Status or occupied/unoccupied status – Can indicate the run times and

schedules of the building.

• Supply air static pressure – Unless the precise location of the sensor and the

overall duct layout is known, it is of little use in calculating the fan power. It
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does indicate whether the fan is on or off which is useful for determining AHU

schedules.

• Various Setpoints – In a well-controlled building, ideally, the value of the con-

trolled sensor will be equivalent to the setpoint. However, the setpoint trends

may not represent reality, especially under conditions of control overrides or

other faults.

• Return air relative humidity – May be an indicator of the level of latent load

in the building. If the return air absolute humidity levels are relatively dry, the

latent load may be zero or negligible.

• Outdoor air temperatures – In some circumstances, the temperature of the ven-

tilation air may differ from the outdoor air temperature in the local community,

in which the local measurement will be a better indicator of the temperature

of the air that is entering the AHU from the outdoors. However, the local

weather station measurements are typically much more reliable and trustwor-

thy than the sensors maintained at the site, and this needs to be taken into

consideration.

Sensors that are commonly trended and are not useful for estimating the energy

use breakdown of a building:

• Return air CO2 – Not directly related to estimating the energy use.

• Damper commands – Since duct layout and fluid flow models are not feasible,

the damper commands do not provide information towards the calculation of

the energy use.
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• Chilled water valve/hot water valve – It is the actuator for controlling the

supply air temperature, but does not provide information related to energy

use.
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3. OPTIMIZATION METHODOLOGY

The energy use from each of the components comprising the air-side equipment

needs to be estimated to optimize the system. This includes fan energy, cooling

energy, and reheat energy.

The optimization problem to be solved in standard form is

minimize
Tsa

Ėfan + Ėcooling + Ėreheat

subject to Tsa ≥ Tsa,min

Tsa ≤ MIN (Tma,MIN (Tdis,1, Tdis,2, . . . , Tdis,n))

IF ωoa > ωmax, Tsa ≤ Tsa,ω

(3.1)

In other words, minimize the total power of the AHU and terminal unit system

as a function of the supply air temperature, with the constraints that the supply air

temperature is above a preset minimum, and less than both the mixed air tempera-

ture and the minimum of the discharge air temperatures from the terminal units. If

the outdoor air humidity ratio is above a preset humidity ratio threshold, ωmax, then

the supply air temperature must stay below a different minimum Tsa,ω, likely near

55°F.

If energy prices are available, the objective function can be modified to be to

total cost, rather than the total power.

3.1 Reheat in Terminal Units

Terminal units can be distributed into three classifications for this work. Terminal

units with no fans, series flow, or parallel flow arrangements.
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3.1.1 No Fan in Terminal Unit

If there is no fan and only a damper for air volume modulation, then the reheat

power is

Ėreheat =
∑
i

V̇iρacp,a (Ti,dis − Ti,sa) (3.2)

3.1.2 Series Flow Configuration

For a series flow terminal unit, the total flow is ideally constant. V̇tot is known

from the specification of the terminal unit, and V̇pri is a measured variable. V̇plen can

be calculated from Equation (3.3).

V̇plen = V̇tot − V̇pri (3.3)

Tdis will be sensed. The temperature of the air after mixing can be estimated

from the flow information and an assumption or measurement of plenum air.

Tmix =
V̇pri (Tsa) + V̇plen (Tplen)

V̇tot

(3.4)

Another rearrangement of 3.4 that is important is solving for V̇pri. Under condi-

tions when there is no reheat, and the primary flow is not at the minimum setting,

the energy balance across the terminal unit is

V̇priTsa + V̇plenTplen = V̇totTdis (3.5)

Replacing V̇plen with Equation 3.3 gives

V̇priTsa +
(
V̇tot − V̇pri

)
Tplen = V̇totTdis (3.6)
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Figure 3.1: Example series terminal unit flow operation.
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V̇totTplen − V̇totTdis = V̇priTplen − V̇priTsa (3.7)

V̇pri = V̇tot

(
Tplen − Tdis

Tplen − Tsa

)
(3.8)

The actual primary flow will be the maximum of Equation 3.8 and the minimum

flow setting. When at minimum flow, there will be resulting reheat.

V̇pri = MAX
(
V̇tot (Tdis − Tplen)

(Tpri − Tplen)
, V̇pri,min

)
(3.9)

The increase in temperature is due to heat gain from the fan and any supplemen-

tary heating.

The temperature rise from the fan, ∆Tfan, can be estimated from historical data

when the supplementary heating is off, either when the heating coil is completely

closed, or all stages of electrical reheat are inactive. If there is no other heating, the

temperature increase from the fan is

∆Tfan = Tdis − Tmix. (3.10)

where Tmix is the temperature described by Equation 3.4. For other times, the

temperature increase due to reheat will be

∆Treheat = Tdis − (∆Tfan + Tmix) , (3.11)

and the reheat power will be

Q̇reheat = V̇totρacp,a (∆Treheat) . (3.12)
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3.1.3 Parallel Flow Configuration

During periods of cooling, the fan in a parallel arrangement is off and the total

flow is equal to the primary flow.

The fan volume flow will be known from manufacturers’ specifications, and the

total flow can be calculated using Equation 3.3. The temperature from mixing the

plenum air and primary can be estimated from Equation 3.4 or historical data when

the primary flow is at the minimum, and there are no activated reheat components.

3.1.4 Other Terminal Unit Types

Terminal units come in even more configurations than the three specified in this

document, induction units being one example. Models can be made using a combina-

tion of energy balances, historical data under particular conditions, and appropriate

assumptions.

3.2 Predicting Zone Loads

The zone loads can be estimated from terminal unit data of airflow rate, terminal

unit leaving temperature and zone temperature. Note that using

Q̇z = V̇zCair (Tz − Tdis) (3.13)

assumes that the zone is well-mixed and at steady-state. If the controls oscillate,

then the zone load estimation will have some periodicity. In some sense, there is no

“single” zone load coming from a point source, and as such we will have to rely on

this estimation.

The independent variables available for prediction are the current time and out-

door air conditions. The current time can be separated into a time of day, the day

of the week, weekdays/weekends and such. Outdoor air temperature correlates with
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the external load. As a reminder, it is assumed that there is no access to live values

of sensors and only historical data with the outdoor conditions and current time can

be used.

The approach used to estimate parameters is a related to the concept of a nearest

neighbor. The nearest neighbors are defined by any previous data that:

1. Was within n hours of the time of day, specified as plus or minus a certain

number of integer time steps relating to the time interval between the data

points.

2. Was the same day of the week.

3. Had the same Tdb within a specified threshold (say 1°F of the current Tdb).

The median value of the nearest neighbors can be used to estimate the particular

zone load at any time and temperature. The median is a more robust statistic in

comparison to the mean, having a breakdown point of 50%, meaning that up to 50%

of the data can be contaminated before the median statistic will no longer be reliable.

For the mean, one arbitrarily large data point can turn the mean statistic unreliable.

This work initially used the most recent 30 data points that met the nearest

neighbor criterion in the median calculation. A threshold of 30 points was chosen

since this is the threshold in which the sample median should approximate the actual

median if the population is assumed to have a normal distribution.

It is advised that in this approach, that the initial historical data be sorted in

order of temperature, followed by the date time. The lookup for the subsection of

data to be used will then be O (log n) with a binary lookup.

The advantage of the nearest neighbor approach is that the resulting “function” is

not limited to being linear, quadratic, or any particular form. It just simply matches

the data as best it can during external conditions that are expected to be similar.
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3.2.1 Zone Load Uncertainty

The Kline-McClintock form of uncertainty analysis can be applied to the zone

loads.

If the sensible zone load is described as an open system with a constant specific

heat, then

Q̇z =
V̇zone

ν
ca (Tz − Tdis) (3.14)

The total uncertainty in the prediction will be

δQ̇z = ca

((Tz − Tdis)

ν
δV̇

)2

+

(
− (Tz − Tdis) V̇

ν2
δν

)2

+

(
V̇

ν
δTz

)2

+

(
−V̇
ν

δTdis

)2
 1

2

(3.15)

For the sake of analysis, the following reasonable parameters were assumed:

1. Tz = 72°F

2. Tdis = 55°F

3. ν = 13.5 ft3

lbm

4. δTz = δTdis = 1°F

5. δν = 1 ft3

lbm

The resulting percent uncertainty in the zone load versus the uncertainty in the

flow measurement is shown in Figure 3.2. Note that with no flow uncertainty, there

is approximately 11% percent uncertainty contribution from the air density and

temperatures. After about 20% uncertainty in the flow, it becomes the dominant

source of uncertainty.
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Figure 3.2: Zone load uncertainty versus flow uncertainty.

3.2.2 Analysis of Fraction of Full Load Power Uncertainty

In simplified air handling unit analysis, the fraction of full load power, F , can

often be represented with the function shown in Figure 3.3

F = A+ (1− A)(PLR)n (3.16)

where A is the fraction of power at zero load, n is an exponent typically ranging from

1 to 3, and PLR is the part load ratio defined to be

PLR =
V̇act

V̇des

(3.17)

The actual fan power at any point is then

Ẇact = FẆdes (3.18)
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The uncertainty of F can be explored with the Kline-McClintock formulation.

The first uncertainty term, which is related to A is

A term =
∂F

∂A
δA = (1− PLRn) δA (3.19)

The uncertainty term related to n is

n term =
∂F

∂n
δn = ((1− A)PLRn ln(PLR)) δn (3.20)

and the uncertainty related to PLR is

PLR term =
∂F

∂PLRδPLR =
(
(1− A)nPLRn−1

)
δPLR (3.21)
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The total uncertainty in F is

δF =

√
(A term)2 + (n term)2 + (PLR term)2 (3.22)

The uncertainty is a function of 6 variables: A, n, PLR, δA, δn, and δPLR.

If the values of

1. A = 0.2

2. n = 2

3. δA = 0.05

4. δPLR = 0.05

5. δn = 0.4

are used, a plot can be created showing the relative importance in the uncertainty

as a function of PLR. This plot is shown in Figure 3.4. The series are the squared

values of the uncertainty terms, for example, the A series is

((1− PLRn) δA)2 (3.23)

Over the input range of PLR, there are three different regimes in which each

input variable contributes the most to the uncertainty. The different regimes where

specific terms are the largest are denoted in Figure 3.4 and 3.5. At high part load

ratios, the uncertainty in the part load ratio itself is the most important factor. At

part load ratios near 0.5, the exponent n, which determines the curvature is the most

important. At low part load ratios, the uncertainty in the value of A, the limiting

fraction of part load power at no load, is the most important.
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Figure 3.4: Relative uncertainty contributions for fraction of full load fan power when
n = 2. (A = 0.2, δA = 0.05, n = 2, δn = 0.04, δPLR = 0.05)

At the extreme values of PLR, 0 and 1, the uncertainty from two the components

is 0. At a PLR of 0, there is no uncertainty contribution from the exponent and PLR

terms, and only uncertainty from the A term. At a PLR of 1, there is no uncertainty

contribution from the exponent and the constant A terms, but only uncertainty in

the PLR term.

So to reduce the total uncertainty across all ranges of part load ratios will require

better knowledge of all the input variables.

If the value of n is increased to 2.4, the uncertainty values change, and the results

are shown in Figure 3.5. The maximum contribution for the n term is decreased, and

the PLR at which the maximum occurs shifts to the right. The contribution from

the PLR term increases at the larger values of PLR, however.

Figure 3.6 shows the total uncertainty in F , given the assumed inputs listed. The

total uncertainty using n = 2 and n = 2.4 are both plotted. At all levels of part load,

the estimated uncertainty in the fraction of full load power is less than 0.1.
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Figure 3.5: Relative uncertainty contributions for fraction of full load fan power when
n = 2.4. (A = 0.2, δA = 0.05, n = 2.4, δn = 0.04, δPLR = 0.05)

If all the individual uncertainties are reduced by half, the total uncertainty will

also be reduced by half. This would be feasible with trend data regarding the indi-

vidual fan powers, flow, and pressures. This would put the maximum uncertainty in

F to about 0.04.

3.3 Fan Modeling

Fan energy is a significant component of the air side energy use for air condition-

ing. Ideally, fan static pressure, flow, speed, and power would all be measured. The

total primary air flow can either be measured directly (ideal) or estimated from the

sum of the terminal unit flows. With this information, a complete set of fan curves

can be created.

Without all these sensors it is difficult to create a first-principle based model of

the air-side equipment. Statistical techniques would be necessary to relate the speed

of the fan, Ṅ , and the damper positions, Xi,damper.
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3.3.1 Air Distribution Modeling: First Method

This section is a bit of an aside and is presented to show the negative result given

the following setup.

Estimating the system pressure loss for particular conditions is necessary for

determining the potential fan energy at different speeds. The node layout of the

terminal units will need to be created. If the air flow through each terminal unit is

measured, the flow through each portion of the duct work can be estimated.

The first methodology developed attempted to break the air side pressure drops

into parts for the major losses within the duct work and the minor losses due to the

dampers at the terminal unit.

The following assumptions were made:

• Constant friction factors

• Reference pressure of 0 at each zone

30



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Damper Position (0-1), X

Pe
rc
en
ta
ge

of
fu
ll
flo

w
(0
-1
)

Linear
Equal Percentage
Quick Opening

Figure 3.7: Terminal unit flow response as a function of damper position.

• Linear flow response from the damper position

With the assumption of the constant friction factor, the pressure drop in each

duct section will be proportional to a constant and the flow through the section

squared. Figure 3.7 shows the typical types of responses for a damper or valve.

Looking at the pressure drop through the dampers, at a given pressure drop, if

the damper is fully open, “full flow” will result.

∆Pfan = Cfull flow

(
V̇full flow

)2
(3.24)

If V̇ is reduced to some percentage of full flow, while keeping the same pressure drop

then

∆Pfan = C2

(
V̇full flow ·%full flow

)2
(3.25)
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For a linear response

%full flow = X (3.26)

If Equation 3.26 is substituted into Equation 3.25, and Equation 3.24 and 3.25 are

set equal, then

Cfull flow

(
V̇full flow

)2
= C2

(
V̇full flow ·X

)2
(3.27)

The new loss coefficient is then

C2 =
Cfull flow

X2
(3.28)

and therefore has relationship to 1/X2. At X = 0, meaning the damper is closed,

C →∞, as expected.

At any time, the pressure drop in all the flow loops must be equal. In a case

where there are three terminal units, you would end up with relationships like the

following

∆Pfan = C1

(
V̇1 + V̇2 + V̇3

)2
+

C2

X2
1

V̇ 2
1 (3.29)

= C1

(
V̇1 + V̇2 + V̇3

)2
+ C3

(
V̇2 + V̇3

)2
+

C4

X2
2

V̇ 2
2 (3.30)

= C1

(
V̇1 + V̇2 + V̇3

)2
+ C3

(
V̇2 + V̇3

)2
+ C5V̇

2
3 +

C6

X2
3

V̇ 2
3 (3.31)

With historical data, the terminal unit flows and the damper positions in the

unit are known at each timestep. There are 3 equations with 6 unknowns (unknowns

being C1 through C6), however, and the problem becomes underconstrained.

A calibration for the pressure drop coefficients is possible. If the sum of the

standard deviations between the three equations is used to determine the goodness
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of the calibration fit, then a trivial solution for a perfect fit arises. By setting all the

coefficients besides the single shared major pressure loss coefficient C1 to zero, the

three equations will always be equal, and the total absolute pressure drop can be

arbitrarily set with the single coefficient.

This method does have potential if the manufacturer’s fan curves are available.

While the loop pressure drop is normally not trended, the fan speed and flow is.

Given the fan curves, the fan speed, and the total flow, the static pressure rise can

be estimated, and used for all the ∆Pfan terms in Equation 3.29.

Without further information regarding the actual terminal unit pressure drop

relationships, this method loses its potential usefulness. For this reason, a simple

approach of using an exponential part load ratio (PLR) function was employed as

shown in Equation 3.32. The value of n was varied from 2 to 3, and the sensitivity

to this parameter was examined.

Ẇfan = Ẇdes (PLR)n (3.32)

Later work also included a constant bias at zero load, having the form

Ẇfan = Ẇdes (A+ (1− A)PLRn) (3.33)

3.4 Predicting the Mixed Air Temperature

The mixed air temperature is the third most common temperature sensor in

air handling units based on the data available in Implementer (see Table 2.3). In

most cases, the nearest neighbor approach can be applied directly to the mixed air

temperature trend.

If a sensor is not available, it is possible to estimate the mixed air temperature
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using an energy balance approach with the outdoor air temperature, return air tem-

perature, and either measurements or estimation of the relative outdoor and return

air flows.

3.5 Brute Force Approach

Since the system is not expected to determine semi-optimal control setpoints at

small time intervals, say less than a second, it is plausible that a straightforward,

brute-force approach would be appropriate to determine the optimal supply air tem-

perature. The brute-force approach has several advantages including

1. Straightforward to program and debug

2. Robust to small changes in energy prediction algorithm

The uncertainty in the estimation of the zone loads, plenum temperatures, mixed

air temperature, and the like, also tend to support the decision to use step sizes on

the order of 0.1°F. The typical search range for the supply air temperature will be on

the order of 20°F, making for a total number of calculations in the hundreds. This

level of computation is feasible for modern computers to handle in the sub-second

time range.

Some inputs for air handling units and terminal units need to be specified before

determining the optimal supply air temperature. These inputs are listed in Table

3.1 and 3.2.

The algorithm described assumes series fan powered terminal units. For other

types of terminal units, the method follows similarly.

1. Calculate discharge temperature for each terminal unit from

Tdis = Tz −
Q̇z

Cair V̇z,tot

(3.34)
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Table 3.1: Required inputs for air handling units.

Inputs for Air Handling Unit Symbol Coming From
Mixed Air Temperature Tma Nearest Neighbor
Fan Exponent n Constant
Design Fan Power Ẇfan Specifications
Design Fan Flow V̇des Specifications
Fan Curve Constant A Constant
Minimum Supply Air Temperature Tsa,min Constant

Table 3.2: Required inputs for terminal units.

Inputs for Terminal Units Symbol Coming From

Total Flow V̇z,tot Specifications
Minimum Flow V̇pri,min Constant
Zone Temperature Tz Nearest Neighbor
Plenum Temperature Tplen Constant
Zone Load Q̇z Nearest Neighbor

2. Calculate the maximum Tsa,max for the search range as

Tsa,max = MIN (Tma,MIN(Tdis)) (3.35)

The Tsa,max cannot be greater than Tma since it is assumed that only cooling

is happening in the supply air duct after the mixing chamber. Tsa,max cannot

be greater than the minimum calculated discharge temperature because then

that particular zone would not have sufficient cooling capacity.

3. For each Tsa ranging from Tsa,min (which is chosen prior by the user) to the

maximum Tsa,max just calculated, using a reasonable step size (say 1/8◦F),

calculate the total power of the system using the following steps.

35



4. For each terminal unit, calculate the primary air flow required

V̇pri,req = V̇z,tot

(
Tplen − Tdis

Tplen − Tsa

)
(3.36)

5. Calculate the actual primary airflow

V̇pri = MAX
(
V̇pri,req, V̇pri,min

)
(3.37)

6. Calculate reheat power for each terminal unit using an energy balance

Q̇reheat = Cair

(
V̇totTdis − V̇priTsa − V̇plenTplen

)
(3.38)

7. Calculate cooling power using a cooling coil energy balance

Q̇cooling = V̇supply Cair (Tma − Tsa) + hvρaV̇supply (ωma − ωsa) (3.39)

8. Calculate fan power using part load ratio curve

Ẇfan =

[
A+ (1− A)

(
V̇pri,tot

V̇des

)n]
Ẇfan,design (3.40)

9. Calculate total power

Ėtot = Ẇfan + Q̇cooling + Q̇reheat (3.41)

The brute-force approach was employed in the prototype code. In future imple-

mentations, improvements could be made to the optimization approach for improved

performance.
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Need the following information for the AHU
Data: Tma, n, Ẇfan,design, V̇des, A
For each terminal unit, will need the following information
Data: V̇z,tot, V̇pri,min, Tz, Tplen, Q̇z

Result: Optimal Tsa

for Tsa ← Tsa,min to Tsa,max do
for i← 1 to number of terminal units do

Calculate Vpri,i using Equation 3.37;
Calculate Q̇reheat,i using Equation 3.38;

end
Calculate total reheat power by summing all Q̇reheat,i;
Calculate total primary flow, V̇supply by summing all V̇pri,i;
Calculate total cooling power from Equation 3.39;
Calculate total fan power using Equation 3.40;
Calculate total power using Equation 3.41;

end
Algorithm 1: Algorithm to determine optimal Tsa.

3.6 Determining the Supply Air Static Pressure Requirement

As shown in Section 3.3, building up a complete air flow model is challenging. A

different approach is to reduce the number of parameters by focusing on the critical

zone.

One method of determining the critical zone is to simply check the percentage

of time that a particular damper is the most open. This check can occur over any

period, for example, over the previous week, month, or 6 months.

At a particular static pressure, there should exist some relationship between the

damper position and the flow through the terminal unit. For a conservative estimate

of the maximum flow at a given static pressure, the measured values of flow at the

90% open damper position can be investigated.

In a live setting, if data does not exist for a particular static pressure setpoint,

then the system can slowly begin to explore until the desired number of data points
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Table 3.3: Necessary sensors.

Level Sensor

Weather Outdoor Air Temperature
Outdoor Dew Point Temperature

AHU Mixed Air Temperature

Terminal Units
Primary Air Flow Rate
Discharge Air Temperature
Zone Temperature

are available. For example, the system could reduce the static pressure setpoint in

increments of 0.1” w.g.

3.7 Required Sensors

Table 3.3 lists the minimum set of sensors required. The discharge air tempera-

ture from terminal units is a required sensor that currently is the least likely to be

available.
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4. SIMPLIFIED EXAMPLE

This section serves to show a simplified example of the optimization of the supply

air temperature under one given condition. The single example is studied in detail

to elucidate the various competing components impacting the total power required

to satisfy the building loads.

For simplicity, a single duct variable air volume system with two terminal units

is assumed. Hot and dry outdoor air conditions are assumed such that both zones

are under a cooling load and there are no latent load concerns.

Zone 1 is assumed to have a load of 20,000 BTU
h

, while the load in Zone 2 is

7,344 BTU
h

.

The minimum flow setting for the terminal units is 400CFM. The room temper-

ature is 72°F and the mixed air temperature is 80°F.

The fan is assumed to have the following part-load behavior described in Equation

4.1. The design flow is chosen so that at a supply temperature of 65°F the fan is at

design flow.

The design power is chosen so that at the calculated design flow, the efficiency

is 0.8 and the pressure rise is 4 in.w.g.. Under the chosen conditions, the design

flow is 3,503CFM, which is the resulting flow under the highest tested supply air

temperature 65°F. The resulting design fan power is 2.75 hp.

FFLP = A+ (1− A) (PLR)n = 0.1 + (0.9)(PLR)2.5 (4.1)

The fan power is

Ẇfan = FFLP Ẇdes = FFLP (2.75 hp) (4.2)
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Table 4.1: Summary of parameters used for simplified example.

Parameter Value
System Type SDVAV

Mixed air temperature 80°F
Zone temperature 72°F

Zone 1 Cooling Load 20,000 BTU
h

Zone 2 Cooling Load 7,344 BTU
h

Design fan efficiency 0.80
Design fan pressure rise 4 in.w.g.

Design fan power 2.75 hp
Fan exponent, n 2.5

The required flow for each zone is calculated as

V̇z = MAX
(

Q̇z

Ca (Tz − Tsa)
, V̇min

)
(4.3)

The discharge temperature for each zone is

Tdis = Tz −
Q̇z

Ca V̇z

(4.4)

The reheat power is

Q̇reheat = CaV̇z (Tdis − Tsa) (4.5)

and the sensible cooling power is

Q̇cool = CaV̇tot (Tma − Tsa) (4.6)

where V̇tot is the total flow for all the zones.

Increasing the supply air temperature has the effect of decreasing reheat and

increasing fan power. Whether the cooling load increases or decreases depends on
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several factors.

For example, during times when there is no reheat, the required flow for the

terminal units is

V̇req =
Q̇z

Ca (Tz − Tsa)
(4.7)

Substituting Equation 4.7 into Equation 4.6 results in

Q̇cool = Ca
Q̇z

Ca (Tz − Tsa)
(Tma − Tsa) = Q̇z

Tma − Tsa

Tz − Tsa

(4.8)

Of interest is how the sensible cooling power is impacted when the supply air

temperature is increased. To investigate, the derivative of the sensible cooling power

equation is found.

dQ̇cool

dTsa

= Q̇z
Tma − Tz

(Tz − Tsa)
2 (4.9)

What Equation 4.9 shows is the non-intuitive result that during times of cooling

(corresponding to a positive Q̇z) and when the mixed air temperature is greater

than the zone temperature (corresponding to a positive value in the numerator of

Equation 4.9), that the sensible cooling power increases with increasing supply air

temperature. If a cooling load exists and the mixed air temperature is less than the

zone temperature, then the opposite is true, increasing the supply air temperature

will reduce the required sensible cooling power.

Figure 4.1 shows how the supply air flow changes with regards to the supply

air temperature. The zone loads were chosen in such a way that Zone 1 operates

above the minimum flow setpoint at all times, while Zone 2 is at the minimum flow

setpoint at supply air temperatures less than 57°F. The system uses reheat at supply

air temperatures less than 57°F.
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With the selected system parameters, the total steady state power can be plotted

with respect to the supply air temperature. The total power function ends up being

convex with a minimum at 57°F.

What is important is the fact that the optimum supply air temperature is not

simply the maximum supply air temperature in the search range. Under conditions

such as the one in the first example, there is a competing balance between the cooling,

reheat, and fan power. It is possible that the optimization will potentially suggest

lowering the supply air temperature when the conditions are appropriate.

This conclusion is affirmed as well after investigating the impact of energy cost.

The following analysis assumes the fan power uses electricity, the cooling is from

district chilled water, and the reheat is from district hot water, and the prices are

those from the posted Texas A&M Utilities and Energy Services rates for FY20161.

The rates are

• Electricity – $0.082/kWh ≈ $24/MMBTU

• Chilled Water – $15.25/MMBTU

• Hot Water – $15.03/MMBTU

When the cost of electricity is taken into account, the importance of the relation-

ship between fan power and the supply air temperature is increased. Chilled water

is usually produced with a chiller having a COP greater than 3 while the electricity

is consumed directly for the fan. When the impact of cost is added, the cost penalty

for fan power can grow significantly at higher supply air temperatures, which can be

seen in Figure 4.3.
1https://utilities.tamu.edu/2015/08/31/cost-and-fees-for-utility-services-fy2016/
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Figure 4.1: Variation of required air flow with respect to different supply air temper-
atures.

With cost as the optimization function, the optimal supply air temperature is

reduced from 57°F to 56.7°F because of the higher price of electricity as compared

to the district chilled water and hot water price.

If the mixed air temperature is reduced from 80°F to 65°F, the resulting total

power function changes drastically. The required flow rates for each of the zones

remains the same, along with the fan power and the reheat power. Since the mixed

air temperature is less than the zone temperature, the slope of the sensible cooling

power function is always negative, since the numerator in Equation 4.9 is negative.

The result of this is that the minimum total power occurs at the maximum of the

supply air temperature search range.

4.1 Function Analysis

While attempting to optimize an AHU system, it is helpful to understand how

the supply temperature affects all portions of the total power. The analysis in this
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Figure 4.2: Variation of total power with respect to different supply air temperatures,
using 80°F as the mixed air temperature.
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Figure 4.3: Variation of total cost with respect to different supply air temperatures,
using 80°F as the mixed air temperature.
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Figure 4.5: Variation of total cost with respect to different supply air temperatures,
with a mixed air temperature of 65°F instead of the original 80°F.
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section relates to a simplified single duct variable air volume system, with terminal

units having a traditional control sequence, initiating reheat at a constant minimum

flow.

The investigation is going to assume that at a given supply air temperature,

a certain amount of terminal units are going to be in reheat mode, operating at

minimum flow, while the others are operating in cooling mode. The total flow for

the system is then

V̇tot = V̇min,1 + V̇min,2 + . . .+
Q̇z,3

Ca (Tz,3 − Tsa)
+

Q̇z,4

Ca (Tz,4 − Tsa)
+ . . . (4.10)

If the zone temperatures, Tz are all the same, then the terms related to zones in

cooling can be combined. All the flows related to the zones operating at minimum

flow can also be combined.

V̇tot =
∑

V̇mins +

∑
Q̇z,tot

Ca (Tz − Tsa)
(4.11)

For clarity, for the rest of the derivations, the sum will be assumed, and the system

can just be imagined as a combined, two terminal unit system, in which one of the

units is operating at minimum flow and the other terminal unit is in cooling mode.

4.1.1 Sensible Cooling Power

The total sensible cooling power, Q̇c,s, is

Q̇c,s = CaV̇tot (Tma − Tsa) (4.12)

where V̇tot is

V̇tot = V̇min +
Q̇z

Ca (Tz − Tsa)
(4.13)
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There are two different assumptions that can be made relating to the outside air

flow. The first assumption is that the outside air flow is constant, while the second

assumption is that the fraction of outside air is constant.

4.1.1.1 Constant Outside Air Flow

If the amount of outside air flow is constant at V̇oa, and the return air temperature

is assumed to be equal to the zone temperature, then the mixed air temperature can

be estimated as

Tma =
ToaV̇oa +

(
V̇tot − V̇oa

)
Tz

V̇tot

(4.14)

Substituting Equation 4.14 into 4.12 results in

Q̇c,s = CaV̇tot

ToaV̇oa +
(
V̇tot − V̇oa

)
Tz

V̇tot

− Tsa

 (4.15)

Rearranging results in

Q̇c,s = Ca

[
V̇oa (Toa − Tz) + V̇tot (Tz − Tsa)

]
(4.16)

When V̇tot is replaced with Equation 4.13, the (Tz − Tsa) term cancels out, and the

final form for Q̇c,s is

Q̇c,s = Q̇z + CaV̇oa (Toa − Tz) + CaV̇min (Tz − Tsa) (4.17)

The portion of Equation 4.17 that depends on the supply air temperature is related

to the minimum flow, or the zones that are in reheat. If no zones were in reheat,

then the sensible cooling power would not depend on the supply air temperature.
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The derivative of Equation 4.17 is

dQ̇c,s

dTsa

= −CaV̇min (4.18)

which means that the sensible cooling power decreases as the supply air temperature

is raised at a constant slope.

4.1.1.2 Constant Outside Air Fraction

If the percentage of outside air is held constant instead of the flow, the analysis

of the sensible cooling load changes. If the outside air fraction, Xoa is constant,

and the return air temperature is assumed to be equal to the zone temperature, an

estimation of the mixed air temperature is

Tma = Tz +Xoa (Toa − Tz) (4.19)

Substituting Equation 4.19 into 4.12 and expanding V̇tot results in

Q̇c,s = Ca

[
V̇min +

Q̇z

Ca (Tz − Tsa)

]
[Tz +Xoa (Toa − Tz)− Tsa] (4.20)

Taking the derivative of Equation 4.20 with respect to Tsa results in

dQ̇c,s

dTsa

=
Q̇z(Toa − Tz)Xoa

(Tsa − Tz)2
− CaV̇min (4.21)

If the outdoor air temperature is less than the zone temperature, the numerator

of the first term becomes negative and the second term is always negative, so dQ̇c,s

dTsa

will be negative. Q̇z is assumed to be a cooling load and therefore is always a positive

value.

A negative slope for dQ̇c,s

dTsa
implies that the total sensible cooling power decreases
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as the supply air temperature is raised. However, if the outdoor air temperature is

greater than the zone temperature, and the magnitude of the first term is greater

than the contribution from the second term relating to the terminal units that are

in reheat, this slope can become positive, implying the opposite case. This is similar

to the case described at the beginning of this section.

The second derivative of the function is taken to determine the curvature of the

function. Taking the derivative of Equation 4.21 results in

d2Q̇c,s

dTsa
2
=

2Q̇z (Toa − Tz)Xoa

(Tz − Tsa)
3 (4.22)

The sign of d2Q̇c,s

dTsa
2 is solely determined by the sign of (Toa − Tsa) since Q̇z is positive

and Tz > Tsa. This means that if the outdoor air temperature is greater than the zone

temperature, there can be a power penalty for raising the supply air temperature,

and this penalty gets worse as the supply air temperature is increased.

4.1.2 Latent Cooling Power

The total latent cooling power, Q̇c,l, is

Q̇c,l = H

(
V̇min +

Q̇z

Ca (Tz − Tsa)

)
(ωma − ωsa) (4.23)

where H is a volumetric heat of vaporization for water and ωsa is the saturation

humidity ratio at a given supply air temperature, which means that it is a function

of the supply air temperature. For this analysis it is assumed that a latent load does

exist and ωma > ωsa(Tsa). If ωsat(Tsa) > ωma, then the latent load is zero and all its

derivatives are zero as well.
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Taking the derivative of Equation 4.23 results in

dQ̇c,l

dTsa

=
HQ̇z (ωma − ωsa)

Ca(Tz − Tsa)2
−H

dωsa

dTsa

(
Q̇z

Ca(Tz − Tsa)
+ V̇min

)
(4.24)

At this point, it is helpful to examine the relationship between the saturated

humidity ratio versus temperature.

As a useful approximation, the relationship between the saturation humidity ratio

and temperature can be described by a third order polynomial in a restricted range.

Over the range of 20°F to 110°F, the saturation humidity ratio at sea level pressure

can be approximated by

ωsa =
(
8.0635× 10−8

)
T 3

−
(
7.2284× 10−6

)
T 2 +

(
3.8451× 10−4

)
T

− 3.5876× 10−3 (4.25)

where T is in units of °F. The maximum absolute error in this range is approximately

0.00058787 and the median absolute deviation is 0.000164. A plot of the fit versus

the more explicit computation is shown in Figure 4.6. The first and second derivative

of ωsa is shown in Figure 4.7 and Figure 4.8. It is clear that the first derivative is

always positive and the second derivative is positive after 30°F.

With this information about the derivatives of the saturation humidity ratio,

it’s clear that the first term in Equation 4.24 is positive, while the second term

is negative. Through experimentation with typical values for the parameters, this

results in a negative slope.

The second derivative of the saturation humidity ratio with respect to supply air
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Figure 4.6: Saturation humidity ratio versus temperature.
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temperature is

d2Q̇c,l

dTsa
2
= −H d2ωsa

dTsa
2

(
Q̇z

Ca(Tz − Tsa)
+ V̇min

)
+

2HQ̇z(ωma − ωsa)

Ca(Tz − Tsa)3
−

2HQ̇z
dωsa

dTsa

Ca(Tz − Tsa)2

(4.26)

From inspection, it is difficult to discern whether this second derivative is typically

positive or negative. From experimentation it has been found that this value is

typically negative, resulting in rapidly increasing savings with regards to the latent

cooling power by increasing the supply air temperature.

4.1.3 Fan Power

The total fan power is

Ẇfan =

A+ (1− A)

 V̇min +
Q̇z

Ca(Tz−Tsa)

V̇des

n Ẇdes (4.27)
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The first derivative of the fan power with respect to supply air temperature is

dẆfan

dTsa

=

(1− A)nQ̇zẆdes

(
Q̇z

Ca(Tz−Tsa)
+V̇min

V̇des

)n−1

CaV̇des(Tz − Tsa)2
(4.28)

or replacing with the definition of the part load ratio (PLR),

dẆfan

dTsa

=
(1− A)nQ̇zẆdes (PLR)n−1

CaV̇des(Tz − Tsa)2
(4.29)

The first derivative is always positive, as expected. As the supply air temperature is

increased, it will require an increase in fan power.

The second derivative of fan power with respect to supply air temperature is

(1− A)nQ̇zẆdes

(
2CaV̇min(Tz − Tsa) + (n+ 1)Q̇z

)( Q̇z
Ca(Tz−Tsa)

+V̇min

V̇des

)n

(Tz − Tsa)
2
(
CaV̇min (Tz − Tsa) + Q̇z

)2 (4.30)

While Equation 4.30 is complicated and has many terms, it is strictly positive, which

means that the fan power penalty from raising the supply air temperature increases

with increasing supply air temperature, an expected result.

4.1.4 Reheat Power

Of the four major components (sensible cooling, latent cooling, fan, and reheat),

reheat power is the most straightforward to analyze. The total reheat power has

contributions from only the zones that are at minimum flow and is equal to

Q̇r = CaV̇min (Tdis − Tsa) (4.31)
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The required discharge temperature is

Tdis = Tz −
Q̇z

CaV̇min

(4.32)

Substituting the equation for Tdis into the total reheat power equation results in

Q̇r = CaV̇min

(
Tz −

Q̇z

CaV̇min

− Tsa

)
(4.33)

The derivative of the reheat power with respect to the supply air temperature is just

dQ̇r

dTsa

= −CaV̇min (4.34)

and the second derivative is 0.

As expected, when the supply air temperature is raised, the reheat power de-

creases, and this decrease is linear, different from the other components which have

had a non-zero second derivative, implying curvature.

4.1.5 Summary

The following derivations were for a simplified model of a single duct variable air

volume system. The zone temperatures from each zone were assumed to be equal

which allowed for the zones in reheat and the zones not in reheat to be combined.

The traditional control sequence analyzed here is also falling out of favor, with dual-

maximum logic becoming more popular. The analysis is also only valid as long as a

box does not transition from cooling to reheat in the span of supply air temperatures

analyzed.

Even with these simplifications, it is clear that analytically solving for the optimal

supply air temperature using traditional calculus techniques would be a difficult
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endeavor. Even in the simplified model, there are many interactions between the

four major contributors to energy use. The exercise showed that fan, reheat, and

latent portions have a straightforward dependence on the supply air temperature.

However, it was shown that the sensible cooling power can have its relationship

flipped depending on the relationship between the mixed air temperature and the

zone temperatures.
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5. TECHNOLOGY SETUP

A major driving principle of the presented work is that the methodology needs to

be scalable. One reason for difficulties in implementing fault detection and diagnostic

algorithms and other optimization methods is that there is a significant amount of

initial investment necessary, in time, risk, and money.

In more complex schemes, it may be necessary to install additional sensors that

are typically not available in commercial HVAC systems. Along with the sensor

cost, there is the cost to configure the sensors into the BAS. The updated logic will

likely be coded by a controls contractor, adding more cost. On a large campus, this

reprogramming can also take a significant amount of time to complete.

Another issue is that of risk. There is the risk that if the controls do not function

properly and are too complex for the current building operator, the controls cannot

be easily removed and set back to the previous state.

5.1 Proposed Setup

In the proposed setup, the change to the existing BAS is minimal. The control

logic remains the same. A small executable script can be installed on the BAS

computer that can host code that will send an HTTP request to a remote server

holding the historical data and the optimization methods.

Figure 5.1 shows potential information flow. Over any period, historical trend

data coming from the building or buildings are stored in a server. This data sync

may only happen once, weekly, daily or even sub-daily. Once enough data has been

stored on the server, a client BAS computer (potentially one of many) can make an

HTTP request that will essentially carry information related to the current time and

what equipment the request corresponds to. Each AHU will have a unique identifier
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that the main web server understands.

The web server will implement the methods described in this document and will

send a response back to the client with the setpoint values for the system that will be

near-optimal in a steady-state sense, given the expected conditions at the building

and individual zones.

5.1.1 Standards for Transmission

Standards for the format of information transfer are critical for rapid adoption.

An Application Program Interface (API) is the public interface of methods and rou-

tines that allow third-party programmers to develop programs from the base building

blocks.

Another important point of consideration is the format of the data being trans-

ferred. In the software industry, there are several types of data exchange formats,

two popular ones being JavaScript Object Notation (JSON) and Extensible Markup

Language (XML). The advantage of JSON over XML is that JSON requires fewer

characters to describe simple objects, though, it does not support explicit schema

definition.

5.1.2 Advantages to Proposed System

There are several key advantages to a system similar to the proposed:

1. No real-time data transmission. Managing the networking of large BAS systems

is difficult enough as is. It is not feasible for a single server to handle live

streams of BAS point information from thousands of buildings.

2. The system can be added or removed quickly and without side-effects. Because

the logic lives at an abstraction level above the BAS code, no changes to the

system need to be made locally.
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HTTP request
≈5-15 min

Web Server

Historical data at
any syncing interval

Optimal Setpoints

Figure 5.1: Diagram of networking flow.

3. Routines only have to be added once for different equipment and setup types,

allowing the same methods to expand to many different buildings.

5.2 Prototype Information

The proposed system was implemented in the software tool Implementer, a web

application developed at the Energy Systems Laboratory at Texas A&M University.

Implementer can analyze trend data from any system that has an ability to store

timestamp-value pairs and allow access to them. Various terms specifically related

to Implementer are described in Table 5.1.

The current systems supported by Implementer include:

• Alerton

• Andover Continuum

• Automated Logic

• Delta Controls Historian

• Emerson Ovation
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Table 5.1: Terms specific to Implementer.

Term Description
Project Information typically related to a collection of buildings
Label A known sensor type that can be associated with a trend, also called

a tag by other software
Container An item that has a collection of trends associated, usually correspond-

ing to a piece of equipment. Containers are set up into a tree structure
with parent-child relationships, for example, a container representing
an AHU would be a parent container to a terminal unit.

• Honeywell Hoboware

• Johnson Controls Metasys

• Reliable Controls

• Siemens APOGEE

• TAC I/NET Seven

• TAC I/A Series

• Trane Tracer

• Tridium Niagara

Before this process can begin, the sensors need to be mapped in a way that the

server can understand.

In Implementer, trends are given meaning through the use of Labels. Labels are

similar to the concept of tagging that is used in other systems, such as a system that

implements Project Haystack.

Implementer stores data in projects. A project typically is a collection of buildings

from a campus, but could be a single building.
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Trends can receive labels in several ways. For trends in air handling units, the la-

bel can automatically be derived from the type of sensor and location on a schematic.

A screenshot of a sample schematic from the NCTM project is shown in Figure 5.2.

The different types of equipment such as fans, coils, and temperature sensors are

placed on the schematic and are associated with an actual sensor. For example, a

temperature sensor that is at the outlet of the air handling unit, unaffected by any

other temperature affecting device, is defined to have the supply air temperature

label.

Labels can also be created manually. Figure 5.3 shows a screenshot of how all

the real AUX TEMP trends from the different fan powered VAV (FPVAV) units at

the case study NCTM building are labeled as DischargeTemps.

An entire site or building is organized into a hierarchy of components. Each

component is related to a container, which trends can be associated with. A building

container is a parent to air handling unit containers, and air handling unit containers

are parents to terminal unit containers. Figure 5.4 shows a screenshot of a portion of

the container hierarchy for the NCTM project. Each line in Figure 5.4 is a different

container. The indentation indicates the relationships. By organizing trends into

containers which have parent-child relationships, along with labeling, automated

algorithms and analysis can easily be set up.

To execute the optimization, the inputs and functions for the various trends need

to be set up. It is proposed that the use of a container hierarchy, labels or tags, and

custom equations be used to develop the system.

Implementer uses something called container properties, and one of the properties

can be set to a JSON object that contains all the necessary pointers to values or

custom equations.

The necessary inputs for the AHU container would be
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Figure 5.2: Screenshot of a sample AHU schematic for AHU-2-2 in the NCTM build-
ing in Implementer.

Figure 5.3: Screenshot of the custom labels setup in Implementer, showing how all
AUX TEMP trends are associated to the label DischargeTemps.

61



Figure 5.4: Screenshot of the container hierarchy for NCTM in Implementer.
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1. Prediction function for Tma

2. Design AHU flow

3. Exponent for the fan curve, n

4. Fan curve constant, A

5. Design fan power Ẇdes

6. Maximum supply humidity ratio

7. Minimum outdoor air flow percent

For the terminal units, if a series fan powered terminal unit is assumed, the necessary

inputs will be

1. Design flow

2. Minimum flow percent

3. Prediction function for zone temperature setpoint.

4. Prediction function for zone load.

5. Prediction function for plenum temperature.

Parameters needed for the optimization are input for each container in the con-

tainer details portion of Implementer. The settings are formatted in JSON, as shown

in Figure 5.5. The properties include options such as pointers to how the mixed air

temperature should be calculated, the maximum supply humidity ratio, and the

assumed part load ratio fan exponent.
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OptSATGenPoint =
{”MATPrediction ” : ”MAT Pred i c t i on ” ,
”VDesign ” : ”VDesign ” ,
”FanExponent ” : 2 ,
”WDesign” : ”WDesign ” ,
”MaxHumidityRatio ” : 0 . 0 09 ,
”Name” : ”Optimal SAT−Ex−2” ,
”BoundTermUnitProp” : ” Ser i e sBoxOpt ions ” ,
” SATEnergySelector ” : ”SAT”} ;

Figure 5.5: JSON options for the second floor air handling units.

These pointers can be a static value, another property, an actual trend from

the building automation system, or a custom equation built up using the powerful

functions available in Implementer.

Any calculation from the optimization analysis can be output as a trend in Im-

plementer and can be plotted and visualized using any of the tools available.

The equipment can be separated by project, which typically a building or col-

lection of buildings, and a call such as https://domain/GetEquipmentForProject?

ProjectId={Project-Id} could return all the possible set up equipment.

The interface for receiving the optimal setpoints could have a URL similar to

https://domain/setpoints?id={Equipment-Id}&{time=Datetime}
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6. NCTM CASE STUDY

The National Center for Therapeutics Manufacturing (NCTM) building was used

as a test bed for the methodology. NCTM is a building located on the campus of

Texas A&M University, in College Station, Texas. Figure 6.1 shows an image of the

main entrance to the building.

The National Center for Therapeutics Manufacturing (NCTM) combines the ed-

ucational and manufacturing focuses of the biopharmaceutical industry. The NCTM

building is approximately 150,000 ft2 with nearly 50,000 ft2 of educational facilities

that include wet labs, culture facilities, large lecture halls, and a mock current Good

Manufacturing Practice (cGMP) training suite. Around 120,000 ft2 are on the first

level and 30,000 ft2 are on the second level.

The cGMP Suite contains modern biopharmaceutical manufacturing equipment

that students can use to learn industry practices. The wet labs are equipped with

chemical fume hoods and the necessary electronic equipment for following standard

operating procedures used in the biopharmaceutical industry. The two lecture halls

seat up to 120 students and have large floor to ceiling windows. There is also an

Apple Computer laboratory with 48 workstations on the second floor.

On the academic side, three dedicated outdoor air handling units (OAHU) serve

seven air handling units. Two of the air handling units are constant speed, and the

others are variable air volume. OAHU 1-1 serves its own wet lab and also feeds into

AHU 1-1 and AHU 1-2. OAHU 1-2 serves AHU 1-3 and 1-4 on the first floor. OAHU

2-1 serves three air handlers on the second floor, AHU 2-1, 2-2, and 2-3.

Various specifications for the air handling units are shown in Tables 6.1 through

6.3.
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Figure 6.1: Main entrance to the NCTM building at Texas A&M (https://
engineering.tamu.edu/media/15458/nctm-building.png).

Table 6.1: Occupied/Unoccupied scheduling for the AHUs as described.

Level OAHU AHU # AHU Schedule
Floor 1 Area B OAHU 1-1 N/A 24/7
Floor 1 Area B OAHU 1-1 AHU 1-1 24/7
Floor 1 Area B OAHU 1-1 AHU 1-2 6am - 6pm, M-F
Floor 1 Area A OAHU 1-2 AHU 1-3 6am - 8pm, M-F
Floor 1 Area A OAHU 1-2 AHU 1-4 6am - 8pm, M-F
Floor 2 OAHU 2-1 AHU 2-1 6am - 10pm, M-F
Floor 2 OAHU 2-1 AHU 2-2 6am - 10pm, M-F
Floor 2 OAHU 2-1 AHU 2-3 6am - 10pm, M-F

This work focuses on the academic side of the building since Utilities and Energy

Services with Texas A&M University are only allowed to make changes to the HVAC

system and collect data on this side. In summary, the relevant facts concerning

NCTM are that it houses several biopharmaceutical labs, it has an academic side

that had available data, and relies on dedicated outdoor air handling units to pretreat

outdoor air.

Figures 6.2 through 6.4 show the respective areas that the air handling units serve.

Mechanical drawings for the floors are shown in Figures 6.5 through 6.7. Utilities

and Energy Services provided access to these graphics and mechanical drawings.
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Table 6.2: Fan schedule information for the dedicated outdoor air handlers.

OAHU Design OA CFM HP
OAHU 1-1 12,800 20
OAHU 1-2 4,500 5
OAHU 2-1 2,200 2

Total: 19,500 27

Table 6.3: Fan schedule information for the AHUs.

AHU Type Total Airflow (CFM) HP OA Served By
AHU 1-1 Constant 3,000 5 OAHU 1-1
AHU 1-2 VAV 4,800 5 OAHU 1-1
AHU 1-3 VAV 7,500 7.5 OAHU 1-2
AHU 1-4 Constant 5,000 7.5 OAHU 1-2
AHU 2-1 VAV 6,000 7.5 OAHU 2-1
AHU 2-2 VAV 8,500 10 OAHU 2-1
AHU 2-3 VAV 6,000 7.5 OAHU 2-1

Total: 40,800 50

6.1 Terminal Unit Information

On the academic side, there are a total of 10 series fan powered terminal units

on the first floor and 18 on the second floor. Table 6.4 shows the design flowrates

and type of space served for each of the terminal units.

It is critical to have an understanding of how the current controls are operating.

It is better to rely on data, rather than relying on control code, although in practice,

this will normally require that an engineer verifies both the control code along with

the real measured performance.

Implementer can ease the difficulty in this analysis by producing certain plots en

mass for terminal units. As an example of this, Figure 6.8 shows the results of tem-
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Table 6.4: Terminal unit information.

AHU Terminal Unit Flow
(CFM) Space Served

AHU-1-2 FPVAV-1-7 1,400 Difficult to tell

(5 hp) FPVAV-1-8 700 Vestibule/Men’s & Women’s bathroom

FPVAV-1-9 1,200 Stairs/Front Corridor

FPVAV-1-10 1,600 Hallway

AHU-1-3 FPVAV-1-1 1,480 Large Auditorium Lecture Hall

(7.5 hp) FPVAV-1-2 1,160 Large Auditorium Lecture Hall

FPVAV-1-3 1,300 Large Auditorium Lecture Hall

FPVAV-1-4 1,400 Large Auditorium Lecture Hall

FPVAV-1-5 1,040 Large Auditorium Lecture Hall

FPVAV-1-6 1,120 Large Auditorium Lecture Hall

AHU-2-1 FPVAV-2-1 2,000 Large Study Area

(7.5 hp) FPVAV-2-2 2,200 Large Study Area

FPVAV-2-3 1,800 Open Corridor

AHU-2-2 FPVAV-2-9 2,400 Computer Lab

(10 hp) FPVAV-2-12 500 Kitchen/Mail Room

FPVAV-2-13 1,000 Open Corridor

FPVAV-2-14 850
Men’s/Women’s Restroom
Copy/Mail
Waiting Area

FPVAV-2-15 1,400 Reception/Seating/Admin Lobby

FPVAV-2-16 500 Small Conference Room

FPVAV-2-17 1,280 4 Small Offices

FPVAV-2-18 600 Large Office

AHU-2-3 FPVAV-2-4 2,000 Open Corridor

(7.5 hp) FPVAV-2-5 600 Open Seating

FPVAV-2-6 400 Small Conference Room

FPVAV-2-7 200 Office

FPVAV-2-8 1,200 Visitor Conference

FPVAV-2-10 540 3 Sponsor Offices

FPVAV-2-11 560 3 Sponsor Offices
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Figure 6.2: First floor plan for Area A.

Figure 6.3: First floor plan for Area B.
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Figure 6.4: Second floor plan.

perature rise within the terminal unit, versus the part-load ratio of the terminal unit

(assuming the design specifications for the design flow). Implementer can produce

these plots for every terminal unit in a project at once. From these types of plots,

the minimum primary air flow setpoint can quickly be visually determined.

From the data, it appears that the majority of the terminal units in NCTM are

operating with 30% as the minimum flow rate. There are a few terminal units that

have minimum flow rates less than this. Table 6.5 shows the estimated minimum

percent flows based on data from February 1, 2016, through May 1, 2016.

Figure 6.9 shows the available points for the series fan powered terminal units at

NCTM from a BAS graphic.

The points include

• Primary air flow
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Figure 6.5: Floor plan for first floor Area A with terminal units.
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Figure 6.7: Floor plan for the second floor with terminal units.

73



0 100 200 300 400 500 600 700 800 9001,000
0

2

4

6

8

10

12

14

16

Primary Air Flow [CFM]

T
d
is
−

T
sa

[◦
F
]

Figure 6.8: Temperature rise due to the mixing of plenum air at the terminal unit
for FPVAV-2-14. Plots like this were used to estimate the current minimum flow
rate settings.

Figure 6.9: Typical graphic of the terminal units at NCTM.
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• Damper command

• Discharge air temperature

• Heating coil valve command

6.2 Analysis of the Mixed Air Temperature at the AHU

This section investigates the feasibility of estimating the mixed air temperature

based on historical data. The historical data of the mixed air temperature, Tma,

differs from one air handling unit to another. Figure 6.10 shows an example of an

AHU in which Tma does not change significantly throughout time, having a range

of approximately 6°F, excluding a few outliers. In the case of Figure 6.11, Tma is

less constant but still appears to be a function of Toa as a first order approximation.

Figure 6.10 and 6.11 both show data spanning 90 days from March 14, 2016 to June

12, 2016.

The nearest neighbor approach was used to predict the mixed air temperatures.

The algorithm looked back in history (at least a day before) under the following

parameters:

• The same day of the week (Sun, Mon, etc.)

• Same hour of day ±1 hr.

• Same Toa ±3◦F

• Searching backward until 30 data points found

The median of the data points matching the criterion listed is the resulting pre-

dicted value. Figure 6.12 and 6.13 show the results versus outdoor air temperature.

The following plots show the model fits for the different air handling units at NCTM.
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Table 6.5: Terminal unit minimum air flow rate settings.

Terminal Unit Min Percent Flow
FPVAV-2-1 20
FPVAV-2-2 30
FPVAV-2-3 20
FPVAV-2-12 30
FPVAV-2-13 30
FPVAV-2-14 30
FPVAV-2-15 30
FPVAV-2-16 30
FPVAV-2-17 30
FPVAV-2-18 30
FPVAV-2-9 5
FPVAV-2-10 30
FPVAV-2-11 30
FPVAV-2-4 30
FPVAV-2-5 30
FPVAV-2-6 30
FPVAV-2-7 30
FPVAV-2-8 30
FPVAV-1-10 30
FPVAV-1-7 30
FPVAV-1-8 N/A
FPVAV-1-9 N/A
FPVAV-1-1 30
FPVAV-1-2 30
FPVAV-1-3 25
FPVAV-1-4 25
FPVAV-1-5 N/A
FPVAV-1-6 30
FPVAV-1-11 30
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Figure 6.10: AHU-2-1 mixed air temperature vs. outdoor air temperature.
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Figure 6.11: AHU-1-3 mixed air temperature vs. outdoor air temperature.
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Figure 6.12: AHU-1-2 Tma prediction for data from March 10, 2016 - September 5,
2016, not ignoring any data.

The data covers a period of 180 days. Figures 6.12 and 6.13 show that the prediction

algorithm can adequately handle the differences from when the air handling unit is

on as well as off. The significant amount of spread in the mixed air temperature is

due to data in which the air handler turns off and is allowed to drift, typically to a

higher temperature in the climate of College Station.

Figures 6.14 through 6.18 show the model fits ignoring times when the air han-

dling units are off, weekends and holidays, and times between 6:00 PM and 8:00

AM.

The sensitivity of the prediction results to the selected nearest neighbor parame-

ters was tested. The parameter values were varied as shown in Table 6.6.

With three parameters and three different variations for each, this resulted in

27 test cases. The results of this testing are shown in Table 6.7. TS stands for
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Figure 6.13: AHU-1-3 mixed air temperature prediction for data from March 10,
2016 - September 5, 2016, not ignoring any data.

60 62 64 66 68 70 72 74 76 78 80
60

62

64

66

68

70

72

74

76

78

80

AHU-1-2 Mixed Air Temp [◦F]

M
ix
ed

A
ir
T
em

p
P
re
d
ic
ti
on

fo
r
A
H
U

1-
2
[◦
F
]

Figure 6.14: Mixed air temperature prediction results for AHU-1-2.

79



50 55 60 65 70 75
50

55

60

65

70

75

AHU-1-3 Mixed Air Temp [◦F]

M
ix
ed

A
ir
T
em

p
P
re
d
ic
ti
on

fo
r
A
H
U

1-
3
[◦
F
]

Figure 6.15: Mixed air temperature prediction results for AHU-1-3.
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Figure 6.16: Mixed air temperature prediction results for AHU-2-1.
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Figure 6.17: Mixed air temperature prediction results for AHU-2-2.
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Figure 6.18: Mixed air temperature prediction results for AHU-2-3.
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Table 6.6: Variations in the parameters for the nearest neighbor algorithm.

Threshold Variations
Time stamp threshold 15, 30, and 60 minutes

Toa threshold 1°F, 3°F, 5°F
Data points threshold 15, 30, and 45 data points.

timestamps and is related to the time of day threshold. Since the data was aligned

to 15 minute intervals, a 1 timestamp threshold implies a threshold of ±15 minutes

and a 4 timestamp threshold implies a threshold of ±60 minutes. The best model fit

used a timestamp threshold of ±60 minutes, ±3°F for Toa, and 15 data points. The

worst case was using ±15 minutes, ±1°F, and 30 data points.

Because Fahrenheit is not on a ratio scale, that is, having a meaningful zero,

the typical goodness-of-fit parameter, the coefficient of variation of the root mean

squared error (RMSE), has less meaning. Therefore, instead of using the mean as

the normalization parameter in the CV-RMSE metric, the range or the spread of

the original data was used. It is denoted as CV-RMSE* for the remainder of this

document.

CV-RMSE* =
RMSE

ymax − ymin

(6.1)

The model was insensitive to the parameters. The average CV-RMSE* ranged

from 8.97% to 10.75% across the 27 different test cases. The models with the lowest

CVs had the largest range in the timestamp and Toa threshold. This observation

is an indication that using more recent data was more valuable than using data

from conditions matching more closely, though the more important fact was that

the overall difference from highest to lowest CV-RMSE* was only 1.78 percentage

points.
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Figure 6.19: Results from testing different nearest neighbor model parameters used
in predicting mixed air temperature.

A graphical view of the results in order of the best set parameters to the worst

set of parameters is shown in Figure 6.19.

6.3 Analysis of the Plenum Air Temperature

Reheat is a major component of energy use, and for a series fan powered box,

the plenum air temperature is required to calculate the reheat power. This section

analyzes the estimation of the plenum air temperature and the corresponding uncer-

tainty. If the terminal unit is modeled as a simple mixing problem, with negligible

impact from the fan, the plenum air temperature will be

Tplen =
V̇totTdis − V̇priTsa

V̇tot − V̇pri

(6.2)

Since Tplen is a function of 4 variables, each with their own uncertainties, it is

important to consider the cumulative uncertainty in the estimation. Clearly, when

V̇plen (or V̇tot− V̇pri, the denominator of Equation 6.2) is low, the uncertainty in Tplen
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Table 6.7: Results from testing different nearest neighbor model parameters for pre-
dicted Tma.

Run TS Toa DP Average CV-RMSE*
1 1 1 15 10.12
2 2 1 15 9.68
3 4 1 15 9.80
4 1 3 15 9.61
5 2 3 15 9.41
6 4 3 15 8.97
7 1 5 15 9.28
8 2 5 15 9.18
9 4 5 15 8.98
10 1 1 30 10.58
11 2 1 30 10.07
12 4 1 30 9.39
13 1 3 30 9.95
14 2 3 30 9.63
15 4 3 30 9.16
16 1 5 30 9.61
17 2 5 30 9.25
18 4 5 30 9.00
19 1 1 45 10.75
20 2 1 45 10.47
21 4 1 45 9.80
22 1 3 45 10.08
23 2 3 45 9.58
24 4 3 45 9.32
25 1 5 45 9.74
26 2 5 45 9.52
27 4 5 45 9.08

Table 6.8: Tma prediction results using the parameters in Run 6.

AHU RMSE (°F)
AHU 1-2 1.69
AHU 1-3 2.42
AHU 1-4 1.25
AHU 2-1 0.744
AHU 2-2 0.619
AHU 2-3 0.496
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grows significantly, and when the flow is equal to zero, Tplen is undefined.

Using the Kline-McKlintock formulation of uncertainty, the uncertainty of Tplen

is

δTplen =

(∂Tplen

∂V̇pri

δV̇pri

)2

+

(
∂Tplen

∂V̇tot

δV̇tot

)2

+

(
∂Tplen

∂Tdis

δTdis

)2

+

(
∂Tplen

∂Tsa

δTsa

)2
]1/2

(6.3)

δTplen =

( V̇tot (Tdis − Tsa)

V̇ 2
plen

δV̇pri

)2

+

(
V̇pri (Tsa − Tdis)

V̇ 2
plen

δV̇tot

)2

+

(
V̇tot

V̇plen

δTdis

)2

+

(
V̇pri

V̇plen

δTsa

)2
1/2

(6.4)

As a concrete example, if the following arbitrary but reasonable parameters are

used,

• V̇tot = 2,200CFM

• V̇pri = 1,000CFM

• V̇plen = 2,200CFM− 1,000CFM = 1,200CFM

• Tsa = 55◦F

• Tdis = 75◦F

• δV̇pri = δV̇plen = δV̇tot = 100 CFM
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• δTsa = δTdis = 1◦F

Equation 6.4 becomes

δTplen =
[
(3.06°F)2 + (−1.39°F)2 + (1.83°F)2 + (0.830°F)2

]1/2 (6.5)

which results in a final uncertainty of 3.91°F, which is nearly four times larger than

the initially assumed uncertainties for the temperatures (1°F). When V̇plen is reduced

even further, this uncertainty grows substantially.

For a more detailed analysis, Equation 6.4 can be manipulated into a simpler

form. The first substitution assumes the uncertainty for Tdis and Tpri are the same

and constant at a value of δT . The uncertainty of the flows can be done on a percent

basis (±10% for example, and that percentage, a value from 0 to 1, can be denoted

as δV̇perc). The difference between Tdis and Tpri can be replaced by ∆T . The final

substitution is that the flows for V̇pri and V̇plen are replaced by the corresponding

fraction of the total flow. Fpri is defined to be the fraction of the total flow that

comes from the primary stream, a value between 0 and 1. Therefore,

∆T = Tdis − Tpri (6.6)

and

V̇pri = FpriV̇tot (6.7)

and

V̇plen = (1− Fpri) V̇tot. (6.8)
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Figure 6.20: Uncertainty in Tplen, δTplen, at different levels of ∆T = Tdis − Tpri.

With these substitutions, the total uncertainty for Tplen is

√√√√( δT

1− Fpri

)2

+

(
δTFpri

1− Fpri

)2

+ 2

(
∆T Fpri δV̇perc

(1− Fpri)2

)2

(6.9)

Various combinations of values and the resulting uncertainty in Tplen are shown

in Figure 6.20 through 6.22. The y-axis is normalized to the static uncertainty in

the other temperatures, δT , which is the uncertainty for both Tdis and Tpri.

What the plots show is that the fraction of primary flow, F , has to be less

than 40% in most cases to have an uncertainty in Tplen that is less than double the

uncertainty in Tdis and Tpri (a value of 2 on the normalized y-axis).

As an example as to how unstable the calculation for the plenum temperature is,

Figure 6.23 shows the calculated plenum temperature for FPVAV-1-9 over the period

from February 1, 2016 - May 1, 2016. The calculated values are unrealistic ranging

from -1,500◦F to 1,500◦F. The reason for this is made clear in a time series plot of
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Figure 6.21: Uncertainty in Tplen, δTplen, at different levels of δT .
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Figure 6.22: Uncertainty in Tplen, δTplen, at different levels of δV̇unc.

88



the flows related to the terminal unit. As shown in Figure 6.24, for this particular

terminal unit, the primary flow is either near zero or design. At times, the measured

flow is also above the design specification, making the plenum flow calculation zero.

When the plenum flow is calculated to be zero, the plenum temperature calculation

becomes undefined.

Using the assumptions that the uncertainty in the flow was 100 CFM and the

uncertainty in the temperature measurements was 1◦F, the plenum temperature was

calculated from October 6, 2015, to September 12, 2016, ignoring items that appear

in Table 6.9. The distribution statistics for each terminal unit are found in Table

6.10. The table is listed in ascending order by the median of the plenum temperature

calculated.

Note that the percentage of ignored points is below 96% for only 4 terminal units.

The majority of the points are ignored because the uncertainty in the calculation

was above the 2◦F threshold that was arbitrarily chosen. In fact, at no point was

the uncertainty below 2◦F for FPVAV-2-7. The median plenum temperature ranges

from 58.8◦F for FPVAV-1-8 to 75.6◦F for FPVAV-1-6.

Another interesting way to examine the difference between the plenum tempera-

ture and the zone temperature is to plot the estimated reheat in the terminal unit

when the reheat valve is closed. Ideally, the amount of reheat would be at or near

zero.

If the plenum temperature is assumed to be equal to the zone temperature, then

an estimate of the mixed air temperature in the terminal unit would be

Tma =
V̇priTsa + Tz

(
V̇tot − V̇pri

)
V̇tot

(6.10)
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Table 6.9: Implementer settings for plenum temperature estimation for NCTM, used
to calculate data in Table 6.10.

Project: Mitch Dissertation NCTM—2016-09-19 10:34
Scope: NCTM

Axis Parameters: Plenum Temperature vs. OA Dry-bulb Temp (NOAA)
Date Period: 10/6/2015 - 9/12/2016 (342 days)
OAT range: 31 to 100◦F

Ignoring: When AHU is Off
First 1.0 hours of operation
Last 1.0 hours of operation
Sundays
Saturdays
Federal Holidays
Hours from 17:00 to 9:00
When label Plenum Temp Uncertainty is greater than 2
When label Valve Positions is greater than 1

and the reheat power could be estimated by

Q̇ = 1.08 (CFM) (Tma − Tdis) (6.11)

Figures 6.25 through 6.27 show the reheat power as determined by Equation 6.11.

They are from the period of February 1, 2016, through May 1, 2016. Timestamps

during weekends, times between 5:00 PM and 9:00 AM, and when the corresponding

reheat valve command is < 1% were ignored. Again, ideally, the estimated reheat

power would be exactly zero.

Figure 6.25 shows an example of where the assumption appears to hold reasonably

well. The median of the data set is near 500 BTU
h

. Is should be noted that Equation

6.11 does not make a distinction between heating from the heating coils and heating

from the fan. So the 500 BTU
h

could be due to the fan in the air stream.

Figure 6.26 shows a case in which there is either constant reheat or the actual
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Figure 6.23: Calculated plenum temperature for FPVAV-1-9.
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Figure 6.24: Flowrates for FPVAV-1-9.
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Table 6.10: Calculated plenum temperature statistics for NCTM.

5th 95th St. Original Final
Unit Min Perc. Mean Med. Perc. Max Dev. Count Count
1-8 56.5 56.5 60.6 58.8 71.8 71.8 4.25 29,199 26
2-12 52.8 55.7 60.8 61.8 62.5 75.0 2.23 29,319 3,500
2-15 52.1 57.4 61.3 61.8 62.6 78.5 1.84 29,324 6,262
1-9 57.0 57.0 63.6 65.0 73.5 73.8 5.34 27,961 17
2-6 65.0 65.0 65.0 65.0 65.0 65.0 0.00 29,311 1
2-18 61.5 62.7 69.6 67.0 80.2 80.5 5.60 29,312 45
2-16 67.0 67.0 67.3 67.5 67.5 67.5 0.29 29,325 3
2-10 66.5 66.5 67.8 67.8 69.0 69.0 1.44 29,236 4
2-14 60.0 61.0 68.8 68.5 79.0 79.8 6.28 29,318 41
2-11 66.5 66.5 68.0 68.5 69.5 69.5 1.01 28,557 12
2-5 68.5 68.5 69.1 69.0 70.0 70.0 0.65 29,309 5
2-8 68.2 69.1 70.0 70.0 70.7 72.5 0.55 29,304 410
2-13 68.0 68.5 70.0 70.0 71.5 72.6 1.34 29,312 33
1-5 55.0 63.8 71.1 70.1 78.0 79.0 4.62 30,170 166
2-17 61.5 68.5 70.3 70.4 71.5 72.5 1.23 29,287 256
2-2 52.5 67.3 70.7 70.8 73.6 75.6 2.69 29,363 386
1-7 60.0 64.5 71.8 71.8 75.1 75.7 3.11 29,955 233
2-3 64.5 71.0 73.0 72.8 75.3 76.2 1.49 29,367 1,060
1-2 67.0 70.8 73.9 72.9 77.8 78.5 2.60 30,166 124
2-1 67.5 70.8 73.6 73.8 75.5 81.7 1.44 29,366 1,170
1-3 71.4 72.6 74.2 74.4 75.4 76.9 0.94 30,145 542
2-9 69.0 70.7 73.9 74.5 76.5 78.4 1.88 29,272 6,921
1-1 57.0 71.8 74.6 74.8 79.0 82.5 2.64 30,152 708
1-10 58.5 62.0 73.8 74.9 76.0 78.2 3.61 29,941 297
1-4 54.0 72.4 74.9 75.1 77.2 81.7 2.51 30,086 455
2-4 69.5 73.7 75.3 75.2 76.7 77.6 0.96 29,304 3,834
1-6 56.5 66.2 74.1 75.6 81.3 81.6 5.43 30,170 79
2-7 N/A N/A N/A N/A N/A N/A N/A 28,906 0
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Figure 6.25: Zone reheat power for terminal unit 2-16.

plenum temperature is lower than the zone temperature that was assumed.

Figure 6.27 shows a case in which the reheat is estimated to be a negative value,

which likely means that the actual plenum temperature is greater than the assumed

plenum temperature equal to the zone temperature.

Another way to view the accuracy and importance of the plenum temperature

on the amount of reheat necessary is to look at the difference between the discharge

temperature and the predicted mixed air temperature in the terminal unit under

conditions when the reheat valve is closed. During these times the values should be

nearly equal, and the difference should be near zero.

Under the assumption that the plenum temperature is equal to the corresponding

zone temperature, it does not appear as if this assumption is valid for the correspond-

ing energy calculations. Figure 6.28 shows as much as an 8°F difference for FPVAV-
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Figure 6.26: Zone reheat power for terminal unit 2-4.
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Figure 6.27: Zone reheat power for terminal unit 2-13.
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Figure 6.28: Difference between discharge temperature and predicted mixed air tem-
perature using the zone temperature assumption for FPVAV-2-7.

2-7. Because the value is positive, this means that the plenum temperature is likely

higher than the assumed zone temperature, assuming that the measured discharge

temperature is more accurate that the estimation of the plenum temperature.

The opposite case can be seen with FPVAV-2-15, as shown in Figure 6.29. In

this case, the values are all negative, indicating that the plenum temperature is lower

than the zone temperature. The plots are from the same period and cover a broad

range of outdoor air temperatures from 36°F to 96°F. Both plots do appear linear

with regards to the PLR of the terminal unit. This linearity indicates that there is

some relationship with the plenum temperature and the amount of conditioned air

coming from the parent air handling unit.
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Figure 6.29: Difference between discharge temperature and predicted mixed air tem-
perature using the zone temperature assumption for TU-2-15.

This linear dependence on the PLR does not carry to all the terminal units. As

a counterexample to the previous plots, FPVAV-2-10 has a zig-zag pattern.

6.4 Analysis of Zone Load Predictions

An important factor in the optimization methodology is the prediction of the

zone loads at a given time, without access to current live sensor information.

Before analyzing how well different zone loads can be predicted, it is important

to gather insight into the nature of the calculated zone load variable that is proposed

to be used as the surrogate for the actual zone load.

If the zone loads are being met and steady-state conditions are assumed, the

sensible zone load will be

Q̇z = V̇zρacp,a (Tdis − Tz) ≈ 1.08 · V̇z (Tdis − Tz) (6.12)
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Figure 6.30: Difference between discharge temperature and predicted mixed air tem-
perature using the zone temperature assumption for FPVAV-2-10.

where Q̇ is in units of BTU
h

, V̇z is in CFM, and the temperatures are in °F.

As a result of the dynamics of how terminal units are controlled in reality, the

estimated zone load can vary back and forth, while the true zone load is expected

to be a smoother function over the course of a day. Figure 6.31 shows how the

estimated zone load using Equation 6.12 can change directionality several times over

the course of a day. The zone load for terminal unit FPVAV-1-7 typically varied from

6,000 BTU/hr to 20,000 BTU/hr over the course of the week from June 6, 2016, to

June 11, 2016.

Figure 6.32 shows another example of how the estimated zone load may vary

throughout a typical week. Figure 6.32 shows the zone load for FPVAV-2-2, which

experiences a significant load compared to the other terminal units at NCTM. The

zone load varies from near 10,000 BTU/hr to near 50,000 BTU/hr at its peak.

97



Mon 6/6 Tue 6/7 Wed 6/8 Thu 6/9 Fri 6/10 Sat 6/11
−5,000

0

5,000

10,000

15,000

20,000

25,000

Z
on

e
L
oa
d
fo
r

F
P
V
A
V
-1
-7

(B
T
U
/h

r)

Figure 6.31: Zone load estimation for FPVAV-1-7.

With Figure 6.31 as evidence, it is clear that the “true” zone load cannot be

reasonably estimated with the trend data that is available in typical BAS systems.

However, the ratio of magnitudes of the load from zone to zone can still be inferred

and be useful in improving the energy efficiency of the system.

Figure 6.33 shows an example of the zone load plotted against outdoor air dry-

bulb temperature. Notice that the load is not a well-defined function of Toa. This

turns out to be the case for many of the internal zones, which have a higher depen-

dence on the time of day parameters.

Figure 6.34 shows the zone load for FPVAV-2-9 versus Toa. FPVAV-2-9 serves

only internal zones, and the load only ranges from approximately 0 BTU
h

to 10,000 BTU
h

.

Statistics related to the predictions of the zone loads for data ranging from Oc-

tober 6, 2015, to June 1, 2016, are given in Table 6.11.

The highest errors in the prediction were for FPVAV-1-4, the zone that has the

highest overall zone load in the building, by a significant margin. It has estimated
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Figure 6.32: Zone load estimation for FPVAV-2-2.
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Figure 6.33: Calculated zone load for FPVAV-2-14 during the month of April 2016.
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Table 6.11: Statistics related to the prediction of the zone loads at NCTM.

Terminal Unit Med. Abs.
Error (BTU/hr)

Mean Abs.
Error (BTU/hr)

RMSE
(BTU/hr)

MBE
(BTU/hr)

FPVAV-2-7 108 171 298 -41
FPVAV-2-16 135 385 704 59
FPVAV-2-5 162 221 328 -22
FPVAV-2-12 203 1,058 1,885 -896
FPVAV-2-6 216 488 836 24
FPVAV-2-13 270 784 1,841 68
FPVAV-2-10 292 631 1,000 -87
FPVAV-2-11 302 708 1,062 -68
FPVAV-2-18 324 914 1,614 77
FPVAV-1-11 324 703 1,585 115
FPVAV-2-14 459 1,004 1,780 -9
FPVAV-2-4 540 1,036 2,012 84
FPVAV-1-2 626 1,201 2,056 -385
FPVAV-2-8 648 991 1,519 -43
FPVAV-2-9 648 1,236 1,763 635
FPVAV-2-17 691 1,386 2,327 122
FPVAV-2-15 756 3,852 12,353 552
FPVAV-1-8 945 1,371 1,978 336
FPVAV-2-3 972 1,789 3,587 -171
FPVAV-2-1 1,080 1,609 2,871 -559
FPVAV-1-9 1,296 1,850 2,805 209
FPVAV-1-5 1,404 2,463 4,105 -17
FPVAV-1-10 1,512 2,819 4,634 1,054
FPVAV-1-1 1,598 3,783 6,267 -1,359
FPVAV-1-3 1,755 3,164 4,868 -237
FPVAV-1-6 1,814 3,186 4,861 261
FPVAV-1-7 2,268 2,827 3,942 -326
FPVAV-2-2 2,376 4,422 7,184 1,773
FPVAV-1-4 3,024 5,569 8,502 19
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Figure 6.34: Calculated zone load for FPVAV-2-9, which serves only internal space,
during the month of April 2016.

loads near 50,000 BTU/hr.

An interesting pattern was that the nearest neighbor prediction function overpre-

dicted the zone load (as calculated by Equation 6.12) when the zone cooling load

was small or was a heating load and underpredicted the zone load during times of

high cooling load.

The residual is defined as the predicted value minus the estimated value, so a

positive value indicates overprediction, while a negative value indicates underpredic-

tion.

This bias was seen in every terminal unit in the building, and this bias occurred

with both the largest and smallest terminal units. Figures 6.35 through 6.37 show

examples of this phenomenon. The explanation for this is that the median of data

under similar conditions was used for the prediction. The function therefore cannot
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Figure 6.35: Bias in zone load prediction for FPVAV-2-2.

overpredict the highest value or underpredict the lowest value. The date period

analyzed was from March 1, 2016, to August 1, 2016, ignoring when the AHUs were

off, federal holidays and weekends, and hours from 5 PM to 9 AM.

An analysis was also completed regarding the optimal parameters for the near-

est neighbor approach. The three parameters for the function are the time of day

threshold, the outdoor air temperature threshold, and the number of data points to

use.

Three different tests cases for each variable were used. The time of day thresh-

old was adjusted from 1 timestamp away, 2 timestamps away, and 4 timestamps

away. For 15 minute interval data, this means that the threshold was 15 minutes,

30 minutes, and 1 hour.

The outdoor air temperature threshold was tested at 1°F, 3°F, and 5°F. The
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Figure 6.36: Bias in zone load prediction for FPVAV-1-4.
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Figure 6.37: Bias in zone load prediction for FPVAV-2-7.
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number of data points used in the median was 15, 30, and 45.

The objective function for these tests was the average root mean squared error

(RMSE) divided by the range of the calculated zone loads for all the terminal units

in NCTM, which is defined as CV-RMSE*.

CV-RMSE* =
RMSE

ymax − ymin

(6.13)

Note that for data sets such as zone load which can be both above and below

zero, that the coefficient of variation using the mean as the normalization factor, a

commonly used metric in evaluating model fits, can be arbitrarily high because the

mean can be close to zero (implying that the zone load is both positive and negative).

The tests were done for data from January 1st, 2016 through January 1st, 2017.

Times when the air handling units were off and the first and last hour of operation,

weekends, and federal holidays were all ignored.

The results show that the goodness-of-fit metrics were insensitive to the various

parameters. In addition, the results indicate that looser thresholds, which results in

more recent data being used, gave the best model fits. The best average CV-RMSE*

was 11.6% was under the conditions of thresholds of plus or minus one hour, 5°F,

and using 45 data points. The worst models had an average CV-RMSE* of 13.5%,

for the thresholds of plus or minus 15 minutes, 1°F, and 45 data points. The rest of

the tests are also shown in Table 6.12.

A main takeaway of the tests, however, was that the results were insensitive to the

parameters. This means that the parameters may be adjusted for benefits in other

areas such as performance. By having large thresholds and requiring less data points,

less historical data needs to be searched, and the time to complete the calculations

is reduced.
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Figure 6.38: Zone load prediction results using the Nearest Neighbor approach.

A plot of these results in order of predictive ability is shown in Figure 6.38.

6.5 Analysis of the Critical Zones

The critical zone/damper could be used to determine the static pressure setpoint

that can be used to supply the desired flows found from the optimization. An impor-

tant consideration in the methodology is checking how well this assumption holds.

Data from NCTM was used to test the validity of the approach.

The following figures show the maximum damper position of the terminal units

for each of the air handlers during the month of April 2016. During this time, for

AHU-2-1 and AHU-2-2, there was no time in which a terminal unit damper was

fully open, which indicates that there is potential for the supply air static pressure

setpoints of these AHUs to be reduced.

An investigation into the critical zones based on historical data was completed.

15 minute interval data from January 1, 2016, through June 1, 2016, was used to

check which damper positions were most open at a given timestamp. Table 6.13
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Table 6.12: Testing results for zone load prediction.

Run TS Toa # of Data Points Average
(

RMSE
Q̇z,max−Q̇z,min

)
(%)

1 1 1 15 10.12
2 2 1 15 9.68
3 4 1 15 9.80
4 1 3 15 9.61
5 2 3 15 9.41
6 4 3 15 8.97
7 1 5 15 9.28
8 2 5 15 9.18
9 4 5 15 8.98
10 1 1 30 10.58
11 2 1 30 10.07
12 4 1 30 9.39
13 1 3 30 9.95
14 2 3 30 9.63
15 4 3 30 9.16
16 1 5 30 9.61
17 2 5 30 9.25
18 4 5 30 9.00
19 1 1 45 10.75
20 2 1 45 10.47
21 4 1 45 9.80
22 1 3 45 10.08
23 2 3 45 9.58
24 4 3 45 9.32
25 1 5 45 9.74
26 2 5 45 9.52
27 4 5 45 9.08
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Figure 6.39: Maximum damper position of all terminal units versus Toa for AHU-1-2
during the month of April 2016.
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Figure 6.40: Maximum damper position of all terminal units versus Toa for AHU-1-3
during the month of April 2016.
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Figure 6.41: Maximum damper position of all terminal units versus Toa for AHU-2-1
during the month of April 2016.
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Figure 6.42: Maximum damper position of all terminal units versus Toa for AHU-2-2
during the month of April 2016.
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Figure 6.43: Maximum damper position of all terminal units versus Toa for AHU-2-3
during the month of April 2016.

shows the results of this analysis. In all five of the applicable air handling units,

there is a damper that is critical at least 59% of the time.

This analysis was not actively used to optimize the air handling unit system

at NCTM. However, if more information were available regarding the fan and duct

system, it could be used to also optimize the supply air static pressure setpoint

in combination with the supply air temperature. It is useful to see, however, that

potential exists to reduce fan power and the pressure drop throughout the system,

which would aid in the goal of energy efficient operation.

6.6 Accuracy of Mechanical Specifications

In the simplified analysis and modeling being proposed, it would be ideal if the

specifications in the mechanical drawings can be used directly. One important pa-

rameter is the design flow rate for the terminal unit. Table 6.4 shows the design
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Table 6.13: Percentage of time that different terminal units for various AHUs were
the most open during the period of January 1, 2016 - June 1, 2016.

AHU (# of term. units) Unit Count of Max Percent as Critical (%)

AHU-1-2 (4)
FPVAV-1-8 3,518 68
FPVAV-1-9 1,281 25
2 others 354 7

AHU-1-3 (6)
FPVAV-1-5 2,331 59
FPVAV-1-4 1,006 25
4 others 622 15

AHU-2-1 (3)
FPVAV-2-1 10,965 79
FPVAV-2-2 2,648 19
FPVAV-2-3 258 2

AHU-2-2 (8)
FPVAV-2-18 10,003 72
FPVAV-2-14 3,171 23
6 others 648 5

AHU-2-3 (7)
FPVAV-2-6 9,883 72
FPVAV-2-11 3,743 27
FPVAV-2-10 184 1
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flow rates for all the series fan powered terminal units in the NCTM building. The

results show that the design specifications were sufficiently accurate. All data that

were available at the time (October 6, 2015, through June 7, 2016) were analyzed to

capture a large number of timestamps (over 22,000 timestamps). Over half the abso-

lute differences between the measured maximum flow and the specified design flow

are less than 100CFM. There are several reasons for potential differences between

the maximum measured flow and the design flow rates in the mechanical drawings.

It may be the case that the terminal unit was oversized and the design flow rate was

never necessary. There may be bias in the flow rate measurements.

The largest percent difference and absolute difference between the measured max-

imum flow rate and design value was for FPVAV-1-9. The difference was due to less

than 15 outliers in the data (out of over 20,000 data points in total), and if they were

to be removed, the maximum is in line with the design value of 1,200 CFM for the

vast majority of the data, as seen in Figure 6.44.

6.7 Optimal Supply Air Temperature Results

The methods described in the previous sections were used to determine the op-

timal supply air temperature for various air handling units at the NCTM build-

ing. Figure 6.45 shows the results for AHU-2-3 during the work week from Monday,

November 7, 2016, through Friday, November 11, 2016. During that week, the actual

Tsa hovered between 58°F and 60°F. The optimal Tsa was predicted using different

parameters for the simple fan curve exponent and plenum temperature. The opti-

mization was completed using a fan exponent of 2 and 3, and the plenum temperature

was assumed to be the room temperature or assumed to be the static median values

shown in Table 6.10. Notice that even with the fan curve exponent varying from 2

to 3, the optimal Tsa is approximately 66◦F, 7◦F higher than the current operation.
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Table 6.14: Comparison of design flow specifications to actual data.

AHU Terminal Unit Flow
(CFM)

Maximum Meas.
Flow (CFM)

Difference
(CFM)

AHU-1-2 FPVAV-1-7 1,400 1,496 96

(5 hp) FPVAV-1-8 700 840 140

FPVAV-1-9 1,200 1,688 488

FPVAV-1-10 1,600 1,712 112

AHU-1-3 FPVAV-1-1 1,480 1,676 196

(7.5 hp) FPVAV-1-2 1,160 1,240 80

FPVAV-1-3 1,300 1,364 64

FPVAV-1-4 1,400 1,760 360

FPVAV-1-5 1,040 612 −428

FPVAV-1-6 1,120 1,288 168

AHU-2-1 FPVAV-2-1 2,000 2,016 16

(7.5 hp) FPVAV-2-2 2,200 2,060 −140

FPVAV-2-3 1,800 1,824 24

AHU-2-2 FPVAV-2-9 2,400 2,448 48

(10 hp) FPVAV-2-12 500 452 −48

FPVAV-2-13 1,000 1,032 32

FPVAV-2-14 850 892 42

FPVAV-2-15 1,400 1,332 −68

FPVAV-2-16 500 484 −16

FPVAV-2-17 1,280 1,304 24

FPVAV-2-18 600 604 4

AHU-2-3 FPVAV-2-4 2,000 1,944 −56

(7.5 hp) FPVAV-2-5 600 504 −96

FPVAV-2-6 400 228 −172

FPVAV-2-7 200 252 52

FPVAV-2-8 1,200 1,184 −16

FPVAV-2-10 540 588 48

FPVAV-2-11 560 656 96
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Figure 6.44: Damper position versus primary air flow for FPVAV-1-9.

It is also apparent that for this case study that the optimal supply air temperature

is near the maximum of the search range. The maximum possible Tsa searched is the

minimum between the Tma and the minimum calculated discharge temperature. The

Tsa cannot be above the Tma because that would require heating in the air handling

unit, and cannot be above the minimum calculated discharge temperature because

then that particular zone would be starved for cooling capacity. For the second floor

air handling units, the minimum discharge temperature is always less than the mixed

air temperature indicating that cooling will always be required.

Figure 6.46 shows the results for the same computations as Figure 6.45, but for

AHU-2-1. AHU-2-1 has 3 terminal units supporting a computer lab with higher

measured loads than the rest of the second floor. The Tma is also shown in Figure

6.46 for reference. The optimal Tsa appears to be higher than the current operation,
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Figure 6.45: Optimal supply air temperature for AHU-2-3.

although a smaller difference compared to AHU-2-3 shown in Figure 6.45.

Figure 6.47 shows the results for AHU-2-2. In this case, the actual operation is

near the estimated optimal Tsa.

6.8 Savings Potential

The potential for energy savings at the NCTM building was investigated for the

second floor AHUs.

Energy savings were estimated for a period from June 1st, 2016 to January 1st,

2017. Weekends, times when the AHUs were off, federal holidays, and times from

5:00 PM to 9:00 AM were all ignored.
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Figure 6.46: Optimal supply air temperature for AHU-2-1.
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Figure 6.47: Optimal supply air temperature for AHU-2-2.
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Also, since the calculation of reheat power in the terminal units had a high

uncertainty level, it was decided to ignore times in which at least one of the reheat

valves in the terminal units was open. Because most of the necessary reheat can be

accomplished by mixing plenum air in the series fan powered terminal units, this

only removed a small portion of the data. In this sense, the only components to the

AHU energy were the cooling energy at the cooling coil and the fan energy.

To provide a sense of the sensitivity to the assumed parameters in the optimiza-

tion, savings were determined using different exponents ranging from 2 to 3 for the

PLR curve, along with the plenum temperature assumed to be the corresponding

room temperature and the estimated constant plenum temperatures shown in Table

6.10.

Based on the optimal supply air temperatures shown in Section 6.7, the potential

savings in AHU-2-1 and AHU-2-2 was small since the systems are already operating

near optimal. However, the savings potential in AHU-2-3 appeared promising since

there was approximately a 5°F difference between the operating supply air temper-

ature and the predicted optimal supply air temperature. The savings results for

AHU-2-3 under various different assumptions is shown in Table 6.15.

Figure 6.48 shows the difference in the combined energy of the fan and cooling

from actual to optimal. Periods in which reheat was occurring were ignored in the

analysis. As expected, the energy use has a dependence on Toa and the optimal is

less than the actual at all times. Regardless of the different parameters tested, over

20% savings were found for AHU-2-3.

The energy savings were primarily caused by increasing the supply air temper-

ature, as seen in Figure 6.49. There already was a supply air temperature reset

programmed for AHU-2-3, but the optimal reset would, in general, have a higher

Tsa.
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Figure 6.48: Energy savings for AHU-2-3 assuming a fan PLR exponent of 2 and
plenum temperatures equal to the corresponding room temperature. There is a 13.98
MMBTU difference, or 26%.

Table 6.15: Savings results for AHU-2-3, depending on model assumptions.

Fan
Exponent

Plenum Temperature
Assumption

Actual
(MMBTU)

Savings
(MMBTU) % Savings

2 Room Temperatures 53.43 13.98 26%
3 Room Temperatures 51.46 12.01 23%
2 Static Temperature 53.71 15.51 29%
3 Static Temperature 51.73 13.53 26%
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Figure 6.49: Supply air temperature difference between actual and optimal for AHU-
2-3.

6.9 Discussion

A first comment is that it appears plausible that the “zone load” can be reasonably

estimated to provide useful information with regards to optimization. In fact, the

general relationship in the size of the thermal loads of the different zones is more

important than the precise value, which is difficult to estimate.

The second is that the design specifications from mechanical drawings can be

used as the first approximation for flows and power. There was general agreement

between the terminal unit design flows and the actual maximum realized flows at

NCTM, as seen in Table 6.14.

A third conclusion is that the uncertainty in the optimal Tsa was small enough

that in most cases the current operation at NCTM does not fall within the bounds.
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In the cases shown in Figure 6.45 through Figure 6.47, the optimal Tsa was higher

than the current operation.
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7. PRESTON ROYAL CASE STUDY

Preston Royal Branch Library is a one-story building with 12,400 ft2 of gross floor

area in Dallas, TX. The library opened in 1954. The facility consists of an open-space

reading room and circulation, staff area, and an auditorium.

The library is served by a single air handling unit. A BAS graphic of the AHU

is shown in Figure 7.1.

The AHU has 14 terminal units that serve the various areas of the library and

are shown in Figure 7.2.

The terminal units are parallel fan powered boxes. A BAS graphic of one of

the terminal units is shown in Figure 7.3. The graphics were provided through the

Energy Systems Laboratory.

7.1 Preston Royal Zone Load Analysis

The zone load profiles for Preston Royal showed similarities to the NCTM build-

ing. During operation, the estimated zone load fluctuated up and down throughout

the day. Figure 7.4 shows an example of how the zone load cycles up and down many

times per hour. Again, the hypothesized explanation for this is not that the actual

heat gain in the space is fluctuating, but that the HVAC controls are oscillating.

Figure 7.5 shows the zone load for all the terminal units at Preston Royal Library

for 3 days from October 19th, 2016 through October 21st, 2016. Of interest to note is

that within the same space, one terminal unit can be experiencing a relatively large

cooling load (FPB-11) while another terminal unit is calling for heating (FPB-08).
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Figure 7.1: Preston Royal AHU BAS Graphic.

7.2 Estimated Savings

Only 7 of the 14 terminal units at Preston Royal Library had usable data. The

estimated savings from this pseudo-synthetic data set was examined. A portion

of the library was able to be optimized, utilizing several assumptions to make the

analysis possible.

• There was no mixed air temperature sensor available, so the mixed air temper-

ature was assumed to be between the outdoor air temperature and the return

air temperature with the following relationship:

Tma = 0.3 Toa + 0.7 Tra (7.1)
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Figure 7.2: Preston Royal terminal unit layout.

Figure 7.3: Preston Royal terminal unit graphic.
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Figure 7.4: Zone load for FPB02 at Preston Royal Library.
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Figure 7.5: Zone load for all terminal units at Preston Royal Library.
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Figure 7.6: Zone load and prediction for FPB-02.
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Figure 7.7: Zone load and prediction for FPB-04.
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Figure 7.8: Zone load and prediction for FPB-06.
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Figure 7.9: Zone load and prediction for FPB-07.
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Figure 7.10: Zone load and prediction for FPB-08.
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Figure 7.11: Zone load and prediction for FPB-09.
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Figure 7.12: Zone load and prediction for FPB-12.

• The mixed air humidity ratio was also not known. It was assumed to have a

similar relationship as the mixed air temperature, however, during times of low

humidity, the mixed air humidity ratio will just be the outdoor air humidity

ratio.

ωma = MIN (ωoa, 0.3ωoa + 0.7ωsa (Tsa)) (7.2)

• The minimum flow rate percentage for the terminal units was assumed to be

30%.

Data existed from December 1st, 2015 to October 22nd, 2016. Timestamps when

the air handling unit was off were ignored.

Times when the actual supply air temperature was out of a reasonable range was

also ignored.
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Table 7.1: Estimated savings from the partial data set originating from Preston
Royal library.

Component Estimated Actual ($) Optimal ($) Savings ($)
Fan Energy 431 (11%) 563 (17%) −132
Sensible Cooling Energy 2,220 (55%) 1,990 (59%) 236
Latent Cooling Energy 643 (16%) 462 (14%) 181
Reheat Energy 717 (18%) 377 (11%) 340

Total 4,010 3,390 623

Over the course of the 323 day period, the potential percent dollar savings was

15%. In general, the savings were due to raising the supply air temperature, which

while increasing the total fan energy, decreased the required cooling and reheat en-

ergy.

The cost of sensible cooling was the largest component, over 50% for both the

actual and optimal operations.
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8. CONCLUSIONS AND FUTURE WORK

The following conclusions can be derived from this work.

1. Savings are highly dependent on the current operation. For two of the second

floor air handlers in the NCTM building, no savings were to be found. However,

in AHU-2-3, over 20% energy savings were possible, and over 15% savings were

possible in the air handling unit at the Preston Royal Library.

2. Setup in the prototype approach is fast and extensible to future buildings and

system types and has been implemented into the software tool Implementer.

3. The nearest neighbor method for predicting zone loads and the mixed air tem-

perature was insensitive to variations in the threshold parameters. The models

tended to have better results with looser thresholds, meaning more recent data

was a better predictor than data under closer conditions.

4. There are significant differences in the percentage of time certain sensors are

available from trend data. Certain sensors should be prioritized for trending

over others. Quantifications of this and suggestions for commissioning agents

are given in Section 2.5.

5. The mixed air temperature was able to be predicted within 2°F for 5 of the

6 AHUs at NCTM (See Table 6.8). This provides evidence that the nearest

neighbor approach is viable for predicting the mixed air temperature.

6. With no plenum temperature sensor, for terminal units that bring in plenum

air, it was difficult to predict the plenum temperature in a useful manner.

Assuming a constant value for the temperature of the corresponding space
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was not acceptable for this work with regards to estimating the reheat at the

terminal units.

7. The estimated zone load based on terminal unit flow and discharge temperature

will depend on the sensitivity of the controls at the terminal unit. Hunting is

present, which makes it difficult to gauge what the true zone load in the space

is.

8. The difference between the maximum measured flow and the design flow from

the terminal units was under 200CFM for all but one terminal unit at NCTM.

This provided confidence in the possibility of using manufacturers’ specifica-

tions in setting up the system.

9. At the current time, missing sensors and sensor uncertainty reduces the poten-

tial effectiveness of the approach described. Additional sensors, especially those

related to duct air flow, would improve the capabilities of the methodology.

There are also areas for future work on this topic.

1. With additional sensors related to the fans and air flow, in particular, fan power

and pressure rise across the fan, modification of the supply air static pressure

setpoint can be included in the optimization.

2. Development of a prototype script to implement the logic on an existing BAS.

3. Application to more potential case study buildings. There are numerous differ-

ent styles of terminal units (single duct with and without reheat, parallel fan

powered, dual-duct, bypass, induction, and underfloor) which all need further

investigation.
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4. Development of the Application Programming Interface (API) that would be

used to interact with the different BAS systems, allowing these methods to

scale effectively to thousands of buildings.
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APPENDIX A

APPROXIMATIONS TO THE RAMP FUNCTION

A.1 Approximation Using Fourier Series

This section shows a derivation of the Fourier Series for the ramp function, which

is often used to model the output flow for a terminal unit.

In various situations related to steady state analysis of the energy use of an air

handling unit, ramp functions are found. These ramp functions are usually difficult to

deal with in optimization problems because they are not continuously differentiable.

In this sense, it is desired to have a replacement or approximation to the function

that is smooth and can be differentiated.

Fourier series are a useful tool for approximating arbitrary functions and can

be used in this task. We can begin by focusing on the basic ramp function that is

defined by:

f(x) =


0 x < 0

x x ≥ 0

(A.1)

If we define our Fourier series to be defined over the interval −L ≤ x ≤ L and

be equal to

f(x) = a0 +
∞∑
n=1

an cos
nπx

L
+

∞∑
n=1

bn sin
nπx

L
(A.2)

The coefficients are equal to

a0 =
1

2L

∫ L

−L

f(x) dx (A.3)
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an =
1

L

∫ L

−L

f(x) cos
nπx

L
dx (A.4)

bn =
1

L

∫ L

−L

f(x) sin
nπx

L
dx (A.5)

f(x) = 0 when x ≤ 0, so that portion of the integral is equal to 0. When x ≥ 0,

f(x) = x and the coefficients can be evaluated over the range 0 ≤ x ≤ L.

a0 =
1

2L

∫ L

0

x dx (A.6)

an =
1

L

∫ L

0

x cos
nπx

L
dx (A.7)

bn =
1

L

∫ L

0

x sin
nπx

L
dx (A.8)

Solving for a0,

a0 =
1

2L

∫ L

0

x dx =
1

2L

[
x2

2

]L
0

=
1

2L

(
L2

2

)
=

L

4
(A.9)
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The coefficients for the cosine terms are

an =
1

L

∫ L

0

x cos
nπx

L
dx

=
1

L


���������*0

x
L

nπ
sin

nπx

L

∣∣∣∣L
0

−
∫ L

0

L

nπ
sin

nπ

L
x dx


=

1

L

([
L2

n2π2
cos

nπx

L

]L
0

)

=
L

n2π2
((−1)n − 1)

(A.10)

and the coefficients for the sine terms are

bn =
1

L

∫ L

0

x sin
nπx

L
dx

=
1

L

(
−x L

nπ
cos

nπx

L

∣∣∣∣L
0

−
∫ L

0

− L

nπ
cos

nπ

L
x dx

)

=
1

L

([
−L2

nπ
(−1)n + L2

n2π2

[
sin

nπx

L

]L
0

])
=

1

L

([
−L2

nπ
(−1)n + 0

])
=

L

nπ

(
(−1)n+1

)

(A.11)

A.2 Approximation Using the Logistic Function

The threshold function is the derivative of the ramp function. The threshold

function can be approximated arbitrarily well using the logistic function. The logistic

function has the form

y =
1

1 + e−k(x−x0)
(A.12)

As k →∞, the function equals the threshold function. The integral of the threshold

function is the ramp function. Integrating Equation A.12 results in the family of

144



solutions

y = x+
ln
(
1 + e−k(x−x0)

)
k

+ C (A.13)

When x > x0, the ln
(
1 + e−k(x−x0)

)
term goes to 0, and the function is equal to

x+ C, which has a derivative of 1 with respect to x.

When x < x0, the
ln(1+e−k(x−x0))

k
term goes to x0−x, and the function is equal to

y = x+ (x0 − x) + C = x0 + C (A.14)

This function approximates the ramp function arbitrarily well as k →∞.

The function is usually applied to flow for terminal units with a minimum flow

setting. In this case, the value for the constant C equals 0 so that x0 and x0 +C are

equal, and the function becomes

V̇ = V̇req +
ln
(
1 + e−k(V̇req−V̇min)

)
k

(A.15)
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APPENDIX B

ZONE LOADS FOR NCTM

B.1 Estimated Zone Loads for NCTM

This portion of the appendix plots all the zone loads for the terminal units at

NCTM.

B.2 Terminal Units of AHU-2-1
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Figure B.1: Zone load for FPVAV-2-1 during the year 2016.
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Figure B.2: Zone load for FPVAV-2-2 during the year 2016.
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Figure B.3: Zone load for FPVAV-2-3 during the year 2016. Notice that the lower
bound of the y-axis is different than the other plots.
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Figure B.4: Zone load for FPVAV-2-9 during the year 2016.

B.3 Terminal Units of AHU-2-2
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Figure B.5: Zone load for FPVAV-2-12 during the year 2016.
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Figure B.6: Zone load for FPVAV-2-13 during the year 2016.
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Figure B.7: Zone load for FPVAV-2-14 during the year 2016.
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Figure B.8: Zone load for FPVAV-2-15 during the year 2016. Notice that the lower
bound of the y-axis is different than the other plots.
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Figure B.9: Zone load for FPVAV-2-16 during the year 2016.
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Figure B.10: Zone load for FPVAV-2-17 during the year 2016.
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Figure B.11: Zone load for FPVAV-2-18 during the year 2016.
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Figure B.12: Zone load for FPVAV-2-4 during the year 2016.

B.4 Terminal Units of AHU-2-3
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Figure B.13: Zone load for FPVAV-2-5 during the year 2016.
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Figure B.14: Zone load for FPVAV-2-6 during the year 2016.
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Figure B.15: Zone load for FPVAV-2-7 during the year 2016.
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Figure B.16: Zone load for FPVAV-2-8 during the year 2016.
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Figure B.17: Zone load for FPVAV-2-10 during the year 2016.
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Figure B.18: Zone load for FPVAV-2-11 during the year 2016.
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Figure B.19: Zone load for FPVAV-1-7 during the year 2016.

B.5 Terminal Units of AHU-1-2
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Figure B.20: Zone load for FPVAV-1-8 during the year 2016.
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Figure B.21: Zone load for FPVAV-1-9 during the year 2016.
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Figure B.22: Zone load for FPVAV-1-10 during the year 2016.
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Figure B.23: Zone load for FPVAV-1-1 during the year 2016.

B.6 Terminal Units of AHU-1-3
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Figure B.24: Zone load for FPVAV-1-2 during the year 2016.
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Figure B.25: Zone load for FPVAV-1-3 during the year 2016.
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Figure B.26: Zone load for FPVAV-1-4 during the year 2016.
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Figure B.27: Zone load for FPVAV-1-5 during the year 2016.
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Figure B.28: Zone load for FPVAV-1-6 during the year 2016.
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