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ABSTRACT 

 

 

 Hybrid dust-gas explosion is a persistent problem in process industries because of 

its ease of ignition as well as serious consequences. Ease of ignition is quantified by 

minimum ignition energy (MIE), which is associated with the probability of ignition for 

a hybrid mixture. This study aims at improving the MIE measurement of hybrid dust-gas 

system using a modified Kühner MIKE3 MIE apparatus with an add-on purge device in 

order to purge the Hartmann tube with the gas mixture before the dust dispersion. It 

allows the gas composition in the Hartmann tube to be the same as that of the gas used 

for dispersing the dust.  

 In this study, a typical hybrid system of Pittsburgh Pulverized Coal (PPC)-

methane-air, was utilized to accomplish the tests, where two sizes of PPC with 

equivalent polydispersity was applied. Methane was pre-blended with ultra-high purity 

(UHP) air (21% oxygen and 79% nitrogen) at 1 vol %, 2 vol %, and 3 vol %. MIE 

testing was conducted for the following two cases: case (a) and case (b). Case (a) 

followed the ASTM E2019-03 standard procedure, while case (b) applied the pre-

ignition Hartmann tube purge with 1 vol %, 2 vol %, and 3 vol % methane prior to dust 

dispersion and ignition. The testing was also divided into two sections: Section 1 

including case (a1) and (b1) used the original dried PPC, while section 2 including case 

(a2) and (b2) used the milled PPC. 

 Comparison of MIE values for both cases in both sections displayed significant 
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differences. The hybrid MIE values obtained in case (b) are overall lower than those in 

case (a), illustrating that pre-ignition tube purge decreased the hybrid MIE value and 

gave more conservative MIE results. While smaller size of dust possessed lower hybrid 

MIE, similar trends in percent of MIE reduction revealed the impact of gas concentration 

on decrease of hybrid MIE regardless the particle size. Moreover, this study proves that 

previous hybrid MIE data generated using the ASTM E2019-03 standard procedure and 

utilizing the Hartmann apparatus and Kühner MIKE3 device yielded non-conservative 

results and should be validated through further studies by incorporating pre-ignition 

Hartmann tube purge into the hybrid MIE test procedure.   
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Background 

Dust explosions are a persistent problem in process industries and can result in 

catastrophic damage to property and loss of lives. While the occurrence of typical fuel 

combustion requires fuel, oxygen, and heat (ignition source), the occurrence of dust 

explosion requires two more crucial elements, i.e. dispersion and confinement of dust, 

which is presented as the “explosion pentagon” (Fig. 1).  

 

 

 

Fig. 1 Explosion Pentagon 
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Dust explosions have been studied for more than 200 years (Bartknecht, 1989) 

but studies on hybrid dust-gas explosions, which are generally more hazardous than dust 

explosions, are not systematic due to limited hybrid explosion incident records and 

limited capabilities of experimental instruments. The earliest documented hybrid dust-

gas explosion study was recorded in 1885, when Engler ignited the mixtures of methane 

and dusts (soot and charcoal dust), obtaining explosion of these “hybrid mixture” even 

though neither gas nor dust component was explosible by themselves (Bartknecht, 

1989). This study indicated that hybrid mixtures can be flammable even though the dust 

or gas component alone may not be. This observation has been supported by plenty of 

studies in the past few years (Addai et al., 2016; Addai et al., 2015a; Denkevits and 

Hoess, 2015; Sanchirico et al., 2015). 

Minimum ignition energy (MIE) of a dust is one of the many characteristic 

parameters of a dust explosion, including minimum explosion concentration (MEC), 

maximum pressure - Pmax, maximum rate of pressure rise, lower flammable limit (LFL), 

etc. It is associated with the probability and ease of ignition of a dust cloud. For hybrid 

explosions, the hybrid MIE can be described as the lowest energy required to ignite 

hybrid dust-gas cloud (Randeberg and Eckhoff, 2007).  

1.2 Literature Review 

In 1980, Franke studied the MIE for coal dust/methane/air, where preliminary 

results indicated the decrease in MIE for different types of coal as methane concentration 
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by volume increased (Franke, 1980). The results of hybrid MIE for coal dust/methane/air 

measured out by Franke possesses an approximately linear relationship between gas 

concentration and ignition energy. 

In 1980, Pellmont conducted MIE testing of various combustible dusts (Dyestuff, 

Cellulose, polyethylene, and PVC) in the 1-m3 vessel and observed that the MIE of 

hybrid mixtures decreases with the increase in propane concentration (Pellmont, 1980). 

1-m3 vessel was estimated as the standard dust explosion apparatus for accurate testing 

results before the invention of 20-L device. The influence of propane concentration on 

minimum ignition energy for hybrid mixtures was then replotted by Barknecht in his 

book (Bartknecht, 1989). 

 

 

 

Fig. 2 Hybrid Minimum Ignition Energy Equation Developed by Laurence G. 
Britton (Britton, 1998) 

 

 

Based on the results given by Pellmont, Laurence G. Britton (1998) estimated the 

hybrid minimum ignition energy (HMIE) for dust/gas mixtures by developing an 
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equation relating the HMIE to various dust and gas characteristics (Fig. 2). It was 

claimed that the equation could only apply within the area where gas concentration was 

lower than its lower flammable limit, while in the meantime no further explanation on 

the trend of hybrid MIE flowed as the gas concentration exceeded its lower flammable 

limit. This area was later scientifically defined as the “hybrid explosion area” (Tan and 

Zhang, 2014). As a result, researchers merely updated hybrid MIE studies in this 

particular area in future work.   

Khalili et al. (2012) tested the MIE for sunflower oilcakes/hexane and 

starch/hexane using Hartmann apparatus and proposed an equation similar to the 

equation proposed by Britton (1998). The MIE for hybrid systems based on experiment, 

Bartknecht’s model, and Khalili’s model was presented in their study. The equation (Fig. 

3) was validated to be merely applicable to the two hybrid systems (sunflower 

oilcakes/hexane and starch/hexane) employed in this study.  

 

 

 

Fig. 3 Developed Equation Proposed by Khalili et al. (Khalili et al., 2011) 
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Addai et al. (2016) tested the hybrid MIE for various combinations of flammable 

gases (methane & propane) and combustible dusts (wheat flour, starch, protein, 

polypropylene, dextrin, peat coal, charcoal, brown coal) in a modified Hartmann 

apparatus, which generated the lowest ignition energy as 4 mJ. The comparison of both 

experimental and modeling results indicated that minor quantities of flammable gas 

significantly affected the hybrid MIE.  

Fig.4 (a), (b) and (c) summarize all previous studies on hybrid MIE with 

different flammable gases (methane, propane, and hexane). It is demonstrated that, 

regardless the gas component being utilized within the hybrid dust-gas system, the MIE 

for hybrid dust-gas mixtures decreases as the combustible gas concentration increases. 

Kühner MIKE3 MIE device is an experimental instrument used worldwide for 

measuring MIE of combustible dusts and has proven to be accurate in MIE testing as 

compared to other devices (Janes et al., 2008; Lepik et al., 2015). Standard hybrid MIE 

testing procedure in the Hartmann apparatus or Kühner MIKE3 device follows the 

ASTM E2019-03 standard (ASTM E2019-03, 2013).  

However, according to recent study on testing the MIE for hybrid systems, 

standard procedure was questioned to be potentially not conservative. Chaudhari and 

Mashuga (2017) modified the Kühner MIKE3 device by introducing an add-on purging 

device and demonstrated the impact of this modification on the MIE values of Niacin 

dust. Inerting gas was purged into the Hartmann tube prior to ignition. Results show the 

impact of top purging on MIE for niacin through partial inerting procedure in Chaudhari 
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and Mashuga’s research, where the MIE values significantly changed due to top purging 

the Hartmann tube. 

 

 

(A) 

Fig. 4 Summary of All Previous Studies on Hybrid Minimum Ignition Energy 
(MIE). (A) Hybrid MIE of Previous Studies with Methane. (B) Hybrid MIE of 

Previous Studies with Hexane. (C) Continued Hybrid MIE of Previous Studies with 
Propane (Addai et al., 2016; Bartknecht, 1989; Franke, 1980; Khalili et al., 2011; 

Pellmont, 1980) 
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(B) 

Fig. 4 Continued. 
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(C) 

Fig. 4 Continued. 
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Additionally, they also studied the effect of turbulence due to purging the 

Hartmann tube pre-ignition. In their study, the Hartmann tube was sealed and purge-to-

ignition time was lengthened from 1 second to 120 seconds in a new series of tests, in 

order to eliminate the turbulence left in the tube before ignition. It was concluded that 

turbulence due to purging the Hartmann tube had a minor influence on MIE value which 

could be ignored. This approach of testing is scientifically predicted to be extended to 

hybrid testing which can result in conservative MIE values. 

1.3 Research Objectives 

This study presents a developed hybrid MIE testing method by purging the 

Hartmann tube in the modified Kühner MIKE3 MIE device. The Hartmann tube is to be 

filled with the applied gas component in hybrid dust-gas system prior to dust dispersion 

and hybrid mixture cloud ignition. This study will be divided into two sections. The first 

section is to test the MIE for hybrid system following both standard approach and 

developed method. The MIE value will be compared between two procedures. 

In the second section of testing, dust will be milled into smaller size and the 

hybrid MIE with the same gas component will be tested following the same procedure as 

in the first section. Comparisons of hybrid MIE obtained from both sections will be 

employed. It is to be determined that the effect of pre-ignition tube purge on hybrid MIE 

testing is valid regardless the particle size of the dust.  
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The objective of this study is to generate accurate data for MIE of dust-gas 

hybrid mixture using the modified Kühner MIKE3 MIE device and demonstrate the 

difference between MIE values recorded by pre-purging the tube before dust dispersion 

and without pre-purging the tube. This study will eventually provide insight into correct 

way of testing MIE of hybrid mixtures so that the explosion risk of combustible dusts is 

not underestimated. 
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CHAPTER II 

MATERIALS AND EXPERIMENTAL PROCEDURE 

 

2.1 Materials  

This work has utilized Pittsburgh Pulverized Coal (PPC), which is one of the 

characteristic coals in the U.S (Shaddix and Molina, 2009), as the dust component and 

methane as the gas component for the hybrid system. Furthermore, despite the high 

MIE > 1000 mJ of PPC (Norman et al., 2013), which exceeds the energy range (1 mJ to 

1000 mJ) generated by Kühner MIKE3 device, PPC was selected considering addition of 

methane gas would decrease the hybrid MIE making it suitable for testing in the energy 

range  of Kühner MIKE3 device. 

Before testing, PPC was dried at 60ºC for 6 hours in a nitrogen pre-purged oven 

to remove moisture as well as prevent oxidation. The particle size distribution of PPC 

before and after drying was measured in the Beckman Coulter Particle Size Analyzer LS 

13320. Fig. 5 shows the particle size distribution of PPC before and after drying, which 

strongly indicates that the distribution of PPC remained constant after drying. Table 1 

presents the difference in particle size distribution before and after the drying process. 

By comparing the values, minor quantitative difference reveals the consistency of PPC. 

After drying, the PPC dust was stored in a sealed desiccator to avoid any moisture 

retention in the dust while testing.  
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Fig. 5 Particle Size Distribution for Pittsburgh Pulverized Coal (PPC) before & 
after Drying 

 

 

Meanwhile, roughly half of the dried PPC was milled using Retsch Ultra 

Centrifugal Mill Type ZM 200 (Fig. 6) with 6-tooth rotor, 10000 rpm rotating speed, and 

0.08mm ring sieve. Milled PPC was then collected from the device. Its particle size 

distribution was measured in the Beckman Coulter Particle Size Analyzer LS 13320. 

Fig. 7 shows the particle size distribution of the dried PPC before and after milling, 

where the polydispersity of both samples remained approximately equivalent. Previous 

study proved that polydispersity vastly elevated the severity of explosion at a constant 

d50. As a result, equivalent polydispersity is necessary in this study in order to eliminate 
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the effect on the explosibility of dusts (Castellanos et al., 2014). Table 2 presents the 

difference in particle size distribution before and after the milling process. 

 

 

Table 1. Difference in Particle Size Distribution of PPC before and after Drying 
Process 

Property/ µm d10 d50 d90 Mean Mode D(3,2) 

Before Drying 8.95 54.26 126.62 61.97 87.90 16.2336 

After Drying 8.68 52.50 124.78 60.65 87.90 15.6869 

 

 

 

Fig. 6 Retsch Ultra Centrifugal Mill Type ZM 200 
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Fig. 7 Particle Size Distribution for Pittsburgh Pulverized Coal (PPC) before & 
after Milling 

 

 

Table 2. Difference in Particle Size Distribution of PPC before and after Milling 
Process 

Property/ µm d10 d50 d90 Mean Mode D(3,2) Polydispersity 

Before Milling 8.68 52.50 124.78 60.65 87.90 15.6869 ~2.21 

After Milling 5.28 24.58 59.25 29.95 34.59 9.2000 ~2.20 
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Methane was used as the flammable gas component in the hybrid MIE test, 

which is a common material in previous hybrid explosion tests (Addai et al., 2016; 

Addai et al., 2015b; Franke, 1980; Sanchirico et al., 2015; Zhou et al., 2012) for decades. 

In this work, three different volume percentages of methane (1 vol %, 2 vol % and 3 

vol %) were pre-blended with Ultra High Purity synthesized air (21% oxygen and 79% 

nitrogen) and stored in cylinders, respectively. Thus, the composition of the pre-blended 

gas mixtures for testing were (1 vol % methane, 99 vol % UHP air), (2 vol % methane, 

98 vol % UHP air) and (3 vol % methane, 97 vol % UHP air). The compositional 

variation of the gas mixtures was equal to or less than ±1%. It is also important to note 

that the gas strictly adhered to the standards of < 0.1 ppm carbon dioxide and < 0.36 

ppm moisture.  

 

2.2 Experimental Procedure 

The hybrid MIE testing was conducted in the Kühner MIKE3 MIE device (Fig. 

8). The device enables testing at various ignition energies of 1 mJ, 3 mJ, 10 mJ, 30 mJ, 

100 mJ, 300 mJ, and 1000 mJ. The dust concentration tested in this device can range 

from 125 kg/m3 to 3000 kg/m3. The ignition delay time (∆tv) can be adjusted at 90, 120, 

150, or 180 ms. In this study 120 ms was set up to be the ignition delay time. This device 

also enables testing with or without inductance (1 mH or 0 mH). Standard hybrid MIE 

testing procedure using Kühner MIKE3 device is to:  

1) set up computer software (MIKE 3.4) and equipment;  
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2) place combustible dust around the umbrella-shaped nozzle of dust dispersion 

system;  

3) set up the 1.2-L Hartmann tube, electrodes, and the top piece 

4) disperse dust with gas mixture into the Hartmann tube at 7 bar as dispersion 

pressure;  

5) ignite hybrid mixture cloud by spark discharge generated by electrodes at 

varying ignition energies;  

6) collect data in MIKE 3.4 software connected to the Kühner MIKE3 device.  

 

 

 

Fig. 8 Kühner MIKE3 device 
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The aforementioned testing procedure is in compliance with ASTM E2019-03 

standard. However, when dispersing the dust (PPC for our case) with the gas mixture 

(methane for our case) in the Hartmann tube (step 4), the gas component can potentially 

be diluted because of mixing with the atmospheric air already existing in the Hartmann 

tube. Chaudhari and Mashuga (2017) demonstrated that utilizing the standard procedure 

for MIE testing resulted in inaccuracies in the MIE data for partial inerting. In their 

work, they modified the device using a purge add-on at the top which ensured that the 

tube contained the same gas composition which was used to disperse the dust. Hence, in 

this study, purging of the tube was conducted before dust dispersion and ignition for 

hybrid dust-gas mixture MIE testing. With a set flow rate of 10L/min, the tube was filled 

with the methane-air gas mixture for 21 seconds prior to dust dispersion. 21-second 

purging time was employed because it is the time required to completely displace 1.2-L 

of air from the tube at 10L/min flowrate. All the tests in this work were conducted at an 

inductance of 0 mH and at 120ms ignition time delay. Further, the dust was dispersed 

through a nozzle at the bottom of the MIE tube and spark was generated by electrodes 

using capacitive discharge. Humidity and temperature conditions in lab were recorded 

during experimentation. 

 Several data points were collected consisting of both ignition at one energy level 

and no ignition at the next lower energy level. Every data point, at a specific energy 

level and a specified dust concentration, consists of 10 dust dispersions. After every dust 

dispersion, a brush was used to sweep off the dust on the inner wall of tube, electrodes, 

and the top surface of nozzle to the bottom. Dust sample was replaced every 3 
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dispersions with no ignition to maintain the concentration for next dispersion. The MIE 

for hybrid mixtures was statistically calculated by the software using the following 

equation: 

MIE = 10
'()*+,- *+ ('()*+,'()*/)

1-2- *+ 2/  

where, E1 , E2  represent the range of energy level in tests,	I E2  represents the 

number of ignitions at energy level E2, and NI + 	I E2  represents the total number of 

tests at energy level E2.  

Throughout the experimentation, the methane gas concentration was varied at 0 

vol %, 1 vol %, 2 vol % and 3 vol %, and hybrid MIE was determined by testing at 

different dust concentrations and energy levels. All other parameters were maintained 

constant, e.g., laboratory temperature, laboratory humidity, source of materials, ignition 

delay time. 

MIE testing was conducted for the following two cases: Case (a) tested the 

hybrid MIE without purging the Hartmann tube prior to dust dispersion. Case (b) tested 

hybrid MIE by purging the tube for 21 seconds prior to dust dispersion. Meanwhile, the 

testing was also divided into two sections: Section 1 including case (a1) and (b1) utilized 

the original dried PPC with d50=52.50µm as the dust component in the hybrid system. 

Section 2 including case (a2) and (b2) utilized the milled PPC with d50=24.58µm as the 

dust component in the hybrid system with the same gas component as in section 1. 
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CHAPTER III  

RESULTS AND DISCUSSION 

 

Fig. 9 shows the raw test data for hybrid MIE including both ignition and no 

ignition points at particular energy levels (unit in mJ) versus dust concentrations (unit in 

mg), which are recorded in MIKE 3.4 software, where the original dried PPC 

[d50=52.50µm] was applied as dust component. Fig. 10 shows the raw test data for 

hybrid MIE including both ignition and no ignition points where milled PPC 

[d50=24.58µm] was applied as dust component.  

Case (a1) and (a2) represents the MIE value tested following standard ASTM 

E2019-03 procedure, where the Hartmann tube was not purged with dispersion gas and 

the dispersion gas was merely used to disperse PPC. Case (b1) and (b2) represent the 

MIE testing where the Hartmann tube was purged with the methane-air gas mixtures 

prior to dust dispersion. Fig. 11 shows the MIE for both PPC-Methane-Air hybrid 

systems versus percent methane in air. Comparing the MIE value between case (a1) and 

case (b1) at every concentration of methane, Fig. 11 demonstrates that the hybrid MIE in 

case (b1) is overall lower than that in case (a1), indicating that pre-ignition tube purge 

decreases the hybrid MIE value and provides more conservative MIE results. This 

significant difference in MIE values proves the impact of pre-dispersion tube purge in 

hybrid MIE testing. The above conclusion is also true for case (a2) and (b2).  
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             Fig. 9a PPC-Air Tube Not Purged                         Fig. 9b PPC-Air Pre-Ignition Tube Purge 

      
 Fig. 9c PPC-1% Methane-Air Tube Not Purged  Fig. 9d PPC-1% Methane-Air Pre-Ignition Tube Purge 

     
 Fig. 9e PPC-2% Methane-Air Tube Not Purged   Fig. 9f PPC-2% Methane-Air Pre-Ignition Tube Purge 

     
Fig. 9g PPC-3% Methane-Air Tube Not Purged   Fig. 9h PPC-3% Methane-Air Pre-Ignition Tube Purge 

Fig. 9 Raw Test Data for hybrid PPC[d50=52.50µm]-Methane-Air MIE from 
MIKE 3.4 Software 
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             Fig. 10a PPC-Air Tube Not Purged                       Fig. 10b PPC-Air Pre-Ignition Tube Purge 

     
Fig. 10c PPC-1% Methane-Air Tube Not Purged   Fig. 10d PPC-1% Methane-Air Pre-Ignition Tube Purge 

     
Fig. 10e PPC-2% Methane-Air Tube Not Purged    Fig. 10f PPC-2% Methane-Air Pre-Ignition Tube Purge 

     
Fig. 10g PPC-3% Methane-Air Tube Not Purged   Fig. 10h PPC-3% Methane-Air Pre-Ignition Tube Purge 

Fig. 10 Raw Test Data for Milled PPC[d50=24.58µm]-Methane-Air MIE from 
MIKE 3.4 Software 
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Fig. 11 Hybrid MIE for PPC-Methane-Air Mixtures through Standard Procedure 

and Modified Procedure: (a1) Tube was not Purged before Dust Dispersion, 
d50=52.50µm; (b1) Pre-ignition Tube Purge, d50=52.50µm; (a2) Tube was not 
Purged before Dust Dispersion, d50=24.58µm; ; (b2) Pre-ignition Tube Purge, 

d50=24.58µm 
 

 

Table 3 & 4 show the hybrid MIE value for all four cases (a1), (b1), (a2), and 

(b2) as well as the differences and percent of decrease in MIE value. Meanwhile, the 

differences of MIE value for tests with before and after milled PPC demonstrate that 

smaller particle size of dust possesses lower hybrid MIE at all gas concentration.  
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Table 3. Section 1: Hybrid MIE Value, Differences, and Percent of MIE Reduction 
for Case (a1) and (b1) Tests [PPC: d50=52.20µm] 

Percent 
Methane 

in Air 

Hybrid MIE (mJ) 

Differences 
(mJ) 

Percent of 
MIE reduction (a1) Tube not 

Purged 
(b1) Pre-Ignition 

Tube Purge 

0 (Air) 810 500 310 38.27% 
1% 500 250 250 50.00% 

2% 260 82 178 68.46% 
3% 160 25 135 84.38% 

 

 

Table 4. Section 2: Hybrid MIE Value, Differences, and Percent of MIE Reduction 
for Case (a2) and (b2) Tests [PPC: d50=24.58µm] 

Percent 
Methane 

in Air 

Hybrid MIE (mJ) 
Differences 

(mJ) 
Percent of  

MIE reduction (a2) Tube not 
Purged 

(b2) Pre-Ignition 
Tube Purge 

0 (Air) 360 210 150 41.60% 

1% 171 71 100 58.50% 

2% 82 25 57 69.51% 

3% 55 12 43 78.10% 

 

 

The differences in hybrid MIE value as well as the percent of decrease between 

case (a1) and (b1), case (a2) and (b2), are plotted in Fig. 18. When 100% air with no 

methane was used as the gas component, significant difference of 310 mJ in MIE values 

between case (a1) and case (b1) was observed. It primarily revealed the influence of pre-
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ignition tube purge, which reflected similar result as in partial inerting tests. Moreover, 

the MIE for PPC obtained in case (a1) was lower than the value given by previous 

literature (Norman et al., 2013), which is possibly due to the difference in particle size as 

well as the oxygen concentration between synthesized air (21% oxygen and 79% 

nitrogen) and atmospheric air. The above conclusion is applicable for case (a2) and (b2) 

with the difference of 150 mJ. 

With the increase in methane concentration, the value differences in Table 3 & 4 

indicates that lower percentage of methane in air results in relatively higher difference in 

the value between the MIE with and without pre-dispersion tube purge. In section 1, the 

difference goes down to 135 mJ when the percentage of methane in air is 3%. In section 

2, the difference goes down to 43 mJ when the percentage of methane in air is 3%. This 

result is probably due to a larger impact of atmospheric air in Hartmann tube to decrease 

the methane concentration in air after dust dispersion for lower methane concentration, 

eventually numerically enhancing the difference in MIE values.  

Despite the increasing difference in hybrid MIE values, the percent of reduction 

in MIE value increases with increasing methane percentage. In section 1, the percent of 

reduction in MIE value increases from 38.27% to 84.38% as the percent methane in air 

increases from 0 to 3%. In section 2, the percent of reduction in MIE value increases 

from 41.60% to 78.10% as the percent methane in air increases from 0 to 3%. The 

impact of increasing concentration of methane in air results in higher deviation in the 

hybrid MIE values measured in the two cases, which can be attributed to the improved 

test method. As a result, the overall decrease on hybrid MIE emphasizes the significance 
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of the application of pre-ignition tube purge in hybrid MIE tests. Meanwhile, comparing 

the percent of MIE reduction between two sections, similar trends indicates the solid 

impact of methane percentage on the percent of MIE reduction regardless the particle 

size of PPC with equivalent polydispersity level.  

 

 

 

Fig. 12 Differences as well as the Percent of MIE Reduction in Hybrid MIE Value 
for Both Case (a) and Case (b) in both sections with two particle sizes of PPC 
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CHAPTER IV  

CONCLUSIONS 

 

This study aimed at an improved minimum ignition energy (MIE) measurement 

of hybrid dust-gas mixture using a modified Kühner MIKE3 MIE apparatus. The 

modified MIKE3 MIE apparatus uses an add-on purge device, which purges the 

Hartmann tube with the gas mixture used for dispersing the dust. The purging is done 

before the dust dispersion so that the composition of the gas in the Hartmann tube is 

same as that of the gas used for dispersing the dust. This prevented the dilution of the 

dispersing gas concentration in the Hartmann tube and yielded accurate MIE results. 

This work used Pittsburgh Pulverized Coal (PPC)-methane-air hybrid mixture for the 

MIE measurement, which is a typical hybrid system in previous hybrid explosion 

studies. In this work, PPC was firstly dried before tests and its particle size distribution 

was measured. Part of PPC was milled into smaller particle size with equivalent 

polydispersity as the original one. Methane was pre-blended with ultra-high purity 

(UHP) air at 1 vol %, 2 vol %, and 3 vol %. In order to demonstrate the impact and 

necessity of the modification in the MIE apparatus, two testing cases were conducted. 

Case (a) followed the ASTM E2019-03 standard procedure, while case (b) applied a pre-

ignition tube purge prior to dust dispersion so that the Hartmann tube was filled with the 

gas component in hybrid system. Two sections were also conducted with different dust 

component but same gas component. While section 1 including case (a1) and (b1) used 

original dried PPC, section 2 including case (a2) and (b2) used milled PPC. Comparison 
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of MIE values for both cases in both sections displayed significant differences existed 

between purging and not purging the tube before dust dispersion. As the methane 

concentration elevated from 0 to 3 vol %, the hybrid MIE decreased, respectively at each 

gas concentration. These results illustrate that pre-ignition tube purge decreases the 

value of hybrid MIE and generates more conservative results. Despite smaller methane 

concentration leading to greater numerical difference, the increase of the percent of MIE 

reduction, which rises from 38.27% to 84.38% in section 1, and from 41.60% to 78.10% 

in section 2, reflects a larger impact of higher methane concentration on decreasing the 

hybrid MIE value. Moreover, similar trends of percent of MIE reduction reveals the 

impact of methane concentration regardless the particle size of PPC with equivalent 

polydispersity level. Consequently, previous hybrid MIE data utilizing the Hartmann 

apparatus and Kühner MIKE3 device (Khalili et al., 2011; Addai et al., 2016) might not 

be sufficiently conservative, and should be validated through further studies by applying 

pre-ignition tube purge into the test procedure. When conducting MIE testing of hybrid 

systems, pre-ignition tube purge should become a recommended practice that should be 

included in the ASTM standard testing procedure in order to obtain conservative and 

accurate MIE results. 
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CHAPTER V 

FUTURE WORK 

 

Based on the procedure and conclusion in this thesis, some recommendations for 

future work are listed as follows: 

1) Various hybrid dust-gas systems other than PPC-methane-air should be tested 

following the same procedure as in this study to demonstrate that pre-ignition 

tube purge in obtaining conservative hybrid MIE value utilizing a Hartmann 

tube is applicable for other hybrid dust-gas systems 

2) Turbulence effect of top purging on hybrid MIE value is needed through 

modeling in future study to verify the possibility of considering the 

turbulence generated by top purging in hybrid MIE testing 
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