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ABSTRACT 

 

Mechanical characterization is an important and now frequently used tool for 

phenotyping plants for crop improvement, e.g. lodging resistance. Mechanics of materials 

and structures in response to various external stimuli as well as information of basic 

building blocks that constitute the plants can be applied to study the mechanical behavior 

of plant stems. The inherent mechanical properties of plant structures such as the stem are 

relevant to breeding strategies, aiming to tackle issues such as crop lodging due to stem or 

root lodging. While empirical tests of breaking strength and stiffness have been applied to 

plants, few of these studies consider the genetic background of the plants examined. In 

this study, we report for the first time on the mapping of QTL for mechanical traits in 

sorghum in three RIL mapping populations from crosses between grain and sweet 

sorghum parents. The genetic architecture of biomechanical traits in the three RIL 

populations appear to be quantitative and pleiotropic. Six QTL affecting mechanical and 

morphological traits were detected; two of these QTL were consistently found in all 

populations and co-localized with previously cloned dwarfing genes Dw1 and Dw3. These 

results suggest that dwarfing genes affect the mechanical properties of sorghum and 

ultimately their lodging resistance while also having a profound impact on the stem’s 

morphology and geometry. Morpho-anatomical stem properties are major component 

affecting standability. However, phenotyping these traits is low throughput, and has been 

restricted by the lack of a high-throughput phenotyping platform that can collect both 

morphological and anatomical stem properties. X-ray computed tomography (CT) offers 
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a potential solution, but studies using this technology in plants have evaluated limited 

numbers of genotypes. The platform and image analysis pipeline revealed extensive 

phenotypic variation for important morpho-anatomical traits in well-characterized 

sorghum genotypes at suitable repeatability rates. CT estimates were highly predictive of 

morphological traits and moderately predictive of anatomical traits. The image analysis 

pipeline also identified genotypes with superior morpho-anatomical traits that there were 

consistent with ground-truth based classification in previous studies. In addition, stem 

cross section intensity measured by the CT was highly correlated with stem dry weight 

density, and can potentially serve as a high-throughput approach to measure stem density 

in grasses. 
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CHAPTER I  

INTRODUCTION  

 

Plant stems fulfill an array of functions to ensure the survival and competitiveness 

of a given plant species in its respective environment (Speck and Burgert 2011). One 

important function of stems is to provide mechanical support under static and dynamic 

loadings throughout their growing period. However, many plants including crop species 

are particularly susceptible to lodging due to wind loads. Lodging can take the form of 

stem or resulting from breakage, or root lodging due to failure of root anchorage (Berry et 

al. 2004). Lodging is essentially a structural failure; therefore, mechanical characterization 

of plants is an important tool to phenotype plants. Thus, inherent mechanical properties of 

the plant stems are relevant to agricultural studies (Gomez et al. 2017) that aim to reduce 

crop loss due to lodging by uprooting or stem breakage (Crook and Ennos 1996). 

However, there has been little selective breeding of crops for desirable mechanical 

properties because new unconventional methods and convergent interdisciplinary and 

disciplines are required to develop the tools that are to be used in a field breeding program. 

During the 1960’s the stems of wheat and rice were not strong enough to support 

the heavy grain of the high-yielding varieties after the application of large amounts of 

fertilizer and pesticides, resulting in lodging. This led to the introduction of dwarfing 

genes into these cereal crops and the technological advancement known as the ‘Green 

Revolution’ (Hedden 2003). The genes responsible for the semi-dwarf varieties are the 

Reduced height (Rht) genes in wheat and the semidwarf1 (sd1) gene in rice. However, 
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despite the height reduction conferred by these genes, lodging in many of the cultivars 

carrying these genes remains a problem. Similar observations have been observed in the 

highly productive C4 tropical grass sorghum (Sorghum bicolor L. Moench), where dwarf 

varieties carrying the dwarfing genes (Dw) occasionally have been known to stem lodge.  

Furthermore, stem lodging has also been observed in tall sweet, forage, and biomass 

varieties were height reduction is not viable as it would impact yield. Therefore, sorghum 

breeders improving lodging resistance in tall sorghum types have selected genotypes that 

do not lodge, as well as increased stem diameter and have not selected for mechanical 

properties. Thus, studying the stem’s mechanical properties may provide for an alternative 

approach to conventional methods. 

While several studies have quantified the mechanical properties of stems of 

important crops (Robertson et al. 2017; Crook and Ennos 1994; Oladokun and Ennos 

2006) including sorghum (Lemloh et al. 2014; Bashford et al. 1976), only a few studies 

have taken into account the genetic background of the plants examined. However, these 

few studies have shed light into the genetics of mechanical traits of cereal grasses. For 

example, in rice, (Ookawa et al. 2010) identified a quantitative trait loci (QTL) for stem 

strength, which was identical to the ABERRANT PANICLE ORGANIZATION1 (APO1) 

gene previously reported to control panicle structure. The same group identified QTL for 

section modulus on chromosomes 1, 5, and 6 (Ookawa et al. 2016). In maize, (Hu et al. 

2013) identified QTL for stalk bending strength parameters that were also highly heritable. 

While Paolillo Jr and Niklas (1996) reported the effects of reduced-height alleles of Rht1 

and Rht2 on the breaking strength and breaking stress of the first leaves of wheat seedlings. 
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They found a negative correlation between Rht-dosage and breaking strength. Overall 

these studies led us to understand that QTL for mechanical properties are complex, 

pleiotropic, and that dwarf genes in wheat may influence the mechanical and materials 

properties of plants. However, to date no studies have looked at the genetics of 

biomechanical properties in sorghum, which could aid breeders to select for lodging 

resistant varieties.  

Stem morphology has a profound impact on mechanical traits, and should also be 

considered when assessing mechanical stability in plants (Von Forell et al. 2015; Niklas 

and Spatz 2012). However, phenotyping bioenergy sorghum is slow and tedious. 

Improving the throughput of phenotyping would help accelerate these protocols to 

evaluate more plants. Currently the plant sciences are undergoing a high-throughput 

phenotyping revolution and image analysis is at the forefront of this revolution. High 

throughput methods to image plants will aid phenotyping. In addition, the combination of 

biomechanics and x-ray computed tomography have assisted to study bone biomechanics 

in other clinical studies in humans. This approach can be also applied to plants to identify 

new traits that can be used to indirectly select mechanical traits.  

To understand the genetic architecture of biomechanical properties in sorghum and 

to help reduce the phenotypic bottleneck in bioenergy sorghum, we conducted 

experiments to; (1) develop a practical high-throughput phenotyping platform and image 

data processing pipeline that can phenotype many samples to extract stem morpho-

anatomical properties and (2) perform a multi-trait QTL analysis to investigate the genetic 

basis of mechanical traits.  
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CHAPTER II  

 

RAPID PHENOTYPING OF SORGHUM STEM PROPERTIES USING X-RAY 

COMPUTED TOMOGRAPHY 

 

Introduction 

Breeding for standability and yield is a major focus of sorghum geneticists and 

breeders (Mullet et al. 2014; Rooney et al. 2007). Stem biomechanical and morpho-

anatomical properties affect standability (Niklas 1992; Esechie et al. 1977; Ookawa et al. 

2010; Hu et al. 2013; Piñera-Chavez et al. 2016) and yield components in bioenergy 

sorghum (Carvalho and Rooney 2017) by influencing the plant's ability to resist lodging 

and produce juicy and large stems. However, using existing assays to measure stem 

biomechanical and morpho-anatomical traits demands significant amounts of labor and 

time which reduce throughput. New high throughput and advanced imaging technology 

provides a solution to alleviate this phenotyping bottleneck (Furbank and Tester 2011). 

This will ultimately enable plant scientist and breeders to evaluate larger segregating 

populations, which would improve the selection process. 

X-ray computed tomography (CT) has become a powerful tool for phenotyping 

plants, and is becoming more widely available to a steadily growing number of plant 

biologists. As a result, this has led to vast amounts of image data which need to be 

efficiently managed, processed, mined, and analyzed (Chen et al. 2014; Bucksch et al. 

2017; Metzner et al. 2015). Despite increasing interest in scanning plant stems using CT 
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(Comparini et al. 2016; Dhondt et al. 2010; Robertson et al. 2017), there have been few 

studies to visualize and quantify in a high throughput manner above-ground structures of 

plants in a high-throughput manner using CT. 

To date, CT studies have used small sample sizes that limit the throughput and 

applicability of this method in large-scale field-breeding labs. For example, the high 

resolution X-ray CT (HRXCT) has been the CT scanner of choice in the plant sciences 

because of its high-resolution (Dhondt et al. 2010). The HRXCT uses state-of-the-art 

detector arrays and more powerful X-ray sources (up to 420 kV) than medical CT does; 

giving it increased spatial resolution to a few tens of microns [m] (Stuppy et al. 2003). 

Depending on the resolution, the size of the sample, and desired signal-to-noise ratio, a 

CT scan may take several minutes to hours, and there is a sample size trade off (Tracy et 

al. 2017; Cloetenes et al. 2006; Bucksch et al. 2017). Therefore, the HRXCT works best 

on relatively small numbers of samples, which decreases the throughput of the technology. 

Diverse plant biology studies have used the HRXCT as a means to characterize the 

rhizosphere, roots, seeds, flowers, wood, and more at a very detailed level (Cloetenes et 

al. 2006; Kaminuma et al. 2008; Pajor et al. 2013). 

In clinical research, a combination of biomechanics and X-ray CT has proven to 

be a powerful research technique to study whole-bone biomechanical properties (Keaveny 

2010; Berger 2002). Application of such technology to crop improvement could be 

valuable as well. A study in maize successfully applied an HRXCT to generate structural 

morphology of dry maize stems, which were then implemented in finite-element (FE) 

analyses. FE analyses performed to study the biomechanical response of these stems 



 

6 

 

discovered that stem strength was highly dependent on stem morphology (Von Forell et 

al. 2015). The same group were able to scan up to 10 samples per run using HRXCT. 

Robertson et al. (2017), also using HRXCT, identified a relationship between stem 

morphology and biomechanics in late-season stem lodging in maize.  

In bioenergy sorghum, stem lodging tends to occur at the grain filling stage 

(Gomez et al. 2017) when there is significant moisture and turgor pressure that may affect 

biomechanical properties (Niklas and Spatz 2012). As tissues mature and subsequently 

dehydrate as a result of senescence, the modulus of elasticity of these stem increases 

(Niklas 1992). Moreover, since bioenergy sorghum stem weight and moisture are good 

predictors of juice yield (Carvalho and Rooney 2017), it is important to evaluate plants 

when the physiological influences on the expression of these traits are minimal. Thus, 

previously mentioned results for late-season stem lodging in maize may not apply to 

bioenergy sorghum. 

The current technological limitations of the HRXCT for acquiring plant 

morphological and anatomical data makes its application impractical in a field-breeding 

program. To be useful, the technology must have higher throughput even if resolution 

drops. To address this problem, we proposed the use of the Multi-Slice CT (MSCT) to 

visualize and quantify phenotypic data in a high throughput fashion that would allow 

scanning larger samples and increase the number of grass stem samples per run. Since an 

important goal of plant biology is to map genotype to phenotype (Chen et al. 2014), high-

throughput genotyping and phenotyping platforms must work parallel with each other. 
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A robust stem phenotyping platform would mitigate a phenotyping bottleneck 

impacting bioenergy/forage sorghums. The platform should accurately estimate stem 

geometry and morpho-anatomical traits, allow for a large sample size, produce acceptable 

repeatability for the traits, and work quickly with minimal effort.  Thus, the objectives of 

this study were to develop a practical high-throughput phenotyping platform and image 

data processing pipeline that can phenotype a large number of samples to extract stem 

morpho-anatomical properties and to validate the methodology. 

 

Material and Methods 

Plant material 

Two different sets of sorghum germplasm were used in the study. Set 1 consisted 

of 19 genotypes including elite lines and cultivars which contrasted for maturity, stem 

morphology, stem anatomy, and end-use; while Set 2 consisted of ten F2 plants derived 

from a cross between GIZA114 and Umbrella showing contrasting morpho-anatomical 

characteristics (Table A-1). All genotypes were evaluated to assess the potential of using 

a Multi-Slice CT (MSCT) to estimate stem properties in a field based breeding program. 

The pipeline for analysis of high-throughput phenotyping morpho-anatomical traits using 

CT is described in (Fig. 1).
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Fig. 1 Pipeline for analysis of high-throughput phenotyping in sorghum using a computed tomography and conventional phenotyping (see 

Methods). 
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Experimental details  

Two separate field experiments were conducted in 2015 in College Station, Texas 

(30°32'31.6"N 96°25'21.6"W). Seeds were planted in one-row plots 5 meters long and 

0.76 meters wide. Genotypes from Set 1 were arranged in a complete randomized block 

design. The target plant density was ~75,000 plants ha-1. For Set 2, F2 seeds were 

distributed in plots laid out in a row-by-column design. Seeds from Set 1 and Set 2 were 

sown in April. Agronomic practices standard for sorghum production in this area were 

used including irrigation as needed to minimize drought stress. Harvesting and evaluations 

occurred in July, approximately 95 days after planting. 

For phenotyping each genotype in Set 1, six healthy plants were randomly selected 

from the middle of the plot and cut at the soil level.  For Set 2, ten F2 plants were randomly 

selected from a ten plot population block. After harvest, any growth greater than 1.5 meters 

was removed to fit because stem lodging in sorghum occurs primarily between internodes 

three and six (which are typically between 0.5-1.5 meters) (Gomez et al. 2017).  For most 

samples, the remaining section included internodes 1-7 and some genotypes had >7 

internodes in the 1.5 m section. This procedure was followed by the removal of leaf sheaf 

across the stem to get precise stem diameter measurements. During this time, plants were 

kept in a temperature-controlled environment at ~20°C and then transported to be scanned.   

 

Phenotyping platform setup and CT-measurement 

Multi-slice computed tomography (MSCT) is a clinical scanner used to test human 

or animal patients with a larger sample space that allows more samples per run. All 
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harvested plant samples were loaded on a platform that held 30 samples per scan (Fig. 1). 

X-ray CT scans were completed within an hour after harvest at the Diagnostic Imaging & 

Cancer Treatment Center of the Texas A&M Veterinary Medicine & Biomedical Sciences 

facilities in College Station, Texas. A SOMATOM Definition AS+ CT instrument 

(SIEMENS) was used with the following settings using 120 kVp, 1.024 pixels per mm, at 

a 0.6 mm slice thickness. 

 

Morphological measurements 

In Set 1, stem morphological traits were collected on the 1.5-meter section scanned 

in the CT analysis (Table A-1). Each internode was numbered, with the lower number 

closer to the base of the plant. The distance between each node was recorded as internode 

length (cm), and internode diameter (mm) was measured at the center of each internode 

using a digital caliper. Internode volume was estimated using the formula. 

 v =r2h  [1] 

where r is the radius of the stem, and h is the length of the internode. Internode fresh mass 

was taken for each internode using a digital balance (model 95364, CEN-TECH ®).  

Internode mass density was calculated using the formula  

 =
𝑚

𝑣
  [2] 

where, m is mass (g), and v is the volume of the internode. Samples were dried in a forced-

air oven at 60 for one-week post phenotyping to estimate dry internode weight and 

density. 
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Stem biomechanics 

Biomechanical properties were collected on the previously described samples. All 

internodes were cut at the nodes and were subjected to a three-point bending test (3PBT) 

following the methods described in Gomez et al. (2017). Biomechanical properties were 

determined based on the Euler Bernoulli beam theory since the tested internodes were 

relatively slender. The following formula calculated the dimensionless slenderness ratio 

(dimensionless) 

 λ =
𝐿

𝐷
 [3] 

where L is the length of the stem section and D is the diameter of the stem section. A 

slenderness ratio >10 was maintained on all specimens. 

The second moment of an area (I) quantifies the resistance to bending provided by 

cross-sectional geometry and size. The stem cross-section was approximated as a circular 

cross section. For beams with a solid circular cross-sectional geometry, I is given by the 

formula  

 𝐼 =
𝜋𝐷4

64
 [4] 

where D is the diameter of the stem section. The geometric property for a given cross 

section or section modulus (Z) was also calculated by  

 𝑍 =
𝐼

𝑟
 [5] 

where I is the second moment of an area and r is the radius of the internode. The elastic 

(Young’s) modulus E reported in MPa is the quotient of normal stress to normal strain 
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throughout the linear range of elastic behavior (Niklas 1992), henceforth referred to as 

“material stiffness”. E is given by 

 𝐸 =
𝐹1𝐿𝑖𝑛

3

48 𝐵1 𝐼
 [6] 

where B1 is the lateral displacement it took to bend the stem section without damaging its 

structural integrity. F1 is the force required to bend the stalk to displacement B1, Lin is the 

length of the stem section, and I is given by Eq. [4]. In Eq. [6]. The measured elastic 

modulus is along the longitudinal axis of the stalks and the stalks are assumed as 

homogenized structures. It should be noted that stalks are heterogeneous structures, they 

are anisotropic with regards to the mechanical properties, and their overall mechanical 

responses are typically inelastic. However, as a first step in analyzing biomechanical 

properties of sorghum stalks, this study considers linear elastic response of stalks. 

Stalk strength was taken as the maximum stress required to break the structural 

integrity of the stem (Niklas 1992) and is given by  

 𝜎𝑚𝑎𝑥 =  
(𝐹2)𝐿𝑖𝑛

4𝐼
∗ 𝑟 [7] 

where F2 is the force required to induce breakage, Lin is internode length, r is internode 

radius, and I is the second moment of an area (Eq. [4]). Flexural rigidity (herein referred 

to as rigidity), symbolized as EI is given by 

 

 𝐸𝐼 = 𝐸 ∗ 𝐼 [8] 
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where E is stiffness and I is second moment of an area, and represents the resistance of a 

beam to bending forces based on size, geometry and material properties (stiffness). Plants 

are composite materials; therefore, the calculated biomechanical properties are interpreted 

as spatially averaged Young’s modulus (Hesse et al. 2016; Rowe et al. 2006) and effective 

flexural rigidity across the entire heterogeneous plant tissues (Schulgasser and Witztum 

1997; Wagner et al. 2012). 

 

Anatomical measurements 

Visual stem pithiness measurements from Carvalho and Rooney (2017) were used 

as these data included the same genotypes that were in Set 1. In brief, the percent of pithy 

stem cross section area was visually estimated by using a rating scale system. This scale 

ranges from 1 to 9, where one corresponds to 90-100% pithiness and 9 to 0-10% pithiness. 

One unit increase in the scale equals to 10% decrease in the percent of the pithy area. For 

Set 2, the same protocol was followed, but in this case, measurements were taken in the 

same plants scanned in the CT, and on internodes 3 and 6 only. 

 

Computational image analysis 

A customized computer program was written in in the MATLAB environment 

(Mathworks, Inc., Natick, MA, USA) to extract morpho-anatomical attributes from CT 

cross-section images. For the algorithm developed, the input is an image, and output is the 

region centers, diameters, rind area, cross section intensity, and percent pithy area. The 

process consisted of the following steps. First, we performed a morphological closing 
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operation to connect some disconnected regions due to the image noise. Then, isolated 

regions were extracted using the MatLab routine “regionprops”. Small regions, not part of 

the platform (areas that were below a preset threshold) were excluded. Additionally, a 

circle was fit for each remaining region. If the eccentricity for a region was too low (which 

means the region was not a circle), this region was not included in the analysis.  

Next, we extracted the region center, diameter, rind area, area intensity, and pithy 

area for each remaining circle-like region. The circle center and diameter were saved as 

the region center and diameter. The density was measured as the ratio of the mean pixel 

intensities of a region and the max possible intensity of the image (which is 255). The rind 

area was defined as the area of the outer region. The inner circle was obtained by firstly 

excluding the pixels with intensities greater than a threshold (175), and then fitting the 

circle using the remaining pixel locations in that region. Finally, the percent pithy area 

was defined as the ratio between dark pixels (intensity is below a threshold, which is 20) 

inside each region and the area of the entire inner circle.  

In total, over six morphological attributes were determined for each cross-section. 

Since it was not possible to detect nodes using the algorithm, node sections of the stem 

were added manually to the output. A separate function estimated internode length by 

multiplying the slice thickness of the CT image and the number of images within an 

internode section.  
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Image preprocessing 

A total of ~500,000 images were produced by the CT scanning of ~150 plants. 

Figure S1 and Video S1 show arrangements and illustration of the 3D-reconstructed 

sorghum stems in the platform used to estimate morpho-anatomical traits. The pre-

processing of phenotypic data involves removal of node sections since no data was 

collected at the nodes as well as regions where no data was estimated by the algorithm 

(i.e. 0). Missing estimates along the stem may have occurred when the stems move out of 

the area of estimation, or the algorithm did not detect a circle. Outlier detection was also 

performed. 

 

Statistical analysis 

First, individual data points estimated by the algorithm were averaged by 

internode. Next, the observed values for the morpho-anatomical traits were analyzed using 

a linear model, written as 

𝑦𝑖𝑗 =  𝜇 +  𝑔𝑖 + 𝑖(𝑔)𝑗(𝑖) + 𝑖𝑗     [9] 

where µ is the grand mean, 𝑔i is the fixed effect of the genotype, 𝑖(𝑔)𝑗(𝑖) is the fixed effect 

of the internode number within the genotype, and ijk is the random error component. 

LSMeans and standard errors were estimated for each genotype using the linear model. 

Pearson correlation coefficients where estimated using the LSMeans from the model for 

all manual and CT traits collected. The same model was run as a mixed model, except all 



 

16 

 

terms were random using the restricted maximum likelihood method (REML) to estimate 

the repeatability on a plot mean basis as follows:  

𝐻2 =
𝜎𝐺

2

𝜎𝐺
2+𝜎𝐸

2    
         [10] 

where 𝜎𝐺
2 is the genotypic variance and 𝜎𝐸

2 is the error variance, respectively (Hallauer et 

al. 2010). For percent pithy area, plot mean values from Set 1 were combined with plant-

based values from Set 2 to estimate repeatability and for modelling analysis. 

A univariate regression was performed for internode diameter, length, and 

pithiness to study the relationship between CT-derived and manually collected stem traits. 

Three predictive models were fit to validate the accuracy and usefulness of the results. In 

the first model, the CT-derived internode diameter predicts the diameter collected 

manually; Diameter = Diameter CT. In the second model, CT-derived internode length 

predicts the internode length collected manually; Length = Length CT. In the third model, 

the CT-derived internode percent pithy area predicts the visual pithiness ratio; Pith = Pith 

CT. The performance of the models from the univariate regression was assessed by the 

leave on out cross-validation (LOOCV) method. For this, the data was split into two parts, 

and a single observation (x1, y1) was used for the validation set, and the remaining 

observations {(x2,y2),…,(xn,yn)} made up the training set. The statistical learning method 

was fit on the n-1 training observations and a prediction �̂� was made on the excluded 

observation using its value x1. The root mean square error (RMSE) of prediction was 

estimated for each validation, RMSE1, RMSE2, … , RMSEk: 



 

17 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑(𝑦 − �̂� )2     [11] 

where y and �̂� are the observed and predicted values in the model. The model acceptability 

was examined by the average of these n test error estimates. 

The models were further evaluated by the proximity of the predicted versus 

observed values to the 1:1 line for each model and by identifying the lowest RMSE from 

the LOOCV. An R2 value close to 1.0 with a slope of observed versus predicted close to 

1.0 and small RMSE values indicate that the model is precise with little bias (Alam et al. 

2016). 

 

Results 

Phenotypic variation for CT estimated traits was detected 

Phenotypic variation existed among genotypes for all CT-derived traits. In Set 1, 

the genotypic LSMEANS across all internodes and plants ranged from 3.6 to 28 pixels for 

internode length; stem diameter ranged from 3.5 to 12 pixels; stem pixel intensity ranged 

from 0.61 to 0.83, and stem rind area ranged from 37 to 248 pixels. In the entire panel (Set 

1 and Set 2 together), percent pithy area ranged from 11% to 60% on a mean genotype 

basis. The CT estimates effectively identified groups of genotypes with common 

phenotypes (Fig. 2). On average, the late maturing genotypes had the largest internode 

length, diameter, and rind values (Table A-1, Fig. 2a, 2b, 2e). Earlier genotypes showed 

higher stem intensity values (Table A-1, Fig. 2d) with a few exceptions, notably Tx14323, 

and GIZA114.
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Fig. 2 Phenotypic variation for morpho-anatomical traits for 19 genotypes from Set1. Genotypes have been sorted by specific trait. The 

vertical bars indicate the relevant standard error; a) length (cm) b) diameter (mm) c) pithy area (%) d) intensity e) rind area 
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Repeatability for CT estimates trait 

Repeatability estimates for CT-derived traits ranged from 0.51 to 0.72 and 

repeatabilities for manually collected traits ranged from 0.66 to 0.85 (Table 1). In most 

cases the CT-estimated traits were lower than the ground-truth trait estimates. High 

repeatabilities (~.70) were observed for rind, diameter, and volume, followed by length 

and intensity at 0.61, and by percent pithy area and second moment of an area, at 0.56 and 

0.51, respectively. Overall, H2 for CT and manually collected data were consistent with 

one notable exception. Overall, the repeatability is lower for the CT collected data. 

 

Table 1 Repeatabilities for CT-derived traits and manually collected traits measured in 29 diverse sorghum 

genotypes. 
 

CT Manually Collected 

Trait H2 H2 

Internode length 0.61 0.76 

Internode diameter 0.70 0.81 

Internode volume 0.71 0.83 

Second moment of an area (I) 0.51 0.66 

Intensity 0.61 NA 

Pithiness  0.56* 0.85* 

Rind 0.72 NA 

*Measured at individual plant basis 

NA: data was not collected manually for this trait. 

 

Accuracy of estimating morpho-anatomical traits of sorghum using x-ray computed 

tomography in sorghum 

The coefficients of determination of genotypic CT mean values regressed to 

genotypic manually collected means were high for morphological traits and moderate for 

one anatomical trait (Fig. 3). For length and diameter, the R2 were 0.91 and 0.97, 

respectively. Moreover, for percent pithy area the R2 was 0.49; although this value was 
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lower than the ones observed for stem length and diameter, the algorithm was still capable 

of explaining 50% of the total variation for stem pithiness. The LOOCV applied at the 

individual internode data point basis (genotype vs. plant vs. internode) revealed average 

R2 and RMSE values of 0.56 and 3.75 for internode length, respectively. For internode 

diameter, an average R2 of 0.54 and an average RMSE of 2.78 was observed. For pithiness 

ratio, the average R2 was equal to 0.44 while an average RMSE of 1.63 was found. 

 

 

The adequacy of the predictive models were assessed by plotting predicted vs. 

observed (manually phenotyped) internode length, stem diameter, and pithiness ratio for 

all observations.  Figure 4 shows the observed and predicted values for the model with the 

lowest RMSE selected from the LOOCV. The lowest RMSE for stem length, stem 

diameter and stem pithy area were 0.01, 0.02, and 0.02, respectively. The values for all 

three models were relatively precise and accurate across all observations. Furthermore, a 

50% cut off line for the trait was added to evaluate the model as a selection tool in a 

sorghum breeding program (Fig. 4). The cut off separated the plots into four quadrants. 

Fig. 3 Association between CT and manually collected traits for 29 sorghum genotypes; a) length b) 

diameter c) pithy area (%) 
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The quadrants with the blue observations were classified as the individual internodes that 

would be correctly classified using the model selected for each of the three traits. The 

accuracy of the model on classifying the values for the internodes of each genotype for 

stem length, diameter, and pithiness ratio was 81%, 77%, and 82%, respectively ( i.e., 

from the total number of data points predicted, 81%, 77%, and 82% would be classified 

correctly upon selection for internode length, diameter, or pithiness). 

 

 

Correlations among CT-derived traits 

Correlations between CT-derived traits and morpho-anatomical manually 

collected traits were variable (Fig. 5). For example, CT and manual measurements of 

internode volume, internode fresh weight and dry weight were highly correlated. As 

expected, stem intensity was correlated with internode dry weight density (r=0.61; 

P<0.01), but percent pithy area-CT had very low correlations with the manually collected 

measurements. Rind-CT had a moderate correlation with section modulus and rigidity, 

Fig. 4 Predicted versus observed plots for three traits and the model with the lowest RMSE select using 

the LOOCV method. Yellow line depicts a 50% cut off; a) stem length b) stem diameter c) stem pithiness 

ratio 
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and a high correlation with volume-CT; (r=0.55; P<0.001), (r=0.66; P<0.005), (r=0.82; 

P<0.0001). 

 

 

Volume-CT was highly correlated with rigidity (r=0.85; P<0.001), respectively. 

Diameter-CT was positively correlated with rigidity (r=0.71; P<0.001) and negatively 

correlated with strength (r=-0.9; P<0.001) and stiffness (r=-0.88; P<0.001). These 

findings are consistent with results reported by Gomez et al. (2017). 

 

 

 

Fig. 5 A heatmap depicting Pearson’s correlation coefficient for all traits collected in 19 sorghum 

genotypes from Set1. 
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Discussion 

The phenotyping platform and algorithm presented herein were accurate and 

capable of detecting variation for important morpho-anatomical traits in well-

characterized sorghum genotypes at reliable repeatability rates. The magnitude of the 

repeatability is a major factor in determining the efficiency and relevance of any 

phenotyping methodology in a germplasm screening program. In our case, repeatability 

estimates for CT-derived traits were moderate and were lower than manual measurements. 

The differences are likely due to minute variation present along the plant stem that could 

be captured by the CT method (Fig. 6) and cannot be assessed manually or visually. A 

single point manuallly collected measurement is likely to misrepresent the variation of 

each internode, which might cause an overestimation of variance when assessed across 

different plants and genotypes. Errors associated with the algorithm estimation might also 

be a complicator, but for this case, improvements are possible. 
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Nonetheless, our image analysis pipeline could identify genotypes with superior 

morpho-anatomical traits that were consistent with manually based classification 

previously performed by Carvalho and Rooney (2017) and Gomez et al. (2017). For 

example, the genotype Rio had a smaller stem diameter than the genotype Tx13321 but 

longer internodes than Tx13321. The CT-estimated traits (internode diameter, internode 

length, and percent pithy area) were moderate to highly predictive of the manually 

collected traits. Although percent pithy area explained only 50% of the variation for 

pithiness rating, this may be a reflect inconsistencies in the visual score rather than, or in 

addition to, faults in the CT-based prediction. Visual ratings are one method to rate 

Fig. 6 Raw data from diameter and pithy area collected by CT for three sorghum genotypes plotted 

across the span of the plant stem. The drops at the graph represent zeros were the platform was 

removed.  
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pithiness, and it has been demonstrated that using a flatbed scanner can increase the 

accuracy of phenotyping (Carvalho and Rooney 2017). Therefore, an association between 

CT-derived percent pith and percent pith area estimations using a flatbed scanner might 

result in a higher association. 

In this study, CT estimated morphological traits had the strongest correlations with 

mechanical properties. This finding is consistent with a computation sensitivity analysis 

in maize by Von Forell et al. (2015), demonstrating that morphological traits have a 

stronger association with mechanical traits rather than tissue or material properties. The 

results from the computation sensitivity analysis were also consistent with a study using 

CT to phenotype maize (Robertson et al. 2017). In our study, morphological 

measurements were also correlated with mechanical properties. For example, CT 

estimates of the second moment of an area were negatively correlated with stem strength 

and stiffness, demonstrating the strong effect stem morphology may have on mechanical 

traits. Similar results were reported by (Gomez et al. 2017). Furthermore, rind CT was 

moderately associated with section modulus and is in line with a study by Ookawa et al. 

(2016) where an indica variety of rice had strong culms due to a large section modulus 

that is associated with stem wall thickness. These results indicate that stem morphology 

has a strong effect on mechanical properties and morphological traits such as the second 

moment of an area and section modulus, and are to be considered when selecting for 

lodging resistance. 

CT is based on the principle that the density of the tissue passed through by the X-

ray beam can be measured by calculation of the attenuation coefficient (Lafond et al. 
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2015). Therefore, material density is a major factor to consider when running plant 

samples in a CT scanner, as plant organs vary in tissue density. This variation will affect 

the image from the CT scanners depending on the plant tissue’s attenuation properties 

either soft tissue or hard tissue. Differences in X-ray attenuation in several plant stems 

were visibly apparent and primarily dependent on the anatomy, composition, and material 

density of the cross section of the stem (i.e. rind is more lignified) (Fig. S2). At this 

attenuation level obtained by the SOMATOM Definition AS+ it is possible to detect the 

material density of the stems as well as rind and pithy area. It has been shown that medical 

CT scanners capture the changes in material density and composition of relatively non-

dense and large objects (Dutilleul et al. 2005; Lafond et al. 2015), such as stems of grasses. 

In this study, stem ‘density’ was estimated as the pixel intensities of a region and had high 

correlation with internode dry weight density. Other studies have provided similar results 

(Dutilleul et al. 2005). Therefore, intensity, as used in this study, is a new method to 

quantify stem density. 

The need for a high-throughput method for quantifying important morpho-

anatomical traits related to stem lodging and juice yield in bioenergy sorghum motivated 

this pipeline and platform. While many high throughput methods are being developed to 

phenotype plants using unmanned aerial vehicle (UAV), robotics, and high throughput 

platforms such as the ARPA-E TERRA-REF project (http://terraref.org/) (Watanabe et al. 

2017; Andrade-Sanchez et al. 2014; Batz et al. 2016; Barker et al. 2016), none of these 

methods allow for combining external and internal stem phenotypic information of plants. 
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Besides the potential applications discussed for our pipeline, it can also be applied to 

produce highly dimensional data used in 3D reconstruction and crop modeling. 

Image analysis is an active and challenging field of computer science that is rapidly 

providing tools applicable to biological problems. In principle, images can be mined for 

phenotypes other than those which were collected (Gehan and Kellogg 2017). In our study, 

images were mined to estimate morphological and anatomical properties effectively. 

However, the work herein is preliminary; there is room to improve on both processing and 

algorithms. For example, some of the coefficients of determination of the univariate 

regression did not explain all of the variation. We believe this was because plant stems 

vary in tissue density and the algorithm did not detect a complete circle, and therefore, did 

not estimate a value for that specific CT slice. Using methods such as machine-learning, 

algorithms to predict phenotypes in plant breeding programs can be improved.  

The results indicate that CT-based estimates are associated with important traits in 

bioenergy sorghum. Furthermore, predicting traits such as stem length, diameter, and 

pithiness ratio at the internode level by utilizing HTP computed tomography appears 

possible in an applied breeding program. Further work to improve algorithms and the 

accuracy of our models will enhance the speed and efficiency of this methodology 

allowing it to be applied to large populations, panels, and hybrids with high fidelity. As a 

selection tool, our protocol appears readily applicable in field-based and large-scale 

breeding programs.  
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CHAPTER III  

 

QTL FOR STEM BIOMECHANICAL PROPERTIES IN SORGHUM CO-LOCATE 

WITH DWARFING GENES 

 

Introduction 

Sorghum bicolor is a bioenergy feedstock that can be used to meet biofuel 

demands. Compared to grain sorghum hybrids, bioenergy sorghum hybrids are taller (3-4 

meters) with longer internodes and greater biomass yield (15-40 Mg/ha depending on 

genotype and environment) (Mullet et al. 2014; Rooney et al. 2007; Gill et al. 2014; Hilley 

et al. 2016).  These characteristics make them more susceptible to stem lodging.  

The importance of breeding for lodging resistance has been a matter of prime 

importance for sorghum breeding programs since the 1940’s (Karper and Quinby 1946) 

and continues to be so today. Grain sorghum breeders have indirectly selected for 

recessive alleles of Dw1-Dw4 to prevent lodging and allow machine harvesting (Quinby 

1974; Quinby and Karper 1953). Nevertheless, stem lodging continues to be a major 

problem reducing yield in grain and bioenergy sorghum. Furthermore, the use of dwarfing 

genes has been found to reduce shoot biomass and ultimately reduce grain yield (George-

Jaeggli et al. 2011); therefore, breeders must understand the trade-off between reducing 

height and yield.  

In rice, breeders have selected on recessive alleles in the gibberellin (GA)-related 

semi-dwarf plants during the Green Revolution (Hirano et al. 2014). However, increasing 
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the bending resistance because of the use of GA-related semi-dwarf traits does not 

necessarily result in increased lodging resistance. In addition, GA-dependent semi-dwarf 

plants have also lower grain yield (Okuno et al. 2014). While the semi-dwarf1 (sd1) gene 

in rice (Oryza sativa L.) and the reduced-height genes Rht1 and Rht2 in wheat (Triticum 

aestivum L.) played a big roles in the green revolution to reduce lodging (Hedden 2003), 

varieties carrying these genes, are still affected by lodging (Ookawa et al. 2010). A more 

complete understanding of the genetic and biomechanical basis of stem lodging could 

identify ways to increase stem lodging resistance of bioenergy sorghum.  

Biomechanical properties dictate the plant’s mechanical integrity and these change 

as the plants mature and encounter environmental changes (Niklas 1992). Studies on 

important cereal crops have addressed the importance of biomechanical properties as 

means to improve lodging resistance. For example, in maize, Hu et al. (2013) found 

quantitative trait loci (QTL) using a three-point bending test (3PBT) which suggested a 

complex polygenic inheritance for stalk bending related traits. In rice, Ookawa et al. 

(2010) used a 3PBT test to identify a QTL labeled STRONG CULM2 (SCSM2) from a 

high lodging resistant Indica cultivar Habataki, which was identical to the (APO1) gene 

which controls panicle structure. Ookawa et al. (2016) in rice also, confirmed a QTL in 

rice for section modulus on chromosomes 1, 5, and 6 of segment substitution lines 

(CSSLs) in reciprocal crosses between Koshihikari and Takanari.  

A study by Paolillo Jr and Niklas (1996) assessed how the structural and material 

properties of wheat plants carrying the Rht alleles may effect field performance, and 

reported the effect of the Rht alleles on the breaking strength and breaking stress of the 
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first foliage leaves of the wheat seedlings. The study found that breaking strength increases 

with the cross-sectional area of cell walls in the principal fiber stands, and that the Rht 

allele changes the nature of this relationship such that a lesser increase in breaking strength 

per unit area of wall is attained in the presence of Rht. This study demonstrated that Rht 

may profoundly affect the morphology, development, and biomechanics of wheat. Like 

the Rht genes in wheat, the Dw genes in sorghum also affect stem morphology and 

ultimately the stem’s biomechanical properties. Unfortunately, there is limited 

information regarding the genetic basis of stem biomechanical properties in sorghum and 

their association with important dwarfing genes important for lodging resistance.  This 

information may aid breeders to exploit the genetic variation for these dwarfing genes. 

The aims of this study were to map QTL for biomechanical traits in sorghum and 

assess potential relevance of the traits for improving lodging resistance via marker-

assisted or genomic selection. To achieve this aim, in this study we 1) identify QTL for 

biomechanical and morphological traits using three RIL bi-parental mapping populations, 

2) validate these QTL in different genetic backgrounds, 3) demonstrate that biomechanical 

traits QTL are associated with morphological traits, 4) determine where the biomechanical 

traits QTL are located and identify co-location with reported dwarfing genes.  

 

Material and Methods 

Genetic material 

Three recombinant inbred line (RIL) mapping populations comprising of two 

subsets of ~70 F2:4 RILs developed from crosses between the sweet sorghum cultivar 
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‘Della’ to both elite inbred parents ‘BTx623’ and ‘BTx631’, and ~100 F2:5 RILs consisted 

from a cross between the sweet sorghum cultivar with juicy stalks ‘Rio’ with the elite 

inbred parent ‘BTx623’ (Table 2) (Murray et al. 2008) were used. The RILs were 

developed following head to row of individual F2 plants to F4 and F5 respectively.  

 

Table 2 Description of recombinant inbred mapping populations used in the three-point bending test 

experiments, planted in different environments at College Station, TX during 2014-2016. 

Populations Generation RILn° Replications Environments 

Tx623/Rio F
2:5

 97 2 3 (CSE2014, CSL2014, CSE2016) 

Tx623/Della F
2:4

 70 2 3 (CSE2014, CSE2015, CSE2016) 

Tx631/Della F
2:4

 72 2 2 CSE2014, CSE2016) 

CSE: College Station Early, CSL: College Station Late. 

 

Experimental design and sampling 

The RILs and the parental lines were evaluated using a randomized complete block 

design over two seasons across years at two different locations in Texas at different 

planting dates to obtain three distinct environments (Table 2); College Station from April 

to July 2014-16 (CSE) and May to August 2014 (CSL). All mapping populations were 

manually thinned to a specific target population density of ~75000 plants/ha and tillers 

removed.  Standard sorghum agronomic practices for each area were used including 

irrigation as needed to minimize drought stress. 

Trait measurements were collected during the grain filling state, between 

internodes three and six, where stalk lodging is more prevalent (Gomez et al. 2017). Three 

healthy and randomly selected plants in the middle of the plot were cut at the soil level for 

phenotyping. RILs of similar height were sampled to minimize the confounding effect of 
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height on the biomechanical properties. Measurement on all plants were completed within 

7 hours of harvest.  Between harvest and measurement, the stalks were maintained in a 

temperature-controlled environment at ~21°C to minimize tissue dehydration and 

maintain natural material properties.  

 

Phenotyping morphological and biomechanical traits 

Prior to phenotyping all leaves and leaf sheaths were removed from each plant. 

Plant height was measured as the length (cm) of the plant from the base to the top of the 

panicle. After plant height was recorded, further data was collected on the region of the 

stalk between internodes three to five. These internodes were labeled with internode one, 

being the first internode above the ground. For internodes three to five, the distance 

between each node was recorded as internode length (cm) and internode diameter (mm) 

was measured at the center of each internode using a digital caliper.  Internode fresh mass 

was taken for each individual internode using a digital balance (model 95364, CEN-TECH 

®) to estimate internode mass density using the formula in Eq. [2]. 

Biomechanical properties in all environments were measured on the previously 

described samples using a three-point bending test protocol described in (Gomez, 

Muliana, et al., 2017). Biomechanical properties were determined based on the Euler 

Bernoulli beam theory since the tested internodes were relatively slender. The following 

formula calculated the dimensionless slenderness ratio using the formula in Eq. [3], where 

L is the length of the stem section and D is the diameter of the stem section. A slenderness 
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ratio >10 was maintained on all specimens. However, this parameter was not used for trait 

further trait analysis. 

The second moment of an area (I) quantifies the resistance to bending provided by 

cross-sectional geometry and size. The stem cross-section was approximated as a circular 

cross section. For beams with a solid circular cross-sectional geometry, I is given by the 

formula in Eq. [4], where D is the diameter of the stem section. The geometric property 

for a given cross section or section modulus was also calculated by dividing I by r which 

is the radius of the internode. The elastic (Young’s) modulus E reported in MPa is the 

quotient of normal stress to normal strain throughout the linear range of elastic behavior 

(Niklas 1992), henceforth referred to as “material stiffness”. E is given by the formula in 

Eq. [6], where B1 is the lateral displacement the stem section may undergo without 

damaging its structural integrity. F1 is the force required to bend the stalk to displacement 

B1, Lin is the length of the stem section, and I is given by Eq. [3]. 

Stalk strength was taken as the maximum stress required to break the structural 

integrity of the stem (Niklas 1992) and was calculated using the formula in Eq. [7], where 

F2 is, the force required to induce breakage, Lin is internode length, r is internode radius, 

and I is the second moment of an area Eq. [3]. Flexural rigidity (herein referred to as 

rigidity), symbolized as EI was calculated by multiplying E by I Eq. [8] represents the 

resistance of a beam to bending forces, taking into account size, geometry and material 

properties (stiffness). Plants are composite materials; therefore, the calculated 

biomechanical properties are interpreted as spatially averaged Young’s modulus (E) 
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(Hesse et al. 2016; Rowe et al. 2006) and effective flexural rigidity across the entire 

heterogeneous plant tissues (Schulgasser and Witztum 1997; Wagner et al. 2012). 

 

Statistical analyses of phenotypic data 

Genetic variation among RILs for each trait were assessed using linear mixed 

effects models at different environments and across environments for each population. 

Different mixed models using covariates and spatial models were compared with AIC and 

BIC; and the most appropriate model in each environment was used to obtain best linear 

unbiased estimates (BLUEs). BLUEs were used because values are not shrunken toward 

the mean, and thus, avoid artifacts arising from twofold shrinkage (Piepho et al. 2012). 

The final model of each individual environment was evaluated separately for each trait 

and included block and genotypes:  

𝑌𝑖𝑗 = 𝜇 +  𝐵𝑖 + 𝐺𝑗 + 𝜀𝑖𝑗     [12] 

where 𝑌𝑖𝑗 is the phenotypic value of genotype j in block i,  is the overall mean, Bi is the 

block random effect Bi ~ N(0,𝜎𝑏
2), Gj is the genotypic fixed effect, and ij is the random 

error. Broad sense heritability (H2) on an entry mean basis was estimated for analysis of 

individual experiments as 𝐻2 =
𝜎𝐺

2

𝜎𝐺
2+

𝜎𝑒
2

𝑟

  Eq. [13], where 𝜎𝐺
2 and 𝜎𝑒

2 are the genotypic and 

error variances, and r are the number of blocks (Hallauer et al. 2010).  

Combined analysis across experiments was also performed using linear mixed 

effects model approach with unequal variances and a distinct residual variance for each 
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environment. The model included environment, replicates nested within environment, 

genotype, and genotype x environment interaction: 

𝑌𝑖𝑗𝑘 = 𝜇 +  𝐺𝑖 + 𝐸𝑗 + 𝐺𝐸𝑖𝑗 + 𝐵(𝐸)𝑘(𝑗) + 𝜀𝑖𝑗𝑘   [14] 

Here, Yijk is the phenotypic value of genotype i in environment j and block k;  is the 

overall mean; Gi is the random effect of inbred line i and is ~ N(0,𝜎𝐺
2); Ej is the effect of 

environment j, ~ N(0,𝜎(𝐸)
2 ); GEij is the interaction between inbred line i and environment 

j and is ~ N(0,𝜎𝐺𝐸
2 ),; 𝐵(𝐸)𝑘(𝑗) is the random block effect nested within each environment 

j and is ~ N(0,𝜎𝐵(𝐸)𝑘(𝑗)

2 𝜎𝐵𝑘(𝐸)), and ijk is the random residual effect for inbred line i in the 

replication k of trial j and is ~ N(0,𝜎
2). Variance components were estimated for the model 

by treating all terms in the model equation as random effects except. Broad sense 

heritability (H2) on a mean basis was estimated across environments as 𝐻2 =
𝜎𝐺

2

𝜎𝐺
2+

𝜎𝐺𝐸  
2


+

𝜎𝑒
2

𝑟
    

 

Eq. [15], where 𝜎𝐺
2 is the genotypic variance, 𝜎𝐺𝐸

2  is the genotype x environment 

variance,   𝜎𝑒
2 is the error variance, and  and r are the number of environments and 

replicate plots, respectively (Hallauer et al. 2010). Models were fitted using the restricted 

maximum likelihood method. A principal component analysis (PCA) was carried out to 

get an overall picture of trait correlations using the R package FactoMiner. The predicted 

BLUEs from each of the traits for all populations were combined into a matrix and 

analyzed.  
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Molecular data collection and genetic map construction 

Genomic DNA from individual inbred lines from the three populations (Table 2) 

was extracted from leaf tissue using the FastDNA Spin Kit (MP Biomedicals). Each inbred 

line was genotyped using Digital Genotyping (Morishige et al. 2013), using the enzyme 

FseI (New England Biolabs) for digesting the genomic DNA. Libraries were sequenced 

with Illumina HiSeq2500 using standard Illumina protocols employed by Texas A&M 

AgriLife Genomic and Bioinformatics Services. FASTQ read files were obtained from 

Texas A&M AgriLife Genomic and Bioinformatic Services and processed using a series 

of custom Perl and Python scripts (Morishige et al. 2013). Reads were mapped to the 

Sorghum bicolor reference genome sequence (Sbi1) with the Burrow-Wheeler Aligner 

(BWA v0.7.5.a) (Paterson et al. 2009; Li and Durbin 2010)  

A genetic linkage map composed of 10 linkage groups for all populations was 

constructed using JoinMap 4.1 software (Van Ooijen and Voorrips 2001). Loci that were 

95% similar were excluded and segregation distortion was assessed using 2 against the 

normal Mendelian expectation ratios. Individuals markers that showed a significant 

linkage distortion where subsequently excluded from further analysis. To correct for 

crossover interference, the Kosambi mapping function was used to determine the genetic 

linkage distance in centimorgans (cM) (Kosambi 1943). The multipoint maximum 

likelihood ML based algorithm was used for map construction, and the Monte Carlo 

optimization method was used for estimating the ‘best’ map order. 
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QTL analysis 

A mixed model multi-trait (MT) quantitative trait loci (QTL) mapping as described 

in (Malosetti et al. 2013; Malosetti et al. 2008) was performed, using the BLUEs for all 

traits for each environment. The strategy consisted of performing a genome-wide scan for 

QTLs by simple interval mapping (SIM), followed by several rounds of composite interval 

mapping (CIM) (using step size of 10cM) starting with cofactors selected from the SIM. 

Lastly, a final multi-QTL model was fit to estimate QTL effects.  

Because target traits for QTL analysis are known to correlate with plant height 

(Blum et al. 1997; George-Jaeggli et al. 2011), an alternate QTL analysis was performed 

on the phenotypic data adjusted for plant height. BLUEs were estimated from the model 

in [Eq. 1] but adjusted for height. The QTL analysis was based on BLUEs adjusted for 

height was compared with the previous QTL analysis.  

 

Results 

Phenotypic trait variation 

For most traits in all three populations the parents were significantly different than 

their RIL population in individual environments (Table 3). In general, the sweet sorghum 

parents were stiffer, stronger, and more rigid then the grain sorghum parents. The RILs 

exhibited transgressive segregation for biomechanical properties beyond the range of the 

parental values in all three populations at all environments. Estimates of genotypic effects 

were significant for almost all traits at individual environments (Table 4). Across locations 

genotype and genotype x environment interactions were significant for most traits. 
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Furthermore, genotypic variation accounted for the largest single source of variation for 

morphological and biomechanical traits in all three RIL populations, followed by the 

genotype x environment variance. For the Tx631/Della RIL population environmental and 

genotype x environment interaction accounted for very little of the variation in diameter, 

the two geometric properties, and the biomechanical properties. The results from the three 

RIL populations indicate that most biomechanical traits are strongly influenced by genetic 

factors, but are also subject to the interaction between genotype and environment. 
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Table 3 Predicted mean and range of three set of RIL populations and their parents for morphology and biomechanical traits. 

BLUEs in column followed by the same letter are not significantly different from each other based on a Tukey’s post hoc test at the 5% probability level. 

 

   Morphology Geometry Biomechanics 

RIL Environment Parent or RIL Plant 
Height 

Int. Length Int. 
Diameter 

Int. 
Density 

Int. Second 
Moment 

Int. 
Section 

Modulus 

Int. 
Strength 

Int. 
Stiffness 

Int. 
Rigidity 

   cm cm mm gcm-3   Mpa MPa Nm2 

B.Tx623/Della CSE2014 B.Tx623 112 c 6.6 c 15.3 b 3.3 a 3145 b 380 b 7.2 b 43 a 0.1 c 

 Della 322 a 19.5 a 18.6 a 1.2 b 5893 a 627 a 23.6 a 1214 a 7.2 a 

 RILs 222 b 16.0 b 16.5 b 1.3 b 3366 b 401 b 25.2 a 1428 a 3.7 b 

 Range 77-352 2.5-29.8 8.2-27.6 0.1-4.4 222-9730 54-922 3.4-52 3-5028 0.02-10.4 

CSE2015 B.Tx623 147 c 6.7 c 11.5 b NAa 1161 b 175 b 34.5 a 1810 a 0.7 c 

 Della 250 a 21.6 a 16.2 a NAa 2254 a 304 a 39.4 a 2068 a 5.2 a 

 RILs 214 b 15.4 b 13.0 b NAa 1263 b 189 b 42.6 a 2326 a 2.7 b 

 Range 104-338 1.3-30.5 4.8-25.1  26-3818 11-457 0.3-90.0 23-7081 0.1-7.8 

CSE2016 B.Tx623 129 c 8.9 c 15.2 a 1.3 a 2931 a 364 a 17.8 c 424 c 0.7 c 

 Della 257 a 25.2 a 14.5 a 1.2 a 2449 a 319 a 25.7 a 2720 a 5.6 a 

 RILs 220 b 20.0 b 14.8 a 1.2 a 2593 a 328 a 24.0 b 1904 b 4.1 b 
 Range 99-335 3.0-33.5 4.4-24.9 0.5-11.3 18-8012 8-797 4.3-47.6 4-61 0.02-11.6  

B.Tx623/Rio CSE2014 B.Tx623 112 c 5.3 b 16.1 a 3.5 a 3165 a 381 a 9.6 c 41 c 0.1 c 

 Rio 265 a 17.9 a 14.8 a 1.5 b 2579 a 334 a 43.6 a 2301 a 5.1 a 

 RILs 221 b 16.2 a 15.3 a 1.4 b 2926 a 364 a 31.0 b 1489 b 3.6 b 

 Range 104-312 4.0-30.5 7.1-23.8 0.4-4.4 125-8012 35-797 2.9-62.9 15-4489 0.01-9.6 

CSE2016 B.Tx623 133 c 8.1 c 15.5 a 1.5 a 3342 a 396 a 17.2 c 469 c 0.7 c 

 Rio 301 a 24.3 a 15.5 a 1.2 b 2864 a 366 a 33.4 a 2964 a 8.2 a 

 RILs 244 b 19.9 b 15.2 a 1.2 b 2849 a 358 a 23.5 b 1758 b 4.2 b 

 Range 104-328 2.0-34.8 7.7-23.0 0.5-5.1 173-7854 45-785 1.5-47.4 2-5702 0.003-12.1 

CSL2014 B.Tx623 113 c 5.2 c 16.5 a 3.2 a 4204 a 478 a 6.4 c 19 b 0.0 c 

 Rio 327 a 17.9 a 16.5 a 1.2 b 4107 ab 470 ab 37.0 a 1485 a 4.6 a 

 RILs 265 b 14.5 b 15.7 a 1.3 b 3225 b 392 b 28.7 b 1102 a 2.8 b 
  Range 109-378 1.5-31.5 8.3-24.2 0.3-7.6 233-8840 56-858 1.2-70.9 2-3832 0.01-7.9 

B.Tx631/Della CSE2014 B.Tx631 113 c 5.5 c 19.3 a 3.5 a 7113 a 722 a 6.5 b 19 b 0.1 c 

 Della 335 a 20.3 a 18.7 a 1.2 b 6676 a 677 a 23.1 a 1252 a 7.1 a 

 RILs 233 b 15.4 b 17.3 b 1.3 b 4710 b 513 b 22.5 a 1078 a 3.6 b 

 Range 85-395 2.0-29.8 7.5-30.7 0.5-7.7 155-13265 41-1164 1.6-45 2-3568 0.01-10.1 

CSE2016 B.Tx631 121 c 5.8 c 18.1 a NAa 5688 a 603 a 8.2 c 16 c 0.1 c 

 Della 252 a 23.3 a 16.0 c NAa 3483 c 418 b 24.6 a 1867 a 6.0 a 

 RILs 211 b 17.7 b 16.7 b NAa 4129 b 464 b 21.9 b 1227 b 4.0 b 

 Range 86-348 2.0-36.4 7.9-28.1  191-13737 48-1194 0.2-52.8 2-4510 0.02-11.6 
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Heritability estimates 

Heritability estimates varied depending on trait, environment, and population 

(Table 4). For Tx623/Rio, the heritability estimates for biomechanical traits ranged from 

51 to 78% in individual environments, while across environments ranged it from 74 to 

90%. Heritability estimates for biomechanical traits for Tx623/Della in the individual 

environments ranged from 38% to 70%, while across environments it ranged from 73-

86%. Lower heritability estimates were observed for the Tx631/Della population, where 

single environment heritability estimates ranged from 43 to 65%, and 82 to 85% across 

environments. This may also be attributed to the low variability of some of the 

morphological traits affecting the biomechanical traits as well. 
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Table 4 Variance components and heritability for individual trials and combined trials for all traits in thee RIL populations. 

    Morphology   Geometry Biomechanics 

RIL Environment Effect Plant Height Int. Length 

Int. 

Diameter Int. Density 

Int. Second 

Moment 

Int. Section 

Modulus Int. Strength 

Int. 

Stiffness Int. Rigidity 

BTx623/Rio 

CSE2014 σg
2 91.7*** 72.2 *** 58.9*** 83.1*** 47.0*** 46.2*** 56.0*** 45.6*** 63.8*** 

 σerror
2  8.2 27.4 40.5 16.6 53.0 53.8 44.0 54.4 36.0 

 H2 96.0 84.0 74.0 91.0 64.0 63.0 72.0 63.0 78.0 

CSL2014 σg
2 50.0*** 51.4*** 56.4*** NAa 51.1*** 52.4*** 43.5*** 32.7*** 43.9*** 

 σerror
2  49.9 48.6 41.8 NAa 46.5 45.0 51.6 63.2 56.0 

 H2 67.0 68.0 72.9 NAa 66.7 67.9 62.8 50.8 61.0 

CSE2016 σg
2 85.3** 62.2** 56.1** 15.1** 57.9** 57.3** 36.0** 40.5** 49.3** 

 σerror
2  13.7 37.6 43.9 84.3 42.1 42.7 63.9 59.2 50.5 

 H2 92.6 76.8 71.9 26.5 73.3 72.9 53.0 57.6 66.1 

 σl
2 20.32** 28.91** 0.17ns 4.05 1.22** 0.98ns 15.60* 16.46** 17.95** 

Combined σg
2 65.86** 50.24** 28.59** 56.24 29.14** 28.27** 32.47** 34.89** 53.00** 

 σg*l
2  4.52** 8.66** 4.73ns 14.31 4.30** 4.24ns 17.44** 9.97** 5.91** 

 σerror
2  9.22 11.37 64.15 23.85 63.32 64.24 32.84 36.46 23.12 

 H2 95.5 91.3 70.0 86.5 70.9 70.0 74.2 78.8 90.1 
a Data were not collected for this trait in this trial. 
*Significant at the 0.05 probability level, ** Significant at the 0.01 probability level, *** Significant at the 0.001 probability level,  ns=non-significant at 0.05 probability level. 

Estimates of the RIL (σg
2), replicate (σr

2), location (σlg
2 ), interaction between the RIL and trial (σg*l

2 ), and the experimental error (σg
2), variances for each trial and combined for all traits 

collected. 
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Table 4 Continued. 

    Morphology   Geometry Biomechanics 

RIL Environment Effect Plant 

Height 

Int. 

Length 

Int. 

Diameter 

Int. 

Density 

Int. 

Second 

Moment 

Int. 

Section 

Modulus 

Int. 

Strength 

Int. 

Stiffness 

Int. 

Rigidity 

BTx623/Della 

 σr
2 0.8 0.0 0.5 NAa 1.2 1.4 3.3 3.4 0.3 

CSE14 σg
2 86.2*** 64.4*** 38.5*** NAa 33.8*** 34.3*** 51.7*** 39.7*** 56.4*** 

 σerror
2  13.0 35.6 61.0 NAa 64.9 64.3 45.0 56.8 43.3 

 H2 90.0 80.0 60.0 NAa 50.0 50.0 70.0 60.0 70.0 

CSE15 σg
2 86.7*** 59.6*** 36.6*** NAa 36.6*** 35.9*** 37.5*** 36.6*** 51.3*** 

 σerror
2  13.3 40.4 63.2 NAa 63.3 64.0 62.5 63.4 48.6 

 H2 92.9 74.7 53.7 NAa 53.6 52.9 54.5 53.6 67.8 

CSE16 σg
2 85.9*** 34.1*** 36.2*** NAa 33.0*** 33.2*** 28.9*** 22.4*** 31.5*** 

 σerror
2  14.1 63.4 59.1 NAa 64.3 63.7 70.2 74.1 68.5 

 H2 92.4 51.8 55.0 NAa 50.6 51.0 45.2 37.7 47.9 

 σl
2 0.78ns 21.09** 25.70** NAa 35.77** 37.33** 52.56** 18.44* 13.44** 

Combined σg
2 65.97** 59.67** 35.96** NAa 26.55** 27.67** 17.33** 40.65** 52.18** 

 σg*l
2  13.82** 6.71** 10.61** NAa 12.90** 10.58** 10.69** 3.50ns 14.84** 

 σerror
2  19.38 12.47 27.09 NAa 24.48 23.99 17.15 34.94 19.52 

 H2 89.4 93.3 81.7 NAa 76.0 78.6 73.0 85.3 86.4 

Tx631/Della 

CSE14 σg
2 75.3*** 58.9*** 41.2*** 44.1 36.9*** 37.6*** 44.2*** 39.0*** 47.5*** 

 σerror
2  24.3 41.1 58.1 55.8 63.1 62.4 55.8 61.0 52.3 

 H2 86.1 74.2 58.6 61.2 53.9 54.6 61.3 56.2 64.5 

CSE16 σg
2 69.5*** 41.3*** 44.4*** NAa 39.8*** 40.8*** 27.2*** 26.1*** 28.6*** 

 σerror
2  25.6 41.2 42.9 NAa 49.2 47.8 72.8 62.2 69.5 

 H2 84.4 66.7 67.4 NAa 61.8 63.0 42.7 45.6 45.1 

 σl
2 8.51*** 2.93*** 0.00*** NAa 0.00*** 0.00*** 2.0 0.2*** 0.34** 

Combined σg
2 55.03*** 41.24*** 31.02*** NAa 25.51*** 26.06*** 27.15*** 26.88*** 34.59*** 

 σg*l
2  12.45*** 5.26*** 12.39*** NAa 13.40*** 13.72*** 6.30*** 6.73*** 4.79*** 

 σerror
2  22.12 40.63 49.90 NAa 55.68 54.58 59.24 66.39 59.09 

 H2 82.4 76.3 62.4 NAa 55.3 56.0 57.0 60.2 66.8 
a Data were not collected for this trait in this trial. 

*Significant at the 0.05 probability level, ** Significant at the 0.01 probability level, *** Significant at the 0.001 probability level,  ns=non-significant at 0.05 probability level. 

Estimates of the RIL (σg
2), replicate (σr

2), location (σlg
2 ), interaction between the RIL and trial (σg*l

2 ), and the experimental error (σg
2), variances for each trial and combined for all traits 

collected. 
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Trait correlations 

The principal component analysis of trait values for Tx623/Rio showed that the 

first two principal components accounted for ~89% of the phenotypic variation (Fig. 6). 

The first PCA axis (Dim1) explained 57.3% of the total variation and was positively 

correlated with stiffness, strength, and internode length (Table A-2). Dim 1 was negatively 

correlated with internode density. The second axis (Dim2, r2=31.8%) was positively 

correlated with section modulus and internode diameter, and second moment of an area. 

The principal component analysis for Tx623/Della summarized the traits into 2 principal 

components (Fig. 7) accounting for 95.17% of the phenotypic variation. The first PCA 

axis (Dim1) explained 57.54% of the total variation and was positively correlated with 

internode diameter, section modulus, and second moment of an area (Table A-3). The 

second axis (Dim2, r2=37.63%) was positively correlated with plant height, internode 

length, and rigidity. The traits for Tx631/Della were summarized into 2 principal 

components (Fig. 8) accounting for 95% of the phenotypic variation. The first PCA axis 

(Dim1) explained 63.3% of the total variation and was positively correlated with stiffness, 

strength, and internode length (Table A-4). While other morphological and biomechanical 

traits were moderately positively and negatively correlated. The second axis (Dim2, 

r2=31.75%) was positively correlated with plant height, rigidity, and internode length, but 

only moderately correlated with internode diameter, section modulus, and second moment 

of an area. Overall these results indicate that morphological and mechanical traits 

specifically internode length, strength and stiffness tended to group together, indicating a 

high correlation among them. 
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Fig. 7 Projection of traits on the two first PCA axes built with 9 traits for the Tx623/Rio Population; E) 

stiffness, EI) rigidity, I) second moment of an area, IDE) internode density, IDI) internode diameter, ILE) 

internode length, PHE) plant height, SMO) section modulus, STR) strength. 
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Fig. 8 Projection of traits on the two first PCA axes built with 9 traits for the Tx623/Della Population; E) 

stiffness, EI) rigidity, I) second moment of an area, IDE) internode density, IDI) internode diameter, ILE) 

internode length, PHE) plant height, SMO) section modulus, STR) strength. 
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Fig. 9 Projection of traits on the two first PCA axes built with 8 traits for the Tx631/Della Population; E) 

stiffness, EI) rigidity, I) second moment of an area, IDI) internode diameter, ILE) internode length, PHE) 

plant height, SMO) section modulus, STR) strength. 
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Genetic linkage mapping 

A recombinant map composed of 864 single nucleotide polymorphism (SNP) 

genetic markers distributed over 10 chromosomes was generated and used to conduct the 

QTL analysis for Tx623/Rio (Table 5 and Fig. 10).  Overall the median distance between 

markers was 1.1 cM and the mean 95% percentile distances between markers was 6.2 cM. 

A total of 816 SNP markers were used to conduct the QTL analysis for Tx623/Della (Table 

5 and Fig. 11). Here, the overall median distance between markers was 0.8 cM and a mean 

95% percentile distance between markers was 5.9 cM.  For the Tx631/Della population, a 

total of 1038 SNP markers were used create the map and conduct the QTL analysis (Table 

5 and Fig. 12). On average, the distance between markers was 0.9 cM and a mean 95% 

percentile distance between markers was 5.9 cM.  

 

Multi-trait QTL analyses and validation 

The multi-trait QTL analysis conducted in individual populations and 

environments identified a total of eight genomic regions associated with mechanical and 

morphological traits on chromosome arms 1, 2, 3, 4, 5, 6, 7, and 9 (Table 6-8 and Fig. 13-

15). The three genomic regions on chromosome 1, 7, and 9 were found to be repeatedly 

associated with morphological and mechanical traits in all three populations at most 

locations. Furthermore, two genomic regions on chromosome 4 and 6 were consistently 

found in two populations, while two minor effect QTL on chromosomes 2, 3, and 5 were 

only detected on individual populations.  
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Table 5 Genetic mapping statistics for three sorghum populations used in this study. 

Population Chromosome Length 
Number of 

markers 

Median distance 

between markers 

95% percentile 

distances 

Tx623/Rio 

1 209.1 147 1.0 4.5 

2 179.8 84 1.1 7.1 

3 193.7 133 0.9 4.6 

4 177.0 98 0.9 7.3 

5 163.4 64 1.5 8.6 

6 67.6 51 0.5 6.2 

7 135.8 48 1.2 14.6 

8 133.5 66 1.1 6.7 

9 133.7 84 1.1 5.2 

10 135.1 89 1.1 3.8 

Genome 1528.6 864 1.1 6.2 

Tx623/Della 

1 227.1 123 0.7 9.6 

2 125.9 113 0.8 3.3 

3 135.7 63 1 11.8 

4 163.6 143 0.7 3.5 

5 120.3 72 0.9 7.2 

6 62.9 60 0.7 3.2 

7 111.4 49 1.4 7.9 

8 125.5 48 1.7 7.9 

9 156.2 102 1 5.3 

10 65.5 43 0.8 4.4 

Genome 1294.1 816 0.8 5.9 

Tx631/Della 

1 275.2 190 1 4.7 

2 181.8 128 0.9 5.7 

3 53.2 55 0.7 2.8 

4 176.8 118 0.9 5.3 

5 161.3 91 0.9 5.2 

6 171.3 119 0.7 6 

7 222.6 49 3.1 13 

8 123.1 80 0.9 6.4 

9 133.2 103 0.6 6 

10 157.2 105 0.8 6 

Genome 1655.6 1038 0.9 5.9 
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Fig. 10 Genetic Map for Tx623/Rio. 
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Fig. 11 Genetic Map for Tx623/Della. 
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Fig. 12 Genetic Map for Tx631/Della. 
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The major QTL on chromosome 7 co-localized with the Dw3 locus at ~58 Mbp in 

all three populations and in most all environments. This QTL was associated with 

morphological and mechanical traits. In the Tx623/Rio population the QTL explained 

31.4-40.8%, 66.3-89.3%, 28.9-54.4%, and 80.1-81.3% of the genotypic variation for 

stiffness, rigidity, strength, and internode length with the high value allele coming from 

the parent Rio. In the Tx623/Della population the QTL on chromosome 7 explained 19.6-

21.8%, 36.9%, 20.1-25%, and 22.3-29.9% of the genetic variation for stiffness, rigidity, 

strength, and internode length, respectively with the high value allele coming from Della. 

In the Tx631/Della population the QTL explained 23.9-24.5%, 65.2-24.8%, 15-25.3%, 

20.1-25%, and 64.6-47.4% of the genetic variation for stiffness, rigidity, strength, and 

internode length, respectively with the high value allele coming from Della. This QTL 

was also associated with internode density in the Tx623/Rio population (the only 

population in which this trait was measured) and it explained 48% of the genotypic 

variation with the high value allele coming from the grain sorghum parent Tx623.  

A second major QTL on chromosome 9 aligned with Dw1 at ~57 Mbp in all three 

populations and in most environments. The QTL was found consistently to affect 

morphological and mechanical traits in all populations except in Tx631/Della were it only 

affected plant height. Nevertheless, the high value allele always came from the sweet 

sorghum parent except in the population Tx623/Rio were it was associated with internode 

density, and the high value allele came from the grain sorghum parent. Furthermore, a 

QTL was detected in all three populations in most environments on chromosome 1. For 

the Tx623/Rio population, morphological and mechanical traits were affected by this QTL 
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on chromosome 1 with the high value parent allele coming from the grain sorghum parent 

Tx623 (Table 6). While in Tx623/Della and Tx631/Della populations the QTL on 

chromosome 1 also affected mechanical and morphological traits with the high value allele 

for the mechanical traits coming from the sweet sorghum parent and the high value allele 

for the morphological traits including the geometric properties coming from the grain 

sorghum parent (Tables 7-8).  

Other QTL for stiffness, strength, second moment of an area, section modulus, 

internode diameter, and internode length were detected on chromosome 4 in the 

Tx623/Rio and Tx623/Della populations at 55.5 Mbp and 63.7 Mpb respectively. A QTL 

affecting morphological and mechanical traits in Tx623/Rio and Tx631/Della was 

detected on chromosome 6 in CSE16, and it co-localized with Ma1 at 40.3 Mbp (Thurber 

et al. 2013). These results indicate evidence of pleiotropic QTL for the mechanical and 

morphological QTL identified, consistent with the correlations between these traits (Table 

A2-4). Three other QTL were detected for individual populations only, at chromosome 2 

and 5 for Tx631/Della and on chromosome 3 for Tx623/Rio. Quantitative trait loci 

analyses based on BLUEs for each trait adjusted for height (data not shown) were similar 

to QTL analysis based on BLUEs without height adjusted, indicating that the detected 

QTL are specific for the target traits.  
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Fig. 13 Profile plot of the set of candidate QTLs following 1 round of SIM and 3 rounds of CIM, for 

Tx623/Rio in CSE14, CSL14, and CSE16 data. Step size=10cM. 
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Fig. 14 Profile plot of the set of candidate QTLs following 1 round of SIM and 3 rounds of CIM, for 

Tx623/Della in CSE14, CSE15, and CSE16 data. Step size=10cM. 

Fig. 15 Profile plot of the set of candidate QTLs following 1 round of SIM and 3 rounds of CIM, for 

Tx631/Della in CSE14 and CSE16 data. Step size=10cM. 
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Table 6 Multi-trait single environment Quantitative Trait Loci (QTL) detected for morphological and 

biomechanical traits for the RIL population Tx623/Rio. 

Environment  QTL Chrs QTL Position (cM)  Effects 1 High value allele d %GV s.e. 

CSE14 E 1 150.07 0.205 Tx623 4.2 0.083 

CSE14 Int_Density 1 150.07 0.2 Tx623 4 0.092 

CSE14 Int_Length 1 150.07 0.144 Tx623 2.1 0.069 

CSE14 Strength 1 150.07 0.169 Tx623 2.9 0.084 

CSE16 EI 3 34.61 0.236 Tx623 5.6 0.096 

CSE16 Int_Diam 3 34.61 0.231 Tx623 5.3 0.109 

CSE16 Section_Modulus 3 34.61 0.218 Tx623 4.8 0.11 

CSE14 E 4 175.69 0.27 Rio 7.3 0.082 

CSE14 I 4 175.69 0.396 Tx623 15.7 0.098 

CSE14 Int_Diam 4 175.69 0.363 Tx623 13.2 0.101 

CSE14 Int_Length 4 175.69 0.195 Rio 3.8 0.068 

CSE14 Section_Modulus 4 175.69 0.39 Tx623 15.2 0.098 

CSE14 Strength 4 175.69 0.281 Rio 7.9 0.082 

CSE14 E 6 0.56 0.166 Tx623 2.8 0.08 

CSE14 Int_Length 6 0.56 0.172 Tx623 3 0.067 

CSE14 E 7 105.3 0.639 Rio 40.8 0.113 

CSE14 EI 7 105.3 0.932 Rio 86.8 0.1 

CSE14 Int_Density 7 105.3 0.698 Tx623 48.7 0.126 

CSE14 Int_Length 7 105.3 0.901 Rio 81.3 0.094 

CSE14 Plant_Height 7 105.3 0.858 Rio 73.6 0.099 

CSE14 Strength 7 105.3 0.737 Rio 54.4 0.114 

CSL14 E 7 105.3 0.625 Rio 39 0.131 

CSL14 EI 7 105.3 0.945 Rio 89.3 0.106 

CSL14 Int_Density 7 105.3 0.693 Tx623 48.1 0.126 

CSL14 Int_Length 7 105.3 0.895 Rio 80.1 0.112 

CSL14 Plant_Height 7 105.3 1.011 Rio 100 0.096 

CSL14 Strength 7 105.3 0.689 Rio 47.5 0.127 

CSE16 E 7 105.3 0.56 Rio 31.4 0.189 

CSE16 EI 7 105.3 0.814 Rio 66.3 0.164 

CSE16 Int_Density 7 105.3 0.809 Tx623 65.4 0.178 

CSE16 Int_Length 7 105.3 0.899 Rio 80.7 0.173 

CSE16 Plant_Height 7 105.3 0.871 Rio 75.8 0.157 

CSE16 Strength 7 105.3 0.538 Rio 28.9 0.181 

CSE16 Int_Density 7 135.78 0.523 Rio 27.4 0.143 

CSE14 E 9 118.54 0.185 Rio 3.4 0.082 

CSE14 EI 9 118.54 0.305 Rio 9.3 0.072 

CSE14 Int_Density 9 118.54 0.194 Tx623 3.7 0.091 

CSE14 Int_Length 9 118.54 0.254 Rio 6.5 0.068 

CSE14 Plant_Height 9 118.54 0.501 Rio 25.1 0.072 

CSL14 EI 9 117.07 0.001 Rio 7.2 0.078 

CSL14 Int_Density 9 117.07 0.007 Tx623 6.1 0.092 

CSL14 Int_Length 9 117.07 0.004 Rio 5.6 0.082 

CSL14 Plant_Height 9 117.07 0 Rio 12.1 0.07 

CSL14 Strength 9 117.07 0.049 Rio 3.3 0.093 

CSE16 EI 9 118.54 0.232 Rio 5.4 0.099 

CSE16 I 9 118.54 0.277 Rio 7.7 0.114 

CSE16 Int_Density 9 118.54 0.287 Tx623 8.2 0.108 

CSE16 Int_Diam 9 118.54 0.279 Rio 7.8 0.113 

CSE16 Plant_Height 9 118.54 0.367 Rio 13.5 0.095 

CSE16 Section_Modulus 9 118.54 0.287 Rio 8.3 0.114 
1Additive effects 
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Table 7 Multi-trait single environment Quantitative Trait Loci (QTL) detected for morphological and 

biomechanical traits for the RIL population Tx623/Della. 

Environment QTL Chr. QTL Position (cM) b Effects1 High value allele %GV s.e. 

CSE14 E 1 181.73 0.36 Della 13.3 0.11 

CSE14 I 1 181.73 0.55 Tx623 29.7 0.12 

CSE14 Int_diameter 1 181.73 0.58 Tx623 33.7 0.12 

CSE14 Int_length 1 181.73 0.27 Della 7.3 0.10 

CSE14 Section_modulus 1 181.73 0.56 Tx623 31.0 0.12 

CSE14 Strength 1 181.73 0.27 Della 7.5 0.11 

CSE16 E 4 142.18 0.31 Tx623 9.9 0.12 

CSE16 Int_length 4 142.18 0.36 Tx623 12.9 0.11 

CSE16 Strength 4 142.18 0.28 Tx623 7.8 0.13 

CSE14 E 7 90.87 0.44 Della 19.6 0.11 

CSE14 EI 7 90.87 0.61 Della 36.9 0.11 

CSE14 Int_length 7 90.87 0.55 Della 29.9 0.10 

CSE14 Plant_height 7 90.87 0.44 Della 19.1 0.12 

CSE14 Strength 7 90.87 0.45 Della 20.1 0.12 

CSE15 E 7 98.21 0.47 Della 21.8 0.14 

CSE15 Int_length 7 98.21 0.47 Della 22.3 0.11 

CSE15 Plant_height 7 98.21 0.41 Della 17.0 0.13 

CSE15 Strength 7 98.21 0.50 Della 25.0 0.13 

CSE14 E 9 145.65 0.30 Della 8.9 0.11 

CSE14 EI 9 145.65 0.32 Della 10.5 0.10 

CSE14 Int_length 9 145.65 0.45 Della 20.6 0.09 

CSE14 Plant_height 9 145.65 0.44 Della 19.1 0.11 

CSE14 Strength 9 145.65 0.24 Della 5.9 0.11 

CSE15 E 9 156.16 0.38 Della 14.6 0.14 

CSE15 Int_length 9 156.16 0.46 Della 20.8 0.11 

CSE16 E 9 154.6 0.27 Della 7.0 0.13 

CSE16 Int_length 9 154.6 0.48 Della 22.6 0.12 

CSE16 Plant_height 9 154.6 0.36 Della 12.6 0.13 
1Additive effects 
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Table 8 Multi-trait single environment Quantitative Trait Loci (QTL) detected for morphological and 

biomechanical traits for the RIL population Tx631/Della. 

Environment QTL Chr. QTL Position (cM) Effects1  High value allele  %GV s.e. 

CSE14 E 1 179.86 0.539 Della 29 0.126 

CSE14 EI 1 179.86 0.311 Della 9.7 0.127 

CSE14 I 1 179.86 0.349 Tx631 12.2 0.131 

CSE14 Int_diameter 1 179.86 0.321 Tx631 10.3 0.131 

CSE14 Int_length 1 179.86 0.498 Della 24.8 0.118 

CSE14 Section_modulus 1 179.86 0.345 Tx631 11.9 0.131 

CSE14 Strength 1 179.86 0.519 Della 26.9 0.137 

CSE14 EI 1 219.16 0.246 Tx631 6.1 0.122 

CSE14 Int_length 1 219.16 0.232 Tx631 5.4 0.113 

CSE16 E 1 202.41 0.261 Della 6.8 0.119 

CSE16 Strength 1 202.41 0.292 Della 8.5 0.13 

CSE16 E 1 247.27 0.324 Della 10.5 0.131 

CSE16 I 1 247.27 0.489 Tx631 23.9 0.136 

CSE16 Int_diameter 1 247.27 0.505 Tx631 25.5 0.132 

CSE16 Section_modulus 1 247.27 0.503 Tx631 25.3 0.135 

CSE16 Int_length 2 24.26 0.207 Della 4.3 0.1 

CSE16 Plant_height 2 24.26 0.3 Della 9 0.106 

CSE16 E 5 24.55 0.212 Della 4.5 0.097 

CSE16 Plant_height 5 24.55 0.226 Della 5.1 0.105 

CSE14 E 6 25.23 0.227 Tx631 5.2 0.111 

CSE14 I 6 25.23 0.474 Della 22.5 0.115 

CSE14 Int_diameter 6 25.23 0.379 Della 14.4 0.115 

CSE14 Section_modulus 6 25.23 0.459 Della 21 0.115 

CSE14 Strength 6 25.23 0.301 Tx631 9 0.12 

CSE16 E 6 39.53 0.207 Tx631 4.3 0.095 

CSE16 EI 6 39.53 0.279 Della 7.8 0.112 

CSE16 I 6 39.53 0.42 Della 17.6 0.098 

CSE16 Int_diameter 6 39.53 0.43 Della 18.5 0.096 

CSE16 Section_modulus 6 39.53 0.421 Della 17.7 0.098 

CSE16 Strength 6 39.53 0.251 Tx631 6.3 0.104 

CSE14 E 7 147.35 0.489 Della 23.9 0.138 

CSE14 EI 7 147.35 0.808 Della 65.2 0.139 

CSE14 Int_length 7 147.35 0.804 Della 64.6 0.129 

CSE14 Plant_height 7 147.35 0.546 Della 29.8 0.154 

CSE14 Strength 7 147.35 0.387 Della 15 0.15 

CSE16 E 7 137.82 0.495 Della 24.5 0.114 

CSE16 EI 7 137.82 0.498 Della 24.8 0.134 

CSE16 I 7 137.82 0.41 Tx631 16.8 0.118 

CSE16 Int_diameter 7 137.82 0.382 Tx631 14.6 0.114 

CSE16 Int_length 7 137.82 0.688 Della 47.4 0.116 

CSE16 Plant_height 7 137.82 0.516 Della 26.6 0.123 

CSE16 Section_modulus 7 137.82 0.403 Tx631 16.2 0.117 

CSE16 Strength 7 137.82 0.503 Della 25.3 0.124 

CSE16 Plant_height 9 127.05 0.346 Della 12 0.1 
1Additive effects 

 



 

59 

 

Discussion 

Future improvements in crop lodging resistance require a better understanding of 

how plants manage mechanical integrity and their acclimation and adaptation to their 

physical environment. In this study, we applied the knowledge of mechanics of an elastic 

longitudinal bar to dissect biomechanical traits in sorghum stems. The use of three 

different RIL populations allowed the dissection of the genetic basis of biomechanical 

traits and to concurrently validate the effects of the detected QTL in the different elite 

sweet and grain sorghum backgrounds. The three RIL populations were made from the 

cross between short grain parents carrying the recessive forms the dwarfing genes 

dw1Dw2dw3 and tall sweet sorghum parents homozygous for the dwarfing genes at all 

loci Dw1Dw2Dw3. Thus, the progeny always had a dominant Dw2 allele, and were never 

be shorter than the grain sorghum parents. This permitted to study the effect of Dw1 and 

Dw3 and their association with mechanical traits. This study is the first in the literature to 

identify QTL for biomechanical traits and co-localize them with major dwarf genes in 

sorghum.  

 

RILs performance and heritability of biomechanical traits  

This study identified quantitative variation in all three populations for all 

morphological and biomechanical traits. There were significant genotypic differences 

among the RIL populations for biomechanical traits. The heritability estimates of 

biomechanical traits in each RIL population ranged from moderate to high within 

environments and much higher across environments. While there has been no previously 
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reported heritability for these mechanical traits in sorghum, a study in maize reported 

heritability of stalk strength related traits such as the maximum load exerted to breaking 

the internode, breaking moment, and critical stress was 81.0%, 79.0%, and 75.0%, 

respectively (Hu et al. 2013). Heritability was consistent across environments and 

populations.  

 

Trait correlation 

This study also demonstrated, through principal component analysis and trait 

correlations that the biomechanical properties stiffness, strength, and internode length 

tended to group together, indicating a correlation among morphological and 

biomechanical traits. These observations were consistent across populations and are also 

consistent with the theory of elastic mechanics, that holds that geometry influences 

material properties (Gere and Timoshenko 1984). This has also been reported in other 

studies where stem morphology largely affects mechanical properties (Von Forell et al. 

2015; Gomez et al. 2017). In addition, the principal component analysis also indicates 

that, biomechanical traits and morphological traits are not independent of each other. 

Therefore, selection for mechanical traits may have foreseen consequences on plant size 

at this stage of the crop growth when the samples were harvested. Future research should 

investigate the indirect effects of morphology on biomechanical traits and vice-versa.  
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Genetic architecture of biomechanical traits 

The genetic architecture of biomechanical traits in the three RIL populations 

appear to be quantitative and pleiotropic. A total of eight QTL located on chromosomes 

1, 2, 3, 4, 5, 6, 7, and 9 affected morphological and mechanical traits. QTL detected on 

chromosomes 9, 7, and 1 were consistently associated with morphological and mechanical 

traits in all three populations in most environments, and were co-localized with Dw1, Dw3, 

and an uncharacterized locus, respectively. Furthermore, the high value allele for the 

mechanical traits for the two major QTL on chromosome 7 and 9 came from the sweet 

sorghum parent. These results indicate that dwarfing genes may affect the material 

properties of sorghum and ultimately their lodging resistance while also having a profound 

impact on the stems morphology and geometry. 

The QTL on chromosome 1 were found in all three populations and were detected 

in most all environments and was associated with morphological and mechanical traits. 

All the high value alleles for this QTL in the Tx623/Rio population came from the grain 

parent.  While in both Della populations the high value allele for the mechanical traits 

came from the sweet sorghum parent and the allele for morphological/geometric traits 

came from the grain parent except for internode length in the Tx631/Della population 

where it received alleles from both parents. It appears that the genomic regions responsible 

for mechanical and morphological traits in our study coincide with locations where 

dwarfing genes have been identified in sorghum. These results indicate that dwarfing 

genes in sorghum do, at least pleiotropically affect mechanical traits and lines 

homozygous for dominant Dw may have a positive impact on the mechanical stability of 
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plants. However, further analysis of the lines must be performed to confirm the impact of 

these alleles at a more quantitative level.  

Previous studies in other cereal crops have identified QTL related to 

biomechanical traits. In rice, Ookawa et al. (2010) using chromosome segment 

substitution lines, identified an effective (QTL) for culm strength, on chromosome 1 of 

the cultivar Habataki, that was effective for increasing stem wall thickness designated as 

STRONG CULM1 (SCM1) and a second QTL affecting stem diameter on chromosome 

6, designated as STRONG CULM2 (SCM2). SCM2 was found to be identical to 

ABERRANT PANICLE ORGANIZATION1 (APO1), a gene reported to control panicle 

structure. This gene enhanced culm strength and increased spikelet number due to the 

pleiotropic effects of this gene. The same group detected a QTL for section modulus using 

reciprocal chromosome segment substitution lines (CSSLs) derived from a cross between 

Koshihikari and Takanari (Ookawa et al. 2016). The study confirmed QTL in both genetic 

backgrounds on chromosomes 1, 5 and 6, suggesting that these QTLs are not affected by 

the genetic background. Since section modulus is associated with outer diameter and culm 

wall thickness, stem morphology and anatomy can have a profound impact on this trait. 

In maize, (Hu et al. 2013) looked at important stalk bending strength parameters of the 

fourth internode using a RIL population derived from B73 and Ce03005. The study 

detected two, three and two QTL explaining 22.4, 26.1 and 17.2 % of the genotypic 

variance for the maximum load exerted to breaking, breaking moment, and critical stress, 

respectively. These studies suggest that biomechanically related traits are pleiotropic 

which is consistent with the results of the current study.  
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Not all the QTL detected in this study were consistent across populations and 

environments.  This lack of consistency may be the result of several factors, including 

differences in genetic background, population size, trait heritability, and map and marker 

density (Xu 2003; Beavis et al. 1991). At the same time, some of these factors may 

contribute to overestimation of the QTL in some of the traits. Nevertheless, known QTL 

were detected across populations and repeatedly in all environments and co-localized and 

with QTL associated with morphological and mechanical traits, indicating a high precision 

in phenotyping and expression of the trait. 

 

Biomechanical properties co-located with dwarfing genes 

Dwarfing genes have been important to reduce lodging in wheat and rice during 

the green revolution. In sorghum, four major dwarfing genes Dw1-Dw4 have been 

described, and the combination of up to three major unlinked dwarfing genes, have been 

combined to reduce plant height by reducing internode length to increase lodging 

resistance and improve mechanized harvesting (Quinby and Karper 1953; Quinby 1974).  

The QTL identified in the mapping populations co-localized with previously 

identified QTL for dwarfing genes Dw1 and Dw3. Pleiotropic effects due to Dw2 and Dw3 

have been reported to include panicle length, seed weight, and leaf area (Graham and 

Lessman 1966; Pereira and Lee 1995), seed weight, panicle size, tiller number, and leaf 

angle and for the latter (Pereira and Lee 1995; Cassady 1965; Truong et al. 2015). The 

gene corresponding to Dw3 has been determined to encode an ABCB1 auxin efflux 

transporter (Multani et al. 2003). Dw1 encodes a putative membrane protein (Hilley et al. 
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2016), that regulates cell proliferation activity in the internodes (Yamaguchi et al. 2016). 

In the same study, Yamaguchi et al. (2016) observed a synergistic interaction between 

Dw1 and Dw3. The co-location of the QTL for mechanical traits with these dwarfing genes 

provides further support for the putative genetic association between mechanical stem 

traits and known morphological traits. However, it is still not clear how dwarfing genes 

may structurally affect the stem’s mechanical properties. 

Paolillo Jr and Niklas (1996) used near isogenic lines with different dosages of 

dwarfing genes (wild type, single dwarf, and double dwarf) to study the effect of the Rht 

alleles on the breaking strength and breaking stress of the first foliage leaves of wheat 

seedlings to assess the structural and material properties of Rht plants. The Rht alleles 

influence the microfibril orientation of the epidermal cells (Paolillo Jr 1995), and can 

ultimately affect their mechanical properties (Niklas 1992). They found that each increase 

of Rht dosage reduced the amount of fiber content and the proportional effect of fiber 

content on a blade strength, therefore reducing the capacity of the fiber strand wall area to 

sustain tensile loads. Like the Dw alleles in sorghum, the Rht alleles in wheat have multiple 

effects, reducing internode elongation (Pearce et al. 2011), altering the ability of 

coleoptiles to penetrate soil (Niklas and Paolillo Jr 1990), reducing amylase activity, and 

reducing lodging (Hedden 2003). The Dw genes in sorghum, like the Rht genes in wheat, 

may affect mechanical properties of plants by altering their chemistry of the cell wall 

matrix of fibers. Further experiments are needed to clarify to what extent Dw genes may 

affect mechanical properties.   
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Breeding for stem biomechanics in sorghum is likely to involve stem morphology 

characteristics. The ability of the plant stem to mechanically achieve stability is a result 

of their geometry or mechanical properties. While shorter plants may show reduced 

lodging, it is not because they are necessarily stronger but they invested in their geometry 

to reach mechanical stability. Furthermore, a study found that the dw3 dwarfing gene was 

found to significantly reduced shoot biomass and affect grain yield (George-Jaeggli et al. 

2011). Therefore, sorghum breeders should outline a breeding strategy when breeding for 

bioenergy sorghum hybrids, and restore these dominant dwarfing alleles to increase 

biomass and mechanical properties. Alternatively, sorghum breeders desiring short types 

should select for morphological/geometric traits to improve lodging resistance. For 

example, a QTL for internode density was identified with the high value allele coming 

from the grain sorghum parent. Stem internode density is known to predict strength 

(Gomez, et al., 2017, Submitted), and therefore can be used as indirect selection to 

improve lodging resistant dwarf varieties. Other QTL for second moment of an area and 

section modulus were identified on chromosome 1, with the high value allele coming from 

the grain sorghum parent. This confirms that grain sorghum invests its resources in the 

plants geometry to reach mechanical stability, and, thus breeders may select on a 

combination of geometry and density to improve grain sorghum. Future studies on 

mechanical properties of these complex composite structures at different, different growth 

stages, on different anatomical structures, and different hierarchical levels are warranted 

to provide insights into this complex phenomenology.  
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Implications for crop improvement programs targeting lodging resistance 

Using biomechanical traits as a selection criterion in plant breeding has not been 

adopted, as it is still a new approach in crop improvement. However, our results identified 

moderate to high heritability for biomechanical traits for three RIL mapping populations. 

Consistent QTL were identified across populations and within environments that 

explained a large percent of the genetic variance and were consistent with the theory of 

material mechanics. Ultimately, the co-localization of mechanical traits with dwarfing 

genes sheds light on this important genetic system in plants that has had a profound and 

evolutionary changes by a single locus on which farmers and breeders have utilized. Our 

results demonstrate that Dw loci influences numerous biological features bearing on plant 

survival and reproductive success and provides insights for breeding lodging resistant 

cultivars.  



 

67 

 

CHAPTER IV 

CONCLUSIONS 

 

The field of plant breeding has always been interdisciplinary, promoting dialogue 

and collaborations with plant pathologists, biochemists, physiologists, molecular 

biologists, statisticians, and agronomists. However, interactions with new disciplines are 

becoming more common, such as mechanical engineering, material science, electrical 

engineering, and computer science are becoming more common as agriculture is 

becoming increasingly oriented to high-throughput methodologies. As such collaborations 

become increasingly common, new opportunities to obtain important experimental 

information appear, and new insights into crop evolution and new tools for crop 

improvement can be developed. 

In the first study, we developed a high-throughput phenotyping platform capable 

of collecting important morphological and anatomical stem properties using an X-ray 

computed tomography. The use of CT on a diverse set of sorghum genotypes with a 

defined platform and image analysis pipeline was effective at predicting traits such as stem 

length, diameter, and pithiness ratio at the internode level. High-throughput phenotyping 

of stem traits using CT appears to be useful and feasible for use in an applied breeding 

program. We also explored the genetic basis of mechanical traits in sorghum. Mechanical 

traits in sorghum were found to be quantitative, pleiotropic, and heritable. Dwarfing alleles 

enhance mechanical traits in sorghum therefore breeders can co-select for morphological 

and biomechanical traits. This works is the first of its kind to apply X-ray computed 
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tomography in sorghum to predict morpho-anatomical traits and reveal the genetic 

architecture of mechanical traits in sorghum. It will help sorghum breeders increase 

genetic gain and maintain it by reducing stem lodging in tall forage, bioenergy, and sweet 

sorghum types.  
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APPENDIX 

 

Table A-1 Sorghum genotypes used in this study with their respective set, maturity, type, and end-use. 

Genotype Set Maturity Type End-Use 

B.Tx623 1 PI Inbred Line Grain 

B.Tx645 1 PI Inbred Line Grain 

Della 1 PI Inbred Line Biofuel 

Tx14323  1 PI Inbred Line Forage 

Tx15323  1 PI Inbred Line Forage 

R.07007 1 PS Inbred Line Biomass 

Tx13320  1 PS Hybrid Forage/Biofuel 

M81E 1 PS Inbred Line Biofuel 

Rio 1 PS Inbred Line Biofuel 

Tx13321 1 PS Hybrid Biofuel 

Tx13322 1 PS Hybrid Biofuel 

ATx623/R07007 1 PS Hybrid Biomass 

ATx645/Tx14323 1 PS Hybrid Forage/Biomass 

R.11434 1 PS Inbred Line Biomass 

R.11438 1 PS Inbred Line Biomass 

R.10030 1 PS Inbred Line Biomass 

R.10135 1 PS Inbred Line Biomass 

GRASSL 1 PS Inbred Line Biomass 

GIZA114 1 PS Inbred Line Biomass 

(GIZA114/Umbrella)-101 2    

(GIZA114/Umbrella)-102 2    

(GIZA114/Umbrella)-103 2    

(GIZA114/Umbrella)-104 2    

(GIZA114/Umbrella)-105 2    

(GIZA114/Umbrella)-111 2    

(GIZA114/Umbrella)-112 2    

(GIZA114/Umbrella)-113 2    

(GIZA114/Umbrella)-114 2    

(GIZA114/Umbrella)-115 2    
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Table A-2 Correlation of traits to PCA axes for Tx623.Rio using BLUEs from combined analysis 

 Prin1 Prin2 Prin3 Prin4 Prin5 Prin6 Prin7 Prin8 Prin9 

PHE 0.70 0.63 0.06 0.02 -0.32 0.02 0.00 0.00 0.00 

ILE 0.90 0.38 -0.06 -0.17 0.07 0.02 0.09 0.01 0.00 

IDI -0.63 0.77 0.02 0.05 0.05 0.01 0.03 -0.07 0.00 

IDE -0.66 -0.29 0.69 -0.08 -0.05 0.00 0.03 0.00 0.00 

I -0.64 0.76 0.03 0.04 0.05 0.05 -0.01 0.04 -0.01 

SMO -0.63 0.78 0.02 0.04 0.04 0.02 0.00 0.02 0.01 

E 0.96 0.03 0.19 -0.08 0.11 0.13 -0.05 -0.02 0.00 

STR 0.91 -0.01 0.22 0.34 0.07 -0.01 0.03 0.01 0.00 

EI 0.69 0.67 0.20 -0.10 0.08 -0.13 -0.04 0.00 0.00 

 

Table A-3 Correlation of traits to PCA axes for Tx623.Della using BLUEs from combined analysis 

 Prin1 Prin2 Prin3 Prin4 Prin5 Prin6 Prin7 Prin8 Prin9 

PHE -0.19 0.95 0.04 -0.09 -0.22 0.01 -0.02 0.00 0.00 

ILE -0.67 0.71 0.00 -0.15 0.08 0.08 0.08 0.00 0.00 

IDI 0.87 0.48 0.03 0.07 0.03 0.04 -0.01 0.07 0.00 

I 0.87 0.46 0.07 0.14 0.02 0.06 0.00 -0.04 -0.01 

SMO 0.87 0.48 0.06 0.10 0.02 0.03 0.01 -0.02 0.02 

E -0.96 0.17 0.18 0.02 0.07 0.10 -0.08 0.00 0.00 

STR -0.92 -0.01 0.23 0.32 -0.05 -0.02 0.04 0.01 0.00 

EI -0.09 0.95 0.22 -0.05 0.10 -0.15 -0.02 0.00 0.00 

 

Table A-4 Correlation of traits to PCA axes for Tx631.Della using BLUEs from combined analysis 

 Prin1 Prin2 Prin3 Prin4 Prin5 Prin6 Prin7 Prin8 

PHE 0.36 0.88 -0.17 0.23 0.01 0.03 0.00 0.00 

ILE 0.81 0.54 -0.14 -0.15 0.09 -0.08 0.02 0.00 

IDI -0.86 0.49 0.10 0.00 -0.01 -0.01 0.12 0.00 

I -0.87 0.47 0.12 -0.01 0.08 0.02 -0.05 -0.01 

SMO -0.87 0.48 0.09 -0.02 0.05 -0.01 -0.04 0.01 

E 0.98 0.07 0.13 -0.05 0.08 0.12 0.03 0.00 

STR 0.94 0.04 0.30 0.13 0.00 -0.08 -0.01 0.00 

EI 0.44 0.88 0.07 -0.13 -0.13 0.02 -0.03 0.00 
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Fig. A-1 X-ray computed tomography of sorghum stems arranged in platform used in this study. 

Fig. A-2 Cross sections of 30 sorghum stems during one run of CT scanning showing different 

attenuation values. 


