
SAFETY AND TECHNO-ECONOMIC ANALYSIS OF 

SHALE GAS TO BUTADIENE PROCESS 

A Thesis 

by 

ECEM OZINAN 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

Chair of Committee,  Mahmoud El-Halwagi 

Co-Chair of Committee,    M. Sam Mannan 

 Fadwa Eljack Committee Members, 

Head of Department,  M. Nazmul Karim 

December 2017 

Major Subject: Safety Engineering 

Copyright 2017 Ecem Ozinan



ii 

ABSTRACT 

The recent discoveries of substantial reserves of shale gas have significantly 

impacted butadiene production and prices. Shale gas offers a competitive feedstock that 

can be used to produce a variety of chemicals and petrochemicals, including butadiene. 

The scope of this thesis is to examine the financial and technical viability of 

converting shale gas to butadiene and design a cost-effective, safe and environmentally 

friendly process. Traditional and innovative butadiene production routes were 

investigated and a base case was created for producing butadiene from shale gas via 

ethylene as an intermediate. 

Computer-aided process simulation (Aspen Plus) was used to design the process 

and to obtain the data necessary for economic evaluation and safety analysis. Two 

design scenarios were considered and compared in terms of profitability and safety risk 

level. Hazard Identification and Ranking (HIRA) system was selected to compare risk 

levels of each scenario since it gives quantitative results for each unit. Additionally, 

with the help of sensitivity analysis, the impact of price volatility of butadiene on the 

process profitability was evaluated. 

The results of this study show that there is a trade-off between profitability and 

risk level. Therefore, none of the scenarios are superior to others in terms of both 

economic and safety considerations. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Shale gas invention 

Shale gas invention is one of the most crucial incidents of recent years in the U.S. 

which has leaded big changes in the oil and gas market prices. The history of shale gas 

extraction and discovery dates back to the 19
th

 century. Due to insufficient technology and 

market conditions, production of shale gas was considered to be uneconomic and impractical 

in previous years. In the 1940s, hydraulic fracturing had begun to be used for shale gas 

extraction which is a technique to stimulate well by applying liquid (mostly water) at high 

pressure. In the 2000s, typical natural gas production decreased and the demand for it 

increased, which made shale gas an important source for natural gas production. This 

emerging demand accelerated technological developments in drilling. Some big oil 

companies also played a role as a pioneer to begin making investments to extract shale gas. 

(Q. Wang et al., 2014) 

With the help of technological developments, these companies began using hydraulic 

fracturing and horizontal drilling together which boosted the efficiency of shale production. 

Furthermore, oil prices increased in years and abundant and cheap shale gas has become 

more profitable when compared to oil. Finally, shale gas has become to be considered as a 

reliable natural gas source by all oil and gas companies.  (Q. Wang et al., 2014) (Stevens, 

2012) 
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According to the EIA projections for the U.S., shale gas production will increase from 

23% to 49% between 2010 and 2035. (Meyer, 2012) 

1.1.1 Why Is Shale Gas Revolution Important in the U.S.? 

Shale gas revolution is highly significant for the U.S. since it brings several 

advantages. The U.S. has been a global player for years to determine and control oil supply 

and demand since it has approximately 32 billion barrels of proved oil reserves. (EIA, 2016) 

However, there are also other oil supplier countries which can change the global supply and 

demand balance of oil and oil prices too. Therefore, the U.S. economy has been highly 

accessible and vulnerable if these other supplier countries decide to change the oil supply and 

oil price. 

According to the EIA Annual Energy Overlook 2017 report, the U.S. may become an 

energy exporter in the future by using its natural gas reserves. According to the EIA report, 

the U.S. may not need to import energy in the future. With the help of the shale innovation, 

the U.S. may become independent and self sufficient in terms of energy. (Hennessy Funds, 

2014)  

According to the U.S. EPA, eGRID (2000) report, using natural gas as fuel is more 

environmentally friendly than using coal or oil. Combustion of coal releases twice as much 

CO2 as natural gas and combustion of oil releases approximately 30% more CO2 than natural 

gas. (Hennessy Funds, 2014) Furthermore, burning natural gas releases much less pollutant 

gases such as nitrogen oxide and sulfur dioxide than oil and coal. Therefore, in terms of 

emissions, natural gas is more advantageous than other energy resources. 
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1.1.2. Shale Gas Effect in the Petrochemical Market 

Shale gas has changed the global oil and gas market. Crude oil and coal had been the 

mainstream energy resources since shale gas discovery. After the invention of a new 

resource, “shale gas”, economy of traditional production processes has changed. 

Naphtha had been the key petrochemical source to produce ethylene and other 

petrochemical products in previous years and all processes were developed according to the 

naphtha as the feedstock. Developments in drilling technology and improvements of drilling 

efficiencies made shale gas producible and started a new era for oil and gas industry. 

Entry of the cheap and abundant natural gas has changed the balance of oil and gas 

market. As producing natural gas became a more profitable resource than naphtha, pioneer 

companies decided to change their conventional feedstocks and production routes. New 

production routes using natural gas liquids as feedstock invented. (Thompson, 2013)  

Naphtha and heavier feedstocks used to produce petrochemical products. As the price 

difference between naphtha and natural gas liquids decreased, usage of natural gas liquids to 

produce petrochemical products increased. Production of NGLs such as butane, propane and 

ethane has increased and has been used as the new intermediate products. (Thompson, 2013) 

Before the 2000s, naphtha steam crackers were used to produce ethylene, the key 

intermediate product of petrochemical industry. Ethylene is an essential key chemical for 

petrochemical industry since it has been considered as the beginning step to produce plastics 

which have a variety of usage areas such as packaging industry, tire industry, conductor 

industry, and detergent industry. 
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After the 2000s, companies have begun to use ethane instead of naphtha to produce 

ethylene. Even if both of these feedstocks give the same ethylene product in the cracker, the 

output stream has completely different compositions. 

Using naphtha yields 23% ethylene whereas using ethane as the feedstock of cracker 

yields 80% ethylene. More general, using naphtha results in large amounts of by products 

such as propylene, gasoline, fuel gas, butylene and butadiene. Ethane feed produces 80% 

ethylene, 13% fuel gas, 3% propylene, 2% butylene, 1% butadiene, 1% gasoline whereas 

naphtha feed produces 23% of ethylene, 27% fuel gas, 13% propylene, 15% butylene, 4% 

butadiene, 18% gasoline. (Burdick & Leffler, 2010) 

As the petrochemical companies have begun using ethane, the production of ethylene 

has increased due to high profits. On the other hand, changing the feedstock has changed the 

by product distribution and decreased the propylene and butadiene production per ethane 

significantly. The yield for butadiene decreased from 5% to 1%. (Rouilloux et. al, 2014) 

This decrease in production of butadiene affects the butadiene prices. Since the 

supply decreases, price of butadiene increases. In addition, unbalanced NGL market is 

changing the butadiene price frequently. For such reasons, scientists have changed the 

direction of their research to on purpose butadiene production processes. 

1.2 Butadiene Production and Market Conditions 

1.2.1 Butadiene Usage Areas 

Butadiene or 1,3 butadiene (C4H6) is a colorless diolefin which is gaseous at 298 K. 

1,3 butadiene is insoluble in water but soluble in ether and alcohol. 
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It is a major chemical for chemical market which is used in manufacturing important 

products such as acrylonitrile-butadiene-styrene resins, polybutadiene, styrene-butadiene 

latex, chloroprene, adiponitrile and styrene-butadiene rubber (SBR). 

Synthetic rubber, the major end product, which is produced from butadiene. Synthetic 

rubber, styrene-butadiene rubber (SBR) is the key component for automobile industry and 

tire manufacturing.  

 

 

Figure 1: Global Demand of Butadiene End Products (White, 2007) 

 

According to the table above, styrene – butadiene rubber has the highest global 

demand which is 28% and polybutadiene has the second highest global demand which is 

26%. (White, 2007) 

The largest consumption area of butadiene is the automotive industry where styrene – 

butadiene rubber and polybutadiene are used to manufacture tires. (IHS Markit, 2016) 
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1.2.2 Butadiene Production Routes 

There are three common routes to produce 1,3 butadiene. These are (American 

Chemistry Council, 2010): 

 steam cracking or naphtha cracking 

 catalytic dehydrogenation (Houdry process) 

 oxidative dehydrogenation 

Among these production routes, steam cracking is the most conventional production 

route where naphtha, ethane, propane or butane is cracked to produce ethylene as the main 

product and 1,3 butadiene as a side product of this process. Naphtha or ethane is fed to a 

pyrolysis furnace where cracking takes place at a relatively high temperature (around 1,100 

K). (American Chemistry Council, 2010). The cracking products such as hydrogen, ethylene, 

propylene, butadiene, and heavier hydrocarbons are quenched. The cooled gases are 

compressed and the heavier components are first separated. Next, a separation train is used to 

obtain relatively pure streams of ethylene, propylene and 1,3 butadiene. (White, 2007)  

The type of the pyrolysis furnace depends on the feedstock of the process unit. For 

example, if the process unit uses naphtha as the feed, then the cracker is designed to produce 

heavier components and is classified as a heavy cracker. On the other hand, if the process 

unit utilizes ethane as the feed, the cracker is designed to crack lighter components and is 

classified as a light cracker. The distribution of the products can be controlled through design 

and operating conditions (most notably temperature). Market conditions and price gap 

between ethylene and butadiene are the key factors to determine rate of butadiene production.  

The butadiene production rate may be between 25-50 % or higher which highly 

depends on the characteristics of the feedstock. (NPTEL, 2011) 
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Catalytic dehydrogenation process which is also known as Houdry process is the 

dehydrogenation of n-butane or n-butene to produce butadiene. This process requires high 

process temperature (around 900 K) for reaction. Dehydrogenation process produces 

approximately 15 vol% butadiene as a product. (American Chemistry Council, 2010) 

Oxidative dehydrogenation of n-butene, O-X-D process, is an alternative process to 

conventional steam cracking process and dehydrogenation process where reaction takes place 

in the presence of oxygen. Oxygen improves the dehydrogenation reaction and increases the 

conversion of 1,3 butadiene up to 80%. Furthermore, the reactor catalyst life increases which 

is another advantage of oxidative dehydrogenation process. 

Catalytic dehydrogenation and oxidative dehydrogenation processes can be more 

advantageous than steam cracking process if butadiene prices are high and there is a strong 

demand for butadiene. (Makshina et.al., 2014) 

1.2.3 Market Trends of Butadiene 

The recent discoveries of substantial reserves of shale gas have resulted in a major 

impact on butadiene production. Naphtha has been gradually replaced with ethane as a 

feedstock to the crackers. This shift has led to the increase in the ethylene fraction in the 

cracking products. The shortfall in butadiene production has led to a global shortage and 

price increase. Furthermore, the abundant supply of shale gas has offered a competitive 

feedstock with clear economic and environmental advantages. (Hasaneen & El-Halwagi, 

2017)  

Therefore, the scope of thesis  is to determine the manufacture of butadiene from 

shale gas. A high-level techno-economic analysis is presented with comparison of two 



 

8 

 

scenarios to illustrate the potential for using shale gas as a feedstock for the production of 

butadiene. 

As of market conditions in 2012, global butadiene demand was approximately 10 

million metric tons. (Makshina et.al., 2014) Recent forecast reports show that global 

butadiene demand will continue to increase with an annual rate of 3% till 2020. (IHS Markit, 

2016) 

According to the global market share pie chart (Grand View Research, Inc., 2015), 

Asia Pacific has the greatest share, 43.84%, in the world which contains China and India due 

to growth in automobile industry. North America has the second greatest share, 23.62%, in 

the world whereas Europe has 20.52% share according to the global market in 2013. (Grand 

View Research, Inc., 2015) 

Recent projection reports show that Asia Pacific will be the most quickly developing 

butadiene market due to several reasons. Increasing population in this region and 

governmental support for industrial development contribute to the demand. In addition, this 

region contains developing countries in which the economy is still developing which affects 

the butadiene demands. (Grand View Research, Inc., 2015) 

According to research reports, China has the highest consumption of 1,3 butadiene as 

of 2015 market conditions. Western Europe, United States and South Korea are also large 

consumers of 1,3 butadiene. (IHS Markit, 2016) 

Asia (China) is the region which has the greatest share in terms of butadiene demand 

and consumption due to developing demand for automobile industry and polymers. 



 

9 

 

CHAPTER II  

PROCESS DESCRIPTION 

 

The proposed process is based on integrating two concepts: UOP’s methane 

conversion to butadiene (Bricker et al., 2013) and the Synfuels’ cracking of methane to 

ethylene (Hall, 2005)  

2.1 Synfuels’ Eclairs Process 

Eclairs process is developed by a research group at Texas A&M University which 

converts methane to ethylene. Eclairs process differs from the traditional Fischer Tropsch 

process since it does not produce syngas like Fischer Tropsh. This difference also makes 

Eclairs process more profitable since it is a direct conversion of methane to ethylene process. 

Currently, the process is considered as profitable for small capacities such as 300 kSCMD. 

(Hall, 2005) 

Synfuels’ Eclairs process has 4 main steps which are pyrolysis (including quenching), 

absorber, hydrogenation and purification. (Peterson, 2015) 

In the first reaction, pipeline quality shale gas (mostly methane) and oxygen are fed to 

supersonic reactor whereby combustion first takes place leading to a high rise in temperature 

(to about 2500 K). At this high temperature, methane is cracked to produce a mixture with 

acetylene being the main product. Other cracking output gases are H2, CO and CO2 and other 

hydrocarbon gases. The hot gases leaving the cracker are quenched and the cooled stream is 

pressurized up to 12 atm before entering an amine sweetening part to remove CO2. The 

separate syngas (H2 and CO) is recycled back to the cracker to provide some of the heat of 
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combustion. Next, acetylene is reacted with hydrogen (separated from the cracker products) 

to produce ethylene which is separated to a 99.99 mol% purity. (Hall, 2005) 

(Thiruvenkataswamy, 2015) 

 

 

Figure 2: A Block Flow Diagram for the Shale Gas-to-Ethylene Portion of the Process 

 

Figure 2 is a block flow diagram showing the key steps for converting shale gas to 

ethylene. 

2.2 Description of Methane to Butadiene Production Process 

Methane to butadiene process can be divided into two parts; methane to ethylene 

conversion and ethylene to butadiene conversion. For the process of methane to ethylene 

conversion part, literature data are used. Since, there are previous findings and research 

results about methane to ethylene conversion; this first part of the process is not designed 

again. Instead, these previous findings and research results are considered as the start point to 

design the second part of the process.   
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Second part of the process; ethylene to butadiene conversion; consists of three main 

parts. These are ethylene dimerization reactor, water quenching and separation - purification 

respectively. 

Ethylene is dimerized to butadiene and hydrogen. The product distribution is highly 

impacted by temperature. Table 1 shows the impact of temperature on the product 

distribution. 

  

Table 1: Effect of Dimerization Temperature on Product Distribution 

Temperature(K) Ethylene(mol%) Butadiene(mol%) H2(mol%) 

3,273 37.2872 31.3564 31.3564 

2,273 43.4089 28.2956 28.2956 

1,773 48.6405 25.6798 25.6798 

1,573 51.4675 24.2662 24.2662 

1,273 56.8765 21.5618 21.5618 

 

As can be seen from Table 1, butadiene yield is enhanced with increasing 

temperature. Nonetheless, higher temperature entails higher cost. As temperature decreases, 

conversion of ethylene to butadiene decreases. As temperature increases, amount of 

hydrogen and butadiene produced increases. 

Two different scenarios are defined in this project in order to make comparison in 

terms of safety performance and economic analysis. 

1. Scenario: Dimerization reaction operates at 1273 K and 1 bar. 

2. Scenario: Dimerization reaction operates at 2773 K and 1 bar. 
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For both scenarios, rest of the process is assumed as similar to each other in order to 

make a good comparison. 

 

 

In both scenarios, atmospheric pressure is used. To reduce the risk hazards, the hot 

reactor effluent is cooled down up to 361 K using a water quenching tower. The cooled 

stream is then compressed to 25 atm then cooled up to 298 K. With the combination of 

compression and cooling units, water in the stream is liquefied and with a flash separator 

drum water content is removed from the system. 

The remaining process stream contains significant amount of hydrogen besides 

ethylene and butadiene. In order to separate hydrogen from process stream, cryogenic 

conditions are required. A refrigeration cycle is used to cool the stream up to 200K for the 

Figure 3: Flowsheet for the Ethylene-to-Butadiene Portion of the Process Figure 3: Flowsheet for the Ethylene-to-Butadiene Portion of the Process 
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first scenario and 120 K for the second scenario. Different refrigeration temperatures are 

applied for each scenario due to different amount of hydrogen in each process stream. In the 

second scenario, the amount of hydrogen produced is more than the first scenario, thus 

separation becomes more difficult for the second scenario. In order to equalize the product 

stream butadiene purity in each case, lower refrigeration temperature is applied in the second 

case. 

After achieving cryogenic conditions via cooling, hydrogen is removed from the main 

process stream using a flash separator drum which operates at 25 bars. 

As a final step, process stream containing mostly ethylene and butadiene is fed to 

flash and distillation units to finally obtain butadiene as a bottom product of the distillation 

column with a 99.5 wt.% purity. Figure 3 is a diagram of the ethylene-to-butadiene portion of 

the process. 

2.3 Process Assumptions 

The process was simulated using ASPEN Plus® V.8.8  for a base case processing 10 

MM standard cubic feet (SCF) per hour. The following are some of the assumptions used in 

the simulation: 

 Pipeline-quality shale gas was approximated with a methane stream. 

 Conversion of acetylene to ethylene in the hydrogenation reactor was assumed to be 

complete. 

 For the ethylene dimerization reactor, RGIBBS model reactor was used. It is based on 

identifying the equilibrium product distribution by minimizing Gibbs free energy. 
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 For the butadiene-ethylene distillation column, Radfrac model column was used with 

20 stages, a kettle reboiler, and a reflux ration of 0.9. Feed stream is introduced to 

11
th

 stage. 

 The number of operating hours per year was taken as 8,160 (corresponding to 93% 

on-stream efficiency). 

 For quench water tower, Radfrac model column was used with 8 stages. 

 100% pure water at 298 K is introduced to the quench water tower and cooling heat 

exchangers. 

 Compressor yield is assumed as 0.72. Polytropic / isentropic conditions are assumed. 

2.4 Chemistry of the Overall Processes 

Main chemical reactions of methane to butadiene process are tabulated as below. 

 

Table 2: Main reactions of the process 

Methane → Acetylene + H2 

Supersonic Reactor 

2CH4  → C2H2 + 3H2 

Acetylene + H2 → Ethylene 

Hydrogenation 

C2H2 + H2 → C2H4 

Ethylene → Butadiene 

Dimerization 

2C2H4 → C4H6 + H2 

 

Initial reaction is the pyrolysis of methane to acetylene which is happening in a 

supersonic reactor at high reaction temperature.  Fuel and oxygen are fed to supersonic 
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reactor and heated in the combustion chambers. Methane which is mixed with heated 

combustion gases is fed to the reactor at a different place. Heated combustion gases 

accelerates methane inside the reactor and helps methane pyrolyzes to acetylene and 

hydrogen. Reaction occurs at atmospheric pressure and high temperature. 

Second important step of the process is the acetylene hydrogenation to ethylene. 

Reaction happens in liquid phase and required hydrogen is obtained from the pyrolysis 

reaction section. 

Third main reaction of the process is dimerization reaction where ethylene is 

converted to the butadiene at high temperature and atmospheric pressure. 
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CHAPTER III  

ECONOMIC ANALYSIS 

 

In this chapter, economic analysis of Scenario I and Scenario II are evaluated using 

the shortcut tools in literature. (El-Halwagi, 2011) 

Operating cost is the summation of raw material, energy/utility cost, labor and 

maintenance cost. Labor and maintenance costs are neglected for this process. 

3.1 Raw Materials Cost 

Natural gas to butadiene production process uses natural gas as the feedstock. For raw 

material cost calculation, natural gas price is determined for different time periods. 

 

Table 3: Natural Gas Price Data for Raw Material Cost Calculation (EIA, 2017) 

Natural Gas Price Estimation ($ / thousand cubic feet) 

Jan 2007 – Jan 2017 4.451 

Jan 2012 – Jan 2017 3.312 

Jan 2015 – Jan 2017 2.511 

 

Natural gas prices are obtained from U.S. Energy Information Administration (EIA). 

Three different time periods are considered to decide natural gas price which are tabulated as 

above. For each interval, average natural gas price is calculated. For raw materials cost 

calculation, Jan 2015 – Jan 2017 natural gas price estimation is used which is 2.511 $ / 

thousands cubic feet. 
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Table 4: Cost Data Used in the Base-Case Assessment 

Item Price Unit 

Shale Gas 2.51 $/1000 SCF 

Oxygen 200 $/tonne 

Hydrogen 1,500 $/tonne 

Butadiene 2,000 $/tonne 

Low pressure steam 4 $/tonne 

Cooling utility 1 $/MM Btu removed 

Electric Energy 0.05 $/kWh 

Refrigerant 12 $/MM Btu removed 

 

Table 4 summarizes the economic data used for the raw materials, products, and utilities in 

the base-case assessment. 

For total cost of raw materials calculation, it is assumed that the process unit operates 

340 days in a year. In addition, the natural gas is considered as 100% methane for the 

feedstock. Amount of natural gas, oxygen and NMP solvent required is determined according 

to the production capacity of the process unit. Cost of oxygen and cost of NMP solvent are 

obtained from the literature and web data. 

Raw material cost is calculated as 262.26 MM$ / yr for this process unit. Raw 

material cost is assumed as same for both Scenarios I and II. 

3.2 Utility Cost 

For natural gas to ethylene production process part, utility cost data is obtained from 

previous studies and optimized according to this project’s process capacity. Therefore, for 
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both Scenario I and Scenario II, the utility cost of natural gas to ethylene part is assumed as 

299.25 MM$ / yr. For ethylene to butadiene process part, utility costs are calculated in the 

next parts. 

 

Table 5: Raw Material Cost Calculation Details 

RAW MATERIAL COST 

Average Price of Natural Gas ( $ / thousand ft3) 2.51 

Density of Natural Gas ( Methane ) ( kg / m3 ) 0.65 

Density of Natural Gas ( Methane ) ( kg / ft3 ) 0.02 

Average Price of Natural Gas ( $ / kg ) 0.14 

Amount of Methane Feed ( tonne / hr ) 189.5 

Cost of Methane ( $ / hr) 25860.57 

Cost of Methane ( MM$ / yr ) 211.02 

Price of Oxygen ( $ / kg ) 0.2 

Amount of Oxygen Feed ( kg / hr ) 245685 

Cost of Oxygen ( MM$ / yr ) 42.10 

Price of NMP Solvent ( $ / kg ) 4.08 

Amount of NMP Solvent Consumed ( kg / hr ) 274.5 

Cost of NMP Solvent ( MM$ / yr ) 9.14 

Total Cost of Raw Material ( MM$ / yr ) 262.26 
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For both scenarios, amount of utility consumed data were obtained from the Aspen 

simulation. Utility prices were assumed in accordance with the literature. (El-Halwagi, 2011) 

According to the Table 6, annual utility cost of second part (ethylene to butadiene 

process) is calculated as 18.77 MM$ / yr. Annual utility cost is calculated as 318.02 MM$ / 

yr after adding the first part ( natural gas to ethylene process) utility cost data. 

According to the Table 7, annual utility cost of second part (ethylene to butadiene 

process) is calculated as 38.47 MM$ / yr. Annual utility cost is calculated as 337.72 MM$ / 

yr after adding the first part ( natural gas to ethylene process) utility cost data. 

3.3 Operating Cost 

Maintenance costs and labor costs are neglected. 

Scenario I : Dimerization reaction operates at 1273 K and 1 bar 

Total Operating Cost = 262.26 MM$ / yr + 321.91 MM$ / yr = 584.17 MM$ / yr 

Scenario II : Dimerization reaction operates at 2773 K and 1 bar 

Total Operating Cost = 262.26 MM$ / yr + 347.21 MM$ / yr = 609.47 MM$ / yr 

3.4 Fixed Capital Investment Cost (FCI) 

In order to estimate fixed capital cost, installed equipment cost has to be calculated. For both 

scenarios major equipment are considered for total equipment cost calculation and all of the 

delivered equipment cost data is obtained from Aspen simulation results excluding 

dimerization reactor cost data. Dimerization reactor cost is estimated considering the reactor 

capacity and similar reactors that are studied in previous research studies. 
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Table 6: Annual Utility Cost Calculation – Scenario I 

Equipment 

Name 

Utility Type 

Utility 

Rate 

Rate 

Units 

Utility 

Price 

U.P. 

Unit 

Utility Cost 

( $ / hr) 

B1 

(Compressor) 

Electricity 22408.45 kW 0.05 $ / kW 1120.42 

B2 (Cooler 

HEX) 

Cooling 

Water 

207.01 

MMBTU 

/ hr 

1 

$ / 

MMBtu 

207.01 

B3 (Conversion 

Reactor) 

Natural Gas 127.87 

MMBTU 

/ hr 

4 

$ / 

MMBtu 

511.49 

B4 (Quench 

Tower) 

Cooling 

Water 

16.99 

MMBTU 

/ hr 

1 

$ / 

MMBtu 

16.99 

B6 (Distillation 

Column) –

Condenser 

Refrigerant 9.78 

MMBTU 

/ hr 

12 

$ / 

MMBtu 

117.39 

B6 (Distillation 

Column) – 

Reboiler 

Low Pressure 

Steam 

16.56 

Tonne / 

hr 

4 $ / tonne 66.24 

B8 (Cooler 

HEX) 

Refrigerant 21.77 

MMBTU 

/ hr 

12 

$ / 

MMBtu 

261.19 

Annual Utility Cost (MM$/yr) – Second Part 18.77 

Annual Utility Cost (MM$/yr) – First +Second Part 318.02 
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Table 7: Annual Utility Cost Calculation – Scenario II 

Equipment 

Name 

Utility Type 

Utility 

Rate 

Rate 

Units 

Utility 

Price 

U.P. 

Unit 

Utility Cost 

( $ / hr) 

B1 

(Compressor) 

Electricity 37605.96 kW 0.05 $ / kW 1880.30 

B2 (Cooler 

HEX) 

Cooling 

Water 

617.97 

MMBTU 

/ hr 

1 

$ / 

MMBtu 

617.97 

B3 (Conversion 

Reactor) 

Natural Gas 302.46 

MMBTU 

/ hr 

4 

$ / 

MMBtu 

1209.82 

B4 (Quench 

Tower) 

Cooling 

Water 

56.21 

MMBTU 

/ hr 

1 

$ / 

MMBtu 

56.21 

B6 (Distillation 

Column) – 

Condenser 

Refrigerant 28.38 

MMBTU 

/ hr 

12 

$ / 

MMBtu 

340.50 

B6 (Distillation 

Column) – 

Reboiler 

Steam 54.55 

Tonne / 

hr 

4 $ / tonne 218.20 

B8 (Cooler 

HEX) 

Refrigerant 32.64 

MMBTU 

/ hr 

12 

$ / 

MMBtu 

391.69 

Annual Utility Cost (MM$/yr) – Second Part 38.47 

Annual Utility Cost (MM$/yr) – First +Second Part 337.72 
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For the first part of this process (methane to ethylene process), fixed capital 

investment is assumed in accordance with literature and recalculated considering this 

process’ capacity using the formula below: (El-Halwagi, 2011) 

𝐹𝐶𝐼𝐵 =  𝐹𝐶𝐼𝐴 × (
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐵

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐴
)𝑥 

where x is equal to 0.6 for this process since it is ethylene process. (El-Halwagi, 

2011) According to this formula above, fixed capital investment for the first part of the 

process is estimated as 254.07 MM$ / yr. 

For both scenarios, total installed equipment cost of 254.07 MM$ / yr is used to 

calculate overall fixed capital investment. 

For Scenario I, total delivered equipment cost for part II is estimated as 37.48 MM$. 

FCI Lang factor is used to calculate total installed equipment. FCI Lang factor is assumed as 

5.0 since the type of plant is considered as fluid. (El-Halwagi, 2011) Total delivered 

equipment cost is multiplied with FCI Lang factor and fixed capital investment cost (part II) 

is calculated as 187.39 MM$. Total fixed capital investment cost is estimated adding the first 

part’s fixed capital investment cost and resulted as 441.46 MM$ / yr. 

For Scenario II, total delivered equipment cost for part II is estimated as 69.09 MM$. 

FCI Lang factor is used to calculate total installed equipment cost. FCI Lang factor is 

assumed as 5.0 since the type of plant is considered as fluid. (El-Halwagi, 2011) Total 

delivered equipment cost is multiplied with FCI Lang factor and fixed capital investment cost 

(part II) is calculated as 345.47 MM$. Total fixed capital investment cost is estimated adding 

the first part’s fixed capital investment cost and resulted as 599.54 MM$ / yr. 
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Table 8: FCI Calculation – Scenario I 

Equipment Name 

Equipment Cost 

(MM $ ) 

B1 (Compressor) 26.68 

B2 (Cooler HEX) 0.85 

B3 (Conversion Reactor) 9.0 

B4 (Quench Tower) 0.32 

B5 ( Flash Separator ) 0.035 

B6 (Distillation Column) 0.46 

B8 (Cooler HEX) 0.084 

B9 ( Flash Separator ) 0.046 

Total Delivered Equipment Cost  37.48 

Fixed Capital Investment – Part II  187.39 

Fixed Capital Investment – Part I  254.07 

Total Fixed Capital Investment 441.46 

 

3.5 Feasibility Analysis of the Process 

Economic analysis is performed for both Scenario I and Scenario II. Payback period 

of each scenario including the annual rate of return and return on investment (ROI) are 

estimated performing a feasibility study. 
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Table 9: FCI Calculation – Scenario II 

Equipment Name Equipment Cost ( $ ) 

B1 (Compressor) 55.9 

B2 (Cooler HEX) 2.37 

B3 (Conversion Reactor) 9.0 

B4 (Quench Tower) 0.61 

B5 ( Flash Separator ) 0.063 

B6 (Distillation Column) 0.97 

B8 (Cooler HEX) 0.15 

B9 ( Flash Separator ) 0.039 

Total Delivered Equipment Cost  69.09 

Fixed Capital Investment – Part II  345.47 

Fixed Capital Investment – Part I  254.07 

Total Fixed Capital Investment  599.54 

 

Total operating cost and fixed capital investment are calculated in previous parts. 

WCI, working capital investment is estimated first which is the 15 / 85 of FCI for both 

scenarios. 

For Scenario I, annual net profit is estimated as 24.36 MM$, return on investment ( 

ROI ) is estimated as 4.69 and payback period is estimated as 18.12 years. 
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Table 10: Summary of Economic Evaluation – Scenario I 

Raw Material Cost ( MM$ / yr ) 262.26 

Utility Cost ( MM$ / yr ) 318.02 

Annual Operating Cost ( MM$ / yr ) 580.28 

Fixed Capital Investment ( MM$ ) 441.46 

Working Capital Investment ( MM$ ) 77.91 

Total Capital Investment ( MM$ ) 519.37 

Annual Sales of Butadiene ( MM$ / yr ) 300 

Annual Sales of Hydrogen ( MM$ / yr ) 296.16 

Annual Sales of Products ( MM$ / yr ) 596.16 

Annual FCI depreciation ( annualized fixed cost) 44.15 

Total Annualized Cost ( MM$ / yr ) 624.43 

Annual Net Profit ( MM$ ) 24.36 

ROI 4.69 

Payback Period ( yr ) 18.12 

 

For Scenario II, annual net profit is estimated as 117.48 MM$, return on investment 

(ROI) is estimated as 16.66 and payback period is estimated as 5.10 years. 
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Table 11: Summary of Economic Evaluation – Scenario II 

Raw Material Cost ( MM$ / yr ) 262.26 

Utility Cost ( MM$ / yr ) 337.72 

Annual Operating Cost ( MM$ / yr ) 599.98 

Fixed Capital Investment ( MM$ ) 599.54 

Working Capital Investment ( MM$ ) 105.80 

Total Capital Investment ( MM$ ) 705.34 

Annual Sales of Butadiene ( MM$ / yr ) 444.06 

Annual Sales of Hydrogen ( MM$ / yr ) 298.06 

Annual Sales of Products ( MM$ / yr ) 742.11 

Annual FCI depreciation ( annualized fixed cost) 59.95 

Total Annualized Cost ( MM$ / yr ) 659.94 

Annual Net Profit ( MM$ ) 117.48 

ROI 16.66 

Payback Period ( yr ) 5.10 

 

An important factor in the butadiene market is the price volatility. Market reports 

show that between January 2016 and February 2017, butadiene prices have sharply increased 

from $750 to $2,000 per tonne. (Dang, 2017) Such large volatilities can significantly impact 
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the process viability. Figure 4 shows the ROI for both scenarios as a function of the 

butadiene selling price.  

 

 

Figure 4: Effect of Price Volatility of Butadiene on ROI for the two Dimerization 

Temperature Scenarios 

 

For safety reasons, the dimerization temperature was not allowed to exceed 2,773 K. 

The higher dimerization temperature leads to higher sales of butadiene but incurs additional 

fixed and operating costs. The benefits from the higher yield at the higher temperature 

outweigh the additional costs as evident by the higher return on investment (ROI) for 

Scenario II compared to Scenario I. In many cases, a minimum (threshold) ROI is required 

before a process is recommended. For a process of this type, the minimum acceptable ROI is 

typically around 10%. (El-Halwagi, 2011) 
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CHAPTER IV  

SAFETY ANALYSIS 

 

4.1 Metrics for Safety Analysis 

There are various types of safety analysis tools that are used for risk assessment. 

These different types of hazard identification tools are used for different stages of the project. 

For example, checklists and safety audits are used at all stages whereas fault trees analysis 

(FTA), HAZOP and failure modes and effect analysis (FMEA) are used at commissioning 

and operation stages which are later the design stage. (Khan & Abbasi, 1998) In addition to 

project stage, time and money are also criteria for choosing safety analysis tool. (Heikkilä, 

1999) 

To perform a HAZOP study, FTA and failure modes and effect analysis, detailed 

process stream including equipment data is required. Therefore, these studies are not suitable 

for a process at early design stage. 

There are also a variety of hazard indices that aim to define inherent safety level and 

potential risks of a chemical process using quantitative approach. These hazard indices can 

be used at early design stages. Some examples of hazard indices are Mond Index and Dow 

F&EI which can detect potential hazards at earlier stages so that it can be fixed before 

completion of the project. (Al-Sharrah et al., 2007) There are other tools such as HIRA 

analysis (Khan & Abbasi, 1998), Hazardous Waste, Toxicity Hazard Index (Amyotte & 

Khan, 2004)  and SWeHI index (Khan et al., 2001) which are less widely used for safety 

analysis. 
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4.1.1 Dow Fire and Explosion Index 

Dow F&EI is a leading hazard index using a ranking system to define potential 

hazards and risks. It is an important tool for chemical facilities to determine fire and 

explosion protection plans. It gives a numerical ranking for equipment and units so that 

engineers can determine the most dangerous part of the process and take precautions against 

potential fire and explosions. 

Dow F&EI can be easily evaluated using process stream and material data. Detailed 

stream data including composition, temperature, pressure, equipment data, reaction data, plot 

plan of the facility, NFPA flammability and instability data are required to calculate the Dow 

F&EI. (Khan et al, 2003) 

The calculation begins with determining of material factor (MF) which is decided 

according to material’s NFPA instability and flammability characteristics. After deciding 

material factor, penalty factors called F1 and F2 are determined which are namely; general 

and special process hazards. To calculate F1, 6 different penalties have to be determined 

according to the information of reaction type (exothermic or endothermic), kind of chemical 

which is transferred, handled, stored and drainage and spill control of the chemicals in unit. 

Summation of these six penalties gives F1. (SUARDIN, 2005) 

To calculate F2, 12 different penalties have to be determined according to the 

information of toxicity of handled chemical, maximum pressure released in case of dust 

explosion, chemicals in storage and process unit, corrosion rate of chemicals, usage of fired 

equipment, rotating equipment and leakage. Summation of these twelve penalties gives F2. 

(SUARDIN, 2005) 

F3, process unit hazards, is estimated multiplying F1 and F2. (SUARDIN, 2005)  
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𝐷𝑜𝑤 𝐹&𝐸𝐼 = 𝐹3 × 𝑀𝐹 

𝐷𝑎𝑚𝑎𝑔𝑖𝑛𝑔 𝑟𝑎𝑑𝑖𝑖 = 0.84 × 𝐷𝑜𝑤 𝐹&𝐸𝐼 

 

Table 12: Hazard Ratings (Dow, 1994) 

F&EI Index  Hazard Degree 

1 - 60 Light 

61 - 96 Moderate 

97 - 127 Intermediate 

128 - 158 Heavy 

159 - up Severe 

 

4.1.2 Mond Fire, Explosion and Toxicity Index 

The mond index is a hazard index which is like Dow F&EI. It is accepted as an 

extension of Dow F&EI, can be performed at initial design period to determine potential 

hazards and determine fire and explosion prevention and toxic release techniques. (Khan & 

Abbasi, 1998) 

Although Mond index is considered similar to Dow F&EI, there are differences in 

calculation steps which are due to extra hazardous penalties. (Khan & Abbasi, 1998) For 

example, Mond index is estimating material factor like Dow F&EI but Mond index includes 

additional special material factors. After calculation of material factor, F1 and F2, general 

and special process hazard factors have to be estimated similar to Dow F&EI, but again a 
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new factor called quantity factor, is added to the calculation which covers the chemical 

inventory and layout hazards. (Khan et al., 2001) 

Since Mond index is also a toxicity index, the toxicity evaluation of this index covers 

additional factors which are related with toxicity such as toxicity of material used in the 

process, amount of toxic material used and their impacts on human health. (Khan et al, 2003)  

Although, Dow F&EI and mond index are very similar to each other, mond index can 

be more advantageous since it covers more chemical processes and chemicals which have 

explosive characteristics. Furthermore, mond index is not only a fire and explosion index, it 

also covers toxicity assessment which makes it a more useful index for some cases. On the 

other hand, since mond index has relatively more calculation steps when compared to Dow 

F&EI, it may be take more time to apply it. (Khan et al., 2001)  

4.1.3 Safety Weighted Hazard Index (SWeHI) 

SWeHI is the newest and updated version of HIRA. SWeHI is performed to give an 

overall risk assessment of the process including additional factors related to meteorology and 

social disorders. Performing SWeHI is useful to compare and rank process units and 

determine which process unit is the most dangerous. Engineers can identify the hazards and 

take precautions to maintain safety of process units with the help of SWeHI. (Khan et al, 

2003)  

Evaluation steps of SWeHI are very similar to HIRA. Final calculated the result of 

SWeHI shows the potential hazard area radius by considering the process materials, process 

temperature, pressure data, material NFPA ratings, etc. (Khan et al, 2003) 

SWeHI = B / A 
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where B shows the potential damage resulted from fire, explosion and toxicity in a 

specific process unit. 50% probability of damage is assumed to calculate B. “A” is the factor 

showing the safety precautions and control systems to reduce hazards and decrease the 

frequency of potential incidents. If the calculated value of SWeHI is high, it means there are 

potential risks in that process unit and the process unit is unsafe. 

 

Table 13: Classification of SWeHI (Khan et al., 2001) 

SWeHI Degree of Hazards 

0 – 1 Non Hazardous 

1 - 5 Less Hazardous 

5 - 10 Moderately Hazardous 

10 - 20 Hazardous 

20 - up Highly Hazardous 

 

Since SWeHI is the updated version of HIRA, new penalties are added to calculation. 

For example, pn7 is the penalty related with natural effects such as earthquakes or hurricanes. 

Another different penalty, pn8 represents the vulnerability unit by accidents. (Khan et al. F. 

I., 2001)All other calculation steps are similar to HIRA evaluation so that the details of 

calculation steps will be covered in the next section (HIRA). 

4.1.4 Hazard Identification and Ranking Analysis (HIRA) 

HIRA is a reliable hazard ranking index which is widely used in chemical industry. 

HIRA is considered as the combination of FEDI and TDI (Khan & Abbasi, 1998). It can be 



 

33 

 

considered as the previous version of SWeHI. The evaluated result of HIRA gives a 

numerical value so that responsible engineers can compare all process units with each other 

and determine the most dangerous unit in the process. 

Hazard identification and ranking analysis (HIRA) index considers that there are five 

different classes for different types of hazards; units used for storage, unit includes physical 

operations, unit includes chemical reactions, units used for transportation and others 

respectively. For each class, different calculation steps have to be followed (Khan & Abbasi, 

1998). 

Calculated result of FEDI is used to assess the degree of hazard according to the table 

below. For example, if FEDI is greater than 500 shows that that process unit is extremely 

hazardous, whereas if FEDI is between 100 and 200, means that process unit is moderately 

hazardous. Also, since FEDI is a ranking system, if provides a comparison of process units. 

 

Table 14: Hazard Ranking according to the Fire and Explosion Damage Index (Khan & 

Abbasi, 1998) 

FEDI Degree of Hazard 

FEDI > 500 Extremely Hazardous 

400 < FEDI < 500 Highly Hazardous 

200 < FEDI < 400 Hazardous 

100 < FEDI < 200 Moderately Hazardous 

20 < FEDI < 100 Less Hazardous 

FEDI < 20 Not Hazardous 
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Since HIRA is the combination of both FEDI and TDI. First FEDI has to be 

calculated. In order to perform Fire, Explosion and Damage Index, five main steps have to be 

followed. These are namely (Khan & Abbasi, 1998): 

1. Classify the units in terms of potential hazards 

2. Calculate factors related with energy 

3. Calculate penalties using process unit properties 

4. Calculate the potential damage using factors and penalties 

5. Calculate Fire and Explosion Index (FEDI) using estimated damage. 

4.2 Safety Calculations 

In order to perform fire, explosion and damage index (FEDI) detailed stream data, 

equipment data, NPFA rankings, chemical thermodynamic data, process unit layout and 

chemical reaction data are required. As an initial step, all units are classified into five types 

described before. (Khan & Abbasi, 1998) Since, this project neglects storage and 

transportation units, only physical operation and chemical reaction units’ calculation steps 

are explained. In addition, FEDI is performed only for ethylene to butadiene conversion 

processes both for dimerization reactor at 1273 K and 2773 K.  

4.2.1 Energy Factor Calculation 

F1, F2, F3 and F4 are energy factors of fire, explosion and damage index. F1 is 

related with chemical energy, F2 and F3 are related with physical energy and F4 is used only 

for units where there is a chemical reaction. 

For each class, calculation of these energy factors is same. Energy factors are 

calculated as below: (Khan & Abbasi, 1998) 
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𝐹1 = 0.1 × 𝑀 × 𝐻𝐶 𝐾⁄  

where M is mass flowrate in kg/s, Hc is in J/mol and K is a constant equal to 3.148. 

𝐹2 = 1.304 × 10−3 × 𝑃𝑃 × 𝑉 

where PP the pressure of the operation in kPa and V is equipment volume in m3. 

𝐹3 = 1.0 × 10−3 × 1  𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 × (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 − 𝑉𝑎𝑝𝑜𝑟 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒)2⁄ × 𝑉 

where T in Kelvin and vapor pressure in kPa. 

𝐹4 = 𝑀 × 𝐻𝑟𝑥𝑛 𝐾⁄  

where Hrxn is heat of reaction in kJ/kg. 

4.2.2 Penalty Calculation 

Calculation of penalties for each class is different from each other. Since the project 

assumes only units with physical and chemical reactions, calculation of penalties for other 

classes is not covered. Penalties pn1, pn2, pn3, pn4, pn5 and pn6 are used both for physical 

operation and chemical reaction units, whereas for chemical reaction units two additional 

penalties have to be calculated; pn7 and pn8 respectively. All penalties are calculated 

according to the formulas below: (Khan & Abbasi, 1998) 

𝑝𝑛1

= ft2 (flash temperature, fire temperature, autoignition temperature, working temperature) 

where ft2 is calculated as below; 

if (fire point > temperature > flash point) 

𝑓𝑡2 = 1.45 

else if (0.75 autoignition temperature > temperature > fire point) 

𝑓𝑡2 = 1.75 
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else if (process temperature > 0.75 autoignition temperature) 

𝑓𝑡2 = 1.95 

else 

𝑓𝑡2 = 1.1 

To calculate pn2; 

if  (Vapor Pressure > Atmospheric Pressure and Operating Pressure > Vapor 

Pressure) 

𝑝𝑛2 = 𝑓𝑝1 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝑉𝑎𝑝𝑜𝑟 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) 

𝐹 = 𝑠𝑢𝑚(𝐹2, 𝐹3) 

where 

𝑓𝑝1 = 1 + ((𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 − 𝑉𝑎𝑝𝑜𝑟 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) × 0.6⁄  

otherwise: 

𝑝𝑛2 = 𝑓𝑝2 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝑉𝑎𝑝𝑜𝑟 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) 

𝐹 = 𝐹2 

where 

𝑓𝑝2 = 1 + ((𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 − 𝑉𝑎𝑝𝑜𝑟 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) × 0.4⁄  

if (Atmospheric Pressure > Vapor Pressure and Operating Pressure > Atmospheric 

Pressure) 

𝑝𝑛2 = 𝑓𝑝3 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝑉𝑎𝑝𝑜𝑟 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) 

𝐹 = 𝐹3 

where 

𝑓𝑝3 = 1 + ((𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 − 𝑉𝑎𝑝𝑜𝑟 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) × 0.2⁄  

otherwise: 
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𝑝𝑛2 = 1.1 

𝐹 = 𝐹3 

Penalty pn3 is related with the used chemical in the process unit and its reactivity and 

flammability ranking. Since, the amount of chemicals in process units are represented as flow 

rates and changes with respect to time, pn3 is assumed as 1.1 for all calculation steps. 

To calculate pn4; 

𝑝𝑛4 = 1 + 0.25 × (𝑁𝐹𝑃𝐴 𝑓𝑙𝑎𝑚𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑎𝑛𝑘 + 𝑁𝐹𝑃𝐴 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑟𝑎𝑛𝑘) 

Penalty pn5 is related to the potential impact of closest unit involving hazards. In this 

process, it is assumed as 1.2 for all process units. 

Penalty pn6 is related to frequency of process units. To calculate pn6; 

𝑝𝑛6

= (1

+ percantage of area inhabited by unit in the r of 30 meter from the nearest process  100⁄ ) 

For this process, pn6 is assumed as 1.0. 

Both pn7 and pn8 are used to calculate FEDI for process units with chemical 

reactions namely reactors of the process. Penalty pn7 is related to reaction type whereas 

penalty pn8 is related with undesired side reactions. Both penalties are evaluated in 

accordance with the literature data. (Khan & Abbasi, 1998) 

4.2.3 Damage Calculation (Khan & Abbasi, 1998) 

For Physical Operations Unit 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐷𝑎𝑚𝑎𝑔𝑒 = (𝐹1 × 𝑝𝑛1 + 𝐹 × 𝑝𝑛2) × 𝑝𝑛3 × 𝑝𝑛4 × 𝑝𝑛5 × 𝑝𝑛6 

For Chemical Reaction Unit 
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𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐷𝑎𝑚𝑎𝑔𝑒

= (𝐹1 × 𝑝𝑛1 + 𝐹 × 𝑝𝑛2 + 𝐹4 × 𝑝𝑛7 × 𝑝𝑛8) × 𝑝𝑛3 × 𝑝𝑛4 × 𝑝𝑛5 × 𝑝𝑛6 

4.2.4 Fire, Explosion and Damage Index Calculations (Khan & Abbasi, 1998) 

𝐹𝐸𝐷𝐼 = 4.76 × (𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐷𝑎𝑚𝑎𝑔𝑒)1 3⁄  

𝐷𝑎𝑚𝑎𝑔𝑖𝑛𝑔 𝑟𝑎𝑑𝑖𝑖 = 0.84 × 𝐷𝑜𝑤 𝐹𝐸𝐼 

4.3 Assumptions for Safety Calculations 

 Volume of compressors is neglected for calculation steps since simulation results do 

not contain compressor volume data. Compressor outlet stream data is used to 

calculate potential damage and FEDI due to higher pressure at the outlet of 

compressor. 

 Volume of heat exchangers is calculated assuming that residence time is 10 seconds 

which is taken from literature data. 

 For all process units, vapor phase stream data is taken into account to calculate 

potential damage and FEDI rankings since vapor phase conditions are considered 

more hazardous than liquid phase conditions. 

 For flash separators, top outlet stream data is used to calculate potential damage and 

FEDI ranking in order to consider gas phase conditions. 

 For distillation column and quench water tower, top of the column conditions are 

used to calculate potential damage and FEDI ranking in order to consider gas phase 

conditions. 
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 For conversion reactor, reactor effluent stream data is used to calculate potential 

damage and FEDI ranking due to exothermic reaction inside the reactor and higher 

temperature at the outlet stream. 

 Heat of combustion factor, NFPA reactivity and NFPA flammability are calculated by 

taking the weighted average of stream components’ data. 

 For calculating energy factors, molecular weight is included to the calculation steps in 

order to convert basis from mole to mass unit. 

 Penalty pn3 is assumed as 1.1 and pn5 is assumed as 1.2 due to neglecting the 

potential impact of closest unit involving hazards and process unit density. 

 Penalty pn6 is assumed as 1.0 due to lack of information. 

4.4 Results for Safety Calculations 

For this research, two different reactor temperatures are applied to the dimerization 

reactor to compare their safety levels. Fire, explosion and damage calculation is performed 

only for main process equipment. First case is the condition where the ethylene to butadiene 

conversion reaction takes place at 1273 K, second case is the condition where the ethylene to 

butadiene conversion reaction takes place at 2773 K. Same process and type of equipment 

are used at each case. 

Scenario I: Dimerization Reactor Temperature at 1273 K 

In Case I, the dimerization reactor temperature is 1273 K. Safety calculation is 

applied to all major equipment and FEDI rankings of each of them is tabulated as below. 

According to the FEDI ranking results, conversion reactor has the highest FEDI ranking 

which is 305 and B9 flash drum has the lowest FEDI ranking which are 36. 
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Dimerization reactor has the highest ranking since it has the highest operation 

temperature among all equipment. 

 

Table 15: Scenario I: FEDI Rankings of Equipment 

No Equipment Class FEDI 

B1 Compressor 160 

B2 Heat Exchanger 161 

B3 Reactor 305 

B4 Quench Tower 155 

B5 Flash Drum 213 

B6 Distillation Column 178 

B8 Heat Exchanger 212 

B9 Flash Drum 36 

 

Scenario II: Dimerization Reactor Temperature at 2773 K 

In Case II, the dimerization reactor temperature is 2773 K. Safety calculation is 

applied to all major equipment and FEDI rankings of each of them is tabulated as below. 

According to the FEDI ranking results, conversion reactor has the highest FEDI ranking 

which is 832 and B9 flash drum has the lowest FEDI ranking which are 25. 

Dimerization reactor has the highest FEDI ranking since it has the highest operation 

temperature among all equipment. 
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Table 16: Scenario II: FEDI Rankings of Equipment 

No Equipment Class FEDI 

B1 Compressor 138 

B2 Heat Exchanger 139 

B3 Reactor 832 

B4 Quench Tower 134 

B5 Flash Drum 212 

B6 Distillation Column 159 

B8 Heat Exchanger 211 

B9 Flash Drum 25 

 

In both cases, the highest FEDI ranking equipment is the dimerization reactors and 

the lowest FEDI ranking equipment are the flash drums (B9). 

In general, equipment of Scenario II excluding dimerization reactor have lower FEDI 

ranking than equipment of Scenario I due to water content in the process streams. Since 

dimerization reactor operates at very high temperature, a water quench tower is used in the 

process to cool down the system and mitigate potential risks immediately. However, this 

adds a great amount of water to the process streams and decreases the molar ratio of 

hazardous content. At Scenario II, the reactor effluent temperature is more than twice as high 

Scenario I’s reactor. Therefore, more water is used at Scenario II which adds more water to 

the process streams and affects FEDI results. 
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In addition, FEDI of reactor at 2773 K is more than twice of FEDI of reactor at 1273 

K due to higher temperature at the reactor effluent.  
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CHAPTER V  

CONCLUSIONS 

 

5.1 Results of Economic Analysis 

For both Scenario I and II, feasibility analysis is performed and key parameters of 

feasibility analysis are calculated as Table 17. 

According to the table below, the net annual profit of Scenario II is approximately 5 

times higher than the Scenario I. It is observed that, utility cost and annual operating cost are 

higher for Scenario II due to higher dimerization reactor temperature which has a negative 

impact on annual net profit.  

Furthermore, scenario II has higher total capital investment than scenario I which 

makes an additional negative impact on annual net profit. On the other hand, Scenario II, has 

higher yields of both hydrogen and butadiene production, which makes a positive impact on 

annual net profit and dominates the other negative impacts. 

It is observed that scenario II has approximately 4 times higher ROI than scenario I 

and scenario I has approximately 4 times higher payback period than scenario II. 

These results seem acceptable for selected market conditions and current prices. 
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Table 17: Comparison of Economic Analysis Results 

 

Scenario I 

(Dimerization 

Temperature = 

1,273 K) 

Scenario II 

(Dimerization 

Temperature = 

2,773 K) 

Raw Material Cost ( MM$ / yr ) 262.26 262.26 

Utility Cost ( MM$ / yr ) 318.02 337.72 

Annual Operating Cost ( MM$ / yr ) 580.28 599.98 

Fixed Capital Investment ( MM$ ) 441.46 599.54 

Working Capital Investment ( MM$ ) 77.91 105.80 

Total Capital Investment ( MM$ ) 519.37 705.34 

Annual Sales of Butadiene ( MM$ / yr ) 300.00 444.06 

Annual Sales of Hydrogen ( MM$ / yr ) 296.16 298.06 

Annual Sales of Products ( MM$ / yr ) 596.16 742.12 

Annual After-Tax Profit ( MM$ ) 24.36 117.48 

ROI (yr
-1

%) 4.69 16.66 

Payback Period (yr) 18.12 5.10 
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5.2 Results of Safety Analysis 

 

Table 18: Comparison of Safety Analysis Results 

 

Scenario I 

(Dimerization 

Temperature = 

1,273 K) 

Scenario II 

(Dimerization 

Temperature = 

2,773 K) 

N Equipment Class FEDI FEDI 

B1 Compressor 160 138 

B2 Heat Exchanger 161 139 

B3 Reactor 305 832 

B4 Quench Tower 155 134 

B5 Flash Drum 213 212 

B6 Distillation Column 178 159 

B8 Heat Exchanger 212 211 

B9 Flash Drum 36 25 
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Figure 5: Scenario I – Equipment Classification 

 

According to the equipment classification graphic above, 12.5% of equipment are 

classified as less hazardous, 50% of equipment are classified as moderately hazardous and 

37.5% of equipment are classified as hazardous. 

 

Figure 6: Scenario II: Equipment Classification 
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According to the equipment classification graphic above, 12.5% of equipment are 

classified as less hazardous, 50% of equipment are classified as moderately hazardous, 25% 

of equipment are classified as hazardous and 12.5% of equipment are classified as extremely 

hazardous. 

5.3 Conclusions 

This work has assessed the techno-economic viability and safety performance of 

manufacturing butadiene from shale gas. A process flowsheet was synthesized to convert 

shale gas to ethylene which is subsequently dimerized to butadiene. Computer-aided process 

simulation was used to design the process and to obtain the data necessary for economic 

evaluation. Capital and operating expenses were evaluated for two scenarios involving two 

dimerization temperatures (1,273 and 2,773). The second scenario was shown to be more 

profitable because of the enhanced yield of butadiene which results in higher sales that offset 

the increment in capital and operating costs. In order to assess the impact of price volatility 

of butadiene on the economic feasibility of the process a sensitivity analysis was performed. 

 On the other hand, the first scenario was found safer because of lower FEDI ranking 

for dimerization reactor. 

 All in all, there is a tradeoff between profitability and safety risk level of the 

scenarios. 

5.4 Recommendations 

For further study, these recommendations below are listed according to the results 

obtained in this thesis: 
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a. In this study, 4 different safety metrics are investigated and hazard 

identification and ranking analysis (HIRA) is performed only for the 

dimerization reactor. For future work, a better and more comprehensive safety 

metric can be selected which gives more accurate results for the whole plant. 

b. The conclusion is made according to the 2 different scenarios which are 

obtained from 2 different operating temperatures for the dimerization reactor. 

To obtain better results, more operating temperatures can be applied and 

simulated for the dimerization reactor. 

c. To improve inherent safety level of the whole plant, different dimerization 

reactor configurations can be considered and simulated such as using two 

small parallel working reactors instead of one reactor. 

d. Sustainability analysis including carbon footprint calculations can be 

performed for each scenario to make a more realistic conclusion in the end. 

e. Heat and mass integration techniques can be applied to the system to 

minimize energy consumption, fresh water usage and waste discharge. 
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APPENDIX 

 

 

 

Table 19: Safety Data of Chemicals 
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Figure 7: Aspen Plus Simulation Flowsheet of Ethylene to Butadiene Process 
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Table 20: Aspen simulation stream data – Scenario I 
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Table 21: Aspen simulation stream data – Scenario II 
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Table 22: Safety Calculation for Physical Units – Scenario I 

 
 

 

 

 

 

Table 23: Safety Calculation for Physical Units – Scenario II 

 
 

 

 

 

 

Table 24: Safety Calculation for Units with Reaction – Scenario I and Scenario II 

 




