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ABSTRACT 

Many complex systems have a tipping point after which the system suddenly shifts 

to a qualitatively different state. This large, abrupt, and often irreversible change in the 

behavior makes their management challenging. Predicting when a system is near, at or 

beyond a tipping point is important in system design and management. The similarities in 

system behaviors raise the question whether there are generic indicators of tipping points. 

Although, “critical slowing down” is the most studied tipping point indicator suggested in 

the literature, the usefulness of this indicator in real systems is still under investigation. 

To transition from simple math models to the application of tipping point indicators in 

practice, a library of system dynamics models with tipping points was developed. Model 

complexity ranges from simple archetypes to more complex and realistic models. The 

library models were used to develop an improved definition of a tipping point and to study 

the underlying system structures that create a tipping point. Two tipping point types were 

identified: (1) change in the dominance of feedback loops, and (2) change in the direction 

of the dominant reinforcing loop. Testing the “slowing down” measures in the library 

models demonstrated and supported the importance of these indicators in identifying 

tipping points. Investigating the similarities in the system behaviors before the tipping 

point resulted in two new potential indicators: (1) distance of system conditions on a xt+1-

xt graph, and (2) slope of a xt+1-xt graph. The proposed indicators are more practical and 

easier to use in the construction management field. The findings highlight some 

limitations: the clarity of the indicator signal depends on the complexity of the system, 

presence of noise in the system, and the time frame of the study. 
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CHAPTER I  

INTRODUCTION 

Large construction projects are among the most complex dynamic systems. 

These projects consist of various interdependent components and feedback relationships. 

Due to their dynamic nature, construction projects may demonstrate unexpected 

behavior. Although these projects intend to add value to their stakeholders, many times 

they fail to meet their budget, schedule, or quality targets. An example is the National 

Ignition Facility (NIF), a laser-based research device at the Lawrence Livermore 

National Laboratory in Livermore, California. The NIF is the largest device of its kind 

and has the largest laser in the world. Although the NIF is an engineering success from a 

technical point of view, it is an example of a mega project failure when considering 

budget and schedule objectives. The construction of the NIF was completed six years 

later than initially scheduled and with more than $1 billion overrun (United States 

General Accounting Office 2000; Powell and Sawicki 1998). 

Construction projects can have a tipping point after which the behavior of the 

system suddenly changes (Repenning et al. 2001; Taylor and Ford 2006; Morrison 2008; 

Taylor and Ford 2008) and project managers lose control of the project. This change in 

behavior is abrupt in comparison to the project evolution, making the management of the 

project more challenging. In addition, the size of the change in behavior is so large that 

crossing the tipping point can determine success or failure of the project. Crossing a 

tipping point can either degrade the system (e.g. “catastrophic shifts in rangelands” 

(Scheffer et al. 2009)) or improve it (e.g. developing a continuous proficiency with a 
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new skill as described in the Morrison’s learning curve model (Morrison 2008). 

The failure of large construction projects can have enormous consequences. 

Good management practice tries to predict the future behavior of the system and identify 

conditions that enhance the system behavior to prevent failure. Having a reliable tool 

that predicts the future behavior of systems and gives warning signals whenever the 

system is approaching a potential failure can be valuable to project planners, managers 

and policy makers and help practitioners to better manage their projects. For example, on 

a project that is forecasted to finish after its deadline, overtime can decrease the labor 

deficit gap and accelerate the project progress. However, the same overtime can also 

have a delayed negative consequence of creating fatigue and reducing productivity, 

thereby making the project even more behind schedule (Reichelt 1999; Lyneis and Ford 

2007). The hours of overtime have a tipping point after which the negative consequences 

overcome the benefits and adding overtime worsens the project performance in regard to 

schedule. How much overtime is possible without pushing the project into an increasing 

delay spiral? How can project managers recognize when a project is near that point? 

Having knowledge of this tipping point can prevent project failure and avoid additional 

and unnecessary overtime and delayed completion costs. In general, the purpose of this 

work is to (1) study system structures that can create tipping points, (2) test hypotheses 

based on the suggested tipping point indicators in the literature, and (3) identify new 

potential tipping point indicators. The results are then related to the design and 

management of construction projects. 
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Background 

Tipping points1 have been observed in many complex systems within diverse 

disciplines. In climate change, the change from icehouse earth to greenhouse earth 34 

million years ago is an example of a tipping point (Dakos et al. 2008). Changes in global 

temperature (Scheffer et al. 2009) and regime shifts in the North Pacific climate 

(Beaulieu et al. 2012) are more recent examples of tipping points. The birth of the 

Sahara desert in South Africa (Scheffer 2009), sudden drops in fish populations 

(Scheffer et al. 2009; Beaulieu et al. 2012; Kuehn 2011), loss of vegetation in lakes 

(Scheffer et al. 2009; Kuehn 2011), and the dramatic shift in coral reefs (Scheffer 2009; 

Boettiger and Hastings 2012) are examples of tipping points in ecosystems. Tipping 

point dynamics have also been observed in medicine when studying asthma attacks, 

epileptic seizures (Scheffer et al. 2009), epidemics (Kermack and McKendrick 1927; 

Sterman 2000), and depression (van de Leemput et al. 2014). Sociologists are acquainted 

with tipping points too. Riots and revolutions (Granovetter 1978), smoking and fashion 

trends (Scheffer 2009; Gladwell 2006), and speeding (Connolly and Åberg 1993) have 

thresholds after which the behavior of the system suddenly changes. In business and 

development, learning curves (Morrison 2008) and diffusion of innovations (Sterman 

2000) have been demonstrated to have tipping points. Finally, in finance, the collapses in 

exchange markets is believed by some to have been a tipping point (Scheffer et al. 2009; 

                                                 

1 Several other terms have been used to refer to tipping points, e.g. critical transition (Scheffer 2009; 

Scheffer et al. 2009; Kuehn 2011; Hirota et al. 2011; Mrotzek 2011), phase change (Solé et al. 1996), and 

thresholds (Granovetter 1978; Sterman 2000; Kuehn 2011)  
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Beaulieu et al. 2012; Kuehn 2011). 

Complex systems with a tipping point structure, regardless of their system 

details, have one thing in common: at some point, the system can cross a threshold and 

enters a state2 that is far from its original state (Kuehn 2011). The similarities in these 

systems’ behavior raise the question of whether diverse dynamic systems with embedded 

tipping point structures demonstrate similar behavior before the transition occurs. If so, 

are there generic indicators that can recognize this behavior and help to predict the 

crossing of a tipping point? A large body of literature in the fields of ecosystem and 

climate change has concentrated on addressing these questions.  

Studies (both theoretical and laboratory experiments) have observed similar 

behaviors in systems before critical transitions, a phenomenon generally known as 

“slowing down” which is derived from the properties of a bifurcation in dynamical 

systems. At an equilibrium, the rate of change becomes zero and the system recovers 

from perturbations slower (Scheffer et al. 2009). The state of the system at any moment 

becomes more similar to its state at the previous moment (Scheffer et al. 2009; Dakos et 

al. 2010; Lenton et al. 2012). There are three statistical measures of critical slowing 

down that are easy to quantify and require monitoring the state variable3 (Scheffer et al. 

2009): (1) recovery rate (the amount of time that a system in equilibrium takes to recover 

from a small perturbation), (2) temporal autocorrelation (the correlation between a state 

                                                 

2 State/basin of attraction or attractor is defined as a set of conditions or dynamic states toward which the 

system (with nonzero initial conditions) converges over time 
3 Dependent/state/target variable is defined as the variable whose value depends on the control variables 

and is being tested and measured 
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variable and its lagged value), and (3) variance (the squared deviation of the state 

variable from its mean).  

Scheffer et al. (2009) introduce “spatial patterns”4 as another indicator of tipping 

points. Some systems consist of connected units. The units tend to have a similar state to 

the units they are connected to. As an example, financial markets are known to influence 

one another. In such systems, the spatial coherence5 increases near a tipping point. 

“Cross-correlation” can be used to measure this coherence (Scheffer et al. 2009). 

Another approach to predicting a bifurcation tipping point which is based on the 

“critical slowing down” is the idea of tracking the natural frequency of a system 

response before an instability point. Virgin and Wiebe (2013) claim that as the system 

moves from an equilibrium towards an unstable point, the “undamped natural frequency 

of linear oscillations” tends to zero. However, this natural frequency cannot be observed 

in experiments. To overcome this problem, the authors apply the eigenvalue theory and 

show that as a “viscously damped nonlinear system” approaches instability (a tipping 

point), the damping ratio of the system increases as the critical point is getting closer, 

supporting the “critical slowing down” effect. They validate their theory by running an 

experiment and show that this phenomenon can be observed in real systems too. 

“Flickering” (switching back and forth between alternate attractors) is another 

potential indicator which is not derived from the “critical slowing down” (Scheffer et al. 

2012). When a system has more than one basin of attraction, the system might 

                                                 

4 Defined as the perceptual structure, placement or arrangement of objects 
5 Describes the correlation between wave signals from one point to another 
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repeatedly flip between the two states due to large impacts. At some point, if “the 

underlying slow change in conditions persists,” the system might permanently move to 

the alternative state. Wang et al. (2012) suggest that in the presence of flickering, the 

slowing down indicators are stronger. This phenomenon has been observed in models of 

“trophic cascades”6 (Scheffer et al. 2009), as well as some climatic shifts and epileptic 

seizures (Scheffer et al. 2009). Flickering can statistically be observed in “the frequency 

distribution of states as increased variance and skewness as well as bimodality 

(reflecting the two alternative regimes)” (Scheffer et al. 2009).  

Lamberson and Page (2012) offer a different indicator for a tipping point, they 

claim that before a tipping point the future state of a system is uncertain. However, when 

the system tips, there is only one possible outcome for the future state of the system, and 

the probability of the system being in a particular state converges to one. Lamberson and 

Page (2012) use Shannon entropy and define the entropy ratio (τ) (the ratio of the 

Shannon entropy to the expected uncertainty of the system in the next time step) to 

capture the “tippiness” of a system.  

Problem Description and Research Questions 

The large and abrupt change in the behavior of complex systems due to tipping 

points makes their management challenging. The success or failure of such projects 

depends on the ability to predict the future behavior of these systems. A reliable tool that 

                                                 

6 An ecological phenomenon triggered by the addition or removal of top predators and involving 

reciprocal changes in the relative populations of predator and prey through a food chain, which often 

results in dramatic changes in ecosystem structure and nutrient cycling. 
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can predict the future behavior of the project in advance can help managers in making 

timely remedial policies and thereby saving projects. An example is the construction of 

the Limerick Unit 2 nuclear power plant. As described by Taylor and Ford (2008) unit 2 

of the Limerick nuclear power plant is a 1,065 megawatt unit near Philadelphia. 

Construction began in June of 1974 and was scheduled to be completed in September of 

1980. However, the project was only 36% complete in 1980. The construction was 

stopped in 1982 due to poor performance. In retrospect, if the project owners could have 

foreseen the future behavior of the project, they could have applied policies (e.g. 

overtime, using more qualified personnel, scope change, etc.) to prevent the project 

failure. The Limerick nuclear power plant suffered a tipping point failure. As the number 

of unfinished work packages (project backlog) increased, the reinforcing loops in the 

model (rework, schedule pressure and ripple effects) overpowered the balancing loop 

that made project progress. As a result, the backlog kept increasing and further 

worsening the situation. 

Having practical indicators of tipping points can help avoid such failures. Broad 

classes of dynamic systems in different fields may demonstrate similarities in system 

behavior before a tipping point. This has encouraged researchers to find generic 

indicators of tipping points. “Critical slowing down” is one of the most studied 

indicators in the literature and is based on the properties of a bifurcation. Despite the 

theoretical background in bifurcation and nonlinear dynamics theories, most nonlinear 

systems have been found impossible to solve analytically (Strogatz 2014). Geometrical 
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approaches such as phase space7 (Strogatz 2014) and stability landscapes8 (Scheffer 

2009) help explain systems with a limited number of variables, however, they are also 

limited by the assumptions of homogeneity and constant environment (Scheffer 2009). 

The interactions among multiple components of complex systems, make their behavior 

different from the findings based on simple models (Scheffer 2009) and the theoretical 

research on the dynamic behavior of nonlinear and large systems (number of variables 

>>1) is “at the limits of current understanding” (Strogatz 2014). In summary, “though 

the mathematical generality of critical slowing down is promising, it does not guarantee 

that it is useful as an indicator in practice” (Van Nes and Scheffer 2007) and the 

robustness of the current indicators has not been fully studied (Scheffer et al. 2012; 

Lenton 2011).  

To bridge the gap from simple math models to the application, this work applies 

a progressive approach starting with simple archetypes and moving on to previously 

validated models of real systems. Studying existing simple and relatively complex 

models will provide a better understanding of tipping point dynamics and usefulness of 

potential indicators. The ultimate goal is to apply this knowledge in practice when there 

is no formal model available.  

This model-based approach is different from the current research in climate 

change and ecology that has mostly focused on data-based approaches. A data-based 

                                                 

7 a phase space is a space (a set with an imposed structure) the elements (phase points) of which 

(conventionally) represent the states of the system 
8 Graphic representation of the system based on a ball and bowl analogy 
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approach uses statistics to analyze the behavior of a system before a tipping point and 

test the effectiveness of potential indicators based on historical data. Hence, there is still 

a need to understand the underlying structural causes of a tipping point (Scheffer et al. 

2012). System theory suggests that classes of systems share generic structures that 

generate similar behaviors (Sterman 2000). A model-based approach following system 

dynamics principles can explain the sudden change in the behavior of the system due to 

a tipping point by using the feedback structure of the system.  

To develop transitional theory and bridge the gap between mathematical theories 

(such as bifurcation theory) and practice, a set of system dynamics archetypes and 

previously validated system dynamics models of realistic systems have been studied to 

develop knowledge about the system structures that can create tipping points. The 

findings are then used to test the existing critical slowing down indicators in realistic 

models and identify and test new indicators that can be beneficial to practitioners. This 

knowledge can be used in project management to apply preventive strategies before 

projects pass the tipping point threshold and get out of control, or in case the 

consequences of a tipping point are desirable, those strategies can be applied that 

expedite crossing the tipping point. The current research addresses these issues by 

investigating the following research question:  

How can designers and managers of systems predict tipping point dynamics? 

The research question is disaggregated into the following supporting questions. 

The applied approach to answering each question is described in the next section.  

1. What are the necessary and sufficient conditions for a tipping point? 
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2. What system structure(s) create multiple attractors and a tipping point? 

3. How do tipping point indicators behave in different types of tipping point 

structures?  

Research Approach 

To answer the research question, the following research steps are conducted: 

1. Develop an improved definition of a tipping point.  

This step answers the first supporting research question. In Chapter II, various 

definitions from the literature have been used to find the necessary and sufficient 

conditions of tipping points. The results are used to improve and develop a more 

complete definition of a tipping point. 

2. Build a classification of tipping points types. 

To answer the second supporting research question, a set of previously validated 

system dynamics models with embedded tipping point dynamics are collected in 

a model library. A taxonomy of tipping point types is developed based on the 

study of the feedback structures of the library models. Brief descriptions of the 

models in the library and the developed taxonomy can be found in Chapter III. 

3. Develop research hypotheses, design the best testing approach and test the 

hypotheses 

This step answers the last supporting research question. Chapters IV, V, and IV 

are designated to research hypotheses. To facilitate the reading of the document 

each of these chapters is dedicated to a group of hypotheses that have similar 

backgrounds and testing procedures.  
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The first section of each chapter introduces the suggested indicator including a 

discussion about their benefits and shortcomings. Part of the hypotheses are 

derived from the existing tipping point indicators. Others are developed based on 

the similarities observed in the system behavior of library models when 

approaching a tipping point.  

The detailed steps to test each hypothesis and the assumptions are described in 

the second section. The features of system dynamics approach are used to 

identify the best procedure to test each of the hypotheses.  

To test the hypotheses, first, a causal loop diagram of the formally validated 

models is used to find the main reinforcing and balancing loops in the systems. 

Second, potential attractors and tipping point conditions of the systems are 

identified. Then, the procedure identified in the previous step is used to test each 

hypothesis for every model in the model library. The hypotheses are tested in two 

different settings: (1) with embedded randomness in the model and (2) without 

any randomness. The third section of Chapter V includes the results of the 

hypotheses testing, followed by a summary section that describes the results and 

discusses the outcome of each hypothesis testing. 

4. Application in practice 

In Chapter VII, the two most practical indicators are used to predict a tipping 

point in a construction project model. Based on the prediction, preventive 

strategies are used to help the project and the outcome is compared with the case 

when the project passes the tipping point.   
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5. Draw conclusions and discuss the implications for research and project 

managers. 

The last chapter provides a summary of the work done and answers to the 

research supporting questions. It evaluates the current research describes the 

contributions to both research and practice. Future research opportunities are also 

identified in this chapter. 

Scope of the Work 

The current work studies the transitions in the system that are solely derived from 

the internal dynamics of the system. Noise-induced tips and system shifts due to external 

forces are excluded from the scope of the study. Although these types of transitions are 

equally important when studying the behavior of a system, they are difficult or even 

impossible to predict. In addition, it is possible for a system to have multiple tipping 

points and tipping variables9, but for the purpose of this work, only one tipping point and 

tipping variable will be studied for each system. 

The work focuses on three statistical metrics of “critical slowing down” (namely, 

recovery rate, temporal autocorrelation, and variance) and other indicators as discussed 

above are excluded from the study because:  

a) Although spatial patterns might be a more powerful indicator of a tipping point 

because they provide more information than the warning signals in time series 

(Dakos et al. 2010), the changes in patterns and how they can be interpreted in 

                                                 

9 High leverage control variables 
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different systems is not yet fully understood (Scheffer et al. 2012).  

b) “Flickering” might be an indicator of having more than one attractor, but it does 

not guarantee that a transition happens; hence, it is not included as a tipping point 

indicator in this work.  

c) The changes in the entropy ratio occur after the system has already crossed a 

tipping point, therefore, it cannot be used as a warning signal to predict a future 

tipping point. 

Finally, although, there is a close relationship between tipping point dynamics 

and resilience10, studying system resilience and its indicators are beyond the scope of 

this study. One definition of resilience is “the maximum disturbance a system can take 

without shifting to an alternative state” and has been suggested by Holling to measure 

the stability11 of a system (Van Nes and Scheffer 2007)12. However, a major problem in 

measuring the resilience is the ambiguity about whether the disturbance should be 

applied to the control variables13 or the state variable (Van Nes and Scheffer 2007). In 

addition, in complex models with multiple state variable, finding the maximum 

disturbance is not easy because the perturbation can be applied in multiple ways (Van 

Nes and Scheffer 2007).  

                                                 

10 Van Nes and Scheffer (2007) have shown that critical slowing down (particularly recovery rate) can be 

an indicator of instability in the system. 
11 defined as the system ability to absorb disturbances without being tipped to a different attractor (Van 

Nes and Scheffer 2007) 
12 The term “resilience” should not be confused with the term “engineering resilience” which addresses the 

recovery rate from a perturbation in the system. “Resilience” or “ecological resilience” is the width of the 

basin of attraction.  
13 Independent/control/ input variable is defined as the exogenous variables in the system that cause and 

influence the dependent variable 
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CHAPTER II 

DEFINITION OF A TIPPING POINT 

Gladwell (2006) defines one tipping point as “that one dramatic moment in an 

epidemic when everything can change all at once”. By making different examples like 

the shift in fashion trends and smoking, he shows that at the tipping point a small change 

in the system can cause dramatic changes and make the system to move away from its 

current stable state. 

Per Bak et al. (1987; 1988) show that dynamical systems naturally move towards 

a “self-organized critical point”. This critical point is an equilibrium attractor in which 

the system tends to stay. They explain the idea by giving a simple example of a “pile of 

sand”. When the pile is being built, as new grains of sand are added, the pile grows and 

the slope increases. However, when the slope reaches a critical angle (“angle of 

repose”), if any more grain of sand is added it will slide off. Before the critical angle, the 

system is stable but as the critical angle is passed, the system moves away from its stable 

condition and collapses. 

Sterman (2000) describes that in infectious diseases, there is a threshold (a 

tipping point) beyond which the diseases become an epidemic. Below a tipping point, 

negative feedback loops are dominant and the system is stable. If a new disease arrives, 

there will only be a few cases and people recover fast. However, when the system 

crosses the tipping point, the positive feedback loops dominate the negative feedback 

loops. In the case of a new disease, it spreads wildly and becomes an epidemic.  

Repenning (2001) uses this idea and defines the tipping point in product 



 

15 

development systems as “the balance between the workload and resources” in a project. 

When the project passes a threshold (a tipping point), the organization will have 

difficulty performing all the project tasks and cannot execute the project.  

Similarly, Taylor and Ford (2006; 2008) define a tipping point as “a set of 

conditions that separate two very different, internally driven, behavior modes”. In their 

study, they show that when a development project crosses these conditions, it becomes 

unstable and will eventually fail. 

Lamberson and Page (2012) define tipping points in social systems as 

“discontinuities between current and future states of a system”. At a tipping point, small 

changes in a variable will significantly impact the future state of the system. Wolfram in 

his book “A new kind of science” divided behaviors of a system into four types: stable 

points, cycles, randomness, and complexity (Lamberson and Page 2012). Accordingly, 

Lamberson and Page (2012) group tipping points into two categories: a system can either 

tip “within class” (e.g. from one equilibrium to another) or “between class” (e.g. from an 

equilibrium to chaos). The current work includes both classes. 

Sole et al. (1996) give a full summary of different types of phase transitions. 

Near a critical point (an “instability point”), a system undergoes some qualitative 

changes. In a first-order phase transition, the system moves from one state to a different 

state, a phenomenon observed in many physical and biological systems. The best 

example of a first-order phase transition is the transition of water from liquid to gas. In a 

second-order phase transition, when the critical point is reached, the system has two 

potential new states. In other words, at the critical point, a bifurcation occurs and any 
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perturbation will lead the system towards one of the new states. 

Lenton (2011) describes a tipping point as a critical point at which a small 

change can provoke a nonlinear response in the system and change the future state of the 

system. He gives “Greenland ice sheet, Amazon rainforest and West African monsoon” 

as examples of systems that have been pushed passed their tipping point by human 

activities.  He claims this transition from the current state of the system to another state 

resembles a “bifurcation” behavior, a theory in nonlinear dynamics.  

In a separate work, Kuehn (2011), uses the terms “critical transition” and 

“tipping point” to describe the situation when a system is moved to an attractor far away 

from its original one. He also describes this change to be abrupt in comparison to regular 

system changes. He gives a summary of bifurcation theory as the mathematical 

framework which can be applied in critical transitions.  

Many other researchers have used the term bifurcation and tipping point 

interchangeably as well. Ditlevsen and Johnson (2010) describe a tipping point as a 

bifurcation point beyond which a structural change happens in the system. Thompson 

and Sieber (2012) see the climate tipping point as an abrupt and often irreversible 

change in the system. They also relate this event to bifurcations where the state of the 

system becomes unstable and the system suddenly moves to a completely different state.  

Scheffer et al. (2001; 2009; 2012) state that in systems with more than one stable 

equilibrium14, when the system crosses a critical threshold (a bifurcation point), it is 

                                                 

14 Defined as a set of conditions or dynamic states toward which the system (with nonzero initial 

conditions) converges over time 
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either directed towards another (contrasting) state or is moved from a stable attractor to a 

cyclic or chaotic attractor. In other words, at bifurcation points, the system becomes very 

sensitive so that a small perturbation creates a large transition in the system. They refer 

to these transitions in ecosystem and climate as “critical transitions” and call the 

bifurcation points, tipping points. Furthermore, Scheffer et al. (2009) distinguish three 

different types of bifurcations: (1) “safe bifurcation” when the system is switched from 

one stable state to another stable state; (2) “explosive bifurcation” when the system 

moves far away from equilibrium but in the end returns to the initial stable state and (3) 

“dangerous bifurcation” where the dynamics of the system after tipping is different from 

what it has shown before. In system dynamics terms, a positive feedback drives the 

system towards a contrasting state. 

In a slightly different definition, Van Nes and Scheffer (2007), Morrison (2008) 

and Ellison and Fudenberg (2003) describe a tipping point as an unstable equilibrium. 

Some complex systems have multiple equilibria and tipping points. When the system is 

close to an unstable equilibrium (a tipping point), it can easily be tipped to an 

“alternative basin of attraction” (Van Nes and Scheffer 2007). This new basin can either 

degrade the system [e.g. “catastrophic shifts in rangelands” (Scheffer et al. 2009)] or 

improve it [e.g. developing a continuous proficiency with a new skill as described in the 

learning curve model of Morrison (2008)]. 

Mrotzek (2011) gives an opposite definition of a tipping point. He claims when a 

system passes a critical point (tipping point), it moves away from its stable equilibrium 

to an unstable position, entering a catastrophic state.  
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These explanations of a tipping point have some features in common: 

1. The system is believed to have more than one equilibrium state and the tipping 

point is at the unstable equilibrium. 

2. There exists a threshold at which qualitative changes occur in the system (Kuehn 

2011). 

3. This change is relatively abrupt in comparison to regular system changes (Kuehn 

2011).  

4. The transition is either irreversible (Thompson and Sieber 2011; Beaulieu et al. 

2012) or the energy required to move the system back to its original state is more 

than the required energy to tip the system. “The forward and backward switches 

occur at different critical conditions” (Scheffer et al. 2001).  

5. There is a general agreement that this phenomenon is mathematically similar to 

the bifurcation theory in nonlinear dynamics.  

However, reviewing the literature reveals a problem in defining a tipping point. 

Some authors have defined a tipping point as a point in time (Gladwell 2006; Lamberson 

and Page 2012). Some have explained the conditions and behavior of the system in 

proximity of a tipping point (Lenton 2011; Sieber et al. 2012). Other have more focused 

on the structure of the system (Scheffer et al. 2001; Scheffer et al. 2009; Scheffer et al. 

2012; Ditlevsen and Johnsen 2010). For this study, an improved definition of a tipping 

point that includes different perspectives is used: 

• Tipping point behavior: 

Tipping point behavior is the sudden, large and often irreversible shift of 
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the system from its state to an alternative attractor. Near a tipping point, a system 

becomes sensitive to changes and any small perturbation can tip the system to the 

other attractor. 

• Tipping point conditions: 

Tipping point conditions are the values of the system and tipping 

variable(s)15 which make the system shift between the two attractors possible.  

• Tipping point structure: 

Tipping point structure is the internal components and connections of the 

system that create qualitatively different basins of attraction and is based on the 

feedback structure of the system.  

The improved definition of a tipping point has two important implications. First, 

tipping points occur when the system moves from one attractor to a qualitatively 

different attractor. If there is not a qualitative difference between the two attractors, the 

system is not considered to have a tipping point. An example is a system with a 

dominant goal seeking behavior. In this example, the system always has a stable 

attractor. Although the value of the dependent variable16 at the attractor differs from one 

set of conditions to another, the two attractors are not qualitatively different from one 

another. Second, changes in the system behavior without any change in the system 

attractor are not considered as tipping points. In the previous example, if the system 

                                                 

15 System control variables that have the highest leverage and can cause the system to tip (excludes initial 

values of the dependent variable(s)). The value of tipping variable(s) is a proxy for the closeness to the 

tipping point. 
16 Dependent/state/target variable is defined as the variable whose value depends on the control variables 

and is being tested and measured 
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behavior changes from the normal goal seeking to a cyclic behavior around the stable 

attractor, this is not considered as a tipping point because there are not two distinct 

attractors in the system.  
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CHAPTER III 

MODEL LIBRARY AND TIPPING POINT TAXONOMY 

A Library of Tipping Point Models 

The sudden change in the behavior of the system due to a tipping point can be 

explained by the feedback structure of the system17. To gather more knowledge about 

system structures that can create multiple attractors and thereby tipping points, a set of 

pre-validated system dynamics models were collected to develop a model library. The 

tipping point model library includes system archetypes and models of real systems that 

inherently have multiple attractors and have shown tipping point dynamics, including:  

1. Models based on system archetypes (Senge 2006; Senge 2014) 

2. Firefighting in product development (Repenning 2001; Black and Repenning 2001)  

3. Forest fire management in Portugal (Collins et al. 2013) 

4. Sustainable campus improvement program design using energy efficiency and 

conservation (Faghihi et al. 2014) 

5. SIR epidemic: an epidemic model that considers a fixed population with three 

components (a) susceptible (b) infected, and (c) removed (Kermack and McKendrick 

1927; Sterman 2000) 

6. World 3, a model that studies the carrying capacity of the earth for human activities 

(Forrester 1971; Meadows et al. 1972) 

7. Kaibab, a model that studies the overshoot of the deer in Kaibab Plateau in northern 

                                                 

17 Tipping points that are caused by large external pulses are excluded from this study. 



 

22 

Arizona (Goodman 1997; Ford 2000) 

8. Learning curve (Morrison 2008) 

9. Fishbanks, a renewable resource management simulation (Meadows et al. 1993) 

10. Arms Race (Senge 2006; Senge 2014) 

11. Limerick construction project model (Taylor and Ford 2006; Taylor and Ford 2008) 

12. Social impact bonds, a model that studies the benefits of using social impact bonds in 

rehabilitation programs of Peterborough prison to reduce prison population (White 

2014) 

The tipping point model library was used to develop and test the taxonomy of 

tipping point types as described here. However, for the purpose of hypothesis testing and 

because of the similarities in the system structures, eight of these models were selected 

for further study. These eight models fall into two groups based on their complexity. The 

first group of the selected models is four system dynamics archetypes, simple models 

that are the building blocks of complex models: (1) limits to growth, (2) fixes that fail, 

(3) reinforcing loop, and (4) escalation. The second group focuses on models of real 

systems that are more complex and have multiple stock variables: (1) fish banks, (2) 

Limerick project, (3) arms race and (4) social impact bonds.   

Brief Descriptions of the Models in the Library 

Limits to Growth Archetype 

This system archetype (Senge 2006; Senge 2014) models the growth of a 

population limited by a fixed carrying capacity. The model consists of one reinforcing 
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loop and one balancing loop.  The reinforcing loop represents the effect of births on the 

population. The birth rate is the multiplication of a fractional change rate by the current 

population. As the population increases, the birth rate increases, further adding to the 

stock of the population. The balancing loop shows the impact of deaths on the 

population. At the beginning, the birth rate is a large number. But as the population 

increases and gets closer to the system’s carrying capacity, the birth rate decreases over 

time which will reduce the stock of the population. A stock and flow diagram of “limits 

to growth” is shown in Figure 1 (based on Bourguet-Díaz and Pérez-Salazar (2003)). 

This archetype is particularly important because it is the base structure of many real 

systems other than population growth. Systems in which the growth of the stock is 

restricted by limiting conditions can be modeled using the limits to growth18 

formulation. Credit card balance, limits to the success of a product, the infectious 

population in the SIR epidemic model (Kermack and McKendrick 1927), learning curve 

(Morrison 2008) are some of the examples that use the limits to growth structure as their 

basis.  

 
Figure 1 - Stock and flow diagram of limits to growth archetypes (based on Bourguet-

Díaz and Pérez-Salazar (2003)) 

                                                 

18 Also known as logistic growth 
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Equations (modified from Bourguet-Díaz and Pérez-Salazar (2003)): 

Population= INTEG (birth rate-death rate,5)  [dependent variable] 

birth rate=(fractional change rate)*Population 

death rate=(fractional change rate)*Population*Population/carrying capacity 

carrying capacity=10 

fractional change rate=[-1,1, step=0.1]   [tipping variable] 

       (a)                        (b)  

  
   

Figure 2 (a-b) - Limits to growth behavior graphs over time 

2(a) behavior of population over time for three system conditions (at the tipping point, below the 

tipping point, and over the tipping point) 

2(b) value of the fractional change rate over time for three system conditions 

The fractional change rate is the tipping variable in the system which represents 

the capital growth rate. If the fractional change rate (f) is zero, the birth rate is equal to 

the death rate and the population neither grows nor decreases over time (graph 1 in 

Figure 2 (a-b)). However, this equilibrium is not stable and any change in the fractional 

change rate moves the system away from this unstable state (the tipping point). When 

the fractional change rate is negative (graph 2 in Figure 2b), death rate becomes larger 

than the birth rate and thus, the net birth rate is negative and the population goes extinct 
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(graph 2 in Figure 2a). When the fractional change rate is positive (graph 3 in Figure 

2b), the birth rate is larger than the death rate. In this case, the population increases over 

time until it reaches the carrying capacity (graph 3 in Figure 2a). The results are based 

on the assumption that the initial population is a positive number and much smaller than 

the carrying capacity of the system. Although in natural system, it is not possible to have 

a negative fractional change rate, in systems like the credit card balance or the limits to 

success of a new product, negative values of fractional change rates are conceivable, 

hence, this variable has been used as the tipping variable in the system. 

Fixes That Fail Archetype19 

This system archetype (Senge 2006; Senge 2014) models the quick fixes to a 

problem and the negative impacts of the delayed unintended consequences. The model is 

composed of a balancing loop and a reinforcing loop. The quick fix initially improves 

the problem systems but after some delay, the negative effects continue to accumulate 

over time and not only the problem symptoms return but also they may get worse than 

the original problem.  Figure 3 shows a stock and flow diagram of this archetypes (based 

on Bourguet-Díaz and Pérez-Salazar (2003)).  

                                                 

19 Shifting the burden archetype is an expansion of fixes that fail that includes both the short term 

and long term solutions to a problem as well as their unintended consequences. Because of the similarities 

in the model structure, shifting the burden has been excluded from the hypotheses testing.  
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Figure 3 - Stock and flow diagram of fixes that fail archetype (based on Bourguet-Díaz 

and Pérez-Salazar (2003))  

Equations (modified from Bourguet-Díaz and Pérez-Salazar (2003)): 

Problem Symptom= INTEG (long term consequences -fix,50) [dependent variable] 

long term consequences=fractional consequences rate*DELAY1( fix, 1) 

fractional consequences rate=[0.1,1.9, step=0.1]   [tipping variable] 

fix= fractional fix rate*Problem Symptom 

fractional fix rate=2 

       (a)                        (b)  

  

Figure 4 (a-b) - Fixes that fail behavior graphs 

4(a) behavior of problem symptoms over time for three system conditions (at the tipping point, 

below the tipping point, and over the tipping point) 

4(b) value of the fractional consequences rate over time for three system conditions 
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If the long-term consequences are equal to the fixes, the problem symptoms do 

not change over time and the system sits at its tipping point. If the long-term 

consequences are small enough then the problem symptoms disappear over time (graph 

2 in Figure 4a). However, if the negative effects become larger than the fixed rate, the 

problem symptoms worsen over time (graph 3 in Figure 4a). The tipping variable in the 

system is the “fractional consequences rate” which is the rate at which a fix to a solution 

causes new issues. 

Reinforcing Loop Archetype 

This system archetype is a single reinforcing loop (Senge 2006; Senge 2014). 

There is not a real system that is solely made of a single reinforcing loop and a counter 

balancing loop eventually limits the reinforcing behavior of the system.  However, the 

behavior of some systems can be dominated by a reinforcing loop for a period before the 

balancing mechanisms kick in. During this time, the dominant reinforcing loop can 

either turn in a virtuous cycle or a vicious cycle. A change in the direction of the 

dominant reinforcing loop creates a tipping point. Studying this archetype gives some 

insight into the mechanism of the change in the direction of a reinforcing loop by 

isolating the reinforcing behavior of the system from irrelevant balancing mechanisms. 

Figure 5 shows a stock and flow diagram of the reinforcing loop archetype (based on 

Bourguet-Díaz and Pérez-Salazar (2003)).  
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Figure 5 - Stock and flow diagram of the reinforcing loop archetype (based on Bourguet-

Díaz and Pérez-Salazar (2003)) 

Equations (modified from Bourguet-Díaz and Pérez-Salazar (2003)): 

Current State= INTEG (flow, 5)     [dependent variable] 

flow=Current State * (fractional change rate) 

fractional change rate=[-1,1, step=0.1]    [dependent variable] 

The tipping variable in this archetype is the “fractional change rate” which can 

represent the growth rate in a real system such as an interest rate or a decay rate such as 

a loss rate. When the fractional change rate (f) is zero the current state of the system 

does not change over time and the system is standing at an unstable equilibrium (its 

tipping point). When the fractional change rate is a positive number, the current state 

grows exponentially over time (graph 2 in Figure 6a). When the fractional change rate is 

negative, the current state decays over time until it reaches an equilibrium at zero (graph 

3 in Figure 6a). 
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  (a)                        (b)  

  

Figure 6 (a-b) - Reinforcing loop behavior graphs 

6(a) behavior of the current state over time for three system conditions (at the tipping point, 

below the tipping point, and over the tipping point) 

6(b) value of the fractional change rate over time for three system conditions 

Escalation Archetype 

Escalation archetype (Senge 2006; Senge 2014) models how the action and 

outcomes of an individual or a group affect the actions and outcomes of another 

individual/group. This archetype is made of two balancing loop which counter-interact 

each other in a way that creates a single reinforcing loop. Figure 7 shows how the 

interaction of two balancing loops can result in a reinforcing loop behavior. Imagine A 

and B are two competing companies. In the escalation dynamics, an increase in A’s 

activities will cause B to increase their activity, resulting in a competition. If “A’s 

results” are better than “B’s results”, the “results of A relative to B” goes up. B feels 

threatened by A and will increase their activity. As the results of B goes up, “the result 

of A relative to B” decreases. This cycle closes the B2 balancing loop in Figure 7a. But 

the “result of A relative to B” is a linking parameter between the two balancing loops. 

The latest decrease in the “result of A relative to B” will threaten A. A increases their 
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activity to get more results and eventually the “results of A relative to B increases, 

making B feel threatened by A and we go through the B2 loop again. This archetype is 

important because several business problems can be modeled on its feedback structure. 

For example, the competition between two companies with the same product to gain 

market share can be modeled using the escalation archetype. If one of the companies 

reduces its product price, the second company will face a drop in its sale and be forced 

to lower its price, resulting in the first company lowering its price further. This 

competition goes on until both companies barely break even and are in danger of going 

out of business. 

  (a)  

 
(b) 

 
Figure 7 (a-b) - Escalation causal loop diagram 

7(a) causal loop diagram of the escalation archetype showing the traditional two balancing loop 

7(b) redrawn causal loop diagram of the escalation archetype showing one large reinforcing loop 
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Figure 8 shows the stock and flow diagram of the escalation archetype as used in 

this work (based on Bourguet-Díaz and Pérez-Salazar (2003)).  

 
Figure 8 - Stock and flow diagram of escalation archetype (based on Bourguet-Díaz and 

Pérez-Salazar (2003))  

Equations (modified from Bourguet-Díaz and Pérez-Salazar (2003)): 

A's Results= INTEG (activity by A, 20)    [dependent variable] 

B's Results= INTEG (activity by B, 20) 

activity by A= (A’s desired advantage ratio-Results of A Relative to B) 

activity by B=- (B’s desired advantage ratio-Results of A Relative to B) 

A’s desired advantage ratio=[0.1,1.9, step=0.1]   [tipping variable] 

B’s desired advantage ratio=1 

Results of A Relative to B=A's Results/B's Results 
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(a)                        (b)  

  
Figure 9 (a-b) - Escalation behavior graphs 

9(a) behavior of the “A’s Results” over time for three system conditions (at the tipping point, 

virtuous cycle, and vicious cycle) 

9(b) value of the “A’s desired advantage ratio” over time for three system conditions 

“A’s desired advantage ratio” is used as the tipping variable in this system. This 

variable represents the desired competitive goals of company A compared to the 

company B’s success. When the “A’s desired advantage” (rA) is equal to the “B’s 

desired advantage” (rB), the system is in an unstable equilibrium. In this state, A’s results 

and B’s results do not change over time. If rA is greater than rB, A’s results and B’s 

results increase over time (Graph 2 in Figure 9a). If rA is less than rB, A’s results and B’s 

results decrease over time (graph 3 in Figure 9a). 

Limerick Construction Project Model 

This model is based on the Limerick Unit 2 nuclear power plant construction 

project as modeled by Taylor and Ford (2006; 2008). Unit 2 of the Limerick nuclear 

power plant is a 1,065 megawatt unit in Philadelphia. Construction began in June of 

1974 and was scheduled to be completed in September of 1980. However, the project 

progress was only 36% in 1980 and construction was stopped in 1982 due to poor 
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performance. The model (Figure 10) shows the flow of work packages between three 

main development activities: initial completion, quality assurance and rework. It consists 

of one balancing loop (project progress) and three reinforcing loops (rework cycle, ripple 

effects and “haste makes waste”). As work progresses, work packages are moved from 

initial completion backlog to quality assurance backlog. If there is no error found in the 

work, the work packages are approved and moved to the work releases. This balancing 

loop makes the project progress. However, in any activity, a proportion of work is 

erroneous due to various factors such as human errors, computation errors, etc. and 

needs to be redone. The first reinforcing loop represents an established project process 

known as rework cycle (Cooper 1980; Ford and Sterman 1998; Repenning and Sterman 

2001; Ford and Sterman 2003a; Love et al. 1999; Lyneis and Ford 2007; Godlewski et 

al. 2012; Ye et al. 2014). The proportion of work that is erroneous requires rework and 

enter rework cycle. After the work is redone, it returns to quality assurance to be re-

checked. The second reinforcing loop models the impact of schedule pressure on 

performance. “Haste makes waste” reinforcing loop (Lyneis and Ford 2007) degrade 

both time and quality performance and decrease the productivity. When a project is 

behind schedule the workforce works harder and faster in order to compensate for the 

anticipated delay. But working under pressure decreases the quality of work (Ford and 

Sterman 2003b) and productivity (Godlewski et al. 2012). As a result, more mistakes are 

generated and the project backlog20 increases over time. The last reinforcing loop shows 

                                                 

20 Defined as the number of work packages that need to be completed 
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the unintended side effects of changes in the project, aka “ripple effects” (Bower 2000; 

Love and Edwards 2004; Lyneis and Ford 2007; Ivanov et al. 2014). Changing a work 

package can affect other work packages, increasing the total amount of work that must 

be completed. This increase in the scope creates more side effects, which further 

increases project scope (R3). Figure 10 shows a stock and flow diagram of the Limerick 

model (Taylor and Ford 2006; Taylor and Ford 2008). See Taylor and Ford (2006; 2008) 

for model equations. 

 
Figure 10- Limerick construction project model (adapted from Taylor and Ford (2008) 

with permission from ASCE) 
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Assurance Backlog 

The tipping variable used in this work is the “base ripple effects strength”, which 

represents the complexity of the system and the level of interdependency between 

various tasks. To find the tipping variable, statistical screening (Ford and Flynn, 2005; 

Taylor et al., 2010) was used to find the correlation between the system exogenous 

variables and the dependent variable (“total project backlog”); the “base ripple effects 

strength” was found to have the highest correlation and, therefore, was identified as a 

high leverage variable and was used as the tipping variable in this study. To find the 

value of “base ripple effects strength” in a real project, a manager can compare the 

complexity of his/her project to previous projects and estimate the “base ripple effects 

strength”. When the base ripple effects strength is less than 0.67 (graph 3 in Figure 11b), 

work is being approved faster than adding extra work due to rework and ripple effects. 

As long as approve work rate is greater than the rework rate, the backlog of the project 

decreases over time and the project finally complete (graph 3 in Figure 11a). However, if 

the base ripple effects strength is greater than 0.67 (graph 2 in Figure 11b), the 

reinforcing loops become stronger than the balancing loop. The rework rate overpasses 

the approve work rate and, as a result, the backlog of the project increases constantly 

(graph 2 in Figure 11a) and the project eventually fails (Taylor and Ford 2006; Taylor 

and Ford 2008).  
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(a)                        (b)  

  

Figure 11-Limerick construction model behavior graphs 

11(a) behavior of the total project backlog (BLWIP) over time for three system conditions (at the 

tipping point, below the tipping point, and over the tipping point) 

11(b) value of the base ripple effects strength over time for three system conditions 

Fish Banks21 

Dennis Meadows developed the fish banks game to raise awareness of how 

natural resources can be used effectively (Whelan 2001). Whelan (2001) under the 

supervision of Jay Forrester compiled and published the game. The players of the game 

manage their own fishing company with the same operating cost and technology with the 

objective of maximizing their profits. Each fishing company starts with an equal amount 

of resources (money and ships). At the end of each simulation year, the players decide 

about purchasing new ships and whether they want to fish or not and where to fish. The 

                                                 

21 Another model with a similar structure to fish banks is the Kaibab Plateau model. This model 

studies the overshoot of the deer in Kaibab Plateau in northern Arizona (Goodman 1997; Ford 2000). 

Because of the similarities in the model structures, only fish banks model has been included in the 

hypotheses testing.  



 

37 

model has three reinforcing loops (hatching and catching fish, and reinvestment) and two 

balancing loops (fish death and buying ship). Figure 12 shows the stock and flow 

diagram of the fish banks model (Whelan 2001). 

 

Figure 12-Fish banks game (adapted from Whelan (2001) with permission of MIT) 

Legend of Loops 

R1-Hatching: Fish-fish hatch rate-fish 

R2- Reinvestment: Ships-total catch per year-revenues-yearly profits-ship building rate-Ships 
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B2-Catching Fish: Fish-density-catch per ship-total catch per year-Fish 

Equations (Whelan 2001): 
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carrying capacity=1200 

fish hatch rate=Fish*hatch fraction 

hatch fraction=[0.5:9.5] every 0.5 step    [tipping variable] 

total catch per year= catch per ship*Ships 

catch per ship=table 2(density) 

table 2([(0,0)-(10,40)], (0,0), (1,5), (2,10.4), (3,15.9), (4,20.2), (5,22.1), (6,23.2),  

(7,23.8), (8,24.2), (9,24.6), (10,25)) 

density=Fish/area 

area=100 

Ships= INTEG (ship building rate, 10) 

ship building rate=fraction invested*yearly profits/ship cost 

fraction invested=0.2 

ship cost=300 

yearly profits=revenues-operating costs 

revenues=fish price*total catch per year 

operating costs=Ships*unit operating costs 

fish price=10 

unit operating costs=250 

When the system is in equilibrium, the fish hatching rate (the tipping variable) is 

equal to the sum of fish death rate and total catch per year; hence, the number of fish 

stays at the maximum sustainable number after an initial adjustment period. If the values 

of the variable change and the fish loss becomes greater than the fish hatch, the system 

gets out of equilibrium and fish population decays. As more fish is caught, more revenue 

and profit streams into the company. The company can spend the extra profit to buy 

more ships and catch more fish. But catching more fish decreases the fish population and 

after a certain point, the natural system is not able to recover from this sudden drop in 
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the fish population and the fish population goes to zero (graph 2 in Figure 13a). If the 

fish hatching rate is sufficiently greater than the fish loss, the fish population shows an 

initial growth but this growth is eventually limited by the carrying capacity of the system 

(graph 3 in Figure 13a). If the fish hatch fraction increases further, the system enters a 

cyclic behavior and the fish population oscillates around a sustainable fish population. 

       (a)                        (b)  

  

Figure 13- Fish banks behavior graphs 

13(a) behavior of the fish population over time for three system conditions (at the tipping point, 

below the tipping point, and over the tipping point) 

13(b) value of the hatch fraction over time for three system conditions 

Arms Race 

The arms race between the United States and the Soviet Union during the cold 

war can be modeled as an escalation archetype.  Figure 14 shows a simplified stock and 

flow diagram of an arms race model (based on Ventana Systems (2012)). See Vensim 

user guide (Ventana Systems 2012) for the full stock and flow diagram and model 

equations. The model has multiple balancing and reinforcing loops. But the eventual 

behavior of the system is derived from the R1 reinforcing loop that encourages the arms 
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race between the two countries. 

 
Figure 14-Arms race model (simplified from Vensim user guide (Ventana Systems 2012) 
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tries to increase its military strength. An increase in country A’s military strength will 

alarm country B who will consequently increase its military strength, activating a vicious 

reinforcing cycle (graph 2 in Figure 15). The overall behavior of the system is 

reinforcing and it can either spin in the virtuous cycle of decreasing the arm force of 

both countries (graph 3 in Figure 15) or the vicious cycle of increasing the arm forces. 

The “desired strength ratio of A” is the tipping variable in the system. This ratio 

represents the armament goal of country A in proportion to their opponent country B 

armament. 

       (a)                        (b)  

  

Figure 15-Arms race behavior graphs 

15(a) behavior of the “total arms A” over time for three system conditions (at the tipping point, 

vicious cycle, and virtuous cycle) 

15(b) value of the “desired strength ratio A” over time for three system conditions 

Social Impact Bonds in Peterborough Prison 

White (2014) models the impact of social bonds on prison rehabilitation 

programs in HM Prison Peterborough.  This model shows the tradeoff between prisoner 

rehabilitation costs and recidivism. The model is based on the idea that rehabilitation 
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programs can decrease the total prison population by decreasing the recidivism and 

reconviction.  Dynamics of relations between social impact bonds and prison population 

is shown in Figure 16 (simplified from White (2014)). See White (2014) for full model 

equations. 

 
Figure 16-Social impact bonds model (simplified from White (2014)) 

If the money allocated to rehabilitation program is not enough, it initiates the 

vicious cycle where lack of rehabilitation program causes more recidivism and increases 

the prison population. As a result, the operating costs go up and even less money can be 

spent on rehabilitation programs (graph 2 in Figure 17a). However, if enough money is 

spent on the rehabilitation program through social impact bonds, the reinforcing loop 

works as a virtuous cycle. Rehabilitation programs decrease the number of reconviction 

and the prison population, resulting in more saving in operating costs and allowing more 

money to be spent on the rehabilitation programs (graph 3 in Figure 17a). The tipping 
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variable used in this system, is the variable “fraction of savings returned” which is the 

surplus of the budget that is returned and reinvested in the rehabilitation program. 

       (a)                        (b)  

  

Figure 17-Social impact bonds behavior graphs 

17(a) behavior of the total prison population over time for three system conditions (at the tipping 

point, vicious cycle, and virtuous cycle) 

17(b) value of the fraction of surplus returned over time for three system conditions 

A Taxonomy of Tipping Point Types 

The sudden change in the behavior of the system due to a tipping point can be 

explained by the feedback structure of the system22. To study the tipping point 

structures, first, a causal loop diagram of the formally validated models was used to 

identify the main reinforcing and balancing loops in the systems. Second, the main stock 

variable was selected in each model. Then, the exogenous variables were changed and 

the systems were allowed to run naturally over a long period of time and under different 

conditions (different values of control variables) to identify the alternative attractors 

                                                 

22 Tipping points that are caused by large external pulses are excluded from this study. 
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(stable or unstable). Finally, the causal loop diagram was revisited to identify any 

potential similarities in the feedback structures. After studying the feedback structure of 

the models, three potential tipping point types were identified. 

Type I - Change in Loop Dominance 

The first type of a tipping point is created by the change in the dominance in 

feedback loops. When there is a balance between the reinforcing loops and balancing 

loops, the system stands at an unstable equilibrium (the tipping point). If the balancing 

loop becomes dominant, the system moves towards a stable equilibrium. However, if the 

reinforcing loop becomes dominant, due to the nature of a reinforcing loop the impacts 

of the reinforcing loop are intensified over time and the reinforcing loop becomes 

stronger until it is limited by other balancing loops in the system.  The SIR epidemics 

model (Kermack and McKendrick 1927; Sterman 2000) is an example of this type of 

tipping point. In case the balancing loops are dominant in the system, an arrival of a new 

disease will only cause a few infectious cases and the infected people will recover 

quickly. However, if the reinforcing loops become dominant in the system, the new 

disease will spread widely and becomes an epidemic. Figure 18 shows a typical behavior 

of type I tipping points. 
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Figure 18-An example behavior of type I tipping points 

Type II - Change in Loop Direction 

The second tipping point type occurs when the dominant reinforcing loop starts 

spinning in the opposite direction. The dominant reinforcing loop has the potential to 

spin in two different directions: 1) vicious cycle and 2) virtuous cycle. At the tipping 

point, the direction of the reinforcing loop changes from vicious cycle to virtuous cycle 

or vice versa. In this case, there is no alternative stable equilibrium and the equilibrium 

state, if existing, is unstable. Escalation archetype is a good example of this type of 

tipping point. This archetype is made of two balancing loop which counter-interact each 

other in a way that creates a single reinforcing loop. There are two stock variables in the 

system. At the tipping point, both stock variables are standing at an equilibrium. 

However, this state is not stable. Any change in values of the parameters will move the 

system to either a vicious cycle or virtuous cycle, resulting in infinite increase or 

decrease of the state variables. Figure 19 shows a typical behavior of type II tipping 

points. 
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Figure 19-An example behavior of type II tipping points 

Figure 20 describes type I and type II tipping points using an analogy of a ball 

and a bowl. 

       (a)                        (b)  

 
Figure 20 (a-b)-Ball and bowl analogy to describe tipping point types 

Balls represent the state variable and arrows represent disturbances. Valleys are the attractors 

and the peaks are tipping points. 

20(a) Tipping point type I: if the balancing loop is dominant the ball remains in attractor #1. If 

the reinforcing loop becomes dominant, the balls shifts to the attractor #2.  

20(b) Tipping point type II: the system is standing on top of a hill and can potentially go down 

either side of the hill (vicious cycle vs. virtuous cycle). 
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Type III - Change in System Structure 

In this type of a tipping point, there is a qualitative change in the system 

structure. Unlike the first type of tipping points, the reinforcing loops (if existing) and 

balancing loops are not working against each other. The balancing loop is dominant but 

because of the changes in the values of the parameters, the structure of the balancing 

loop will change and the system behavior will be like that of a reinforcing loop. A single 

balancing loop is an example of this type of tipping point. For hypothetical negative 

values of fractional change rate, the balancing loop is converted into a reinforcing loop. 

Figure 21 shows a typical behavior of type III tipping points. Because no example of this 

tipping point type was found in the models of real systems, it has been excluded from the 

hypotheses testing. 

 
Figure 21-An example behavior of type III tipping points 

After identifying the tipping point types, the models in the library were 

categorized in each type. See Table 1 for tipping point types and their examples from 

system dynamics archetypes and real systems.  
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Table 1-Taxonomy of tipping point types with examples 

Examples of 
different TP Types 
in 

TP Type I 
Change in Loop Dominance 

TP Type II 
Change in Loop Direction 

TP Type III 
Change in Structure 

Archetypes 1. Limits to growth (Senge 2006; 
Senge 2014; Bourguet-Díaz and 
Pérez-Salazar 2003) 
2. Fixes that fail (Senge 2006; 
Senge 2014; Bourguet-Díaz and 
Pérez-Salazar 2003) 

1. Reinforcing loop (Senge 2006; 
Senge 2014; Bourguet-Díaz and 
Pérez-Salazar 2003) 
2. Escalation (Senge 2006; Senge 
2014; Bourguet-Díaz and Pérez-
Salazar 2003) 

1. Balancing Loop 
(Senge 2006; Senge 
2014; Bourguet-Díaz and 
Pérez-Salazar 2003) 

Models of real 
systems 

1. Limerick construction project 
model (Taylor and Ford 2006; 
Taylor and Ford 2008) 
2. Fish banks (Meadows et al. 
1993; Whelan 2001) 

1. Arms race (Ventana Systems 
2012) 
2. Social Impact Bonds in 
Peterborough Prison (White 2014) 
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CHAPTER IV 

HYPOTHESIS 1 

Hypothesis 1 Introduction 

Many researchers have used the term bifurcation and tipping point 

interchangeably (Kuehn 2011; Ditlevsen and Johnsen 2010; Sieber et al. 2012; Scheffer 

et al. 2001; Scheffer et al. 2009; Scheffer et al. 2012). According to the nonlinear 

dynamics theory, near a bifurcation, the solutions to the set of differential equations “no 

longer decay exponentially fast” (Strogatz 2014). “This lethargic decay is called critical 

slowing down in the physics literature” (Strogatz 2014). Although mathematical models 

of limited dependent variables show the “critical slowing down” near their critical 

points, the applicability of “critical slowing down” in realistic and more complex models 

with multiple variables has not been thoroughly studied.  

The model library collected in this work includes a wide range of models from 

simple models with a limited number of state variables (system archetypes) to more 

complex models that represent real systems. The model library provides an opportunity 

to test the mathematical theory in more realistic settings without using an analytical 

approach. The first hypothesis will test if system dynamics models studied here show 

features of a bifurcation at their tipping points, i.e. when a system is closer to a tipping 

point, it will reach its stable equilibrium (the solution to the set of differential equations 

that model the system) slower than when it is far from the tipping point.  

H1: As a system approaches a tipping point, the time required for the system to 

reach its stable equilibrium increases. 
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In a ball and bowl analogy (Figure 22 (a-c)), the ball represents the dependent 

variable and the valley is the stable equilibrium. The system is more stable when it is far 

from the tipping point, in the analogy, this can be shown by having a deeper valley 

(Figure 22b). When the system is close to the tipping point, it is less stable and can be 

shown as having a flatter valley (Figure 22c). The ball is standing at the top of the valley 

(initial conditions). At time=0, the ball starts rolling (Figure 22a) and it rests at the 

bottom of the valley (the attractor) at time=t (Figure 22b&c). Before the ball comes to a 

rest, it may oscillate around the attractor (e.g. fish banks model starts oscillating for 

some system conditions). The amount of time that the ball takes to move from its initial 

condition to the attractor is proposed as an indicator of a tipping point: as a system 

approaches a tipping point, the amount of time required to reach an attractor increases.  

       (a)            (b)    (c) 

                             

Figure 22 (a-c)- Ball and bowl analogy to describe hypothesis 1 

22(a) system at its initial condition 

22(b) system reaches its attractor faster; system is far away from the tipping point (the valley is 

deeper) 

22(c) system reaches its attractor slower; system is closer to the tipping point (the valley is 

flatter) 

  



 

51 

Hypothesis 1 Testing Procedures 

To test the first hypothesis, simulations are run for different values of the tipping 

variable(s) and the system is left to reach its attractor (without any external 

perturbation). The time required for the dependent variable to reach an attractor (the 

proposed tipping point indicator) is measured in two settings: (a) without any noise in 

the system and (b) with randomness in the system. The detailed steps are as follows: 

1. Choose the dependent variable(s). See Chapter III for a stock and flow diagram 

of the models and equations. 

Example: the stock of “Problem Symptoms” in fixes that fail archetype. 

2. Find system attractors. See Table 2 for details of attractors in each model. 

Example: fixes that fail archetypes has three attractors: zero (stable), initial 

problem symptoms (unstable), and infinity. 

3. Find tipping variable(s). Use statistical screening (Ford and Flynn, 2005; Taylor 

et al., 2010) to find the variable(s) with the highest leverage on the dependent 

variable and identify them as tipping variable(s). The value of tipping variable(s) 

is a proxy for the closeness to the tipping point. Define tipping point conditions 

by finding the values of the control variables (including tipping variables) at the 

tipping point. See Table 2 for details of tipping point conditions in the models 

studied here. 

Example: the tipping variable in the fixes that fail model is the” fractional 

consequences rate” and its value is equal to one at tipping point conditions. 

4. Set the tipping variable(s) at a value other than the tipping point conditions.  
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Example, in fixes that fail archetype, the testing can start from “fractional 

consequences rate” equal to 1.5. 

5. Run simulations and measure how long it takes the dependent variable to move 

away from the original state and reach its stable equilibrium. In case the system 

did not have a stable state (e.g. escalation archetype), the amount of time that the 

dependent variable took to reach a defined large number was used instead.  

6. Incrementally change the tipping variable(s) to move the system closer to or 

further from the tipping point and repeat step 5. 

Example, in fixes that fail archetype, the “fractional consequences rate” (tipping 

variable) was changed between 0.05 and 1.95 every 0.05 steps.  

7. Design randomness into the system that would represent the noise that is present 

in reality and repeat steps 4-6. This is done by changing selected exogenous 

variables dynamically over time. The selected exogenous variables are changed 

at each time step based on a random distribution function within twenty percent 

of their original value. See Appendix A for details of the selected exogenous 

variable and the noise formulation.  

Example: in fixes that fail archetype, the variable “fractional fix rate” is changed 

randomly between 1.6 and 2.4 using a random uniform function.  

See Appendix C for the details of statistical analysis. 
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Table 2-Model-specific Tipping Point Conditions as Used in the Hypotheses Testing 

Model Dependent 
variable (dv) 

Tipping variable23 
(tp var) 

Attractors Tipping point conditions24 

Limits to 
growth 
archetype 

Population 
 

fractional change 
rate 
 

tp var < 0:  dv  0 
tp var = 0: dv = dv0 
tp var > 0: dv  +∞ 

Initial population<<Carrying 
capacity 
Initial population>0 

fractional change rate = 0 

Fixes that fail 

archetype 

Problem 
Symptoms 

fractional 
consequences rate 
 

tp var < 1: dv  0 
tp var = 1: dv = dv0 

tp var > 1: dv  +∞ 

Initial problem symptom > 0 
fractional fixes rate  = 2 
fractional consequences rate = 1 
 

Reinforcing 
loop archetype 

Current State fractional change 
rate 

tp var < 0:  dv  0 
tp var = 0: dv = dv0 
tp var > 0: dv  +∞ 

Initial state > 0 
fractional change rate = 0 

Escalation 

archetype 

A’s Results A’s desired 
advantage ratio 

tp var < 1:  dv  -∞ 
tp var = 1: dv = dv0 
tp var > 1: dv  +∞ 

A’s initial result=B’s initial result 
> 0 
A’s desired advantage ratio = 1 
B’s desired advantage ratio = 1 

  

                                                 

23 It should be noted that a system can have more than one tipping variable. In this study, however, only the control variable with the highest 

levarge on the dependent variable has been identified at the tipping variable. 
24 Although it is possible to have more than one tipping point in the system, in this study only one tipping point, as described in the table, has 

been studied in each model. 
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Table 2 Continued 

Model Dependent 
variable (dv) 

Tipping variable 
(tp var) 

Attractors Tipping point conditions 

Limerick 
construction 
project 

Total Project 
Backlog 

base ripple effects 
strength 

tp var < 0.665:  dv  0 
tp var = 0.665: dv = 17,882 
tp var > 0.665: dv  +∞ 

base rework fraction = 0.3 
base sensitivity to schedule 
pressure = 0.3 
base ripple effects strength = 
0.665 
Project deadline=75 
Initial scope=38,700 

Fish banks Fish Population fish hatch tp var < 5.25:  dv  0 
tp var = 5.25: dv = 825 
tp var > 5.25: dv  oscillation      
  around 2,000 

Ship cost=300 
Fish price=10 
Fraction invested=0.2 
Carrying capacity=1200 
Area=100 
Initial fish=100 
Initial ships=10 

Arms Race Total Arms A desired strength A tp var < 1:  dv  0 
tp var = 1: dv = dv0 
tp var > 1: dv  +∞ 

Initial armament A=Initial 
armament B 
Desired strength B=1 

Social impact 
bonds in 
Peterborough 
prison 

Total Prison 
Population 

fraction of surplus 
returned  

tp var < 0.365: dv  228 
tp var = 0.365: dv = 238 
tp var > 0.365: dv  331 
 

Initial first time offender=87 
Initial reconvicted=260 
Conviction cost=2.853 
Program cost per member=1.5 
Recidivism fraction=0.75 
fraction of surplus 
returned=0.365 
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Hypothesis 1 Results 

The results of hypothesis 1 testing are described in this section. The plot of the 

amount of time that the dependent variable takes to reach an attractor (without any 

external perturbation) versus the value of the tipping variable (used as a proxy for the 

closeness to the tipping point) has been used to test hypothesis 1.  

Limits to Growth Archetype 

     Figure 23 shows the results of hypothesis 1 in limits to growth archetype. The 

x-axis is the tipping variable (fractional change rate) which shows the proximity to the 

tipping point. The y-axis represents the time that the system takes to reach its 

equilibrium state. For negative values of the tipping variable, the system goes to an 

equilibrium at zero and for positive values of the tipping variable, the system has a stable 

equilibrium at the carrying capacity of the system. As the system gets closer to the 

tipping point (tipping variable=0) from either side, the time to reach an attractor 

increases. For example, at tipping variable equal to 1 (Figure 23a), the system takes less 

than one hundred time steps to reach the equilibrium state, whereas, when the tipping 

variable is equal to 0.1 and the system is close to the tipping point, it takes almost 750 

steps to reach the equilibrium. These results support the hypothesis. The time to reach an 

attractor increases as the system approaches the tipping point, even in the presence of 

dynamic exogenous variables (Figure 23b). The results of t-test show that for values of 

|fractional change rate|<0.7, the mean of time to reach an attractor increases significantly 

as the system moves towards the tipping point: for example, there is no statistical 
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difference between the time to reach an attractor when the tipping variable changes from 

1 to 0.9 but when the tipping variable changes from 0.6 to 0.5, the time to reach an 

attractor significantly increases.  

  (a)                        (b)  

 
                         
Figure 23 (a-b)- Results of H1 in limits to growth archetype  

(Tipping variable: fractional change rate; dependent variable: population) 

23(a) time to reach an attractor vs. tipping variable without any noise in the system 

23(b) time to reach an attractor vs. tipping variable with dynamic exogenous variables 

Fixes That Fail Archetype 

    In the fixes that fail archetype, the fractional consequences rate is the tipping 

variable and the system has a tipping point when the fractional consequences rate is 

equal to one. For values of the tipping variable less than one, the system has a stable 

equilibrium at zero. For values of the tipping variable greater than one, the dependent 

variable increases over time. In the second case, the time it takes the dependent variable 

to reach a very large number was measured as the time to reach an attractor (assuming 

the system has an attractor at infinity). As shown in Figure 24a, the simulation results 
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support the hypothesis. As the system gets closer to the tipping point (tipping variable=1 

on the x-axis), the time to reach the stable equilibrium (y-axis) increases and the increase 

is non-linear. The difference between the mean time to reach an attractor is statistically 

significant for all values of the tipping variable. Although having randomness in the 

system (Figure 24b) changes the amount of time required to reach an attractor, it does 

not affect the increasing trend and the results still support the hypothesis.  

   (a)                        (b)  

  
                        
Figure 24 (a-b)- Results of H1 in fixes that fail archetype 

(Tipping variable: fractional consequences rate; dependent variable: problem symptoms) 

24(a) time to reach an attractor vs. tipping variable without any noise in the system 

24(b) time to reach an attractor vs. tipping variable with dynamic exogenous variables 

Reinforcing Loop Archetype 

The reinforcing loop archetype has a stable equilibrium at zero when the 

fractional change rate (tipping variable, x-axis) is negative. For positive values of the 

tipping variables, the stock of the system increases over time in which case the time to 

reach a very large number was measured as the time to reach an attractor. The simulation 
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results of hypothesis 1 testing in the reinforcing loop archetype support the hypothesis 

(Figure 25). As the reinforcing loop archetype gets closer to the tipping point (tipping 

variable=0 as shown on the x-axis in Figure 25), the time to reach an attractor (y-axis) 

increases non-linearly. These results support the first hypothesis. Adding noise into the 

system (Figure 25b) does not affect the results. The changes in the time to reach an 

attractor are statistically significant when |tipping variable|<0.5. 

   (a)                        (b)  

  
                        
Figure 25 (a-b)- Results of H1 in reinforcing loop archetype 

(Tipping variable: fractional change rate; dependent variable: current state) 

25(a) time to reach an attractor vs. tipping variable without any noise in the system 

25(b) time to reach an attractor vs. tipping variable with dynamic exogenous variables 

Escalation Archetype 

The escalation archetype does not have a stable equilibrium. The dependent 

variable either increases or decreases infinitely depending on the value of the tipping 

variable. The time to reach a very large positive/negative number has been measured as 

the time to reach equilibrium, respectively. The results of testing H1 in the escalation 
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archetype are demonstrated in Figure 26. As the system gets closer to the tipping point 

(Figure 26a, tipping variable =1 on the x-axis), the time to reach an attractor increases 

from less than 50 times steps to 400 time steps. The increase in the amount of time is 

non-linear. The insertion of randomness in the system does not have any impact on the 

results as shown in Figure 26b. The results of a t-test show a statistically significant 

change in the time to reach an attractor when the tipping variable is between 0.4 and 1.4. 

   (a)                        (b)  

  
 
Figure 26 (a-b) - Results of H1 in escalation archetype 

(Tipping variable: A’s desired advantage ratio; dependent variable: A’s results) 

26(a) time to reach an attractor vs. tipping variable without any noise in the system 

26(b) time to reach an attractor vs. tipping variable with dynamic exogenous variables 

Limerick Construction Project 

Figure 27 shows the results of testing H1 in the first realistic model in the library 

(Limerick construction project). The tipping variable (base ripple effects strength) is 

shown on the x-axis. The system is at the tipping point when the tipping variable is equal 

to 0.665. The y-axis shows the time to reach an equilibrium state. As the system gets 
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closer to the tipping point, the time to reach attractor increases (Figure 27a) and the 

results support the hypothesis. Based on the results of the t-test, for values of base ripple 

effect strength between 0.35 and 0.75, an increase in the time to reach an attractor can be 

an indicator of approaching a tipping point. The introduction of randomness to the 

system changes the time to reach attractor but does not impact the general increasing 

trend ((Figure 27b).    

   (a)                        (b)  

  
                       
Figure 27 (a-b)- Results of H1 in Limerick construction project model 

(Tipping variable: base ripple effects strength; dependent variable: total project backlog25) 

27(a) time to reach an attractor vs. tipping variable without any noise in the system 

27(b) time to reach an attractor vs. tipping variable with dynamic exogenous variables 

Fish Banks 

Figure 28 shows the results of testing H1 in the fish banks model. The system has 

two equilibrium states: one when the fish population is equal to zero and the other when 

the fish population is equal to the carrying capacity of the system. The hatch fraction is 

                                                 

25 Defined as the number of work packages that need to be completed 
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the tipping variable and the fish population stands at a tipping point when the tipping 

variable is equal to 5.25 (as shown on the x-axis in Figure 28). As the tipping variable 

gets closer to 5.25, the time it takes the fish population to reach an equilibrium state 

increases (Figure 28a) and the simulation results support the hypothesis. Based on the 

results of the t-test, the difference in the time to reach attractor is statistically significant 

when the tipping variable is between 3.5 and 7.5. When randomness is introduced to the 

system, the amount time to reach the attractor increases (Figure 28b). This is due to the 

cyclic behavior of the system and the fact that an intrinsic randomness will cause the 

cycle to dampen slower, hence it takes the system longer to reach an attractor. In 

presence of randomness, the increase in the time to reach an attractor is gradual when the 

tipping variable is less than 5.25 (system is approaching an equilibrium at fish=0) but on 

the other side of the tipping point when the system is going towards the carrying 

capacity, the increase in time to reach an attractor is abrupt (sudden jump from 5 to 400 

time steps when the tipping variable changes from 8.5 to 8 in Figure 28b). 
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(a)                        (b)  

  
Figure 28 (a-b) - Results of H1 in fish banks model 

(Tipping variable: hatch fraction; dependent variable: fish population) 

28(a) time to reach an attractor vs. tipping variable without any noise in the system 

28(b) time to reach an attractor vs. tipping variable with dynamic exogenous variables 

Arms Race 

In the arms race model, the system is standing at a tipping point when the tipping 

variable is equal to one (x-axis in Figure 29). At the tipping point, the total arms of 

country A and B are equal. If the tipping variable is less than one, the total arms of both 

countries decrease over time until there are no arms left. When the tipping variable is 

larger than one, the total arms increases. In this case, the amount of time that the system 

takes to reach a very large number has been used as the time to reach an attractor. When 

the system gets closer to the tipping point (the tipping variable approaches 1), the time to 

reach an attractor increases (Figure 29a) and the results support the hypothesis. When 

the system is farther away from the tipping point (tipping variable less than 0.55 or 

greater than 1.35) there is no significant change in the time to reach an attractor. The 

presence of dynamic variables in the system (Figure 29b) does not influence the general 

behavior of the system.  
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   (a)                        (b)  

  
Figure 29 (a-b)- Results of H1 in arms race model 

(Tipping variable: desired strength ratio A; dependent variable: total arms A) 

29(a) time to reach an attractor vs. tipping variable without any noise in the system 

29(b) time to reach an attractor vs. tipping variable with dynamic exogenous variables 

Social Impact Bonds 

The social impact bonds model has a tipping point when the fraction of surplus 

returned (the tipping variable) is equal to 0.365. Depending on the value of the tipping 

variable, the total prison population moves towards either of its two equilibrium states.  

Figure 30 shows the H1 testing results in the social impact bonds model. The x-axis is 

the tipping variable (the tipping point indicator) and the y-axis is the time to reach an 

attractor. The results of testing H1 in social impact bonds model partially support the 

hypothesis: If the tipping variable is less than 0.365, there is no change in the time 

required to reach the attractor until the system is almost at the tipping point (Figure 30a). 

This can be due to the constraints applied to the system (based on the case study) which 

prevent the system from showing a pure bifurcation behavior. On the other hand, for 

values of tipping variable greater than 0.365, the time to reach the equilibrium increases 

gradually when the system approaches the tipping point (Figure 30a). The increase in the 
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time to reach an attractor is statistically significant when the tipping variable is between 

0.365 and 0.6. Simulation results of the social impact bonds model after adding a noise 

in the system show a similar trend and the hypothesis is partially supported (Figure 30b): 

the results support the hypothesis when the system approaches the tipping point from 

one side but there is no change in the time required to reach an attractor when the system 

approaches the tipping point from the other side.  

(a)                        (b)  

  

Figure 30 (a-b)- Results of H1 in social impact bonds model 

(Tipping variable: fraction of surplus returned; dependent variable: total prison population) 

30(a) time to reach an attractor vs. tipping variable without any noise in the system 

30(b) time to reach an attractor vs. tipping variable with dynamic exogenous variables 

Hypothesis 1 Summary 

The first hypothesis tests whether the properties of a bifurcation identified in 

mathematical models are also observed in system dynamics archetypes and realistic 

models studied here. The time to reach an attractor is used as an indicator of approaching 

a tipping point. To test the hypothesis the value of the tipping variable has been used as a 
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proxy of the closeness of the system to the tipping point. All models in the library (both 

type I and type II) either fully or partially support the hypothesis: the system reaches the 

equilibrium state slower when the system conditions are close to the tipping point 

conditions. This indicates that the models in the library have the properties of a 

bifurcation at their tipping point and that an increase in the time to reach an equilibrium 

can be an indicator of approaching a tipping point. The relationship between the time 

required to reach an attractor and the value of the tipping variable is non-linear. When 

the system is far away from the tipping point, the change in the amount of time required 

to reach the attractor is not noticeable. But when the system gets closer to the tipping 

point, the time to reach an attractor significantly increases. This result supports the 

concerns stated in the literature that predicting a tipping point by using critical slowing 

down might happen too late (Dakos et al. 2010). The existence of intrinsic randomness 

in the system impacts the amount of time required to reach the attractor but the general 

behavior trend remains unchanged.  The simulations were replicated multiple times and 

a standard t-test and ANOVA was used to compare the means. See Appendix C for 

detailed statistical testing results.  
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CHAPTER V 

HYPOTHESES 2-4 

 “Critical slowing down”, a phenomenon which is derived from the properties of a 

bifurcation in dynamical systems, is one of the most studied tipping point indicators in the 

literature. Three ways have been suggested in the literature to measure “critical slowing 

down” (Scheffer et al. 2009): (1) recovery time of the dependent variable from a small 

perturbation, (2) lag-1 autocorrelation26 of the dependent variable, and (3) variance of the 

dependent variable. The climate change and ecology literature have used historical data to 

trace the changes in these measures before a known tipping point. In the systems studied, 

an increase in recovery time, lag-1 autocorrelation and variance were observed before a 

critical transition. However, the robustness of these indicators has not been fully studied 

(Scheffer et al. 2012; Lenton 2011). Boettiger and Hastings (2012) have identified some 

difficulties of using slowing down measures as a tipping point indicator. The increase in 

variance and autocorrelation should be measured across replicates. But in practice, 

replicates are rarely available and therefore, a moving window in time in a single replicate 

is used. The overlap with the consecutive window and the size of the window are arbitrary 

choices that can influence the results. Another problem that arises from a lack of data, is 

interpolating from existing data to create “evenly spaced points” for analysis purposes. 

Such interpolations create artificial autocorrelation. Using computer models instead of 

historic data can address some of these issues. The realistic models in the library represent 

                                                 

26 degree of similarity between a given time series and a lagged version of itself over successive time 

intervals 
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the complexity of real systems but at the same time provide the benefits of using computer 

simulations in a controlled setting to test the effectiveness of critical slowing down 

measures as indicators of a tipping point.  

Hypothesis 2 Introduction 

The literature has identified three statistical measures of critical slowing down 

that are easy to quantify and require monitoring the state variable (Scheffer et al. 2009). 

The first measure is the recovery time. At an equilibrium, the rate of change becomes 

zero and the system recovers from perturbations slower (Scheffer et al. 2009). A tipping 

point is an unstable equilibrium, therefore, an increase in recovery time after a small 

(experimental) perturbation can be a sign of critical slowing down and of approaching a 

tipping point. The second research hypothesis is based on this measure: 

H2: As a system approaches a tipping point, the recovery time after a small 

perturbation increases. 

A ball and bowl analogy27 (Figure 31) can be used to explain this hypothesis:  

 

      

  

                                                 

27 Although a ball and bowl analogy can help explaining these concepts, it should not be 

considered as a perfect representation of systems. Its sole purpose is to give a simplified graphical 

representation of the concepts. 
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  (a)            (b) 

 

                           

Figure 31- Ball and bowl analogy to describe hypothesis 2 

22(a) low recovery time: system is far away from the tipping point (the valley is deeper) 

22(b) high recovery time: system is closer to the tipping point (the valley is flatter) 

The ball represents the dependent variable and the valleys are the attractors. The 

system is more stable when it is far from the tipping point, in the analogy, this can be 

shown by having a deeper valley (Figure 31a). When the system is close to the tipping 

point, it is less stable and can be shown as having a flatter valley (Figure 31b). The ball 

is standing at the bottom of a valley before it is perturbed either to the right or left 

(arrows show the direction of perturbance). The ball starts oscillating and eventually 

rests at the bottom of the valley again. In hypothesis 2, the time it takes the ball to return 

to the stable equilibrium is measured and used as an indicator of approaching a tipping 

point. When the system is far away from the tipping point (Figure 31a), any perturbation 

decays faster than when the system is close to the tipping point (Figure 31b). Hence, an 

increase in the recovery time of the dependent variable from a small perturbation is an 

indicator of approaching a tipping point: as a system approaches a tipping point, the 

recovery time from a small perturbation increases.  
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Hypothesis 3 Introduction 

The second measure of critical slowing down is the temporal autocorrelation of 

the state variable. As the system becomes more sluggish before a tipping point, its 

current state becomes more similar to its previous state. The critical slowing down is 

revealed by an increase in the lag-1 autocorrelation28 of the state variable (Scheffer et al. 

2009). 

H3: As a system approaches a tipping point, the average lag-1 autocorrelation of 

the dependent variable increases. 

In the ball and bowl analogy (Figure 31), imagine that the vertical position of the 

ball represents the value of the dependent variable. After the ball is disturbed, it started 

oscillating until it finally rests at the bottom of the valley again. When the system is 

close to the tipping point (Figure 31b), the valley is flatter, and a perturbation will cause 

little changes in the position of the ball on the vertical axis. At any time, the vertical 

position of the ball is very similar to its previous position: the vertical position of the ball 

is highly correlated to its previous position. Hence, the lag-1 autocorrelation of the 

dependent variable (the ball) can be used as an indicator of approaching a tipping point: 

as a system approaches a tipping point, the lag-1 autocorrelation of the dependent 

variable increases.  

  

                                                 

28 The autocorrelation measures the similarity of a variable to a lagged version of itself 
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Hypothesis 4 Introduction 

The last measure of the critical slowing down studied here is the variance of the 

state variable. As the system gets closer to the tipping point, any change in the system 

will decay slower. This “accumulating effect increases the variance of the state variable” 

(Scheffer et al. 2009). 

H4: As a system approaches a tipping point, the variance of the state variable 

increases. 

  Hypothesis 4 looks at the variance of the dependent variable which can be 

illustrated as the displacement of the ball in a ball and bowl analogy (Figure 31). When 

the system is far from the tipping point, the valley is deeper (Figure 31a) and it is harder 

to move the ball. But when the system is close to the tipping point ((Figure 31b), the 

valley is flatter and a small perturbation will move the ball more easily. The ball moves 

more in a flatter valley (close to the tipping point) than in a deep valley (far from the 

tipping point): the ball has a larger variance when close to the tipping point. Hence, an 

increase in the variance of the dependent variable can be an indicator of approaching a 

tipping point: as a system approaches a tipping point, the variance of the dependent 

variable increases.  

Hypothesis 2-4 Testing Procedures 

To test the second hypothesis 2-4, the system is first set to its stable state. A 

small perturbation that has no risk of pushing the system over the tipping point is 

implemented in the system. The time for the dependent variable to return to the 

equilibrium state is then measured to test hypothesis 2. To test hypotheses 3 and 4, the 



 

71 

lag-1 autocorrelation and the variance of the dependent variable are measured. The 

experiment is repeated for different conditions of the system and pulse sizes. Changing 

the value of the tipping variable changes the width of the basin of attraction and makes 

the system more or less stable (farther from or closer to the tipping point); i.e. the value 

of the tipping variables is used as a proxy of proximity to the tipping point. The detailed 

procedure is as follows: 

1. Choose the dependent variable(s). See Chapter III for a stock and flow diagram 

of the models and equations. 

Example: the stock of “Problem Symptoms” in fixes that fail archetype. 

2. Find system attractors. See Table 2 for details of attractors in each model. 

Example: fixes that fail archetypes has three attractors: zero (stable), initial 

problem symptoms (unstable), and infinity. 

3. Find tipping variable(s). Use statistical screening (Ford and Flynn, 2005; Taylor 

et al., 2010) to find the variable(s) with the highest leverage on the dependent 

variable and identify them as tipping variable(s). The value of tipping variable(s) 

is a proxy for the closeness to the tipping point. Define tipping point conditions 

by finding the values of the control variables (including tipping variables) at the 

tipping point. See Table 2 for details of tipping point conditions in the models 

studied here. 

Example: the tipping variable in the fixes that fail model is the” fractional 

consequences rate” and its value is equal to one at tipping point conditions. 

4. Set the tipping variable(s) at a value other than the tipping point conditions and 
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let it reach its stable state. See Table 2 for details of tipping conditions and 

system attractors in each model. 

Example: in the fixes that fail model the stable equilibrium is at zero. For any 

value of the “fractional consequence rate” less than one, the system moves 

towards this attractor.  

5. Apply a small perturbation in the dependent variable.  

Example: in the fixes that fail archetype, the problem symptoms (dependent 

variable) was pulsed. 

6. H2: Measure the amount of time that it takes the dependent variable to return to 

the equilibrium state (recovery time). 

7. H3: Measure the lag-1 autocorrelation of the state variable from the time that the 

perturbation was applied. 

8. H4: Measure the variance of the state variable from the time that the perturbation 

was applied. 

9. Incrementally change the tipping variable(s) to move the system closer to or 

further from the tipping point and repeat steps 5-8. 

Example, in fixes that fail archetype, the “fractional consequences rate” (tipping 

variable) was changed between 0.05 and 0.95 every 0.05 steps.  

10. Repeat steps 4-9 for different pulse sizes. 

Example, in fixes that fail archetype, the pulse size is between -10 and 10 with 

increments of 2. 

11. Design randomness into the system that would represent the noise that is present 
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in reality and repeat steps 4-10. This is done by changing selected exogenous 

variables dynamically over time. The selected exogenous variables are changed 

at each time step based on a random distribution function within twenty percent 

of their original value. See Appendix A for details of the selected exogenous 

variable and the randomness formulation.  

Example: in fixes that fail archetype, the variable “fractional fix rate” is changed 

randomly between 1.6 and 2.4 using a random uniform function.  

See Appendix C for the details of statistical analysis. 

Hypothesis 2-4 Results 

The results of hypothesis 2-4 testing are discussed in this section. After the 

system reaches a stable equilibrium, a perturbation is put in the dependent variable of the 

system. The recovery time from the perturbation, lag-1 autocorrelation of the dependent 

variable and the variance of the dependent variable are used to test H2 through H4 

respectively. The value of the tipping variable is used as a proxy for the closeness to the 

tipping point.  
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Limits to Growth Archetype 

     Figure 32 shows the results of hypothesis 2 in limits to growth archetype. The 

x-axis is the tipping variable (fractional change rate) which shows the proximity to the 

tipping point. The y-axis represents the recovery time from a perturbation. For negative 

values of the tipping variable, the system goes to an equilibrium at zero and for positive 

values of the tipping variable, the system has a stable equilibrium at the carrying 

capacity of the system. As the system gets closer to the tipping point (tipping variable=0) 

from either side, the recovery time from a perturbation increases. For example, the 

recovery time from a perturbation when the tipping variable is equal to 1 is less than 

fifty time steps (Figure 32a). When the system gets closer to the tipping point and the 

tipping variable is equal to 0.1, the recovery time increases to four hundred time steps 

(Figure 32a). Similar behavior is observed when there are dynamic exogenous variables 

in the system: the recovery time increases as the system approaches the tipping point 

(Figure 32b). The test results support the hypothesis. The results of t-test29 show that for 

values of -0.8<fractional change rate<0.7, the mean recovery time increases significantly 

as the system moves towards the tipping point: for example, there is no statistical 

difference between the time to reach an attractor when the tipping variable changes from 

1 to 0.9 but when the tipping variable changes from 0.6 to 0.5, the time to reach an 

attractor significantly increases (α=0.05).  

 

                                                 

29 The t-test was performed for pulse size equal to ±3. 
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  (a)                        (b)  

 

Figure 32 (a-b)- Results of H2 in limits to growth archetype 

(Tipping variable: fractional change rate; dependent variable: population) 

32(a) recovery time vs. tipping variable without any noise in the system 

32(b) recovery time vs. tipping variable with dynamic exogenous variables 

Figure 33 (a-b) shows the test results of hypothesis 3 in the limits to growth 

archetype. The x-axis shows the tipping variables (a proxy for the tipping point) and the 

y-axis represent the lag-1 autocorrelation of the dependent variable. the results show 

that, as system conditions get closer to tipping point conditions (tipping variable=0), the 

temporal autocorrelation increases linearly. The results are robust in the presence of 

randomness in the system. And the difference in the mean recovery time is statistically 

significant for all values of the tipping variable (i.e. [-1,1] as studied here). See 

Appendix C for the details of the results of statistical analysis. 
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  (a)                        (b)  

 

Figure 33 (a-b)- Results of H3 in limits to growth archetype 

(Tipping variable: fractional change rate; dependent variable: population) 

33(a) lag-1 autocorrelation vs. tipping variable without any noise in the system 

33(b) lag-1 autocorrelation vs. tipping variable with dynamic exogenous variables 

Hypothesis 4 test results in limits to growth archetype are shown in Figure 34 (a-

b). The x-axis shows the tipping variable and the y-axis represents the variance in the 

dependent variable. In general, the results support the hypothesis. As system conditions 

get closer to tipping point conditions (tipping variable=0), for larger pulse sizes, the 

average variance increases (Figure 34a). However, the amount of increase depends on 

the pulse size and for very small perturbations there is no change in the variance. 

Standard t-test and ANOVA was performed for the mean variance when the pulse size is 

equal to ±3. The results show a significant increase in the mean variance as the system 

moves towards the tipping point when -0.6<tipping variable<0.7. 
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  (a)                        (b)  

 

Figure 34 (a-b)- Results of H4 in limits to growth archetype 

(Tipping variable: fractional change rate; dependent variable: population) 

34(a) variance of the dependent variable vs. tipping variable without any noise in the system 

34(b) variance of the dependent variable vs. tipping variable with dynamic exogenous variables 

Fixes That Fail Archetype 

  In the fixes that fail archetype, the fractional consequences rate is the tipping 

variable and the system has a tipping point when the fractional consequences rate is 

equal to one. For values of the tipping variable less than one, the system has a stable 

equilibrium at zero. For values of the tipping variable greater than one, the dependent 

variable increases over time. In order to test H2-H4, the system needs to have a stable 

equilibrium, therefore, these hypotheses have been tested in the first case when the 

tipping variable is smaller than one. As shown in Figure 35 (a-b), the simulation results 

support the hypothesis. As the system gets closer to the tipping point (tipping variable=1 

on the x-axis), the recovery time from a perturbation (y-axis) increases and the increase 

is non-linear (Figure 35a). The results are robust over different pulse sizes. In addition, 

the difference between the mean recovery is statistically significant for all values of the 
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tipping variable30. Although having randomness in the system (Figure 35b) creates some 

fluctuations in the graphs, it does not affect the general increasing trend and the results 

still support the hypothesis.  

 

(a)                        (b)  

 

Figure 35 (a-b)- Results of H2 in fixes that fail archetype 

(Tipping variable: fractional consequences rate; dependent variable: problem symptoms) 

35(a) recovery time vs. tipping variable without any noise in the system 

35(b) recovery time vs. tipping variable with dynamic exogenous variables 

The results of testing H3 in fixes that fail archetype support the hypothesis (see 

Figure 36 (a-b)). As the system approaches the tipping point (at tipping variable equal to 

1), temporal autocorrelation increases. The results are robust for different pulse sizes and 

the relationship between the lag-1 autocorrelation and the tipping variable is non-linear. 

The results are supported by the standard t-test and ANOVA. 

  

                                                 

30 Standard t-test and ANOVA was performed for pulse size equal to ±4. See Appendix C for details. 
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  (a)                        (b)  

 

Figure 36 (a-b)- Results of H3 in fixes that fail archetype 

(Tipping variable: fractional consequences rate; dependent variable: problem symptoms) 

36(a) lag-1 autocorrelation vs. tipping variable without any noise in the system 

36(b) lag-1 autocorrelation vs. tipping variable with dynamic exogenous variables 

Figure 37 (a-b) show the results of testing H4 in fixes that fail archetype. When 

the system is far away from the tipping point there is no change in the variance of the 

dependent variable but as the system approaches the tipping point, the average variance 

increases (Figure 37a). The results of standard t-test and ANOVA show significant 

differences in the mean variance. Inserting randomness in the system affects the values 

of the variance but the general increasing trend is unchanged (Figure 37b). 
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  (a)                        (b)  

 

Figure 37 (a-b)- Results of H4 in fixes that fail archetype 

(Tipping variable: fractional consequences rate; dependent variable: problem symptoms) 

35(a) variance of the dependent variable vs. tipping variable without any noise in the system 

35(b) variance of the dependent variable vs. tipping variable with dynamic exogenous variables 

Reinforcing Loop Archetype 

The reinforcing loop archetype has a stable equilibrium at zero when the 

fractional change rate (tipping variable, x-axis) is negative. The simulation results of 

hypothesis 2 testing in the reinforcing loop archetype support the hypothesis (Figure 38 

(a-b)). As the reinforcing loop archetype gets closer to the tipping point (tipping 

variable=0 as shown on the x-axis in Figure 38a), the recovery time (y-axis) increases 

non-linearly. Adding noise into the system (Figure 38b) does not affect the results. The 

changes in the recovery time are statistically significant when -0.9<tipping variable. See 

Appendix C for the detailed results of t-test and ANOVA31. 

  

                                                 

31 The statistical analysis was performed for the cases where pulse size is equal to ±2 
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  (a)                        (b)  

  

Figure 38 (a-b)- Results of H2 in reinforcing loop archetype 

(Tipping variable: fractional change rate; dependent variable: current state) 

38(a) recovery time vs. tipping variable without any noise in the system 

38(b) recovery time vs. tipping variable with dynamic exogenous variables 

Figure 39 (a-b) shows the results of testing H3 in the reinforcing loop archetype. 

The hypothesis has been tested for values of tipping variable less than 0 when the system 

has a stable equilibrium. The results show that as the system gets closer to the tipping 

point (at tipping variable equal to 0), the lag-1 autocorrelation increases (Figure 39a). 

Despite the small changes in the lag-1 autocorrelation, statistical analysis shows that the 

increase in the lag-1 autocorrelation as the system approaches the tipping point is 

significant. The results are robust for different pulse sizes and the insertion of 

randomness in the system does not affect the increasing trend of the temporal 

autocorrelation but it does change the shape from a linear relationship to a non-linear 

relationship.   
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  (a)                        (b)  

  

Figure 39 (a-b)- Results of H3 in reinforcing loop archetype 

(Tipping variable: fractional change rate; dependent variable: current state) 

39 (a) lag-1 autocorrelation vs. tipping variable without any noise in the system 

39(b) lag-1 autocorrelation vs. tipping variable with dynamic exogenous variables 

Figure 40 (a-b) shows the results of H4 testing in the reinforcing loop archetype. 

The average variance of the state variable increases as the system gets closer to the 

tipping point (tipping variable equal to 0 as shown in the x-axis in Figure 40a). However, 

the results depend on the pulse size: for small perturbations, there is no change in the 

variance. Standard t-test and ANOVA was performed to compare the mean of variance 

for different values of the tipping variable when the pulse is equal to ±2. The results 

show that despite the small change in the variance (for these pulse sizes), the difference 

is still statistically significant and the results support the hypothesis. 
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  (a)                        (b)  

  

Figure 40 (a-b)- Results of H4 in reinforcing loop archetype 

(Tipping variable: fractional change rate; dependent variable: current state) 

25(a) variance of the dependent variable vs. tipping variable without any noise in the system 

25(b) variance of the dependent variable vs. tipping variable with dynamic exogenous variables 

Escalation Archetype 

Since the escalation archetype does not have any stable equilibriums, hypothesis 

2,3, and 4 could not be tested.  

Limerick Construction Project 

Figure 41 (a-b) shows the results of testing H2 in the Limerick construction 

project model. The tipping variable (base ripple effects strength) is shown on the x-axis. 

The system is at the tipping point when the tipping variable is equal to 0.665. The y-axis 

shows the recovery time from a perturbation. the system has a stable equilibrium for the 

values of base ripple effects strength less than 0.665. As the system gets closer to the 

tipping point, the time to reach attractor increases (Figure 41a) and the results support 

the hypothesis. The results do not depend on the pulse size. Based on the results of the t-

test, for values of base ripple effect strength is greater than 0.35, an increase in the 
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recovery time can be an indicator of approaching a tipping point32. In the presence of 

randomness in the system, the recovery time increases only when the system conditions 

are very close to the tipping point (Figure 41b).  

 (a)                        (b)  

 

Figure 41 (a-b)- Results of H2 in Limerick construction project model 

(Tipping variable: base ripple effects strength; dependent variable: total project backlog33) 

41(a) recovery time vs. tipping variable without any noise in the system 

41(b) recovery time vs. tipping variable with dynamic exogenous variables 

The results of testing H3 in Limerick model are illustrated in Figure 42 (a-b) As 

the value of the tipping variable approaches the tipping conditions (0.665 on the x-axis 

in Figure 42a), the temporal autocorrelation of the state variable in Limerick 

construction project model increases (y-axis in Figure 42a). Although the increase in the 

temporal autocorrelation is small, the results support the hypothesis. Since in system 

dynamics models the state variables are defined by their value in the previous step the 

                                                 

32 The statistical analysis was performed for the value of pulse size equal to ±2000 
33 Defined as the number of work packages that need to be completed 
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autocorrelation tends towards 1 very quickly, therefore, even slight increases observed in 

lag-1 autocorrelation can be considered significant. Similar to the results of hypothesis 2, 

the increase in the lag-1 autocorrelation of the dependent variable is significant when 

base ripple effect strength (tipping variable) is greater than 0.35. When there are 

dynamic exogenous variables in the system (Figure 42b), the increase in the lag-1 

autocorrelation is significant only when the system is very close to the tipping point. The 

existence of noise in the system makes the signal of tipping point indicator less clear as 

shown in Figure 42b. 

  (a)                        (b)  

 

Figure 42 (a-b)- Results of H3 in Limerick construction project model 

(Tipping variable: base ripple effects strength; dependent variable: total project backlog34) 

42(a) lag-1 autocorrelation vs. tipping variable without any noise in the system 

42(b) lag-1 autocorrelation  vs. tipping variable with dynamic exogenous variables 

 In Limerick construction project model, the results of testing H4 show an 

increase in the variance of the state variable as the system gets closer to the tipping point 

                                                 

34 Defined as the number of work packages that need to be completed 
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and support the hypothesis (Figure 43a). The results are robust for different pulse sizes 

and the increase in the mean variance is statistically significant when the tipping variable 

is greater than 0.35. The noise in the system (Figure 43b) increases the size of the 

variance and results are shown on a logarithmic scale.  

 

 (a)                        (b)  

 

Figure 43 (a-b)- Results of H4 in Limerick construction project model 

(Tipping variable: base ripple effects strength; dependent variable: total project backlog35) 

43(a) variance of the dependent variable vs. tipping variable without any noise in the system 

43(b) variance of the dependent variable vs. tipping variable with dynamic exogenous variables 

Fish Banks 

Figure 44 (a-b) shows the results of testing H2 in the fish banks model. The 

system has two equilibrium states: one when the fish population is equal to zero and the 

other when the fish population is equal to the carrying capacity of the system. The hatch 

fraction is the tipping variable and the fish population stands at a tipping point when the 

                                                 

35 Defined as the number of work packages that need to be completed 
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tipping variable is equal to 5.25 (as shown on the x-axis in Figure 44a). for hatch 

fraction less than 5.25, the system goes towards the stable equilibrium at zero. For values 

of the tipping variable between 5.25 and 7, the system starts oscillating but the 

oscillation dampens and eventually, the system reaches the carrying capacity. For values 

of the hatch fraction larger than 7, the system oscillates around the carrying capacity 

with a relatively large amplitude. As the tipping variable gets closer to 5.25, the recovery 

time from a perturbation in the dependent variable increases (Figure 44a) and the 

simulation results support the hypothesis. Based on the results of the t-test, the difference 

in the time to reach attractor is statistically significant when the tipping variable is 

between 3.5 and 7.5. The recovery time increases from tipping variable values 7 to 8 

(Figure 44a) because at those values the fish population behavior becomes oscillatory 

with large amplitudes. This causes the calculations of the recovery time to sometimes 

reflect the oscillations. This suggests that caution may be needed when systems create 

oscillations. In presence of randomness (Figure 44b), the increase in the recovery time is 

gradual when the tipping variable is less than 5.25 but on the other side of the tipping 

point when the system enters a cyclic behavior, the noise in the system accentuates the 

existing oscillation and make the calculation of the recovery time inaccurate.   
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 (a)                        (b)  

 

Figure 44 (a-b) - Results of H2 in fish banks model 

(Tipping variable: hatch fraction; dependent variable: fish population) 

44(a) recovery time vs. tipping variable without any noise in the system 

44(b) recovery time vs. tipping variable with dynamic exogenous variables 

The results of hypothesis H3 testing are shown in Figure 45 (a-b). In fish banks 

model, as the system gets closer to the tipping point (tipping variable equal to 5.5 as 

shown in the x-axis in Figure 45a), the lag-1 autocorrelation increases. The results 

support the hypothesis and are robust for different pulse sizes. Since the lag-1 

autocorrelation of the dependent variable is measured from the time a perturbation was 

put in the system until the time that the system returned to its equilibrium state, the value 

of the recovery time affects the results of hypothesis 3 testing. As discussed earlier, 

when the tipping variable is larger than 5.25 and the system starts oscillating, the 

presence of randomness in the system interferes with the calculations and make the 

recovery time for these conditions inaccurate. Hence, the shape of the graph is different 

for these system conditions when there is oscillation in the system and the behavior of 

the tipping point indicator is less clear (Figure 45b).  
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  (a)                        (b)  

 

Figure 45 (a-b) - Results of H3 in fish banks model 

(Tipping variable: hatch fraction; dependent variable: fish population) 

45(a) lag-1 autocorrelation vs. tipping variable without any noise in the system 

45(b) lag-1 autocorrelation vs. tipping variable with dynamic exogenous variables 

The results of H4 testing in the fish banks model generally support the 

hypothesis. For the values of the tipping variable less than 5.25 (the tipping point 

condition), the variance of the dependent variable increases when the system is very 

close to the tipping point. When the tipping variable is greater than 5.5, there is a drop in 

the variance followed by an increase as the system is approaching the tipping point 

which is due to the cyclic behavior of the system for these tipping variable values as 

explained above. The increase in the variance in both cases is detectable when the 

system is very close to the tipping point.  
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  (a)                        (b)  

 

Figure 46 (a-b) - Results of H4 in fish banks model 

(Tipping variable: hatch fraction; dependent variable: fish population) 

46(a) variance of the dependent variable vs. tipping variable without any noise in the system 

46(b) variance of the dependent variable vs. tipping variable with dynamic exogenous variables 

Arms Race 

Similar to the escalation archetype, due to lack of a stable equilibrium, it is not 

possible to test H2, H3, and H4 in the arms race model. 

Social Impact Bonds 

The social impact bonds model has a tipping point when the fraction of surplus 

returned (the tipping variable) is equal to 0.365. Depending on the value of the tipping 

variable, the total prison population moves towards either of its two equilibrium states.  

Figure 47 (a-b) shows the H2 testing results in the social impact bonds model. The x-

axis is the tipping variable and the y-axis is recovery time. The results of testing H1 in 

social impact bonds model partially support the hypothesis: If the tipping variable is less 

than 0.365, there is no change in the time required to reach the attractor but the recovery 

time depends on the pulse size (Figure 47a). When the tipping variable is greater than 
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0.365 the recovery time does not change until the system is very close to its tipping point 

(Figure 47a). These results might be because the system has multiple stock variables and 

the effect of the perturbation is smoothed before reaching the main dependent variable. 

The results of t-test show that the change in the recovery time is significant only when 

the tipping variable is less than 0.536. Having random exogenous variables in the system 

does not affect the results (Figure 47b). 

(a)                        (b)  

  

Figure 47 (a-b)- Results of H2 in social impact bonds model 

(Tipping variable: fraction of surplus returned; dependent variable: total prison population) 

47(a) recovery time vs. tipping variable without any noise in the system 

47(b) recovery time vs. tipping variable with dynamic exogenous variables 

Figure 48 (a-b) shows the results of testing H3 in social impact bonds model. 

There is no change in the lag-1 autocorrelation of the dependent variable when the 

tipping variable (fraction of surplus returned) is less than 0.365 (Figure 48a). For values 

of the tipping variable greater than 0.365, there is an increase in the recovery time when 

                                                 

36 Standard t-test and ANOVA were performed for pulse size equal to ±10. 
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the system is very close to the tipping point conditions (tipping variable <0.6). See 

Figure 48a for the results of H3 and Appendix C for the results of the statistical testing.  

  (a)                        (b)  

  
Figure 48 (a-b)- Results of H2 in social impact bonds model 

(Tipping variable: fraction of surplus returned; dependent variable: total prison population) 

48(a) lag-1 autocorrelation vs. tipping variable without any noise in the system 

48(b) lag-1 autocorrelation  vs. tipping variable with dynamic exogenous variables 

The results of hypothesis 4 testing in the social impact bonds model are similar to 

the previous hypotheses as shown in Figure 49 (a-b). When the tipping variable is less 

than the value at the tipping conditions, there is no change in the variance of the total 

prison population (the dependent variable); when the tipping variable is greater than the 

value at the tipping condition there is a sudden increase in the variance as the system 

gets close to the tipping point (Figure 49a). The increase in the variance is statistically 

significant only when the tipping variable is less than 0.5. 
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  (a)                        (b)  

  
Figure 49 (a-b)- Results of H4 in social impact bonds model 

(Tipping variable: fraction of surplus returned; dependent variable: total prison population) 

49(a) variance of the dependent variable vs. tipping variable without any noise in the system 

49(b) variance of the dependent variable vs. tipping variable with dynamic exogenous variables 

Hypothesis 2-4 Summary 

Regarding hypothesis 2, in all the models except for one (social impact bonds 

partially supports the hypothesis), the non-linear relationship between the recovery time 

and the tipping variable support the hypothesis and current literature. The systems 

recover from a perturbation slower when getting close to a tipping point. This indicates 

that the indicator that is useful in the literature models is also useful for the system 

dynamics archetypes and models of realistic systems studied here. However, the caveat 

is that in the models of the real systems (e.g. in Limerick construction project model), 

the recovery time from a perturbation can be an indicator of a tipping point only when 

the system is very close to the tipping conditions. When the system is farther away from 

the tipping conditions, there is either not a noticeable change in the recovery time from a 

perturbation or this indicator gives false alarms (e.g. fixes that fail model). The results of 

all type I tipping point models generally support the hypothesis. Not all type II tipping 
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points could be tested for this hypothesis and out of two models that were tested, the 

results of the social impact bonds only partially support the hypothesis (for one of the 

stable equilibriums). The results also depend on the size of the perturbation. For very 

small pulses, there is no change in the recovery time.  

Hypothesis 3 focuses on an increase in lag-1 autocorrelation as a potential 

indicator of a tipping point. Similar to the results of the previous hypothesis, all type I 

models support the hypothesis. Conclusions cannot be made for type II models: While 

the results of reinforcing loop archetype support the hypothesis, two of the type II 

models could not be tested because they do not have a stable equilibrium, and the results 

of social impact bonds model only partially support the hypothesis. However, it should 

be noted that due to the nature of a system dynamics model, the value of the stock 

variables at each step is dependent on its value in the previous time step. Therefore, lag-

1 autocorrelation might not be the best indicator to look at in a system dynamics model.  

There is some contradiction regarding using the increase in variance as an 

indicator of a tipping point (Lenton et al. 2012; Dakos et al. 2012) as defined in 

hypothesis 4. Dakos et al. (2012) numerically show that “variance may be amplified or 

dampened as the ecosystem approaches the bifurcation”. They suggest that the trend in 

variance depends on the existing noise in the system and the sensitivity of the state 

variable. The results of the models (all type I models and one of type II models) studied 

here generally support the hypothesis for larger perturbations. The results show that the 

increase in variance is very sensitive to the size of the perturbation. For small 

perturbation, there is no change in the variance. This supports the work by Dakos et al. 
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(2012) regarding the impact of the sensitivity of the state variable to the control variables 

that were used to disturb the system. In addition, the increase in variance only happens 

when the system is very close to the tipping point conditions. When the system is far 

away from the tipping point, there is not a noticeable change in the variance of the state 

variable.  

In summary, the findings show that the clarity of the indicator signal depends on 

the closeness to the tipping point. Also, when the system is oscillating, the tipping point 

indicator might give false alarms. Another limitation in using the “critical slowing 

down” measures is that intrinsic noise (present in real systems) decreases the clarity of 

the tipping point indicator signal. Due to the features of system dynamics approach, the 

recovery time is the most useful indicator among the three indicators studied here when 

dealing with system dynamics models. The simulations were replicated multiple times 

and a standard t-test and ANOVA was used to compare the means. See Appendix C for 

detailed statistical testing results. 
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CHAPTER VI 

HYPOTHESIS 5-6 

Hypothesis 5-6 Introduction 

Although critical slowing down can be an indicator of a tipping point, it might 

not be easy to test or observe by practitioners and project managers. To find more 

practical indicators of a tipping point that are easy to use in practice, the behaviors of the 

state variable in the models were studied further. Different plots (e.g. dependent variable 

over time, change in the first and second derivative of the dependent variable, changes in 

the net flow, changes in input rate:output rate ratio, etc) were investigated to find 

similarities in behavior before a tipping point. The xt+1-xt graphs showed some potential 

for identifying new tipping point indicators. The xt+1-xt graphs have been previously 

used in both system dynamics literature (Black and Repenning 2001; Richardson 1995; 

Taylor and Ford 2006) to study the changes in the dominance of feedback loops and in 

nonlinear dynamics (Strogatz 2014) to study the properties of bifurcations. When 

exploring the xt+1-xt graphs of the models in the library, some similarities before a 

tipping point were observed. The last two hypotheses are based on these observations: 

H5: As a system approaches a tipping point, the points on the xt+1-xt graph get 

closer to each other. 

H6: As a system approaches a tipping point, the slope of the xt+1-xt graph begins 

less than one and is decreasing until the system is near the tipping point. After 

the system crosses the tipping point, there is a sudden shift in the slope from a 

value less than one to greater than one.  
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Hypothesis 5-6 Testing Procedures 

To test these two hypotheses, the value of the tipping variable is changed over a 

period of time so the system gets closer to the tipping point over time and passes the 

tipping point. The graph of xt+1-xt is drawn and the distance between the points and the 

slope of the graph are found to test hypotheses 5 and 6 respectively. The details are as 

follows: 

 

1. Choose the dependent variable(s). See Chapter III for a stock and flow diagram 

of the models and equations. 

Example: the stock of “Problem Symptoms” in fixes that fail archetype. 

2. Find system attractors. See Table 2 for details of attractors in each model. 

Example: fixes that fail archetypes has three attractors: zero (stable), initial 

problem symptoms (unstable), and infinity. 

3. Find tipping variable(s). Use statistical screening (Ford and Flynn, 2005; Taylor 

et al., 2010) to find the variable(s) with the highest leverage on the dependent 

variable and identify them as tipping variable(s). The value of tipping variable(s) 

is a proxy for the closeness to the tipping point. Define tipping point conditions 

by finding the values of the control variables (including tipping variables) at the 

tipping point. See Table 2 for details of tipping point conditions in the models 

studied here. 

Example: the tipping variable in the fixes that fail model is the” fractional 

consequences rate” and its value is equal to one at tipping point conditions. 

4. Set the tipping variable to decrease over time using a ramp function. 
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Example: in fixes that fail archetype, the “fractional consequences rate” (the 

tipping variable) is changed from 1.1 to 0.9 over a period of twenty months.  

5. Run simulations and plot xt+1 vs xt.  

6. H5: Find the distance between the points on the graph. 

7. H6: Find the slope of xt+1 vs xt graph. 

8. Set the tipping variable to increase over time using a ramp function. 

Example: in fixes that fail archetype, the “fractional consequences rate” (the 

tipping variable) is changed from 0.9 to 1.1 over a period of twenty months.  

9.  Repeat steps 5-7. 

10. Design randomness into the system that would represent the noise that is present 

in reality and repeat steps 4-9. This was done by changing selected exogenous 

variables dynamically over time. The selected exogenous variables are changed 

at each time step based on a random distribution function within twenty percent 

of their original value. See Appendix A for details of the selected exogenous 

variable and the noise formulation.  

Example: in fixes that fail archetype, the variable “fractional fix rate” is changed 

randomly between 1.6 and 2.4 using a random uniform function.  

 

Hypothesis 5-6 Results 

 

The results of testing hypothesis 5 are shown in this section. There are two 

different types of graphs for each model. In each set, the top two graphs show the results 

when there is no randomness in the system. The bottom two graphs show the results 
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when having randomness in the system37.  

The first set of graphs demonstrates the relationship between xt+1 and xt. The x-

axis shows xt and the y-axis represent xt+1. The numbers on the graph represent the time 

and the time at which the system reaches the tipping point is stated in the title of the 

graph. The second set of graphs shows the distance between the points on the xt+1-xt plot. 

The x-axis is time while the y-axis is the distance between the two consecutive points on 

the xt+1-xt plot. The third set of graphs shows the slope of the xt+1-xt plot. The x-axis is 

time while the y-axis is slop between the two consecutive points on the xt+1-xt plot.  

The graphs on the left show the results when the tipping variable is decreased 

over time until the system crosses the tipping point. Whereas, in the graphs on the right 

the tipping variable increases over time until the system passes the tipping point. 

Limits to Growth Archetype 

The limits to growth archetype has two stable equilibriums. For negative values 

of the tipping variable, the system goes to an equilibrium at zero and for positive values 

of the tipping variable, the system has a stable equilibrium at the carrying capacity of the 

system. To test hypothesis 5 and hypothesis 6, the tipping variable was changed between 

-0.1 and 0.1 over a period of 20 time steps. The system starts from one side of the 

tipping point and gradually approaches the tipping point. At time ten, the system is at the 

tipping point conditions and eventually shifts to the other side of the tipping point. 

                                                 

37 The selected exogenous variables are changed at each time step based on a random distribution 

function within twenty percent of their original value. See Appendix A for more details. 
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Figure 50 (a-d) shows the xt+1-xt graph of limits to growth archetype. The graph shows 

the value of population stock at time t+1 versus time t. As it is illustrated in the graphs, 

the density of points increases near time 10. Also, the slope of the graph shifts from one 

side of the y=x to the other side: when the system crosses the tipping point, the xt+1-xt 

graph crosses the y=x line. 
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 (a)                        (b)  

 
  (c)                        (d)  

 

 
Figure 50 (a-d)- xt+1-xt graph in limits to growth archetype  

(Tipping variable: fractional change rate; dependent variable (x): population) 

50(a) xt+1 vs. xt when the tipping variable decreases over time without any noise in the system 

50(b) xt+1 vs. xt when the tipping variable increases over time without any noise in the system 

50(c) xt+1 vs. xt when the tipping variable decreases over time with dynamic exogenous variables 

50(d) xt+1 vs. xt when the tipping variable increases over time with dynamic exogenous variables 

Figure 51 (a-d) shows the results of H5 testing in the limits to growth archetype. 

The results support the hypothesis: as the system gets closer to the tipping point at 

time=10, the distance between the points decreases (Figure 51 a&b) and the system stays 

longer near the tipping point, i.e., the system slows down. Having noise in the system 

causes some fluctuations in the graph but the general trend is not affected by the 
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randomness (Figure 51 c&d).  

  (a)                        (b)  

  
(c)                        (d)  

 
Figure 51 (a-d)- Results of H5 in limits to growth archetype 

(distance of points on xt+1-xt graph vs. time) 

(Tipping variable: fractional change rate; dependent variable (x): population) 

51(a) results when the tipping variable decreases over time without any noise in the system 

51(b) results when the tipping variable increases over time without any noise in the system 

51(c) results when the tipping variable decreases over time with dynamic exogenous variables 

51(d) results when the tipping variable increases over time with dynamic exogenous variables 

The results of H6 testing in the limits to growth archetype support the hypothesis 

as shown in Figure 52 (a-d). As the system gets closer to the tipping point at time=10, 

the slope of the xt+1-xt graph decreases from one to zero before the tipping point and 
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abruptly rises to over one after the tipping point (Figure 52 a&b). Intrinsic noise in the 

system causes fluctuations in the graph but the general shape of the graph does not 

change: the slope decreases before the tipping point and abruptly jumps to more than one 

when the system crosses the tipping point (Figure 52 c&d). However, because of the 

fluctuations, it might be difficult to foresee an upcoming tipping point, although the 

sudden change in the slope after the system has passed the tipping point is easy to 

observe. This implies that hypothesis 6 might have some shortcomings in predicting a 

tipping point and be better used as an indicator that the system has already crossed a 

tipping point. 
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  (a)                        (b)  

 
  (c)                        (d)  

 
Figure 52 (a-d)- Results of H6 in limits to growth archetype 

(slope of xt+1-xt graph vs. time) 

(Tipping variable: fractional change rate; dependent variable (x): population) 

52(a) results when the tipping variable decreases over time without any noise in the system 

52(b) results when the tipping variable increases over time without any noise in the system 

52(c) results when the tipping variable decreases over time with dynamic exogenous variables 

52(d) results when the tipping variable increases over time with dynamic exogenous variables 

Fixes That Fail Archetype 

   In fixes that fail archetype, the fractional consequences rate is the tipping 

variable and the system has a tipping point when the fractional consequences rate is 

equal to one. To test hypothesis 5 and 6, the fractional consequences rate was gradually 

changed between 0.9 and 1.1 over time. The system starts from one side of the tipping 
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point and moves towards the tipping point conditions. It reaches the tipping point 

conditions at time equal to 4.5. Then, the system passes the tipping point and continues 

its course to the alternate attractor.  Figure 53 (a-d) shows the relationship between the 

dependent variable (problem symptoms) in two consecutive time steps in the fixes that 

fail archetype. At the tipping point (t=4.5), there is an increase in the density of the 

points on the graph and the slope of the graph changes at this point too. 

  (a)                        (b)  

 
  (c)                        (d)  

 
Figure 53 (a-d)- xt+1-xt graph in fixes that fail archetype 

(Tipping variable: fractional consequences rate; dependent variable (x): problem symptoms) 

53(a) xt+1 vs. xt when the tipping variable decreases over time without any noise in the system 

53(b) xt+1 vs. xt when the tipping variable increases over time without any noise in the system 

53(c) xt+1 vs. xt when the tipping variable decreases over time with dynamic exogenous variables 

53(d) xt+1 vs. xt when the tipping variable increases over time with dynamic exogenous variables 
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Figure 54 (a-d) shows the results of testing H5 in fixes that fail archetype. As 

seen in the graph, the results support the hypothesis and as the system gets closer to the 

tipping point (at time=5) the distance between the points on the xt+1-xt graph decreases 

(Figure 54 a&b). Having randomness in the system does not affect the results and the 

hypothesis is still supported (Figure 54 c&d). 

  (a)                        (b)  

 
  (c)                        (d)  

 
Figure 54 (a-d)-Results of H5 in fixes that fail archetype 

(distance of points on xt+1-xt graph vs. time) 

(Tipping variable: fractional consequences rate; dependent variable (x): problem symptoms) 

54(a) results when the tipping variable decreases over time without any noise in the system 

54(b) results when the tipping variable increases over time without any noise in the system 

54(c) results when the tipping variable decreases over time with dynamic exogenous variables 

54(d) results when the tipping variable increases over time with dynamic exogenous variables 



 

107 

Figure 55 (a-d) shows the results of testing H6 in fixes that fail archetype. As 

seen in the graph, the results support the hypothesis and as the system gets closer to the 

tipping point (at time=4.55), there is first a decrease in the slope of the xt+1-xt graph 

before the tipping point followed by an abrupt change in the slope after the system 

passes the tipping point. The slope remains less than one on one side of the tipping point 

and as the system crosses the tipping point, the slope changes to a value greater than one 

(Figure 55 a&b). The results are robust even in the presence of dynamic exogenous 

variables in the system (Figure 55 c&d). 
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  (a)                        (b)  

 
  (c)                        (d)  

 
Figure 55 (a-d)-Results of H6 in fixes that fail archetype 

(distance of points on xt+1-xt graph vs. time) 

(Tipping variable: fractional consequences rate; dependent variable (x): problem symptoms) 

55(a) results when the tipping variable decreases over time without any noise in the system 

55(b) results when the tipping variable increases over time without any noise in the system 

55(c) results when the tipping variable decreases over time with dynamic exogenous variables 

55(d) results when the tipping variable increases over time with dynamic exogenous variables 

Reinforcing Loop Archetype 

The reinforcing loop has a tipping point when the tipping variable is equal to 

zero. The tipping variable was gradually changed from -0.1 to 0.1 to make the system 

approach and pass the tipping point conditions. The system reaches the tipping point at 

time 10.  Figure 56 (a-d) shows xt+1-xt graph of the dependent variable in the reinforcing 
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loop archetype. At the tipping point (time=10) the points on the graph get closer to each 

other, showing the slowing down phenomenon.  

  (a)                        (b)  

 
  (c)                        (d)  

  
Figure 56 (a-d)- xt+1-xt graph in reinforcing loop archetype 

(Tipping variable: fractional change rate; dependent variable (x): current state) 

56(a) xt+1 vs. xt when the tipping variable decreases over time without any noise in the system 

56(b) xt+1 vs. xt when the tipping variable increases over time without any noise in the system 

56(c) xt+1 vs. xt when the tipping variable decreases over time with dynamic exogenous variables 

56(d) xt+1 vs. xt when the tipping variable increases over time with dynamic exogenous variables 

The results of testing H5 in reinforcing loop archetype support the hypothesis 

(see Figure 57 (a-d)). As the system approaches the tipping point, the value of the 

dependent variable at each step gets closer to its value at the previous time step and xt+1 
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and xt get closer to each other (Figure 57 a&b). Having random exogenous variables in 

the system causes fluctuations in the graph but the over trend stills supports the 

hypothesis: as the system approaches the tipping point (time=10), the distance between 

xt+1 and xt decreases (Figure 57 c&d).  

  (a)                        (b)  

 

  (c)                        (d)  

  

Figure 57-Results of H5 in reinforcing loop archetype 

(distance of points on xt+1-xt graph vs. time) 

(Tipping variable: fractional change rate; dependent variable (x): current state) 

57(a) results when the tipping variable decreases over time without any noise in the system 

57(b) results when the tipping variable increases over time without any noise in the system 

57(c) results when the tipping variable decreases over time with dynamic exogenous variables 

57(d) results when the tipping variable increases over time with dynamic exogenous variables 
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The results of testing H6 in reinforcing loop archetype support the hypothesis 

(see Figure 58 (a-d)): the slope of the xt+1-xt graph decreases as the system gets closer to 

the tipping point at time=10 and abruptly changes from less than one to greater than one 

at the tipping point. Having randomness in the system (Figure 58 c&d) causes some 

fluctuations in the graph that can make predicting the tipping point difficult but the 

sudden change in the slope is still observable, indicating that hypothesis 6 can be more 

useful for confirming that a system has crosses its tipping point. 
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 (a)                        (b)  

 
  (c)                        (d)  

  
Figure 58-Results of H6 in reinforcing loop archetype 

(slope of xt+1-xt graph vs. time) 

(Tipping variable: fractional change rate; dependent variable (x): current state) 

58(a) results when the tipping variable decreases over time without any noise in the system 

58(b) results when the tipping variable increases over time without any noise in the system 

58(c) results when the tipping variable decreases over time with dynamic exogenous variables 

58(d) results when the tipping variable increases over time with dynamic exogenous variables 

Escalation Archetype 

 The escalation archetype has a tipping point when the tipping variable (A’s 

desired advantage ratio) is equal to one. To test the last two hypotheses, the tipping 

variable was change between 0.9 and 1.1 overtime imitating conditions when the system 

will start from one side of a tipping point, approaches the tipping point conditions, and 
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passes the tipping point. As the system approaches the tipping point, the value of the 

dependent variable (A’s results) at each time becomes very similar to its value at the 

previous time step. This will increase the density of point on the xt+1-xt graph as shown 

in Figure 59 (a-d). 

   (a)                        (b)  

  
  (c)                        (d)  

  
Figure 59- xt+1-xt graph in escalation archetype 

(Tipping variable: A’s desired advantage ratio; dependent variable (x): A’s results) 

59(a) xt+1 vs. xt when the tipping variable decreases over time without any noise in the system 

59(b) xt+1 vs. xt when the tipping variable increases over time without any noise in the system 

59(c) xt+1 vs. xt when the tipping variable decreases over time with dynamic exogenous variables 

59(d) xt+1 vs. xt when the tipping variable increases over time with dynamic exogenous variables 

Figure 60 (a-d) shows the results of testing H5 in the escalation archetype. The 
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results support the hypothesis and as the system approaches the tipping point, the 

distance between the points on xt+1-xt graph decreases (Figure 60 a&b). Having noise in 

the system (Figure 60 c&d) causes minor fluctuations but the results still support the 

hypothesis.  

  (a)                        (b)  

   

  (c)                        (d)  

   

Figure 60-Results of H5 in escalation archetype 

(distance of points on xt+1-xt graph vs. time) 

(Tipping variable: A’s desired advantage ratio; dependent variable (x): A’s results) 

60(a) results when the tipping variable decreases over time without any noise in the system 

60(b) results when the tipping variable increases over time without any noise in the system 

60(c) results when the tipping variable decreases over time with dynamic exogenous variables 

60(d) results when the tipping variable increases over time with dynamic exogenous variables 
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Figure 61 (a-d) shows the changes of the slope of xt+1-xt graph over time. Before 

the tipping point, the slope starts near one and decreases as the system approaches the 

tipping point. After the system has passed the tipping point, the slope suddenly changes 

to a number greater than one (Figure 61 a&b). Similar results are observed in the 

presence of randomness in the system (Figure 61 c&d) with some fluctuations.  

  (a)                        (b)  

  
  (c)                        (d)  

  
Figure 61-Results of H6 in escalation archetype 

(slope of xt+1-xt graph vs. time) 

(Tipping variable: A’s desired advantage ratio; dependent variable (x): A’s results) 

61(a) results when the tipping variable decreases over time without any noise in the system 

61(b) results when the tipping variable increases over time without any noise in the system 

61(c) results when the tipping variable decreases over time with dynamic exogenous variables 

61(d) results when the tipping variable increases over time with dynamic exogenous variables 



 

116 

Limerick Construction Project 

  Figure 27 shows the results of testing H1 in the first realistic model in the 

library (Limerick construction project). The base ripple effects strength is the tipping 

variable and at the tipping point, its value is 0.665. The tipping variable was changed 

over time in the [0.5, 0.8] range to test hypothesis 5 and 6. Using this method, the system 

starts from one side of the tipping point and gradually approaches the tipping point (near 

time 50), then the system crosses the tipping point and continues its course. Figure 62 (a-

d) shows xt+1-xt graph of Limerick construction project model. When the tipping variable 

decreases over time (Figure 62 a&c), the system starts from the “bad” side of the tipping 

point, the project is behind schedule and the backlog38 of the project will increase over 

time if no action is taken. Decreasing the tipping variable over time moves the system 

towards the tipping point and shifts the system to the “good” side of the tipping point. 

After crossing the tipping point, the project starts recovering and eventually will get 

completed when the backlog goes to zero. Figure 62 b&d depict the opposite scenario 

when the system starts from the “good” side of the tipping point but because of the 

increase in the tipping variable is pushed to the other side and as a result, the system 

moves to its alternate attractor where the project backlog increases over time. In both 

cases the density of point on the xt+1-xt graph increase when the system is near the 

tipping point (time~50). In Figure 62  a&b the slope of the graph starts from one side of 

y=x line and at the tipping point, it crosses the y=x line and continues on the other side. 

                                                 

38 Defined as the number of work packages that need to be completed 
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In all cases, the slope is very close to one. 

(a)                        (b)  

  
  (c)                        (d)  

  
Figure 62- xt+1-xt graph in Limerick construction project model 

(Tipping variable: base ripple effects strength; dependent variable (x): total project backlog) 

62(a) xt+1 vs. xt when the tipping variable decreases over time without any noise in the system 

62(b) xt+1 vs. xt when the tipping variable increases over time without any noise in the system 

62(c) xt+1 vs. xt when the tipping variable decreases over time with dynamic exogenous variables 

62(d) xt+1 vs. xt when the tipping variable increases over time with dynamic exogenous variables 

Figure 63 (a-d) shows the results of testing H5. As expected from observing the 

xt+1-xt graphs, the results support the hypothesis and as the system approaches the 

tipping point the value of the dependent variable at each time step becomes very similar 

to its value at the previous time step resulting in a decrease in the distance of points on 
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the xt+1-xt graph (Figure 63 a&b). When exogenous dynamic variables are designed in 

the system, some fluctuations are observed in the trend of the distance of points over 

time but the overall trend of the graph supports the hypotheses (Figure 63 c&d).  

  (a)                        (b)  

  
  (c)                        (d)  

  
Figure 63- Results of H5 in Limerick construction project model 

(distance of points on xt+1-xt graph vs. time) 

(Tipping variable: base ripple effects strength; dependent variable (x): total project backlog) 

63(a) results when the tipping variable decreases over time without any noise in the system 

63(b) results when the tipping variable increases over time without any noise in the system 

63(c) results when the tipping variable decreases over time with dynamic exogenous variables 

63(d) results when the tipping variable increases over time with dynamic exogenous variables 

The results of hypothesis 6 testing in the Limerick construction project are shown 
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in Figure 64 (a-d). When there is no randomness in the system (Figure 64 a&b) the slope 

of the xt+1-xt graph decreases as the system approaches the tipping point. After the 

system crosses the tipping point, there is a sudden increase in the slope. These results 

support hypothesis 6 although the slope remains very close to 1 during the simulation. 

When there is randomness in the system (Figure 64 c&d), there are a lot of fluctuations 

in the graph but the sudden shift in the slope after the system crosses the tipping point is 

still recognizable. 
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 (a)                        (b)  

  
  (c)                        (d)  

  
Figure 64- Results of H6 in Limerick construction project model 

(slope of xt+1-xt graph vs. time) 

(Tipping variable: base ripple effects strength; dependent variable (x): total project backlog) 

64(a) results when the tipping variable decreases over time without any noise in the system 

64(b) results when the tipping variable increases over time without any noise in the system 

64(c) results when the tipping variable decreases over time with dynamic exogenous variables 

64(d) results when the tipping variable increases over time with dynamic exogenous variables 

Fish Banks 

The fish banks model has a tipping point when the tipping variable (hatch 

fraction) is equal to 5.25. To test hypothesis 5 and 6, hatch fraction was gradually 

changed between 4.5 and 6 over a period of time. The system starts from one side of the 

tipping point. If the tipping variable is not changed, the system will eventually move 
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towards its attractor. However, because of the changes in the tipping variable, system 

conditions get close to the tipping point and the system is tipped over (at time = 3). After 

this, the system path is altered and it will move towards its second attractor. Figure 65 

(a-d) shows xt+1-xt graphs of the fish banks model. As the system approaches the tipping 

point at time equal to 3, the density of dots on the graph increases and the points get 

closer to each other. In addition, there is a sudden change in the slope of the graph when 

the system passes the tipping point conditions: the graph moves from one side of y=x to 

the other side. 
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  (a)                        (b)  

 
  (c)                        (d)  

 
Figure 65- xt+1-xt graph in fish banks model 

(Tipping variable: hatch fraction; dependent variable (x): fish population) 

65(a) xt+1 vs. xt when the tipping variable decreases over time without any noise in the system 

65(b) xt+1 vs. xt when the tipping variable increases over time without any noise in the system 

65(c) xt+1 vs. xt when the tipping variable decreases over time with dynamic exogenous variables 

65(d) xt+1 vs. xt when the tipping variable increases over time with dynamic exogenous variables 

Figure 66 (a-d) shows the results of testing H5 in the fish banks model. As the 

system approaches the tipping point, the dots on the xt+1-xt graph get closer to each other 

(the distance between the points decreases). These results support the hypothesis. Having 

noise in the system causes fluctuation in the result but does not change the decreasing 

trend of the distance between the points (Figure 66 c&d).  
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  (a)                        (b)  

 
  (c)                        (d)  

 
Figure 66- Results of H5 in fish banks model 

(distance of points on xt+1-xt graph vs. time) 

(Tipping variable: hatch fraction; dependent variable (x): fish population) 

66(a) results when the tipping variable decreases over time without any noise in the system 

66(b) results when the tipping variable increases over time without any noise in the system 

66(c) results when the tipping variable decreases over time with dynamic exogenous variables 

66(d) results when the tipping variable increases over time with dynamic exogenous variables 

Figure 67 (a-d) shows the slope of xt+1-xt graph over time. As the system 

approaches the tipping point, the slope decreases before a tipping point. When the 

system crosses the tipping point, there is a sudden shift to a value greater than one 

(Figure 67 a&b). In the presence of intrinsic randomness in the system (Figure 67 c), the 

jump in the slope happens a little after the system has passed the tipping point. In 
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general, the results support hypothesis 6. 

(a)                        (b)  

 
  (c)                        (d)  

 
Figure 67 (a-d)- Results of H6 in fish banks model 

(slope of xt+1-xt graph vs. time) 

(Tipping variable: hatch fraction; dependent variable (x): fish population) 

67(a) results when the tipping variable decreases over time without any noise in the system 

67(b) results when the tipping variable increases over time without any noise in the system 

67(c) results when the tipping variable decreases over time with dynamic exogenous variables 

67(d) results when the tipping variable increases over time with dynamic exogenous variables 
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Arms Race 

 In the arms race model, the system is standing at a tipping point when the 

tipping variable (desired strength ratio of A) is equal to one. On one side of the tipping 

point the total arms increase over time while on the other side the total arms decrease 

over time creating two different attractors in the system depending on the value of the 

tipping variable. At the tipping point, the total arms of country A and B are equal. To 

test hypothesis 5 and 6, the tipping variable was changed between 0.9 to 1.1, gradually 

moving the system towards the tipping point. After the system crosses the tipping point 

(around time 50), it changes its current path and starts moving towards its alternate 

attractor. Figure 68 (a-d) show the xt+1-xt graph in the arms race model. As the system 

gets closer to the tipping point (time~50) the density of dots on the plot increases, that is 

the value of the dependent variable (total arms A) becomes very similar to its value at 

the previous time step, this can be represented in a decrease in the distance between the 

points. In addition, when the system crosses the tipping point, the slope of the graph 

becomes greater than one.  
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 (a)                        (b)  

 
  (c)                        (d)  

  
Figure 68- xt+1-xt graph in arms race model 

(Tipping variable: desired strength ratio A; dependent variable (x): total arms A) 

68(a) xt+1 vs. xt when the tipping variable decreases over time without any noise in the system 

68(b) xt+1 vs. xt when the tipping variable increases over time without any noise in the system 

68(c) xt+1 vs. xt when the tipping variable decreases over time with dynamic exogenous variables 

68(d) xt+1 vs. xt when the tipping variable increases over time with dynamic exogenous variables 

The simulations of arms race model support hypothesis 5. As the system 

approaches the tipping point (around time 50), the distance between the dots on the xt+1-

xt graph decreases (Figure 69 a&d). When there is randomness in the system (Figure 69 

c&d), minor fluctuations are present but the general decreasing trend is intact. 
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  (a)                        (b)  

 
  (c)                        (d)  

  
Figure 69- Results of H5 in arms race model 

(distance of points on xt+1-xt graph vs. time) 

(Tipping variable: desired strength ratio A; dependent variable (x): total arms A) 

69(a) results when the tipping variable decreases over time without any noise in the system 

69(b) results when the tipping variable increases over time without any noise in the system 

69(c) results when the tipping variable decreases over time with dynamic exogenous variables 

69(d) results when the tipping variable increases over time with dynamic exogenous variables 

The results of testing hypothesis 6 are demonstrated in Figure 70 (a-d). There is 

an abrupt change in the slope of the xt+1-xt graph when the system passes the tipping 

point (near time 50). But the decreasing trend when approaching the tipping point (as 

observed in the other models) cannot be easily detected in the arms race model. When 

there is no noise in the system, the xt+1-xt graph remains very close to the y=x line (the 
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slope of the xt+1-xt graph remains close to one), therefore, the decrease in the slope 

before the tipping point is not noticeable (Figure 70 a&b). When there is randomness in 

the system (Figure 70 c&d) the fluctuations in the slope interfere with any existing trend 

in the graph. This indicates that the changes in the slope over time is more useful to 

identify past tipping points instead of predicting a future one.  

  (a)                        (b)  

 
  (c)                        (d)  

  
Figure 70- Results of H6 in arms race model 

(slope of xt+1-xt graph vs. time) 

(Tipping variable: desired strength ratio A; dependent variable (x): total arms A) 

70(a) results when the tipping variable decreases over time without any noise in the system 

70(b) results when the tipping variable increases over time without any noise in the system 

70(c) results when the tipping variable decreases over time with dynamic exogenous variables 

70(d) results when the tipping variable increases over time with dynamic exogenous variables 
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Social Impact Bonds 

 The social impact bonds model has a tipping point when the fraction of surplus 

returned (the tipping variable) is equal to 0.365. Depending on the value of the tipping 

variable, the total prison population moves towards either of its two equilibrium states. 

To test hypothesis 5 and 6, the tipping variable was changed in the [0.3,0.5] range, 

forcing the system to move towards the tipping point. As a result of the change in the 

tipping variable, the system shifts from one stable equilibrium to another. Figure 71 (a-d) 

shows the xt+1-xt graphs in the social impact bonds model. When there is no noise in the 

system (Figure 71 a&b), the graphs show a similar trend as the other models studied 

here. There is an increase in the density of the dots near the tipping point and the slope 

of the graph shifts from less than one to greater than one. However, no particular trend 

can be identified in the graphs when there is randomness in the system (Figure 71 c&d) 
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 (a)                        (b)  

  
  (c)                        (d)  

 
Figure 71- xt+1-xt graph in social impact bonds model 

(Tipping variable: fraction of surplus returned; dependent variable (x): total prison population) 

71(a) xt+1 vs. xt when the tipping variable decreases over time without any noise in the system 

71(b) xt+1 vs. xt when the tipping variable increases over time without any noise in the system 

71(c) xt+1 vs. xt when the tipping variable decreases over time with dynamic exogenous variables 

71(d) xt+1 vs. xt when the tipping variable increases over time with dynamic exogenous variables 

Figure 72 (a-d) shows the changes in the slope of xt+1-xt graph over time. When 

there is no noise in the system and the tipping variable decreases over time (Figure 72a), 

the results support the hypothesis. As the system approaches the tipping point, the 

distance between the dots on the graph decrease. However, similar trend is not observed 

when the tipping variable is increasing over time (Figure 72b). This might be due to the 

fact that by the time any change is applied to the tipping variable, the system has already 
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reached its equilibrium state and therefore at each time the value of the dependent 

variable is exactly the same as its value in the previous time step (xt+1=xt) and the 

distance is zero. When there is randomness in the system (Figure 72 c&d), no pattern can 

be identified because of the fluctuations in the system, hence, the results are 

inconclusive. 

  (a)                        (b)  

  
  (c)                        (d)  

 
Figure 72- Results of H5 in social impact bonds model 

(distance of points on xt+1-xt graph vs. time) 

(Tipping variable: fraction of surplus returned; dependent variable (x): total prison population) 

72(a) results when the tipping variable decreases over time without any noise in the system 

72(b) results when the tipping variable increases over time without any noise in the system 

72(c) results when the tipping variable decreases over time with dynamic exogenous variables 

72(d) results when the tipping variable increases over time with dynamic exogenous variables 
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The results of hypothesis 6 testing are shown in Figure 73 (a-d). In the case that 

there is no randomness in the system and the tipping variable is decreasing over time 

(Figure 73 a), the slope of xt+1-xt graph decreases as the system gets closer to the tipping 

point and suddenly shifts to a value greater than one after the system crosses the tipping 

point which supports the hypothesis. However, a similar trend is hardly recognized in the 

case where the tipping variable is increasing (Figure 73 b). No distinguishable pattern is 

identified in the graphs when there is noise in the system (Figure 73 c&d). In conclusion, 

the results of hypothesis 6 testing in the social impact bonds model are inconclusive.   
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(a)                        (b)  

  
  (c)                        (d)  

 
Figure 73- Results of H6 in social impact bonds model 

(slope of xt+1-xt graph vs. time) 

(Tipping variable: fraction of surplus returned; dependent variable (x): total prison population) 

73(a) results when the tipping variable decreases over time without any noise in the system 

73(b) results when the tipping variable increases over time without any noise in the system 

73(c) results when the tipping variable decreases over time with dynamic exogenous variables 

73(d) results when the tipping variable increases over time with dynamic exogenous variables 
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Hypothesis 5-6 Summary 

An increase in the density of point on a xt+1-xt graph can be an indicator of a 

tipping point and a new measure of critical slowing down. As a system approaches a 

tipping point the state variable becomes more similar to its previous time step value 

resulting in more number of points on the graph near a tipping point. This density can be 

measured by finding the distance between two consecutive points on the graph. The 

results of testing this hypothesis in the models in the library show that the hypothesis is 

supported in simple systems (with few stock variables). In the complex models of the 

library, in basic cases where the exogenous variables are static and there is no noise in 

the system, the results support the hypothesis. However, in the presence of randomness 

in the system, due to the fluctuation caused by the noise, any existing decrease in the 

distance between the points cannot be identified and the indicator signal is not clear.  

Observing xt+1-xt graphs also reveals a trend in the changes in the slope of the 

graph over time. As the system approaches the tipping point, the slope remains less than 

one and decreases until the system reaches the tipping point. At this point and as the 

system crosses the tipping point, the slope abruptly shifts to a value greater than one. In 

other words, when drawing xt+1-xt graphs, if the graph crosses the y=x line, it is an 

indicator of crossing a tipping point. This behavior is similar to the phenomenon called 

“avoided crossing” in physics that occurs near a critical point in systems with a limited 

number of state variables. The simulation results of simple models (less than 3 stock 

variables) support the hypothesis. Simulations results of the complex models are 

inconclusive. If there is no randomness in the system, the aforementioned behavior is 
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observed in the models but in some cases, the slope of the xt+1-xt graph tends to stay very 

close to one which makes identifying the existing decrease in the slope before the 

tipping point very difficult. But in all cases, the sudden change in the slope after the 

system has passed the tipping point is easily recognizable, indicating that the slope of 

xt+1-xt graph might be more useful to identify past tipping points instead of predicting a 

future one. In the presence of the randomness in the system, no trend can be recognized 

because of the noise-induced fluctuations.  
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CHAPTER VII 

TESTING THE APPLICATION OF TIPPING POINT INDICATORS IN PRACTICE 

In this chapter, the two new indicators (distance of points on the xt+1-xt graph and 

slope of xt+1-xt graph) are used to predict and manage a tipping point in the Limerick 

construction project model. Based on the prediction, a preventive strategy is used to 

avoid crossing the tipping point and save the project. This is used to show how project 

managers can use these tipping point indicators to avoid having projects fail due to 

tipping point dynamics. 

This model is based on the Limerick Unit 2 nuclear power plant construction 

project as modeled by Taylor and Ford (2006; 2008). See Chapter III for a description of 

the model and Appendix A for model equations. The model has two attractors.  On the 

“good” (desirable) side of the tipping point, the total project backlog39 decreases over 

time and the project finally completes successfully, on the “bad” (undesirable) side of 

the tipping point, the total project backlog increases over time and the project eventually 

fails in respect to its schedule performance. See Chapter III for a full description of the 

attractors and the tipping point conditions. For the purpose of this chapter, the system 

conditions are defined in a way to simulate the project such that it starts on the “good” 

side and tips towards the “bad” side of the tipping point. The behavior of the total project 

backlog (the dependent variable) over time is shown in Figure 74. At the beginning, the 

project backlog decreases over time and it looks like the project is making progress. 

                                                 

39 Defined as the number of work packages that need to be completed 
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However, the extra work caused by rework, schedule pressure and ripple effects strength 

builds over time and eventually tips the system at around 60 months40. After this time, 

the project gets out of control, the total project backlog increases constantly and the 

project will miss its schedule performance target.  

 
Figure 74-Behavior graph of total project backlog in Limerick construction project model 

H5 and H6 indicators (distance of points on the xt+1-xt graph and slope of xt+1-xt 

graph) are used to predict the tipping point at around time 60 in the Limerick 

construction project model. These two indicators are the most practical ones studied in 

this work because they are easy to use and do not require extensive statistical 

knowledge. The data required to use these indicators is the status of the total project 

backlog at each time interval (weekly or monthly) which is already collected during 

                                                 

40 The tipping point time is dependent on the tipping conditions including the value of the tipping variable. 
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periodic project reports. The xt+1-xt graph can easily be drawn using widely available 

software such as MS Excel and monitored based on the data. From the xt+1-xt graph, it is 

easy to find the distance between the dots and the slope of the graph using basic 

geometric equations.  

Figure 75 shows the xt+1-xt graph built based on the value of the total project 

backlog between month 50 and 90 as shown in Figure 74. The y-axis shows the total 

project backlog at time t+1, and the x-axis is the total project backlog at time t. The 

arrows show the direction of the graph as the project progresses. The graph starts on the 

right side of the y=x line (slope is less than one). As the project continues, the dots on 

the graph get closer to each other, and at time 62.5 (circled on the graph), the trend 

crosses the y=x line and moves towards the other direction with a slope slightly greater 

than one. Time 62.5 is the tipping point of the system. 

 
Figure 75- xt+1-xt graph of Limerick construction project (x: total project backlog) 
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From Figure 75, the distance between the dots (H5 indicator) is calculated and 

the changes of the distance over time are shown in Figure 76. At the beginning of the 

project, the distance increases over time. Between time 39 and 43, there is no change in 

the distance between the dots. After this point, the distances between the dots start 

decreasing until it reaches its minimum value at 62.5 months (the tipping point). At time 

43, the distance is 180. In three months, there is 1% decrease in the distance between the 

dots. The percentage decrease goes up to 5% at time 49 and 10% at time 52.  

 
Figure 76-Distance of points on the xt+1-xt graph in Limerick construction project model 

A project manager who is monitoring this indicator can observe a decrease in the 

distance of dots after time 43. At the beginning, the decrease is small and it might be 

considered as temporary. At time 49 (6 months after the decreasing trend starts), the 

project manager will observe a 5% decrease and be aware of an upcoming tipping point 

in the project. This can provide time to take action before the tipping point is crossed. 



 

140 

Adding more staff to the project is one preventive strategy to help the project. To 

apply this strategy in the Limerick model, the total project staff was increased by 45% at 

time 49 for the remainder of the project41. Figure 77 (a-b) shows the total project 

backlog over time when this strategy is used and the total project performance without 

any managerial response. When the extra staff is added from time 49. the project never 

passes the tipping point and instead, the backlog decreases over time until the project 

completes at time 95 (Figure 77a). If the project manager waits till the 10% decrease 

threshold (month 52), he/she will need to increase the project staff by 60% to get similar 

results. 

 
Figure 77 (a-b)- Behavior graph of total project backlog in Limerick construction project 

model with and without managerial response 

77(a) project performance with managerial response (adding staff): after increasing the project 

staff by 45% at time 49, the total backlog will continue decreasing and the project will complete 

at time 95 

77 (b) project performance without managerial response: the project crosses the tipping point at 

around 60 and it will not finish 

                                                 

41 The initial project staff is 2350 and an extra 1058 were added after time 49 
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If the project manager was unaware of the tipping point, and does not add extra 

staff to the project on time, the project would cross the tipping point at time 62.5, and the 

backlog would increase over time without any chance for the project to complete (Figure 

77b). After this point, adding staff alone does not help the project, and it should be 

combined with other strategies (e.g. reducing project scope) to have any effect on the 

project schedule. See Taylor and Ford (2008) for a case study of the tipping point in the 

Limerick construction project. This supports the idea that crossing a tipping point is 

either irreversible (Thompson and Sieber 2011; Beaulieu et al. 2012) or the energy 

required to move the system back to its original state is more than the required energy to 

tip the system (Scheffer et al. 2001).  

Next, the slope of the xt+1-xt graph (H6 indicator) is used to predict the tipping 

point. The slope starts from near one and remains very close to one (Figure 78). It starts 

decreasing near the tipping point (t=60) and suddenly changes to a value greater than 

one after the tipping point.  
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Figure 78- Slope of the xt+1-xt graph in Limerick construction project model 

The slope starts decreasing at 60 months. In one month (t=61), the decrease is 

over 5%, and in five months (t=61.25) the decrease is 10%. This indicator predicts the 

tipping point much later than the previous indicator (compared to 49 months for 5% 

decrease in the distance between the points and 52 months for 10% decrease). If the 

project manager starts the strategy of adding more staff at time 61, he/she will need to 

use four times the initial staff in order to finish the project in 100 months. See Figure 79 

for the changes of total project backlog over time using this strategy. This example 

demonstrates that the H6 indicator can trace a tipping point when the system is very 

close to the tipping point. This might not give enough time to the practitioners to apply 

effective strategies to avoid the tipping point. Therefore, the H6 indicator is more useful 

in identifying past tipping points.  
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Figure 79- Behavior graph of total project backlog in Limerick construction project model 

after using six times the initial staff starting at time 61 

The other tipping point indicators studied in hypotheses 1-4 are not 

straightforward to use. The H1 indicator (time to reach an equilibrium state without any 

perturbation) was mainly tested to find if the models studied show properties of 

bifurcation near their tipping point. Although it is possible to use this indicator in 

practice mainly to compare the state of two different projects, it might not be very 

practical to use this indicator for predicting a tipping point in a single project. By the 

time enough data has been gathered to test the indicator, the project will be almost near 

completion.  

Using the existing “critical slowing down” measures (i.e. H2-H4 indicators, 

namely, recovery time from a perturbation, lag-1 autocorrelation, and variance of the 

state variable) has some limitations when the system model is not available. Testing 

these indicators requires perturbing the system which might be ethically or practically 

impossible. However, in construction projects, change orders frequently provide natural 
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disturbances in the system. Adding a change order can be considered as a perturbation to 

the project schedule. The time it takes the project to get back on schedule can be 

compared to results of previous change order incidents. If it takes the project 

significantly longer amounts of time to get back on track (for the same type and volume 

of work), it might be an indicator that the project is deteriorating and getting close to a 

tipping point. Although the temporal autocorrelation and variance of the project backlog 

can be used in the same way, by the time any increase is observed in these two measures, 

the system might be so close to the tipping point that preventive policies are ineffective. 

Therefore, the recovery time is a better indicator of a tipping point in a construction 

project although it is still more difficult to measure than the indicators based on xt+1-xt 

graphs as described earlier in this chapter. 
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CHAPTER VIII 

CONCLUSIONS AND DISCUSSION 

Summary 

Tipping point dynamics have been observed in various systems in different 

disciplines. Because of the large negative consequences of tipping point-induced 

failures, an indicator that can predict tipping points can be very valuable to designers and 

managers of complex systems. “Critical slowing down” is one of the most studied 

tipping point indicators in the literature. However, not all tipping points show slowing 

down. Scheffer et al. (2012) suggest that slowing down should be seen as an indicator of 

a “potential” change in the system, and the robustness of the current indicators still needs 

to be fully studied (Scheffer et al. 2012; Lenton 2011). In addition, the research so far 

has focused on statistical analysis of historical data; hence, the system structures that 

result in a tipping point have not yet been thoroughly investigated (Scheffer et al. 2012). 

The “slowing down” indicators are derived from the properties of bifurcation in 

nonlinear dynamics. These findings are based on simple models with few dependent 

variables, and the theoretical research on the dynamic behavior of large and complex 

systems is still limited (Strogatz 2014). As engineers, our interest is to be able to use the 

suggested indicators in application with the focus on construction projects. To bridge the 

gap between simple math models and application, this work has applied a progressive 

approach in which first system dynamics archetypes that are models with less than three 

stock variables are studied. The archetypes represent similar behavior patterns in 

systems and are the foundation of the models of complex systems. Next, previously 
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validated system dynamics models of realistic systems are studied. These models are 

relatively complex and have more variables. The purpose of this approach is to gain 

more understanding of system structures that create tipping points and the usefulness of 

tipping point indicators by studying existing simple and relatively complex models in a 

controlled environment. The ultimate goal is to apply this knowledge and extend the 

findings to practice when no formal model of the projects is available.  

This work started by studying the existing definitions of a tipping point in the 

literature. Further investigation revealed a problem in the current definitions of a tipping 

point: each researcher has focused on a different perspective of a tipping point. Some see 

the tipping point as a point in time (e.g. Gladwell 2006) while others describe the system 

behavior or system conditions near or at a tipping point (e.g. Lenton 2011; Sieber et al. 

2012). This research focused on improving the definition of a tipping point by defining 

three different terms: tipping point conditions, tipping point behavior and tipping point 

structure. Each of the terms focuses on one aspect of a tipping point, and together they 

provide a more thorough definition than the current definitions in the literature. This 

improved definition, as described in Chapter II, answers the first research question: 

“What are the necessary and sufficient conditions for a tipping point?” 

Next, a library of models with tipping point behaviors was developed. The model 

library consists of system dynamics archetypes as well as models of real systems that 

have been previously developed and validated in the system dynamics literature. The 

feedback loop structure of library models was studied to develop a taxonomy of tipping 

point structures. Type I tipping points dynamics are caused because of the change in the 
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dominance of feedback loops whereas type II tipping points happen due to a change in 

the direction of the dominant reinforcing loop. The model library and the identified 

tipping point types, as described in Chapter III, answer the second research question: 

“What system structure(s) create multiple attractors and a tipping point?” 

To answer the final research question (“How do tipping point indicators behave 

in different types of tipping point structures?”), the behavior of four tipping point 

indicators (derived from “critical slowing down” literature) and two potential new 

indicators (inspired by the behavior of state variables in the library models) were 

formulated in the form of six hypotheses. The best procedure to test each hypothesis was 

developed based on the features of system dynamics models. The hypotheses were then 

tested in the selected models of the library.  

In both type I and type II, an increase in the time to reach an equilibrium without 

any perturbation is an indicator of a tipping point. The only exception is the social 

impact bonds model (an example of a type II tipping point) in which the results support 

the hypothesis when approaching the tipping point from one side but not from the other 

side. These results show that the models in the library have the properties of a 

bifurcation at their tipping point. However, in realistic models, the increase in time 

required to reach an equilibrium is only noticeable when the system is very close to the 

tipping point, which may not provide enough time to apply preventive actions.  These 

results emphasize the concerns of Dakos et al. (2010) that the slowing down behavior 

might happen too late.  
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An increase in the recovery time from a perturbation (one of the measures of 

“critical slowing down”) can be an indicator of tipping points in type I models. 

However, in realistic models, the results depend on the time frame studied, and these 

indicators are only useful when the system is very close to the tipping point conditions. 

The systems recover from a perturbation slower when getting close to a tipping point, 

but when the system is further away from its tipping point, recovery time might either 

remain constant or give false alarms as in the fixes that fail archetype (due to the 

oscillatory behavior). The value of recovery time varies depending on the size of 

perturbation, but the general behavior does not change. The results of type II models are 

not conclusive. Only two of the type II models could be tested using the suggested 

testing procedures. Of the two models that could be tested, the results of one (the 

reinforcing loop archetype) support the hypothesis whereas the results of the social 

impact bonds model only partially support the hypothesis (there is no change in the 

recovery time when approaching the tipping point from one side).  

An increase in the lag-1 autocorrelation of the dependent variable (the second 

“critical slowing down” measure) can be used as an indicator of a tipping point in type 

I models, but definite conclusions cannot be made for type II models. It should be noted 

that, by definition, in a system dynamics model, the value of the stock variables at each 

time step are calculated based on their value in the previous time step. Therefore, lag-1 

autocorrelation might not be the best indicator to look at in a system dynamics model.  

An increase in the variance of the dependent variable (the third measure of 

“critical slowing down”) should be used with caution as a tipping point indicator. The 
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results of all type I models and one of the type II models support the hypothesis. 

However, the results are sensitive to the size of the perturbation. Some doubts about 

using the increase in variance as an indicator of a tipping point have been stated in the 

literature (Lenton et al. 2012; Dakos et al. 2012). Dakos et al. (2012) suggest that the 

direction of changes in the state variable variance (decrease or increase) depends on the 

sensitivity of the state variable to the existing noise in the system. Although the results 

here do not show any major decrease in the variance, they are very sensitive to the size 

of the perturbation which supports the critics on using variance as an indicator. Dakos et 

al. (2012) suggest that the sensitivity of the state variable to the control variables that 

were used to disturb the system can impact the results. The closeness of the system to the 

tipping point also affects the results. In other words, the increase in the variance only 

starts when the system is very close to the tipping point.   

Two new tipping point indicators (i.e. decrease in the distance between two 

consecutive points on xt+1-xt graphs and sudden change in the slope of the xt+1-xt graph) 

are suggested based on the similarities in the behavior of the dependent variable as the 

system approaches a tipping point. The distance between two consecutive points on xt+1-

xt graphs (where x is the dependent variable) is a promising practical indicator of a 

tipping point. In all models studied (both type I and type II), the distance between the 

points decreases as the system approaches the tipping point. This indicator can be 

considered a new measure of critical slowing down. As the system approaches a tipping 

point, the state of the system becomes very similar to its state at the previous time step. 

Hence, the density of the points on a xt+1-xt graph increases, and the points get closer to 
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each other as the system approaches the tipping point. This indicator is easy to use in 

practice. Keeping the xt+1-xt graphs up to date is easy and does not require additional 

information other than what is normally gathered when managing projects. A manager 

can keep track of the project backlog and use a decrease in the distance between the 

points on the xt+1-xt graphs as an indicator of approaching a tipping point. See Chapter 

VII for a sample application of this indicator in a construction project model.  

Observing xt+1-xt graphs reveals a trend in the changes in the slope over time. As 

the system approaches the tipping point, the slope remains less than one and decreases 

over time until the system reaches the tipping point at which the slope abruptly changes 

to a value over one (the xt+1-xt graph crosses the y=x line at the tipping point). The 

simulation results of all models (both type I and type II) show this trend when there is no 

noise in the system. However, when there is randomness in the system, the trend is not 

easily recognized due to the fluctuations caused by the noise in the system, and the 

results are inconclusive for those conditions. Also, the decreasing trend in the slope 

starts when the system is very close to the tipping point. Hence, it might not provide 

enough time to apply preventive strategies in the system. The abrupt change in the slope 

at the tipping point is observed in both conditions (with and without randomness). 

Therefore, this indicator is more useful in identifying a past tipping point than predicting 

a future one. An application of this indicator in a construction project model is described 

in Chapter VII. Table 3 summarizes the results of testing the hypotheses in the library 

models studied here. The detailed descriptions of hypothesis 1, hypothesis 2-4 and 

hypothesis 5-6 are described in Chapters IV, V and VI respectively.  
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Table 3-Summary of results of testing hypotheses in the tipping point library models 

TP Type Model Hypothesis 

1 

Hypothesis 

2 

Hypothesis 

3 

Hypothesis 

4 

Hypothesis 

5 

Hypothesis 

6 

Type I 

Limits to growth 

archetype 

Supported Supported Supported Partially 

supported 

Supported Supported 

Fixes that fail 

archetype 

Supported Supported Supported Partially 

supported 

Supported Supported 

Limerick 

construction 

project model 

Supported Supported Supported Partially 

supported 

supported supported 

Fish banks model Supported Supported 

with 

limitations 

Supported 

with 

limitations 

Partially 

supported 

Supported Supported 

Type II 

Reinforcing loop 

archetype 

Supported Supported Supported Partially 

supported 

Supported Supported 

Escalation 

archetype 

Supported Could not be 

tested 

Could not be 

tested 

Could not be 

tested 

Supported Supported 

Arms race model Supported Could not be 

tested 

Could not be 

tested 

Could not be 

tested 

Supported Supported 

Social Impact 

Bonds in 

Peterborough 

Prison 

Partially 

supported 

Partially 

supported 

Partially 

supported 

Partially 

supported 

supported supported 
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Research Contributions 

This work has taken steps to bridge the gap between the bifurcation theory in 

nonlinear dynamics and practice in the system dynamics field. Investigating and 

analyzing the current definitions of a tipping point lead to identifying potential points of 

confusion in the accepted definitions. Each researcher has focused on a different 

perspective of a tipping point. A more thorough definition of a tipping point that 

includes all aspects and can be used across different disciplines seems necessary. The 

improved definition of a tipping point, as suggested here, adds rigor to the meaning of 

tipping points. Three aspect of tipping points (namely behavior, conditions and 

structures) are brought together in the improved definition, which encourages researches 

to have a holistic approach when studying tipping points instead of concentrating on a 

point in time (as some of the current definitions suggest). 

Unlike most of the tipping point literature that uses a statistical data-based 

approach in identifying tipping point indicators, a model-based approach was used here. 

This approach utilizes the system dynamics principles to study the feedback structures of 

the systems with tipping points. By investigating a set of models, the underlying system 

structures that can create multiple attractors and thereby give rise to a tipping point were 

identified. The knowledge was used to develop a taxonomy of tipping point types. This 

taxonomy can help distinguish different tipping point dynamics in complex models.  

In addition, the library of system dynamics tipping point models gathered here 

brings existing case studies in the system dynamics literature into one place. Although 

system dynamicists have studied and researched tipping points individually, their efforts 



 

153 

have not been gathered in one place before. Having a library of models is beneficial for 

future studies of tipping points. Researchers can expand the model library and use the 

models to further investigate tipping point dynamics. This can also help standardize 

tipping point discussion by having a set of models that everyone can refer back to.  

The existing “critical slowing down” measures were tested in the library models 

and this study demonstrated and supported them as important potential tipping point 

indicators that are applicable to a broad range of systems including system dynamics 

models. Although “critical slowing down” measures have been widely studied in the 

climate change and ecosystem literatures, there has not been any attempt to use them in 

the construction management or system dynamics before.  

The findings of this study also highlighted some limitations of “critical slowing 

down measures”. The results demonstrated that the clarity of the tipping point 

indicators’ signal depends on the complexity of the system. While the indicators clearly 

predict tipping points in simple models with a limited number of state variables, 

interpretation of the signals in more complex models are not always easy and there 

might be some missed or false alarms when using the indicators. It was also found that 

having noise in the system highly affects the performance of tipping point indicators. 

The fluctuations caused by intrinsic noise in the system interfere with the tipping point 

indicators and it is not always possible to separate the noise-induced fluctuations from 

the indicator signals. 

The study of the library models’ behavior before a tipping point enhanced the 

tipping point body of knowledge by identifying two potential new tipping point 
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indicators. The distance and slope of xt+1-xt graph are proposed as being more useful to 

practitioners than the previous indicators. These indicators are easy to use and the data 

required to use them as indicators is not difficult to gather. The ease of application of 

these two indicators were demonstrated in a construction project model in Chapter VII. 

Research Implications for Practitioners 

This work has some important implications for practice. The improved definition 

of a tipping point will help the practitioners to better recognize a tipping point in the 

system and avoid the confusion caused by the incomprehensive accepted definitions. 

While the assumption might be to see the tipping point as a point in time, the improved 

definition highlights that a combination of system behaviors, system conditions and 

system structures is responsible for tipping point dynamics. These three factors should 

be considered together when studying tipping point dynamics rather than focusing on a 

single point in time. 

The practitioners can compare their system behavior to the behavior of the 

system archetypes and other models gathered in the library and recognize their system as 

one of the library. This will result in a better understanding of the underlying feedback 

structures in their systems and how different system components interact with each 

other. The taxonomy of the tipping point types in combination with the model library 

will enable the practitioners to classify the tipping point they are facing which will 

facilitate collecting data for further investigation of the system. 

The results of hypotheses testing support and strengthen the importance of 

“critical slowing down indicators”. Although these indicators are not easy to use in 
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project management as discussed in Chapter VII, they provide useful tools to compare 

the stability of different systems. These indicators can be used to rank systems and the 

knowledge will help the system designers to identify the strength and weaknesses of 

their systems and enhance their future designs.  

The two new indicators suggested in this work (the distance of slope of xt+1-xt 

graphs) are potential useful tools to recognize tipping points. In a xt+1-xt graph each point 

represents the condition of the system at a point in time. These two indicators are easy to 

use by practitioners because the data required to build xt+1-xt graphs is already gathered 

during periodical project reports. Monitoring xt+1-xt graphs is straightforward and do not 

require extensive knowledge of statistics. These indicators were applied in the Limerick 

construction project model as an example to show their ease of use. The indicators were 

used to predict the tipping point in the system and a common preventive strategy (add 

resources) was used to keep the project crossing the tipping point conditions and thereby 

helping the project meet its schedule target. See Chapter VII for details of the 

application. The exponential nature of the decrease in the distance and slope of xt+1-xt 

graphs will also allow the managers to estimate the closeness of the system to the tipping 

point.  

The findings of this work showed that the clarity of the indicators’ signal 

depends on the complexity of the system and size of noise in the system. This helps set 

expectations on how clear these indicators can predict tipping points. Practitioners need 

to be aware of the limitations of the indicators and not have unrealistic expectations of 

their effectiveness.  
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Future Work 

The results of this effort have identified future research opportunities in tipping 

point studies. There is still a need for further theoretical work to quantify and formulate 

the strength of feedback loops in a practical and accessible way. This quantification will 

be beneficial for both tipping point types developed here. Tracking the strength of the 

dominant feedback loop compared to the competing loops can predict a future change in 

the dominance (tipping point type I). Also, comparing the feedback strength when 

approaching different existing attractors in type II tipping points can be used to develop 

new tipping point indicators.  

There is ambiguity in the literature whether the state variable or the tipping 

variable(s) should be perturbed to test the hypotheses (van Nes and Scheffer 2007). This 

study disturbed the state variable to measure “critical slowing down”. Future work can 

disturb other variables and compare the results to this work. In addition, the choice of 

state and control variables might affect the results and should be studied further. These 

investigations will move the research closer to operationalizing tipping point indicators. 

This work has applied a model-based approach to test tipping point indicators. To 

further this work, these indicators should be tested with real projects data. This test could 

determine if the effects of noise are as observed in this dissertation. It can also determine 

if in a real project, the indicator can be recognized early enough to turn the project 

around. 

Finally, the relationship between the indicators studied here and resilience of 

systems and its measures is another area that needs further investigation. These 
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investigations can be used to rank the levels of the fragility of the systems as suggested 

by Scheffer et al. (2012). Understanding tipping point dynamics and its relationship to 

stability and resilience of system will be beneficial for system designers. This knowledge 

can be utilized to design robust systems that are resilient to unexpected changes. 
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APPENDIX A 

MODEL EQUATIONS 

Limits to Growth Archetype 

Model Equations 

(1) birth rate=(noise+fractional change rate)*Population 

(2) carrying capacity=10 

(3) death rate=(noise+fractional change rate)*Population*Population/carrying capacity 

(4) fractional change rate=[-1,1, step=0.1]    

(5) noise=0 

(6) Population= INTEG (birth rate+pulse rate-death rate,1) 

 

Dynamic Variables 

noise=0.2*fractional change rate*RANDOM UNIFORM(-1, 1, 0) 

 

Perturbation Parameters 

pulse rate=pulse switch*pulse size*PULSE(pulse time, pulse duration) 

pulse time=100 

pulse duration=TIME STEP*4 

pulse size=[-5,5, step=2]  

 

Simulation Control Parameters 

FINAL TIME  = 200 

INITIAL TIME  = 0 

SAVEPER  = TIME STEP 

TIME STEP  = 0.25 

Fixes that Fail Archetype 

Model Equations 
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(1) fix=fractional fix rate*Problem Symptom 

(2) fractional consequences rate= [0.1,1.9, step=0.1] 

(3) fractional fix rate=2 

(4) long term consequences=fractional consequences rate*DELAY1( fix, 1) 

(5) Problem Symptom= INTEG ( long term consequences+pulse rate-fix,50)  

 

Dynamic Variables 

fractional fix rate=2+0.5*2*RANDOM UNIFORM(-1, 1, 1) 

 

Perturbation Parameters 

pulse rate=pulse switch*pulse size*PULSE(pulse time, pulse duration) 

pulse time=100 

pulse duration=TIME STEP*4 

pulse size=[-10,10, step=2] 

  

Simulation Control Parameters 

FINAL TIME  = 200 

INITIAL TIME  = 0 

SAVEPER  = TIME STEP 

TIME STEP  = 0.25 

 

Reinforcing Loop Archetype 

Model Equations 

(1) Current State= INTEG (flow+pulse rate, 5)  

(2) flow=Current State * (fractional change rate+noise) 

(3) fractional change rate=[-1,1, step=0.1] 

 

Dynamic Variables 

Noise= 0.2*fractional change rate*RANDOM UNIFORM(-1,1,0) 
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Perturbation Parameters 

pulse rate=pulse switch*pulse size*PULSE(pulse time, pulse duration) 

pulse time=100 

pulse duration=TIME STEP*4 

pulse size=[-10,10, step=2] 

 

Simulation Control Parameters 

FINAL TIME  = 200 

INITIAL TIME  = 0 

SAVEPER  = TIME STEP 

TIME STEP  = 0.25 

Escalation Archetype 

Model Equations 

(1) A’s desired advantage ratio=[0.1,1.9, step=0.1] 

(2) activity by A= (desired relation by A-Results of A Relative to B) 

(3) activity by B= (desired relation by B-Results of A Relative to B) 

(4) A's Results= INTEG ( activity by A, 20) 

(5) B’s desired advantage ratio=1 

(6) B's Results= INTEG ( activity by B, 20) 

(7) Results of A Relative to B=A's Results/B's Results 

 

Dynamic Variables 

desired relation by B= 1+0.2*1*RANDOM UNIFORM(-1,1,0) 

 

Simulation Control Parameters 

FINAL TIME  = 50 

INITIAL TIME  = 0 

SAVEPER  = TIME STEP 

TIME STEP  = 0.25 
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Limerick Construction Project Model 

Model Equations 

For full model documentation see Taylor and Ford ((2006; 2008)). Some of the 

equations have been modified to simplify the model. 

 

(1) Actual IC fraction= INTEG (Change IC fraction,Prop fraction of IC resource 

demand) 

(2) Actual release productivity=ZIDZ(Work Released, Time) 

(3) Actual RW fraction= INTEG (Change RW fraction, Prop fraction of RW 

resource demand) 

(4) Approve work rate=QA rate-Discover rework rate 

(5) Base rework fraction=0.3 

(6) Base ripple effects strength=[0.05,1.25, step=0.05] 

(7) Base sensitivity to schedule pressure=0.3 

(8) Change IC fraction=(Prop fraction of IC resource demand-Actual IC 

fraction)/Staff Adjustment Time 

(9) Change QA fraction=(Prop fraction QA resource demand-Actual QA 

fraction)/Staff Adjustment Time 

(10) Change RW fraction=(Prop fraction of RW resource demand-Actual RW 

fraction)/Staff Adjustment Time 

(11) Discover rework rate=Fraction discovered to require rework*QA rate 

(12) Fraction discovered to require rework=MIN(1,Base rework fraction+Rework 

fraction due to schedule pressure) 

(13) IC labor required=Total Work avail for IC/IC staff productivity 

(14) IC process rate=Total Work avail for IC/Minimum IC duration 

(15) IC resource rate=IC staff productivity*IC Staff  

(16) IC Staff=Actual IC fraction*Total project staff 

(17) IC staff productivity=1 

(18) Initial Completion Backlog= INTEG (ripple effects rate-Initially complete work 

rate),Scope initial) 

(19) Initially complete work rate=MAX(MIN(IC process rate,IC resource rate),0) 

(20) Max Effective Schedule Pressure Ratio=2 

(21) Minimum IC duration=1 

(22) Minimum RW duration=1 

(23) Minimum QA duration=1 

(24) Percent complete=Work Released/(Total project work)*100 

(25) Planned project duration fraction used to adjust Release Productivity=0.5 

(26) Planned Release Productivity=XIDZ(Scope initial,Project deadline,1) 

(27) Project deadline=75 

(28) Prop fraction of IC resource demand=ZIDZ(IC labor required, Total labor required 

to complete available work) 
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(29) Prop fraction QA resource demand=ZIDZ(QA labor required, Total labor required 

to complete available work) 

(30) Prop fraction of RW resource demand=ZIDZ(RW labor required, Total labor 

required to complete available work) 

(31) Quality Assurance Backlog= INTEG (Initially complete work rate-Discover 

rework rate+Rework rate-Approve work rate,0) 

(32) QA labor required=Quality Assurance Backlog/QA staff productivity 

(33) QA process rate=Quality Assurance Backlog/Minimum QA duration 

(34) QA resource rate=QA staff productivity*QA Staff 

(35) QA rate=MIN(QA resource rate,QA process rate) 

(36) QA Staff=Actual QA fraction*Total project staff 

(37) QA staff productivity=1 

(38) Actual QA fraction= INTEG (Change QA fraction,Prop fraction QA resource 

demand) 

(39) Release productivity for forecasting= (((MAX(0,Time to transition to Actual 

Release Productivity-Time))/Time to transition to Actual Release Productivity) 

*Planned Release Productivity) + (MIN(1,Time/Time to transition to Actual 

Release Productivity))*Actual release productivity 

(40) Rework Backlog= INTEG (Discover rework rate-Rework rate,0) 

(41) Rework fraction due to schedule pressure=Schedule pressure switch*Base 

Sensitivity to schedule pressure*(Schedule Pressure Ratio-1) 

(42) Rework rate=MIN(RW process rate, RW resource rate) 

(43) ripple effects rate=Ripple effects switch*(Discover rework rate)*Base Ripple 

effects strength 

(44) RW labor required=Rework Backlog/RW staff productivity 

(45) RW process rate=Rework Backlog/Minimum RW duration 

(46) RW resource rate=RW Staff*RW staff productivity 

(47) RW Staff=Actual RW fraction*Total project staff 

(48) RW staff productivity=1 

(49) Scope initial=38700 

(50) Schedule Pressure Ratio=MAX(1, MIN(Max Effective Schedule Pressure Ratio, 

XIDZ(Time required, Time available,Time required/TIME STEP))) 

(51) Staff Adjustment Time=4 

(52) Time available=MAX(1,Project deadline-Time) 

(53) Time required=ZIDZ(Total BLWIP,Release productivity for forecasting)Time to 

transition to Actual Release Productivity=Project deadline*Planned project 

duration fraction used to adjust Release Productivity 

(54) Total BLWIP=Initial Completion Backlog+Quality Assurance Backlog+Rework 

Backlog+pulse rate) 

(55) Total labor required to complete available work=IC labor required+QA labor 

required+RW labor required 

(56) Total project staff=2350 

(57) Total project work=Total BLWIP+Work Released 

(58) Total projeect work not in IC BLWIP=Total project work-Initial Completion 
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Backlog 

(59) Total Work avail for IC=Total project work-Total projeect work not in IC BLWIP 

(60) Work Released= INTEG (Approve work rate,0) 

 

Dynamic Variables 

IC staff productivity=  RANDOM UNIFORM(-1,1,3)*1*0.2+1 

QA staff productivity= RANDOM UNIFORM(-1,1,4)*1*0.2+1 

RW staff productivity= RANDOM UNIFORM(-1,1,5)*1*0.2+1 

Minimum IC duration= RANDOM UNIFORM(-1, 1,2)*1*0.2+1 

Minimum QA duration= RANDOM UNIFORM(-1, 1,0)*1*0.2+1 

Minimum RW duration= RANDOM UNIFORM(-1, 1,1)*1*0.2+1 

 

Perturbation Parameters 

pulse rate=pulse size*pulse switch*PULSE(pulse time, pulse duration) 

pulse time=100 

pulse duration=TIME STEP*4 

pulse size=[-10000,10000, step=2000] 

 

Simulation Control Parameters 

FINAL TIME  = 500 

INITIAL TIME  = 0 

SAVEPER  = TIME STEP 

TIME STEP  = 0.25 

 

Fish Banks Model 

Model Equations 

(1) area=100 

(2) carrying capacity=1200 

(3) catch per ship=table 2(density) 
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(4) death fraction=table(Fish/carrying capacity) 

(5) density=Fish/area 

(6) Fish= INTEG (fish hatch rate+pulse rate-fish death rate-total catch per year, 20)  

(7) fish death rate=Fish*death fraction 

(8) fish hatch rate=Fish*hatch fraction 

(9) fish price=10 

(10) fraction invested=0.2 

(11) hatch fraction=[0.5,9.5, step=0.5] 

(12) operating costs=Ships*unit operating costs  

(13) revenues=fish price*total catch per year 

(14) Ships= INTEG (ship building rate, 10) 

(15) ship building rate=fraction invested*yearly profits/ship cost 

(16) ship cost=300 

(17) table([(0,0)-(2,15)], (0,5.22), (0.2,5.23), (0.4,5.255), (0.6,5.345), (0.8,5.665), (1,6),  

(1.2,6.44), (1.4,7.13), (1.6,7.97), (1.8,9.32), (2,11)) 

(18) table 2([(0,0)-(10,40)], (0,0), (1,5), (2,10.4), (3,15.9), (4,20.2), (5,22.1), (6,23.2),  

(7,23.8), (8,24.2), (9,24.6), (10,25)) 

(19) total catch per year= catch per ship*Ships 

(20) unit operating costs=250 

(21) yearly profits=revenues-operating costs 

 

Dynamic Variables 

area=100+0.2*100*RANDOM UNIFORM(-1, 1, 3) 

fish price=10+0.2*10*RANDOM UNIFORM(-1, 1, 0) 

ship cost=300+0.2*300*RANDOM UNIFORM(-1, 1,1) 

unit operating costs=250+0.2*250*RANDOM UNIFORM(-1, 1, 0) 

 

Perturbation Parameters 

pulse rate=pulse size*pulse switch*PULSE(pulse time, pulse duration) 

pulse time=50 

pulse duration=TIME STEP 

pulse size=[-100,100, step=20] 

 

Simulation Control Parameters 

FINAL TIME  = 100 

INITIAL TIME  = 0 
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SAVEPER  = TIME STEP*4 

TIME STEP  = 0.25 

 

Arms Race Model 

Model Equations 

(1) Total Arms A= INTEG (armament spending A + pulse rate-armament obsolescence 

A, initial armament A) /dependent variable/ 

(2) initial armament A=50 

(3) armament capacity A=Economic Capacity A * max capacity to armament A 

(4) armament capacity B=Economic Capacity B * max capacity to armament B 

(5) armament lifetime A=20 

(6) armament lifetime B=20 

(7) armament obsolescence A=Total Arms A/armament lifetime A 

(8) armament obsolescence B=Total Arms B/armament lifetime B 

(9) armament spending A=armament capacity A * fraction armament capacity used A 

(10) armament spending B=armament capacity B * fraction armament capacity used B 

(11) capacity degradation A=Economic Capacity A/capacity lifetime A 

(12) capacity degradation B=Economic Capacity B/capacity lifetime B 

(13) capacity lifetime A=30 

(14) capacity lifetime B=30 

(15) desired strength ratio A=[0.1,1.9, step=0.1] 

(16) desired strength ratio B=1 

(17) Economic Capacity A= INTEG (growth in capacity A - capacity degradation A, 

initial economic capacity A) 

(18) Economic Capacity B= INTEG (growth in capacity B - capacity degradation B, 

initial economic capacity B) 

(19) fraction armament capacity used A= WITH LOOKUP (ZIDZ(indicated armament 

building A,armament capacity A), ([(0,0)-(10,1), (0,0),  (1,1), (10,1)], (0,0), 

(0.4,0.4), (2,0.8), (3,0.9), (5,1), (10,1) )) 

(20) fraction armament capacity used B= WITH LOOKUP (ZIDZ(indicated armament 

building B,armament capacity B), ([(0,0)-(10,1), (0,0), (1,1), (10,1)], (0,0), 

(0.4,0.4), (2,0.8), (3,0.9), (5,1), (10,1) )) 

(21) fraction spending to investment A=0.3 

(22) fraction spending to investment B=0.3 

(23) growth in capacity A=investment spending A * investment effectiveness A 

(24) growth in capacity B=investment spending B * investment effectiveness B 

(25) indicated armament building A=MAX(0,armament obsolescence A + (target 

armament A - Total Arms A)/time to correct armament A) 

(26) indicated armament building B=MAX(0,armament obsolescence B + (target 

armament B Total Arms B)/time to correct armament B) 
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(27) initial armament B=50 

(28) initial economic capacity A=100 

(29) initial economic capacity B=100 

(30) investment effectiveness A=0.15 

(31) investment effectiveness B=0.15 

(32) investment spending A= non armament spending A * fraction spending to 

investment A 

(33) investment spending B=non armament spending B * fraction spending to 

investment B 

(34) max capacity to armament A=0.4 

(35) max capacity to armament B=0.4 

(36) non armament spending A=Economic Capacity A - armament spending A 

(37) non armament spending B=Economic Capacity B - armament spending B 

(38) target armament A=Total Arms B * desired strength ratio A 

(39) target armament B=Total Arms A * desired strength ratio B 

(40) time to correct armament A=5 

(41) time to correct armament B=5 

(42) Total Arms B= INTEG (armament spending B-armament obsolescence B, initial 

armament B) 

 

Dynamic Variables 

armament lifetime A= 20+0.2*20*RANDOM UNIFORM(-1,1,12) 

armament lifetime B= 20+0.2*20*RANDOM UNIFORM(-1, 1, 11) 

capacity lifetime A=0.2*30*RANDOM UNIFORM(-1, 1,0)+30 

capacity lifetime B=0.2*30*RANDOM UNIFORM(-1, 1,10)+30 

fraction spending to investment A=0.3+0.2*0.3*RANDOM UNIFORM(-1, 1,3) 

fraction spending to investment B=0.3+0.2*0.3*RANDOM UNIFORM(-1, 1,8) 

initial economic capacity A=100+0.2*100*RANDOM UNIFORM(-1, 1,1) 

initial economic capacity B= 100+0.2*100*RANDOM UNIFORM(-1, 1,6) 

investment effectiveness A=0.15+0.2*0.15*RANDOM UNIFORM(-1, 1, 2) 

investment effectiveness B=0.15+0.2*0.15*RANDOM UNIFORM(-1, 1,7) 

time to correct armament A=5+0.2*5*RANDOM UNIFORM(-1, 1, 5) 

time to correct armament B=5+0.2*5*RANDOM UNIFORM(-1,1,13) 

time to correct armament A=5+0.2*5*RANDOM UNIFORM(-1, 1, 5) 

time to correct armament B=5+0.2*5*RANDOM UNIFORM(-1,1,13) 

 

 

Simulation Control Parameters 
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FINAL TIME  = 700 

INITIAL TIME  = 0 

SAVEPER  = TIME STEP 

TIME STEP  = 0.25 

 

Social Impact Bonds Model 

Model Equations 

(1) "Cohort Active?"[Cohort 1]=IF THEN ELSE(Actual Cohort Start Times[Cohort 

1]<Time,IF THEN ELSE(Actual Cohort Closing Times[Cohort 1]>=Time,1,0),0)  

(2) "Cohort Active?"[Cohort 2]=IF THEN ELSE(MIN(Actual Cohort Closing 

Times[Cohort 1],Actual Cohort Start Times[Cohort 2])<Time,IF THEN 

ELSE(Actual Cohort Closing Times[Cohort 2]>=Time,1,0),0)  

(3) "Cohort Active?"[Cohort 3]= IF THEN ELSE(MIN(Actual Cohort Closing 

Times[Cohort 2],Actual Cohort Start Times[Cohort 3])<Time,IF THEN 

ELSE(Actual Cohort Closing Times[Cohort 3]>=Time,1,0),0)  

(4) "Cohort Active?"[Cohort 4]=IF THEN ELSE(Actual Cohort Start Times[Cohort 

4]<Time,IF THEN ELSE(Actual Cohort Closing Times[Cohort 4]>=Time,1,0),0) 

(5) "Cohort Active?"[Overall]=1  

(6) "Investors Cohorts Paid? Amount"[Cohorts]=Owner Success Payment*"Payment 

Consideration?"[Cohorts] 

(7) "Non-Rehabilitated Prisoner Release Rate- First Offence"[Cohorts,Prison 

Systems,Release Program]=Program Entry Rate[Cohorts,Prison Systems,Release 

Program]*Program Recidivism Fraction[Release Program] 

(8) "Non-Rehabilitated Prisoner Release Rate- Repeat Offence"[Cohorts,Prison 

Systems,Release Program]=Repeat Offender Program Entry Rate[Cohorts,Prison 

Systems,Release Program]*Program Recidivism Fraction[Release Program] 

(9) "Payment Consideration?"[Cohort 1]=IF THEN ELSE(Cohort Payment 

Time[Cohort 1]<=Time,IF THEN ELSE(Cohort Payment Time[Cohort 1]+Time 

Program has to Pay>=Time,1,0),0)  

(10) "Payment Consideration?"[Cohort 2]=IF THEN ELSE(Cohort Payment 

Time[Cohort 2]<=Time,IF THEN ELSE(Cohort Payment Time[Cohort 2]+Time 

Program has to Pay>=Time,1,0),0)  

(11) "Payment Consideration?"[Cohort 3]=IF THEN ELSE(Cohort Payment 

Time[Cohort 3]<=Time,IF THEN ELSE(Cohort Payment Time[Cohort 3]+Time 

Program has to Pay>=Time,1,0),0)  

(12) "Payment Consideration?"[Cohort 4]=IF THEN ELSE(Cohort Payment 

Time[Cohort 1]<=Time,IF THEN ELSE(Cohort Payment Time[Cohort 4]+Time 

Program has to Pay>=Time,1,0),0) 

(13) "Payment Consideration?"[Overall]=1  
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(14) "Post-SIB Program Payments"=Owner Program Payments 

(15) "Prison Holding-First Offence"[Prison Systems]= INTEG (New Offender 

Incarceration Rate[Prison Systems]-SUM("Rehabilitated Prisoner Release Rate- 

First Offence"[Overall,Prison Systems,Release Program!])-SUM("Non-

Rehabilitated Prisoner Release Rate- First Offence"[Overall ,Prison 

Systems,Release Program!])+SUM(pulse rate[Overall,Prison Systems,Release 

Program!]),Initial First time Offender Prisoner Holding*Offender Multiplier 

between Prison Systems[Prison Systems]) 

(16) "Prison Holding-Repeat Offence"[Cohort 1,Prison Systems]= INTEG 

(SUM(Repeat Offender Arrest Rate[Cohort 1,Prison Systems,Release Program!]-

"Non-Rehabilitated Prisoner Release Rate- Repeat Offence"[Cohort 1,Prison 

Systems,Release Program!]-"Rehabilitated Prisoner Release Rate-Repeat 

Offence"[Cohort 1,Prison Systems, 

(17) "Prison Holding-Repeat Offence"[Cohort 2,Prison Systems]= INTEG 

(SUM(Repeat Offender Arrest Rate[Cohort 2,Prison Systems,Release Program!]-

"Non-Rehabilitated Prisoner Release Rate- Repeat Offence"[Cohort 2,Prison 

Systems,Release Program!]-"Rehabilitated Prisoner Release Rate-Repeat 

Offence"[Cohort 2,Prison Systems, 

(18) "Prison Holding-Repeat Offence"[Cohort 3,Prison Systems]= INTEG 

(SUM(Repeat Offender Arrest Rate[Cohort 3,Prison Systems,Release Program!]-

"Non-Rehabilitated Prisoner Release Rate- Repeat Offence"[Cohort 3,Prison 

Systems,Release Program!]-"Rehabilitated Prisoner Release Rate-Repeat 

Offence"[Cohort 3,Prison Systems, 

(19) "Prison Holding-Repeat Offence"[Cohort 4,Prison Systems]= INTEG 

(SUM(Repeat Offender Arrest Rate[Cohort 4,Prison Systems,Release Program!]-

"Rehabilitated Prisoner Release Rate-Repeat Offence"[Cohort 4,Prison 

Systems,Release Program!]-"Non-Rehabilitated Prisoner Release Rate- Repeat 

Offence"[Cohort 4,Prison Systems 

(20) "Prison Holding-Repeat Offence"[Overall,Prison Systems]= INTEG (SUM(Repeat 

Offender Arrest Rate[Overall,Prison Systems,Release Program!]-"Non-

Rehabilitated Prisoner Release Rate- Repeat Offence"[Overall,Prison 

Systems,Release Program!]-"Rehabilitated Prisoner Release Rate-Repeat 

Offence"[Overall,Prison Systems,Release Program!])+SUM(pulse rate 

1[Overall,Prison Systems,Release Program!]),Initial Reconvicted Prisoner 

Holding*Offender Multiplier between Prison Systems[Prison Systems])  

(21) "Program Continues?"=max("Cohort Active?"[Cohort 4], "Successful 

Program?"[Cohort 4]) 

(22) "Rehabilitated Prisoner Release Rate- First Offence"[Cohorts,Prison 

Systems,Release Program]=Program Entry Rate[Cohorts,Prison Systems,Release 

Program]*(1-Program Recidivism Fraction[Release Program]) 

(23) "Rehabilitated Prisoner Release Rate-Repeat Offence"[Cohorts,Prison 

Systems,Release Program]=Repeat Offender Program Entry Rate[Cohorts,Prison 

Systems,Release Program]*(1-Program Recidivism Fraction[Release Program]) 

(24) "Successful Program?"[Cohort 1]=IF THEN ELSE(Reconviction Change[Cohort 
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1]>=Minimum Change in Reconvictions[Cohort 1],1,0 

(25) "Successful Program?"[Cohort 2]=IF THEN ELSE(Reconviction Change[Cohort 

2]>=Minimum Change in Reconvictions[Cohort 2],1,0)  

(26) "Successful Program?"[Cohort 3]=IF THEN ELSE(Reconviction Change[Cohort 

3]>=Minimum Change in Reconvictions[Cohort 3],1,0)  

(27) "Successful Program?"[Cohort 4]=IF THEN ELSE(Reconviction Change[Cohort 

4]>=Minimum Change in Reconvictions[Cohort 4],1,0) 

(28) "Successful Program?"[Overall]=IF THEN ELSE(Reconviction 

Change[Overall]>=Minimum Change in Reconvictions[Overall],1,0)  

(29) "Surplus Returned?"=IF THEN ELSE(Investment Finalization Time[Cohort 

4]<Time,1,0) 

(30) ,Release Program!]),0) 

(31) [Cohort 2,Prison Systems,Normal]-Repeat Offender Arrest Rate[Cohort 2,Prison 

Systems,Normal],0)  

(32) [Cohorts,Prison Systems,Release Program!]))*"Cohort Active?"[Cohorts] 

(33) [Overall,Prison Systems,Normal]-Repeat Offender Arrest Rate[Overall,Prison 

Systems,Normal],Initial Undiscovered Reoffenders*Offender Multiplier between 

Prison Systems[Prison Systems])  

(34) Accumulated Reconvictions Prevented Percent[Cohorts]=ZIDZ((Number of 

Reconviction[Cohorts,Comparison]/Offender Multiplier between Prison 

Systems[Comparison]-Number of Reconviction[Cohorts,Peterborough]/Offender 

Multiplier between Prison Systems[Peterborough]),(Number of 

Reconviction[Cohorts,Comparison]/Offender Multiplier between Prison 

Systems[Comparison]))*100 

(35) Actual Cohort Closing Times[Cohorts]= INTEG (Cohort Time[Cohorts],0) 

(36) Actual Cohort Start Times[Cohorts]= INTEG (Cohort Time Delay 

Rate[Cohorts],0) 

(37) Amount Investors are willing to Invest= INTEG (-Investing,Expected Program 

Investment amount) 

(38) Available Capacity=XIDZ(Funds Available for the Program,Program Cost per 

Member,99999) 

(39) Average Prisoner Incarceration Rate for Peterborough=57.8333 

(40) Average Time between Release and Reconviction[Prison Systems]=Normal 

Recidivism Discovery Time 

(41) Budget Excess Recovered="Surplus Returned?"* (Budget Excess/MOJ Surplus 

return check*Fraction of Surplus Returned-MOJ SIB Savings Rate) 

(42) Budget Excess= INTEG (Budget Surplus-Budget Excess Recovered-MOJ SIB 

Savings Rate-"Post-SIB Program Payments",0) 

(43) Budget Peterborough=(Total Prison Population[Comparison]*monthly 

cost+Conviction Cost*SUM(Repeat Offender Arrest 

Rate[Overall,Comparison,Release Program!]))/Offender Multiplier between Prison 

Systems[Comparison] 

(44) Budget Surplus=Budget Peterborough-Peterborough Operations Costs 

(45) cashflow=Investor Return Rate-Investment Rate 
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(46) Change in Max Program Costs=max(0,Program Costs-Max Program Costs)/Time 

to Adjust Maximum Program Cost 

(47) Cohort Addition of New Offenders[Cohorts,Prison 

Systems]=SUM(("Rehabilitated Prisoner Release Rate- First 

Offence"[Cohorts,Prison Systems,Release Program!]+"Non-Rehabilitated Prisoner 

Release Rate- First Offence" 

(48) Cohort Collection of New Offenders[Cohorts,Prison Systems]= INTEG (Cohort 

Addition of New Offenders[Cohorts,Prison Systems],0) 

(49) Cohort Expense Rate=Program Costs 

(50) Cohort initiate switch[Cohort 1]=IF THEN ELSE(Cohort Collection of New 

Offenders[Cohort 1,Peterborough]<= Max People in Cohort[Cohort 1] , IF THEN 

ELSE((Actual Cohort Start Times[Cohort 1]+Max Cohort Length[Cohort 1]) 

>Time, 1 , 0 ),  0 )  

(51) Cohort initiate switch[Cohort 2]=IF THEN ELSE(Cohort Collection of New 

Offenders[Cohort 2,Peterborough]<= Max People in Cohort[Cohort 2] , IF THEN 

ELSE((Actual Cohort Start Times[Cohort 2]+Max Cohort Length[Cohort 2]) 

>Time, 1 , 0 ),  0 )  

(52) Cohort initiate switch[Cohort 3]=IF THEN ELSE(Cohort Collection of New 

Offenders[Cohort 3,Peterborough]<= Max People in Cohort[Cohort 3] , IF THEN 

ELSE((Actual Cohort Start Times[Cohort 3]+Max Cohort Length[Cohort 3]) 

>Time, 1 , 0 ),  0 ) 

(53) Cohort initiate switch[Cohort 4]=IF THEN ELSE(Cohort Collection of New 

Offenders[Cohort 3,Peterborough]<=Max People in Cohort [Cohort 3],IF THEN 

ELSE(Actual Cohort Start Times[Cohort 4]+3*Max Cohort Length[Cohort 

4]>Time,1,0),0)  

(54) Cohort initiate switch[Overall]=1  

(55) Cohort Investment switch[Cohorts]=IF THEN ELSE(Actual Cohort Start 

Times[Cohorts]<Time, IF THEN ELSE(Investment Finalization 

Time[Cohorts]>=Time, 1,0),0) 

(56) Cohort Payment Time[Cohort 1]=Actual Cohort Closing Times[Cohort 1]+Time 

after Cohort for Reconviction Collection+Time for System Update  

(57) Cohort Payment Time[Cohort 2]=Actual Cohort Closing Times[Cohort 2]+Time 

after Cohort for Reconviction Collection+Time for System Update  

(58) Cohort Payment Time[Cohort 3]=Actual Cohort Closing Times[Cohort 3]+Time 

after Cohort for Reconviction Collection+Time for System Update  

(59) Cohort Payment Time[Cohort 4]=Actual Cohort Closing Times[Cohort 4]+Time 

after Cohort for Reconviction Collection+Time for System Update+ Time Program 

has to Pay 

(60) Cohort Payment Time[Overall]=0  

(61) Cohort Time Delay Rate[Cohort 1]=IF THEN ELSE(Max People in 

Cohort[Cohort 1]>Cohort Collection of New Offenders[Cohort 1,Peterborough],IF 

THEN ELSE(Latest Cohort Start Times[Cohort 1]>Time,1,0),0)*Cohort initiate 

switch[Cohort 1]  

(62) Cohort Time Delay Rate[Cohort 2]=IF THEN ELSE(Max People in 
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Cohort[Cohort 2]>Cohort Collection of New Offenders[Cohort 2,Peterborough],IF 

THEN ELSE(Latest Cohort Start Times[Cohort 2]>Time,1,0),0)*Cohort initiate 

switch[Cohort 1]  

(63) Cohort Time Delay Rate[Cohort 3]=IF THEN ELSE(Max People in 

Cohort[Cohort 3]>Cohort Collection of New Offenders[Cohort 3,Peterborough],IF 

THEN ELSE(Latest Cohort Start Times[Cohort 3]>Time,1,0),0)*Cohort initiate 

switch[Cohort 2]  

(64) Cohort Time Delay Rate[Cohort 4]=IF THEN ELSE(Max People in 

Cohort[Cohort 4]>Cohort Collection of New Offenders[Cohort 4,Peterborough],IF 

THEN ELSE(Latest Cohort Start Times[Cohort 4]>Time,1,0),0) 

(65) Cohort Time Delay Rate[Overall]=0  

(66) Cohort Time[Cohorts]=Cohort initiate switch[Cohorts] 

(67) Cohorts:Overall, Cohort 1, Cohort 2, Cohort 3, Cohort 4 

(68) Conviction Cost=2.853 

(69) Cost per Participant per month=Program Cost per Member/Defined Year 

(70) Cummulative Investor Returns= INTEG (Owner Success Payment, No Initial 

Worth) 

(71) Cummulative Program Cost= INTEG (Program Costs,No Initial Worth) 

(72) Defined Year=12 

(73) Desired Payment Value[Cohorts]=Unpaid Investor Earned 

Returns[Cohorts]*"Payment Consideration?"[Cohorts]*"Successful 

Program?"[Cohorts] 

(74) Earned Investor Return payments[Cohorts]= "Investors Cohorts Paid? 

Amount"[Cohorts] 

(75) Expected Program Investment amount=5000 

(76) Fraction for Investor share=0.3 

(77) Fraction of Surplus Returned= [0.05,0.95, step=0.05] 

(78) Funds Available for the Program= INTEG (MOJ Payments-Cohort Expense 

Rate,Expected Program Investment amount) 

(79) Funds Earned by SIB= INTEG (MOJ SIB Savings Rate-MOJ SIB Payment 

Rate,0) 

(80) Initial First time Offender Prisoner Holding=86.75 

(81) Initial Reconvicted Prisoner Holding=260.25 

(82) Initial Undiscovered Reoffenders=1041 

(83) Interval time between Cohort completion and Payment Time[Cohort 1]=Time after 

Cohort for Reconviction Collection+Time for System Update+Time Program has 

to Pay| 

(84) Interval time between Cohort completion and Payment Time[Cohort 2]=Time after 

Cohort for Reconviction Collection+Time for System Update+Time Program has 

to Pay 

(85) Interval time between Cohort completion and Payment Time[Cohort 3]=Time after 

Cohort for Reconviction Collection+Time for System Update+Time Program has 

to Pay 

(86) Interval time between Cohort completion and Payment Time[Cohort 4]=Time 
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Program has to Pay 

(87) Interval time between Cohort completion and Payment Time[Overall]=0  

(88) INV IRR=IF THEN ELSE(Investment Starts=0,0,IF THEN ELSE(Investment 

Return starts=0,-1,IRR)) 

(89) Invested Amount= INTEG (Investment Rate,0) 

(90) Investing=PULSE(Actual Cohort Start Times[Cohort 1]+1,1)*Investment Payment 

per Cohort+PULSE(Actual Cohort Start Times[Cohort 2]+1,1)*Investment 

Payment per Cohort+PULSE(Actual Cohort Start Times[Cohort 

3]+1,1)*Investment Payment per Cohort 

(91) Investment Finalization Time[Cohort 1]=Actual Cohort Closing Times[Cohort 1]  

(92) Investment Finalization Time[Cohort 2]=Actual Cohort Closing Times[Cohort 2]  

(93) Investment Finalization Time[Cohort 3]=Actual Cohort Closing Times[Cohort 3]  

(94) Investment Finalization Time[Cohort 4]=Cohort Payment Time[Cohort 

4]+Interval time between Cohort completion and Payment Time[Cohort 4] 

(95) Investment Finalization Time[Overall]=Actual Cohort Closing Times[Overall]  

(96) Investment Payment per Cohort=Expected Program Investment amount/number of 

payments 

(97) Investment Rate=(Investing) 

(98) Investment Return starts=IF THEN ELSE(Cummulative Investor Returns>0,1,0) 

(99) Investment Starts=IF THEN ELSE(Invested Amount>0,1,0) 

(100) Investor Account= INTEG (Investor Return Rate-Investment Rate, 0) 

(101) Investor Balance=Cummulative Investor Returns+Amount Investors are willing to 

Invest 

(102) Investor Earned Return Accumulation[Cohorts]=Investor Earned[Cohorts]*Cohort 

Investment switch[Cohorts] 

(103) Investor Earned[Cohorts]=(Savings from Reduced 

Reconvictions[Cohorts])*Fraction for Investor share 

(104) Investor Return Rate=Owner Success Payment 

(105) IRR=INTERNAL RATE OF RETURN(cashflow,Defined Year,0,0) 

(106) Latest Cohort Start Times[Cohorts]=-0.5,20,44,68,20 

(107) Max Cohort Length[Cohort 1]=Standard Cohort Length  

(108) Max Cohort Length[Cohort 2]=Standard Cohort Length  

(109) Max Cohort Length[Cohort 3]=Standard Cohort Length  

(110) Max Cohort Length[Cohort 4]=Max Cohort Length[Cohort 1]+Max Cohort 

Length[Cohort 2]+Max Cohort Length[Cohort 3] 

(111) Max Cohort Length[Overall]=0  

(112) Max People in Cohort[Cohort 1]=Standard People in Cohort  

(113) Max People in Cohort[Cohort 2]=Standard People in Cohort  

(114) Max People in Cohort[Cohort 3]=Standard People in Cohort  

(115) Max People in Cohort[Cohort 4]=Max People in Cohort[Cohort 1]+Max People in 

Cohort[Cohort 2]+Max People in Cohort[Cohort 3] 

(116) Max People in Cohort[Overall]=1e+015  

(117) Max Program Costs= INTEG (Change in Max Program Costs,0) 

(118) Maximum Payment Accumulation[Cohorts]=IF THEN ELSE(Cohort Payment 
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Time[Cohorts]<Time,IF THEN ELSE(Desired Payment 

Value[Cohorts]>Maximum Successful Program Payment Value[Cohorts],Desired 

Payment Value[Cohorts]-Maximum Successful Program Payment 

Value[Cohorts],0)/TIME STEP,0) 

(119) Maximum Successful Program Payment Value[Cohorts]= INTEG (Maximum 

Payment Accumulation[Cohorts],0) 

(120) Minimum Change in Reconvictions[Cohorts]=1,0.1,0.1,0.1,0.075 

(121) MOJ Account= INTEG (Budget Peterborough-Budget Surplus-Peterborough 

Operations Costs,0) 

(122) MOJ Payments=Owner Program Payments 

(123) MOJ SIB Payment Rate=Owner Success Payment 

(124) MOJ SIB Savings Rate=Investor Earned Return Accumulation[Cohort 4] 

(125) MOJ Starts Paying=73 

(126) MOJ Surplus return check=1 

(127) monthly cost=Yearly Cost of Incarceration/Defined Year 

(128) New Offender Incarceration Rate[Comparison]=Offender Multiplier between 

Prison Systems[Comparison]*New Offender Incarceration Rate[Peterborough] 

(129) New Offender Incarceration Rate[Peterborough]=Average Prisoner Incarceration 

Rate for Peterborough*Offender Multiplier between Prison Systems[Peterborough]  

(130) No Initial Worth=0 

(131) Normal Recidivism Discovery Time=6 

(132) Normal Recidivism Fraction=0.75 

(133) number of payments=3 

(134) Number of Reconviction[Cohorts,Prison Systems]= INTEG (Rate of 

Reconviction[Cohorts,Prison Systems],0) 

(135) Offender Multiplier between Prison Systems[Prison Systems]=1,10 

(136) Offender Release Rate[Cohorts,Prison Systems,Release Program]= "Non-

Rehabilitated Prisoner Release Rate- First Offence"[Cohorts,Prison 

Systems,Release Program]+"Non-Rehabilitated Prisoner Release Rate- Repeat 

Offence"[Cohorts,Prison Systems,Release Program]+"Rehabilitated Prisoner 

Release Rate- First Offence"[Cohorts,Prison Systems,Release 

Program]+"Rehabilitated Prisoner Release Rate-Repeat Offence"[Cohorts,Prison 

Systems,Release Program] 

(137) Offenders entering Program[Cohorts]="Non-Rehabilitated Prisoner Release Rate- 

First Offence"[Cohorts,Peterborough,SIB]+"Non-Rehabilitated Prisoner Release 

Rate- Repeat Offence"[Cohorts,Peterborough,SIB]+"Rehabilitated Prisoner 

Release Rate- First Offence"[Cohorts,Peterborough,SIB]+"Rehabilitated Prisoner 

Release Rate-Repeat Offence"[Cohorts,Peterborough,SIB] 

(138) Offenders' Willing to enter program Fraction=0.7 

(139) Offense:First, Repeat 

(140) One Service= INTEG (Program Payments from SIP-Program Costs,No Initial 

Worth) 

(141) Owner Program Payments=max(IF THEN ELSE( MOJ Starts Paying<Time, 

(Program Payment Rate+0*Program Payments from SIP)*("Successful 
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Program?"[Cohort 4]),0),0) 

(142) Owner Success Payment=(Payment for Cohort 1+Payment for Cohort 2+Payment 

for Cohort 3+Payment for Cohort 4)/Time Program has to Pay 

(143) paying early=IF THEN ELSE(Actual Cohort Closing Times[Cohort 

4]<Time,0,MOJ Payments) 

(144) Payment for Cohort 1=Maximum Successful Program Payment Value[Cohort 

1]*"Payment Consideration?"[Cohort 1] 

(145) Payment for Cohort 2=Maximum Successful Program Payment Value[Cohort 

2]*"Payment Consideration?"[Cohort 2] 

(146) Payment for Cohort 3=Maximum Successful Program Payment Value[Cohort 

3]*"Payment Consideration?"[Cohort 3] 

(147) Payment for Cohort 4=Maximum Successful Program Payment Value[Cohort 

4]*"Payment Consideration?"[Cohort 4] 

(148) Peterborough Operations Costs=Total Prison Population[Peterborough]*monthly 

cost+SUM(Repeat Offender Arrest Rate[Overall,Peterborough,Release 

Program!])*Conviction Cost 

(149) Population in Program[Cohorts]=Rehabilitated 

Offenders[Cohorts,Peterborough,SIB]+Undiscoverd 

Reoffenders[Cohorts,Peterborough,SIB] 

(150) Prison Population Percent Reduction=(1-(Total Prison 

Population[Peterborough]/Offender Multiplier between Prison 

Systems[Peterborough])/(Total Prison Population[Comparison]/Offender 

Multiplier between Prison Systems[Comparison]))*100 

(151) Prison Systems:Peterborough, Comparison 

(152) Probationary Period Length=12 

(153) Program Cost per Member=1.5 

(154) Program Costs=Population in Program[Overall]*Cost per Participant per month 

(155) Program Entry Rate[Cohorts,Prison Systems,Normal]="Prison Holding-First 

Offence"[Prison Systems]/Time spent in prison for a Conviction*"Cohort 

Active?"[Cohorts]-Program Entry Rate[Cohorts,Prison Systems,SIB] 

(156) Program Entry Rate[Cohorts,Prison Systems,SIB]=MIN("Prison Holding-First 

Offence"[Prison Systems]*Offenders' Willing to enter program 

Fraction,max(Space Available in Program,0))/Time spent in prison for a 

Conviction*"Cohort Active?"[Cohorts]*Program Switch[Prison Systems]  

(157) Program Payment Rate=MIN(Budget Excess/Time MOJ Backlog Payments,Max 

Program Costs) 

(158) Program Payments from SIP=Program Costs 

(159) Program Recidivism Fraction[Normal]=Normal Recidivism Fraction 

(160) Program Recidivism Fraction[SIB]=Normal Recidivism Fraction-Recidivism 

Reduction Fraction*Normal Recidivism Fraction*"Program Continues?"  

(161) Program Savings Collected by Government= INTEG (Budget Excess 

Recovered,0) 

(162) Program Switch[Peterborough]=IF THEN ELSE( Time>=20,1,0)  

(163) Rate of Offenders Coming off of Probation[Cohorts,Prison Systems,Release 
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Program]= 

(164) Rate of Reconviction[Cohorts,Prison Systems]=SUM(Repeat Offender Arrest 

Rate[Cohorts,Prison Systems,Release Program!])*Reconviction 

Termination[Cohorts] 

(165) Recidivism Reduction Fraction=0.25 

(166) Reconviction Change[Cohorts]=1-XIDZ(Reconviction 

Fraction[Cohorts,Peterborough] ,Reconviction Fraction[Cohorts,Comparison],1) 

(167) Reconviction Fraction[Cohorts,Prison Systems]=ZIDZ(Number of 

Reconviction[Cohorts,Prison Systems],Cohort Collection of New 

Offenders[Cohorts,Prison Systems]) 

(168) Reconviction Termination[Cohorts]= IF THEN ELSE(Actual Cohort Closing 

Times[Cohorts]+Time after Cohort for Reconviction Collection<Time,0,1) 

(169) Reconvictions Prevented[Cohorts]=Rate of Reconviction[Cohorts,Comparison] 

/Offender Multiplier between Prison Systems[Comparison]-Rate of 

Reconviction[Cohorts,Peterborough]/Offender Multiplier between Prison 

Systems[Peterborough] 

a. Rehabilitated Offenders[Cohorts,Prison Systems,Release Program]/Probationary 

Period Length  

(170) Rehabilitated Offenders[Cohorts,Prison Systems,Release Program]= INTEG 

("Rehabilitated Prisoner Release Rate- First Offence"[Cohorts,Prison 

Systems,Release Program]+"Rehabilitated Prisoner Release Rate-Repeat 

Offence"[Cohorts,Prison Systems,Release Program]-Rate of Offenders Coming off 

of Probation[Cohorts,Prison Systems,Release Program],0) 

(171) Release Program!]),0)  

(172) Release Program!]),0)  

(173) Release Program!]),0)  

(174) Release Program:Normal, SIB 

(175) Repeat Offender Arrest Rate[Cohorts,Prison Systems,Release 

Program]=(Undiscoverd Reoffenders[Cohorts,Prison Systems,Release 

Program])/Average Time between Release and Reconviction[Prison Systems] 

(176) Repeat Offender Program Entry Rate[Cohort 1,Prison Systems,SIB]=MIN("Prison 

Holding-Repeat Offence"[Cohort 1,Prison Systems]*Offenders' Willing to enter 

program Fraction/Time spent in prison for a Conviction,max(Space Available in 

Program,0)/Time spent in prison for a Conviction-Program Entry Rate[Cohort 

1,Prison Systems,SIB])*Program Switch[Prison Systems]  

(177) Repeat Offender Program Entry Rate[Cohort 2,Prison Systems,SIB]=MIN("Prison 

Holding-Repeat Offence"[Cohort 2,Prison Systems]*Offenders' Willing to enter 

program Fraction/Time spent in prison for a Conviction,max(Space Available in 

Program,0)/Time spent in prison for a Conviction-Program Entry Rate[Cohort 

2,Prison Systems,SIB]-Repeat Offender Program Entry Rate[Cohort 1,Prison 

Systems,SIB])*Program Switch[Prison Systems]  

(178) Repeat Offender Program Entry Rate[Cohort 3,Prison Systems,SIB]=MIN("Prison 

Holding-Repeat Offence"[Cohort 3,Prison Systems]*Offenders' Willing to enter 

program Fraction/Time spent in prison for a Conviction,max(Space Available in 
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Program,0)/Time spent in prison for a Conviction-Program Entry Rate[Cohort 

3,Prison Systems,SIB]-Repeat Offender Program Entry Rate[Cohort 1,Prison 

Systems,SIB]-Repeat Offender Program Entry Rate[Cohort 2,Prison 

Systems,SIB])*Program Switch[Prison Systems]  

(179) Repeat Offender Program Entry Rate[Cohort 4,Prison Systems,SIB]=(Repeat 

Offender Program Entry Rate[Cohort 1,Prison Systems,SIB]+Repeat Offender 

Program Entry Rate[Cohort 2,Prison Systems,SIB]+Repeat Offender Program 

Entry Rate[Cohort 3,Prison Systems,SIB])*Program Switch[Prison Systems]  

(180) Repeat Offender Program Entry Rate[Cohorts,Prison Systems,Normal]="Prison 

Holding-Repeat Offence"[Cohorts,Prison Systems]/Time spent in prison for a 

Conviction-Repeat Offender Program Entry Rate[Cohorts,Prison Systems,SIB] 

(181) Repeat Offender Program Entry Rate[Overall,Prison Systems,SIB]=MIN("Prison 

Holding-Repeat Offence"[Overall,Prison Systems]*Offenders' Willing to enter 

program Fraction/Time spent in prison for a Conviction, max(Space Available in 

Program,0)/Time spent in prison for a Conviction-Program Entry 

Rate[Overall,Prison Systems,SIB] -Repeat Offender Program Entry Rate

 [Cohort 4,Prison Systems,SIB])*Program Switch[Prison Systems]  

(182) Savings from Reduced Reconvictions[Cohorts]=Total Cost of Incarceration 

*(Reconvictions Prevented[Cohorts]) 

(183) Social Impact Partnership= INTEG (nvesting+Owner Program Payments-Program 

Payments from SIP,No Initial Worth) 

(184) Space Available in Program=Available Capacity-Population in Program[Overall] 

(185) Standard Cohort Length=24 

(186) Standard People in Cohort=1000 

(187) Time after Cohort for Reconviction Collection=12 

(188) Time for System Update=6 

(189) Time MOJ Backlog Payments=12 

(190) Time Program has to Pay=3 

(191) Time spent in prison for a Conviction=1.5 

(192) Time to Adjust Maximum Program Cost=1 

(193) Total Cost of Incarceration=monthly cost*Time spent in prison for a 

Conviction+Conviction Cost 

(194) Total Prison Population[Prison Systems]="Prison Holding-First Offence"[Prison 

Systems]+"Prison Holding-Repeat Offence"[Overall,Prison Systems] 

(195) Total Program Participants[Cohorts]= INTEG (Offenders entering 

Program[Cohorts],0) 

(196) Undiscoverd Reoffenders[Cohort 1,Prison Systems,Normal]= INTEG ("Non-

Rehabilitated Prisoner Release Rate- First Offence"[Cohort 1,Prison 

Systems,Normal]+"Non-Rehabilitated Prisoner Release Rate- Repeat 

Offence"[Cohort 1,Prison Systems,Normal]-Repeat Offender Arrest Rate[Cohort 

1,Prison Systems,Normal],0)  

(197) Undiscoverd Reoffenders[Cohort 2,Prison Systems,Normal]= INTEG ("Non-

Rehabilitated Prisoner Release Rate- First Offence"[Cohort 2,Prison 

Systems,Normal]+"Non-Rehabilitated Prisoner Release Rate- Repeat Offence" 
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(198) Undiscoverd Reoffenders[Cohort 3,Prison Systems,Normal]= INTEG ("Non-

Rehabilitated Prisoner Release Rate- First Offence"[Cohort 3,Prison Systems, 

Normal] +"Non-Rehabilitated Prisoner Release Rate- Repeat Offence"[Cohort 

3,Prison Systems,Normal]-Repeat Offender Arrest Rate[Cohort 3,Prison 

Systems,Normal],0)  

(199) Undiscoverd Reoffenders[Cohort 4,Prison Systems,Normal]= INTEG ("Non-

Rehabilitated Prisoner Release Rate- First Offence"[Cohort 4,Prison Systems, 

Normal]+"Non-Rehabilitated Prisoner Release Rate- Repeat Offence"[Cohort 

4,Prison Systems,Normal]-Repeat Offender Arrest Rate[Cohort 4,Prison 

Systems,Normal], 0) 

(200) Undiscoverd Reoffenders[Cohorts,Prison Systems,SIB]= INTEG ("Non-

Rehabilitated Prisoner Release Rate- First Offence"[Cohorts,Prison 

Systems,SIB]+"Non-Rehabilitated Prisoner Release Rate- Repeat 

Offence"[Cohorts,Prison Systems,SIB]-Repeat Offender Arrest 

Rate[Cohorts,Prison Systems,SIB],0)  

(201) Undiscoverd Reoffenders[Overall,Prison Systems,Normal]= INTEG ("Non-

Rehabilitated Prisoner Release Rate- First Offence"[Overall,Prison 

Systems,Normal]+"Non-Rehabilitated Prisoner Release Rate- Repeat Offence" 

(202) Unpaid Investor Earned Returns[Cohorts]= INTEG (Investor Earned Return 

Accumulation[Cohorts]-Earned Investor Return payments[Cohorts],No Initial 

Worth) 

(203) Value Paid Early= INTEG (paying early,0) 

(204) Yearly Cost of Incarceration=39 

 

 

Dynamic Variables 

Conviction Cost=2.853+0.2*2.853*RANDOM UNIFORM(-1, 1, 2) 

Fraction for Investor share=0.5+0.2*0.5*RANDOM UNIFORM(-1,1,9) 

Program Cost per Member=1.5+0.2*1.5*RANDOM UNIFORM(-1, 1, 0) 

Yearly Cost of Incarceration= 39+0.2*39*RANDOM UNIFORM(-1,1,8) 

 

Perturbation Parameters 

pulse rate=pulse switch*pulse size*PULSE(pulse time, pulse duration) 

pulse time=500 

pulse duration=TIME STEP*4 

pulse size=[-20,20, step=5] 

 

Simulation Control Parameters 
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FINAL TIME  = 2000 

INITIAL TIME  = 0 

SAVEPER  = TIME STEP 

TIME STEP  = 0.25 
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APPENDIX B 

STATISTICAL SCREENING 

Limits to Growth Archetype 

 

Figure 80-Statistical screening result of the limits to growth archetype  

Fixes that Fail archetype 

 

Figure 81-Statistical screening result of the fixes that fail archetype 
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Escalation Archetype 

 

 

Figure 82- Statistical screening result of the escalation archetype 

Limerick Construction Project Model 

 

Figure 83- Statistical screening result of the Limerick construction project model 
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Fish Banks Model 

 

Figure 84- Statistical screening result of the fish banks model 

Arms Race Model 

 

Figure 85- Statistical screening result of the arms race model 
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Social Impact Bonds Model 

 

Figure 86- Statistical screening result of the social impact bonds model 
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APPENDIX C 

STATISTICAL TESTING RESULTS 

Limits to Growth Archetype 

H1-Limits to Growth 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for t 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 1980 

Error Mean Square 441.3212 

Critical Value of Studentized Range 5.01859 

Minimum Significant Difference 10.543 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

  A 459.260 100 0.1 

  A 457.330 100 -0.1 

  B 225.980 100 -0.2 

  B 222.630 100 0.2 

  C 149.270 100 -0.3 

  C 146.420 100 0.3 

  D 116.270 100 0.4 

  D 110.620 100 -0.4 

  E 87.720 100 -0.5 

  E 86.560 100 0.5 

  F 72.220 100 -0.6 

G F 70.880 100 0.6 

G H 61.370 100 -0.7 

  H 60.180 100 0.7 

I H 52.980 100 -0.8 

I H 52.040 100 0.8 
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Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

I J 46.530 100 -0.9 

I J 45.800 100 0.9 

  J 41.440 100 -1 

  J 40.600 100 1 

 

H2-Limits to Growth (pulse size=+3) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for t 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 1980 

Error Mean Square 175.7969 

Critical Value of Studentized Range 5.01859 

Minimum Significant Difference 6.6541 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

  A 393.090 100 -0.1 

  B 365.770 100 0.1 

  C 219.060 100 -0.2 

  D 184.240 100 0.2 

  E 144.620 100 -0.3 

  F 122.400 100 0.3 

  G 105.100 100 -0.4 

  H 86.390 100 0.4 

  H 83.170 100 -0.5 

  I 68.840 100 0.5 

  I 67.270 100 -0.6 

  J 57.790 100 -0.7 

  J 56.800 100 0.6 

  K 48.620 100 -0.8 
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Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

L K 46.090 100 0.7 

L M 41.100 100 -0.9 

N M 38.670 100 0.8 

N M 36.710 100 -1 

N O 34.080 100 0.9 

  O 29.700 100 1 

 

H2-Limits to Growth pulse size=-3 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for t 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 1980 

Error Mean Square 150.0936 

Critical Value of Studentized Range 5.01859 

Minimum Significant Difference 6.1484 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

  A 395.000 100 0.1 

  A 392.010 100 -0.1 

  B 215.910 100 -0.2 

  B 211.820 100 0.2 

  C 142.510 100 -0.3 

  C 141.130 100 0.3 

  D 103.510 100 -0.4 

  D 99.600 100 0.4 

  E 81.810 100 -0.5 

  E 79.540 100 0.5 

  F 66.170 100 -0.6 

  F 65.590 100 0.6 
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Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

  G 56.770 100 -0.7 

H G 53.350 100 0.7 

H I 47.740 100 -0.8 

J I 44.950 100 0.8 

J K 40.360 100 -0.9 

J K 39.630 100 0.9 

  K 36.190 100 -1 

  K 34.690 100 1 

 

H3-limits to growth (pulse size=+3) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for acf 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 1980 

Error Mean Square 0.000328 

Critical Value of Studentized Range 5.01859 

Minimum Significant Difference 0.0091 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

A 0.975826 100 -0.1 

A 0.973080 100 0.1 

B 0.951733 100 -0.2 

B 0.947390 100 0.2 

C 0.928371 100 -0.3 

C 0.923042 100 0.3 

D 0.903381 100 -0.4 

D 0.894558 100 0.4 

E 0.879907 100 -0.5 

E 0.871053 100 0.5 
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Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

F 0.854642 100 -0.6 

F 0.847822 100 0.6 

G 0.833564 100 -0.7 

H 0.818433 100 0.7 

I 0.806434 100 -0.8 

J 0.790863 100 0.8 

K 0.777133 100 -0.9 

K 0.769168 100 0.9 

L 0.756216 100 -1 

M 0.743425 100 1 

 

H3-limits to growth (pulse size=-3) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for acf 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 1980 

Error Mean Square 0.000328 

Critical Value of Studentized Range 5.01859 

Minimum Significant Difference 0.0091 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

A 0.975480 100 0.1 

A 0.973459 100 -0.1 

B 0.951672 100 0.2 

B 0.947452 100 -0.2 

C 0.928763 100 0.3 

C 0.922624 100 -0.3 

D 0.901595 100 0.4 

D 0.896417 100 -0.4 
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Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

E 0.878899 100 0.5 

E 0.872093 100 -0.5 

F 0.856252 100 0.6 

G 0.846180 100 -0.6 

H 0.827319 100 0.7 

H 0.824750 100 -0.7 

I 0.799948 100 0.8 

I 0.797392 100 -0.8 

J 0.778264 100 0.9 

K 0.768062 100 -0.9 

L 0.752371 100 1 

L 0.747249 100 -1 

 
 

H4-Limits to Growth (pulse size=+3) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for var 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 1980 

Error Mean Square 7.767E-7 

Critical Value of Studentized Range 5.01859 

Minimum Significant Difference 0.0004 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

  A 0.0203649 100 -0.1 

  B 0.0179253 100 0.1 

  C 0.0094607 100 -0.2 

  D 0.0082663 100 0.2 

  E 0.0055215 100 -0.3 
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Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

  F 0.0047860 100 0.3 

  G 0.0034347 100 -0.4 

  H 0.0027909 100 0.4 

  I 0.0023262 100 -0.5 

  J 0.0018784 100 0.5 

K J 0.0015802 100 -0.6 

K   0.0013045 100 0.6 

K L 0.0011664 100 -0.7 

M L 0.0008439 100 0.7 

M L 0.0008074 100 -0.8 

M N 0.0005663 100 0.8 

M N 0.0005451 100 -0.9 

M N 0.0004143 100 -1 

M N 0.0004140 100 0.9 

  N 0.0002910 100 1 

 

Fixes that Fail Archetype 

H1-Fixes that Fail 

The ANOVA Procedure 
  

Tukey's Studentized Range (HSD) Test for t 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 1782 

Error Mean Square 0 

Critical Value of Studentized Range 4.94110 

Minimum Significant Difference 0 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

A 647.0 100 0.9 
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Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

B 435.0 100 1.1 

C 317.0 100 0.8 

D 223.0 100 1.2 

E 203.0 100 0.7 

F 152.0 100 1.3 

G 145.0 100 0.6 

H 117.0 100 1.4 

I 110.0 100 0.5 

J 95.0 100 1.5 

K 87.0 100 0.4 

L 81.0 100 1.6 

M 71.0 100 1.7 

N 69.0 100 0.3 

O 63.0 100 1.8 

P 57.0 100 1.9 

Q 56.0 100 0.2 

R 44.0 100 0.1 

 

H2-Fixes that Fail (pulse size=+4) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for t 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 891 

Error Mean Square 0 

Critical Value of Studentized Range 4.39738 

Minimum Significant Difference 0 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

A 800.0 100 0.9 
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Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

B 634.0 100 0.8 

C 551.0 100 0.7 

D 509.0 100 0.6 

E 483.0 100 0.5 

F 466.0 100 0.4 

G 453.0 100 0.3 

H 443.0 100 0.2 

I 435.0 100 0.1 

 

 
H2-Fixes that Fail (pulse size=-4) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for t 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 891 

Error Mean Square 45.4779 

Critical Value of Studentized Range 4.39738 

Minimum Significant Difference 2.9655 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

A 691.8300 100 0.9 

B 564.5700 100 0.8 

C 505.7500 100 0.7 

D 475.8900 100 0.6 

E 457.8300 100 0.5 

F 445.3500 100 0.4 

G 436.6800 100 0.3 

H 429.2100 100 0.2 

I 422.6600 100 0.1 
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H3-fixes that fail (pulse size=+4) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for acf 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 891 

Error Mean Square 0 

Critical Value of Studentized Range 4.39738 

Minimum Significant Difference 0 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

A 0.9841 100 0.9 

B 0.9683 100 0.8 

C 0.9511 100 0.7 

D 0.9319 100 0.6 

E 0.9104 100 0.5 

F 0.8862 100 0.4 

G 0.8587 100 0.3 

H 0.8272 100 0.2 

I 0.7911 100 0.1 

 
H3-fixes that fail (pulse size=-4) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for acf 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 891 

Error Mean Square 8.703E-6 

Critical Value of Studentized Range 4.39738 

Minimum Significant Difference 0.0013 
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Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

A 0.9809475 100 0.9 

B 0.9634733 100 0.8 

C 0.9434920 100 0.7 

D 0.9212697 100 0.6 

E 0.8960124 100 0.5 

F 0.8661841 100 0.4 

G 0.8281124 100 0.3 

H 0.7751937 100 0.2 

I 0.6884219 100 0.1 

 
H4-Fixes that Fail (pulse size=+4) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for var 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 891 

Error Mean Square 0 

Critical Value of Studentized Range 4.39738 

Minimum Significant Difference 0 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

A 0.03424 100 0.9 

B 0.00875 100 0.8 

C 0.00577 100 0.7 

D 0.00411 100 0.6 

E 0.00307 100 0.5 

F 0.00237 100 0.4 

G 0.00187 100 0.3 

H 0.00150 100 0.2 

I 0.00122 100 0.1 
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H4-Fixes that Fail (pulse size=-4) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for var 

Note: This test controls the Type I experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 991 

Error Mean Square 0 

Critical Value of Studentized Range 4.39628 

 

Comparisons significant at the 0.05 level are indicated by ***. 

tpvar 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

  

0.9 - 0.8 0.004253 0.004253 0.004253 *** 

0.8 - 0.7 0.000000 0.000000 0.000000 *** 

0.7 - 0.6 0.000000 0.000000 0.000000 *** 

0.6 - 0.5 0.000000 0.000000 0.000000 *** 

0.5 - 0.4 0.000000 0.000000 0.000000 *** 

0.4 - 0.3 0.000000 0.000000 0.000000 *** 

0.3 - 0.2 0.000000 0.000000 0.000000 *** 

0.2 - 0.1 0.000000 0.000000 0.000000 *** 

 

Reinforcing Loop Archetype 

H1-Reinforcing Loop 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for t 

Note: This test controls the Type I experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 4079 

Error Mean Square 14785.17 

Critical Value of Studentized Range 5.05080 
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Comparisons significant at the 0.05 level are indicated by ***. 

tpvar 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

  

-0.1 - -0.2 110.11 66.13 154.09 *** 

0.1 - 0.2 157.26 113.28 201.24 *** 

-0.2 - -0.3 175.89 131.91 219.87 *** 

0.2 - 0.3 120.52 76.54 164.50 *** 

-0.3 - -0.4 60.08 16.10 104.06 *** 

-0.4 - -0.5 36.46 -7.52 80.44   

0.3 - 0.4 50.04 6.06 94.02 *** 

-0.5 - -0.6 19.54 -24.38 63.47   

0.4 - 0.5 17.01 -26.97 60.99   

-0.6 - -0.7 15.77 -28.10 59.63   

-0.7 - -0.8 8.72 -35.14 52.59   

0.5 - 0.6 10.77 -33.21 54.75   

-0.8 - -0.9 6.62 -37.25 50.49   

0.6 - 0.7 8.91 -35.07 52.89   

-0.9 - -1 7.09 -36.78 50.96   

0.7 - 0.8 6.46 -37.52 50.44   

0.8 - 0.9 3.34 -40.64 47.32   

0.9 - 1 3.93 -40.05 47.91   

 

H2-Reinforcing Loop (pulse size=+2) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for t 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 990 

Error Mean Square 1.637545 

Critical Value of Studentized Range 4.48436 

Minimum Significant Difference 0.5738 
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Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

A 58.0300 100 -0.1 

B 30.2000 100 -0.2 

C 20.9900 100 -0.3 

D 16.2400 100 -0.4 

E 13.4400 100 -0.5 

F 11.6500 100 -0.6 

G 10.4400 100 -0.7 

H 9.4000 100 -0.8 

I 8.6000 100 -0.9 

I 8.1000 100 -1 

 

H2-Reinforcing Loop (pulse size=-2) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for t 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 990 

Error Mean Square 7.612505 

Critical Value of Studentized Range 4.48436 

Minimum Significant Difference 1.2373 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

A 121.8100 100 -0.1 

B 61.8200 100 -0.2 

C 41.8100 100 -0.3 

D 31.5900 100 -0.4 

E 25.4100 100 -0.5 

F 21.6000 100 -0.6 

G 18.8600 100 -0.7 



 

203 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

H 16.5700 100 -0.8 

I 14.9700 100 -0.9 

J 13.7000 100 -1 

 

H3-reinforcing loop (pulse size=2) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for acf 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 990 

Error Mean Square 4.393E-6 

Critical Value of Studentized Range 4.48436 

Minimum Significant Difference 0.0009 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

A 0.9931633 100 -0.1 

B 0.9874158 100 -0.2 

C 0.9815247 100 -0.3 

D 0.9755243 100 -0.4 

E 0.9693650 100 -0.5 

F 0.9637817 100 -0.6 

G 0.9582821 100 -0.7 

H 0.9522688 100 -0.8 

I 0.9466901 100 -0.9 

J 0.9411936 100 -1 

 

H3-reinforcing loop (pulse size=-2) 

 
The ANOVA Procedure 
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Tukey's Studentized Range (HSD) Test for acf 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 990 

Error Mean Square 4.393E-6 

Critical Value of Studentized Range 4.48436 

Minimum Significant Difference 0.0009 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

A 0.9931622 100 -0.1 

B 0.9874158 100 -0.2 

C 0.9815247 100 -0.3 

D 0.9755243 100 -0.4 

E 0.9693650 100 -0.5 

F 0.9637817 100 -0.6 

G 0.9582821 100 -0.7 

H 0.9522688 100 -0.8 

I 0.9466901 100 -0.9 

J 0.9411936 100 -1 

 

H4-Reinforcing Loop (pulse size=2) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for var 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 990 

Error Mean Square 0.00001 

Critical Value of Studentized Range 4.48436 

Minimum Significant Difference 0.0014 
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Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

A 0.1568232 100 -0.1 

B 0.0868097 100 -0.2 

C 0.0590583 100 -0.3 

D 0.0440696 100 -0.4 

E 0.0346115 100 -0.5 

F 0.0287653 100 -0.6 

G 0.0244979 100 -0.7 

H 0.0209294 100 -0.8 

I 0.0183357 100 -0.9 

J 0.0162681 100 -1 

 

H4-Reinforcing Loop (pulse size=-2) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for var 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 990 

Error Mean Square 0.00001 

Critical Value of Studentized Range 4.48436 

Minimum Significant Difference 0.0014 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

A 0.1567496 100 -0.1 

B 0.0868097 100 -0.2 

C 0.0590583 100 -0.3 

D 0.0440696 100 -0.4 

E 0.0346115 100 -0.5 

F 0.0287653 100 -0.6 

G 0.0244979 100 -0.7 
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Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

H 0.0209294 100 -0.8 

I 0.0183357 100 -0.9 

J 0.0162681 100 -1 

 

Escalation Archetype 

H1-Escalation 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for t 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 1782 

Error Mean Square 51.83015 

Critical Value of Studentized Range 4.94110 

Minimum Significant Difference 3.5573 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

  A 200.000 100 0.9 

  A 200.000 100 1.1 

  A 200.000 100 1.2 

  A 200.000 100 0.8 

B A 199.060 100 0.7 

B   196.080 100 1.3 

  C 171.500 100 0.6 

  D 155.650 100 1.4 

  E 132.290 100 0.5 

  F 119.570 100 1.5 

  G 103.170 100 0.4 

  H 94.540 100 1.6 
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Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

  I 83.500 100 0.3 

  J 77.650 100 1.7 

  K 69.980 100 0.2 

  L 66.370 100 1.8 

  M 60.180 100 0.1 

  M 57.750 100 1.9 

 
 

Limerick Construction Project Model 

H1-Limerick 

The ANOVA Procedure 
  

Tukey's Studentized Range (HSD) Test for t 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 1188 

Error Mean Square 131490.6 

Critical Value of Studentized Range 4.63095 

Minimum Significant Difference 167.93 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

  A 1561.07 100 0.7 

  B 1312.54 100 0.6 

  C 983.75 100 0.8 

  D 730.01 100 0.5 

E D 603.42 100 0.9 

E F 454.38 100 0.4 

E F 440.52 100 1 

G F 383.72 100 0.3 

G F 344.63 100 0.2 

G F 320.58 100 0.1 
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Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

G F 319.31 100 1.1 

G   257.35 100 1.2 

 

 
H2-Limerick (pulse size=+2000) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for t 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 693 

Error Mean Square 17429.54 

Critical Value of Studentized Range 4.18186 

Minimum Significant Difference 55.209 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

A 653.50 100 0.65 

A 607.81 100 0.55 

B 518.08 100 0.45 

C 446.58 100 0.35 

C 422.56 100 0.25 

C 403.99 100 0.15 

C 402.00 100 0.05 

 
H2-Limerick (pulse size=-2000) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for t 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 693 
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Error Mean Square 17459.36 

Critical Value of Studentized Range 4.18186 

Minimum Significant Difference 55.257 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

A 653.18 100 0.65 

A       

A 607.61 100 0.55 

        

B 517.99 100 0.45 

        

C 446.51 100 0.35 

C       

C 422.52 100 0.25 

C       

C 403.97 100 0.15 

C       

C 402.00 100 0.05 

 
 

H3-Limerick (pulse size=2000) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for acf 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 693 

Error Mean Square 0.122729 

Critical Value of Studentized Range 4.18186 

Minimum Significant Difference 0.1465 
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Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

A 0.54500 100 0.65 

A 0.49414 100 0.55 

B 0.29553 100 0.45 

C 0.13360 100 0.35 

C 0.09299 100 0.25 

C 0.00106 100 0.15 

C -0.00249 100 0.05 

 

H3-Limerick (pulse size=-2000) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for acf 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 693 

Error Mean Square 0.121143 

Critical Value of Studentized Range 4.18186 

Minimum Significant Difference 0.1456 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

A 0.53941 100 0.65 

A 0.49405 100 0.55 

B 0.29545 100 0.45 

C 0.13009 100 0.35 

C 0.09077 100 0.25 

C -0.00249 100 0.05 

C -0.00408 100 0.15 

 

H4-Limerick (pulse size=+2000) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for var 
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Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 693 

Error Mean Square 1.403E13 

Critical Value of Studentized Range 4.18186 

Minimum Significant Difference 1.57E6 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

  A 4149070 100 0.45 

B A 2619763 100 0.55 

B C 1920279 100 0.35 

D C 416036 100 0.25 

D   76288 100 0.65 

D   9979 100 0.15 

D   9926 100 0.05 

 

H4-Limerick (pulse size=-2000) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for var 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 693 

Error Mean Square 1.378E13 

Critical Value of Studentized Range 4.18186 

Minimum Significant Difference 1.55E6 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

  A 4110271 100 0.45 

B A 2581012 100 0.55 

B C 1900881 100 0.35 

D C 405361 100 0.25 
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Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

D   69686 100 0.65 

D   9926 100 0.05 

D   9913 100 0.15 

 

Fish Banks Model 

H1-Fish Banks 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for t 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 1881 

Error Mean Square 2462.681 

Critical Value of Studentized Range 4.98101 

Minimum Significant Difference 24.718 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

  A 400.000 100 6 

  A 400.000 100 6.5 

  B 223.530 100 7 

  C 198.550 100 5 

  D 55.800 100 4.5 

E D 31.230 100 4 

E F 25.000 100 7.5 

E F 20.540 100 3.5 

E F 14.230 100 3 

E F 10.400 100 0.5 

E F 10.130 100 9 

E F 9.990 100 2.5 
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Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

E F 9.830 100 8 

E F 7.320 100 10 

E F 7.000 100 1 

E F 6.800 100 8.5 

  F 6.290 100 9.5 

  F 6.190 100 2 

  F 6.000 100 1.5 

 
 

Arms Race Model 

H1-Arms Race 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for t 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 1782 

Error Mean Square 233548 

Critical Value of Studentized Range 4.94110 

Minimum Significant Difference 238.79 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

  A 3036.38 100 0.9 

  B 1714.81 100 0.8 

  B 1635.47 100 1.1 

  C 1043.36 100 0.7 

  D 789.46 100 0.6 

E D 719.95 100 0.5 

E D 703.01 100 0.4 

E D 700.35 100 0.2 
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Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

E D 694.41 100 0.3 

E D 675.91 100 0.1 

E   528.83 100 1.2 

  F 231.58 100 1.3 

  F 175.92 100 1.4 

  F 150.82 100 1.5 

  F 102.11 100 1.6 

  F 88.39 100 1.7 

  F 81.02 100 1.8 

  F 72.27 100 1.9 

 
 

Social Impact Bonds Model 

H1-Social Impact Bonds 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for t 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 1881 

Error Mean Square 149498.4 

Critical Value of Studentized Range 4.98101 

Minimum Significant Difference 192.59 

 

Means with the same letter are 

not significantly different. 

Tukey Grouping Mean N tpvar 

      A   1972.48 100 0.45 

      A   1963.50 100 0.4 

      A   1790.99 100 0.5 

      B   1530.53 100 0.55 

      C   1329.98 100 0.6 
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Means with the same letter are 

not significantly different. 

Tukey Grouping Mean N tpvar 

  D   C   1264.90 100 0.35 

  D   C E 1221.93 100 0.65 

  D F C E 1145.24 100 0.7 

  D F G E 1081.27 100 0.75 

  H F G E 1039.93 100 0.8 

  H F G I 1000.72 100 0.85 

J H F G I 969.52 100 0.9 

J H   G I 942.27 100 0.95 

J H   K I 881.54 100 0.1 

J     K I 818.85 100 0.15 

J     K I 808.26 100 0.2 

J     K   792.73 100 0.25 

J     K   790.83 100 0.3 

      K   745.55 100 0.05 

 

H2-Social Impact Bonds (pulse size=+10) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for t 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 594 

Error Mean Square 34246.56 

Critical Value of Studentized Range 4.04330 

Minimum Significant Difference 74.825 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

A 109.89 100 0.4 

B 0.00 100 0.5 

B 0.00 100 0.6 
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Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

B 0.00 100 0.7 

B 0.00 100 0.8 

B 0.00 100 0.9 

 

H2-Social Impact Bonds pulse size=-10 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for t 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 594 

Error Mean Square 60635.74 

Critical Value of Studentized Range 4.04330 

Minimum Significant Difference 99.564 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

A 255.47 100 0.4 

B 0.00 100 0.5 

B 0.00 100 0.6 

B 0.00 100 0.7 

B 0.00 100 0.8 

B 0.00 100 0.9 

 

H3-Social Impact Bonds (pulse size=10) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for acf 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 
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Error Degrees of Freedom 594 

Error Mean Square 0.000243 

Critical Value of Studentized Range 4.04330 

Minimum Significant Difference 0.0063 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

A 0.968017 100 0.4 

B 0.961066 100 0.9 

B 0.961050 100 0.8 

B 0.961026 100 0.7 

B 0.961010 100 0.6 

B 0.960514 100 0.5 

 

H3-Social Impact Bonds (pulse size=-10) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for acf 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 594 

Error Mean Square 0.000038 

Critical Value of Studentized Range 4.04330 

Minimum Significant Difference 0.0025 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

  A 0.9911886 100 0.4 

  B 0.9850347 100 0.5 

  C 0.9810182 100 0.6 

D C 0.9785677 100 0.7 

D E 0.9764046 100 0.8 

  E 0.9748993 100 0.9 
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H4-Social Impact Bonds (pulse size=10) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for var 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 594 

Error Mean Square 4.763304 

Critical Value of Studentized Range 4.04330 

Minimum Significant Difference 0.8825 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

A 2.5114 100 0.4 

B 0.0156 100 0.9 

B 0.0156 100 0.8 

B 0.0156 100 0.7 

B 0.0156 100 0.6 

B 0.0153 100 0.5 

 

H4-Social Impact Bonds (pulse size=10) 

 
The ANOVA Procedure 

  
Tukey's Studentized Range (HSD) Test for var 

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 

Alpha 0.05 

Error Degrees of Freedom 594 

Error Mean Square 5.502579 

Critical Value of Studentized Range 4.04330 

Minimum Significant Difference 0.9485 
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Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N tpvar 

A 2.9561 100 0.4 

B 0.0373 100 0.5 

B 0.0305 100 0.6 

B 0.0274 100 0.7 

B 0.0251 100 0.8 

B 0.0238 100 0.9 
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APPENDIX D 

COMPUTER CODES 

% calculates and plots the correlation coefficient between the  

% dependent variable and control variables over time in Matlab 

 

model='XXX'; 

m='H1-XXX'; %name used to save the figures 

dvar='XXX'; %dependent variable 

cvar={'AAA','BBB'};  %control variables 

cvarNO=2; %umber of control variables 

start=cvarNO+2; %the column where the time series start 

timestep=0.25; 

 

[row,col]=size(data); 

dv=data; 

 

%adds time values to the first row of the matrix 

dv=[zeros(1,col);dv];  

for j=start+1:col 

   dv(1,j)=timestep*(j-start); 

end 

 

%calculates the correlation coefficients 

cormat=zeros(cvarNO+1,col-cvarNO-1); %correlation coefficient matrix 

cormat(1,:)=dv(1,start:col); 

for k=2:cvarNO+1 

 for j=start:col     

        cormat(k,j-start+1)=corr2(data(:,k),data(:,j)); 

    end 

end 

 

%saves the correlation coefficient matrix in an excel file 

filename=sprintf('Correlation Matrix-%s',m); 

xlswrite(filename,cormat); 

 

% plots and saves correlation coefficient over time for all control variables 

strg1=sprintf('Correlation Coefficient over Time'); 

strg2=sprintf('%s', m); 

 

plotname=sprintf('H0-Sensitivity Analysis-%s',m); 

f=figure; 

set(0,'defaultaxescolororder',[0 0 0]); %black and white 
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set(0,'defaultaxeslinestyleorder',{'-';'--';':';'-.';'-+';'-o';'-*';'-x';... 

    '-s';'-d';'-^';'-v';'->';'-<';'-p';'-h'}); %change line types 

plot(cormat(1,:),cormat(2:end,:)); 

xlabel('Time (time step)'); 

ylabel(dvar); 

%ylim([-.5,.5]); %change if necessary 

%xlim([0,50]);      %change if necessary 

pbaspect([1.2 1 1]); 

title({strg1,strg2}); 

leg = legend(cvar,'location','eastoutside'); 

hlt = text('Parent', leg.DecorationContainer,'String', 'Control Variables', ... 

'HorizontalAlignment', 'center','VerticalAlignment', 'bottom', 'Position',... 

[0.5, 1.05, 0], 'Units', 'normalized'); 

saveas(f,plotname,'jpeg'); 

savefig(f,plotname); 

 

%undo grayscale 

set(0, 'DefaultAxesColorOrder', 'remove'); 

set(0, 'DefaultAxeslinestyleOrder', 'remove');  
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% calculates 'H1-time to reach an attractor' in Matlab 

% draws the graphs of time to reach an attractor vs tipping variable 

 

%ENTER THE FOLLOWING VALUES MANUALLY 

model='XXX'; 

m='H1-XXX'; %name used to save the figures 

cvarNO=000; %number of control variables 

tpvar=000;  %value of tipping variable at tp conditions 

eq1=000;    %stable equilibrium 1 

eq2=000;    %stable equilibrium 2 

largenumber=100000; 

smallnumber=0.00001; 

start=cvarNO+2; 

tpvarstep=0000; 

timestep=0.25; 

 

H1=data; 

sim=H1(:,1); 

tp=H1(:,2); 

[row, col]=size(H1); 

t=[sim tp zeros(row,1)]; 

 

for i=1:row 

    for j=col:-1:start 

        if abs(H1(i,j)-eqv1)<smallnumber || abs(H1(i,j)-eqv2)<smallnumber ... 

|| abs(H1(i,j))>largenumber … 

||abs(max(H1(i,j:col))-min(H1(i,j:col)))<smallnumber 

%choose one or more arguments depending on the system attractors 

           t(i,end)=(j-start); 

        end 

        if abs(t(i,end))<0.00001 && abs(H1(i,2))>0.00001 

            %assigns the last simulation time if the system does not reach 

            %an equilbrium during the simulation 

            t(i,end)=(col-start); 

        end 

    end 

end 

 

%saves the results in two different tables: below and above tipping point 

loc=t(:,2)-tpvar>0.00001; 

tp=t(loc,:); 

loc=t(:,2)<tpvar; 

tn=t(loc,:); 

 



 

223 

strg1=sprintf('H1 - %s', model); 

strg1a=sprintf('(with randomness)' %use if there is noise in the system 

strg2=sprintf('tipping variable'); 

strg3=sprintf('time to reach attractor (time step)'); 

plotname=sprintf('%s',m); 

 

f=figure; 

set(0,'defaultaxescolororder',[0 0 0;0.5 0.5 0.5]); %greyscale 

set(0,'defaultaxeslinestyleorder',{'-';'--';':';'-.';'-+';'-o';'-*';'-x';... 

    '-s';'-d';'-^';'-v';'->';'-<';'-p';'-h'}); %change line types 

pbaspect([1.2 1 1]); 

plot(tp(:,2),tp(:,end),tn(:,2),tn(:,end)); 

hold on; 

line([tpvar tpvar],get(gca,'YLim'),'LineStyle','--') 

txt1 = 'Tipping Point\rightarrow'; 

text(tpvar,500,txt1,'HorizontalAlignment','right'); 

title(strg1); %use title(strg1,strg1a) if there is noise in the system 

xlabel(strg2); 

ylabel(strg3); 

 

saveas(f,plotname,'jpeg'); 

savefig(f,plotname); 
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% calculates H2-recovery time, H3-variance and H4-autocorrelation in Matlab 

% draws the graphs for different values of pulse sizes 

 

%ENTER THE FOLLOWING VALUES MANUALLY 

model='XXX'; 

m='XXX'; %name used to save the figures 

cvarNO=000; %number of control variables 

tpvar=000;  %value of tp variable at tp conditions 

eq1=000;    %stable equilbrium 1 

eq2=000;    %stable equilbrium 2 

largenumber=100000; 

smallnumber=0.00001; 

start=cvarNO+2; 

tpvarstep=0000; 

pulsestep=000; 

timestep=0.25; 

pulsetime=000/timestep+start;   %enter pulse time to calculate column no 

 

%deletes zero pulses 

loc=abs(data(:,3))<0.00001;  

H2=data(~loc,:); 

 

sim=H2(:,1); 

pulse=H2(:,3);  %check the column number 

tp=H2(:,2);   %check the column number 

[row, col]=size(H2); 

t=[sim pulse tp zeros(row,1)]; 

 

for i=1:row 

    for j=col:-1:pulsetime+000  %check when the pulse starts affecting 

        if abs(H1(i,j)-eqv1)<smallnumber || abs(H1(i,j)-eqv2)<smallnumber ... 

|| abs(H1(i,j))>largenumber … 

||abs(max(H1(i,j:col))-min(H1(i,j:col)))<smallnumber 

%choose one or more arguments depending on the system attractors            

t(i,end)=(j-pulsetime); 

        end 

        if abs(t(i,end))<0.00001 && abs(H1(i,2))>0.00001 

            %assigns the last simulation time if the system does not reach 

            %an equilbrium during the simulation 

            t(i,end)=(col-pulsetime); 

        end 

    end 

end 
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H3=H2(:,pulsetime:end); 

[row1, col1]=size(H3); 

variance=[sim pulse tp zeros(row,1)]; 

acf=[sim pulse tp zeros(row,1)]; 

r=zeros(1,col1); 

for i=1:row 

    H3arraytemp=H3(i,1:end); 

    variance(i,end)=var(H3arraytemp); 

    m=mean(H3arraytemp); 

    [row1, col1]=size(H3arraytemp); 

    for j=1:col1-1 

        r(1,j)=r(1,j)+(H3arraytemp(1,j)-m)*(H3arraytemp(1,j+1)-m); 

    end 

    acf(i,end)=r(1,:)/variance(i,end)/(col1-1); 

end 

 

pulse=unique(pulse); 

pulsesize=size(pulse,1); 

minpulse=min(pulse); 

maxpulse=max(pulse); 

 

tp=unique(tp); 

tpsize=size(tp,1); 

mintp=min(tp); 

maxtp=max(tp); 

 

%plots graphs for positive pulse 

pulsesize=size(pulse,1); 

plotname=sprintf('H2-%s',m); 

 

strg12=sprintf('H2 - %s',model); 

strg22=sprintf('(with randomness)'); 

strg32=sprintf('Tipping variable');%=%s', tpvar); 

strgy42=sprintf('Recovery Time (time step)'); 

 

f=figure; 

set(0,'defaultaxescolororder',[0 0 0;]); %blacka and white 

set(0,'defaultaxeslinestyleorder',{'-';'-';'--';'--';':';':';'-.';'-.';... 

    '-+';'-+';'-o';'-o';'-*';'-*';'-x';'-x';'-s';'-s';'-d';'-d';'-^';'-^';... 

    '-v';'-v';'->';'->';'-<';'-<';'-p';'-p';'-h';'-h'}); %change line types; 

hold on; 

pbaspect([1.2 1 1]); 

for i=minpulse:pulsestep:maxpulse 

    loc1=t(:,3)>tpvar & abs(t(:,2)-i)<0.00001; 
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    ttemp1=t(loc1,:); 

    loc2=t(:,3)<tpvar & abs(t(:,2)-i)<0.00001; 

    ttemp2=t(loc2,:); 

    p1=plot(ttemp1(:,3),ttemp1(:,end),'HandleVisibility', 'off'); 

    p2=plot(ttemp2(:,3),ttemp2(:,end),'displayname',num2str(i)); 

    leg=legend('show','location','northwest'); %change the location 

    title(leg,'pulse size'); 

end 

hold on; 

line([tpvar tpvar],get(gca,'YLim'),'LineStyle','--','HandleVisibility','off') 

txt1 = 'Tipping Point\rightarrow'; 

text(tpvar,50,txt1,'HorizontalAlignment','right'); %change the location 

title(strg12); %use title(strg12,strg22) if there is noise in the system 

xlabel(strg32); 

ylabel(strgy42); 

saveas(f,plotname,'jpeg'); 

savefig(f,plotname); 

 

strg13=sprintf('H3 - %s',model); 

strg33=sprintf('Lag-1 Autocorrelation'); 

plotname=sprintf('H3-%s',m); 

 

f=figure; 

set(0,'defaultaxescolororder',[0 0 0;]); %blacka and white 

set(0,'defaultaxeslinestyleorder',{'-';'-';'--';'--';':';':';'-.';'-.';... 

    '-+';'-+';'-o';'-o';'-*';'-*';'-x';'-x';'-s';'-s';'-d';'-d';'-^';'-^';... 

    '-v';'-v';'->';'->';'-<';'-<';'-p';'-p';'-h';'-h'}); %change line types; 

hold on; 

pbaspect([1.2 1 1]); 

for i=minpulse:pulsestep:maxpulse 

    loc1=acf(:,3)>tpvar & abs(acf(:,2)-i)<0.00001; 

    acftemp1=acf(loc1,:); 

    loc2=acf(:,3)<tpvar & abs(acf(:,2)-i)<0.00001; 

    acftemp2=acf(loc2,:); 

    p1=plot(acftemp1(:,3),acftemp1(:,end),'HandleVisibility','off'); 

    p2=plot(acftemp2(:,3),acftemp2(:,end),'displayname', num2str(i)); 

    leg=legend('show','location','northwest'); %change the location 

    title(leg,'pulse size'); 

end 

hold on; 

line([tpvar tpvar],get(gca,'YLim'),'LineStyle','--','HandleVisibility','off') 

txt1 = 'Tipping Point\rightarrow'; 

text(tpvar,25,txt1,'HorizontalAlignment','right'); %change the location 

title(strg13); %use title(strg13,strg22) if there is noise in the system 
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xlabel(strg32); 

ylabel(strg33); 

saveas(f,plotname,'jpeg'); 

savefig(f,plotname); 

 

strg14=sprintf('H4 - %s',model); 

strg34=sprintf('Variance'); 

plotname=sprintf('H4-%s',m); 

 

f=figure; 

set(0,'defaultaxescolororder',[0 0 0;]); %blacka and white 

set(0,'defaultaxeslinestyleorder',{'-';'-';'--';'--';':';':';'-.';'-.';... 

    '-+';'-+';'-o';'-o';'-*';'-*';'-x';'-x';'-s';'-s';'-d';'-d';'-^';'-^';... 

    '-v';'-v';'->';'->';'-<';'-<';'-p';'-p';'-h';'-h'}); %change line types; 

hold on; 

pbaspect([1.2 1 1]); 

for i=minpulse:pulsestep:maxpulse 

    loc1=variance(:,3)>tpvar & abs(variance(:,2)-i)<0.00001; 

    variancetemp1=variance(loc1,:); 

    loc2=variance(:,3)<tpvar & abs(variance(:,2)-i)<0.00001; 

    variancetemp2=variance(loc2,:); 

    p1=plot(variancetemp1(:,3),variancetemp1(:,end),'HandleVisibility','off'); 

    p2=plot(variancetemp2(:,3),variancetemp2(:,end),'displayname', num2str(i)); 

    leg=legend('show','location','northwest'); %change the location 

    title(leg,'pulse size'); 

end 

hold on; 

line([tpvar tpvar],get(gca,'YLim'),'LineStyle','--','HandleVisibility','off') 

txt1 = 'Tipping Point\rightarrow'; 

text(tpvar,0.03,txt1,'HorizontalAlignment','right'); %change the location 

title(strg14); %use title(strg14,strg22) if there is noise in the system 

xlabel(strg32); 

ylabel(strg34); 

saveas(f,plotname,'jpeg'); 

savefig(f,plotname); 

 

%undo grayscale 

set(0, 'DefaultAxesColorOrder', 'remove'); 

set(0, 'DefaultAxeslinestyleOrder', 'remove'); 
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% calculates H5-distance and H6-slope of xt+1-xt graph in Matlab 

 

%ENTER THE FOLLOWING VALUES MANUALLY 

model='XXX'; 

m='H1-XXX'; %name used to save the figures 

tptime=000; %time when the tipping variables reaches the values of the tipping 

condition 

timestep=0.25; 

dv0='000'; 

 

H5=data; 

[row,col]=size(H5); 

 

dvslope=zeros(1,col); 

dvdistance=zeros(1,col); 

 

time=H5(1,:); 

dv=H5(2,:); %check the column number 

 

for j=1:col-2; 

    dvslope(1,j)=(dv(1,j+2)-dv(1,j+1))/(dv(1,j+1)-dv(1,j)); 

    dvdistance(1,j)=sqrt((dv(1,j+2)-dv(1,j+1))^2+(dv(1,j+1)-dv(1,j))^2); 

end; 

 

strg15=sprintf('H5 - %s', model); 

strg16=sprintf('H6 - %s', model); 

strg2=sprintf('%s',model); 

strg3=sprintf('Tipping Conditions @ t=%.1f', tptime); 

strg4=sprintf('x_{t}'); 

strg5=sprintf('x_{t+1}'); 

strg6=sprintif('(with randomness)'); 

 

%change the values to zoom in the graph 

dx=0; 

dy=0; 

zoom=3*tptime; 

labelstep=20; 

labelend=zoom/timestep; 

 

% x t+1-x t 

plotname=sprintf('x2-x1-%s',m); 

f=figure; 

set(0,'defaultaxescolororder',[0 0 0]); %black and white 

scatter(dv(1,1:zoom/timestep-1),dv(1,2:zoom/timestep),'.'); 
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ref=refline(1,0) 

ref.Color='black'; 

ref.LineStyle='--'; 

%xlim([1 1.6]); %change if necessary 

%ylim([1 1.6]); %chnage if necessary 

axis([3.5 5.5 3.5 5.5]); 

xlabel(strg4); 

ylabel(strg5); 

pbaspect([1.5 1 1]); 

title(strg2,strg3); %use title(strg2,strg3,strg6) if there is noise in the system 

for ii=1:labelstep:labelend-10; 

    num2str(time(ii)); 

    text(dv(ii)+dx,dv(ii+1)+dy,num2str(time(ii))); 

end 

saveas(f,plotname,'jpeg'); 

savefig(f,plotname); 

 

% distance x t+1-x t 

plotname=sprintf('H5-%s',m); 

f=figure; 

set(0,'defaultaxescolororder',[0 0 0]); %black and white 

plot(time(1:zoom/timestep),dvdistance(1:zoom/timestep)); 

hold on; 

line([tptime tptime],get(gca,'YLim'),'LineStyle','--') 

txt1 = 'Tipping Point\rightarrow'; 

text(tptime,0.08,txt1,'HorizontalAlignment','right'); %change location 

xlabel('time'); 

ylabel('Distance of Points on x_{t+1}-x_{t} Graph'); 

pbaspect([1.5 1 1]); 

title({strg15});  %use title(strg15,strg6) if there is noise in the system 

saveas(f,plotname,'jpeg'); 

savefig(f,plotname); 

 

% slope x t+1-x t 

plotname=sprintf('H6-%s',m); 

f=figure; 

set(0,'defaultaxescolororder',[0 0 0]); %black and white 

line(time(1:zoom/timestep),dvslope(1:zoom/timestep));%,'.'); 

hold on; 

line([tptime tptime],get(gca,'YLim'),'LineStyle','--') 

txt1 = 'Tipping Point\rightarrow'; 

text(tptime,2,txt1,'HorizontalAlignment','right'); %change location 

xlabel('time'); 

ylabel('Slope of x_{t+1}-x_{t} Graph'); 
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pbaspect([1.5 1 1]); 

title({strg16});  %use title(strg16,strg6) if there is noise in the system 

saveas(f,plotname,'jpeg'); 

savefig(f,plotname); 

 

%undo grayscale 

set(0, 'DefaultAxesColorOrder', 'remove'); 

set(0, 'DefaultAxeslinestyleOrder', 'remove'); 
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*Performs ANOVA and t-test in SAS 

 

ods graphics on; 

 

title 'Hx-XXX'; /*hypothesis number and model name*/ 

data results; 

set results; 

Label tpvar="Tipping Variable" t="XXX"; /*indicator being tested*/ 

run; 

 

data results; 

set results; 

proc means data=results mean std; 

class tpvar; 

var t; 

run; 

 

ods graphics on; 

proc glm data=results; 

class tpvar; 

model t = tpvar; 

means tpvar / hovtest ; 

run; 

 

ods graphics off;  

data results; 

set results; 

proc anova; 

      class tpvar; 

      model t=tpvar; 

      means tpvar; 

      means tpvar / tukey; 

   run; 

   ods graphics off; 

quit; 


