

Incinerator Air Blower Repetitive Failures

Authors : RasGas Company Limited

Pradip B Sonavane Sr. Eng. (Rotating Machinery)

Mohamed H. Abdel Khalek Advisor (Rotating Machinery)

Objectives

- Sharing trouble shooting / experience on blower failures.
- To address similar issues / failures due to over-size / over-capacity equipments
- Reference for blowers selection at project stage.

✓ Problem

- ✓ Event Summary
- Observations and Findings
- Root Cause Failure Factors
- ✓ Solutions
- ✓ Selection and Implementation
- ✓ New Blower Site Performance
- ✓ Lessons Learnt
- ✓ Conclusion

Problem

- Low discharge pressure and abnormal sound.
- High casing and inlet duct vibration, whereas bearing vibrations were normal.
- Multiple cracks on casing internal partitions, diffuser rings and IGVs.
- Crack and rubbing marks on rotor impeller.

- Blower was commissioned in 2007.
- High vibration was found in the furnace during commissioning time, and warranty claim was raised.
- Furnace high vibration warranty claim issue closed during commissioning by reducing 50% of blower capacity.
- Three failures occurred as:
 - \rightarrow 2009 : Catastrophic failure
 - \rightarrow 2011 : Major failure
 - \rightarrow 2013 : Minor failure
- Failure description: Complete casing internal, discharge duct, IGV blades found cracked and dislocated. Plus surface crack on impeller.

Equipment Details

Incinerator Air Blower (Sulfur Recovery)

Disch. Pressure

Rotor Length & Wheel Dia.

630 mm H2O G

4215 & 1680 mm

Observations and Findings

Casing internal damages / cracks

Observations and Findings

Root Cause Failure Factors

- Blower operation in unstable region (surge conditions), leading to resonance and cyclic fatigue.
- Insufficient surge protection control system.
- IGV system used for furnace flow demand not for blower surge protection.

Root Cause Failure Factors

Solutions : Available options

Selection and Implementation

Blower Rerate:-

- New blower max capacity is 3066 m3/min (old was 4830 m3/min).
- No major site modification:
 - 1. Same foot print, coupling and suction and discharge duct with transition pieces.
 - 2. Existing motor.
 - 3. No change in air inlet filtration unit.

New Blower Performance Curve

New Blower Drawing

New Blower FAT

New Blower - Site Performance

Operation data

IGV opening	Motor current (Amps)			Flow (Nm3/hrs)		Disch. press (mbarg)	
% DCS / degree local				29FC-0561	29FC-0562	29PC-0561	
00% / 00°	26	27	27	28500		5.5	
23% / 18°	31	31	31	62000		6.61	
35% / 30°	35	35	35	70000	25000	39.36	
50% / 45°	42	42	42	66200	87700	34.44	
70% / 63°	43	43	43	67500	104600	35.36	
100% / 90°	43	43	43	66500	111200	34.24	

Vibration data

	Measurement points	IGV 30 open	IGV 63 open	IGV 90° open	Back to IGV 45 open	After 24hrs running with IGV 45° open
Elect motor	Casing- NDE horizontal (mm/s)	0.75	0.77	0.82	0.75	0.75
	Casing- NDE vertical (mm/s)	0.28	0.26	0.24	0.25	0.2
	Casing- DE horizontal (mm/s)	0.7	0.77	0.78	0.73	0.68
	Casing- DE vertical (mm/s)	0.3	0.34	0.3	0.4	0.3
	Casing- DE axial (mm/s)	0.38	0.39	0.38	0.35	0.37
Blower	Casing- DE horizontal (mm/s)	0.58	0.76	0.8	0.7	0.6
	Casing- DE vertical (mm/s)	0.34	0.5	0.5	0.45	0.4
	Casing- NDE horizontal (mm/s)	0.63	0.53	0.55	0.5	0.4
	Casing- NDE vertical (mm/s)	0.37	0.38	0.4	0.44	0.5
	Casing- NDE axial (mm/s)	0.3	0.4	0.35	0.4	0.3

New Blower Operating Point

New Blower normal continuous operation is at:

- Flow = 85 to 95 KNm3/hr (1416 to 1583 Nm3/min) and
- Dish Pressure = 40 mbarG (407.89 mmAq)

Lessons Learnt

- 1. Blower operation below rated capacity near minimum flow region in response to downstream requirement is not good practice; unless blower surge control protection system is in place.
- 2. Blower casing and suction duct vibration, resonance monitoring beyond bearing vibrations must be part of preventive maintenance programmed.
- 3. Blower and duct internals strengthening by adding stiffeners resulted effectively in reducing resonance effects as an immediate / short term measures.
- 4. Process load conditions, driver selection, equipment capacity / sizing aspects needs to be carefully analyzed during project stage.
- 5. Project control (MAC, SAT, handover) are critical for project to be successful.

Conclusion

- New blower assembled and commissioned successfully in March 2014.
- No site modification.
- Blower resonance and high vibration issues have been resolved.
- Blower performance found satisfactory in all mode of furnace operation.

Thank You