★ HOT SPOTS IN TURBOEXPANDER BEARINGS: CASE HISTORY, STABILITY ANALYSIS, MEASUREMENTS AND OPERATIONAL EXPERIENCE

Joachim Schmied, DELTA JS

Josef Pozivil, Cryostar SAS

www.delta-js.ch www.cryostar.com

* DESCRIPTION OF THE MACHINE * ROTORDYNAMIC BEHAVIOR (ANALYSIS AND TEST) * THE HOT SPOT PHENOMENON * ANALYSED AND TESTED MODIFICATIONS * CONCLUSIONS

DESCRIPTION OF THE MACHINE

Dual turboexpander 2-TC 400/90 with oil unit and control panel

DESCRIPTION OF THE MACHINE

Cross section and rotor model of the turboexpander TC 400/90

ROTOR DYNAMIC BEHAVIOR (ANALYSIS)

Campbell diagram and mode shapes

ROTOR DYNAMIC BEHAVIOR (ANALYSIS)

Unbalance response with API evaluation

ROTOR DYNAMIC BEHAVIOR (TEST)

Compressor Room T1 26.1 ℃ Ta T2 26.1 ℃ Pa P 6.05 bara Ro	ambOUT 19.7 °C atmOUT 0.977 ba elativHumidityOUT	ar 47.8 %	PC TIP 2101 har a	TC2 22.08 ზე	/ Max.diff. 120.32	%		б Ме 🗖	
Om1 3.1 kg/s DPEo 68 mbar		PE TIP 0.92 bara PE REF 397 bara	PCREF 0.974 bara		ra 7 Max.dm. l	DPCo	Qm2 0.0 0 0.983	kg/ s mbar bara	
TEo 82.10 ℃						TCo	20.46 4-20	°C)mA Analog	output
TE1 78.34 °C / Max.diff. 0.	28 %			6	TC1 22.82 °C	/ Max.diff. 171	.70 %	Nr2 Nr3 Nr4	0 0 0
PE1 10.45 bara / Max diff. PE1 = 4.038	0.08 %	-		P	Tamb IN	7707 9c	0.04 %		
TE2 0.25 °C / Max.diff.	0.13 %		D ^P	Re	Patm IN Patm IN Pativ Humidity IN	0.977 bar 30 %	F	^p oint inst	antly
PE2 2.59 bara / Max.diff	0.25 %	Nozzle Comma	and 41 %	Sp		5n		Sys Stal	stem bility
TEST BI	ED ers & Compr	essors		19	9,592	RPN	Λ	Star	t/End
			TC F1171-1 12:06:5				4 PN 10/11/02		

Test bed computer mimic

ROTOR DYNAMIC BEHAVIOR (TEST)

Spiral vibration in 1xN polar plot – expander side

Spiral vibration in 1xN polar plot – compressor side

ROTOR DYNAMIC BEHAVIOR (TEST)

Vibration hysteresis in Bode pot

Hot spot mechanism

Thermal deformation,

1°C cross sectional temperature difference in comp. bear.

Hot spot stability chart

***** Simplified formula for the estimation of the heat ratio

$$\frac{p\Omega}{q} = \frac{u^2 \eta \beta}{\delta^2 \alpha}$$

Symplifications best apply to a cylindrical low loaded (centred) cylindrical bearings.

*** Parameters**

- u: Circumferential shaft velocity
- η : Viscosity
- β : Relation between thermal deflection and temperature difference (proportional to width)
- δ : Clearance
- α : Heat transfer coefficient between oil and shaft

Original rotor

Modified stiffer rotor

\star Stiffer rotor \rightarrow increased separation margin

Campbell diagram bending mode

*** Stiffer rotor**

1xN polar plot – compressor side, stiffer rotor

*** Stiffer rotor**

Vibration hysteresis in Bode pot

Original 0.6D and modified 0.4D bearing

***** Narrow bearings, reduced oil viscosity

Polar plot – compressor side

***** Narrow bearings, reduced oil viscosity

Vibration hysteresis in Bode pot

CONCLUSIONS

- * A turboexpander was subject to a vibration problem in spite of its robust design. The problem could be clearly identified as a hot spot phenomenon in the bearing (Morton effect).
- * Classical criteria such as separation margin and damping were not sufficient to predict the problem. These criteria were very favourable in the present case.
- * The hot spot stability chart helped to assess the risk and corrective measures regarding this phenomenon.
- * The introduction of narrower bearings and an oil with lower viscosity completely solved the problem in the present case.
- * This solution cannot be generalised for other cases, especially it may not apply in case of higher bearing loads.