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ABSTRACT

A new software system architecture was designed to integrate smoke propagation
simulation, evacuation simulation, and Building Information Modeling (BIM). The
integrated software prototype automates the majority of the simulation workloads,
enabling seamless data flow from BIM to smoke propagation simulation and evacuation
simulation, and thus providing architects rapid feedback in design decision process.

As the key to integrating smoke propagation with BIM, the research produced
two spatial transformation algorithms and a room selection algorithm to resolve the
incompatibility caused by the need to simplify the BIM representations for use in CFAST.
With these algorithms, smoke propagation simulation of real-world buildings can be
easily performed on a BIM model. To demonstrate the integration of smoke propagation
simulation and BIM, a software prototype was developed with Revit Architecture and
CFAST. In addition, a visualization module was developed to present simulation results,
which are usually in thousands of lines of numbers, in a visually understandable format.

A simple BIM-based multi-agent evacuation simulation model was developed to
provide architects with more informative design feedback. At each simulation step, each
agent collects the data of the surrounding environment, such as CO concentration at their
head level and room temperature. The results of the simulation can be visualized as
graphs and animations which help architects to visually identify bottlenecks and examine
the clarity of circulation design.

The validity of the algorithms was tested by FDS simulations and CFAST simulations.
The analyses of the FDS validation tests showed that the transformation algorithms
introduced 5-10% error for the majority of the test cases. A few extreme cases showed

more than 10% error. The analysis tests showed that the room selection algorithm
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introduced 2-7% error.

Intensive use of the software can provide insights to a designer that may result
in new solutions to increase fire safety. A series of FDS simulations as experiments
scrutinized how ceiling design and door design affect building fire safety. The results of
the experiments showed that opening 16-25% of the ceiling can deter smoke propagation

up to 60% by holding smoke inside plenum area.

1ii



ACKNOWLEDGMENTS

I would like to thank Dr. Clayton and Dr. Yan for guiding me through the research,
enlightening me in many aspects of my career, and helping me with my personal life
during my Ph.D. program. Thanks also to Dr. Haberl and Dr. Kang for providing valuable
advice and feedback to help me improve my research. I would also like to thank Dr.
Miranda for sharing his insights on life with me, Dr. He for supporting my career in many
ways and helping me with my personal life, and Dr. Rogers for guiding me in teaching
design studio. Many thanks to the professors whose courses I took at the department
of architecture and the department of computer science, especially Dr. Akleman, for
nurturing me with knowledge and made me humble enough to realize that what I know
is not even comparable to a drop of water in the ocean.

My sincere gratitude to Dr. Sanghyun Lee, my MS program advisor, who enlightened
me in my early academic career and guided me to the PhD program at Texas A&M. Many
thanks to my friends in or once in College Station with me. The memories I have with all
of you are invaluable, the happy hours we spent together was the energy tank to my life,
and the inspiration from you is indispensable to my Ph.D. program. I would also like to
thank my students in Architecture and Visualization department at Texas A&M, and the
students at Kaywon University of Art and Design in Korea. You made me realize what
to fulfill in my teaching career. Lastly, special thanks to my parents and brother for their
unconditional support.

All the honor to God.

v



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Dr. Mark Clayton
(chair), Dr. Wei Yan (co-chair), and Dr. Jeff Haberl at the department of Architecture, and
Dr. Julian Kang at the department of Construction Science.

All work for the dissertation was completed independently by the student.
Funding Sources

The department of architecture provided teaching assistantship for six semesters.

CRS center at the college of architecture provided three years of scholarship during
2014-2017; the state of Texas provided education grant during 2014-2015; and the
International Student Services at Texas A&M University provided scholarship during
2015-2016.

The final year of the graduate study was supported by a dissertation fellowship from
the Office of Graduate and Professional Studies at Texas A&M University. I would like to

express my sincere gratitude for the support.



NOMENCLATURE

AABB Axis Aligned Bounding Box

AEC Architecture, Engineering, and Construction
API Application Programming Interface

ASCII American Standard Code for Information Interchange
BIM Building Information Modeling

CAAD Computer Aided Architectural Design

CFAST Consolidated Fire And Smoke Transport

CFD Computational Fluid Dynamics

CO Carbon Monoxide

CO2 Carbon Dioxide

COHb Carboxyhemoglobin

CSv Comma Separated Values

FDS Fire Dynamic Simulator

FSEG Fire Safety Engineering Group

HC1 Hydrogen Chloride

HCN Hydrogen Cyanide

HRR Heat Release Rate

IBC International Building Code

IFC Industry Foundation Classes

NBIMS National Building Information Model Standard

vi



NIST

NURBS

USFA

WESC

WPF

National Institute of Standards and Technology
Non-Uniform Rational Basis Spline

United States Fire Association

World Fire Statistics Centre

Windows Presentation Foundation

vii



TABLE OF CONTENTS

Page

ABSTR ACT e il
ACKNOWLEDGMENTS e v
CONTRIBUTORS AND FUNDING SOURCES ...t v
NOMENCLATURE . ... e vi
TABLE OF CONTENTS ...ttt eeeeeeeeee viii
LIST OF FIGURES ... e xi
LIST OF TABLES . . ..o eeeeeee Xvil
1. INTRODUCTION. ...ttt e 1
1.1 Problem Statement ..........coouuuiiiiiii i 4

1.2 Research QUESHONS .......oiiiiiit ittt 5

1.3 Research Goals and ODbJectiVeS ....vvuiveeet ettt iiiiiiee e, 6

1.4 Research Workflow ... .. 7

1.5 Significance of the Research.................ooo 8

1.6 ReSearch SCOPE.......ooviiiiiii 9

1.7 Organization of the Dissertation...............oooiiiiiiiiiiiiiiiii ... 10

2. LITERATURE REVIEW ...t 12
2.1 Fire EXperiments ..........ooooiiiiiiniiiii it 12

2.2 Smoke Propagation Models .......... ... 14

2.3 Smoke Propagation Simulation Software ...................o . 16
2.4 Validation of the Models Used in CFAST and FDS ......................... 18

2.5 BIM Adoption in PractiCe .......ouvuiiiiiiiiiiiiiiiiiie et iiiiiiiee e 19

3. INTEGRATION OF BIM AND SMOKE PROPAGATION SIMULATION........ 21
3.1 Selection of the Simulation Model and the BIM Tool..................... ... 21

3.2 Identifying the Limitations of CFAST ..., 23

3.3 Algorithms to Overcome the Limitations of CFAST .......................... 24
3.3.1 Transformation Algorithms .............ccooiiiiiiiiiiiiiiiiiii L. 24

viil



3.3.2 Room Selection Algorithm..............cooiiiiiiiiii i, 26

3.4 Prototype of the Integrated System.........coovviiiiiiiiiiiiiiiiiiinneeeinnnns 29
3.5 Testing TOFAST ..ot e e 33
3.5.1 Converting a BIM model to a CFAST model ......................... 35
3.5.2  Adding SyStems .....oooiiiiiiiiii 37
3.5.3 Performing Simulation in CFAST ..., 39
3.5.4 Testing on Multiple Buildings ...t 41
3.6 Comparing against Conventional Simulation Processes ...................... 45
3.6.1 Simulating with CFAST + AutoCAD + Spreadsheets ................ 49
3.6.2 Simulating with FDS + PyroSim + SketchUp ...................ooo. 52
3.6.3  SUMMATY .ot 55

. VISUALIZATION AND INTERPRETATION OF SIMULATION RESULTS.... 56

4.1 Visualizing Smoke Simulation Results..............coooiiiiiiiiiiiiiiiiin.... 57
4.2 Simulating Occupant Evacuation...............cooiiiiiiiiiiiiiiieiiinnnn... 57
4.2.1 Initializing Evacuation Simulation Environment ..................... 59
4.2.2 Calculating Exit Paths ... 59

4.2.3  Simulating Evacuation .............oeeviiiiiiinneriiiiiiiiiineeeennnnn. 61

4.3 Reporting Simulation Results ..........oooviiiiiiiiiiiiiiiiiiii i, 63
4.4 Animating Evacuation Simulation Results.....................oooLL. 64
. VALIDATION OF THE ALGORITHMS ... 67
5.1 Validation of the Transformation Algorithms................cooooiviiiiinn. 67
S5.1.1 0 Resolution TeSES «ovvvveiiiiiiiiii e 71

5.1.2 TSt CasS « ettt 75
5.1.2.1  Shoe Shape Rooms ..., 76

5.1.2.2  SIM Card Shape Rooms ............ccoooiiiiiiiiiii... 78

5.1.23  Circular ROOMS ... 79

5.1.2.4  Gable/Shed/Vault ........ccoooiiiiiiiiiiiiiiiiiin, 79

5.1.2.5 T-shape / L-shape / O-shape Corridors ..................... 80

5.1.3  Fire Parameter Settings............ovieiiiiiiiiiiiiii i, 82

514 Test ReSUlts ..o 82

5.2 Validation of the Room Selection Algorithm ...............coooiiiiiiinnn, 88
521 TSt CaSES vttt 89

522 TestResults ...oovviiiiiiiii i 92

. NEW KNOWLEDGE DISCOVERY ...ttt 99
6.1  SITmMulation SEttings ......uvveiiiiiiiii e e 102
6.2 Simulationsandthe Results ... 104
6.2.1 Opening Ratio .......oooiiiiiiii 104

6.2.2  OPENING SIZE. ..ottt 106

X



6.2.3  Opening Distribution ...t 108

6.2.4 Plenum Height.......ooooiiiiiiiii i 109

6.2.5 Door Height......ouuiiiiiii i 111

6.3 Summary of the Findings ..........cooiiiiiiiiiii i 112

7. CONCLUSION. ... et 113

7.1 Contributions of the Research ..., 114

7.2 LIMIAONS . .uuutiiiitt ettt ettt ettt e e 116

7.3 Future Work. ... 116

REFERENCES .. e e 119
APPENDIX A. VALIDATION TEST RESULTS FOR THE TRANSFORMATION

ALGORITHMS .. e 126

A.1 Shoe Shape Models .......ccvviiiiiiiiiiii i 127

A2 SIM Card Shape ModelS.........ccooviiiiiiiiiiiiiiiiiiiiiii i 137

A.3 Circular Shape Models. ... ...ouuuiiiiii e 143

A4 Gable MOdElS. ...t 145

A5 Shed ModelS......ovviiiiiii 149

A6 Vault Models ......ooviiiiiii 153

AT COTTIAOTS . oottt 157
APPENDIX B. VALIDATION TEST RESULTS FOR THE ROOM SELECTION

ALGORITHM .. e 160

B.1 Smoke Height ...oouu 161

B.1.1 Ignoring Scheme/ Connected to the Exterior...............coouuan.. 161

B.1.2 Merging Scheme/ Connected to the Exterior.......................... 167

B.1.3 Ignoring Scheme/ Not Connected to the Exterior..................... 173

B.1.4 Merging Scheme/ Not Connected to the Exterior..................... 179

B.2 CO Concentration .........o.ouuvuiiieeiiiiiiieee ittt e eeaaaas 185

B.2.1 Ignoring Scheme/ Connected to the Exterior..............ooovuuai.. 185

B.2.2 Merging Scheme/ Connected to the Exterior.......................... 191

B.2.3 Ignoring Scheme/ Not Connected to the Exterior..................... 197

B.2.4 Merging Scheme/ Not Connected to the Exterior..................... 203



LIST OF FIGURES

FIGURE

1.1

1.2

1.3

2.1

3.1

32

3.3

34

3.5

3.6

3.7

3.8

3.9

3.10

3.11

The number of fire deaths in 27 industrialized countries from 2007 to 2009
5

Fire safety comparison between plan Aand planB. ..........................
Research workflow diagram. .......... ... oo i
Two-zone model (left) and CFD model (right)...........ccoooviiiiiiiiiinn..
Transformation of a non-cuboid room. In the plan view (left), the two floor
plans have the same floor area and proportion (2:3). In the section (right),

the shapes have the same volume and floor area. .......................oo....

Transformation of corridors using the same method as used in general
rooms. Smoke in the two spaces will behave in totally different ways. ......

Transforming a corridor by smoke travel distance. .................coooii.
A sample building in BIM (left) and its topological graph (right). ...........

Geometric network graph of the room I using the doors and the vertices of
the room as nodes (left). The shortest travel distance between door 6 and
other four doors of the room I (right)............coooiiiiiiiiiiiiiiii L,

System dia@ram. . ......ooouunni e
Revit model of a floor of an existing building.....................oooein.

Commands in ToFAST, for conversion of a Revit model to a CFAST model
and the visualization of the simulation results. ..............coiiiiiiiia...

Setting the room of fire OTigin. ........vviiiieiii i i,
CFAST input file generated by ToFAST. ... ..o,

Floor plan of the CFAST model that is converted from the Revit model.
All rooms are converted to CubOIdS. ........vvveiiiiiiiiiiiiiiiiiiiiee

xi

Page

1
3

8

25

26

27

34

35



3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.31

Adding alarms. .....ooounni e
Adding SUPPIESSION SYSIEML vttt et e eeetttiieeeeeeentriiinaeeeeeannnes
Adding mechanical vents. ...t
Running simulation from CFAST interface. ...........ccoooiiiiiiiiiiiiiin.
Simulation for the test case i Progress. .......oeeveeuiieeteeiiiunnnnenneeenns
Simulation results of the test case at time step 510 seconds...................
Floor plan of the one-story convenience Store. ............eevuuiveeeeeennnnnn.
First floor plan of the four-story hotel. ........... ...
Third floor plan of the four-story hotel. ...,
Treating merchandise room and sales room as one compartment.............

CFAST reads the input file of the convenience store that is generated by
TORA S T, .o e

CFAST reads the input file of the first floor of the hotel that is generated
by TORA S T ..

CFAST reads the input file of the third floor of the hotel that is generated
by TORA S T o

Running simulation of the convenience store in CFAST. .....................
Running simulation of the first floor of the hotel in CFAST...................
Running simulation of the third floor of the hotel in CFAST..................
AutoCAD drawing of the floor plan. ..........cooooiiiiiiiiiiiiiii i,
Measuring the distance from the room of fire origin to the other rooms......

SketchUp model of the building design. The slabs and the ceilings are
hidden for presentation PUIPOSES. ....uveeettttiiiiiaeeeeeerriiiiaeeeeennnnns

SketchUp model is imported into PyroSim as a mesh. Additional
information such as fire, mesh subdivision, and so on, are added to the
NOAE].

Xii

38

38

39

40

40

43

43

44

45

47

48

50

53

54



4.1 Visualization of the CFAST simulation results for the university building
USING SMOKEVIEW. ..ottt e e

4.2 Reading the CFAST simulation results, extracting essential information,
and locating each set of data at the corresponding location for easier
VISUALIZATION. .ottt ettt e e e e e e e e e e

4.3 Color-coded floor plan to show smoke propagation and the information
aboUt the tOXIC aSES. + ittt ettt ettt eens

4.4 Randomly generating agents in the sCene. ............ccooeoiiiiiiiiiinnn...

4.5 Calculating the egress path of each agent using the same algorithm used
for selecting 30 rooms without any adjustment. .....................oooaan.

4.6 Offsetting the floor boundaries inwards. .............ccoooiiiiiiiiiiiin. ..

4.7 Adjusting the algorithm to make agents walk past the doors and turn the
corner with a buffering threshold. ........... ..o

4.8 Agents’ actual evacuation trails. The zigzag paths show the efforts from
the agents tried to avoid collision with their neighbouring agents. The
zigzag paths can be smoothened by increasing the number of simulation
SEEPS PET SECONA. ...ttt et ettt et et ettt

4.9 Duration of time that each agent spent in Smoke. .............oovvvvvvnnnnn...
4.10 COintake of each agent. .........iiiiiiiiiiiiiiiii e
4.11 The ambient temperature of each agent. ..............ccoooiiiiiiiiiiiiiiia...
4.12 Agents are safe from smoke at the time step of 60 seconds. ..................

4.13 At time step 145, some agents are walking in smoke regions which are
denoted With Grey. ... ..oouuniii i

5.1 An example of a validation test model for general rooms. Room A, B, C,
and D are identical in shape but oriented differently. Red crosses denote
smoke sensors. Fire source is placed at the center of room A.................

5.2 The transformed model using the transformation algorithm. .................
5.3 An example of a validation test model for T-shape corridor...................

5.4 The transformed model of the corridor using the transformation algorithm..

Xxiil

58

58

60

61

62

62

63

64

65

66

69



55
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14

5.15

5.16
5.17

5.18

5.19

5.20

5.21

522

5.23

The model used in the resolution tests..........ouuuiiiiiiiiiiiiiiiini .. 72
Simulation results of TOOM A. ..ottt 72
Simulation results of room B ... ... 73
Simulation results of room C. ... 73
Simulation results of room D. ... ... 74
Three commonly seen non-rectangular floor plans. .....................o..... 75
Three commonly seen non-rectangular SECtions. ............eeeeueeuenennnnnn. 75
Three commonly seen non-rectangular corridors. ..........cooooiiiiiiaan.. 76
Parameters to define the size of a shoe shape rooms in the floor plan. ....... 76
Parameters to define the size of a SIM card shape room in floor plan. ....... 78

Parameters of the gable (left), shed (middle) and vault (right) models.
Length L is the magnitude of the extrusion of the polygons, perpendicular

to the polygons. Length L is not explicitly denoted in the figure above. .... 79
Parameters of the corridors. ... 81
Simulation results of an 8m x 4m shoe shape model. ......................... 83

Error graph of the shoe shape models. X axis shows the models with
different parameters. For example, 6x4-2x1.2 denotes a model with a
bounding box of 6m x 4m, and a void of 2m x 1.2m. Y axis shows the
percentage of the error introduced by transforming the model using the

transformation algorithm. .......... ... .. i 85
Error graph of the SIM card shape models. ...........ccooiiiiiiiiiiiiiin.. 85
Error graph of the circular models. X axis shows the models with different

QLAIMELETS. ¢« ettt ettt ettt 86
Error graph of the corridor models. ..........cccoiiiiiiiiiiiiiiiiiiiiiiiin.. 86

Error graph of the gable models. X axis shows the models with different
parameters. For example, 6x4-0.5 denotes a model with a bounding box
of 6m x 4m, and a ceiling slope of 0.5. ... ... i 87

Error graph of the shed models. ... 87

Xiv



5.24

5.25

5.26

5.27

5.28

5.29

5.30

5.31

5.32

5.33

5.34

5.35

5.36

6.1

6.2

6.3

Error graph of the vault models. ... 88

A floor plan with 30 rooms used in the test cases. Two elevator shafts are
excluded from the 30 rooms assuming that elevators are not used during
building fire evacuation. The flame icon denotes where the fire started. ..... 90

Selecting different numbers of rooms using the proposed algorithm. ....... 91

Merging spaces. In the left figure, the five rooms (in grey) that are furthest
from the fire origin are ignored in the simulation. In the right figure, the
volume of the last five rooms is merged into the next last room (in checker
pattern). The volume of the two rooms in grey is also merged into the big
room which resulted the wall protruded from the column grid. The two
rooms in white are elevator shafts. .............ccoooiiiiiiiiiiiiiiiiiii. 92

Visualized simulation results showing smoke propagation through time.
Room 1 is the fire origin. The rest of the rooms are sorted by the smoke
travel distance from Room 1. Ceiling height of the rooms is all set to 2.7

10T 1S 13 93
Smoke height with ignoring scheme......................L 94
Smoke height with merging scheme. .............coooiiiiiiiiiiiiiiiiinnn... 94
CO concentration with ignoring scheme. ...l 95
CO concentration with merging scheme. ...........cooiiiiiiiiiiiiiiinnneeenn. 95
Smoke height with ignoring scheme....................o L 96
Smoke height with merging scheme. .............cooooiiiiiiiiiiiiiiiiinnn... 97
CO concentration with ignoring scheme. ..., 97
CO concentration with merging scheme. ..., 98

CFAST model for testing how opening ceiling affects smoke propagation.
Ceiling height is set to 2.8m, and plenum height is set to 60cm. ............. 100

Comparison of the simulation results. Blue lines denote the simulation
results of the model with ceilings, and the orange lines denote the
simulation results of the model without ceilings. X axis denotes
simulation time in seconds, and Y axis denotes smoke height in meters. .... 101

Valid volume for stalling smoke propagation to the next room. .............. 102

XV



6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

Perspective (left) and the floor plan (right) of the base model for the

SIMUIALIONS. ..o et 103
Section of the base model. ... 103
Grille dimensions of the base model. ..., 104
Ceiling plan of the ToOOMS. .......ooiiiiiiiii i 105

Simulation results by opening ratio. X axis denotes opening ratio, and Y
axis denotes the average simulation time (in seconds) to reach the 2m-1.5m
78] 1 106

Ceiling plans of the models with different grille sizes......................... 107

Simulation results by grille size. X axis denotes opening size, and Y axis
denotes the average simulation time (in seconds) to reach the 2m-1.5m zone. 107

Different types of grille distribution. ...t 108
Simulation results by distribution type. ........oovviiiiiiiiiiiiiiiiiiiinieean 109
Plenum height. ... i 110
Simulation results by plenum height. ........... ... 110
Simulation results by door height..............coooiiiiiiii i 111

XVvi



TABLE

3.1

3.2

3.3

5.1

5.2

5.3

54

55

5.6

5.7

5.8

5.9

5.10

6.1

6.2

LIST OF TABLES

Page
The adjacency matrix of room I. D stands for door, V stands for vertex.
Room I contains 9 doors and 14 vertices. The matrix is symmetric. ......... 29
Converting non-cuboid rooms to cuboids. AABB-length field denotes the
length of the axis-aligned bounding box, AABB-width field denotes the
width of the bounding box, Ratio field is calculated by AABB-length /
AABB-width, L field denotes the length of the transformed cuboid, and W
field denotes the width of the transformed cuboid. ......................o. 52
Comparison of the projected time to simulate smoke propagation............ 55
Projected time to finish all simulations. ..o 74
Various size of shoe shape models.............cooooiiiiiiiiiiiiiii i 7
Various size of SIM card shape models. ... 78
Various size of circular models. ... 79
Gable models with different parameters...........coovviiieiiiiiiiiiiinnneeen. 80
Shed models with different parameters..................oooiiiiiiiiiii 80
Vault models with different parameters. ..........ccoovviiiiiiiiiinneeennn.. 80
Various size of T-shape corridors. ..ottt 81
Various size of L-shape corridors. .........ovviiiiiiiiiii i 81
Various size of O-shape corridors. ...ttt 81
Comparison of the time (in seconds) that smoke reaches 2-1.5m zone. ...... 101
List Of @Il S1ZES. ... vvetetee e 105

XVvil



1.

INTRODUCTION

Building fires cause many fatalities each year. From 2007 to 2009 there were more

than 10,000 building fire deaths each year in 27 industrialized countries, an average of

8.3 deaths per million population (figure 1.1) [1]. In addition, expanding populations are

increasingly moving to cities and living in high-density development areas where fire risks

are greater.

Adjusted estimates (fire deaths)

Country 2007 2008 2009
Australia 115 120 175
Austria 30 55 40
Barbados 5 5

Canada 230 295 240
Czech Republic 135 150 120
Denmark 70 90 70
Finland 95 110 110
France 605 595 595
Germany 435 500 540
Greece 240 130 110
Hungary 175 180 150
Ireland 55 45 55
Italy 250 285 285
Japan 2050 2000 1900
Netherlands 70 100 60
New Zealand 35 35 35
Norway 70 70 55
Poland 600 585 565
Portugal 75 65 55
Romania 440 410 355
Singapore 5 1 1
Slovenia 15 10 10
Spain 255 270 205
Sweden 110 130 140
Switzerland 15 30 25
United Kingdom 465 475 460
United States 3750 3650 3300

0 2000 4000 6000 8000 10000

Figure 1.1: The number of fire deaths in 27 industrialized countries from 2007 to 2009 [1].

Protecting occupants from building fires is one of the major tasks of architects in

building design. There are two major methods that architects can employ to achieve

building fire safety: building code compliance and building fire simulation. In the



typical architectural design process, building fire safety relies solely on the compliance
of the building codes. As building codes address more fire safety issues day by day,
code-compliant building designs can achieve a high level of fire safety. In addition,
building code checking can be automated which greatly reduces the time and errors of
manual code checking [2][3].

Despite the ubiquitous adoption of the building code compliance in practice,
simulation-based design has its distinct advantages over conventional code-based design.
One of the advantages is that simulation-based design may provide architects with more
freedom in design and more space for innovation. Simulation-based design focuses on the
performance of buildings while code-based design focuses on provision of conventional
features specified through a regulatory process. Prescriptive building codes mandate
designers to follow predefined solutions to solve a problem, while performance based
codes only define desired outcome of the design, and the solution to solve a problem is up
to designers. This grants designers more freedom to design, more space for innovation,
and more responsibility at the same time [4]. For example, International Building Code
(IBC) 1016 limits the maximum travel distance to the nearest stair in order to assure
occupants’ safe evacuation. In figure 1.2, although design scheme A complies with
the provision mentioned above, occupants in the right wing (gray area) need to escape
through the fire source which can render them unconscious in the split of a second, a very
common factor causing deaths in building fires [5]. In design scheme B, on the other
hand, occupants always have a choice to run away from the fire source. People can stay
in 0.3% of carbon monoxide (usually very dense smoke) for 15 minutes without risking
their lives [6]. Thus people are more likely to escape safely in design scheme B than
in design scheme A, despite the fact that the egress distance in design B exceeds the
maximum distance required by the building codes. Overall, simulation-based design can

be a complementary solution for code-based design.



XX
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Figure 1.2: Fire safety comparison between plan A and plan B.

Another advantage of simulation-based design is that it has the potential to discover
new knowledge that is not incorporated into building codes. The nature of building codes
is to prevent similar disasters from happening again based on the lessons learned in the
previous incidents. On the other hand, the nature of simulation is to predict consequences
beforehand based on the laws of physics or the laws of nature. Because of this fundamental
difference, simulation-based design process can discover new knowledge that building
codes have not yet captured. Section 6 provides examples of how simulation-based design
can discover new knowledge that is not yet captured by building codes, supported by
detailed simulation data. If smoke propagation simulation becomes a normal routine in
practice, it is expected that more and more new knowledge will be discovered.

Building fire safety can be assessed by the speed of smoke propagation and the
speed of occupant evacuation. In a building fire, occupants are safe only if they can
evacuate without their lives being threatened by toxic smoke. In this sense, simulating
occupant evacuation can help architects to understand the fire safety of their design more

comprehensively.



1.1 Problem Statement

Despite its advantages mentioned above, smoke propagation simulation and
evacuation simulation are not incorporated in typical architectural design process [7].
Informal observations suggest that the primary reason is the difficulty and slowness
resulting from the incompatibility between the different building models used in design
and simulation. Currently, to simulate occupant evacuation or smoke propagation of a
building, the building drawings must be re-modeled in simulation applications according
to idiosyncratic special purpose description conventions. This re-modeling process is
time-consuming, error-prone, and the simulation results of the same building can vary
significantly from one user to the next due to alternative methods for modeling or errors
that are difficult to identify. In addition, manual data entry must be repeated every time
when the design of the building changes, which worsens the problem considering that
a building design usually changes many times before it is ready for construction. This
workload is one of the main obstructions to incorporating smoke propagation simulation
and evacuation simulation into design process. If this problem were eliminated through
automation of the data exchange between design program and simulation program, smoke
propagation simulation and evacuation simulation could become a common part of design
process.

In addition to the input process, simulation running time also deters the use of smoke
propagation simulation in building design. Some smoke propagation simulation models
utilize Computational Fluid Dynamics (CFD) which is computationally expensive by
nature. Simulating a building in a CFD-based smoke propagation simulation application
can easily take several days or even several weeks. Considering the numbers of iterations
needed in order to improve the design, it is not viable to integrate CFD-based smoke

propagation simulation model into design process given the limited timeframe of typical



design projects.

An alternative to solve the simulation running time problem that CFD-based models
have is to use zone models which simplifies building geometry and simulation process.
With zone models, the simulation running time can be reduced to a few minutes instead
of days to weeks. However, the simplification of the building geometry triggers different
problems. A zone model, such as CFAST (Consolidated Fire And Smoke Transport),
simplifies a room to a cuboid shape. Rooms in the real world take a variety of shapes
besides cuboid. Because there is no standardized shape conversion method, converting
a non-cuboid shape to a cuboid shape is likely to vary from user to user, which causes
inconsistency in simulation results even within the same building design. In addition, the
shape conversion process needs to be done manually which adds additional workload and
increases probability of error.

Cumbersome input process, long simulation running time, and the lack of a
standardized model simplification method hinder the adaptation of smoke propagation
simulation and evacuation simulation during building design process. Designers can
better understand the consequences of their design decisions on fire safety issues if smoke
propagation simulation and evacuation simulation are incorporated in architectural design

process.
1.2 Research Questions

This research is initiated to investigate the following primary research questions:

e Can smoke propagation simulation and evacuation simulation be integrated into

design process such that the integrated system is useful to typical designers?

e Does the integrated system have any side benefits besides its practical use?

The primary questions can be answered through the following secondary questions:



Can smoke propagation simulation and evacuation simulation be integrated into

popular design support software, such as a BIM authoring tool?

Does the integrated system produce sufficiently accurate results?

Does the integrated system provide a simulation procedure that is easy to use?

Does the integrated system provide informative simulation results?

Can the integrated system help designers to discover new knowledge?

The hypothesis of this research is formulated as the following:

Smoke propagation simulation and evacuation simulation can be incorporated into
architectural design process and become useful to typical designers by giving rapid
feedback. In addition, the integrated process has other benefits besides its practical use,

such as discovering new knowledge.
1.3 Research Goals and Objectives

The goals of this research are:

e To design a new software system architecture that integrates smoke propagation

simulation and evacuation simulation into architectural design process;
e To present an argument that the integrated system is useful to typical designers;
e To investigate other benefits of the integrated system.

The integrated system should automate significant aspects of smoke propagation
simulation and evacuation simulation process, simplify and accelerate the process,
provide designers with rapid feedback, and thus help designers make data-driven design
decisions regarding building fire safety. It should also be tightly connected to a design

tool, such as a BIM authoring software system.
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The goals of this research can be achieved by completing the following quantifiable

concrete objectives:

1.4

Identifying the primary factors that hinder the integration of a smoke propagation
simulation tool and an architectural design tool, i.e. the reasons that cause the

incompatibility;

Devising algorithms to overcome the incompatibility between the models used in

smoke propagation simulation and BIM;

Developing a software prototype to demonstrate the integration of smoke

propagation simulation, evacuation simulation and BIM;

Validating the accuracy of the algorithms that are used in the integrated system:;

Discovering whether the integrated system is easy-to-use and produces informative

results;

Investigating whether the integrated system can discover new knowledge that is not

yet captured by building codes.

Research Workflow

The workflow of this research is shown in figure 1.3. The first step is to devise

algorithms to convert real rooms drawn in BIM to smoke propagation simulation models.

The next step is to develop a software prototype, using Revit as the BIM tool and CFAST

as the smoke propagation simulation tool, to implement the model conversion algorithms.

The subsequent steps are to run validation tests to demonstrate the accuracy of the

algorithms, compare user experience to see how easy to use the integrated system is,

develop a BIM-based evacuation simulation model, and develop a visualization module to

provide informative feedback. The last step of this research is to discover new knowledge
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Figure 1.3: Research workflow diagram.

through simulations. After these steps, the research questions will be answered and the

research hypothesis can be either proved or rejected.
1.5 Significance of the Research

In practical aspect, integrating smoke propagation simulation into architectural design
process can help designers to perform smoke propagation simulation easily, and better
evaluate the safety of building designs with respect to fires, without acquiring detailed
specialist expertise in how to perform smoke propagation simulation. Ultimately, the
integrated system provides architects with a new tool that helps them make data-driven
design decisions, and thus improve the fire safety of their design.

The integrated system provides a platform for designers and researchers to discover
new knowledge through smoke propagation simulation. Because the tool accelerates the
process of fire safety related simulations, researchers can perform more analyses in the
same amount of time, potentially exploring more hypotheses in greater depth to generate

new knowledge. Section 6 demonstrates how the integrated system can contribute to



expanding the boundary of our knowledge base.

With respect to education, the integrated system can help architecture students to better
understand building fire safety without the demand of extensive knowledge in engineering
and math. By incorporating simulation tools into design tools, it provides students with
a more visual and straightforward way of learning building fire safety in addition to the

conventional way of reading and interpreting building code books.
1.6 Research Scope

Toxic smoke and extreme temperature of the fire are the two primary factors that cause
fatalities in building fires. A study [8] shows that 80% of the fatalities in building fires are
caused by toxic smoke and 11% are caused by actual fire. Hence, this research focused on
the simulation of smoke propagation. The simulation of actual fire was excluded from this
study.

The main goal of this research was to investigate the integration of smoke propagation
simulation, evacuation simulation, and architectural design. The simulation results can
provide designers with rapid feedback on how their building design performs in terms of
fire safety. In the prototype software system, the subsequent optimization of the design
based on the simulation results has been left to the designers, i.e. design optimization is
excluded from the scope of this research.

A simple evacuation simulation model is developed in this research to help designers
qualitatively and quantitatively evaluate the fire safety of their design. However, the
evacuation simulation software is only to demonstrate that evacuation simulation can be
integrated with BIM and smoke propagation simulation. Validating the model that is used
in the evacuation simulation is excluded from the research.

The integration of the existing smoke propagation simulation models and BIM is

focused on spatial configuration. The integrated system can simulate with or without



mechanical ventilation, fire alarms, and fire suppression systems. However, it only
simulates to the extent that the existing simulation model supports. Extending the

functionalities of the smoke propagation simulation model is not included in the research.
1.7 Organization of the Dissertation

Section 2 reviews previous studies on the relevant topics, including smoke propagation
simulation models, existing simulation software, validation of the smoke propagation
simulation models, and the use of BIM in practice. This research builds upon the existing
models and the findings of the previous studies.

Section 3 presents the algorithms that are used to overcome the incompatibility
between BIM and smoke propagation simulation models. A prototype software was
developed with Revit API to demonstrate the integrated system of BIM and smoke
propagation simulation. Pilot tests were also conducted to assess the integrated system
and its effectiveness in incorporating smoke simulation into the design process.

Section 4 presents two different ways of providing feedback to the designers: by
visualizing smoke propagation; and by performing evacuation simulation based on the
smoke propagation simulation results. The evacuation simulation provides both qualitative
and quantitative feedback.

Section 5 presents the validation of the algorithms used to integrate smoke propagation
simulation and BIM. A variety of building models with different sizes are simulated with
FDS and CFAST to test the validity of the algorithms.

Section 6 presents the new knowledge that were found as the side benefits of
integrating smoke propagation simulation into design process. The findings are confirmed
through a series of FDS simulation tests.

Section 7 concludes with the findings, limitations, and suggestions for future work.

Validation tests in section 5 resulted in hundreds of graphs. To make the main text
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concise, only two of the graphs are included in section 5 as examples, and the rest of the

graphs are presented in Appendix A and B.
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2. LITERATURE REVIEW

Although extensive research has been conducted on smoke propagation simulation, the
methods require specialized expertise not commonly held by designers and consequently
have not been integrated into common practice. In the 1970s and 1980s, researchers
conducted combustion experiments extensively to understand the physical characteristics
of fire and the chemical properties of commonly used building materials when on fire. The
data collected from the experiments were used to develop smoke propagation simulation
models and software that are used to predict the behavior of building fires. This section
reviews the previous studies on fire experiments, smoke propagation simulation models,
the existing smoke propagation simulation software, and the validity of the models and
software. This section also briefly reviews the previous studies on BIM adoption in
practice to investigate the value of incorporating smoke propagation simulation into a

BIM-enabled design process.
2.1 Fire Experiments

Understanding the physical characteristics of fire and smoke is an essential key to
modeling fire and smoke. Since the 1970s, researchers have extensively experimented with
fire to unveil various characteristics of fire and smoke. Many researchers have tested the
ignition behavior of various flammable materials such as cardboard, newspaper, canvas,
cotton cloth, rubber strip, polyurethane foam [9], polystyrene, epoxy [10], different types
of polymeric materials [11], different types of wood [12], etc. While conducting these
experiments, many parameters were monitored, including ignition temperature, time to
ignite, Heat Release Rate (HRR), yields of combustion, toxicity of each type of gas,
oxygen depletion, and so on. Among the parameters, HRR is considered to be the most

important factor in a building fire. HRR is the energy released per unit of time, which is
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the major factor determining how fast fire spreads. Not surprisingly, extensive experiments
have been conducted to determine the HRR of a variety of building materials and furniture,
including chairs, sofas, closets [13], other upholstered furniture [14], silicones (foams,
elastomers, and resins) [15], different species of wood [16][17], dry partition walls [18],
PolystyreneClay Nano-composites [19], fiber reinforced polymer (FRP) composites [20],
and many others. The data collected from the experiments has been the foundation for
modeling building fires.

In addition to obtaining data from experiments, some researchers approached the
question in a different way, formulating equations to calculate HRR. Based on Thornton’s
[21] finding that HRR and oxygen level is related, Huggett [22] calculated the HRR of
a combination of materials by measuring oxygen consumption, which was proved to
be quite accurate in his experiment. Janssens [23] also provided a set of equations to
determine the HRR by oxygen consumption.

Researchers also have conducted extensive research on how building fire and
smoke spread horizontally and vertically, from one object to another through radiation,
convection, and conduction. In some of the earlier work, Larson [24] conducted
comprehensive research on flame radiation, wall heat conduction, and laminar convection.
Quintiere [25] also reviewed full-scale and down-scaled model experiments to study fire
growth and spread in building compartments. To better understand the effect of radiation
in fire spread, Quintiere [26] later tested ignition temperature, thermal inertia, and flame
spread speed of 36 building materials caused by radiation. About the same time, Hasemi
[27] conducted experiments on the flame spread of vertical walls with the combustible
surface. Cheney et al. [28] developed fire spread/time curve to show the fire growth
and acceleration. The results from these experiments have laid the foundation for the
simulation models developed in the later days.

Pyrolysis is the thermo-chemical decomposition of any organic material without the
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existence of oxygen at a high temperature. Pyrolysis often occurs when there is a shortage
of oxygen during combustion. Along with the pyrolysis process, smoke is released
with heat. Smoke contributes to death in two ways: first by incapacitating victims and
causing death directly by toxic gases, and/or secondly by indirectly inhibiting people
from escaping because of reduced visibility. Smoke can contain more than a dozen types
of gases, but CO (carbon monoxide) is the only toxicant that has been proved to directly
cause deaths in a building fire [6][8]. Currently, there is not enough evidence that any
other toxic gases such as HCN (hydrogen cyanide) or HCI (hydrogen chloride) directly
cause deaths, although they might contribute to early incapacitation. In the experiments
on mice, toxic gases other than CO shortened time to deaths [29]. Researchers also
studied how long a human can survive in various concentration of CO. Bernard [30] listed
the distance people can travel in different concentrations of CO. Terrill et al. [6] found
that people can remain in 0.3% of CO for 15 minutes without risking their lives. However,
people become incapacitated at a COHb (Carboxyhemoglobin) level of 30%, and a level
of 50-60% COHBD is lethal [31]. The scarcity of oxygen is another threat. When oxygen
drops under 7% people can become incapacitated or even die. However, low oxygen
levels only occur when the air (smoke) is very hot, approximately 600°F [31], which
means that people are threatened by extreme heat before the low oxygen level occurs.
This is consistent with the findings of Terrill et al. [6] that the threat from CO is greater

than heat, which is greater than oxygen deficiency.
2.2 Smoke Propagation Models

As physical characteristics of fire have been revealed with countless experiments,
researchers strived to model building fire using mathematical equations and computer
simulation. Smoke propagation models can be classified as zone models or field models,

also known as CFD (Computer Fluid Dynamic) models (figure 2.1). The two types of
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models are inherently different. Zone models are simpler and the simulation running time
is very short, usually under a few minutes. On the other hand, CFD models are more

complex and the simulation running time is much longer, usually days to weeks.

Upper Layer

Lower Layer

Figure 2.1: Two-zone model (left) and CFD model (right).

There are three types of zone models: one-zone model, two-zone model, and
multi-zone model. One-zone models assume that each room is one homogeneous space
with the same air composition and temperature. In two-zone models, a room is stratified
into an upper zone which is filled with hot and toxic smoke, and a lower zone which
is filled with fresh air. Multi-zone models divide a room into many (e.g., thousands
of) zones to simulate the microenvironment of each zone. Two-zone models are the
most commonly used considering fast simulation speed and acceptable accuracy [32].
Hokugo [33] conducted fire experiments on a 10-story building, and the results showed
that a two-zone model is suitable for the spaces on the same floor, but does not apply
well to vertical spaces such as stair cases. The temperature of the smoke drops quickly
while it rises in vertical shafts, which is called the chimney effect in smoke propagation
simulation, and the air becomes murky instead of forming two distinctive layers. Based

on their experiment of burning a multi-story building, He et al. confirmed the existence
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of chimney effect in vertical shafts and the clear separation between the upper and lower
zones in more typical rooms [34]. They also found that stratification is not dominant in
rooms that are remote from the origin of the fire. They suggested that for these rooms a
one zone model would be adequate.

A CFD model discretizes a continuous space into a myriad of small cuboids, and the
concentration of the gases and the temperature of each cuboid are simulated by solving the
Navier-Stokes equation. Compared to zone models, CFD models generate more accurate

results, but the down side is that CFD models require much longer simulation run time.
2.3 Smoke Propagation Simulation Software

Numerous smoke propagation simulation prototypes have been developed based on
the models suggested, including open source software and proprietary software. Among
the smoke propagation simulation applications, CFAST and FDS, both developed by the
National Institute of Standards and Technology (NIST), are the two most commonly used
applications. CFAST and FDS are open-source and the user’s manuals and developer’s
manuals are well documented in publicly available form. Commercial simulation
applications such as Kobra-3D [35] and SMARTFIRE [36] are also currently available.
Kobra-3D and SMARTFIRE are CFD-based models which simulate heat transfer and
smoke propagation. Major parameters simulated in Kobra-3D and SMARTFIRE include
temperature, optical smoke density, and the concentration of the gas species. However,
the costly license fees discourage designers from using Kobra-3D or SMARTFIRE.

CFAST is a two zone model that solves a system of differential equations, including
the conservation of mass, the conservation of energy (equivalently the first law of
thermodynamics), and the ideal gas law [37]. CFAST predicts the pressure, gas species
concentration, layer height, and temperature given the accumulation of mass and enthalpy

in the two layers at each discrete time step. The system of equations also calculate the
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mass and enthalpy flow between the zones due to the physical phenomena of plumes,
natural and forced ventilation, convective and radiative heat transfer, and so on. However,
no pyrolysis (i.e., thermochemical decomposition of organic material in a fire) model
is included in CFAST to predict the fire growth. Pyrolysis rates of common building
materials and furniture are provided by previously published fire experiments. To use
CFAST users have to specify each fire source and fuels with pyrolysis rate.

FDS is a CFD-based model that contains a pyrolysis model, a combustion model,
a hydrodynamic model, and a radiation transport model. The pyrolysis model in FDS
simulates the decomposition of solid fuels such as building materials and furniture. The
FDS combustion model simulates the chemical reaction of decomposed fuel and the
oxygen in the air. The FDS hydrodynamic model simulates low-speed, thermally-driven
air flow emphasizing the smoke and heat transport from a fire. The term low-speed is
used to exclude situations similar to explosions. The FDS radiation transport model
simulates the heat transfer by radiation through the gas-soot mixture using approximately
100 discrete angles. The result of combining these models is that FDS can simulate the
fine distribution of gas concentration and the temperatures in a space. In addition, FDS
also calculates soot density and visibility [38].

FDS uses a rectilinear mesh structure to define geometries such as walls and furniture.
Unfortunately creating meshes for an FDS input file requires the use of a text-based
interface which involves a great amount of work. By the demand of facilitating the
input process, many third-party applications have been developed. Currently available
third-party applications are PyroSim, ASPIRE Smoke Detection Simulation, Project
Scorch, BlenderFDS, and CYPE-Building Services [39]. The first four applications take
mesh files as input, and CYPE takes IFC files as input to generate FDS input files. There
are also third-party applications that convert a mesh or a solid to a partial FDS file. The

rest of the information that is necessary to run FDS simulation must be added by editing
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the FDS input file. These applications greatly shorten the time for preparing the input files

for FDS simulation.
2.4 Validation of the Models Used in CFAST and FDS

Considering the consequences of building fires, the validation of CFAST and FDS
is essential. To confirm the accuracy of CFAST and FDS, numerous validation studies
have been performed by comparing the results of real fire experiments with the results of
simulations. Key validation research of the models used in CFAST and FDS was funded
by US Nuclear Regulatory Commission Office of Research for the fire safety of nuclear
power plants where building fire can cause catastrophe [40].

Many researchers have also validated the CFAST model besides NIST. For example,
the Naval Research Lab conducted experiments of a real fire in vessel compartments
induced by the enormous heat of launching rockets on the deck [41]. The data was
collected and compared to CFAST simulation results. They found that although there
are some mismatches, overall CFAST simulation predictions compared reasonably well
with experimental results. Another research team compared results of experimental data
with CFAST simulated data using five test cases [42]. The comparison also showed that
CFAST simulation results are reasonably close to the actual experiment data. Salley
et al. [40] conducted validation tests on eight out of 15 fire phenomena for nuclear
power plants. They concluded that the simulation results of the temperature and height
of hot gas layer, oxygen and carbon dioxide (CO2) concentration were consistent with
experiments, but smoke concentration tended to be over-predicted. The travel delay of the
smoke in corridors [43] and chimney effect in vertical shafts [44] were also validated with
experimental data.

The models used in FDS also have been through numerous validation tests. In these

tests, researchers conducted real scale fire experiments for different settings, such as in
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a tunnel, a single small room, a single large room, a set of multiple rooms, etc. [45].
Through these validation tests, researchers confirmed the physical phenomena (radiation,

plume, etc.) that are modeled in FDS.
2.5 BIM Adoption in Practice

National Building Information Model Standard (NBIMS) Project Committee defines
Building Information Modeling as:

A digital representation of physical and functional characteristics of a facility. A BIM
is a shared knowledge resource for information about a facility forming a reliable basis for
decisions during its life-cycle; defined as existing from earliest conception to demolition
[46].

BIM uses building components such as walls, windows, doors, roofs, etc. to represent
a building. These building components contain geometric information and non- geometric
information such as materials and the properties of the materials. In addition, BIM also
stores the relational information between multiple components. For example, window 2
is hosted by wall 6, room A and room C are connected through door 3, and so on. The
structure that BIM stores data enables a Building Information Model to supply necessary
information throughout the lifecycle of a building: design, operation, construction, and
demolition. The data stored in a Building Information Model can also be extracted for
the use of fire simulation [47], energy simulation [48], acoustic simulation [49], material
takeoff [50] and many other fields.

In contrast, conventional Computer Aided Architectural Design systems (shortened as
CAAD) use primitive 2D and 3D geometries, such as line, arc, box, cylinder, surface,
etc. to represent a building. Although efforts have been made to link a greater variety of
non-geometric information, CAAD is essentially a drafting system in digital media and

does not have the capability to distinguish building components, e.g. a wall from a slab,
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since they are all just represented as lines, rectangles or other primitive geometries. As the
result, CAAD models usually do not have rich enough semantics to supply the necessary
information for simulations without human interpretation of the drawings.

Because of its advantages, BIM has emerged as the replacement for CAAD and the
use of BIM in the AEC industry has been surging. Becerik-Gerber conducted a survey
to find the BIM adoption rate in the US [51]. Among the 424 people who responded to
the survey, two-thirds of them use BIM for 60-100% of their projects. Another report
[52] showed that BIM adoption in North America has grown from 28% in 2007 to 71% in
2012. They also reported that about 90% of large and medium-to-large organizations are
engaged with BIM which is notably higher than small ones (49%). Becerik-Gerber’s study
showed that the major BIM solutions used in the US include Revit (41.6%), Navisworks
(12.4%), Archicad (10.7%), Bentley (8.0%), and others.

Smoke propagation simulation largely is performed separately from design process
or is even completely absent. Given that BIM is becoming the standard in architecture
industry, designers could easily perform smoke propagation simulation during design
process if smoke propagation simulation is incorporated into BIM and provides

informative feedback in acceptable simulation time.
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3. INTEGRATION OF BIM AND SMOKE PROPAGATION SIMULATION *

As discussed in the previous section, zone models are simpler and the simulation
running time is very short, usually under a few minutes, while CFD models are more
complex and the simulation running time is much longer, usually days to weeks.
These differences between the two types of smoke propagation models places different
challenges upon integration of simulation and BIM. For an integrated software system
to be useful to architects in design process, the integrated system must be accurate,
easy to use, and fast. Without any of these three criteria, the integrated system loses its

practicality.
3.1 Selection of the Simulation Model and the BIM Tool

Although CFD models provide better accuracy compared to zone models, the
simulation running time of CFD models is usually very long. If computing power grows
50% per year as it did until the 1990s, the simulation running time using CFD models
would be reduced to an acceptable range in the near future. However, computer hardware
engineers have encountered barriers to sustaining the rapid improvement since 2005 with
relation to CPU clock, memory access speed, and CPU power consumption [53]. As
the result, the computing power of modern PC did not improve substantially in the past
10+ years which indicates that the half century of rapidly increasing computing speed
has come to a halt. The speed gap between CFD models and zone models on a desktop
computer is unlikely to be reduced noticeably in the foreseeable future.

Cloud computing technology can be a potential solution to reduce the simulation

running time of CFD models. Many computation-intensive applications, such as rendering

*Part of this section is reprinted with permission from "Facilitating Fire and Smoke Simulation Using
Building Information Modeling" by Wu et al., 2015. Communications in Computer and Information Science,
527, pp. 366-382, Copyright [2015] by Springer. [47]
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and simulation, have moved the platform from desktop to cloud. When a client computer
sends computing workload to cloud through the Internet, the workload is divided and
assigned to thousands or more computers for parallel computing. As the result, the
computing time can be reduced dramatically. Examples include AutoDesk Cloud
Rendering, Green Building Studio, and many more. However, to run CFD using cloud
computing, the CFD application must be hosted by a cloud server. Currently, no cloud
server hosts CFD-based smoke propagation simulation applications, nor is installing the
executable file of the application on a general purpose cloud server permitted due to
security reasons.

When the simulation running time of CFD models and zone models shows insignificant
difference, the integration of BIM and CFD models can be reconsidered. At this moment,
due to the unacceptably long simulation running time on desktop computers and the
unavailability of using cloud computing, CFD models are not good candidates to be
integrated into design process.

Zone models, on the other hand, are fast but its oversimplified simulation model
places a different challenge to the integration with BIM. CFAST, as an example, describes
the shape of a room with only three parameters, width, depth, and height. With these
three parameters, the only shape of rooms can be simulated in CFAST is cuboid, despite
the variety of shapes of rooms in real-world buildings. This oversimplification causes
incompatibility between real-world buildings, their representation in BIM, and the zone
models. In this research, a set of algorithms were devised to solve the incompatibility
between BIM and the oversimplified zone models.

Overall, a zone model is a more viable solution for the integration of BIM and
smoke propagation simulation. To demonstrate the integration between BIM and smoke
propagation simulation, within many existing BIM applications and zone models, Revit

Architecture was selected as the BIM authoring software because of its highest adoption
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rate in practice, and CFAST was selected as the smoke propagation simulation model
because it is free, well-documented, and the accuracy has been validated. Since the
major difficulty to integrate CFAST into Revit is ensued from the limitations of CFAST,
identifying the limitations of CFAST and devising algorithms to overcome the limitations

are essential to the integration of CFAST and Revit.
3.2 Identifying the Limitations of CFAST

BIM authoring tools utilize advanced geometry engines that are capable of generating
very complex geometries. On the other hand, CFAST uses simplified geometries to define
building shapes. CFAST was developed as stand-alone software in FORTRAN language
when version 1.0 was first released in 1990. FAST, the predecessor of CFAST, dates even
earlier than CFAST v1.0. To run simulations in CFAST, the definition of buildings had
to be simplified to accommodate the hardware technology of the time. This simplified
definition of a building used in CFAST is one of the major difficulties that impedes the
integration of BIM and CFAST.

There are two major limitations in CFAST which cause the incompatibility. The first
limitation is that the shape of the rooms in CFAST model must be cuboid. CFAST defines
the geometry of a room with six parameters: width, depth, height, and its base point
coordinates X, Y, Z. On the other hand, the geometric definition of a room in BIM is much
more complex and can accommodate virtually any shape that exists in the real-world.
Therefore, a building model in BIM cannot be simulated using CFAST without mapping
from the complex shapes in the BIM to the cuboid shapes allowed in CFAST.

The second limitation is that the maximum number of rooms allowed to be simulated
in CFAST is restricted to 30. A building with more than 30 rooms triggers a fatal error
which blocks CFAST from starting the simulation. If we arbitrarily select 30 rooms from

the whole building to perform simulation, the results are likely to be inaccurate. As
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an extreme example, selecting a subset of 30 totally disconnected rooms from a group
of interconnected of rooms will produce meaningless simulation results. This limitation
requires software users to interpret and transform a real-world building design such that it

conforms to the simplified definitions of the CFAST model.
3.3 Algorithms to Overcome the Limitations of CFAST

Conventionally, users must manually transform the rooms of various shapes to cuboids
in order to perform smoke propagation simulation in CFAST. This transformation process
is time-consuming and likely to generate different results depending on the methods each
individual uses to transform the shapes. Furthermore, there is no explicit protocol for
how to simulate buildings that have more than 30 rooms. In this dissertation, I present
transformation algorithms to automatically transform non-cuboid rooms to be compatible
for CFAST simulation. I also present a room selection algorithm to select 30 rooms from
any building that has more than 30 rooms. This allows users to simulate up to 30 of the
most critical rooms in a building. The validation of the transformation algorithms and the

room selection algorithm is documented in section 5.
3.3.1 Transformation Algorithms

To reconcile the different geometry representations between BIM and CFAST, I
present a transformation algorithm for general rooms and a transformation algorithm
for corridors. Different algorithms are used for general rooms and corridors because
smoke behaves differently in the two types of rooms and they are classified differently
in CFAST. In general rooms the upper layer, which consists of hot smoke, is separated
almost instantaneously from the lower layer which consists of fresh air. In corridors,
however, the propagation of smoke is delayed horizontally from one end to another [43].

For non-cuboid shaped general rooms, a cuboid with the same floor area and the same

proportion of the Axis Aligned Bounding Box (AABB) of the room is used for simulation
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Figure 3.1: Transformation of a non-cuboid room. In the plan view (left), the two floor
plans have the same floor area and proportion (2:3). In the section (right), the shapes have
the same volume and floor area.

(figure 3.1, left). The height of the room is calculated by dividing the volume by the floor
area of the room (figure 3.1, right). The area and the volume of the rooms are readily
retrievable from the BIM, and the AABB of the rooms can be easily calculated based on
the geometries of the rooms, which also can be retrieved from the BIM. This algorithm
is based on the assumption that volume and proportion are the primary factors that affect
smoke simulation in general rooms.

The method used for transforming general rooms is inappropriate for transforming
corridors because of the delayed horizontal smoke propagation in the corridors. As shown
in figure 3.2, if a T-shaped corridor (in plan view) is transformed using the same method
as in the general rooms, the simulation results will not accurately represent the reality.
This is because smoke takes much longer to propagate from one end to another in the
original T-shaped corridor compared to the transformed rectangular space. Therefore
another method should be used for corridors.

In figure 3.3 (left), when room A catches fire, point pl is where smoke first enters the
T-shaped corridor. Point p2, the furthest point from p1, is the last point that smoke reaches.

The distance between p1 and p2 (d1 + d2) is used as the length of the transformed corridor;
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Figure 3.2: Transformation of corridors using the same method as used in general rooms.
Smoke in the two spaces will behave in totally different ways.
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Figure 3.3: Transforming a corridor by smoke travel distance.

floor area divided by the length is used as the width (figure 3.3 right), and volume divided
by floor area is used as the height of the transformed corridor. This way, the longest time
that smoke travels in the original T-shaped corridor and in the transformed CFAST corridor

is expected to be similar.
3.3.2 Room Selection Algorithm

CFAST can only simulate buildings with maximum of 30 rooms. To simulate smoke
propagation for buildings with 30+ rooms using CFAST, a room selection algorithm can
be used to choose the 30 rooms that have the shortest smoke travel distance from the fire

origin. The validity of this algorithm is tested in section 5. If the algorithm is valid, we can
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simulate at least 30 of the most critical rooms of the building. The underlying assumption
is that the occupants that are closer to the fire origin (by smoke travel distance) are more
vulnerable because they have less time to safely evacuate.

The smoke travel distance of each room from the fire origin can be calculated with
network graph algorithms. This process can be easily automated due to the object-oriented
structure of BIM. BIM stores the properties of each building component as well as the
relationship between the components. For example, an interior door knows which two
rooms it connects. If a door connects a room and the exterior, the door is classified as an
exterior door. By extracting the connectivity information of all the doors iteratively we

can easily generate the topological room-door connection graph of the building as shown

in figure 3.4.
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Figure 3.4: A sample building in BIM (left) and its topological graph (right).

The topological graph does not contain distance information of each connection. For
example, although we know that door 5 and door 2 are connected through room I, we don’t

know the shortest travel distance between the two doors. The linear distance between door
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5 and door 2, does not correctly represent the shortest travel distance because room K is
blocking the linear path between the two doors, i.e. not all linear connections are valid.
To calculate the shortest travel distance, a geometric network graph is generated for
each room respectively, using the doors and vertices (corners) of the room as nodes, and
the linear distance between two nodes as the weight (figure 3.5 left, the length of each
green line is the weight between the two points). If the linear line between two nodes
intersects the boundary of the room, the weight is set to infinity. For example, the weight
between door 5 and door 2 is set to infinity because the linear connection between the two
doors passes room K. Using this information, we can generate the adjacency matrix of the

network graph for each room (table 3.1).

Room Room H G I:'f.
e

Figure 3.5: Geometric network graph of the room I using the doors and the vertices of the
room as nodes (left). The shortest travel distance between door 6 and other four doors of
the room I (right).

By running Dijkstra algorithm [54], a shortest path algorithm, the shortest path

between any two nodes of the room can be easily calculated. In figure 3.5 (right), for
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example, the shortest path from door 6 to door 3 passes V2, and the shortest travel
distance is 13.6 meters (8.2m + 5.4m). Similarly, the shortest path between door 6 and
door 9 passes V1, and the distance is 15 meters. By combining the topological graph
and the geometric network graphs of the rooms, the rooms can be sorted based on the
shortest smoke travel distance from the room of fire origin, and extract the first 30 rooms
for smoke propagation simulation. For example, assuming that the fire origin is room A,
the next room that smoke propagates to is room I because room A and room I share door
6, (i.e. the distance is 0). Then the next is room H because door 5 is the next closest door
to door 6, and so on. The whole selection process is automated by the algorithm and can

be done within one mouse click.

DI |D2|D3|D5|D6 | D7 |D9|DI12|D13 |Vl |V2
D1 0
D2 1910
D3 |o0 |0 |0
D5 |00 |00 |0 |0
D6 |00 |0 |0 | 1210
D7 |oo |00 |00 [29]18]0
D9 |00 [0 |15 |00 |00 |00 |0
DI2 oo |00 |79 |00 |00 |00 | 7410
DI3 oo |00 |00 |73]65]|4 o0 | 0o 0
V1 |54]65]|00 [83|75(|58]75]| 09 |0
V2 oo |00 |54 7718200 9925 | oo |0

Table 3.1: The adjacency matrix of room I. D stands for door, V stands for vertex. Room
I contains 9 doors and 14 vertices. The matrix is symmetric.

3.4 Prototype of the Integrated System

A prototype application was developed using the described algorithms to demonstrate

the integration of smoke propagation simulation and BIM. Revit was used as the BIM
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software, and CFAST was used as the smoke propagation simulation software. The
prototype was developed using Revit API with C# programming language to extract data
from the BIM and send it to CFAST. The system diagram is shown in figure 3.6. For
easier reference in the following text, this prototype is given a name ToFAST (Converting

Revit model to CFAST model).

-

Revit User Interface #:4—— CFAST User Interface —+#

[ Revit Model ]
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- Doors | CFAST Output File (out) |

- Connectivity
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Evac. Sim.

|

[ Evac. Sim. Result File ]

Visualization

[ Animation & Graphs ]

Figure 3.6: System diagram.

ToFAST retrieves the information of rooms and doors from a Revit model. The
extracted room information includes ID, geometry, area, and volume of the room objects.
The extracted door information includes height, width, and the rooms that each door

connects. ToFAST then applies the transformation algorithms and the room selection
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algorithm to convert the model into a CFAST-compatible model for smoke propagation
simulation, and export a CFAST input file (file extension .in). Using CFAST user
interface, a user can open the input file and run smoke propagation simulation with a
few clicks. At the end of the simulation, CFAST generates an output file (file extension
.out) which contains the simulation results. An evacuation simulation model then uses
the extracted BIM data and the CFAST output file to simulate occupant evacuation. The
results of the evacuation simulation can be visualized with an animation and graphs.
The details about the evacuation simulation and visualization are documented in the next
section.

The following pseudo-code shows the main execution routine that TOFAST extracts

data from a Revit model, convert it to a CFAST model, and export to a CFAST input file.

Function GenerateCFASTmodel ()

(1) AccessCurrentRevitModel ()
(2) allRooms <- GetAllRooms ()
(3) roomOnFire <- GetFireOrigin ()
(4) allDoors <- GetAllDoors ()
(5) AssignDoorType ()

(6) CreateCompartments ()

(7) InitializeDoorGraph ()

(8) UpdateAdjacencyMatrix ()

(9) startNode <- roomOnFire

(10) RunDijkstra ()

(11) SelectCompartment sAndDoors ()
(12) WriteCFASTinput ()

Line 1 accesses all the building elements in the current Revit model. Line 2 searches
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all the elements in the Revit model, apply filters to select all the room objects, and put
them into the global variables named allRooms. Line 3 checks if the user has selected
a room as the fire origin. If there is no room selected as the fire origin, the application
terminates with an error message informing the user that a room needs to be selected as
the fire origin to start the simulation. The ID of the room object is stored in a variable
named roomOnFire. Line 4 searches all the elements in the Revit model, applies filters to
select all the door objects, and put them into the global variables named allDoors. Line
5 iterates through all the doors and sets the type of each door to either exterior door or
interior door, depending on whether the door connects two rooms or one room with the
exterior. Line 6 creates compartment objects from the data of the room objects in the Revit
model. Compartment class is a custom designed class which has variables and functions
that are used for transforming the rooms in the Revit model into the compartments in
CFAST model. Line 7 initializes an n by n identity matrix, where n is the number of the
doors in the model. Line 8 creates adjacency matrix of the model. To create the adjacency
matrix, the application first iterates through all the rooms and finds the rooms that have
more than one door. Then the application calculates the shortest travel distance between
the doors of the room and updates the matrix with corresponding data. Line 9 sets the
room of fire origin as the start node of the network graph. Line 10 calculates the shortest
distance from the start node to all the other nodes using Dijkstra algorithm which takes
two input parameters, the adjacency matrix, and the index of the start node. Line 11 sorts
the compartments by the shortest distance in ascending order and selects 30 rooms that are
closest to the fire origin. In this process, it also selects all the doors that are connected to
the selected 30 rooms. Line 12 exports the transformed model according to the format of
CFAST input file. It first writes the header of the simulation input file with default values.
The header information includes total simulation time, simulation interval, temperature,

pressure, etc. Then the application writes the compartments, doors, mechanical vents,
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alarms, suppression system, and fire information according to the definition of CFAST

input file.
3.5 Testing ToFAST

This subsection demonstrates the smoke propagation simulation on a test model using
ToFAST. As the test model, a floor plan of a university building with 41 rooms is modeled
in Revit as shown in figure 3.7. Before starting the simulation, a room must be selected
and set as the fire origin. Two sofas were set on fire at the simulation time step of 0 second
and 60 seconds respectively. The HRR and the gas yield of a sofa are stored in CFAST
database. Because smoke propagation simulation results vary depending on which room is
the fire origin, it is necessary to simulate multiple runs by setting the fire origin to different
rooms. Once the room of fire origin is set, the Revit model is ready to be converted into a
CFAST model. At the end of the conversion, TOFAST outputs a file that CFAST can read
in and simulate. Information of smoke alarms, suppression systems, and mechanical vents
can be added to the model prior to the model conversion if desired.

As shown in figure 3.8, there are a total of six commands in ToFAST. 1) Assign fire
origin, 2) set mechanical vents, 3) set alarms, 4) set suppression system, 5) generate
simulation model, and 6) visualize simulation results. Visualizing simulation results is

documented in section 4.
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Figure 3.7: Revit model of a floor of an existing building.
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Figure 3.8: Commands in ToFAST, for conversion of a Revit model to a CFAST model
and the visualization of the simulation results.
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3.5.1 Converting a BIM model to a CFAST model

All rooms in the Revit model must be represented as Room objects. Before converting
the model, a room has to be selected as the fire origin, which can be done by selecting a
room and running AssignFireOrigin command (figure 3.9). The BIM model then can be
converted into CFAST model by running GenerateSimModel command. A CFAST input

file (extension .in) is saved at a user-specified location. The input file of CFAST model is

in ASCII text format which can be open with any text editor (figure 3.10).

-

ol Add-In Manager 2014 l

|- s |

When converting a Revit model into a CFAST model, all rooms are converted into
cuboids and located next to one another, ordered by the travel distance from the fire
origin (figure 3.11). The relative position between any two connected rooms does not

influence the simulation results because smoke propagation in CFAST model relies on the
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Figure 3.9: Setting the room of fire origin.

topological connectivity of the rooms rather than their geometric location.
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Figure 3.10: CFAST input file generated by ToFAST.

Figure 3.11: Floor plan of the CFAST model that is converted from the Revit model. All
rooms are converted to cuboids.
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3.5.2 Adding Systems

Alarms, suppression systems, and mechanical vents can be added to the model.
Although adding alarms in CFAST does not directly affect the simulation results, the
timing that the alarms are triggered is recorded in the simulation output file and can be
used as the start time in the evacuation simulation for more accurate simulation results.
Adding suppression system in CFAST dramatically slows down smoke propagation speed
by suppressing the fire and the generation of smoke from the fire origin. Mechanical
vents, on the other hand, increase smoke propagation speed between the rooms that are
connected with the vents.

To add alarms, first select one or multiple rooms and run SetAlarm command. In
the popup window select alarm type (smoke alarm or heat alarm), set the activation
temperature of the alarm (°C’), and set response time index (figure 3.12). To add
suppression system, first select one or multiple rooms and run SetSuppressionSystem
command. In the popup window set the activation temperature (°C') of the suppression
system, response time index, and spray density (figure 3.13). To add mechanical vents,
first select two of the rooms that are linked by a vent and run SetMechanicalVent
command. Then set the properties of the mechanical vents between the two rooms which
include vent area, height, orientation, air flow parameters, opening fraction, and filter
efficiency (figure 3.14).

Alarms, suppression systems, and mechanical vents require position information. The
position information can be extracted from the Revit model. By default, they are set
to 0.1m under the center points of the ceilings. Due to the nature of zone models, the
horizontal location of alarms and suppression systems does not affect simulation results.
Height is the only parameter that determines the timing to trigger the alarms and the

suppression systems.
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Figure 3.12: Adding alarms.
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Figure 3.13: Adding suppression system.
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Figure 3.14: Adding mechanical vents.

After adding systems information, the Revit model can be converted into a CFAST
model to run the simulation. Systems information can be added either in Revit or CEDIT
(the graphic user interface for CFAST) which have no difference in the simulation results.
The advantage of entering systems information using ToFAST interface is that it is easier
for designers to enter the information by visually looking at the floor plan rather than

reading text-based input file.
3.5.3 Performing Simulation in CFAST

After converting the Revit model into the CFAST-compatible format, smoke
propagation simulation can be easily launched by opening the input file from CEDIT user
interface and clicking on the Run button (figure 3.15). The simulation for this test case

took less than 20 seconds (figure 3.16).
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Figure 3.16: Simulation for the test case in progress.
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When the simulation finishes, CFAST generates a text-based output file as the
simulation results. The output file contains three blocks of data for each simulation time
step, which are 1) the temperature of the upper zone and the lower zone, and the smoke
height between the two zones, 2) the concentration of each gas species in the upper
layer, 3) the concentration of each gas species in the lower layer. Figure 3.17 shows the

simulation results at time step 510 seconds.
3.5.4 Testing on Multiple Buildings

To Test the generalizability of TOFAST, a one-story convenience store and two floors
of a four-story hotel are tested with ToFAST. The floor plans are shown as in figure 3.18 -
3.20. The fire source is respectively set to the merchandise room (101) in the convenience
store, room 117 on the first floor of the hotel, and room 321 on the third floor of the hotel.

In the floor plan of the convenience store, merchandise room (101) and sales room
(102) are divided by a room separator, a virtual boundary in space denoted with a red line
in figure 3.18. Currently, TOFAST does not recognize Room Separator objects as a type of
connection between two rooms. As the result, TOFAST did not simulate three of the rooms,
sales room (102), back room (103), and office (106), mistreating the rooms as if they are
disconnected from the room of fire origin. This is because the functional definition of room
in Revit is spatially different with the definition of compartment in CFAST. Two rooms in
a Revit model can be spatially connected but separated by their functions. However, a
compartment in CFAST needs to be spatially closed. If the floor plan is adjusted such
that merchandise room and sales room are one compartment as shown in figure 3.21 (blue
region), TOFAST was able to correctly generate a CFAST input file.

In the hotel building, ToFAST did not recognize the door openings of the lobby (100)
as the connection between the lobby and the corridor. In the future, the functions of

ToFAST needs to be expanded by including other types of room connections, such as
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Time = 510.0 seconds.

Compartment  Upper Lower Inter. Upper UEper Lower Pressure Ambient Floor
Temp. Temp. Height vol. absorb Absorb Target Target
< ) (m) (m~3) (mA-1) (mA-1) (Pa) (w/ma2) (W/maz)
200394- 394.5 174.2 0.4073 4.02E+02( 85%) 3.53 0.524 -5.52 8.243e+03 5.444E+03
200391~ 186.9 48.63 0.4823 2.58E+02( 82%) 0.500 1.000e-02 -2.93 1.558e+03 1.245E+03
200382- 159.6 23.84 1.3556E-03 1.65E+02(100%) 0.500 1.000e-02 -3.86 1.174e+03 1.142e+03
200415- 107.5 22.52 1.256 1.27E+03( 53%) 0.500 1.000E-02 -0.426 444. 422.
200388~ 191.6 7.43 2.7000E-04 66, (100%) 0.500 1.000e-02 -4.32 1.570e+03 1.504E+03
200385- 167.2 24.47 3.7053e-04 1.35e+02(100%) 0.500 1.000e-02 -3.98 1.272e+03  1.234e+03
200466- 52.67 20.90 0.8370 57. ( 69%) 0.500 1.000e-02 -0.3293
200478~ 7 7 21.87 1.043 8.4 ( &1%) 0.500 1.000e-02 -0.412 125, 109,
200481~ 58.44 21.37 0.9171 31. ( 66%) 0.500 1.000e-02 -0.403 120. 109.
200457 - 52.82 20.92 0.8390 56. ( 69%) 0.500 1.000e-02 -0.3296 112. 104.
200400- 49,07 20.25 0.9036 2.65E+02( 67%) 0.500 1.000e-02 -0.344 111. 109,
200463 53.12 20.95 0.8433 . ( 89%) 0.500 1.000e-02 -0.396 113. 105.
200469 60. 80 20.66 1.533 58. ( 43%) 0.500 1.000E-02 -B.43Be-02 114. 108.
200376~ 50. 86 20.29 0.9416 2.18E+02( 65%) 0.500 1.000e-02 -0.341 117, 115,
200403- 48. 56 20.32 0.8334 1.09e+02( 69%) 0.500 1.000e-02 -0.366 104. 101.
200397 - 7.64 20.25 0.8884 1.31E+02( 67%) 0.500 1.000E-02 -0.3432 99.9 87.7
200451~ 60.77 21.51 0.9461 24, ( &5%) 0.500 1.000e-02 -0.405 120. 107,
200445- 56.18 21.24 0. 887 38. ( 67%) 0.500 1.000e-02 -0.401 115. 105.
200379- 33.08 20.08 0.5549 48. ( 79%) 0.500 1.000e-02 -0.301 40.3 39.6
200490~ 62.92 21.60 0.9701 19. ( 84%) 0.500 1.000e-02 -0.407 123, 109,
200487 - 54.05 21.14 0.8580 43, ( 68%) 0.500 1.000e-02 -0.400 107. 97.2
200442- 58.329 20.50 0.9694 18. ( 64%) 0.500 1.000E-02 -0.366 105. 101.
200460~ 65.89 21.7 1.001 14, ( 83%) 0.500 1.000e-02 -0.409 125, 111,
200472- 7.92 20.26 0.9213 1.11E+02( 66%) 0.500 1.000e-02 -0.333 98.2 95.9
200448- 54.90 20.39 0.9471 7 ( 65%) 0.500 1.000e-02 -0.357 103. 99.5
200436~ 55.08 21.22 0.8729 38. ( 68%) 0.500 1.000e-02 -0.401 109, 98.3
200433- 36. 60 20.13 0.6584 1.61E+02( 76%) 0.500 1.000e-02 -0.304 61.4 60.3
200406- 48.56 20.32 0.8324 1.09e+02( 69%) 0.500 1.000e-02 -0.266 104. 101.
200484 - 32.91 20.09 0.5352 38. ( 80%) 0.500 1.000e-02 -0.308 40.2 39.4
200430- 43.15 20.15 1.306 2.13e+02( 52%) 0.500 1.000e-02 -0.160 7l.4 70.1
Upper Layer Species
Compartment N2 02 co2 co HCN HCL TUHC H20 D [
) €3] €3] (ppm) (ppm) (ppm) (€3] (€3] @/m) (g-min/m3)
200394- 71.0 9.16 7.23 2.121e+03 0.00 0.00 0.00 8.93 29.0 181.
200391- 70.9 9.09 7.26 2.130E+03 0.00 0.00 0.00 9.06 42.4 169.
200382~ 71.8 10.4 6.43 1.887e+03 0.00 0.00 0.00 8.16 39.8 152,
200415- 74.9 15.1 3.41 1.000e+03 0.00 0.00 0.00 4.83 23.7 102.
20038B8- 70.2 8.02 7.95 2.331e+03 0.00 0.00 0.00 9.7 46.0 195.
200385~ 71.3 9.66 6. 89 2.022e+03 0.00 0.00 0.00 §.66 42.0 162,
200466- 76.3 7.3 2.06 603. 0.00 0.00 0.00 3.40 16.7 56.3
200478- 75.1 15.4 3.21 943, 0.00 0.00 0.00 4.65 24.8 86.6
200481~ 75.8 16.6 2.49 729, 0.00 0.00 0.00 3.87 19.8 65.7
200457 - 76.2 7.2 2.07 606. 0.00 0.00 0.00 3.42 16.7 56.6
200400~ 76.7 7.9 1.62 474. 0.00 0.00 0.00 2.93 13.2 45.1
200463~ 76.2 7.2 2.09 613, 0.00 0.00 0.00 3.44 16.9 7.0
200469 76.0 16.8 2.35 691. 0.00 0.00 0.00 3.69 18.6 59.1
200376- 76.6 7.7 1.7 512, 0.00 0.00 0.00 3.07 14.2 50.9
200403~ 76.6 7.8 1.7 502. 0.00 0.00 0.00 3.03 14.0 48.1
200397 76.7 7.9 1.63 479, 0.00 0.00 0.00 2.95 13.4 45.6
200451- 75.6 16.3 2.69 789. 0.00 0.00 0.00 4.09 21.3 70.5
200445~ 76.0 16.8 2.35 690, 0.00 0.00 0.00 3.7 18.9 62.7
200379- 77.3 18.9 1.03 303. 0.00 0.00 0.00 2.30 E.B8 21.1
200490~ 75.5 16.0 2.83 829. 0.00 0.00 0.00 4.23 22.3 73.9
200487 - 76.0 16.9 2.27 666, 0.00 0.00 0.00 3.64 18.3 61.1
200442- 76.1 7.1 2.17 637. 0.00 0.00 0.00 3.52 7.3 75.5
200460- 75.3 15.8 2.99 78. 0.00 0.00 0.00 4.41 23.4 78.7
200472~ 76.7 7.9 1.66 487. 0.00 0.00 0.00 2.97 13.6 48.4
200448- 76.1 7.0 2.19 642, 0.00 0.00 0.00 3.54 7.6 7.4
200436- 76.0 16.8 2.35 689. 0.00 0.00 0.00 3.7 18.9 62.8
200433~ 771 18.5 1.25 J68. 0.00 0.00 0.00 2.54 10.7 31.2
200406- 76.6 7.8 1.7 502. 0.00 0.00 0.00 3.03 14.0 48.1
200484 77.3 18.8 1.04 305. 0.00 0.00 0.00 2.30 8.94 21.4
200430~ 77.0 18.4 1.34 392. 0.00 0.00 0.00 2.62 11.1 36.7
Lower Layer Species
Compartment N2 a2 co2 co HCN HCL TUHC H20 oD [
) (€3] (€3] (ppm) (ppm) Cppm) (€3] (€3] @/m (g-min/m3)
200394- 77.7 18.2 0.831 244, 0.00 0.00 0.00 1.81 4.88 7.4
200391~ 77.4 18.8 1.08 317. 0.00 0.00 0.00 2.16 8.83 29.9
200382- 78.4 20.5 0.00 0.00 0.00 0.00 0.00 1.17 0.00 0.00
200415- 78.6 20.5 5.B801e-02 7.0 0.00 0.00 0.00 0.897 0.514 0.784
200388~ 78.4 20.5 0.00 0.00 0.00 0.00 0.00 1.17 0.00 0.00
200385- 78.4 20.5 0.00 0.00 0.00 0.00 0.00 1.17 0.00 0.00
200466- 78.3 20.4 2.667E-02 7.82 0.00 0.00 0.00 1.18 0.238 0.221
200478~ 78.4 20.4 6.514E-02 19.1 0.00 0.00 0.00 1.16 0.579 1.35
200481- 78.3 20.4 4.487e-02 13.2 0.00 0.00 0.00 1.18 0.400 0.596
200457 - 78.3 20.4 2.728E-02 8.00 0.00 0.00 0.00 1.18 0.243 0.229
200400~ 78.4 20.5 2.B66E-08 8.408E-06 0.00 0.00 0.00 1.17 2.564E-07 2.011e-06
200463 78.3 20.4 2.B55e-02 8.37 0.00 0.00 0.00 1.18 0.255 0.248
200469- 78.8 20.6 2.249e-02 6. 60 0.00 0.00 0.00 0.552 0.200 0.229
200376~ 78.4 20.5 8.723E-04 0.2536 0.00 0.00 0.00 1.17 7.B01E-03 2.771e-02
200403- 78.4 20.5 2.611e-03 0.766 0.00 0.00 0.00 1.17 2.335e-02 6.839-03
200397- 78.4 20.5 2.922e-08 8.570E-06 0.00 0.00 0.00 1.17 2.613e-07 2.050E-06
200451~ 78.3 20.4 5.120E-02 15.0 0.00 0.00 0.00 1.18 0.456 0.77
200445- 78.3 20.4 4.099e-02 12.0 0.00 0.00 0.00 1.18 0.365 0.484
200379- 78.4 20.5 1.371e-10 4.021e-08 0.00 0.00 0.00 1.17 1.227e-09 6.520E-09
200490~ 78.3 20.4 5.428E-02 15.9 0.00 0.00 0.00 1.18 0.483 0.877
200487 - 78.3 20.4 3.BB9E-02 11.4 0.00 0.00 0.00 1.19 0.347 0.415
200442- 78.3 20.5 1.146E-02 3.36 0.00 0.00 0.00 1.17 0.102 0.428
200460~ 78.3 20.4 5.789e-02 7.0 0.00 0.00 0.00 1.17 0.515 1.02
200472- 78.4 20.5 G6.380E-04 0.187 0.00 0.00 0.00 1.17 5.706e-03 2.402e-02
200448- 78.3 20.5 5.607e-03 1.64 0.00 0.00 0.00 1.17 5.012E-02 0.235
200436- 78.3 20.4 4.215e-02 12.4 0.00 0.00 0.00 1.19 0.376 0.487
200433 78.4 20.5 1.248e-10 3.660e-08 0.00 0.00 0.00 1.17 1.117e-09 7.710e-09
200406- 78.4 20.5 2.611E-03 0.766 0.00 0.00 0.00 1.17 2.335e-02 6.839-03

Figure 3.17: Simulation results of the test case at time step 510 seconds.
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Figure 3.18: Floor plan of the one-story convenience store.
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Figure 3.20: Third floor plan of the four-story hotel.
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Figure 3.21: Treating merchandise room and sales room as one compartment.
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File Run! Tools View Help
Smulation Environment  Compartment Geometry | Horzorta! Flow Verts | Vatical Flow Verts | Mechanical Flow Verts | Fres | Detection / Suppression | Targats | Surface Cornections |
Compartment Num | Width | Depth | Height | X Position | Y Position | Z Position | Ceiling | Walls | Floor | F | H | V [ M | D | T |
L 1 | 54 | 6 | 393 | 0 | 0 | 0 | acosl | concreie | ofi |2 [6]0]0]0]0]
452364- 2 4 533 244 154 0 0 acouile concrete  off o [ 2[00 [fo[w0]%D
454715- 3 231 177 244 184 0 0 acouile concrete  off 0;[ 1|0 [0 [0][0
483072 4 124 182 244 2171 0 0 acouile concrete  off RN
Add Duplicate | MoveUp Move Down Remove
Compariment 1 (of 8)
Compartment Name:  [432317-
Geometry Advanced
Flow Characteristics Variable Cross-sectional Area
\iigth (%) 154 m Position, %, |0m Noma| (Standard two-zons modsl) | Height Area =
Depth (v): [11.16m y. [om
Height (2): [3.33m z [om
Materials
Ceiling:  [Acoustic Tile (1/8in) - Wialls:  [Conorete, Nomal Weight (5}~ Floor:  [off -
Conductivity: 5.8E-05 killfm °C) Conductivity: 0.00175 kinl(m *C) Conductivity:
Specific Heat 134 kl/(kg “C) Specific Heat: 1 klifkg °C) Specific Heat
Density: 290 kg/m™3 Density: 2200 kgim"3 Density
Thickness: 0.003m Thickness: 0.15 m Thickness:
e J = ] Geomelry| o
No Errors

Figure 3.22: CFAST reads the input file of the convenience store that is generated by
ToFAST.

room separators and wall openings, in additions to doors. This can solve the problems
shown in the simulation of the convenience store and the hotel above.

By defining the two rooms (merchandise room and sales room) of the convenience
store as one compartment, TOFAST was able to correctly generate CFAST input files.
Figure 3.22 - 3.24 show that the input files generated by ToFAST for the convenience
store and the two floors of the hotel are correctly read into CFAST. Figure 3.25 - 3.27

show that the simulations are progressing without error.
3.6 Comparing against Conventional Simulation Processes

Conventionally, to simulate smoke propagation in CFAST or FDS, a building design
must be manually modeled using the text-based user interface of CFAST or FDS by a

person reading the building information from 2D drawings and interpreting it as input to
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Figure 3.23: CFAST reads the input file of the first floor of the hotel that is generated by

ToFAST

File

Run!
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y. [om
z [om

Compartment Num | Vidth | Depth | Height | X Position | Y Position | Z Position | Ceiling | Walls | _Foor
: 608 29 acoutile
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Thickness: 0.003m Thickness: 0.15 m Thickness:
Save Geometry Run View

Figure 3.24:

ToFAST.

CFAST reads the input file of the third floor of the hotel that is generated by
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File Run! Tools View Help

 RunModel

Current Time Step: ~ [D.105s Simulation Time: ~ [250s Progress: (1]

Upper Layer Lawer Layer

Interface Height Pyralysis Rale Fire Size Fressure ApbientToroet. 1A
Compartment Tem[et(a:r)ature Tem(p%r)alure = o) e P2 (kwxm n
1 E 05 0.121 [ 278 00374 0.959 |
2 65.5 201 028 0 0 103 018 |
3 97.8 244 015 0 0 0074 0335
4 1068 287 022 0 0 00114 0378 |
5 925 23 013 (] 0 0144 0311 |
6 626 201 048 0 0 136 0.147
7 417 201 0.05 0 0 124 0.093
g 43 20 0.19 0 0 1.51 007
Outside 0

z Stop Update

RunOptions: Net Heat Flux Output

Open Sae | Geometry | [ Run View

Figure 3.25: Running simulation of the convenience store in CFAST.

File Run! Tools View Help

L . o o a
A? RunModel
Current Time Step: ~ [0.691s Simulation Time:  [330s Progress: (1]
e gg;epf;:"ﬂfg #g;epf;:;ﬂf; Interfsce Height Pyrolysis ol Fire Size Pressure Grigler s
(35 e (m) (kais) (i) (P=) i)
1 2547 0.15 0208 | 3873 215 |
2 1281 324 12 0 0 0.528 i;
3 2903 366 0 0 0 3316 i |
4 4036 587 0 0 0 6443 |
5 57.8 311 0.75 0 0 0.18 |
6 418 k] 0.29 0 0 0.118
7 496 293 0.48 0 0 0.116
8 577 32 0.75 0 0 0.179
9 57.8 312 0.76 0 0 018
10 578 311 0.7 0 0 018
11 57.8 311 0.75 0 0 018
12 418 299 023 0 0 0.119
13 418 299 03 0 0 0.118
14 418 299 028 0 Q 0.119
15 418 299 029 0 0 0.119
16 436 23 047 0 0 0.116
7 436 293 048 0 0 0.115
12 AQ R |2 nag n n LRETS il
Stop Update
RunOptions: Net Heat Flux Output

Open Save | Geometry | Run View

Figure 3.26: Running simulation of the first floor of the hotel in CFAST.
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T Runbodel - . " ' el

Current Time Step:  [0.093045 Simulation Time:  [100s Progress:  AREAR
Upper Layer Lower Layer et ot Eoleis Bt B Son B Ambient Target |
Creatiey JESEy-e T = taia) o ) ey

i s 5 1 0.01007 | 1802 1279
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3 425 21 051 0 0 1279
4 £0.5 238 0.85 0 0 12719
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201 2j 29 0 0 12719
9 201 21 29 0 0 1279
10 201 21 29 0 0 1279
1 201 21 29 0 0 1279
] 20 209 29 0 0 1219
13 2 21 29 0 0 1279
14 20 209 29 0 0 1279
15 20 209 29 0 0 1279
16 20 208 29 0 0 1279

17 20 208 29 0 0] 1279 3
a n na 2a n n 1770

Stop Update
RunOptions: Net Heat Fluzx Output
e ‘ e | Gloreay | Run e
No Errors

Figure 3.27: Running simulation of the third floor of the hotel in CFAST.

the simulation tool. This modeling process in CFAST or FDS is a duplication of effort
requiring a great amount of time and expertise. Modeling for FDS in particular is an
extremely painstaking process. ToFAST, the integrated simulation system developed in
this research, utilizes BIM technology to generate simulation models automatically. This
helps designers to simulate smoke propagation with great ease. To quantify how easy it
is to simulate smoke propagation with ToFAST relative to the conventional methods of
using CFAST or FDS with 2D CAAD, comparison tests have been performed on the same
simulation task. The building design shown in figure 3.7 is used in the comparison tests.
The simulation process using ToOFAST and BIM is demonstrated in subsection 3.3.
The time used for generating the simulation model took less than two minutes, and the
time used for running the simulation in CFAST took less than 30 seconds. The detailed

process and the time needed for performing smoke propagation simulation using CFAST
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and FDS in the conventional way are documented in the following two subsections. To
minimize the time to perform the simulations with the conventional methods, additional
software applications were used. CFAST was grouped with AutoCAD and spreadsheets.
AutoCAD was used to facilitate the calculation of room area and measuring bounding
box dimensions. Spreadsheets were used to facilitate the numeric operations involved in
the conversion of non-cuboid rooms to cuboids. FDS was grouped with PyroSim and
SketchUp. PyroSim was a graphic user interface used for generating FDS simulation
models. The 3D meshes needed in PyroSim were modeled in SketchUp, based on 2D
drawings, to further reduce the overall modeling time.

The time required to perform the simulations is separated into modeling time and
simulation running time. Modeling time measures the amount of efforts that a designer
or an engineer put into the active modeling process. Therefore a day of modeling time
is calculated by 8 hours/day, and a week of modeling time is defined as 5 days/week.
Simulation running time, on the other hand, is calculated by 24 hours/day because it only

requires computers to work without any active human involvement.
3.6.1 Simulating with CFAST + AutoCAD + Spreadsheets

Figure 3.28 shows the AutoCAD drawing of the floor plan of the same model shown
in figure 3.7. To begin with, the room of fire origin was selected. Then the shortest
travel paths were drawn and measured from the room of fire origin to the other rooms
in AutoCAD (figure 3.29). The rooms were sorted based on the travel distance using
a spreadsheet, and 30 of the rooms that are closest to the fire origin were selected for
simulation. To be simulated in CFAST, the non-cuboid rooms were converted into the
closest cuboid, using the same algorithm that was used in ToFAST. The area of the rooms
and the dimensions of their bounding boxes are stored in a spreadsheet. The conversion

process of the room dimensions was expedited by utilizing the functions of the spreadsheet
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Figure 3.28: AutoCAD drawing of the floor plan.

(table 3.2). Lastly, a CFAST input file was generated by entering the room information

shown in table 3.2 and the room-door connectivity information using CFAST modeling

interface (CEdit).

The time used for each step of the modeling processes is shown below:
e Drawing travel paths, sorting and selecting 30 rooms: 92 minutes

e Converting to cuboids using spreadsheet: 54 minutes

e Entering the data using CEdit: 103 minutes

e Examine the input data: 43 minutes

The total time used to generate the simulation model was 292 minutes. This is the time
to generate the simulation model with one of the rooms set as the fire origin. To better

understand the fire safety of the design, multiple simulation runs need to be performed with
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Figure 3.29: Measuring the distance from the room of fire origin to the other rooms.

the fire origin set to a different room each time. When changing the fire origin, the whole
process needs to be restarted. To simulate 10 of the 40 rooms as the fire origins, the total
time of 292 x 10 = 2920 minutes is required. Simulating different fire origin can be done
in parallel. If 10 designers model different fire origins simultaneously, this can be done
in 292 minutes. If there are two design changes based on the feedback of the simulation
results, which requires three times of simulations, the total simulation modeling time of
the project would be 2920 x 3 = 8760 minutes = two weeks and 4.25 days. Alternatively,
if ten people work simultaneously, this can be done in approximately two days, if ignoring
the overhead time needed for collaboration. The simulation running time on the computers
would be 30 seconds/ run x 10 runs x 3 = 15 minutes, which is negligible compared to the

modeling time.
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Room Name Area AABB-length | AABB-width | Ratio | L W
Building Services 124.19 [ 15.75 9.45 1.67 | 14.39 | 8.63
Corridor 881 T1.7 435 1.65 | 38.11 1 23.12
Storage 1308A 2248 [ 7.75 2.9 267 775 129
Media Faculty 61.23 [7.75 7.9 098 [775 179
Computer Workrm [ 49.92 [ 7.8 6.4 1.22 178 6.4
Computer Classrm | 116.25 | 7.75 15 052 [775 [ 15
Computer Lab 175.5 11.8 16.5 072 1112 15.67
Reference 24.32 3.8 64 059 |38 64
Lobby 4953 |78 6.35 123 178 6.35
Open Office 1406 6223 [ 908 6.35 154 198 6.35
Office 1406A 1742 143 4.05 1.06 [4.3 4.05
Quiet Room 1742 143 4.05 1.06 43 4.05
Restroom 5.06 2.3 22 1.05 |23 2.2
Fire Control 2324 | 2.8 8.3 034 |28 8.3
Vending 11.07 |27 4.1 0.66 |27 4.1
Medium Classroom | 72.46 | 7.75 935 083 [7.75 9.35
Classroom 1208 147773 1 15.8 033 1.69 | 15.8 [ 935
Seminar room 58.51 775 7.55 1.03 [7.775 | 755
Classroom 1502 58.51 775 7.55 1.03 [ 775 755
Men’s room 30.72 1438 64 075 1438 64
Women’s room 3024 48 6.3 076 1438 6.3
Vestibule 1344 148 2.8 17T 148 2.8
Storage 1102 84 2.8 3 093 28 3
Storage 1104 10.2 34 3 1.13 |34 3
Elec. and Telecom | 29.28 | 4.8 6.1 079 148 6.1
Stairs 1 2074 |34 6.1 056 |34 6.1
Network 2106 |78 2.7 289 |78 2.7
Server room 78778 7.8 10.1 077 178 10.1
Stairs 2 21.06 |78 2.7 289 |78 2.7
Book Lab 152.88 1 7.8 19.6 04 7.8 19.6

Table 3.2: Converting non-cuboid rooms to cuboids. AABB-length field denotes the length
of the axis-aligned bounding box, AABB-width field denotes the width of the bounding
box, Ratio field is calculated by AABB-length / AABB-width, L field denotes the length
of the transformed cuboid, and W field denotes the width of the transformed cuboid.

3.6.2 Simulating with FDS + PyroSim + SketchUp

Using the text-based user interface to model FDS input takes tremendous amount of
time and efforts. To minimize the time and efforts for the modeling, SketchUp was used
to generate the 3D mesh of the building and PyroSim was used to import the mesh and
generate the FDS simulation model. The SketchUp model of the same building is shown

in Figure 3.30. The model was exported as an obj file and imported into PyroSim as a
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Figure 3.30: SketchUp model of the building design. The slabs and the ceilings are hidden
for presentation purposes.

mesh (figure 3.31). Then the additional information that is necessary for FDS simulation
was added, which includes fire settings, mesh subdivision, the connections to the exterior,
and the total simulation time (15 minutes). The mesh and the spaces were discretized into
10cm x 10cm x 10cm cubes. The fire used the same setting as in subsubsection 5.1.3.
Lastly, an FDS input file was exported from the PyroSim model.

The time used for each step of the modeling processes is shown below:

e SketchUp modeling: 75 minutes

e PyroSim modeling: 12 minutes

The total time needed to generate the simulation model was 87 minutes. Simulating
10 of the 40 rooms as fire origins does not require 10 folds of the time since no change is
needed for the SketchUp model. Changing the location of the fire in PyroSim only takes

1-2 minutes to update. The time needed to generate 10 simulation models is approximately
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Figure 3.31: SketchUp model is imported into PyroSim as a mesh. Additional information
such as fire, mesh subdivision, and so on, are added to the model.

100 minutes. However, if a design change ensues based on the feedback of the simulation
results, the SketchUp model and PyroSim model may need to be updated or remodeled.
Assuming two design changes in a project, the total time needed for modeling FDS input
is between 100-200 minutes.

The simulation running time of one run took 55.3 days. Assuming that 10 of the
40 rooms are simulated as the fire origins, and there are two design changes, the total
simulation running time would be 55.3 x 10 x 3 = 1659 days. Since the simulation runs
with different fire origins can be performed with multiple computers in parallel, the total
time can be shortened to 165.9 days if 10 computers operate simultaneously.

The specifications of the computer used for the simulation is shown below:
e CPU: Intel 17-3770, Quad-core, 8 thread, 3.4GH clock

e Memory: 16GB, DDR3
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e Operating system: 64bit windows 7

3.6.3 Summary

This subsection compared the time and efforts required by the three different ways
of performing smoke propagation simulation: ToFAST + BIM, CFAST + AutoCAD +
spreadsheets, and FDS + PyroSim + SketchUp. The amount of effort required for each
type of simulation is measured by the time that a designer was actively involved to generate
the simulation input files. The simulation running time is recorded to compare overall time
resources each type of simulation consumes. The comparison results showed that TOFAST

+ BIM requires significantly less time and efforts to simulate smoke propagation (table

3.3).
ToFAST Conventional CFAST [ Conventional FDS
Modeling Time 60 minutes | 8760 minutes 100-200 minutes
Simulation Running Time | 15 minutes | 15 minutes 1659 days
Total 75 minutes | 2 weeks and 4.3 days | 1659 days

Table 3.3: Comparison of the projected time to simulate smoke propagation.
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4. VISUALIZATION AND INTERPRETATION OF SIMULATION RESULTS

ToFAST translates a BIM model into a simulation model and exports it to a
CFAST-input file. After reading the file and running smoke propagation simulation,
CFAST outputs an ASCII file that contains the simulation results as shown in figure 3.17.
Because the simulation results are presented in thousands of lines of numbers, it is very
difficult for designers to extract any meaningful information from the simulation data.
SmokeView, a tool developed by NIST, is used for visualizing CFAST simulation results.
However, SmokeView can correctly display the space configuration only if there are no
non-cuboid rooms in the building. Figure 4.1 shows the CFAST simulation results of the
university building using SmokeView. Because all the rooms are transformed into cuboids
and are rearranged, it is not intuitive for designers to map the new layout to the original

floor plan and extract useful information.

e

N— - ‘ ———V— UV VvV vV

/

Figure 4.1: Visualization of the CFAST simulation results for the university building using
SmokeView.

N LAY 174 174 v

This demands for better visualization of the simulation results to provide designers

with useful feedback in the decision making process. For this research, I developed a

56



presentation module to extract information from the simulation results. With this module,
designers can easily visualize smoke propagation, perform evacuation simulation, present
the evacuation simulation results as graphs, and visually inspect the evacuation to get

qualitative feedback.
4.1 Visualizing Smoke Simulation Results

A presentation module was developed with C# on WPF platform as a plug-in in Revit
to visualize smoke propagation (figure 4.2). This module draws a simplified floor plan
using the information retrieved from the Revit model. Then it reads the CFAST simulation
results, extracts essential information such as smoke height and CO concentration, and
prints each block of data for the corresponding room. Each room is color coded at each
time step based on one of the parameters. By adjusting the slider on the top of the window,
which controls the simulation time step, one can visually inspect how smoke propagates
from room to room, and how the concentration of the toxic gases changes in each room
(figure 4.3).

One of the purposes of visualizing smoke propagation is that designers can check
whether a revised design scheme is better than the original one in terms of fire safety
by just checking if the revised scheme delays smoke propagation. This information can
be useful for rapid interpretation. If a certain spatial layout can reduce smoke propagation
speed, it is likely to extend the time for occupants to safely evacuate in case of a building

fire.
4.2 Simulating Occupant Evacuation

Fire safety is closely related to both the speed of smoke propagation and the speed of
occupant evacuation. Occupants are safe if they can evacuate before smoke reaches the
height of the human head. In this sense, visualizing smoke propagation is only half of

the picture to understand building fire safety. Simulating occupant evacuation based on
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Figure 4.2: Reading the CFAST simulation results, extracting essential information, and
locating each set of data at the corresponding location for easier visualization.

Time: | 0] 35 TR )

Figure 4.3: Color-coded floor plan to show smoke propagation and the information about
the toxic gases.
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smoke propagation simulation results can provide designers more informative feedback
about their design. A simulation helps designers to identify bottlenecks in egress paths,
the quality of circulation design, the capacity of egress routes, and so on. To provide more
informative feedback, I developed a simple BIM-based multi-agent evacuation model and
incorporated it into the visualization module. The multi-agent evacuation model interacts
with the smoke information, which is generated from CFAST simulation, to report the
safety of each agent at the end of the simulation. The multi-agent model used in the

evacuation simulation is not yet validated and needs further investigation.
4.2.1 Initializing Evacuation Simulation Environment

To begin with, a number of agents are generated based on user-prescribed density and
are randomly placed in the scene without overlap (figure 4.4). Each agent is assigned
initial properties, including shoulder width, chest to back depth, height, normal speed, and

max speed.
4.2.2 Calculating Exit Paths

Accurately modeling occupant evacuation is extremely complicated and is an active
research topic [55]. The evacuation model used in this research is simplified to three
basic rules: 1) all agents are familiar with the building floor plan; 2) each agent evacuates
through the nearest exit measured by walking distance; 3) each agent can detect the
velocity (speed and direction) of the near-by agents and adjust its velocity accordingly
to avoid collisions.

The shortest egress path of an agent is represented by the connection between a
sequence of target points. Target points are either concave corners of the rooms or
the center points of the doors. The shortest egress paths are calculated with the same
algorithm used for the room selection algorithm in the previous section, only with a few

minor adjustments. When the algorithm is used without any adjustment, the agents tend
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Figure 4.4: Randomly generating agents in the scene.

to get very close to the corners and the center of the doors as shown in figure 4.5. This

causes unnatural turns when agents reach each target points. Two minor adjustments were

made to alleviate this problem:

e When reaching the center of a door, agents keep walking along the direction that
is perpendicular to the door, instead of turning right away at the center of the door.

After passing the door by certain threshold, the agents then turn their walking

direction to the next target point;

e Floor boundaries of the rooms are offset inwards by a certain threshold (green lines

in figure 4.6) to keep agents away from walls.

The polygon offset functionality is implemented with an open source clipper library

developed by Johnson [56]. Calculating egress paths using the offset floor boundaries
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Figure 4.5: Calculating the egress path of each agent using the same algorithm used for
selecting 30 rooms without any adjustment.

(green lines) allows agents to turn more naturally at corners. The egress paths of the
agents after these adjustments are shown in figure 4.7. These paths are the planned paths
for each agent, not the actual evacuation paths. During evacuation simulation process,
agents are likely to deviate slightly from the planned paths to avoid collision with other
agents. However, the target points of each agent remain unchanged in order to guide the

agent to the nearest exit door.
4.2.3 Simulating Evacuation

After the egress paths are calculated, the simulation progresses each agent towards the
nearest target point on its planned egress path. During evacuation process, each agent
may deviate slightly from the preferred path to avoid collision with nearby agents. The
functionality of collision avoidance is implemented with an open source library developed

by a research team at the University of North Carolina at Chapel Hill [57].
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Figure 4.7: Adjusting the algorithm to make agents walk past the doors and turn the corner
with a buffering threshold.
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Figure 4.8: Agents’ actual evacuation trails. The zigzag paths show the efforts from the
agents tried to avoid collision with their neighbouring agents. The zigzag paths can be
smoothened by increasing the number of simulation steps per second.

At each simulation time step each agent identifies the room it is in, and records the
smoke height, CO concentration, and temperature of the room, which are retrieved from
CFAST simulation results. This information is used for safety analysis described in the
next subsection. Each agent also records its evacuation trail at each time step as shown in

figure 4.8. Agents’ trails are exported as a CSV file at the end of the simulation.
4.3 Reporting Simulation Results

At the end of the simulation, the information generated by each agent is reported so
that designers can quantitatively examine the fire safety of the design. In addition, the
raw data from the simulation is summarized and analyzed to provide more informative
characterizations of the effect of the fire event on the agents.

Figure 4.9 shows the duration of time that each agent spent in smoke. X axis lists all
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Time Duration Each Agent Stayed in Smoke

Number of Steps in Smoke

Figure 4.9: Duration of time that each agent spent in smoke.

CO Intake of Agents

! “‘ \

Figure 4.10: CO intake of each agent.

the agents, and Y axis denotes the duration of time in seconds that the agents spent in
smoke during evacuation.
Figure 4.10 shows CO intake of each agent. X axis denotes time in seconds, and Y
axis denotes CO concentration in ppm. Each color line in the graph denotes an agent.
Figure 4.11 shows the ambient temperature of each agent. X axis denotes time in
seconds, and Y axis denotes the upper layer temperature of the rooms each agent is in.
Each color line denotes an agent. The tip of each color line infers the time that the agent

walked out of a smoky room.
4.4 Animating Evacuation Simulation Results

When the evacuation simulation finishes, the results can be animated for visual

examination. This helps designers to conduct a qualitative evaluation of the fire safety of
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Temperature Experienced by Agents

Figure 4.11: The ambient temperature of each agent.

their design, such as identifying bottle necks and inefficient circulation of the floor plan.
Figure 4.12 shows that all agents are safe from smoke 60 seconds after the simulation
started. At time step 145 seconds, smoke reaches the agents’ height in four of the rooms
before some of agents have left the rooms (figure 4.13).

The evacuation model used in this research does not necessarily reflect the reality due
to the simplification of the model. However, the system architecture developed in this
research, the seamless data transfer from BIM to CFAST to evacuation model, can be
easily applied to other evacuation models. Plugging in a more refined evacuation model to
this system is expected to generate more accurate and informative feedback for designers.

In short, the visualization module developed in this research helps designers to visually
inspect smoke propagation and assess evacuation simulation results quantitatively and

qualitatively with graphs and animations.
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Figure 4.12: Agents are safe from smoke at the time step of 60 seconds.
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Figure 4.13: At time step 145, some agents are walking in smoke regions which are

denoted with grey.
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5. VALIDATION OF THE ALGORITHMS

Two major obstacles to simulate smoke propagation using CFAST are that CFAST
requires all rooms to take the shape of cuboids and the total number of the rooms must
not exceed 30. In the real-world, rooms take various shapes other than cuboids, and many
buildings have more than 30 rooms. CFAST is useful to architects in practice only if it
can easily simulate real-world buildings, not just toy examples, with acceptable accuracy.
To easily simulate real-world buildings in CFAST, I used transformation algorithms and a
room selection algorithm to convert BIM models to CFAST models. The transformation
algorithms convert rooms of all shapes to the closest cuboid shape while maintaining floor
area, width/length proportion, and volume constant. The room selection algorithm selects
30 rooms that are closest to the fire source by smoke travel distance. This allows architects
to simulate 30 of the most critical rooms. With these algorithms implemented in BIM,
architects can perform smoke propagation simulation with a few mouse clicks in very
short time, usually under a few minutes.

The issue triggered by these algorithms is that the accuracy of the simulation results
is dependent on how accurately the original building is represented after applying the
algorithms. To investigate how much error is introduced by the transformation algorithms
and the room selection algorithm, I have conducted validation tests of the algorithms by
comparing the simulation results of the simplified models to the simulation results of the
original models using FDS, which is capable of handling the complexity of the original

design.
5.1 Validation of the Transformation Algorithms
The transformation algorithms transform rooms of all shapes to the closest cuboid

shape while maintaining floor area, width/length proportion, and volume. Transforming
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rooms to cuboid shape may cause errors compared to the simulation results of the original
rooms. To find out the amount of the errors introduced by the transformation algorithms, I
conducted a series of validation tests using FDS. Unlike CFAST, FDS can simulate rooms
of any shape by discretizing a room into a myriad of tiny cubic cells of spaces. For each
validation test, a building model containing non-cuboid shaped rooms was modeled and
simulated in FDS. Then the model was transformed into cuboids using the transformation
algorithms and was simulated using FDS. The simulation results of the models before and
after the transformation were compared with each other to determine error.

The transformation algorithms transform general rooms and corridors differently.
Therefore, the validation tests for general rooms and corridors were also modeled
differently. For the validation of general rooms, as shown in figure 5.1, each model
contains four rooms representing four different room conditions by the relative location
to the fire source: room A contains the fire source; room B represents the rooms that
smoke passes by; room C represents the rooms that only have incoming smoke flow but
no outgoing smoke flow; room D represents the rooms that are directly connected to the
exterior. Room A, B, C, and D are identical in shape but oriented differently. There are
nine evenly distributed smoke sensors in each room except for room A, which has eight
sensors. This is because placing a sensor at the center of room A, overlapping with the
fire source, generates inaccurate sensor data. The smoke line of each room was calculated
by averaging the smoke height that was detected by all of the smoke sensors in each room.
Figure 5.2 shows the model after the transformation.

For the validation of corridors, a room of fire source and a corridor were modeled such
that the corridor is directly connected to the room (figure 5.3). The corridor was then
transformed using the transformation algorithm (figure 5.4). Smoke sensors are evenly

distributed in the corridors of both models, before and after the transformation.
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Figure 5.1: An example of a validation test model for general rooms. Room A, B, C, and
D are identical in shape but oriented differently. Red crosses denote smoke sensors. Fire
source is placed at the center of room A.
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Figure 5.2: The transformed model using the transformation algorithm.
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Figure 5.3: An example of a validation test model for T-shape corridor.
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Figure 5.4: The transformed model of the corridor using the transformation algorithm.
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5.1.1 Resolution Tests

FDS is a CFD-based model for simulating fire-driven air flow. FDS discretizes a
continuous space into a myriad of small cuboids. The concentration of each gas species
and the temperature of each cuboid are simulated by solving the Navier-Stokes equation.
The accuracy of FDS simulation is closely related to the size of the cuboids, i.e. the
resolution of space discretization. Generally speaking, the higher the resolution (the
smaller the cuboids), the more accurate the simulation results. The downside of higher
resolution is that simulation time grows as a cubic function of the resolution. For example,
setting the size of the cube to 10cm per side takes eight times longer compared to the
size of 20cm cubes. To balance the accuracy-time tradeoff, a set of resolution tests were
conducted to determine the optimal resolution for the follow-up FDS simulations.

As shown in figure 5.5, the resolution test models have four 6m x 6m rooms,
representing four different conditions relative to the location of the fire source. Seven runs
of simulations are performed with the resolution set to Scm, 6cm, 10cm, 20cm, 30cm,
40cm, and 60cm respectively. The thickness of the walls is set to 60cm to accommodate
the lowest resolution. The model with the resolution of S5cm exceeded the memory
capacity of the desktop computer that was used for the simulation, and consequently used
hard drive for the simulation. Because hard drive is extremely slow compared to DRAM,
the Scm-model was expected to take approximately four years to finish. Therefore the
Scm-model was excluded from the options.

Figure 5.6 to 5.9 show the results of the resolution tests. In the graphs, X axis denotes
the simulation time in seconds, and Y axis denotes the smoke height in meters. The ceiling
height is set to 3m. The color lines are the individual runs with different resolutions.

The graphs show that 60cm-model and 40cm-model generated irrational results with

large fluctuation. The lines of 30cm, 20cm, and 10cm models show a rather consistent
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Figure 5.5: The model used in the resolution tests.
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Figure 5.6: Simulation results of room A.

gap with the line of the 6cm model. The magnitude of the gaps with the 6cm-model also
reduce as the resolution becomes higher, e.g. the gap between 10cm and 6¢cm lines is much
smaller than the gap between 30cm and 6¢cm lines.

FDS generates more accurate simulation results with higher resolution. Due to the

limited time and physical memory space, the resolution cannot be set to infinitely high.
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Resolution Test: Room B

Smoke Height (m)

0.5

o m ~ noomn~ o ) L R - s
H oo NN m o WNOSRNRN®DROONN SO c
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

Time (s)

- wn mon oo
= ] < &

—6cm 10cm 20cm 30cm —40cm —60cm

Figure 5.7: Simulation results of room B

Resolution Test: Room C
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Figure 5.8: Simulation results of room C.

In this research, 6cm-model is the highest resolution that the computer can run. Thus,
the resolution of all the FDS simulation tests in this research will be set to the highest
resolution possible, up to 6¢cm, if the tests can be finished in a reasonable timeframe. The
total time to finish all runs of simulations needed for this dissertation research using three
desktop computers is estimated in the table 5.1. The specifications of the computer used

for the simulation is shown below:
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Resolution Test: Room D
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Figure 5.9: Simulation results of room D.

e CPU: Intel 17-3770, Quad-core, 8 thread, 3.4GH clock

e Memory: 16GB, DDR3

e Operating system: 64bit windows 7

Resolution | Time to finish all simulations
6cm 18 months

I0cm 3 months

20cm 2 weeks

30cm 4 days

40cm 1.5 days

60cm 10 hours

Table 5.1: Projected time to finish all simulations.

The resolution simulation results (figure 5.6 - 5.9) and the expected finish time (table
5.1) show that 6cm-model does not offer significantly accurate results compared to the
10-cm model, but requires 13 months more simulation running time. Therefore, the

resolution of all FDS simulations in this research is set to 10cm.
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5.1.2 Test Cases

To investigate how shape and size affect the transformation algorithms, test models are
built with a variety of shapes and sizes. The transformation algorithm transforms general
rooms in two steps. If the room is not rectangular in floor plan, it is transformed into
a rectangle with the same area and length/width proportion. Then if the room is not a
rectangle in section, it is transformed into a cuboid with the same floor area and the same
volume. Three common non-rectangular floor plans were selected as the test cases (figure
5.10). A name was given to each of them for easier referencing: shoe shape, SIM card

shape, and circular shape.

Shoe shape SIM card Circular shape

Figure 5.10: Three commonly seen non-rectangular floor plans.

Three commonly seen non-rectangular sections were selected as the test cases as shown
in figure 5.11. They are named gable, shed, and vault respectively based on how they look

in sections.

Gable Shed Vault

Figure 5.11: Three commonly seen non-rectangular sections.
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The transformation algorithm transforms non-rectangular corridors to rectangular
shape based on smoke travel distance. Three most commonly seen non-rectangular

corridors were selected as the test cases: T-shape, L-shape, and O-shape (figure 5.12).

T-shape L-shape O-shape

Figure 5.12: Three commonly seen non-rectangular corridors.

All types of rooms and corridors were simulated with various sizes and additional
parameters if any are needed. This is to investigate whether the size and the parameters
of the shapes are correlated with the magnitude of the error that is induced by the

transformation algorithms.
5.1.2.1 Shoe Shape Rooms

The size of shoe shape rooms in floor plan can be defined by the size of the bounding

box (L x W) subtracting the size of the void space (VL x VW) as shown in figure 5.13.

VLo
r w

/L L /L

Figure 5.13: Parameters to define the size of a shoe shape rooms in the floor plan.
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There are many potential factors that affect the accuracy of the shape transformation,
such as room area, L/W ratio, void/room area ratio, VL/VW ratio and so on. To
investigate how these parameters affect the transformation algorithm, rooms with various
combination of bounding box sizes and void sizes were modeled as listed in table 5.2.
The non-rectangular floor plans were transformed into a rectangular shape with similar
proportion and minimum area difference, which is constrained by the allowable simulation
resolution. For example, the first model in table 5.2 shows 0.3% area difference between
the original shoe shape model and the transformed rectangle model because the resolution
is set to 0.1m. For most models, the area difference is under 1%. Each model contains
four identical rooms as shown in figure 5.1 (original model) and figure 5.2 (transformed

model). The ceiling height of each room was set to 3m.

L xW (m) | VL x VW (m) | Transformed size (m) | Area difference (%)
4x2 2.2x1 3.4x1.7 0.3
4x4 2x1.9 3.5x3.5 0.4
6x2 3.3x1 5.1x1.7 0.3
6x4 2x1.2 5.7x3.8 0.3
6x4 3x2.2 5.1x3.4 0.3
6x4 4.1x3 4.2x2.8 0.5
6x6 3x3 5.2x5.2 0.1
8x4 3.8x2 7x3.5 04
8x6 2.3x2 7.6x5.7 0.2
8x6 4x3.3 6.8x5.1 0.3
8x6 6.1x4 5.6x4.2 0.3
8x8 4x4.1 6.9x6.9 0
10x4 5x2.2 8.5x3.4 0.3
10x6 5.5x3 8.5x5.1 0.3
10x8 5x4.4 8.5x6.8 0.3
10x10 2x2 9.8x9.8 0
10x10 4x2 9.6x9.6 0.2
10x10 5x3 9.2x9.2 0.4
10x10 5x4.9 8.7x8.7 0.3
10x10 6x6 8x8 0

Table 5.2: Various size of shoe shape models.
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5.1.2.2  SIM Card Shape Rooms

The size of SIM card shape can be defined by the size of the bounding box (L x W)

and the size of the triangular void space (VL. x VW / 2) as shown in Figure 5.14.

I
I N
L

/L L /l'

Figure 5.14: Parameters to define the size of a SIM card shape room in floor plan.

Various sizes of SIM card shape rooms were modeled (table 5.3) to validate the

transformation algorithm for the similar reason to the shoe shape models.

LxW (m) | VL x VW (m) | Transformed size (m) | Area difference (%)
6x4 3x1.7 5.7x3.8 1
6x4 4.5x3 5.1x3.4 0.5
6x4 1.5x3 5.7x3.8 0.4
6x4 4.5x1 5.7x3.8 0.4
8x6 4x3 7.5x5.6 0
8x6 6x4.5 6.8x5.1 0.5
8x6 2x4.5 7.6x5.7 0.4
8x6 6x1.5 7.6x5.7 0.4
10x10 2.5x2.5 9.8x9.8 0.9
10x10 5x5 9.4x9.4 1
10x10 7.5x7.5 8.5x8.5 0.5
10x10 2.5x7.5 9.5x9.5 0.4

Table 5.3: Various size of SIM card shape models.
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5.1.2.3 Circular Rooms

For circular rooms, five different sizes are tested which are shown in table 5.4.

Diameter (m) | Transformed size (m) | Area difference (%)
3.5x3.6 03

6 5.3x5.3 0.6

8 7.1x7.1 0.3

10 8.8x8.9 0.3

12 10.6x10.7 03

Table 5.4: Various size of circular models.

5.1.2.4 Gable/ Shed / Vault

The parameters of the gable, shed, and vault models are shown in figure 5.15. L, W,
and H are the length, width, and height of the bounding box. Length L is the magnitude
of the extrusion of the polygons which is not explicitly denoted in the figure. The height
of the rectangular base is set to 3m for all models. The slope of the ceiling S is calculated
by S = 2h/W in the gable models, and S = h/W in the shed models. The lists of the models

with different parameters are shown in table 5.5 to 5.7.

Figure 5.15: Parameters of the gable (left), shed (middle) and vault (right) models. Length
L is the magnitude of the extrusion of the polygons, perpendicular to the polygons. Length
L is not explicitly denoted in the figure above.
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L xW (m) | H(m) | Slope | Transformed height (m) | Area difference (%)
6x4 4 0.5 3.5 0
6x4 5 1 4 0
6x4 7 2 5 0
8x6 4.6 0.5 3.8 0
8x6 7 | 4.5 0
8x6 9 2 6 0
10x10 5.6 0.5 4.3 0
10x10 8 1 5.5 0
Table 5.5: Gable models with different parameters.
LxW(m) [ H(m) | Slope | Transformed height (m) | Area difference (%)
6x4 4 0.25 |[3.5 0
6x4 5 0.5 4 0
6x4 7 | 5 0
8x6 4.6 0.25 |38 0
8x6 7 0.5 4.5 0
8x6 9 1 6 0
10x10 5.6 025 143 0
10x10 8 0.5 5.5 0
Table 5.6: Shed models with different parameters.
L x W (m) | H (m) | Transformed height (m) | Area difference (%)
6x4 3.5 3.3 1.1
6x4 4 3.7 0
6x4 5 4.6 0.7
8x6 3.8 35 1.1
8x6 4.5 4 1.2
8x6 6 54 0.8
10x10 472 3.8 0.3
10x10 5.5 4.8 1.1
10x10 8 6.9 0.4

Table 5.7: Vault models with different parameters.

5.1.2.5 T-shape / L-shape / O-shape Corridors

The length L of the T-shape, L-shape, O-shape corridors represents the length of one
side of the corridors as shown in figure 5.16. The width of all corridors is set to 2m. The

detailed dimensions of the models are listed in table 5.8 to 5.10.
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Figure 5.16: Parameters of the corridors.
L (m) | Transformed size (m) | Area difference (%)
10 8.2x3.7 1.1
15 11.8x3.8 0.4
20 15.6x3.8 1.2
30 23.0x3.9 0.3
40 30.0x4.0 0
Table 5.8: Various size of T-shape corridors.
L (m) | Transformed size (m) | Area difference (%)
10 13.0x2.8 1.1
15 20.0x2.8 0
20 27.0x2.8 0.5
30 42x2.8 1.4
40 57.0x2.7 1.3
Table 5.9: Various size of L-shape corridors.
L (m) | Transformed size (m) | Area difference (%)
10 16.0x4.0 0
15 25.0x4.2 |
20 35.0x4.1 0.3
30 55x4.1 0.7
40 75x4.1 1.2

Table 5.10: Various size of O-shape corridors.
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5.1.3 Fire Parameter Settings

To investigate the accuracy of the transformation algorithms by isolating the shape
transformation as the only varying factor, all fire parameters were set to default values in
all of the simulation tests. In FDS, the fire source is mainly controlled by four parameters:
chemical composition, max heat release ratio (HRR) per unit area, time to reach max HRR,
and the surface area of the fire source. The chemical composition determines how much
toxic gases and soot is produced per unit mass of fuel (fuel could be furniture, building
material, books, and so on). The fire used in the simulations was set to reach the max HRR
of 1000 from O in 60 seconds as a square function of time, which is typically known as
T-square fire [58]. The surface area of the fire was set to 60cm x 60cm in each model. The

details of the fire parameters used in the FDS input files are shown below:

&REAC ID='POLYURETHANE_GM27',
FYI=' SFPE Handbook, GM27’,
FUEL='REAC_FUEL',
c=1.0, H=1.7, 0=0.3, N=0.08,
CO_YIELD=0.042,
SOOT_YIELD=0.198/

&SURF ID='Fire’,

COLOR='RED’,
HRRPUA=1000.0,

TAU Q=-60.0/

5.1.4 'Test Results

The FDS simulation tests produced 1000+ pages of data which are visualized with

200+ charts. To make the main text concise, only four of the charts are presented in this
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subsection as an example. The rest of the charts are presented in Appendix A. Figure 5.17
shows the simulation results of an 8m x 4m shoe shape model. In the graphs, X axis is the
simulation time in seconds and Y axis is the smoke height in meters. The ceiling height of
the models is set to 3m. Cyan lines show the simulation results of the original model, and
the orange lines show the simulation results of the transformed model. The magnitude of

the gaps between the lines denotes the amount of error introduced by the transformation

algorithm.
8x4 Room A 8x4 Room B
35 35
3 3
25 2.5
2 2
15 15
1 1
0.5 0.5
0 MO AN MO N E N m 0 MO AN ONEN OO N
RN - R R N I T, B S - T IE N o n NN AN MO RN D DN N wn wn @
FANR SIS EBRRES S0 85 A8588885 FAN RS IS AP eRR S S 3o dSa 885858885
Original Transformed Original Transformed
8x4 Room C 8x4 Room D
35 35
3 3
25 25
2 2
15 15
1 1
0.5 0.5
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Figure 5.17: Simulation results of an 8m x 4m shoe shape model.

The simulation results of the entire 154 models (see Appendix A) show that the
proposed transformation algorithm introduced very limited amount of error into the
simulation process, except for some of the shed models. While the precise reasons for the

large error in the shed models are unknown, it is likely to be caused by the irrationally
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high ceilings (up to 6m) and the acute angle (up to 45 degrees) of the ceilings which
impedes natural smoke propagation.

To better examine if the error shows any noticeable patterns, the entire simulation
results were visualized with seven error graphs as shown in figure 5.18 to 5.24. X axis
shows the models with different parameters, and Y axis shows the percentage of the error
introduced by transforming the model using the transformation algorithm. The error € is
calculated by: € = (o, — t;)/o; * 100% where o, and ¢, are the average time that smoke
reaches the 2m-1.5m zone in the original models and the transformed models respectively,
1.e. € shows the percentage of the error introduced by the transformation algorithm. The
reason for using 2m-1.5m zone to calculate the average time is that people’s lives are
threatened when smoke reaches this zone. This generates more meaningful e values. If the
average time is calculated using every datum points, the value of € will be much smaller.
However, when the smoke line is very close to the ceiling or slab, the error between the
original model and the transformed model makes no practical difference.

The simulation results of the validation tests show that:
e most of the models showed 5-10% error, except for some of the shed models.

e there is no discernable pattern associated with the change of the parameters of the

models or the size of the model.

e the distance from the fire origin does not have notable influence, i.e. room A, B, C,

and D show similar amount of error in each model.
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Figure 5.18: Error graph of the shoe shape models. X axis shows the models with different
parameters. For example, 6x4-2x1.2 denotes a model with a bounding box of 6m x 4m, and
a void of 2m x 1.2m. Y axis shows the percentage of the error introduced by transforming
the model using the transformation algorithm.

SIM card shape
30%
20%
10%

0% —— —_— 00~

-10%

Difference

-20%

Room Size (m)
-30%

) A o ) ) > o ) i hol o ©
N o »3" o A & T & o oY Sl &
; o b ) o & & o P P IS Al
o @+ " " " %+ & g N Y N
g+ SF ol
Ay N Ay
Room A Room B Room C Room D

Figure 5.19: Error graph of the SIM card shape models.
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Cicular rooms
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Figure 5.20: Error graph of the circular models. X axis shows the models with different
diameters.
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Figure 5.21: Error graph of the corridor models.
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Gable
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Figure 5.22: Error graph of the gable models. X axis shows the models with different
parameters. For example, 6x4-0.5 denotes a model with a bounding box of 6m x 4m, and
a ceiling slope of 0.5.
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Figure 5.23: Error graph of the shed models.
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Vault
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Figure 5.24: Error graph of the vault models.

5.2 Validation of the Room Selection Algorithm *

CFAST can only simulate buildings with a maximum of 30 rooms. To simulate a
building with more than 30 rooms using CFAST, I proposed an algorithm in section 3 to
select 30 rooms that have the shortest smoke travel distance from the fire origin. The tests
of the validity for the room selection algorithm are discussed in this subsection. If the
room selection algorithm is valid, one can simulate at least 30 of the most critical rooms
of a building.

The room selection algorithm selects and simulates 30 of the most critical rooms.
However, ignoring the rest of the rooms may affect the accuracy of the simulation
results. The question is "how consistent are the simulation results of the selected 30
rooms compared to the same 30 rooms of the original model assuming that CFAST could
simulate the entire building of more than 30 rooms?" In other words, "what is the amount

of the error introduced by the room selection algorithm?" To answer this question, a

*Reprinted with permission from "Fire Propagation Simulation for Large Buildings in CFAST: Using
BIM to Facilitate Simulation Process" by Wu et al., 2016. 13th International Conference on Design and
Decision Support Systems in Architecture and Urban Planning, pp. 503-516. [59]
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number of validation simulations were performed to find out the scalability of smoke

propagation simulation.
5.2.1 Test Cases

The basic model for the scalability test is a single story building in BIM with exactly
30 rooms (elevator shafts are not counted into the 30 rooms) so that CFAST can run the
entire building without any modification (figure 5.25). The whole model is then simulated
in CFAST (figure 5.26A). The simulation results were set as the baseline for comparison
of all of the following simulations.

I then simulated 25 of the rooms, which were selected using the room selection
algorithm (figure 5.26B). Comparing with the simulation results of the same 25 rooms
in the baseline can reveal how consistent the simulation results of the selected 25 rooms
are. Scalability in this study refers to a concept such that "if the simulation results of
the selected 25 rooms are similar to the simulation results of the same 25 rooms in the
30-room-simulation (the baseline model), selecting 30 rooms from a 35-room building
would produce reasonably accurate simulation results, i.e. smoke propagation simulation
in CFAST is scalable." It turned out that the smoke height in the selected 25 rooms is
often slightly lower than the same 25 rooms in the baseline. Four more simulation tests
were performed which include first 20 rooms (figure 5.26C), 15 rooms (figure 5.26D), 10
rooms, and 5 rooms, selected using the room selection algorithm. The simulation results
were compared to the baseline respectively to test the scalability. The fewer number of
rooms selected, the more discrepancy occurred between the simulation results of the
selected rooms and the baseline.

A hypothesis is that selecting N number of rooms and merging the rest of the rooms
to the Nth room (figure 5.27, right) to keep the overall volume unchanged would get more

consistent simulation results of the first N-1 rooms, compared to ignoring the rest of the
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Figure 5.25: A floor plan with 30 rooms used in the test cases. Two elevator shafts are
excluded from the 30 rooms assuming that elevators are not used during building fire
evacuation. The flame icon denotes where the fire started.

rooms (figure 5.27, left). For easier reference, the two selection schemes are named as
"merging scheme" and "ignoring scheme". Ignoring scheme may generate less consistent
simulation results because when the overall volume of the building becomes smaller, the
smoke line between the upper and lower zone moves downward faster given the same
smoke producing rate of the fire source. This hypothesis is later proved to be true.
Another hypothesis is that the accuracy of the room selection algorithm is affected by
whether the simulated floor is directly connected to the exterior (i.e. the floor has exterior

doors). It turned out that the simulation results are more consistent when the floor is not
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Figure 5.26: Selecting different numbers of rooms using the proposed algorithm.

directly connected to the exterior.
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Figure 5.27: Merging spaces. In the left figure, the five rooms (in grey) that are furthest
from the fire origin are ignored in the simulation. In the right figure, the volume of the last
five rooms is merged into the next last room (in checker pattern). The volume of the two
rooms in grey is also merged into the big room which resulted the wall protruded from the
column grid. The two rooms in white are elevator shafts.

5.2.2 Test Results

The simulation results of the 30 rooms of the baseline model are visualized in a 3D
graph (figure 5.28). It is easy to notice how smoke propagates from the room of the fire
origin to all the other rooms, and how smoke height changes as the simulation progresses.

I then selected 25, 20, 15, 10, and 5 rooms respectively using the room selection
algorithm and ran simulations using ignoring scheme and merging scheme. The model
used in this set of simulations is directly connected to the exterior through several exterior
doors. In the simulation results, two of the most critical indicators are selected for
comparison: smoke height and CO concentration. The simulation results are presented
in figure 5.29 to 5.32. The duration of each simulation was set to 600 seconds. The time
step of the simulation was set to every 30 seconds which produced overall 168 graphs. To
make the main text concise, only the graphs at the end of the simulation are presented in
this subsection. The rest of the graphs are presented in Appendix B in 60 second interval.

In the figures, the green line is the baseline that all the others are compared to. X axis
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Smoke Height (meter)

Figure 5.28: Visualized simulation results showing smoke propagation through time.
Room 1 is the fire origin. The rest of the rooms are sorted by the smoke travel distance
from Room 1. Ceiling height of the rooms is all set to 2.7 meters.

denotes the rooms sorted by smoke propagation distance from Room 1, the fire origin. Y
axis denotes the smoke height of each room in meters. Lines with different colors denote
the simulations with different number of rooms. The smaller the gap from the green line,
the more consistent the simulation results are.

As for the interpretation of CO concentration, the dash lines are the results for the
upper layers, and the continuous lines are the results for the lower layers. The green lines
(the longest) are the baseline that the other simulations are compared to. X axis denotes

the rooms sorted by smoke travel distance, and Y axis denotes CO concentration in ppm.
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Smoke Height {meters)

Smaoke Height of Each Room: Connected to the Exterior (time: 600s)
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Figure 5.29: Smoke height with ignoring scheme.
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Figure 5.30: Smoke height with merging scheme.
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Figure 5.31: CO concentration with ignoring scheme.
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Figure 5.32: CO concentration with merging scheme.
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To test how direct connection to the exterior affects simulation results, the models were
modified such that the exterior doors are replaced with walls, i.e. none of the rooms are
directly connected to the exterior. The occupants of the building are assumed to evacuate
through staircases. I then selected 25, 20, 15, 10, and 5 rooms respectively using the room
selection algorithm and ran simulations using both ignoring scheme and merging scheme

for the modified models. The simulation results are presented in figure 5.33 to 5.36.

Smoke Height of Each Room: Not Connected to the Exterior (time: 600s)
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Figure 5.33: Smoke height with ignoring scheme.
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Figure 5.34: Smoke height with merging scheme.
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Figure 5.35: CO concentration with ignoring scheme.
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Figure 5.36: CO concentration with merging scheme.

All simulation tests showed negligible difference in CO concentration compared to the
baseline, i.e. different selection schemes or connection to the exterior does not have much
influence on CO concentration. In addition, the CO concentration of lower layer is very
low compared to the upper layer, even for the room of fire origin.

Merging scheme showed better consistency in terms of smoke height. With the model
directly connected to the exterior, ignoring scheme showed approximately 40cm difference
in smoke height while merging scheme showed roughly 20cm. With the model that is
not directly connected to the exterior, ignoring scheme showed roughly 20cm difference
in smoke height while merging only showed approximately 5cm. This shows that the
algorithm introduces less error when the model is not connected to the exterior.

In short, when using merging scheme, the simulation of selected 20 or 25 rooms
showed 5-20 cm difference in smoke height compared to the baseline. This is

approximately 2-7% error considering the ceiling height is 2.7meters.
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6. NEW KNOWLEDGE DISCOVERY

In the typical architectural design process, building fire safety relies solely on the
compliance of building fire codes. Although code-based design can achieve a high level of
fire safety, simulation-based design has additional advantages in comparison to code-based
design. One of the advantages is the potential to discover new knowledge that is not yet
expressed by building codes.

The nature of building codes is to prevent similar disasters from happening again based
on lessons learned in the previous incidents. This means that building codes come after
accidents or disasters. There are countless examples of new building codes enacted after
a disaster. Emperor Nero implemented building codes to enhance fire safety after the
Burning of the Rome in AD64 [60]. The Great Fire of London in 1666 which burned
more than half of London to the ground led to the London Building Act in 1667 [61].
The Chicago Fire in 1871 and other numerous building fires led to new building codes
to reinforce fire safety [62]. On the other hand, the nature of simulation is to predict
consequences beforehand based on the laws of physics or the laws of nature. Because
of this fundamental difference, simulation-based design has the potential to discover new
knowledge that building codes have not yet captured.

While performing smoke propagation simulations using CFAST, I have discovered
several pieces of new knowledge that are not yet captured by building codes. Ceiling
design and door design can affect building fire safety in several ways. Since the majority
of building fire deaths are caused by smoke, delaying smoke propagation has the effect of
improving building fire safety. In a building fire, hot smoke moves downwards from the
ceiling as building fire develops. Smoke eventually threatens people’s lives when it reaches

human height. Studying this phenomenon as simulated led to a design idea to increase the
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time for smoke to reach human height. Utilizing plenum space between ceiling and slab
can delay smoke propagation by increasing the volume of the room. One could open up
part of the ceiling or install grilles to allow smoke to move higher than the danger zone.
This can delay smoke propagation and give occupants more time to safely evacuate in case
of a building fire.

Two CFAST simulation runs were performed with the building shown in figure 6.1,
one run with ceilings and the other without ceilings to utilize the plenum space. Because
plenum space is not defined in CFAST, the two models were simulated with different room
height, 2.8m and 3.4m respectively. There are four 6m x 6m rooms in the model, room
A, B, C, and D. Room A contains the fire source (red square). Simulation results showed
noticeable smoke delaying effect in all four rooms (figure 6.2). The average time that
smoke reaches 2m - 1.5m zone above the floor increased approximately 20% by opening

up the ceilings (table 6.1).

Figure 6.1: CFAST model for testing how opening ceiling affects smoke propagation.
Ceiling height is set to 2.8m, and plenum height is set to 60cm.
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Figure 6.2: Comparison of the simulation results. Blue lines denote the simulation results
of the model with ceilings, and the orange lines denote the simulation results of the model
without ceilings. X axis denotes simulation time in seconds, and Y axis denotes smoke
height in meters.

Room A | Room B | Room C | Room D
Closed | 47 67.5 110.5 97.5
Open 55 81 135 116.5
Increase | 17% 20% 22% 19%

Table 6.1: Comparison of the time (in seconds) that smoke reaches 2-1.5m zone.

Door design also affects building fire safety. Doors are exits for occupants and
pathways for smoke. Wider doors allow people to evacuate faster by widening the
bottlenecks, and at the same time increase the speed of smoke propagation. Higher doors,
on the other hand, only increases the speed of the smoke propagation while having no

effect on the speed of occupant evacuation. Distance D in figure 6.3 determines the valid

volume that can hold smoke before it propagates to the next room. With the same ceiling
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height, the higher the doors, the quicker smoke propagates to the adjacent rooms. If a
designer chooses higher doors merely because its slender proportion fits better to the
overall appearance of the building design, which subsequently threatens the safety of the

occupants, extra fire safety features should be installed as the compensation.

Figure 6.3: Valid volume for stalling smoke propagation to the next room.

To cross-validate the discovery that ceiling design and door design affect smoke
propagation, and to more accurately codify how they affect smoke propagation, I
conducted a series of simulation tests in FDS with various parameters. Tested parameters

include opening ratio, opening size, opening distribution, plenum height, and door height.
6.1 Simulation Settings

Ceiling and door design can affect smoke propagation in many ways. In this study, |
selected five of the parameters to investigate their impact on smoke propagation. To isolate
the impact of each parameter, a model is built as the base model, and every time only one
parameter was changed while the others remained untouched.

As shown in figure 6.4, the base model has four rooms. In the perspective drawing
(figure 6.4, left) the slabs at the top and the bottom are hidden for presentation purposes.
The only way for smoke to propagate from one room to the next is through the doors.

Room A contains the fire source at its center, and room D is connected to the exterior.
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Each room has nine evenly distributed sensors (red cross signs) except for room A which

has eight sensors. The size of each room is set to 6m x 6m.

20cm—
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Figure 6.4: Perspective (left) and the floor plan (right) of the base model for the
simulations.

Ceiling height of each room for the base model was set to 2.8m, and the floor height

was set to 3.6m (figure 6.5). The size of each door was set to Im x 2m (W x H).
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A

Figure 6.5: Section of the base model.

The resolution of all FDS simulations was set to 10cm. This restricts the dimensions
of the smallest geometries in the model to be greater or equal to 10cm. Thus, the height

of the grilles and the spacing of the grilles were set to 10cm. Each grille fin is represented
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using one surface without thickness. The length and the width of the grilles were set to

60cm (figure 6.6).

60cm /’\
/ ,,(10cm’('

10cm

A

60cm

Figure 6.6: Grille dimensions of the base model.

6.2 Simulations and the Results
6.2.1 Opening Ratio

Putting openings on ceiling induces smoke into plenum space and subsequently delay
smoke propagation. How effectively openings delay smoke propagation is likely to be
affected by the ratio between the total opening area and the ceiling area. To investigate
precisely how opening ratio affects smoke propagation, a set of models with different
opening ratios were simulated using FDS. Figure 6.7 shows the ceiling plan of the models.
Each model has nine identical square openings with varying size L. The sizes of the
openings of each model are listed in table 6.2.

The openings of the models are evenly distributed with the center points of the
openings of each model unchanged. The model with 100% opening ratio does not have
a ceiling. The average time to reach 2m-1.5m zone was extracted from the simulation

results (figure 6.8).
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Table 6.2: List of grill sizes

The simulation results are very interesting. When gradually opening up the ceiling
from 0% to 16%, the time delay of smoke propagation increases dramatically. The time
delay increases in much slower speed from 16% to 50%, and starts to decrease from 50%
to 100%. Room A, which contains the fire source, showed up to 20% increase in time
delay while room C and D, which are far away from the fire source, showed up to 60%
of increase in time delay. The exact reason why opening up more than 50% of the ceiling
diminishes smoke delaying effect is unknown. The simulation results for 0% and 100%

opening, except for room A (fire origin), are similar to the simulation results using CFAST
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Figure 6.8: Simulation results by opening ratio. X axis denotes opening ratio, and Y axis
denotes the average simulation time (in seconds) to reach the 2m-1.5m zone.

which is shown in table 6.1.
6.2.2 Opening Size

Opening size may also affect smoke propagation. To investigate the influence of
various opening sizes on smoke propagation, a set of models with different opening sizes
were modeled and simulated using FDS (figure 6.9). In each model, the openings are
evenly distributed and the total area of the openings is constant. The model with the
opening size of 40cm used smaller openings for the leftover rows to match the total
opening area. The simulation results are shown in figure 6.10. The simulation results

show that the size of the grille has limited influence on smoke propagation.
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Figure 6.9: Ceiling plans of the models with different grille sizes.

Average Time Reaching 2 - 1.5m by Grill Size
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Figure 6.10: Simulation results by grille size. X axis denotes opening size, and Y axis
denotes the average simulation time (in seconds) to reach the 2m-1.5m zone.
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6.2.3 Opening Distribution

The distribution of openings may also affect smoke propagation. To investigate how

opening distribution influences smoke propagation, a set of models with different types of

distribution were simulated in FDS (figure 6.11). The total area of the openings in each

model is constant. The simulation results show that A and C types are most effective

in delaying smoke propagation, and D, E, and G types are least effective (figure 6.12).

Combined with the observation of the distribution drawings, it is very likely that evenly

distributed openings are more effective in delaying smoke propagation. To confirm and

generalize this claim, more extensive simulations are needed.
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Figure 6.11: Different types of grille distribution.
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Figure 6.12: Simulation results by distribution type.

6.2.4 Plenum Height

Plenum height also affects smoke propagation. CFAST simulations showed that the
higher the plenum space, the longer it takes for smoke to propagate to the next room. To
cross-validate and to more precisely investigate the effect of different plenum height on
smoke propagation, a set of models with different plenum height were simulated using
FDS. Figure 6.13 shows the section of the simulation models. The ceiling height remains
at 2.8m while the plenum height H varies in each model. There are total of nine models
with the lowest plenum height at 0.2m, increment of 0.1m, and the highest plenum height
of 1.0 m. In other words, the floor height of the models changes 0.1m incrementally. Floor
height is usually decided by many other important design factors, such as construction
costs, building codes, mechanical systems, the quality of the space, etc. However, theses
simulations are for pure research purposes of investigating the relation between plenum

height and smoke propagation.
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Figure 6.13: Plenum height.

Simulation results show that plenum height has little influence on room A and B (figure
6.14). On the other hand, in the rooms further away from the fire source, room C and D,
the time for smoke to reach the 2-1.5m zone is almost linearly proportional to the plenum

height.
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Figure 6.14: Simulation results by plenum height.
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6.2.5 Door Height

Door height can affect smoke propagation. CFAST simulations showed that the higher
the doors, the faster smoke propagates to the next room. To cross-validate and to more
precisely investigate how door height influences smoke propagation, a set of models with
various door height were simulated using FDS. There are total of 11 models with the
lowest door height at 1.8m, increment of 0.1m, and the highest door height of 2.8m. The
simulation results show that smoke propagation time is almost linearly proportional to

door height except for the fire of origin (figure 6.15).
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Figure 6.15: Simulation results by door height.

111



6.3 Summary of the Findings

As identified in CFAST simulations, FDS simulations also confirmed that ceiling
design and door design affect smoke propagation. FDS simulations provided more precise
insight on how opening ratio, opening size, opening distribution, plenum height, and door

height affect smoke propagation.

e Opening 16-50% of the ceiling has the maximum smoke delaying effect which can

delay smoke propagation time up to 60%.

e The size of the openings has little influence on smoke propagation when the

openings are evenly distributed and the total area remains constant.

e Different opening distributions have different smoke propagation time. Evenly
distributed openings are likely to have better smoke delaying effect. To confirm and

generalize this claim, more extensive simulation data are needed.

e The higher the plenum space, the longer the smoke propagation time. The relation

between plenum height and smoke propagation time is approximately linear.

e The higher the doors, the shorter the smoke propagation time. The relation between

door height and smoke propagation time is approximately linear.

This section presents examples that simulations can discover new knowledge which
building codes have not yet captured. If building smoke propagation simulation is
integrated into design process in the future, I believe that designers will be able to apply

creativity to the problems of smoke propagation and discover new solutions.
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7. CONCLUSION

A new software system architecture has been designed to incorporate smoke
propagation and evacuation simulation into BIM. The incompatibility between smoke
propagation simulation models, which use simplified building representations, and BIM,
which use complex and complete building representations, is arguably the primary
challenge of the integration. This research developed a set of algorithms that overcome
the incompatibility issue and thus enable designers to perform smoke propagation
simulation directly on a BIM model. To demonstrate the integration of smoke propagation
simulation and BIM, a software prototype was developed using C# and the Revit API. The
prototype allows architects with little prior knowledge of smoke propagation simulation
or CFAST user interface to perform smoke propagation simulation on a Revit model in a
few minutes. The visualization module shows how smoke propagates from one room to
another, which helps architects to better understand fire safety.

A simple multi-agent evacuation simulation model was developed using C# and Revit
API to provide architects with more informative feedback. As the default setting, the
agents evacuate through the shortest egress paths. At each simulation step, each agent
collects the data of the surrounding environment, such as CO concentration, which is
stored in the CFAST simulation results. At the end of the simulation, the software reports
the collected data about the agents as graphs. Architects can quantitatively evaluate fire
safety of their design based on the graphs. The evacuation results also can be visualized
as an animation which aids in visual inspection of the bottlenecks and flawed circulation
design. The evacuation simulation model provides more intuitive feedback to designers
compared to smoke propagation simulation alone.

The validity of the algorithms was tested by FDS simulations and CFAST simulations.
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The validation tests showed that the transformation algorithms introduced 5-10% of error
in the majority of the test cases, and the room selection algorithm introduced 2-7% of
error. A few extreme test cases (shed models) showed more than 10% of error.

Several pieces of new knowledge were found while performing smoke propagation
simulation in CFAST related to how ceiling design and door design affect fire safety. To
prove this finding and codify precise effects of ceiling design and door design on fire
safety, a series of FDS simulations were performed as experiments. The test simulation
showed that opening 16-25% of the ceiling can slow down smoke propagation speed up to
60%. The smoke deterring effect diminishes as the opening ratio increases to more than
50%. Besides opening ratio, the distribution of the opening and door height also affect

smoke propagation speed.
7.1 Contributions of the Research

The system architecture developed in this research allows seamless data flow from
BIM to smoke propagation simulation and evacuation simulation. The new system
architecture not only automated majority of the simulation workloads that have been done
manually until now, but also provides architects a user-friendly platform to perform smoke
propagation simulation without understanding the details and specialized knowledge
required by the simulation tools.

The simplified building definition used in zone models reduces practicality of
simulating real-world buildings. CFD models reduce practicality due to extremely long
running time. Both zone models and CFD models place a heavy burden on architects and
other building designers to understand complex tools and interfaces, arguably dissuading
the use of smoke propagation simulation in architectural design. The integration achieved
in this research overcomes the issues of complexity of shapes and simulation time. In

other words, the algorithms enabled the simulation of complex real-world buildings within
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a short amount of time. Through extensive validations tests, the algorithms are proven to
be accurate within a small margin of error. Although the software prototype developed in
this research used Revit and CFAST in specific, the algorithms can be generalized to other
zone models and BIM authoring applications. CFD models may also be incorporated
into a system using similar techniques, and could become practical if processing power
becomes more available.

This research provided insights on how ceiling and door design affect building fire
safety. 1). Opening 16-25% of the ceiling can deter smoke propagation up to 60%. 2).
Smoke deterring effect is better when the openings are evenly distributed. 3). Shorter
doors decrease smoke propagation speed. These findings need further validation tests with
different approaches so that they can be reliable to provide architects rules of thumb in
designing ceilings and doors. The advantage of these rules of thumb is that architects can
improve the fire safety of their design by applying the rules without the need of running any
smoke propagation simulation. The integration of smoke propagation simulation and BIM
provides a platform for designers and researchers to discover more new knowledge through
fire simulation. The ability to find new knowledge through simulation is not limited to
ceiling and door design.

In practical aspect, integrating smoke propagation simulation into architectural design
process helps designers to easily perform smoke propagation simulation with little prior
knowledge about smoke propagation simulation and the user interface of the simulation
tools. By enabling architects to visually examine their design, it also helps architects
to better understand smoke propagation and increase their tacit judgment about safety in
buildings. Ultimately, the integrated system provides architects with a new tool to help
them make data-driven design decisions and tacit understating, and thus improve the fire
safety of their design.

In educational aspect, the integrated system helps architecture students to better
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understand building fire safety. By incorporating a simulation tool into a design tool, it
provides students with a visual and straightforward way of learning building fire safety,
complementing knowledge obtained by reading books and articles.

Lastly, a minor contribution of this study is the results of the FDS resolution tests.
Setting the simulation resolution in FDS is a trade-off between accuracy and simulation
time. The results of the resolution tests conducted in this study serve as a guideline for

setting appropriate resolution when running FDS simulations.
7.2 Limitations

The primary limitation of this research is the degree of accuracy of the algorithms. The
algorithms used in this research introduce some amount of error. Validation tests of the
algorithms were conducted using FDS simulation and CFAST simulation which are also
not perfectly accurate compared to physical experiments. The amount of error is likely to
accumulate at each step of selecting 30 rooms, transforming the shape of the rooms, and
validating the algorithms. If each step has small enough error, the combined error will

have an acceptable upper limit.
7.3 Future work

The integrated system developed in this dissertation provides architects with rapid
design feedback. The interpretation of the simulation results and the optimization of the
design are left to the architects. Further studies are needed to improve the integrated
system such that it provides optimization suggestions to architects based on the simulation
results. This can help architects to focus on more important design decisions.

The integrated system is designed to perform an individual run for each room of fire
origin. To better understand the fire safety of a design, multiple simulation runs should
be performed with the fire origin set to a different room each time. Currently, it is

up to designers to gather the simulation results of each individual runs and analyze the
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simulation results. Running multiple simulations automatically by setting different room
of fire origin each time for all rooms would be a good feature to implement in the future.
This can provide designers with more useful feedback while reducing manual workload.

In the validation tests, the shed models generated disconcertingly large differences
between the models before and after the transformation. Conducting more extensive tests
with more target parameters to pinpoint the reason that caused errors in the shed models
would be another valuable work to do in the future. This may help to identify other factors
that affect the error rate of the transformation algorithms.

In CFAST, fire spread from one object to another is prescribed by the user, not by a
computer model. Prescribing fire is difficult and has a great impact on the accuracy of
smoke propagation simulation depending on how well the virtual fire matches the actual
fire. Creating a fire spread model in the future can increase simulation accuracy and reduce
manual work.

Rooms can be separated physically by walls or virtually by their functions. For
example, a lobby and a corridor are often separated by a virtual surface, not necessarily
by a wall. In this case, the virtual surface should be considered as a type of connection
that allows smoke propagation between the two rooms. Currently, TOFAST recognizes
doors as the only type of connection between two rooms. Virtual surfaces, defined as
room separator in Revit, need to be recognized as a type of connection between the rooms
in ToFAST. In addition, wall openings also need to be added as a type of connection
between two rooms.

The integrated system assumes that all walls extend to the slab of the upper floor. In
reality, walls may stop at a ceiling or even below a ceiling. How these walls impact smoke
propagation needs to be investigated in the future. Furthermore, new algorithms are needed
to account for the rooms with walls that do not extend to the slab of the upper floor.

The current version of TOFAST by default assumes that all doors are open in a building
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fire. CFAST provides the functionalities of setting the state of each door to closed, open,
partially open, or open after certain period of time. A user interface to set door state needs
to be added to ToFAST in the future.

This dissertation focused on the smoke propagation of building fires with respect to the
spatial configuration of building design. To improve simulation accuracy, HVAC systems,
pressurized stairwell, fire doors, and many other fire safety related features need to be
studied carefully.

The room selection algorithm used in the integrated system selects rooms based on
smoke travel distance. Other selection algorithms, such as eliminating the least influential
rooms, should be studied and compared to the current selection algorithm.

Integration of smoke propagation coupled with building evacuation into a Building
Information Model can potentially change design processes and practices in a significant
way. Future designers may well model these aspects of building performance as a routine

of their services and deliberations.
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APPENDIX A

VALIDATION TEST RESULTS FOR THE TRANSFORMATION ALGORITHMS

To investigate the validity of the transformation algorithms, a set of validation
tests have been performed. The models used in the validation tests include variety of
non-cuboid shape general rooms and corridors. These non-cuboid models were simulated
using FDS. Then, the models are transformed using the transformation algorithms,
and simulated using FDS. The results of the validation tests, before and after the
transformation, were compared and visualized with graphs. In each of the following
graphs, X axis shows the simulation time in seconds and Y axis shows the smoke height
in meters. The smoke height is calculated by averaging the sensor data in the room.
Cyan lines denote the simulation results of the original models, and the orange lines
denote the simulation results of the transformed models. The gap between the lines can
be interpreted as the error introduced by transforming the shape using the transformation

algorithms. The details of the simulation results are shown in the following figures.
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A.2 SIM Card Shape Models
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A.3 Circular Shape Models
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A.4 Gable Models
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A.5 Shed Models

Room A, shed roof 6x4, slope 0.25 Room B, shed roof 6x4, slope 0.25
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A.6 Vault Models
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APPENDIX B

VALIDATION TEST RESULTS FOR THE ROOM SELECTION ALGORITHM

To investigate the validity of the room selection algorithm, a set of validation tests have
been performed. A Revit model with exactly 30 rooms was built as the test model. First,
the entire model of 30 rooms was simulated using CFAST, the results of which were set
as the baseline that all following simulations were compared to. Then, part of the rooms
were selected from the 30 rooms using the room selection algorithm: 25, 20, 15, 10, and
5 rooms respectively. The results of the selected rooms were compared with the baseline
as shown in the following graphs. Among the simulation results, two of the most critical

indicators were selected for comparison: smoke height and CO concentration.

160



B.1 Smoke Height

B.1.1 Ignoring Scheme/ Connected to the Exterior
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B.1.2 Merging Scheme/ Connected to the Exterior
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B.1.3 Ignoring Scheme/ Not Connected to the Exterior

Smoke Height of Each Room: Not Connected to the Exterior (time: 0s)
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Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.
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Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.

—+—5Rooms —4—10 Rooms —&—15Rooms —-20 Rooms ~—@—25Rooms —e—30Rooms —e=CeilingHeight

174



Smeke Height (meters)

Smoke Height {meters)

2.5

15

0.5

25

15

0.5

Smoke Height of Each Room: Not Connected to the Exterior (time: 180s)

5 6 7 8 9 10 1u 12 13 14 15 16 17 13 19 20 21 22 23 24 25 26 27 28 29 30

Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.

——>5Rooms —4—10 Rooms —&—15Rooms —=20 Rooms —@—25Rooms —e—30Rooms —e=—Ceiling Height

Smoke Height of Each Room: Not Connected to the Exterior (time: 240s)

5 6 7 8 9 10 11 12 13 14 15 16 17 13 19 20 21 22 23 24 25 26 27 28 29 30
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Smoke Height of Each Room: Not Connected to the Exterior (time: 480s)
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B.1.4 Merging Scheme/ Not Connected to the Exterior

Smoke Height of Each Room: Not Connected to the Exterior (time: 0s)
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Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.
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Smoke Height of Each Room: Not Connected to the Exterior (time: 120s)

5 6 7 8 9 10 11 12 13 14 15 16 17 13 19 20 21 22 23 24 25 26 27 28 29 30

Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.
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Smoke Height of Each Room: Not Connected to the Exterior (time: 240s)
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Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.
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Smoke Height of Each Room: Not Connected to the Exterior (time: 480s)
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Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.
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Smoke Height of Each Room: Not Connected to the Exterior (time: 540s)

5 6 7 8 9 10 1u 12 13 14 15 16 17 13 19 20 21 22 23 24 25 26 27 28 29 30

Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.
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5 6 7 8 9 10 11 12 13 14 15 16 17 13 19 20 21 22 23 24 25 26 27 28 29 30

Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.
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B.2 CO Concentration

B.2.1 Ignoring Scheme/ Connected to the Exterior

Carbon Monoxide Concentration of Each Room: Connected to the Exterior (time: Os)
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Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.
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Carbon Monoxide Concentration of Each Room: Connected to the Exterior (time: 60s)
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Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.
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Carbon Monoxide Concentration of Each Room: Connected to the Exterior (time: 120s)
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Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.
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Carbon Monoxide Concentration of Each Room: Connected to the Exterior (time: 180s)
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Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.

4o SRMUCO —+—SRmMLCO ~©- 10 Rm UCO —&— 10 Rm LCO &+ 15 Rm UCO —— 15 Rm LCO -3¢ 20 Rm UCO
—=—20RMLCO - 25 Rm UCO —m— 25 Rm L:CO --@-- 30 Rm UCO —e— 30 RM LCO —s— Max
Carbon Monoxide Concentration of Each Room: Connected to the Exterior (time: 240s)
L]
S— PR3 & e —
—n— g
8 9 10 1 12 13 14 24 25 26 27 28 29 30

Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.
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Carbon Monoxide Concentration of Each Room: Connected to the Exterior (time: 300s)
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Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.
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—=—20RMLCO - 25 Rm UCO —m— 25 Rm L:CO --@-- 30 Rm UCO —e— 30 RM LCO —s— Max
Carbon Monoxide Concentration of Each Room: Connected to the Exterior (time: 360s)
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Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.
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Carbon Monoxide Concentration of Each Room: Connected to the Exterior (time: 420s)
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Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.
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Carbon Monoxide Concentration of Each Room: Connected to the Exterior (time: 480s)
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Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.
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Carbon Monoxide Concentration of Each Room: Connected to the Exterior (time: 540s)
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Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.
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Carbon Monoxide Concentration of Each Room: Connected to the Exterior (time: 600s)
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Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.
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B.2.2

Carbon menoxide (ppm)
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Merging Scheme/ Connected to the Exterior

Carbon Monoxide Concentration of Each Room: Connected to the Exterior (time: Os)
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Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.
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Carbon Monoxide Concentration of Each Room: Connected to the Exterior (time: 60s)
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Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.
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Carbon Monoxide Concentration of Each Room: Connected to the Exterior (time: 120s)
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Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.
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Carbon Monoxide Concentration of Each Room: Connected to the Exterior (time: 180s)
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Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.
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Carbon Monoxide Concentration of Each Room: Connected to the Exterior (time: 240s)
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Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.
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Carbon Monoxide Concentration of Each Room: Connected to the Exterior (time: 300s)
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Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.
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Carbon Monoxide Concentration of Each Room: Connected to the Exterior (time: 360s)
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Rooms in Order of Smoke Propagation. Room1 Contains the Fire Source.
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Carbon Monoxide Concentration of Each Room: Connected to the Exterior (time: 420s)
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Carbon Monoxide Concentration of Each Room: Connected to the Exterior (time: 540s)
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Carbon Monoxide Concentration of Each Room: Not Connected to the Exterior (time: 540s)
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