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ABSTRACT 

One of the key advantages of connectivity in highway environments is the 

possibility of shockwave detection at the onset of formation, which can provide more 

flexibility in mitigating congestion. Past research used data from radar guns and loop 

detectors to show that a rapid increase in speed variance could be an indicator of 

shockwave formation. This paper investigates the possibility of utilizing connected 

vehicles data and vehicle trajectory data to determine if any increase in speed variance 

over distances could be an indicator of shockwave formation. Moreover, the effects of 

limited information in a connected driving environment on shockwave detection based 

on speed variance were explored. 

Two datasets were evaluated: I-5 Connected Vehicles dataset and NGSIM US 

101 dataset. Six segments analyzed in the I-5 dataset showed that a jump in speed 

variance could detect congestion earlier than looking at average speed alone. The 

NGSIM US 101 scenarios of 100, 50 and 10 percent market penetration rates (MPRs) 

were analyzed assuming 100, 80, and 50 percent of speed data were received at each 

time step. For MPRs of 100 and 50 percent, speed variance was able to identify the six 

shockwaves in the dataset. The RMSE, calculated for various MPRs, showed an inverse 

relationship to MPR. 

The impact of misinformation from potential cyberattacks or equipment 

malfunctions was also tested on the US 101 dataset. Speed variance was more robust 

than average speed when speeds were reported either higher or lower than actual speeds. 
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When speeds were falsely reported as a combination of higher and lower than actual 

speeds, variance continually increased, though a jump in variance was still an indication 

of shockwave formation. When incorrect speeds were reported for only a high variance 

interval by 1-5 mph and 5-10 mph, speed variance remained a strong indicator of 

congestion formation. Analyzing the US 101 dataset with larger distance intervals, by 

individual lanes, and by different lane aggregations improved variance based shockwave 

detection reliability. Shockwaves detected earlier and more reliably can delay 

shockwave propagation and further reduce negative impacts on safety, performance, and 

emissions. 
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CHAPTER I 

INTRODUCTION 

 

 The development of intelligent transportation systems (ITS) including wireless 

communication technologies like dedicated short-range and cellular communications has 

sparked research into the benefits of connected vehicle (CV) applications. One major 

focus of the U.S. Department of Transportation’s ITS Strategic Plan 2015-2019 is the 

adoption and deployment of CV systems (1). Past research has indicated the benefits of 

connected vehicles to reduce energy consumption, decrease emissions, and improve 

safety and mobility (2-5). CV technology provides the opportunity to increase 

throughput and improve the stability of traffic flow on highways (6). In a CV network, 

individual vehicles can communicate with each other and with the infrastructure through 

vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications 

respectively. CVs send out basic safety messages (BSM) that include real-time updates 

of a vehicle’s status including its location, speed, and acceleration from its on-board unit 

to other vehicles’ on-board units or to the infrastructure’s roadside unit and receive the 

same types of information in return. These technologies allow in-depth knowledge of the 

microscopic traffic flow state within a segment. The vehicle trajectory data gained from 

having a connected vehicle system can be used to detect, and therefore delay shockwave 

propagation in advance of an upcoming bottleneck or traffic jam.  

Inductive loop detectors that are sawed into the pavement are one of the most 

common types of vehicle detection methods. However, with construction 
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implementation costs and the ability to only relay macroscopic traffic characteristics of 

speed and occupancy at specific locations, connected vehicle data is preferred as it 

allows for greater accuracy. Stephens et al. infused data from a connected vehicle 

platoon updated every 0.1 miles with data from in-pavement traffic sensors placed every 

half-mile (7). The average speeds calculated from the connected vehicle platoon showed 

the back of queue could be detected at an earlier time and milepost than using 

infrastructure-based data alone (7). From the speed distribution of individual vehicles 

captured with CV technologies, the speed variance of vehicles can also be calculated to 

detect the starting point of congestion formation possibly even more accurately and 

earlier than average speed alone.   

Currently, several vehicle manufacturers have deployed connected vehicle 

technologies into their newest models (8). In addition, the National Highway Traffic 

Safety Administration has proposed a new safety standard to require all new light 

vehicles to have V2V capabilities (9). However, the current market penetration rate 

(MPR) of vehicles equipped with V2X communications is very low. Even with low 

market penetration rates, the traffic flow state of a system can still be assessed, though 

the limitations in accuracy must be explored.  

With increasing market penetration of these connected vehicle technologies, 

there are also cybersecurity concerns. Lead cybersecurity experts and automotive 

stakeholders see cybersecurity as one of the biggest threats to vehicle manufacturers and 

find the current state of the industry to be unprepared for these potential attacks (10; 11). 

Cybersecurity has become a major issue due to increasing complexity from 
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approximately 100 million lines of code in a vehicle, to increasing connectivity causing 

vehicles to become more accessible, and to more personal data being available in car 

networks which can lead to identity theft (12). The on-board unit and roadside unit can 

also malfunction and send false data. Therefore, this research explores the effect of 

different MPRs and misinformation on speed variance used to detect shockwaves.    

 

MOTIVATION AND CONTRIBUTION 

 

A shockwave occurs when traffic transitions between a free-flow state and a 

congested state (13). It involves a discontinuity of flow or density which causes vehicles 

to change speeds quickly in a short amount of time (14). Vehicles approaching the 

shockwave have to all pass through the jammed area. This causes many negative impacts 

on overall system performance by increasing travel times through a segment, on safety 

from constant acceleration/deceleration behavior of vehicles, and on emissions from 

increased fuel consumption (15). The queue discharge rate from a shockwave is also 

lower than the free flow capacity of a freeway which affects performance (15;16).  

Overall, the impacts on safety, performance, and emissions show that detecting 

shockwaves at the onset of formation is an important step to mitigate its consequences 

which is the focus of this research. Early detection allows drivers to be more aware of 

the situation ahead, reduces speed differentials, slows down congestion formation, and 

smooths overall traffic flow. It allows for control strategies like variable speed limit 

systems to be initiated earlier. The shockwave detection method used in this research is 

also tested against different factors to test and improve its reliability.   
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PROBLEM STATEMENT 

Previous studies used radar guns and loop detectors to show that a rapid increase 

in speed variance could be an indicator of shockwave formation. This study revisits the 

idea and utilizes connected vehicles data and vehicle trajectory data to determine if any 

increase in speed variance over distances could be an indicator of shockwave formation. 

 

RESEARCH OBJECTIVES 

This study has three major objectives that support the overall problem statement, 

as outlined below: 

1. To determine whether speed variance calculated from connected vehicle data can 

be used to detect congestion formation, 

2. To examine the effects of partial connectivity through various MPR and packet 

delivery rate (PDR) scenarios and of misinformation on speed variance and its 

ability to detect shockwave formation. PDR is defined as the percentage of speed 

data received at each time step. MPR is defined as the percentage of connected 

vehicles over the 15-minute period, and  

3. To examine the effect of individual lanes and lane aggregations on speed 

variance used to detect shockwaves.  

 

RESEARCH APPROACH 

How objectives 1-3 above will be achieved in this study are outlined in steps 1-3 

below, respectively: 
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1.  Average speeds and speed variances calculated from a CV demonstration along 

I-5 in Seattle with 19 equipped vehicles will be analyzed for several segments 

that show shockwave formation to determine if there is a connection between 

speed variance and average speed. Average speed and speed variance will also be 

analyzed for a vehicle trajectory dataset on a segment of US 101 over a 15-

minute period considering 100% MPR and 100% PDR. 

2. The following additional percentages of MPR will be analyzed for the US 101 

vehicle trajectory dataset: 50 and 10. For each MPR case, the following PDR 

percentages will be analyzed: 100, 80, and 50. Speed variance will be calculated 

for each MPR and PDR case. For every scenario besides a 100% MPR and 100% 

PDR, ten iterations will be completed. From these iterations, the lowest MPR and 

PDR case where high speed variance can be used to detect shockwave formation 

can be found. Speed data will also be manipulated and speed variances will be 

recalculated to examine the effects of misinformation. 

3. The US 101 dataset will be analyzed by individual lanes and different lane 

aggregations to improve the use of speed variance as a shockwave detection 

method.  

The main programs that will be used are Matlab, Microsoft Excel, and Google 

Earth. Speed variance will be calculated using (1) which is the standard sample variance 

equation. The v represents the average speed and the vi represents ith speed in a 

particular time and distance interval. The n is the number of speeds recorded in a 
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particular time and distance interval. Average speeds will also be calculated for each 

interval. 

    (1) 

 

THESIS ORGANIZATION 

This thesis consists of seven chapters. Chapter I provides an introduction to the 

research, the objectives, and the approach. Chapter II presents background information 

and relevant literature on the major research topics. Chapter III presents the two major 

datasets used in the study: I-5 and US 101. Chapter IV analyzes the data and presents the 

results of using speed variance as an indicator of congestion formation. Chapter V 

analyses the effects of partial connectivity and misinformation on using speed variance 

to detect shockwaves in the US 101 dataset. Chapter VI attempts to improve the 

shockwave detection method by performing different lane analyses. Chapter VII 

provides a summary of the work, lists major findings and limitations of this study and 

proposes future work. 
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CHAPTER II 

LITERATURE REVIEW 

 

The following literature review covers background information on the traffic 

flow theory of shockwave formation, on current shockwave detection methods and 

control strategies, and on cybersecurity problems associated with connected vehicle 

technology.  

 

TRAFFIC FLOW THEORY 

In the presence of a traffic jam due to an incident or bottleneck, traffic moves 

from a free flow state to a congested state to create a shockwave. Three different traffic 

flow states have been defined in literature: free flow, synchronized flow, and traffic jams 

(17). The synchronized flow state is characterized by the inability to pass other vehicles 

due to higher densities than in the free flow state (17). Observations of traffic flow on 

German highways have shown that there are common characteristics of phase transitions 

between the three traffic flow states (18). Flow and speed were calculated using loop 

detectors placed along a segment that had two off-ramps and one on-ramp (18). Traffic 

can transition from a free-flow state to either a synchronized or jam state depending on 

whether there is a development of a local perturbation, as caused by inflow at ramps, or 

random perturbation (18; 19). Phase transitions in traffic flow cause a sharp decrease in 

vehicle speeds (18). The speed variance in the synchronized flow state was observed to 

be lower than in the free flow state due to the higher density which restricts movement 
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(18). In addition, speed variance for different lanes in synchronized flow is similar 

unlike in free flow (18; 20). Stop-and-go phenomena are also created from phase 

transitions from free to synchronized to the jammed state (21). From the synchronized 

flow state, flow can transition into a higher density state where random local 

perturbations can expand and form a jam (21).  

Previous studies have suggested using both macroscopic models (22; 23)  and 

microscopic models (24) that the broadening of the speed distribution can indicate traffic 

breakdown. There is an increase in speed variance within the free flow state immediately 

before it turns into the jammed state (25; 26). There is a rapid increase in speed variance 

near the jamming point (22). Similar to fluid dynamics, the transition between free flow 

and higher density traffic states is marked by large fluctuations (22). R.D. Kuhne (22) 

plotted standard variation of speed against the equilibrium density and found that a sharp 

increase in standard variation was associated with the instabilities formed by jams and 

stop-start waves. Therefore, the speed variance of vehicles can be tracked across 

distance and time, and any sharp increases may suggest an upcoming jamming point. 

The main limitations of previous studies were their reliance on radar data and the ability 

to only detect breakdown at the location of the radar. CV technology provides the 

opportunity to track changes in speed across a segment for greater shockwave detection 

accuracy.   

Past research had also found that shockwaves were initiated by and grow in 

amplitude with lane changing (27; 28). Shockwaves may be attributed not only to car-

following behavior but also to lane changing (27). This research also explores the idea 
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by analyzing the multi-lane US 101 dataset for the connection between speed variance 

and the number of lane changes.  

 

 

SHOCKWAVE DETECTION METHODS 

The traditional method for shockwave detection is to track speed and density 

changes using a time-space graph that shows traffic states and a density-flow graph, or 

fundamental diagram, that shows the state’s density and flow values (13; 15; 29). A 

shockwave is detected by checking whether the flow and speed values are below certain 

thresholds (29). Lighthill and Whitham (30) developed one of the original shockwave 

theories by relating traffic flow to kinematic waves. Richards (31) related traffic flow 

with a continuous “fluid” density and the speed-density diagram and used a shearing 

process for following shockwaves. One of the main limitations to traditional approaches 

is that the density values needed are hard to measure along freeways. Density is often 

estimated from loop detectors that provide occupancy values. Loop detectors provide 

aggregate information and are installed at set distance intervals. Therefore, detecting the 

start of a shockwave is often dependent on the number and spacing of the detectors.  

Another approach to detecting bottlenecks and oscillations on freeways is the 

wavelet transformation method (32). Wavelet transform is a decomposition tool that 

extracts information from stationary time-series data (32; 33). Wavelet-based energy is 

used to identify the location of a bottleneck and queue formation by tracking changes in 

average speeds from loop detectors (32). Wavelet transformation was also used to 

analyze individual vehicle trajectories from NGSIM data to detect oscillations, or 
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shockwaves, by tracking deceleration behavior (32). Wavelet-based energy peaks are 

tracked as the shockwave propagates over time and space (32). Talebpour et al. (34) 

modeled acceleration behavior using a similar approach assuming vehicle trajectory data 

will be available with connected vehicles. One study applied a numerical algorithm to 

the NGSIM dataset and estimated the propagation speed to be about 11.4 mph for all 

shockwaves regardless of the speed before the segment becomes congested but did not 

look specifically into the start of the shockwave (35). This paper focuses on shockwave 

detection and presents a different approach to the wavelet transformation based method. 

Once a shockwave is detected, different control strategies can be put into place including 

a speed harmonization or variable speed limit system (36-38). The earlier a shockwave 

can be detected, the faster these systems can be initiated. Benefits of a variable speed 

limit system include improvements in safety (39), delaying or preventing traffic 

breakdown (40), and environmental benefits (41).  

 

 

CYBERSECURITY 

Connected vehicle systems are susceptible to cyberattacks, and robust security 

systems are required in their deployment (42). Applications on vehicle carry-in devices 

with possible virus and malware increase the chances of an attack to vehicle electronics 

(43). Cyberattacks can originate from the infrastructure including roadside units, security 

systems, and other vehicles (44). The V2V wireless interface is susceptible to spreading 

malware quickly if compromised (45). Attacks could potentially happen from anywhere 

which was made evident when researchers in Pittsburgh were able to take control over a 
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vehicle traveling in St. Louis by accessing the short-range wireless connections to 

Bluetooth units inside the vehicle to take over in-vehicle networks (46). Wireless attacks 

can pose major threats to passenger safety (46). Limited connectivity is one of the main 

difficulties of vehicle cybersecurity (43). Another high threat for connected vehicles are 

fake BSMs which can generate wrong driver reactions (44). Manipulating BSMs can 

include falsifying a vehicle’s global position and speed. Therefore, this project looks at 

the cybersecurity issues of partial connectivity with each market penetration scenario 

and of misinformation. This study is not concerned with the origin or cause of these 

cyberattacks, but rather how the manipulation of messages sent between the 

infrastructure and the vehicle can affect the reliability of a speed distribution based 

approach for shockwave detection. Incorrect speed messages can be sent due to 

equipment malfunction as well. These issues will be analyzed by looking at different 

packet delivery rates (PDR) to simulate message delivery failures and by introducing 

false messages into the system to examine the effects of misinformation on speed 

variance.   
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CHAPTER III 

DATASETS 

 

This chapter introduces the two main datasets used for the analysis: the I-5 CV 

small-scale demonstration dataset and the US 101 vehicle trajectory dataset. 

 

I-5 INFLO DATASET 

In order to determine whether there was a connection between shockwave 

formation and high speed variance, data was analyzed from the Intelligent Network Flow 

Optimization (INFLO) prototype small-scale demonstration. In the INFLO 

demonstration, vehicles were equipped with CV systems to send BSMs (7). These 

vehicles drove the I-5 corridor in Washington in small platoons from Monday, January 

12, 2015 to Friday, January 16, 2015 (7). BSMs were sent through on-board units in the 

vehicle using dedicated short-range communications when passing by roadside safety 

units (RSU) along the highway and using cellular radio otherwise (7). BSMs contained 

information such as a vehicle’s location and speed (7). Vehicles drove in a loop on I-5, 

starting nine miles south of downtown and ending fourteen miles north of downtown 

before exiting and turning around (7). Points of high congestion surround the downtown 

area (7). Figure 1 shows a Google Earth overview of the I-5 study corridor in Seattle (7). 

Light green pins indicate the north (Edmond, WA) and south (Tukwila, WA) entrance 

and exit points of the demonstration route. 
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Figure 1: I-5 INFLO small-scale corridor overview (7) 

 

 

 

Data from the INFLO demonstration collected on January 16, 2015 were 

analyzed for this study (47). There were 19 equipped vehicles that completed the 

demonstration on Friday morning (7). Data were recorded for both the northbound (NB) 

and southbound (SB) directions of I-5. NB vehicle data were recorded along I-5 from 

South 129th Street bridge to the 220th Street Southwest exit which is a segment length 

of about 22.5 miles. SB vehicle data were recorded along I-5 from about 212th Street 
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Southwest to the Interurban Avenue exit which is a segment length of about 23.5 miles. 

Over 30,000 data points were recorded for both directions combined. On Friday 

morning, vehicles were released around 30 seconds apart from each other (7). Drivers 

were told to drive normally, passing other vehicles and changing lanes according to 

conditions, and were not required to stay in the same order (7). The participants 

completed two loops along the test route (7). 

 

US 101 DATASET 

Vehicle trajectory data was analyzed from the Next Generation SIMulation 

(NGSIM) program (48). In the NGSIM program, vehicle trajectory data was collected on 

the southbound direction of US 101/Hollywood Freeway in Los Angeles, CA on 

Wednesday, June 15th, 2005, from 7:50 a.m. to 8:35 a.m. The study segment was 

between the on-ramp at Ventura Boulevard and the off-ramp at Cahuenga Boulevard, 

contained five main lanes, and was approximately 2,100 feet long. Data was collected 

through eight video cameras mounted on top of a nearby building and a computer 

program was used to convert the images into vehicle trajectory data. The final dataset 

includes each vehicle’s geographical coordinates, speeds, lane positions, and 

accelerations that passed through the section at every one-tenth of a second. This project 

looks at the data collected from 7:50-8:05 a.m.  
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CHAPTER IV 

SPEED VARIANCE AS AN INDICATOR OF CONGESTION FORMATION 

 

 This chapter analyzes shockwave formation in both the I-5 and US 101 datasets 

and explores differences in using average speeds versus speed variances to detect 

shockwaves. Matlab was used to create all average speed and speed variance plots.  

 

I-5 DATA ANALYSIS AND RESULTS 

Data Preprocessing 

The dataset came with the timestamp of the BSM in one-minute intervals in 

Universal Coordinated Time from 1:47 p.m. to 5:33 p.m. The speed of the vehicle at the 

time of the BSM was reported in mph with at least four decimal places. The vehicle’s 

location at the time of the BSM was reported by latitude and longitude in degrees. The 

mile marker (MM) location of the vehicle on the corridor at the time of the BSM was 

rounded to two decimal places. MM information was used to group the data into 

intervals. Data points with negative mile marker locations were filtered out. Vehicles 

that reported speeds of exactly 0 mph were also filtered from the dataset, so vehicles that 

may have stalled or stopped after taking an exit were excluded from the analysis. 

Heading was given on a range of 0 – 360. Data points were plotted on Google Earth with 

a heading label. From the plot, headings that fell within the SB and NB range were used 

to sort the data by direction. After plotting the dataset on Google Earth for the NB and 

SB directions separately, it was found that certain data points were scattered especially 
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at locations when the highway went through a tunnel. Sometimes the BSMs were from 

vehicles located on exit ramps.   

After cleaning up the data, BSMs from vehicles at MM 156.5-164 and MM 169-

179 were analyzed for the NB and SB directions respectively. The highest speed limit 

along the corridor is 60 mph, and there are segments with active variable speed limit 

signs. Average speeds above 45 mph were determined to be in an uncongested state. 

Average speeds between 25 and 45 mph were determined to be in a transition state, and 

average speeds below 25 mph were determined to be in a congested state.  

Distance Interval Selection 

CVs transmit messages every 0.1 seconds, but the data came with a timestamp in 

one-minute intervals, so average speed and speed variance were calculated every minute. 

Intervals of different distances were tested to determine which interval length would give 

the best results. Based on the table of average speeds, three segments that made a 

transition from uncongested to congested flow states were selected for the NB and SB 

directions respectively. The 0.2-mile segments did not show a high speed variance to 

indicate the start of congestion for all the NB cases. Similarly, the 0.25-mile segments did 

not show a high speed variance for all the NB cases. This could be due to the low number 

of BSMs reported in each interval. As market penetration rises, the number of BSMs in 

each time and MM interval will increase. Then smaller intervals can be used to locate the 

start of congestion even more accurately.  

The 0.5-mile interval showed a jump in variance for all of the NB and SB cases. 

The detection of congestion with speed variances in 0.5-mile segments is similar to what 
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is currently used with loop detectors. In order to shorten the interval length to detect 

congestion at earlier mile markers, a rolling horizon approach updated every 0.25 miles 

was used. This way, the speed variances of 0.5-mile segments would detect the start of 

congestion 0.25 miles earlier. The optimal segment length will most likely vary 

depending on the number of CVs and accuracy of the data. For this study, the rolling 

horizon approach using 0.5-mile segments updated every 0.25 miles showed the jump in 

speed variance values needed to detect the start of congestion.  

Results 

Figure 2 shows the contour plot of average speed and speed variance for each 

time and mile marker interval of a segment in the NB direction. This segment took a 

long time to converge to the congested state compared to other segments. All intervals 

that did not have data were given an average speed of 60 mph and speed variance of 0. 

The 158.5-159 MM interval at 15:12 where the average speed first dipped below 45 mph 

also had a speed variance of over 100. This speed variance is 23 times the amount of the 

speed variance in the previous interval. The average speed variance for the free flow 

state of the segment was 3.4. The sharp increase in speed variance from interval to 

interval is an indication of congestion. After the two intervals of high speed variance 

over 100, the speed variance significantly drops. This is most likely due to the higher 

densities of vehicles in the congested state restricting speed differences. The segment 

reaches the congestion state (under 25 mph) starting at 15:16 in MM 160.5-161. 

Therefore, the high speed variance was able to detect congestion formation two miles 

before and four minutes earlier than using the average speed alone. 
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Figure 2: Example of long-time convergence to congested state (northbound) 

 

 

 

Figure 3 shows the contour plot of average speed and speed variance for each 

time and mile marker interval of a segment in the SB direction with a short-time 

convergence to the congested state compared to other segments. Average speeds under 

45 mph are reported early on in the segment. However, this does not necessarily mean 

congestion will form. A very high speed variance of 126 was reported at 15:43 in the 

MM 171.75-172.25 interval with an average speed of 45 mph. The segment reached the 

congestion state at 15:44 in MM 171.25-171.75. Therefore, a high speed variance was 

able to detect congestion 0.5 miles before and one minute earlier than using the average 

speed alone, although the time to congestion was shorter. 
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Figure 3: Example of short-time convergence to congested state (southbound) 

 

 

 

The four other segments analyzed can be seen in Figure 4. All six segments had a 

time and mile marker interval with a speed variance of over 100. For the dataset 

analyzed, a speed variance of over 100 indicates a high probability of leading to 

congestion. A high speed variance was able to detect congestion at least one minute 

and/or 0.25 miles earlier than when the average speed dropped below 25 mph indicating 

the congestion state. The exact value may differ depending on the market penetration 

rate. However, if the speed variance is tracked over time and distance, sharp increases in 

speed variance with an average speed in the transition range have shown to be strong 

indicators of congestion formation. An average speed that is in the transition range does 

not necessarily lead to the congested state every time. Speed variance calculated along 

with the average speed can be a more reliable indicator of the possibility of congestion 

formation.  
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Figure 4: Average speed vs. speed variance for segments along I-5 

 
(a) Segment 3: Congestion detected one minute earlier (NB) 

 
(b) Segment 4: Congestion detected 0.25 miles earlier (SB)` 

 
(c) Segment 5: Congestion detected one minute and 0.25 miles earlier (NB) 

 
(d) Segment 6: Congestion detected one minute earlier (SB) 
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Since only a small number of the total flow of vehicles along I-5 were connected, 

the average speed calculated may not accurately reflect the actual state of the system. 

However, a connection was still found between the average speed and speed variance 

during shockwave formation. The following section looks at trajectory data from all 

vehicles within a segment, simulating a fully connected environment, to examine how 

speed variance changes in relation to average speed. 

 

US 101 DATA ANALYSIS AND RESULTS  

Data Preprocessing 

Data was analyzed from 7:50 a.m. – 8:05 a.m. To preprocess the data, Montanino 

and Punzo’s (49) multistep corrections were applied to the dataset but no outliers were 

found according to the acceleration threshold given in the corrections. In the first 100 ft. 

of the 2100 ft. segment, there was a lack of data most likely due to an error in recording 

all the vehicles. Intervals with an insufficient number of data points were plotted but not 

included in the analysis.     

Speed Variance over a Fixed Point vs. a Distance 

All previous research that had found a connection between speed variance and a 

transition into the jammed state had used aggregated data from fixed-location detectors 

to make their conclusions. In this study, connected vehicle data was aggregated from 

several locations over a distance. Aggregating speed data over one point versus a 

distance can produce different results. To ensure that the connection still holds between 

high speed variance and congestion formation, data from US 101 was used to find 



 

22 

 

 

average speed and speed variance as vehicles passed close (<16 feet since this was the 

average length of a vehicle) to the midpoint of a distance interval and for all vehicles 

passing over the distance interval. Both versions show similar results, especially in 

average speeds. However, the speed variances calculated over a distance are higher than 

when calculated at a fixed point. This is expected, since speeds are more likely to vary 

over a segment than at a fixed point. Figure 5 shows a sample of the results of average 

speed and speed variance calculated over a distance versus a fixed point for US 101 over 

a 5-minute period from 7:50:20 a.m. – 7:55:20 a.m.  

Distance and Time Interval Selection 

As mentioned previously, there is an optimal time/distance interval for each 

dataset. Distance and time intervals were chosen empirically and logically as a way to 

break up the segment and track shockwave propagation. Lu et al. (50) suggested using 

500 ft. sections for modeling fundamental diagrams using NGSIM vehicle trajectories. 

However, since the segment is only 2100 ft. long, this would be too long to be able to 

track the shockwave. Using a time interval of 20 seconds, average speeds and speed 

variances were calculated for the 15-minute period with distance intervals of 100, 150, 

and 200 feet. 150 feet showed the clearest results. Then, using a distance interval of 150 

feet, average speed and speed variance were calculated for 10, 20, 30 and 60 second time 

intervals. Generally, the shockwaves in the data became clearer as the time interval 

shortened. Time and distance intervals of 20 seconds and 150 feet were chosen for 

further analyses. The plots of the other distance and time intervals can be found in the 

Appendix.  
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(a) Average Speed Over Fixed Point (b) Average Speed Over Distance 

  
(c) Speed Variance Over Fixed Point  (d) Speed Variance Over Distance 

Figure 5: Average speeds and speed variances calculated over a distance vs. a fixed point for US 101 from 7:50:20-

7:55:20 a.m. 

100 300 500 700 900 1100 1300 1500 1700

0-20 23 26 27 31 31 32 33 35 40

20-40 23 27 30 32 32 31 31 34 37

40-60 24 26 30 32 29 27 27 35 37

60-80 20 23 27 23 20 24 30 35 38

80-100 19 22 17 18 26 30 32 34 36

100-120 17 17 21 27 31 33 35 36 37

120-140 17 21 26 31 32 35 36 38 39

140-160 23 25 28 32 33 35 38 40 42

160-180 25 29 28 30 32 34 37 39 40

180-200 26 29 29 29 30 30 34 39 41

200-220 28 28 28 30 24 24 31 36 39

220-240 27 25 25 20 19 24 28 36 38

240-260 21 20 17 15 19 28 30 35 38

260-280 14 16 17 22 24 27 31 35 38

280-300 15 23 24 27 27 27 30 36 38

Midpoint of Distance Interval (ft)Time Interval 

(sec) 0-200 200-400 400-600 600-800 800-1000 1000-1200 1200-1400 1400-1600 1600-1800

0-20 23 25 28 31 32 33 35 36 39

20-40 24 26 30 33 33 32 32 34 37

40-60 25 26 30 32 30 28 28 35 37

60-80 20 22 27 25 22 25 30 35 38

80-100 20 20 17 19 26 31 33 35 36

100-120 17 17 21 28 32 33 35 37 37

120-140 19 21 26 31 33 36 37 38 39

140-160 23 25 28 32 34 35 38 40 42

160-180 26 28 29 30 33 34 38 39 40

180-200 27 28 30 30 31 31 35 39 41

200-220 28 28 29 30 25 25 31 37 39

220-240 28 25 25 21 19 25 30 36 38

240-260 21 19 17 16 21 28 31 35 39

260-280 14 15 18 23 25 28 32 36 38

280-300 17 22 24 28 28 27 30 36 39

Time Interval 

(sec)

Distance Interval (ft)

100 300 500 700 900 1100 1300 1500 1700

0-20 6 13 13 10 19 24 20 16 8

20-40 8 7 14 11 5 24 48 15 13

40-60 10 17 8 14 44 68 83 15 7

60-80 37 21 15 78 137 97 61 14 8

80-100 18 20 120 147 60 26 19 10 10

100-120 58 93 72 22 7 9 9 13 16

120-140 55 13 20 19 7 8 17 9 9

140-160 7 6 7 9 13 12 14 11 10

160-180 6 4 8 24 10 11 10 8 5

180-200 13 5 7 4 8 16 9 6 7

200-220 21 5 6 10 20 40 14 9 18

220-240 18 7 11 60 51 31 64 11 11

240-260 27 47 70 69 48 20 34 20 11

260-280 33 42 35 16 8 10 15 18 24

280-300 39 8 7 10 9 12 15 7 7

Midpoint of Distance Interval (ft)Time Interval 

(sec) 0-200 200-400 400-600 600-800 800-1000 1000-1200 1200-1400 1400-1600 1600-1800

0-20 7 12 14 14 25 36 38 16 13

20-40 9 11 17 13 9 26 44 20 16

40-60 10 17 11 15 47 78 96 19 9

60-80 39 30 35 97 145 119 77 20 10

80-100 16 36 134 172 104 40 27 11 11

100-120 64 90 84 33 9 10 11 15 18

120-140 50 19 27 20 10 11 19 10 10

140-160 10 9 8 11 14 12 15 13 12

160-180 7 7 8 20 13 12 12 8 6

180-200 12 6 6 5 9 16 14 7 8

200-220 21 7 10 19 32 39 24 11 16

220-240 19 9 14 67 65 40 57 14 13

240-260 40 51 81 89 63 29 38 23 13

260-280 38 40 41 25 22 23 30 22 24

280-300 37 9 12 14 14 17 22 10 7

Time Interval 

(sec)

Distance Interval (ft)
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Average Speed and Speed Variance 

Average speed and speed variance were calculated for the five main lanes of US 

101 using time and distance intervals of 20 seconds and 150 feet from 7:50 a.m. – 8:05 

a.m.  Figure 6 shows the results. The section number is the number of each 150 feet 

section from 0 – 2100 feet and the time step is in units of 0.1 seconds from 7:50 a.m. 

The time steps plotted are the times at the midpoint of each 20 second interval from 7:50 

a.m. – 8:05 a.m.  

 

 

  
(a) Average Speed (b) Speed Variance 

Figure 6: US 101 from 7:50 – 8:05 a.m. in 150 ft. and 20 sec. intervals 

 

 

 

From the figure, seven distinct segments with congestion (average speeds < 20 

mph) can be seen within the 15-minute period. These are most likely caused by the 

merging maneuvers of vehicles from the on- and off-ramps. By color-coding the 

intervals with high speed variance, a similar pattern is shown in the speed variance plot. 

The highest average speed calculated was 44 mph, so the transition range between 

uncongested and congested conditions was determined to be between 20 and 30 mph. 
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When looking at the values, the shockwaves are more distinct in the speed variance data 

than in the average speed data. Each shockwave is separated by intervals of speed 

variance values less than 12. After a few intervals of high speed variance when vehicles 

are transitioning to the congested or uncongested state, the speeds stabilize so the 

variance decreases. This is a contrast to the average speed data which shows a gradual 

decrease in speed values, so there is no clear line of transition between the states. The 

difference in ranges (uncongested, transition, and congested) is also much higher in the 

speed variance data than in the average speed data. Therefore, jumps in the speed 

variance are a more reliable indicator of a shockwave formation than looking solely for 

drops in average speed. Typically, sharp increases in speed variance were able to detect 

the shockwave in the same or one time/distance interval before average speeds were in 

the congested range.  

 

SUMMARY 

This chapter analyzed CV data collected from a demonstration along I-5 in 

Washington in both the NB and SB directions. A rolling horizon approach with 0.5-mile 

intervals updated every 0.25 miles was used to plot the data. A total of six segments 

analyzed showed that a speed variance of over 100 with an average speed in the transition 

range could accurately detect congestion formation at least one minute and/or 0.25 miles 

earlier than using the average speed alone. The exact value for high speed variance may 

differ depending on the market penetration rate and interval size but a sharp increase in 

speed variance is a strong indicator of congestion formation. A different interval size and 
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higher market penetration rate may detect shockwaves even earlier and more accurately. 

Average speeds and speed variances were calculated for a vehicle trajectory dataset of US 

101 over a 15-minute period using 150 feet and 20 second intervals. From the 100% 

connectivity case, it was observed that an increase in speed variance was an indicator of 

congestion formation. This finding can be used to initiate speed harmonization 

applications including variable speed limit systems to increase throughput and delay 

shockwave propagation with a more uniform traffic flow. The earlier a shockwave can be 

detected, the faster the variable speed limit system can be implemented and the more 

effective it will be on resulting traffic operations.  
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CHAPTER V 

EFFECTS OF PARTIAL CONNECTIVITY AND MISINFORMATION ON 

SHOCKWAVE DETECTION ACCURACY 

 

This chapter analyzes the effects of partial connectivity and misinformation on 

using speed variance for shockwave detection. This chapter also provides a comparison 

between the results of the I-5 segments and the lower connectivity cases of US 101.  

 

PARTIAL CONNECTIVITY 

For every MPR, the BSMs of only a percentage of the total number of vehicles 

that had passed through the segment over the 15-minute period were considered. The 

dataset came with a unique vehicle ID number for every vehicle that passed through the 

segment. Vehicles that were “connected” were chosen randomly. For every PDR, only a 

percentage of the BSMs of the “connected” vehicles were received at each time interval 

over the whole segment. This was done to simulate message delivery failures due to 

connectivity issues or cyberattacks. The BSMs that were received from the vehicles were 

randomly chosen and updated at each time interval. MPR rates of 100%, 50%, and 10% 

were analyzed along with PDR rates of 100%, 80%, and 50%. Figure 7 and Figure 8 

show how average speed and speed variance respectively change as the connectivity 

decreases with each case for one iteration. Intervals with insufficient data points were 

color-coded white.  
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(a) 100% MPR, 80% PDR (b) 100% MPR, 50% PDR 

  
(c) 50% MPR, 100% PDR (d) 50% MPR, 80% PDR 

  
(e) 50% MPR, 50% PDR (f) 10% MPR, 100% PDR 

  
(g) 10% MPR, 80% PDR (h) 10% MPR, 50% PDR 

Figure 7: Average speed profiles from 7:50 – 8:05 a.m. on US 101 
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(a) 100% MPR, 80% PDR (b) 100% MPR, 50% PDR 

  
(c) 50% MPR, 100% PDR (d) 50% MPR, 80% PDR 

  
(e) 50% MPR, 50% PDR (f) 10% MPR, 100% PDR 

  
(g) 10% MPR, 80% PDR (h) 10% MPR, 50% PDR 

Figure 8: Speed variance profiles from 7:50 – 8:05 a.m. on US 101 
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The results of the lower connectivity cases depend on which BSMs are sent. 

Therefore, more iterations will be completed for each case. As shown by the figures, all 

cases of 100% MPR and 50% MPR in the speed variance data showed the six 

shockwaves clearly. In particular, the first shockwave is more clearly pronounced in the 

speed variance data than in the average speed data. However, for the lower connectivity 

cases, jumps in speed variance may not be a good indicator for shockwave formation 

than looking at average speed alone.  

Table 1 shows the percent difference in the highest speed variance found in the 

range of each shockwave for lower connectivity cases from the base 100% MPR and 

100% PDR case. Shockwaves with a maximum speed variance value that differs greater 

than 15% are in red. The number of red values increases as the connectivity level (found 

by multiplying percentages of MPR and PDR) decreases. 

 

Table 1: Percent Difference from Highest Speed Variance found in 100% 

MPR/100% PDR Case for Each Shockwave 
   Shockwave Number 

MPR 

(%) 

PDR 

(%) 

Connectivity 

Level (%) 
1 2 3 4 5 6 

100 80 80 -0.7% 0.3% -0.1% 0.4% -1.3% -0.2% 

100 50 50 0.8% 0.5% 0.9% -0.8% -2.6% 1.5% 

50 100 50 -4.4% 4.6% 1.7% 11.6% -10.1% -14.6% 

50 80 40 -3.9% 1.3% 21.3% 10.4% -3.2% -12.2% 

50 50 25 16.9% -13.1% 9.0% -9.6% 21.7% 3.9% 

10 100 10 16.9% -10.5% -3.1% 21.0% 38.6% -3.9% 

10 80 8 16.2% 26.0% 135.9% 10.4% 5.2% 55.8% 

10 50 5 -19.1% 77.0% 36.4% 16.6% 8.2% 49.9% 
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ROOT-MEAN-SQUARE-ERROR 

The root-mean-square-errors (RMSE) of average speed and speed variance were 

found for each scenario with respect to the original 100% MPR and 100% PDR case. 

The average RMSE values found from ten iterations is shown in Figure 9. Distance/time 

intervals that did not record a value were ignored in the calculation. Both RMSE values 

of average speed and speed variance show similar patterns. In general, RMSE increases 

as connectivity decreases. However, the RMSE values for each MPR case are similar 

across PDR values and do not strictly increase or decrease with PDR. This is likely due 

to the randomness in the PDR calculation that is updated at every time interval. The 

difference in RMSE values between MPR cases is larger for the speed variance data than 

the average speed data. This could be the result of greater variability associated with the 

speed variance calculation.   

To examine the relationship between RMSE and MPR more closely, the MPR 

was varied at 5% intervals and the RMSE value was calculated with respect to the 100% 

MPR/100% PDR case each time. The results are shown in Figure 10 for one iteration at 

each MPR interval. As the percent of connected vehicles decreases, the RMSE value 

increases. In particular, the RMSE value appears to rapidly increase below around 35% 

MPR. This could explain why speed variance was an unreliable indicator for shockwave 

formation in the 10% MPR scenarios. 
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(a) Average Speeds 

 
(b) Speed Variances 

Figure 9: Average RMSE values from 10 iterations w.r.t 100% MPR/100% PDR 

case 
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(c) Average Speeds 

 
(d) Speed Variances 

Figure 10: RMSE vs. MPR from one iteration w.r.t 100% MPR/100% PDR case 

 

 

 

DIFFERENCES BETWEEN I-5 AND US 101 RESULTS 

The analysis of connected vehicle data from the I-5 small-scale INFLO 

demonstration hinted that speed variance could be an indicator of shockwave formation 

even at low connectivity levels. However, the US 101 data results, both empirically and 

from the RMSE values, show that this may not be true. In both datasets, vehicles were 

allowed to change lanes and move freely. One explanation could be due to the difference 

in distance intervals used in calculating the average speed and speed variance values. 

The speed variance values were calculated for the I-5 demonstration in half-mile long 

intervals. Speed variance was not a strong indicator of shockwave formation at smaller 
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distance intervals. Since the US 101 vehicle trajectory data section was only 2100 feet 

long, shorter intervals had to be used. Figure 11 shows a comparison between the speed 

variance profiles of US 101 using 150 ft. and 500 ft. intervals with 20 second time 

intervals at low connectivity levels. Overall, the shockwaves are clearer with larger 

distance intervals. The 500 ft. distance intervals indicate that speed variance can be used 

to detect shockwaves with at least 20% MPR while the 150 ft. intervals suggest the 

breakdown point to be between 30% and 40% MPR. While longer intervals may 

improve the reliability of shockwave detection, smaller intervals allow for more 

precision in detecting the starting point of congestion formation. Aggregating the data 

reduces noise in the data and makes it appear cleaner.  

 The RMSE value for the 10% MPR case with respect to the 100% MPR case was 

calculated using different distance intervals. Table 2 shows the average RMSE values of 

US 101 over ten iterations for each distance interval. The results clearly show that as the 

distance interval increases, the error decreases. This supports the empirical results shown 

in Figure 11. There is about a 27% decrease in error when using 500 ft. intervals than 

100 ft. intervals. The difference in results between US 101 and I-5 could also be 

attributed to focusing on specific segments in the I-5 dataset that fit well for shockwave 

analysis.  
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150-foot intervals 500-foot intervals 

  
(a) 40% MPR (b) 40% MPR 

  
(c) 30% MPR (d) 30% MPR 

  
(e) 20% MPR (f) 20% MPR 

  
(g) 10% MPR (h) 10% MPR 

Figure 11: Speed variance profiles from 7:50 – 8:05 a.m. of US 101 in 150 ft. and 

500 ft. intervals 
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Table 2: Average RMSE Values of 10% MPR Case from 100% MPR Case for Each 

Scenario over 10 Iterations of US 101 Data 

Distance Intervals Average Speed Variance RMSE  

100 ft. 19.3 

200 ft. 17.3 

300 ft. 15.6 

400 ft. 15.4 

500 ft. 14.1 

 

 

 

MISINFORMATION IMPACTS 

 In order to test the impacts of potential cyberattacks or equipment malfunctions 

in a connected driving environment, several possible scenarios were simulated and tested 

on the US 101 dataset. In the case of cyberattacks, there are several ways a system can 

be hacked into, so assumptions were made. The focus of this research is to examine the 

effect of falsely reported speeds on shockwave detection reliability. It was assumed that 

small changes in speed (<5 mph) would have minimal impact on the average speed and 

speed variance of a particular time and distance interval. Similarly, very large 

differences (>10 mph) could be picked out as outliers. Therefore, the effects of 

intermediate differences in individual speeds (5-10 mph) were examined.  

 Four different scenarios were tested on the first shockwave detected within the 

US 101 dataset plotted with 20 sec. and 150 ft. intervals. There was a pronounced 

increase in variance indicating shockwave formation for the first shockwave. Incorrect 

speeds were reported for a low variance interval in the uncongested range and the first 

high variance interval indicating shockwave formation. The low variance interval was 

chosen a time and distance step preceding the high variance interval since it was a 

backward propagating shockwave. For the first shockwave, the low variance interval 
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was from 7:50:40-7:51:00 a.m. over section 10 and had a variance value of 26.25 and an 

average speed value of 32.94 mph. The next interval with a sharp increase in variance 

was from 7:51:00-7:51:20 a.m. over section 9 and had a variance value of 103.26 and an 

average speed value of 26.51 mph. The first two scenarios tested assumed that a certain 

percentage of the speeds reported a 5-10 mph difference in actual speed. The falsely 

reported speeds were chosen randomly and the actual difference in speed was also 

chosen randomly. As mentioned previously, cyberattacks can generate from anywhere, 

and there can be an equipment malfunction on the receiving and sending end of a BSM. 

The overall trend in results is similar regardless of whether there is a malfunction with 

the vehicle’s onboard unit affecting the sending of messages or if there is a malfunction 

with the roadside unit affecting the receiving of messages.  

 Figure 12 shows the effect of increasing a certain percentage of the speeds by 5-

10 mph on the low variance and high variance (sharp increase in variance) interval’s 

average speed and speed variance. Figure 13 shows the result of randomly decreasing 

actual speeds by 5-10 mph. When a certain percentage of speeds are falsely reported 

higher, the average speed increases. With high percentages of higher reported speeds, the 

high variance interval is no longer reporting a low average speed, so evidence of 

shockwave formation disappears. The opposite is true when the speeds are consistently 

reported lower than actual speeds causing the low variance interval to appear congested. 

However, the variance is not linearly increasing or decreasing with an increase or 

decrease in speeds but shows an inverted U relationship to the percentage of falsely 

reported speeds. The difference in variance between the low variance and high variance 



 

38 

 

 

interval remains large throughout. Therefore, a large difference in variance is still a good 

indicator of shockwave formation. This shows that speed variance is a more reliable 

measure for shockwave detection than tracking average speed alone.  

 

 

  

(a) Average Speed (b) Speed Variance 

 
Figure 12: Effect of falsely reported higher speeds by 5-10 mph 

 

 

 

  

(a) Average Speed (b) Speed Variance 

 
Figure 13: Effect of falsely reported lower speeds by 5-10 mph 
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 Next, percentages of speeds were randomly either increased or decreased by 5-10 

mph. Figure 14 shows the results of increasing or decreasing a certain percentage of the 

speeds by 5-10 mph on the low variance and high variance interval’s average speed and 

speed variance. Due to the randomly chosen increase and decrease in speeds, the 

differences in speeds balanced out, so the average speed did not vary much with a higher 

number of falsely reported speeds. The speed variance results show a linearly increasing 

trend to the percentage of falsely reported speeds. Although the variance continually 

increases, the difference in speed variance between the low variance and high variance 

interval remains fairly constant. Therefore, the variance can be tracked across time and 

space, and a rapid increase in variance between two intervals could still be used as an 

indicator of shockwave formation.  

 

 

  
(a) Average Speed (b) Speed Variance 

 
Figure 14: Effect of falsely reported higher and lower speeds by 5-10 mph 
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 Lastly, speeds were manipulated for only the low variance interval and its 

recalculated speed variance was compared to the speed variance of the high variance 

interval. The difference was found by subtracting the recalculated low variance 

interval’s speed variance from the unchanged high variance interval’s speed variance 

value of 103.26. Figure 15 plots these differences for various speed manipulation ranges. 

Speeds were randomly increased and decreased within the specified speed ranges. The 

proposed shockwave detection method relies on a jump in speed variance values across 

time and space. If the difference remains significant, shockwaves can still be detected 

although speeds may have been falsely reported. The results show that when speeds are 

incorrectly reported within 1-5 mph, there is little effect on the speed variance difference 

between the two intervals. When speeds are incorrectly reported within 5-10 mph, the 

difference only significantly drops with very high percentages of incorrect speeds. When 

speeds are incorrectly reported within 10-15 mph, there reaches a point at 50% incorrect 

speeds where there is no difference between the speed variances of the two intervals. 

The same breakdown point drops to 25% when speeds are incorrectly reported within 

15-20 mph. Negative differences indicate that the speed variance calculated for the low 

variance interval was higher than the speed variance for the high variance interval, 

making it appear as though the shockwave occurred earlier.  
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Figure 15: Speed variance differences between a low variance and high variance 

interval across various speed manipulation ranges 

 

 

 

SUMMARY 

 Average speeds and speed variances were calculated for a vehicle trajectory 

dataset of US 101 over a 15-minute period for different MPR and PDR scenarios using 

150 feet and 20 second intervals. All cases of 100% MPR and 50% MPR showed the six 

shockwaves in the dataset clearly. RMSE values with respect to the 100% connectivity 

case were averaged over ten iterations for the lower connectivity cases. In general, 

RMSE increases as connectivity decreases. However, the RMSE values for each MPR 

case are similar across PDR values and do not strictly increase or decrease with PDR. 

MPR was varied at 5% intervals. RMSE values were calculated from one iteration and 

showed that the error increases greatly below around 35% MPR. The difference in 

results between the I-5 and US 101 dataset may be attributed to the difference in length 
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of the segments. Plots of US 101 data using 500 ft. intervals showed the six shockwaves 

clearer in lower connectivity cases than in the plots made with 150 ft. intervals. The 

RMSE error decreased as the distance interval size increased from 100 ft. to 500 ft.  

The effect of different potential cyberattacks and connectivity failures were 

tested on one shockwave in the US 101 dataset. The scenarios of falsely increasing, 

decreasing, and both increasing and decreasing actual speeds by 5-10 mph were tested 

for an interval with low variance and an interval with high variance. Speed variance was 

more robust than average speed to changes in speeds when speeds were reported to be 

either strictly increasing or decreasing. When speeds were both increasing and 

decreasing, average speeds remained steady while variance continually increased. 

However, the difference in variance between the two intervals remained steady with an 

increasing percentage of incorrect speeds which supports the idea of tracking changes in 

variance to detect shockwave formation. When speeds were incorrectly reported for only 

one of the intervals, speed variance remained a strong indicator of congestion formation 

when speeds were incorrectly reported by 1-5 mph and 5-10 mph for all percentages of 

incorrect speeds.  
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CHAPTER VI 

LANE-BY-LANE AND LANE CHANGE ANALYSIS 

 

 This chapter further analyzes the shockwaves in the US 101 dataset and attempts 

to improve the speed distribution based shockwave detection method by analyzing 

individual lanes, different lane aggregations, and the relationship to the number of lane 

changes.  

 

LANE-BY-LANE ANALYSIS 

To improve the accuracy of using speed variance for shockwave detection, speed 

variances were calculated for each lane separately. Figure 16 shows the speed variance 

profiles by lane for US 101. Lane 5 is the leftmost lane and lane 1 is the rightmost lane 

by the auxiliary lane. The results show that the shockwaves are only clearly seen in the 

plot of lane 1. This is to be expected since the shockwaves are being caused by lane-

changing maneuvers from the on-ramp and off-ramp. Analyzing each lane individually 

can narrow down which lanes are most affected and further pinpoint the cause of the 

shockwave. This is not as clear in the average speed profiles by lane, which show 

shockwave formation for several lanes. These speed profiles are located in the 

Appendix.  

Figure 17 shows the speed variance profiles by different lane aggregations. 

Shockwaves 1 and 4 can be clearly seen in all graphs. Figure 17(c) appears to be the 

clearest and to have the least amount of noise among the four figures.  
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(a) Lane 5 (b) Lane 4 

  
(c) Lane 3 (d) Lane 2 

 
(e) Lane 1 

Figure 16: Speed variance profiles from 7:50 – 8:05 a.m. on US 101 by lane 

 

 



 

45 

 

 

  
(a) Lanes 1-2 (b) Lanes 1-3 

  
(c) Lanes 1-4 (d) Lanes 1-5 

Figure 17: Speed variance profiles from 7:50 – 8:05 a.m. on US 101 by different 

lane aggregations 

 

 

 

Table 3 shows the average RMSE results for the 10% MPR case with respect to 

the 100% MPR case for each lane aggregation over ten iterations. Lane 1 has the lowest 

RMSE value while aggregating data from all the lanes has the highest RMSE value. 

Looking at a single lane reduces the amount of noise in the data. Aggregating lanes 1 

through 4 has the second lowest error which is supported empirically by Figure 17. It is 

interesting to note that the RMSE values do not strictly increase or decrease as more 

lanes are analyzed, suggesting that this relationship may be unique to each dataset.  
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Table 3: Average RMSE Values for 10% MPR Case w.r.t 100% MPR Case for 

Each Scenario over 10 Iterations for US 101 

 Average Speed Variance RMSE  

Lane 1 12.8 

Lanes 1-2 18.4 

Lanes 1-3 18.0 

Lanes 1-4 16.9 

Lanes 1-5 18.7 

 

  

LANE CHANGE ANALYSIS 

Since Ahn and Cassidy (27) had found that shockwaves could be initiated by lane 

changes, it was hypothesized that the number of lane changes would increase as vehicles 

approached the point of shockwave formation, which is the merge point for the US 101 

segment. The number of lane changes was first calculated for 150 ft. sections of US 101. 

The results showed a jump in the number of lane changes in section 5, which is where 

the merge point is located, but not a gradual increase in the number of lane changes over 

distances. The distance interval was then further broken up, and the number of lane 

changes was calculated for 50 ft. intervals. However, the results again showed only a 

high jump in the number of lane changes near the merge point. Therefore, no 

relationship was found between shockwave formation and number of lane changes for 

the US 101 dataset. Figure 18 shows the results.  

 



 

47 

 

 

  
(a) 150 ft. intervals (b) 50 ft. intervals 

Figure 18: Lane change profiles from 7:50 – 8:05 a.m. on US 101 in 20 sec. intervals 

 

 

 

The correlation coefficient was calculated between the speed variance and lane 

change profiles of 150 ft. and 20 sec. intervals. The correlation coefficient was 0.006 

indicating that no relationship exists between the number of lane changes and speed 

variance for the US 101 dataset. This supports the empirical observation found from the 

plots of the data. This result may be attributed to the short length of the segment.  

 

SUMMARY 

Speed variances were calculated and plotted by lane for the US 101 dataset. The 

results show that the shockwaves are only clearly seen in lane 1, the lane closest to the 

auxiliary lane, due to lane changes from the on- and off-ramp. Analyzing the speed 

variances of each lane individually can narrow down which lanes are most affected and 

further pinpoint the cause of the shockwave. Speed variance profiles were plotted by 

different lane aggregations and the RMSE was found for 10% MPR with respect to 

100% MPR case for each lane aggregation over ten iterations. Lane 1 had the lowest 

RMSE value while aggregating data from all the lanes has the highest RMSE error. The 
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number of lane changes was also plotted over 150 ft. and 50 ft. intervals. The correlation 

coefficient between speed variance and number of lane changes was 0.006 indicating 

that no relationship exists between the number of lane changes and speed variance for 

the US 101 dataset. 
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CHAPTER VII 

SUMMARY AND FUTURE RESEARCH 

 

SUMMARY 

The purpose of this study was to utilize connected vehicles data and vehicle 

trajectory data to determine if any increase in speed variance over distances could be an 

indicator of shockwave formation. Earlier and more reliable shockwave detection can 

delay shockwave propagation in advance of a traffic jam and further reduce the negative 

impacts on safety, performance, and emissions. The shockwave detection method used 

in this research was tested against different factors including individual lanes, lane 

aggregations, and differently sized intervals to test and improve its reliability. Since this 

detection method relies on speed and location data from vehicles, one problem it faces is 

the currently low market penetration rates of CVs. In addition, there is an increased 

threat of cyberattacks and equipment malfunctions due to a CV’s complexity and 

connectivity capabilities. Therefore, this study also explored the impacts of partial 

connectivity and misinformation on speed variances calculated to detect shockwaves. 

The idea for this study came from past literature on traffic flow theory that found that a 

rapid increase in speed variance could be an indicator of shockwave formation. 

However, the previous studies had used data from loop detectors and radar guns to show 

this and was therefore limited to detecting shockwaves at specific locations. CV 

technology allows for more accurate detection across time and space.  
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The I-5 INFLO demonstration and the NGSIM US 101 datasets were analyzed in 

this research. Matlab, Google Earth, and Excel were the primary programs used to 

analyze the data. The I-5 dataset only had data from 19 connected vehicles. Average 

speeds and speed variances were plotted in one minute and 0.5-mile intervals using a 

rolling horizon approach updated every 0.25 miles. Average speeds and speed variances 

were also plotted for the US 101 dataset from 7:50 a.m. – 8:05 a.m. in 150 ft. and 20 sec. 

intervals. Six shockwaves most likely caused by lane-changing maneuvers from the on- 

and off-ramp could be seen in the plots of the data.  

The effects of partial connectivity and misinformation were tested on the US 101 

dataset. MPRs of 100%, 50%, and 10% and PDRs of 100%, 80%, and 50% were tested. 

MPR was defined as the percent of connected vehicles over the 15-minute period. PDR 

was defined as the percentage of speed data received and was updated at each time step. 

RMSE values with respect to the 100% MPR/100% PDR case were found for the lower 

connectivity cases.  

Four different misinformation scenarios were simulated and tested on one 

shockwave in the US 101 dataset. Specifically, an interval with low speed variance and 

the next interval with a jump in speed variance were analyzed. The first scenario 

assumed a percentage of the speeds were reported 5-10 mph higher than actual speeds. 

The second scenario assumed a percentage of the speeds were reported 5-10 mph lower 

than actual speeds, and the third scenario assumed a combination of lower and higher 

reported speeds by 5-10 mph. The effect of different percentages of incorrect speeds on 

the intervals’ average speed and speed variance were analyzed. The fourth scenario 
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manipulated the speeds for only the low speed variance interval and plotted the 

differences between the variances of the two intervals for different falsely reported speed 

ranges.  

Speed variance profiles were plotted by individual lanes and different lane 

aggregations for the US 101 dataset. Average RMSE values from ten iterations were also 

found for the 10% MPR case with respect to the 100% MPR case for the different lane 

aggregations. The number of lane changes was calculated using both 150 ft. and 50 ft. 

distance intervals. The correlation coefficient was also calculated between the speed 

variances and number of lane changes in 150 ft. intervals.  

 This chapter summarizes the major findings of the study. The limitations are also 

discussed after the findings. Finally, recommendations for future research are given. 

 

FINDINGS 

 The major findings from the I-5 data analysis and the 100% connectivity case of 

the US 101 dataset are as follows: 

 An analysis of six segments from the I-5 dataset showed that speed variances 

calculated over distances could be used to identify shockwaves. The six segments 

showed that a jump in speed variance could detect congestion 0.25 miles and/or 

one minute earlier than when the average speed dropped to the congested range.  

 The 100% connectivity case of the US 101 dataset showed that an increase in 

speed variance is an indicator of congestion formation. 
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The major findings from the partial connectivity cases of US 101 and causes for 

the differences in results between I-5 and US 101 are as follows: 

 All cases of 100% MPR and 50% MPR showed the six shockwaves in the US 

101 dataset. 

 In general, RMSE increases as connectivity decreases especially below around 

35% MPR. No relationship was found across PDR.  

 The difference in results between I-5 and US 101 at low connectivity intervals 

could be attributed to the length of the intervals used in calculating the speed 

variance. 500 ft. intervals were tested on the US 101 dataset. The 500 ft. distance 

intervals indicated that speed variance could be used to detect shockwaves with 

at least 20% MPR while the 150 ft. intervals suggested the breakdown point to be 

between 30% and 40% MPR. RMSE also decreases as the distance interval 

increases. Aggregating data reduces not only noise but also the precision in 

locating the start of a shockwave.  

The major findings on the impacts of misinformation on the speed distribution 

based shockwave detection method are as follows: 

 As the percentage of falsely reported speeds increased, the average speeds 

increased or decreased depending on whether speeds were reported higher or 

lower than their actual values. Speed variance showed an inverted U relationship 

to the percentage of incorrect speeds.  

 When actual speeds were randomly increased and decreased, average speeds 

remained steady while variance continually increased. The difference between 
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the low and high variance intervals remained fairly constant indicating that speed 

variance can still be tracked along time and space and a huge jump in interval 

variance values could indicate shockwave formation.  

 When speeds were manipulated for only one of the intervals by 1-5 mph and 5-

10 mph, the difference in speed variance values between the two intervals 

remained significant for all percentages of incorrect speeds. The difference in 

speed variance values dropped to zero when speeds were manipulated within 10-

15 mph and 15-20 mph with 50% and 25% incorrect speeds respectively.  

The major findings from the individual lane analyses, lane aggregations, and 

number of lane changes are as follows: 

 Speed variance profiles by lane showed that most of the shockwaves could only 

be clearly seen in lane 1, the lane closest to the on- and off-ramp. Analyses by 

lane can further point out the cause of the shockwave and show which lanes are 

most affected. This was not as clear in the average speed profiles.  

 Lane 1 had the lowest RMSE value while aggregating data from all the lanes had 

the highest RMSE value. RMSE values did not strictly increase or decrease as 

more lanes were analyzed together.  

 No relationship was observed between shockwave formation and the number of 

lane changes in the 150 ft. and 50 ft. lane change profiles for the US 101 dataset.  

 The correlation coefficient was calculated to be 0.006 indicating that no 

relationship exists between the number of lane changes and speed variance for 

the US 101 dataset.  
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LIMITATIONS 

 The major limitations of this research are summarized as follows: 

 The shockwave analysis in the US 101 dataset was limited by the size of the 

2100-foot long segment. Although the I-5 INFLO demonstration only had a few 

connected vehicles, data was collected over several miles. This could be one 

reason why speed variance was observed to detect congestion much earlier than 

average speed for the I-5 dataset than the US 101 dataset.  

 The shockwaves present in the US 101 dataset were all most likely caused by 

lane-changing maneuvers from the on- and off-ramp. Other types of shockwaves 

were not analyzed using the speed distribution based shockwave detection 

method.  

 Misinformation in CV data can occur in a variety of different ways. This study 

focused on only four possible scenarios and only manipulated speed data.  

 

FUTURE RESEARCH 

 Recommendations for future research are listed as follows: 

 Analyze data from other CV deployments over longer segments to observe 

whether the speed distribution based method can detect shockwaves earlier than 

solely looking at average speeds. The relationship between number of lane 

changes and speed variance and the effect of differently sized intervals can be 

reanalyzed with a longer segment analysis.  
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 Analyze different types of shockwaves to determine whether the speed variance 

values depend on the cause of the shockwave. 

 Manipulate location data as well as speed data and test the resulting impact on 

average speed and speed variance. Consider partial connectivity cases as well.   
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APPENDIX 

 

 
(a) Average Speed 

 
(b) Speed Variance 

Figure A-1: US 101 from 7:50 – 8:05 a.m. in 150 ft. and 10 sec. intervals 
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(a) Average Speed 

 
(b) Speed Variance 

Figure A-2: US 101 from 7:50 – 8:05 a.m. in 150 ft. and 30 sec. intervals 
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(a) Average Speed 

 
(b) Speed Variance 

Figure A-3: US 101 from 7:50 – 8:05 a.m. in 150 ft. and 60 sec. intervals 
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(a) Average Speed 

 
(b) Speed Variance 

Figure A-4: US 101 from 7:50 – 8:05 a.m. in 100 ft. and 20 sec. intervals 
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(c) Average Speed 

 
(d) Speed Variance 

Figure A-5: US 101 from 7:50 – 8:05 a.m. in 200 ft. and 20 sec. intervals 
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(a) Lane 5 (b) Lane 4 

  
(c) Lane 3 (d) Lane 2 

 
(e) Lane 1 

Figure A-6: Average speed profiles from 7:50 – 8:05 a.m. on US 101 by lane 




